T e e g < g g s e

* UTTAR PRADESH
RAJARSHI TANDON OPEN UNIVERSITY

Block

]

'SOLUTIONS OF NON-LINEAR EQUATIONS IN
ONE VARIABLE

UGMM - 10
Numerical Analysis

UNIT1

Review of Calculus

UNIT 2
Iteration Methods for Locatin' a Root

UNlT 3

Chord Methods for Finding Roots A s
UNIT 4 | | |

11

Approximate Roots of Polynomial Equations

&"‘,‘



Course Design Committee

Prof. S.R K. Iyengar (Editor) Prof. R.K. Jain

Dept. of Mathematics Dept. of Mathematics

LLT., Delhi LJ.T., Delhi

Prof. J.P. Agarwal , Prof. C. Prabhakara Rao

Dept. of Mathematics Dept. of Mathematics and Humanities
LLT., Kharagpur " REC, Warangal

Dr. U. Anantha Krishnaiah Faculty Members .
Dept. of Mzthematics School of Sciences, IGNOU

KREC, Surathkal . Prof, RK. Bose

. Dr. V.D. Madan
Dr. Poornima Mital
Dr. Manik Patwardhan
Dr. Parvin Sinclair
Dr. Sujatha Varma

Block Preparation Team

Prof. S.R.K. lyengar (Editor) ’ Dr. Sujatha Varma

Dept. of Mathematics - . School of Sciences

LLT., Dethi IGNOU

Prof. J.P. Agarwal Prof. G.S. Rao (Language Editing)
Dept. of Mathematics School of Humanities

LET., Kharagpur IGNOU

Course Caordinator : Dr. Poornima Mital

Production

Mr. Balakrishna Selvaraj Mr. M.P. Sharma
Registrar (PPD) : Joint Registrar (PPD)
IGNoU : - ‘ IGNOU

May, 1993

© Indira Gandhi National Open University, 1993
-ISBN-81-7263-338-6

All rights reserved. No part of this work may be reproduced in any form, hy mimeograph or any other means,
without permission in writing from the Indira Gandhi Natianal Open University. '

.. Fitrther information on the lndira Gandhi National Open University courses may be obrained from the Univessity's -
— afftce at Maidan Garhi,New Delhi-110 068. .

.‘ Reproduced and reprinted with the permission of Indira Gandhi National Open U'niverslty '
by Dr.A.K.Singh, Registrar, U.P.R.T.Open University, Allahabad (May, 2013) ' o
. Reprinted by : Nitin Printers, 1 Old Katra, Manmohan Park, Allahabad.



j

TR e N

NUMERICAL ANALYSIS |

Mathematical modelling of physical/biological problems generally give rise to ordinary or partial
differential equations or an integral equation or in terms of a set of such equation. A number of

~ these problems can be solved exactly by mathematical analysis but most of them cannot be

solved exactly. Thus, a need arises to devise numerical methods to solve these problems. These
methods for solution of mathematical methods may give rise to a system of algebraic equations
or a non-linear equation'or system of non-linear equations. The numerical solution of these
system of equations are quantitative in nature but when interpreted give qualitative results and
are very useful. Numerical analysis deals with the development and analysis of the numencal
methods. We are offering this course of numerical analysls to students entenng the Bachelor’s
Degree Programme as an elective subject. .

It was in the year 1624 that the English mathemutician. Henry Briggs used a numerical

procedure to construct his celebrated table of logrithms. The interpolation problem was first

" taken up by Briggs but was solved by the 17th century mathematicians and physicists, Sir

Isacc Newton and James Gregory. Later on, other problems were considerd and solved by
more and more efficient methods. In recent years the invention and development of
electronic calculators/computers have strongly influenced the development of numerical
analysis.

This course assumes the. knowledge of the course MTE-01 on calculus It is a prerequisite
for this course. Number of resultsifrom linear algebr.x are also used i this course. These
fesults have been stated wherever requrred For details of these results our linear algebra
course (MTE-02) may be referred This course is divided into 4 blocks. The first block.

* deals with the problem of ﬁndmg approximate roots of a non-linear equation in one

unknown. We have started the block with a recall of four important theorems from calculus

* which are referred to throughout the course, After introducing the concept of “error” that

‘arise due to approximations, we have discussed two basic approximation methods. namely.
bisection and fixed point iteration methods and two commonly used methods. numely.

“secant and Newton-Raphson methods. In'Block 2. we have considered the prohlun of

finding the solution of system of linear equations. We have-discussed both direct .uul

iterative methods of solving system of linear equauons

Block 3 deals with the theory of mterpolatlon Here. we are concerned only with polynomml '
interpolation, The existence and uniqueness of interpolating polynomials are discussed.
Several form of interpolating polynomials like Lagrange's and Newton's divided difference
forms with error terms are discussed. This block concludes with a diseussion on Newton's

_forward and backward difference fonn

In Block 4, usmg interpolating polynomials we_ have obtajned numerlcal dllferentl.mon and :
integration formulae together with their error termis. After a brief introduction to difference
equations the numerical solution of the first order ordinary differential equation is dealt

.with. More precisely, Taylor series, Euler’s and second order Runge Kutta methods are

derived with error terms for the solution of drfferentlal equations. -

Each block consists of 4 units. All the concepts given in the units are followed by a number

. of examples as well as exercises. These will help you get a better grasp of the techniques
- discussed in this course. We have used g scientific calculator for domg computations

throughout the course. While attempting the exercises given in the units, you would also

* need a calculator which is available at your study centre, The solutions/answers to the

exercises in a unit are given at the gnd of the unit. We suggest that you look at themonly
after attempting the exercises. A list of symbols and notanons are also given in for your

- reference.

You may like to look up some more baoks on the s'ubjeet and try to solve some exercises
given in them. This will help you get a better grasp of the' lecl\mques discussed in this

“course. We are giving you a list of titles which will be available in your study-centre for -

reference purposes.

Some Useful Books

1) Numerical Methods for Sczennf ic and Engmeer mg Computanon-by M.K. Jiin. S.R.K.
Iyengar, R.K. Jain.

2) Elementary Numerical Analysis by Samuel D. Conte and Carl de Boor.
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"€ epsilon
. B |
> capital sigma
g - zeta
\
' Acknowledgements

Prof. R.K. Bose. Dr. Poornima Mital, Dr. Manik Pa(wardhan. Dr. Parvm Smclalrfor
comments on the manuscript.

Mrs. Manju Sharma for typing the manuscnpt

Mrs Wasima Shah for the artwork. :



SR -

BLOCK INTRODUCTION

This is the first of the four blocks which you will be studying in the Numerical Analysis
course. In this block we shall be dealing with the problem of finding approximate roots of a
non-linear equation in one unknown. In the Elemeritary Algebra course you have studied,
some methods for solving polynomial equations of degrees up to and including four. In this

“block we shall introduce you to some numerical methods for finding solutions of equation.

These methods are applicable to polynomial and transcendental equations.

This block consists of four-units. In Unit 1,we begin with a recall of four important theorems
from calculus which are referred to throughout the course. We then introduce you to the
concept of ‘error’ that arise due to approximation. We shall acquaint you with two types of
errors that are common in numerical approximation. In Unit 2, we shall discuss two basic
approximation methods, namely, bisection method and fixed point iteration method. Each of
these methods involve a process that.is repeated until an answer of required accuracy is
achieved. These methods are known as iteration methods. We shall also discuss two

. accurate méthods. namely, secant and Newton-Raphson methods in Unit 3. Unit 4, which is

the last unit of this block, deals with the solutions of the most well-known class of

_ equations, the polynomial equations. For finding the roots of polynomial equations we shall

discuss Birge-Vieta and Graeffe's root squaring methods.

As already mentioned in the course introduction, we shall be using a scientific calculator for
doing computations throughout the block. While attempting thie exercises given in this '
block, you would also need a calculator which is available at your study centre. We
therefore suggest you to go through the instructions manual, supplied with the calculator,

. before using it.

“Lastly we remind you to go through the solved examples carefully, and to attempt all
- exercises in each unit. This will help you to gain some practice over various methods

discussed in this block. :
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UNIT1 REVIEW OF CALCULUS
Structure ' | . R ‘
1.1 Introduction
_ Objectives
1.2 Three Fundamental Theorems

. Intermediate Value Theorem
Rolle’s Theorem - :
Lagrange’s Mean Value Theorem

1.3 Taylor’s Theorem-

1.4 Errors
Round-off Error .
Truncation Error

1.5 . Summary -

1.6 Solutions/Answers

1.1 INTRODUCTION

_ The study of numerical analysis involves concepts from various branches of mathematics

including calculus. In this unit, we shall briefly review certain important theorems in
calculus which are essential for the development and understanding of numerical methods.
You are already familiar with some fundamental theorems about continuous functions from
your calculus course, Here we shall review three theorems given in that course, namely,
Intermediate value theorem, Rolle’s theorem and Lagrange’s mean value theorem. Then we
state another important theorem in calculus due to B, Taylor and illustrate the theorem
through various examples. ' :

Most of the numerical methods give answers that are approximaﬁons to the desired
solutions. In this sityation, it is important tomeasure the accuracy of the approximate
solution compared to the actual solution. To find the accuracy we must have an idea of the
possible errors that can arise in computational procedures. In this unit we shall introduce you

to different forms of errors which are common in numerical computations. =~

The basic ideas and results that we have lllusitratedX in this unit will be used often throughout .

this course. So we suggest you go through this unit very, carefully.

" Objectives . :

After studying this unit you shouldbe able to :

® apply .
i) Int_ennediate vglue theorem

ii) Rolle's theorem | .
iii) Lagrange’s mean value theorem
" iv) Taylor's theorem; ‘ :
©  define the term ‘error’ in approximation; -

©® distinguish between rounded-off error and truncation error and calculate these errors
" as-the situation demands.

12 THREE FUNDAMENTAL THEOREMS -

In this section we shall disciss three fundamental theorems, namely, intermiediate value
theorem; Rolle’s theorem and Lagrange’s mean value theorem. All these theorems give.
properties of continuous functions defined on a closed interval [a, b]. We shall not prove
them here, but we shall illustrate their utility with various examples. Let us take up these.
theorems one by one. T S .




Solutions of Non-finear Equations
in one Variable

1.2.1 Intermediate Value Theorem

The intermediate value thebrem says th- 4x function that is continuous on a closed interval
[a, b] takes on every intermediate valu, 1.e., every value lying between f(a) £nd f(b) if
f(a) # f(b).

Formally we can state the theorem as follows :

Theorem 1 : Let f be a function defined on a closed interval [a, b}. Let ¢ be a number lying
between f(a) and f(b) (i.e. f(a) < c < f(b) if f(a) < f(b) or f(b) < ¢ < f(a) if b) < f(a)). Then
there exists at least one point Xy € [a, b] such that f("o) =cC.

The following figure (Fig. 1) may help you to visualiseithe theorem more easily. It gives the
graph of a function f.

Y
f(b)+ /
y=¢c
a/ o X b X

f(a)r

Fig. 1

In this figure f(a) < f(b). The condition f(a) < c< f(b) implies that the points (a, f(a)) and
(b, (b)) lie on opposite sides of the line y = c. This, together with the fact that fis -
continuous, implies that the graph crosses the line y = ¢ at some point. In Fig. | you see
that the graph crosses the line y = ¢ at (xo. c).

The importance of this theorem is as follows : If we have a continuous function f defined on
a closed interval [a, b], then the theorem guarantees the existence of a solution of the
equation f(x) = c, where c is as in Theorem 1. However, it does not say what the solution is.
We shall illustrate this point with an example.

L.

Example 1 : Find the value of x in0 Sx £ 2 fqr which sin(x) = -;—

Solution ; You know that the function f(x) = sin x is céntinuous on [0, g] Since f(0) =0

1‘_],_ 1, we have f(0) < -;- <f (-125) '!"hus f satisfies all the conditions of Theorem 1.

and f ( 5
' : 1 .
Therefore, there exists at least one value of x, say Xgr such that f(xo) =2 that is, the theorem

guarantees that there exists a point x,, such that sin (xp) = -;— Letus try to find this point from

the graph of sin x in [o. -’i‘-] (see Fig. 2). *

Y
y=sin ¥
1
|
|
|
o] w16 w/2 X
Fig.2




From the figure, you can see that the line x = % cuts the graph at the point (% %) Hence
n

there exists a point X, = 2 in [O.. 2] such that sin ((xy) = -;—

Let us consider another example.
Example 2 : Show that the equation 2x3 + x2 — x + 1 = 5 has a solution in the interval [1, 2],

Solution : Let f(x) = 2x3 + x2 — x + 1. Since f is a polynomial in x, f is continuous in [1, 2].
Also f(1) = 3, f(2) = 19 and 5 lies between (1) and f(2). Thus f satisfies all conditions of
" Theorem 1. Therefore, there exists asumber X between | and 2 such that f(xo) = 5. That is,

the equation 2%3 + x2 - x + 1 = 5 has solution in the interval [1, 2].

Thus we saw that the theorem enables us in establishing the existence of the solutions of
certain equations of the type f(x) = 0 without actually solving them. In other words, if you
want to find an interval in which a-solution (or root) of f(x) = 0 exists, then find two
numbers a, b such that f(a) f(b) < 0. Theorem 1, then states that the solution lies in Ja, b[. We
shall need some other numerical methods for finding the actual solution. We shall study the
problem of finding solutions of the'equation f(x) = 0 more elaborately in Unit 2.

Why don’t you try an exercise now,

El) Show that the following cquatibns have a solution in the interval given alongside.

~a)  x}-x-5=0,[0,2L.

g _ r
| b), sinx+x=1 .[0. 6]'

Let us now discuss another important theorem in calculus.

1.2.2 Rolle’s Theorem: :

Inthis section we shéll review the Rolle’s theorem. The theorem is named after the
seventeenth century French mathematician Michel Rolle (1652-1719).

Theorem 2 (Rolle’s Theorem) : Letfbe a ;:ontinuous function 'deﬁnegi on [a, b] and
differentiable on ]a, b[. If f(a) = f(b), then there exists a number X, in Ja, b[ such that
f(xy) =0.

Geometrically, we can interpret th_e theorem easily. You know that since f is continuous, the
graph of f is a smooth curve (see Fig. 3). : ?

Y‘ L
(a, f (a)) ‘ (b. £ (b)) '
AN —
a N X N b X
—— e Ry e . —— o o= R — o —
P

Fig.3

You have already seen in your calculus course that the derivative f'(x,) at some point x,
gives the slope of the tangent at (XO. f(xy)) to the curve y = f(x). Therefore the theorem states
that if the end values f(a) and f(b) are equal, then there exists a point Xq in Ja, b shch that
the slope of the tangent at the point P(x,, f(x)) is zero, that is, the tangent is parallel to

x-axis at that point (see Fig. 3). In fact we can have more than one point at which f'(x) =0 as
shown in Fig. 3. This shows that the number X, in Theorem 2 may not be unique. '

Review of Calculus
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The following example gives an application of Rolle’s theorem.

Example 3 : Use Rolle’s theorem to show that there is a solution of the equation

. i
cotx=Xx1n ."',Z.

Solution : Here we have to Yolve the equation cot x — X = C. We rewrite cot X — X as
Cos X — X sin X L . €OsX-~XsinX P < .
LS 2= Solving the equation —— T = 0in 0, =] is same as solving the
sin x sin X 2 2
equation cos x — x sin x = 0. Now we shall see whether we can find a function f which
satisfies the conditions of Rolle’s theorem and for which £(x} = cos x — x sin x, Our

experience in_differentiation suggests that we try. f(x) = x cos x. This function f is

continuous in| 0, 2t differéntiable in 0, gL and the deriyative #(x) = cos X =X sin X. Also
PN . .
i(M=0=f g .Thus f satisfies all the requirements of Rolle’s theorem. Hence, there exists

a point X in J4, bl such that f'(x,} = cos Xy~ Xg sin x, = 0. This shows that a solution to the

' A
equaton cotx—~x= 0 exists in {0, _il .

You can try the following exercise on the same lines as Example 3.

E2) Using Rolle's theorem show that there is a solution to the equation tan x = 1 +x =0
in 10, 1[.

Now. let us look at Fig. 3 carefully. We see that the line joining (a, f(a)) and (b, f(b)) is
parallel to the tangent at (xO.f(xo)). Does this property hold when f(a) # f(b) also? In othet

words. does there exist a point X, in ]a, b{ such that the tangent at (Xgr f(xo)) is para}lcl to the
line joining (a, f(a)) and (b; f(b))? The answer to this question is the content of the well-

known theorem, **Lagrange’s mean value theorem'", which we discuss next.
1.2.3 Lagrange’s Mean Value Theorem

This theorem was first proved by the French mathematician Count Joseph Louis Lagrange ;
(1736-1813).

Theorem 3 : Let f be a continuous function defined on {a, b} and differentiable in Ja. bl.
Then there exists a number X, in Ja. b{ such that

_lll)Lf(_“l ‘ LoD

t"(x()) =

Geometrically we can interpret this theorem as given in Fig. 4.

(b.t (b))

(. £ {a))

(0] a XNo b X

Fig. 4

In this figure you can see that the straight line connecting the end points (a, f(a)) and
(b, f(b)) of the graph is parallel to some tangent {0 the curve at an intermediate point.

You may be wondering why this theorem is called ‘mean value fheorem'. This is because of
the following physical interpretation. :



#5

Suppose f(t) denotes the position of an object at time t. Then the average (mean) velocity
during the interval {a, b] is given by '

1(b) - f(a)
b-a . ,
Now Theorem 3 states that this mean velocity during an interval [a, b] is equal to the

velocity f’ (xo) at some instant x inJa, bl.

We shall illustrate the theorem with an example.

Example 4 : Apply the mean value theorem to the function f(x) = Vx in [0, 2] (see Fig. 5).

y = Vx
Yﬂ (2. V2)
’ Pd
_ ~
Pd .
1 e
7
rd
7
P
P
//
//
P

LS ) T

o 117] 1 2 X

Fig.5 : Graph of f(x) = Vx.
Solutic;n : We first note that the function f(x) = VX is continuous on [0,72] and differentiable
in]0, 2/ and F=gm
Therefore by Theorem 3, there exists a point X in 10, 2{ such that
f2)-10) = f (xp) 2-0
Now £(2) = V2 and £(0) = 0 and f'(xp) = N‘;; .

Therefore we have
1
2 =
2%
ie. Vxo = T and X 1
T 0~2" :
Thus we get that the line joining the end pomts (0 0) and (2, V2, ) of the grﬂph of f is parallel
1
to the tangent to the curve at the point (2 T

We shall consider one more example.

Example 5 : Consider the function f(x) = (x — 1) (x - 2) (x 3) in [0, 4]. Find a point x,, in
10, 4[ such that : -

£(x o)__.(_)__ﬁgl. | -

Solution : We rewrite the function f(x) as
f(x)=(x = 1) (x=2) (x - 3) x3-6x +11x-6
We know that f(x) is continuous on [0, 4], since fisa polynomxal in x. Also the derivative

f(x)= 3x2-12x+11

Review of Calculuy
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The syaibid = micans
appsoxamately equal to,

exists in J0, 4[. Thus f satisfies all conditions of the mean value theorem. Therefore, there
exists a point x, in ]0, 4( such that

F(xg)= f(4) ~ (0

4-0
A
e, 3x3—12xy+ 11 = ;—{—g =3

: 2 _19% 4R =
ie, 3xg— 12x,+8=0
THiis is a quadratic equation in x . The roots of this equation are

6+23  6-203
3 and 3

Taking V3 = 1.732, we see that there are two values for X, lying in the interval ]0, 4[.

The abdve example shows that the number x in Theorem 3 may not be unique. Again, as

we mentioned in the case of Theorems | and 2, the mean value theorem guarantees the
existence of a point only. '

Why don’t you try some exercises on your own?

E3) Letf(x)= % x? + 2x. Find a number xg in JO, 3[ such that
RN (€) Rl (V]
P ="3T9

E4) Find all numbers xq in the interval }-2, 1[ for which the tangent to the graph of
f(x) = x3 + 4 is parallel to the line joining the end points (-2, f(-2)) and (1, f(1)).

ES5) Show that Rolle’s theorem is a special case of mean value theorem.

So far we have used the mean value theorem to show the existence of a point satisfying
Eqn.1. Next we shall consider an example which shows another application of mean value
theorem.

Example 6 : Find an approximate value of Y26 using the mean value theorem.’

Solution : Consider the function f(x) = x!73 Then f(26) = ‘7 26 . The number nearest to 26

for which the cube root is known is 27, i.e. f(27) = ’2/2_7'= 3. Now we shall apply the mean '

value theorem to the function f(x) = x!“3int = interval 126, 27[. The funption fis
continuous in [26, 27} and the derivative is '

1
F(x)= 3323

Therefore, there exists a point x, between 26 aqd 27 such that

27 - V26 =L (27-26)

2/3
3x0
ie. V26 =3-— : @)
3x2/3
0

. . . 1 1 .
Since x,, is close to 27, we approximate —357 by ———53, i.€
0 w23 3003
1 -1

~ ———

2/3 '
3X0 27
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Substituting this value in Eqn. (2) we get C : Review of Caleubus

I
26 =3- 57=2963.

" Note that in writing the value of a26 we have rounded off the number after three decimal

places. Using the calculator we find that the exact value of 926 is 2.9624961.

We have given this example just to illustrate the usefulness of the theorem. The mean value
theorem has got many other applications which you will come across in later units,

Now we shall discuss another theorem in calculus.

1.3 TAYLOR’S THEOREM

You are aiready famnhar with the name of the Engllsh mathemaucnan Brook Taylor
(1685-1731) from your calculus course. In this section we shall introduce youto a
well-known theorem due to B. Taylor. Here we shall state the theorem without proof and
discuss some of its applications.

You are familiar with polynomial equations of the form f(x) =a, +a, x+...+a, x" where
ap,a),. .., 2, are real numbers. We can easily compute the value of a.polynomlal at any
pointx =a by usmg the four basic operations of addition, multiplication, subtraction and

. division..On the other hand there are functions like e*, cos X, In x etc. which occur
‘frequently in all branches of mathematics which cannot be evaluated in the same manner.

Tor example, evaluating the function f(x) = cos x at 0.524 is not so simple. Now, to evaluate ‘
such functions we try to approximate them by polynomials which are easier to evaluate.
Taylor’ s theorem gives us a simple method for approximating functions f(x) by polynomials.

Let f(x) be a real-valued function defined on R which is n-times dnfferennable (see MTE-01
Calculus Unit 6, Block 2). Consider the funcuon

P (x) =f(xy) + (x ~ Xg) f'(xo)
where x, is any given real number.

Now P (x) is a polynomial in x.0f degree 1 and P, (xo) = f(x,) and P [(xg) = f’(xo) The

‘polynomlal P\(x)is called the first Taylor polynomlal of f(x) at x;. Now consider another

function .

X=X )
f'l( 0)

P,(x) = f(xy) + (x = x)f (xg) +

Then P,(x) is a polynomial in x of degree 2 and Pz("n) f(xy). P’ 2("0) f' (xo) and
P75 (xg) = "(xy). Py(x) is called the second Taylor polynomlal of f(x) at Xgr -

Similarly we can define the rth Taylor polynomlal of f(x) at’ X where 1 S r<n. The rth

Taylor polynomial at x, is given by

) "0)

P =fxg + (x=xg) Flxg)+. .+ (x-x") (3
You can check that P (x) = f(xo),»P' (X)) = f (xg)s- -+

PO(xp) =f(xy)  (sec E6)
Let us consider an example. '

Example 7 : Find the fourth Taylor polynomial of f(x) = In x about x, = 1.

Solution : The fourth Taylor polynemml of f(x) is given by _
P,(x)= f(1)+(x—1)t'(1)+5————)—f"(1)+i———)—t<3)(1)+5-—Lt“)(l). ' 13
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Now, f(1)=Inl1=0

Fxy==; F(1)=1
(x) = [— ;’5] (1) = -1
O =% 1)=2
X
f9(x) = :g; Y1) =6
X

efore, P (= (x— 1y - K21, (=1 _(x=1p®
Therefore, Py(x) = (x = 1) - =555 45 4 -

ow, you can try some exercises.

E6) If P, denotes the rth Taylor polynomial as given by Eqn (3). then show that
Pi(xg) = f(xg). P’.—(’(()) f'(xo) P(r)(xo) f(r)(xo)

E7) Obtain the third Taylor polynomial of f(x) = eX about x = 0.

We are now ready to state the Taylor’s theorem.

Theorem 4 (Taylor’s Theorem) : Let f be a real valued function having (n + 1) conunuous
derivatives on la, b[ for some n 2 0. Let X be any point in the interval ]a, b{. Then for any

. X € Ja, b[, we have

(x = xp) (x

)
) = f(xg) + =7 f(xg) + ,x" f(xp) + ...

(X-X (x_x)ll+|

)"
e o(n) +1 .
| F ol o(xg) + T "+ ). | e (4)
wheré € is a point between Xo and x.

The series given in Eqn. (4) is called the nth Taylor’s expansion of f(x) at Xg

We rewrite Eqn. (4) in the form

f(x)v =P (x)+ Rn +1X)

where P _(x) is the nth Taylor polynoniial of f(x) about x; and

R; , () depends on x, Xgandn. R 1 (x) is called the remainder (or error) of the nth
Taylor's expansion after n + | terms.

Suppose we put x, =a and x = a + h where h> 0, in Eqn (4), Then any point between a and
a+hwillbeof the forma+6h,0<08< 1. ' :

Therefore, Eqr: (4) can be written as '

" Kt |
f(a +h) = 1(a) + h f'(a) + o f"(a) to# o f0@ 4 0+ Dia o) (9

Let us now make some remarks on the Taylor’s theorem.



o e e—

Remark 1: Suppose that the function f(x) in Theorem 4 is a poly’ nomial of degree m, Then Review of Caleulus
fO(x)=0 for all r>m. ThereforeR | ((x) = =0foralin 2 m. Thus, in this case, the mth

Taylor expansron of f(x) about x,, will be

& )= f(x0)+—— )f'(xo)+ +(——-‘l)——t<"‘)(xo)

Note that the right hand side of the above equation is simply apolynomial in (x — x).

% ' : - Therefore, finding Taylor’s expansion of a polynomial function f(x) about X, is the same as
. expressing f(x) as a polynomial in (x - Xg) With coefficients from R. ’

Remark 2 : Suppose we put x, = a, X =b and n = 0 in Eqn. (4). Then Eqn. (4) becomes '

f(b) = f(a) + f'(c)(b—2)
or equivalently
R - f(b) - f(a) = f(c) (b- a)
: which is the Lagrange’s mean value theorem. Therefore we can consider the mean value
theorem as a special case of Taylor’s theorem.

Let us consider some examples.

: Example 8 : Expand f(x) X} - 5x3 +5x2+x +2in powers of (x - 2).

. Solutlon The function f(x) is a polynomral in x of degree 4. Hence, derivatives of all
orders exist and are continuous. Therefore by Taylor’s theorem, the 4th Taylor expansron of

- f(x) about 2 is given by

e+ R+ 2¢ r)+25 ZL t‘3’(2)+9‘—-ZLt“"(2)

‘ * Here f(2) = 0

- . Fx)=4x3 - 15x3+10x + 1, _f'(2)=-7
£'(x)’= 1252 - 30x + 10, (2) =2
Cf9(x) = 24x - 30, - =18 )
xy=24, £9(2) =24
' Hence the expansion is ‘ T
: f0) =7 x-2)- 2(“2', Y T ! HHS 2t

=-7(x-2)~(x =2+ 3(x- -2+ (x-2*
' Example 9 : Find the nth Taylor expansion of In (1 + x) about x = 0 for x € ]—l .

Solution : We first note that the point x = 0.lies in the grven interval. Further, the function
f(x) = In (1 + x) has continuous derivatives of all orders. The. derivatives are given by

f"(x)"1+x f'(0)=1

i -1
: S (x)= . £(0) = -1
x)= L+ 0?2 ©)

f<3><x>—f%’ﬁ)s, =2

. n-1, ‘ o B o ‘ _ ; .
t(_")(x) ._.g:D__(E_lL! E0)=(-1)"" Yn - n. . _ o s
(a+x)° : | ,
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Therefore by applying Taylor’s theorem we gei that for any x € -1, H

203 4 —1)n=1n 1Yt R+ ]
In(l+x)=x- % X X1 (=)t hen +_i_l)_1u.__;
4 n M+ (1 +c)n+

w|

where c is a point lying between () and x.

Now, let us consider the behaviour of the remainder in a small interval, say, [0, 0.5]. Then
for x in [0, 0.5), we have

Ry 1 100)] =

(m+DI(1+c)n+!

where 0 < ¢ < x.

n+
Since | x | < Lix]" e 1 for any positive integer n.

Also since ¢ > 0, —- L < L. Therefore we have

(1+c)+!

: |
I R () | <'n—-+—7

Now n*i] can be made as small as we like by choosing n sufficiently large i.e.

lim -~ = 0. This shows that lim | R,, 0] =0,

n-se NF HEE R

The above example shows that if 1 is sufficiently large, the value of the nth Taylor’
polynomial P (x) at any X, will be approximately equal to the value of the given function

f(xo). In fact, the remainder Rn +1(X) tell{s) us how close the value Pn(xo) is to f(xo).

Now we shall make some general observations about the remainder Rn + 1(x) in the Taylor’s
expansion of a function f(x).

Remark 3 : Consider the nth Taylor expansion of f about X, given by
fx)=P,(x)+R_, (x).
Then Rn s (X)= f(x) - Pn(x). If lim Rn +1(X) =0 for some x, then for that x we say that we
LR X :

can approximate f(x) by P (x) and we write f(x) as the infinite series.

f(x) = £ (x) + £(x)(x - X+ T X=Xt 4 o mx) L

= f(x) . - :
n=0

You are already familiar with series of this type from your calculus course. This series is
called Taylor’s series of f(x). If we put Xg= 0 in'Eqn. (6) then the series

f"ix,)
(3
f0 =3, —Fxn
n=0
is called Maclaurin’s series,

Remark 4 : If the remainder R, (%) satisfies the condition that | R, () | <M for some
n at some fixed point x = a, then M is called the bound of the error at x = a,



In this case we have
IR, (0= l_ fx)-P(x) | <M

“Thatis, f(x) lies in the ihterval ] P (x) = M, P.(x) + M.

Now if M is considerably small for some n, then this interval becomes very small. In this
case we say that f(x) is approximately equal to the value of the nth Taylor polynomial with
error M. Thus the remainder is used to determine.a bound for the accuracy of the
approximation. ' '

We shall explain these concepts with an example.

Example 10 : Find the 2nd Taylor’s expansion of f(x) = Vi+xin}-1, 1 aboutx = 0. Find
the bound of the error at x = 0.2.

Solution : Since f(x)= V1 + x, we have
fO) =1

1 1
FO=rrx FO=3

== (™2, Q==

£3)(x) =—g- (1+x)7372, .

. Applying Taylor’s theorem to f(x), we get

Vigx=1+4x-1s2,L.3 -5/2
l+x—1+2x gX t1gX (1+9)

where cis a point lying between 0 andx..
. . 3 " N
The error is given by Ry(x) = -’1‘3(1 +0)572,

When x = 0.2, we haveb
: -
Ry02)=—02 .
16 (1 +¢)
where 0 < ¢ < 0:2. Since ¢ > 0 we have

1

———-—(1 +c)5/2 <l.

Hence, :
N 933
IRy02) | s @2~ (05 1073

Hence the bound of the érror for n =2atx=02is (0.5) 1073,

| Why don’t you try some exercises now?

E8) Obtain the nth Taylor expansiori of the function f(x) =

E9) Does f(x) = Vx have a Taylor series expansion about x = 0? Justify your answer.

49

ElO) Obtain the 8tﬁ Taylér expansion of the function f(x) = cos x in [— L. %J about xb =0.

Obtain a bound for the eﬁor'R9(x).

1 .11 '
1+x|n]—2_.-l[ab§utx9-0.

Review of (/:alculuﬁ
/
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‘There are some functions whose Taylor’s expansion is used very often. We shall list their

expansions here.

2 ‘ n n+1
X, X "X

e e T T +or Y
o2 (n+l)'
3 s

e +s:1>__b_2__
3! (2n-1)!
])n 2n+1

’Z{:T)T‘ cos (c) . ...(8)

2 4 n 2n
X2 x5 DT
Cosx=1 2'+4' A n)!

ec. (D

Sinx=x-~

(_1)n+ I x2n+2
(2n+2)!

1 . xn+l
=1+x+x2+...+x“+———~-+—2
. (l_c)n

cos (c) . .. (9)

—x .. (10)

where ¢, in each expansion, is as given in Taylor’s theorem.

Now, let us consider some examples that illustrate the use of ﬁndmg approximate values of
some functions at certain points using truncated Taylor series.

Example 11 : Using Taylor’s expansion for sin x.about x = 0, find the approximate,value o
sin 10° with error less than 1077,

Solution : The nth Taylor expansion for sin x given in Eqn. (9) is

x3 x5 (_12n—lx2n—l
Sl el DU

SIRXEXTH TS (2n-1)!

n . 2n+1
EDTXT T osc. | eI

where x is the angle measured in radians,
Now, in radian measure, we have

10° =-—
13 radlans

Therefore, by putting X = — in Eqn (1 1) we get

18

3 S
n o 1(x)y 1w . ki
SN 18 =18 731 (18] fsx (ISJ +"'+R"+'[18J

where Rn + 1[ 18)‘8 the remainder after (n + 1) terms.

-

Now

a)__ecy (x Y
+1118 ) @2n+1)! |18 :
If we approximate sm - by Pn(ﬁ then the error introduced will be less than 1077 if

n T
(i

2n+1

=Dt (=)
@n+ 1) (18) cos¢

Maximizing cos ¢, we require that

i - n+1
L L -7
(2n+|)!(18) <10

n
Rn+ 1(1—8]

< 10‘7.




| Using the calculator, we find that the value of left hand side of Eqn. (12) for various n is

n l" 2 ) 3

Lefthandside - | 89x103 13x10°5 99 % 107

From the table vi(e find that the inequality in (12) is satisfied for n = 3. Henéé the required
approximation is

3 .
: ). _1l(x 1(w])_
sm[ls)).- T 3'( ] S'(ISJS 0.174_544_5

" with error less than 1.0 x 10"7.

Let us now ﬁ’nd the approximate value of e using Taylor’s theorem.

_Example 12 : Using Maclaurin’s series for e*, show that e=2.71806 with error less than

0.001. (Assume that e < 3).

Solution : The Maclaurin’s series for e* is

2
X X
e=l+—=++...

Putting x = 1 in the abdve series, we get
l 1

e-1+1+§ 3!+

‘Now we have tb‘ﬁﬁd n for. which ,

Te-P ) |=IR_, 1] <000L

1
(n+1)!

Now | R .(1)]se

Sinvce we have chosen Xo= 0 and x = 1, the value c lies between O and 1 i.e. 0 <c< 1. Since

e°<c<3,weget

IR, )] S(n+l)'

The bound for R ,(1) for different n is given in the. following table.

n 1 2 3 [ 4 5 6
Bounds forR,, , s | 5 g 125 004 .0006
~ From this table, we see that

R, <00lifn=6
Thus P (1) is the desired approximation to e, i.e.

1,1 1 1 1 1957
e“l+l+2+6+24+120+720 ey z2.71806

See if you can do the following exercises,

El1) Using Maclaurin’s expansion for cos x, find the approximate value of cos % with the
" error bound 1075, B '
E12) How largé should n be chosen in Maclaurin's expansion for e* to have
/ le-P,x) | <1075, -15xs1 |

Review of Calcﬁlusg
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Selutions of Non-linear Eguations in In numerical analysis we are concerned with developing a sequence of calculations that will

one Variable

give a sansfdctory answer to a problem. Since this process involves a lot of computations,
there is a chance for the presence of some errors in these computatlons In the next section
we shall introduce you to the concept of ‘errors’ that-arise in numerical computations.

1.4 ERRORS
T
In this section we shall discuss the concept of an ‘error’. We consider two types of errors
that are commonly encountered i numerical computations.

You are already familiar with the rounding off a number which has non-terminal decimal
=xpansion from your school arithmetic. For example we use 3.1425 for 22/7. These rounded
oif numbers are approximations of the actual values. In any computatwnal procedure we
make use of these approximate values instead of the true values. Let X denote the true value

and x , denote the approximate value. How do we measure the goodness of an
approximation x , to x,.? The simplest measure which naturally comes to our mind is the
difference between Xp and x A This measure is called the ‘error’. Formally, we deﬁné error
as a quantity which satisfies the identity.

True value x.. = Approximate value x , + error.

A

Now if an ‘error’ in approximation is consnderably small (according to some criterion), then
we say that * N is a good approximation to x’. .

Let us consider an example.

Example 13 : The true value of 7 is 3.14159265 . . . In some mensuration problems the
value 22/7 is commonly used as an approximation to . What is the error in this
approximation?
Solution : The true value of ® is

= 3.14159265 ... (13)

Now, we convert 22/7 to decimal form, so that we can find the difference between the
approximate value and true value. Then the approximate value of 7t is

22 :
-~7~‘=3.I42857]4 o (14)

Therefore, s '
error = True value —- approximate value = 0.00126449 ... (l5)

MNote that in this case the error is negative. Error can be positive or negative. We shall in
general be interested in absolute value of the error which is defined as

l error | = | True value — abproximate value |
For example, the absolute Error in Example 13 is
| error [ =1 -0.00126449 ... | =0.00126...

Sometimes, when the true value is very large or very small we prefer to study the error by
comparing it with the true value. This is known as Relative error and we define this error as

True value — approximate value
True value

| Relative error | =

I the case of Example 13,

0.00126449 ...
3 14150065 = 0.00040249966 ...

But note that in certain computations, the true value may not be available. In that case we.
replace the true value by the computed approximate value in the definition of relative error.

| Relative error | =

In numerical calculations, you will encounter mainly two types of errors: round-off error and
truncation error. We shall discuss these errors in the next two subsections 1.4.1 and 1 4.2
respectively.



: '1.4.1 Round-off Error SRR

Let us look at Example 13 again. You can see that the numbers appearing in Eqns (13),
(14) and (15) consist of 8 digits after the decimal point followed by dots. The line of dots
indicates that the digits continue and we are not able to write all of them. That is, these
numbers cannot be represented exactly by a terminating decimal expansion. Whenever we
use such numbers in calculations we have to decide how many digits we are going to take
into account. For example, consider again the approximate value of %, If we approximate &
using 2 digits after the decimal point (say), chopping off the other digits, then we have

‘, =314
’ _ The error in this approximation is
_error = 0.00159265 ... ... (16)
i If'we use 3 digits after the decimal point, then using choppiné w- have
s R  rah4l

In this case the error is given by

error = -- 1.00059265. .. (17

Now ‘suppose we consider the approximate value rounded-oft to three decimal places. You
E ' i - already know how to round off a number which has non-terminal decimal expansion. Then
: the value ofn rounded-off to 3 digits i is 3.142. The error in this case is

r oo . © error = — 0.00040734

which is smaller, in absolute value than 0.00059265 . . . given in Eqn. (17). Therefore in
general whenever we want to use only a certain number of digits after the decimal point,
then it is always better to use the value rounded-off to that many digits because in this case
the error is usually small. The error mvolved in a process where we use roundm;, off
method is called round-off error.

- We now discuss the concept of floating point arithmetic,

In scientific computations a real number x is usuvally represented in the form

x=%x(.d/d,...d) 0™

whered,, d,,. .., d are natural numbers between 0 and 9 and m is an integer called

exponent. Writing a number in this form is known as ﬂoatihg point representation. We
denote this representation by fi(x). Such a floating point number is said to be normalized if
d, #0. To translate a number into floating point representation We adopt any of the two

F

a .

3 *methods — rounding and chopping. For example, suppose we want to represent the number
: 537 in the normalized floating point representation with n = 1. then we get

f1(537) = .5 x 10° chopped
=.5x 103 rounded , .

In this case we are getting the same icpresentation in rounding and chopping. Now if we
take n = 2, then we get

f1(537) = .53 x 103 chopped
= .54 x 10° rounded

. In this case, the representations are different.

Now if we take n =3, then we get
1(537) = .537 x 103 chopped
. ' ' ' - =.537 x 10° rounded

The number n in the ﬂoating point represematidn is called precision

T R

The dlfference between the true value of a number x and rounded ﬂ(x) is called round-off
error. From the earlier dnscussmn itis clear that the round-off error decreases when precision
increases.

i S M i L




"Solutions of Non-linear Equations in Mathematically we define these concepts as follows :

one Variable

22

" Definition 2 ; Let x be ajreal number and x* be a real number héving non-terminal decimal

expansion, then we say that x* represents x rounded to k decimal places i
[ x—x*1]g -;- 107X, where k > 0 is a'positive integer.

Next definition gives us a measure by which we can conclude that the round-off error
occurring in an approximation process is negligible or not.

Definition 3 : Let x be a'real number and x* be an approximation to x. Then we say that x*
is accurate to k decimal places if .

%10'("”)S|x—x*|5%10"‘ ... (18)

Let us consider an example.

. Example 14 : Find out to how many decimal places the value of 22/7 obtained in Example

13 is accurate as an approximation to 1t = 3.14159265 ?

Solution : We have already seen in Example 13 that

n-2 ' =0.00126449 ...
Now .0005 < .00126...< 0.005
1 -3 1 2
ori 1077 < .00126. .. <§ 10
Therefore the inequality (18) is satisfied for k = 2.

Hence, by Definition 3, we conclude that the approximation is accurate to 2 decimal places.

Here is an exercise for you.

Ei3) Insome approximatiori problems where graphic methods are used, the value ?—;—% is

used as an approximation to 7t = 3.14159265 . . . . To how many decimal places the

355 . o o
value 133 I8 accurate as an approximation to n?

Now’we make an important remark.

Remark 5 : Round-off errors can create serious difficulties in lengthy computations.
Suppose we have a problem which involves a long calculation. In the course of these
computations many rounding errors (some positive, and some negative) may occur ip a
number of ways. At the end of the calculations these errors will get accumulated and we
don’t know the magnitude of this error. Theoretically it can be large. But, in reality, some of
these errors (between positive and negative errors) may get cancelled so that the ’
accumulated error will be much smaller. T

Let us now define another type of error ¢alled *Truncation error'.

1.4.2 Truncétion Error

We shall first illustrate this error with a simple example. In Sec 1.3, we have already
discussed how to find approximate value of a certain function f(x). for a given value of x,
using Taylor’s series expansion. Let

[ — n
t(x)—z an(x-xo)
n=0 '
denote the Taylor’s series of f(x) about Xy In practical situations, we cannot, in general, find
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the sum of an infinite number of terms. So we must stop after a finite number of terms, say,
N. This means that we are taking : : '
N
fxy=, a, (x=xp"

n=0

and ignoring the rest of the terms, that is, Z a (x- xo)“.
S . n=N+1

There is an error involved in this truncating process which arises from the terms which we
exclude. This error is called the ‘truncation error’. We denote this error by T E. Thus we

have '
N oo

TE = f(x) -. Z a (x=xx)"= 2 a, (x'—xo)“
n=0 n=N+1I

You already know how to calculate this error from Sec. 1.3. There we saw that using
Taylor’s theorem we can estimate the error (or remainder) involved in a truncation process

in some cases.

Let’s see what happens if we apply Taylor’s theorem to the function f(x) about the point
xo = 0. We assume that f satisfies all conditions of Taylor’s theorem. Then we have

N N+1 |
f(x) = my N 19
f0=3, a,x"+3 0 © ... (19)
n=0 . .
n) .
where an=%92 and0<c<x.
Now, suppose that we want to approximate f(x) by Z a, x",
' i n=0
. _ N ‘
Then Eqn (19) tells us that the trancation error in approximating f(x) by 2 a, x" is given by
’ n=0
) -xN +1 :H :
TE:RN“(x).—.N”!:ﬂ} © ¢\

Theoretically we can use this formula for trun(}ation error for any sufficiently differentiabls:
function. But practically it is not easy to calculate the pth derivative of many functions.
Because of the complexity in differentiation of such functions, it is bettér to obtain indirectly

* their Taylor polynomials by using one of the standard expansions we have listed in Sec. 1.3.

. .
* For example consider the function f(x) = ¢~ . It is difficult to calculate:the nth derivative of

N . . 2 -
this function. Therefore, for convenience, we obtain Taylor’s expansion ot e* using
Taylor’s expansion of ¢¥ by puttingy = xZ. We shall illustrate this in the following example.

'Examp‘le 15: Calculate a bound for the truncation error in approximating e"2 by

4 6 8
2.
 SOURR JP. MNP M.
R 2 S TRETRO

forx € ]—1,.1[;
2 - . .
_Solution : Putu = x% Thene* = ¢"’. Now we apply the Taylor’s theorem to function
f(u) = " about u = 0. Then, we have o ' » :

203
eCud ¢
5!

2 .3 4
e“..-.l-i.-u+!-+-u—+-3-;+R5(u)whcre.

Ry(u) =
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and 0 <c <u. Since | x | <1,u=x2<li.e.c<l.Therefore,e°<e<3.Thus

(310 3
[ Ry(uy | < S| <5=2=025

2 .
Hence the truncation error in approximating e* by the above expression is less than
FAERT I

it the ubsolute value of the TE is less, then we say that the approximation is good.

Now, in practical situations we should be able to find out the value of n for which the
sutmiagion 2 a_x" gives a good approximation to f(x). For this we always specify the
Accuracy (or error bound) required in advance. Then we find n using formula (20) such that
¢ absolute error | R 041X [ is less than the specified accuracy. This gives the

- approximation within the prescribed accuracy,

Let us consider an example.

Example 16 : Find an approximate value of the integral

1

2
Je" dx
0

with an error less than 0.025.

Sclution : In Example 15 we observed that

X X
X . —_— — —_—_ . Al
e ..l+“+2!+-'+4,
210
with TE= S-X
5!

Now we use this approximation to calculate the integral. We have

1 /-
) 4 6 .8
et dxzf{1+x24 X X X7 dx
2!

+ ...(2H
0 o 3! 4

with the truncation error .

! 2
eX xlO
TE = | 5 dx. o
0

Wehave
1 2 ; '
: e Ix0 3 o
| TE | { TS S5= 2510

Iitegrating the right hand side of (21), we get

! 1 : 1
4 6 8 3 5. 7 9
x 2, X X X XX X L, X
{e f[l+x +2!+3!‘+4! dx = x+3 4_'5x2!+7><3!+9><-4! |

cpel L1

3 10 40 216
=0.0048

Here is an important rémark.

Remark : The magnitude of the truncation error could be reduced within any prescribed
accuracy by retaining sufficiently large number of terms. Likewise the magnitude of the
vound-off error could be reduced by retaining additional digits '
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You can now try the following exercises.

El4) a) Calculate a bound for the truncation error in approximating f(x) = sin x f)y

. B xS X
sinx =] - 3 +—— r;,-where -1<x<1.
b) Using the approximation in (a), calculate an approximate value of the iniegra
!
J ‘,‘_’LZ‘_ d
0

with an error 107,
E15) a) Calculate the truncation error in approximating’
'.7 4
e byl -x2+%, -1<x< L
0.l

b)  Using the approximation in (a) calculate an approximate value of J‘ e dr
0

within an error bound of 1077

We end this unit by summarising what we have learnt in this unit.

1.5 SUMMARY

. In this unit we have :

® recalled three important theorems in calculus, namely
i)  Intermediate value theorem

- ii) . Rolle’s theorem
ili) Lagrange’s mean value theorem

©  state Taylor’s theorem and demonstrated it with the help of examph 5.
The nth Taylor’s expansnon :

(x—xg) (x-
f(x) = f(x ) + —= x“ = f(xg) + 57 t<2>(;0)+
(X xo)n (x__x)n+l ol
- )
£ (x ) + G 0+ ()

defined the term ‘error’ occurring in numerical computations.

®  discussed two types of errors namely : :
i) Round-off error : Erfor occurring in computations where we usc rounding ol
method to represent a number is called round-off error. .

ii)  Truncation error : Error occurring in computations where Wwe use truncation,
process to represent the sum of an infinite number of terms.

@  explained how Taylor’s theorem is used to calculate the truncation error.

1.6 SOLUTIONS/ANSWERS

ED)  a) Thegiven ecjuation is of .the form f(x) = ¢ where f(x) = X3 —x— Sandc=0.

f is a continuous function in the interval {0, 2] and f(0) = -5 and £{(2) = 1. Then &
lies between f(0) and f(2). Therefore by IV theorem the equation f{xY = 0 ine
solution in the interval [0, 2]. ‘
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b) Here the equation 1s of the form f(x) = c where f(x) = sinx + x and c = 1.
fisa continuous function defined on -[O,éz] and f{0) = 0 and {%):% +-16t—

=0.5+0.523 = 1.023. Thus f(0) < 1 < f [%),Therefore by v theorem, the

. ,/
result follows.

EL Letf(x)={x - 1) sin x

=X $in X —sin x
- Then FX) = x cos x +sinx ~-cos x
=(X—1)cos x +sin x
Now t°(x) = 8impljes that (x~1)cos x +sinx = 0. That is(x-1)+tanx =0,

This shows that there'exists 4 function fx)=(x-1)sinx such that f is continuous in
{0, 1] and differentiable on 1. Hand () =tan x ~ | + X.

Therefore by Rolle'sﬂxcorem there exists a po.nt X in ]O, 1{ such that

fixg) = tan x;~ 1 x5 =0.

23} Note thatfisa <ontinuous function in {0, 3] and differentiable in 10, 3[ and

Flnp=x2+2

Therefore by Lagrange’s mean value theorem there exists a point x, in ]0, 3[ such that

Flag = 110

But f'(xg) = x§+ 2 and f(3) = 15 and f(0) = 0. Thus

i
3

A

grl=—"=35
“ 2_‘.
Le. xg=3

Xy = V3, sin_ce Xo is a point in J0, 3[, we consider only the positive value,

1i4)  f(x) = x3 + 4 satisties the requirements of Lagrange's mean value theorem in the

interval }-2, I[. Therefore there exists a point x, in -2, 1{ such that the slope f'(xo)
of the tangent line at Xg is the samc as the slope of the line Joining (=2, f(~2)) and

(1, £§(1)).

ie. f(xg) = f2) -

2-1

) - (1)
2
But f{xg) = 3x3

Therefore we get

.3:(8 = §§—4 =3

ie. Xg=

Since xg lies in [-2, 1{, we don’t consider the positive value. Therefore there exists
only one point Xp =1 satisfying the theorem,

E5) Suppose fis a function defined on (a, b] which satisfies all the requirements of

Lagrange’s mean value theorem. Then there exists a point x, in Ja, b[ such that

. ~fi

Suppose in particular f satisfies the condition that f(a) = f(b), i.e. f(b) - f(a) = 0, then
we get £'(xg) = 0. This is what the Rolle’s theorem states. Hence we deduce that, in
ihe statement of Lagrange’s mean value theorem, if we put the extra condition that
H(a) =f(b), then we get the Rolle’s theorem,
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E6) Put x = xq in Eqn. (3), then we get
P(xq) = f(xg)
To calculate, P',(xo), we differentiate bqth sides of Eqn. (3). Then we have

207(xg) (x —xg)  3f(xg) (X = Xg)?
P (x) = F'(xg) + "2! ), "3! O ()

Putting x = x,, on both sides of the above expression, we get
P’r(xO) = F(Xo) +0+0...= f’(xO).

Note that apart from the first term, all other terms in the R.H.S. contain the factor
(x - xg) and therefore when we put x = X, these terms vanish.

By differentiating * further, we get Pgi)(xo) = f(i)( xgh =200k,
E7) The 3rd Taylor poxynomial of f(x) = e about x = 0 is Py(x)

= f(0) + xf(0) + = £(0) + ,,,,, f'"(O)

Here f(0) =l =1

f'(x)::c‘, f0)y=1
Similarly 7(0) =1 = "(0)

x2 X3
Therefore Py(x) = 1 + x + = + -.

5

B8) f0) =1 f0)= 1
t(X)_ZI 1)2 , F(0)=-1
(x) = §-~§—)3-2 £0) = 2

fn/( )= 12( 2)); 3) fnl(o) (- 1)3 3t

. f(")(x) . g_.)__(. .._L_.___g_._.l f“(O) ={~1)",

(l+ )n+l

The function f(x) and its derivatives of different orders are contmuous in ]—

NI-—
ey

Therefore by Taylor’s theorem

(=1)"n! xn+' =1+ m+ 1)
n! (n+ DL+l

_ f(x)=1--x+;2;x2+..‘.+

’ . —tyn+1
=l-x+x2—-x3+...+(—l)"x"+—(—l-L
B . (1+C)n+l

where ¢ is a point lying between 0 and x.
E9) No. Because the derivatives of f(x) are not defined at x = 0.

E10) 8th Taylor expansion of f(x) = cos x about xg=0is

x2 x3 '4
‘cos x =cos 0~ smO ETcosO+§Tsm0+z'—cos0
x5 0 x6 0 x7 0 x8 0 x9
5' sm - 6' cOs + 7 sm + 8' cos U - 9' sm C

o x2 x4 x6 x8 X%
BTSRRI TR L
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The remainder is given by

X2 .
Ro(x) =~ g sinc.

Now since x lies i'n[—l_:- . ﬂ we have |-x | S%<1

Therefore, we get

IRy | 5 5’7 = 0.00000275573.

“El1) We have seen ‘in E 10 that the remainder iq the 8th Taylor expansion of cos x is such

that
| Ry(x) | <1073

ie. | cos x =Py (x) | <10-5

x2 x4 xé x8
where Py(x) =1 - §T+ZT i 8'
This shows that we can approximate f(x) by 8th Taylor polynomial with error bound
10%ie.,
x2 x4 x6 X8
CoOs X =] =+

atatetar

. n
- Putting x = o we get

7,6 6.6

cs!t-'"l-—-——'~+~'“~—-—--—~+
OS4~ 17T T T e T
| b - «n+1 ci
Yoo
112) 1e*=Pu(x) e

where ¢ lies between 0 and x. Since | x | $1, we get that | e¢ | Se. Therefore

| XN+ lec e
[ Ry 1= [n+ D " (n+1)
Now. we have to find an integer n such that —& <10,

ST
* This is satisfied if n = 8 because -99" ~0.749 x 1073

Therefore n = 8 is the required number.

EI3) m = 3.14159292 . . . (using a scientific calculator) and & = 3.14159265 ..
355
| error |={m - 13| =0:00000027

Then 1077 < 0.00000027 < x 106

v Therefore the approximation is accurate to 6 decimal places.
“E14) a) We apply Taylor's theorem to the function f(x) = sin x in ]-1, I( about x = 0.
Then forn =7, we have
x3 5 7
5.< 7'

sinx=x -

Rg(x)

| x
where | Ry(x) | = | %= sin (¢) <—~—000(X)"480".

Therefore, the truncation error T. E. = Ry(x) is .24802 x 10~



i 3 S 7 s
f b) sin_x=x,-—§-; +'§"' -_x;'.'+R8(x) Review o,
Hence
sinx _ ., x2 x* x6 Rg(®)
R R TR Rt T
whe Rs(x)__ﬁsmc_ﬁ in (©
.; re grx "
| Thus
! ! 2 4 .6 Rg(x)
sin x X x' X 8
I——w—x =I[] -3-!'+§—-7') I X
0 0
R (x)
Now I s I sm (c)dx
0

1
sa [x dx=g e s 024802 x 1074
iy !

8 x 8!
o |
3 S 7
sin x X X X
Therefore we have { =X=313 + IR
PR S N
- 313 S5's M1
=0.946
- with an error less than 0.25 x 107
E15) a) Putu=-x% Then e =¢¥ We consider the 2nd Taylor expansion of " given
. by
) u2 .
el=1 +u+~?+R3(u)
C 3
where R3(u) = 9--!"-
eu’| _eflul "
|R3(u)|= T —5,— |
. 11
Sinceus0,e* <1, Hence | R;(u) | 5-3— 6
- . |
b)  From (a) we have ™ 1o +5 4R 5D -
Hence
3 : o B . 4 0.1 :
i " je" dx = I(l—x2+5-)dx+fk3(—x2)dx
; 0 0 0
r ol 0! 6
| Now, | [ Ry(-x?) dx| sI dx
0
! SOj_l )"Gd X7. .o_| 7 0.1
', — x=— -
o ! ! !
: TR TE ] P TE B
: 01y 4
=317 10

0. ol 8 R
Therefore | ¢7* dx~j(l-x2;¢--2—]dx=x—-—+—] = .099667666. .
0 0 . ‘ ’
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We ofien come across equations of the forms x* + 3x2 4+ Ax+1=00re*=x-20r

fanh x = X efc, Finding one or more values of X which satisfy these equations is one of the
Hrportant problems in Mathematics. From your elementary algebra course ( MTE-04), you
<7¢ already familiar with some methods of solving equ

avinlabie for solving cubic and biquadratic equations. In fact no formula exists for solving
sgquations of degree n 2 5. In these cases we take recourse to approximate methods for the
deiermination of the solution of equations of the form

fix)=0 .. (H

The problem of finding approximate values of roots of polynomial equations of higher
degree was initiated by Chinese mathematicians. The methods of solution in various forms
appeared in the 13th century work che” in kiu-shoo. The first noteworthy work in this
direction was done in Europe by the English mathematician Fibonacci. Later in the year
1600 Vieta and Isaac Newton made significant contributions to the theory, '

I this unit as well as in the next two units we shall discuss some numerical methods which
51Ves an approximate solution of an equation f(x) = 0. We can classify the methods of
selution into two Lypes. namely (i) Direct methods and (ii) Iteration methods, Direct
methods produce solutions in a finite number of Steps whereas iteration methods give an
approximate solution by repeated application of g numerical process. As we said earlier,
direct methods you have done in MTE-04, You will find later that for using iteration -
methods we have to start with an approximate solution. Iteration methods improve this ,
approximate solution. We shall begin this unit by first discussing methods which enable us
to determine an initial approximate solution and then discuss iteration methods 1o refine this
approximate solution, : ‘ . S

Objectives
After studying this unit vou should be able to -

@ find an initial approximation of the root using
{1) tabulation method (2) graphical method.

@  use bisection method for finding approximate roots,

@ use fixed point iteration method for finding approximate roots,




2.2 INITIAL APPROXIMATION TO A ROOT

‘..2..2.1 Tabulation Method -

You know that in many problems of engineering and physical sciences YOu come across
equations in one variable of the form f(x)=0. .

* For example, in Physics, the pressure—volume—temperature relationship of real gases cay

be described by the equation

_ B,r s
PV-RT+V+V2+V3 e (2)

where P, V, T are pressure, volume and temperature respéctively. R, B, 1, s are constants. W
can rewrite Eqn. (2) as ‘ ‘
PV4—RTV3 - BV3 -1V -5=0 )

Therefore the problem of finding the specific volume of a gas at a given temperature and
pressure reduces to solving the biquadratic equation Eqn. (3) for the unknown variable V.

Consider another example in life sciences, the study of genetic prdblem of recombination of
chromosomes can be described in the form :

p(l—p)=p2.—p+k-0.b

Wheie p stands for the recombination fraction wnh the limitation 0S p < % and (1 - p) stands

- for the non-recombination fraction. The problem of finding the recombination fraction of a
. &ene reduces to the problem of finding roots of the quadratic equation p2 -p+k=0.

In these problems we are concerned .with finding value (or values) of the unknown variable
x that satisfies the equation f(x) = 0. The function f(x) may be a polynomial of the form -

f(x)=a0+alx+...+anxn

' orit may be a combination of poiynonlials, trigonometric, exponential or logarithmic

functions. By a root of this equation we mean a number X such that f(x) = 0. The root is
also called a zero of f(x). '

If f(x) is lihear, then Eqn. (1) is of the form ax + b=0, a# 0 and it/,ha's only one root given
by x=- g. Any equatioﬁ which is not linear is called a non-linear eqimtion. In this unit we

shall discuss some methods for finding roots of the équgtion f(x) = 0 where f(x) is a non
linear function. You are already familiar with various methods for calculating roots of
quadratic, cubic and biquadratic equations (see MTE-04, Unit 3). But there is no such
formula for solving polynomial equations of degree more than 4 or even for a simple
equation like . :

X-cos x =0

Here we shall discuss some cf the numerical approXimation methods. These methods
involve two steps : - ' '

Step 1 : To find an initial lapproximdtion of a root.

Step 2 : To improve this approximation to get a more accurate value.

We first consider step 1. Finding an initial approximation to a root means locating (or
estimating) a root of an equation approximately. There are two ways for achieving

this—tabulation method and graphical method.

Let 'us'stért with»Tabulation method.

i

This method is based on the ihtermediate value theorem iiV Theotem), (see Theorem 1,
Unit 1). Let us try to understand the various steps involved in the method through an .
example. ‘ o R
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Suppose we want to find-a root of the equation

x-log,x=T.
Ve first compstic values of f(x) = 2x —log,, x — 7 for different values of x, say x=1,2,3,
and 4. ' : ’ ’

When x = 1, we have f(1) = 2~ log, 1 = 7=~ 5

Himndarty, we have
f(2)=4-log,, 2 7=-3.301

(the that li)gi p2is compixted usiag a scientific calculator.)
f(3)=6~log ;3 ~7=-1477
f(4) =8 - log,, 4 —7 =~ 03977

ese values are given in the following table :

Table 1
f x 1 2 3 4
| £(x) 5 3301 [ -1477 0397

We find that f(3) is negative and {(4) is positive. Now we apply IV Theorem to the function
f(x) = 2x — log,, x — 7 in the interval 1, = [3, 4]. Since f(3) and f(4) are of opposite signs, by

[V theorem there exists a number x, lying between 3 and 4 such that f(x ) =0. That is, a root
o+f ihe function lics in the interval 13, 4]. Note that this root is positive.
Lai us now repeai the above computations for-some values of x lying in ]3, 4{ say x = 3.5,
3.7 and 3.8. In the following table we report ihe values of f(x).

Table 2 _ .
x 35 37 : 38
' -0.544 ~-0.168 0.0202

We find that f(3.7) and £(3.8) are of opposite sighﬁ. By applying 1V theorem again to f(x) in
the'interval I, = [3.7,3.8], we find that the root of {(x) lies in the interval 13.7, 3.8[. Note

that this mtcrval is smaller than the previeus.interval. We call this interval a refinement of
the,previous interval. Letus repeat the above procedure once again for the interval Iy In

Table 3 we give the values of f(x) for some x between 3.7 and 3.8.
Table 3
X 375 . 3.78 ~ 319

fxy ~0.074 ~0.017 0.00137.

Table 3 shows that the root lies within the interval }3. 78, 3.79({ and this interval is much
smaller compared to the original interval }3,4{. The procedure is terminated by taking any .
vilue of x between 3.78 and 3.79 as an approxnmate value of the root of the equation
1(x)-2x—loglox—7 0. -

The method illustrated above is known as Tabulation method. Let us write the steps
involved in the method. ‘

Step 12 Select some humbers Xjs Xg ooy X, and calculate f(x ), f(xz). Cees f(xn). if f(xi) =0
for some i, then x; is a root of the equation. If none of the x;s are zero, then proceed to step 2.

Step 2 : Find values x, and x;  , such that f(x; ) and ftx; ) are of opposite signs i.e.
1z (x4 i +1 = by Then by the IV Theorem a root hes in
between a; and b .+ Test for all valucs of f(xj), i=14L2,....n and determme other intervals,

} < 0. Rename X, = n and x,

if any, in which some more roots may lie.



Step 3 : Repeat Step 1 by taking some numbers between a, and b,. Again, if f(x )} =0 for Hesatien Method: &
some X; between a, and b, , then we have found the root X Otherwxse. continue step 2.
Continue the steps 1, 2, 3 till we geta sufﬁc:ently small mterval Ja, b{ in which the root lies.

Then any ‘value between ]a, b[ can be chosen as an initial approximation to the root. You
may have noticed that the test values X; ,j=1,2,..., nchosen are dependent on the natuic

of the function f(x)

We can always gather some information regardmg the root either from the physical pmhi
in which the equation f(x) = 0 occur, or it is specified in the problem. For example, we m:
ask for the smallest positive root or a root closest to a given number etc.

Fora better understandmg of the method let us consider one more example

Example 1 : Find the approxnmate value of the real root of the equation
2x-3sinx=5=0.
Solution : Let f(x) = 2x -3 sin x - 5.
Since f(-x)/ =-2x+3sinx-5<0forx> 0,' the function f(x) is negative for all negative
real numbers x. Therefore the function has no negative real root. Hence the roots of this
equatlon must he in [0, oo[. Now followmg step 1, we compute values of f(x), forx =0, 1,2,
3,4,.
‘We have
f(0) =-5.0,
f(1)=2-3sin1-5=-55224
using the calculator. Note that x is in radians. The values £(0), (1), f(2) and f(3) are given in
Table 4.
_Table 4
X 0 | 2 . 3
f(x) -5.0 -5.51224 -3.7278 0.5766 {

 Now we follow step 2. From the table we find that f(2) and f(3) are of opposite signs.
Therefore a root lies between 2 and 3. Now, to get a more refined interval, we evaluate f(x)
for some values between 2 and 3. The values are given in Table 5. ’

_ Table5
X 2 C2s v 28 29
f(x) -3.7278 ~1.7954 ~0.4049 0.0822

This table of values shows that f(2.8) and f(2.9) are of opposite signs and hence the root lics
between 2.8 and 2.9. We repeat the process once again for the interval [2 8,2.9] by taking
some values as given in Table 6.

Table 6
Cx 28 . 2.85 288 2.89
Cfx) -0.4049 - -1.1624 -00159 0.0232.

From Table 6 we find that the root lies between 2. 88 and 2.89. This interval is small
therefore we take any value between 2.88 and 2.89 as an initial approximation of the root.
Since f(2.88) is near to zero than f(2.89), we can take any. number near to 2.88 asan initial

approximation to the root.

Why don’t you try some exercises now.

E1) Find an initial apprommatlon to a root of the equatnon 3x \Jl +sinx = 0 using
~ tabulation method.

E2) Find an initial approximation to a positive root of the equation 2x — tan x =0 using
tabulation method.
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| using graphical method.

You might have reahzed that the tabulation method is a lengthy process for fmdlng an initial
approximation of a root. However, since only a rough approximation to the root is required,
we normally use only one application of the tabulauon method. In the next si:b-section we
shall discuss the graphical method. : :

2.2.2 Graphical Method

In this method, we draw the approxnmate graph of y = f(x). The points where the curve cuts
the x-axis are taken as the required approxxmate values of the roots of the equation f(x) = 0.
Let us consider an example. .

Example 2: Find an approxnmate value of a root of the biquadratic equation

x4 +4x3 + 4x2 ~2=0
using graphical method.

Solution : We first sketch the fourth degree polynomial f(x) = x* + 4x> + 4x2 - 2, This
graph is glven in Fig. 1.

— o

~2.55\/'{ / 055 X

=2

" Fig. 1: Graphof f(x) =x* + 4x* + ax* - 2.

The figure shows that the graph cuts the x-axis at two points -2.55, and 0.55, approxnmately
Hence ~2.55 and 0.55 are taken as the approxlmate roots of the equatlon

x? +4x3 +4x -2=0.

Now go back for a moment to Unit 1 and see Example 1 in Sec. 1.2. There we applied

graphical method to find the roots of the eqhation sinx = -;—

Let us consider another example. :
Ekample 3 : Find the approximate value of a root of

:.xz_c)(:o

Solutlon First thmg to do is to draw the graph of the functlon f(x) x2- e Itis not easy

- to'graph thns functlon Now if we split the functnon as

f(X) f (X) (x)

~ where f (x) = x and fz(x) ¢*, then we can easnly draw the graphs of the funcuons ’

f (x) and f,(x). The graphs are given in Flg 2.

The figure shows that the two curves y= x? and y =¢e mtersect at some pomt P. From the

~ figure, ' we ﬁnd tharthe approxlmate pomt of intersection of the two curves ls -0.7. Thus we

P
st
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Fig.2: Gnuhi of r , 0 =x?and f3(x) = e".

have f (-—0 7= (—0 7), and then'.fore f(—O 7=f (—0 7) f. (—0 7) =0. Hence - 0.7 isan -

,approxnmate value of the root of the equatlon f(x) 0. .

From the above example we observe the followmg Suppose we want to apply the graphic
method for finding an approximate root of f(x) 0. Then'we may try to simplify the method
by splitting the equation as-

f=fx-H0=0 ..~.(4)

!
where the graphs of f 1(x) and fz(x) are easy to draw me Eqn,(4), we have f (x) (x)

The x-coordmate of the pomt at whlch the two curves yl =f 1(x).and Yy, = 2(x) intersect gwes

an approxlma(e ‘value of the root of the equatlon f(x)=0. Note thatwe are interested only in
the x-coordxnate. we don’t have to worry about the point of i mtersecnon of the curves. '

_Often we can split the function f(x) in the form (4) ina number of ways But we should

choose that form which involves mlmmum calculauons and the graphs of f 1(x) and f. (x)

- are easy to draw. We illustrate this pomt in the followmg example

' Example 4 : Find an approximate value of the posmve real root of 3x —cos X — 1=0 us,mg

graphic method

Solution : Since it is easy to plot 3x -1 and cosx, we rewme the equation as 3x -1 =cosx.
The graphs of y= =fi(x)=3x-1 and y= fz(x) =Cos X are glven in Flgure 3.

Y

1.0 oy
’ '.e;

Fig. 3: Graphi of fi(x) = 3x - 1 and f2(x) = cos x.

Itis clear from the figure that the x-coordinate of the point of intersection is approximately
0.6. Hence x = 0.6 is an approximate value of the root of the equation 3x —~cos x -1 =0.
We now make a remark. ' '

Remark 1 : You should take some care. while choosmg the scale for graphmg A
magnification of the scale may lmprove the accuracy of the approxlmate value. . ‘ 35
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Here is an exercise for you.

E3) Find the approximate location of the roots of the following equations in the regions
given using graphic method.

) fx)=e*-x=0,in0<x<1

b)  f(x)=e?*-04x-9=0,in0<x£7

We have discussed two methods, namely, tabulation method and graphical method which
Lelp us in finding an initial approximation to a root. But these two methods give only a
-ough approximation to a root. Now to obtain more accurate results, we need to improve
these crude approximations. In the tabulation method we found that one way of improving

arocess i refining the intervals within which a root lies. A modification.of this method
i« known.4s bisection method. In the next section we discuss this method.

23 BISECTION METHOD

In the beginning of the previous section we have mentioned that there are two s;epé involved
in finding an approximiate solution. The first step has: already been discussed. In this section
we consider the second step which deals with refining an initial approximation to a root.

Once we know an inerval in which a root lies, there are several procedures to refine it. The
bisection method is one of the basic methods among them. We repeat the'steps 1, 2, 3of
the tabulation method given in subsection 2.2.1 in a modified form. For convenience we
write the method as an algorithm.

Suppose that we are given a continuous function f(x) defined on [a, b] and we want to find
the roots of the equation f(x) = 0 by bisection method. We describe the procedure in the
following steps :

Step 1 : Find points X, X, in the interval {a, b} such that f(x,). f(x,) < 0. That is, those points
%, and X, for which f(x,) and f(x,) are of opposite signs—(see Step l'of subsection 2.2.1).
This process is called *‘finding an initial bisecting interval’’. Then by IV theorem a root lies

in the interval | x, X, [.

X|+X2

.Iff(c) =0, thenc is

Step 2 : Find the middle point ¢ of the interval ] x, X, [ie.c=

the required root of the equation and we can stop the procedure. Otherwise we go to Step 3.

Step 3 +Find out if
f(x,) f(c)< 0

If it holds, then the root lies in ] x;, ¢ [. Otherwise the root lies in ] ¢, x, [ (see Fig. 4), Thus

in either case we have found an interval half as wide as the original interval that contains
the root.

(Xlsi»fixl) ) ) (xy, £(x)))

(c, ()

y = () | \ y =)

T
[er)
T

»
o
>
fi
=
o
. -t
A.’
t9

(c.f(0))

(xaf(x2)) i (x2. f(x2) )

!
" Fig. 4 : The decision process for the bisection method.
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Step 4 : Repeat Steps 2 and 3 thh the new interval. This process either gives you the root Tteration Methods for Locating a Root
or an interval having width 1/4 of the original interval ] X;» X, [ which contains the required

root.

Step 5: Repeaf this procedure until the interval width is as small as we desire. Each

~ bisection halves the length of the preceding interval. After N steps, the original interval

length will be reduced by a factor 1/2V,

Now we shall see how this method helps in refining the initial intervals in some of the

problems we have done in subsection 2.2.1.

Example 5 : Consider the equation 2x - log,, x =7 lies in ]3.78, 3.79(. Apply bisection
method to find an approximate root of the equation correct to three decimal places.

Solution : Let f(x) =2x ~ log‘0 x — 7. From Table 2 in subsecfion 2.2.1, we find that
£(3.78) =~ 0.01749 and f(3.79) = 0.00136. Thus a root lies in the interval ]3.78, 3.79].

Then we find the middle point of the interval 13.78, 3.79[. The middle point is

¢=(3.78 + 3.79)/2 = 3.785 and f(c) = £(3.785) = — 0.00806 = 0. Now, we check the
condition in Step 3. Since £(3.78) £(3.785) > 0, the root does not lie in the interval

13.78, 3.78[. Hence the root lies in the interval ]3.785, 3.9[. We have to refine this interval

'_ funher to get better approxnmatlon Further bisections are shown i in the following Table.

Table 7
| Number of Bisections Bisected valye X; f(x;) ' T Improved Interval
1 3.785 -0.00806 . 13.785,3.79(
2 3.7875 —-33525x 10°3 13.7875, 3.79(
3 3.78875 ~9.9594 x 10~ ]3_.78:875. 3.79(
4 3789375 1.824 x 10~ 13.78875, 3.789375(
s 3.7890625 - -4068x10~ | 13.78906,3.7989375(

T

‘The table shows that the improved interval after 5 bisections i is ]3.78906, 3.789375(. The

width of this interval in 3.789375 — 3.78906 = 0.000315. If we stop further bisections, the

" maximum absolute error would be 0.000315. The approximate root can therefore be taken as

(3.78906 + 3.789375)/2 = 3,789218. Hence the desired approximate value of the root
rounded off to three decimal places is 3.789.

, Example 6 : Apply blsccuon method to find an approximation to the posmve root of the

equauon
2x-3sinx-5=0
rounded off to three decimal places.

‘Solution : Let f(x) = 2x -3 sinx - §.

In Example 1, we had showr that a positive root lies in the interval ]2.8, 2.9(. Now we apply
blsecuon method to this mterval The results are glven in the following table.
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_ Table 8

E Number of bisection Bisected value X | : f('xi) »lmpnoved interval
i 1 2.85 —0.1624 : i2.85,2.9
]; 2 2875 ~0.0403 : 12.87s, 290
| 3 2.8875 0.02089 12.875,2.8875[
' 4 2.88125 -9.735 % 107 12.88125, 2.8875[

5 2.884375 SSTIBIx 10 | 12.88125,2.884375]

6 2.8828125 ~20795x10 | 12.8828125, 2.884375(
J 7 2.8835938 17489 x 107 | 12.8828125, 2.8835938 |
i 8 2.8832031 - 1.6539x 10 |12.8832031, 2.8835938

After § bisections the width of the interval is 2.8835938 - 2.8832031 = 0.0003907. Henée,
the maximum possible absolute error to the root is 0.0003907. Therefore the required
spproximation to the root is 2.883. : '

iow let us make some remarks.

Remark 2 : While applying bisection method we must be careful to check that f(x) is
continuous. For example, we may come across functions like f(x) = ﬁ If we consider the

interval 1.5, 1.5[, then £{.5) £(1.5) < 0. In this case we may be tempted to use bisection.
method. But we cannot use the method here because f(x) is not defined at the middle point
x = 1. We can overcome these difficulties by taking f(x) to be continuous throughout the
initial bisecting interval. (Note that if f(x) is continuous, by IV theorem f(x) assumes all
values between the interval.)

Therefore you should alwé\ys examine the continuity of the function in the initial interval
Lefore attempting the bisection method. .

wemark 3 : It may happen that a function has more than one root in an interval. The
bisection method helps us in determining one root only. We can determine the other roots by-
properly choosing the initial intervals. '

You can try some exercises now.

E4)  Starting with the interval [ag, by, apply bisection method to the follbwing equations
and find an interval of width 0.05 that contains a solution of the equations

S @ e*-2-x=0,[a,by]=[1.0, 1.8]
b) Inx-5+x=0,[a5by]1=[3.2,4.0)

E5) Using bisection method find an app'rox"i_mate root of the equation x3 ~ x ~4 =0 in the
interval }1, 2[ to two placc_a_s of d‘ccimal._

While applying bisection method we repeatedly apply steps 2, 3, 4 and 5. You recall that in
the introduction we classified such a method as an-Iteration method. As we mentioned in
the beginning of Sec. 2.2, a numerical process starts with an initial approximation and

- lieration improves this approximation until we get the desired accurate. value of the root.

Let us consider another iteration method_now._

24 _FIXED POINT ITERATION METHOD

The bisection method we have described carlier depends on our ability to find an interval in
which the root lies, The task of finding such intervals is difficult in certain situations, In
such cases we try an alternate method called Fixed Point Iteration Method. We shall
discuss the advantage of this method later. ‘ - '



The first step in this method is to rewrite the equatioq f(x)=0as ‘ Stevation Metuuds for Locating 1 Root
x = g(x) ' - : ... (5)
For example consider the equation x2 - 2x ~ 8 = 0. We can write it as
x=V2x+8 o ...(6)
2x+8 :
=" (T
2_
x= X 8 (8

We can choose the form (5) in several wéys. Sinee f(x)=0is the same as x = g(x), finding s
root of f(x) = 0 is the same as finding a root of x = g(x) i.e. a fixed point of g(x). Each such
g(x) given in (6), (7) or (8) is called an iteration function for solving f(x) = 0.

. Once an iteration function is chosen, our next step is to take a point Xge close to the root. as
the initial approximation of the root. :
i, Starting with x, we find the first approximation X | s
X, =g(xg) .
. Then we find the next approximation as -
. X2 = g(x |)
Similarly we find the successive approxima(ionsfxz. X3s Xgo oo as
‘ X3 = g(xz)
X = g(x3)

T g(xn)
. * -Each computation of the type Xo+1=8(xp)is called an iteration. Now, two questions arise
(i) when do we stop these |terauons'7 (ii) Does this procedure always give the requlred
solution? S .

To ensure this' we make the following assumpt'ibt;s on.g(x):

Assumptlon*

The derivative g'(x) of g(x) exists, g '(x) is contmuous and samﬁes | g g'(x) I'<linan.
- interyal containing x,,. (That would mean that we require l g (xl) | <tatal iterates x..)

The iteration is usually stopped whenever | X, f:; X l is less thnn the accuracy required.

In Unit 3 you will prove that if g(x) satisfies the above conditions, then there exists 4 unique
point o such that g(cr) = o and the sequence of iterates approach @, provided that the initial
approxlmauon is close to the point a..

—_

Now we shall illustrate this method with the follewing e:iaxhple.

. Example 7 : Find an approximate root of the equatlon
-2x-8=0 ’

using ﬁxed point iteration method, stamng with xo 5 Stop the ueratlon whenever »
| Xie 1% | <0.001. '

‘ : Solutien : Letf(x) = x* - 2x — 8. We saw that the equation f(i) =0 can be written in three
forms ©), (M and (8), We shall take up the three forms one by oné

Case l Suppose we consider form (5). In this. form the equatlon is wrltten as

Xx= (2x+8)'/2 39
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{14 a calouiator to evaluate the
Sggu bt

Hereg(x)=(2x + 8)1/ 2 Let’s see whether Assumption (%) is satisfied for this g(x). We have

1

gl= (2x +8)172

Then | g’(x) | <1 whenever (2x + 8)!/2 > 1. For any positive real number x, we see that the

inequality (2x +8)!/2 > 1 is satisfied. Therefore, we consider any interval on the positive
asde of X-axis. Since the starting point is X, =3, we may consider the interval I = [3, 6. This

contains the point 5. Now, g(x) satisfies the condition that g'(x) exists on I, g’(x) is
continuous on I and lg'x) 1 <1for every x in the interval [3, 6]. Now we apply fixed point
iteration method to g(x).

We get »

X, =g(5) = VI8 =4.243

X, = 8(4.243) = 4.060

Xy =4.015

X, = 4.004

x5 =4.001

Xg = 4000
Since | Xg~ Xg | =1 -0.001 | =0.001, we conclude that an approximate value of a root of
fix)=0is 4. '
Case 2 : Let us consider the second form,

2x + 8
X ==
X

Here g(x) = 2x+8 and g'(x) = :§. The | g'(x) | <1 for any real number x 2 3. Hence g(x)
X x2

satisfies Assumption (%) in the interval [3, 6]. Now we leave it as an exercise for you to
complete the computations (See E6).

x2

-8 x*-8
2 . Then g(x) = >

only if | x | < 1i.e. if x lies in the interval ]-1, 1[. But this interval does not contain 5.
Therefore g(x) does not satisfy the Assumption (%) in any interval containing the initial
approximation. Hence, the iteration method cannot provide approximation to the desired
root. '

Case 3 : Here we have x = and g’(x) = x. In this case | gx) <1

Note : This example may appear artificial to you. You are right because in this case we have
got a formula for calculating the root. This example is taken to illustrate the method in a
simple way. '
Let us consider another example.
Example 8 : Use fixed point iteration proéedure to find an approximate root of 2x - 3 sin x
— 5 = 0 starting with the point x, = 2.8. Stop the iteration-whenever | X o1-X | <1075,

. 0 ‘ !
Solution : We can rewrite the equation in the form,

x*ésinx+§
T2 2

Here g(x) = % sin x +% and g’(x) = % cOS X.

Now at Xy = 2.8, we have

| g2.8) | =1.413

which is greater than 1. Thus g(x) does not satisfy Assumption (*) and therefore in this form
the iteration method fails. '



Letus now rewrite the equation in another form. We write
; 2x-3sinx=-5

X=X
2-3cosx

You may wonder how did we get this form. Note that here g(x) is of the form
B(x)=x— ?f,%% You will find later that the above equation is the iterated formula for

another popular iteration. method.

Then g'(x) =1 - (2—3cosx)(2—3cosx)-—(2x2—35inx+5)3sinx
{(2-3cosx)
B2 -3sinx¥5 . .
= = 3 5in X
(2—3::05::)2

Atx, =238, | g'(xp) | =0.0669315 (or 0.02174691) < |

Therefore g(x) satisfies the Assumption (). Using the initial approximation as x, = 2.8, we
get the successive approximation as '
x, =2.8839015

x, = 2.8832369
' xy=2.8832369

Since | '5‘2 - X3 | « 107% we stop the iteration here and conclude that 2.88323 is an.
approximate value of the root. '

Next we shall use another form -

Ix = si.n'l B3
- 3

2%x—5

.Hereg(x}=sin"’( 3 }aﬂdg’(”:;b—(;x—ﬂ’

Atxy= 2.8, g’()_&o) =(1.6804 < 1. In fact, we can check that in 'any small interval containing
28,1 g0 | < 1. Thus g(x) satisfies the Assumption («). Applying the iteration method,
we have x .

x, =sin”! [2 22) - 5): 0.201358

We find that there are two values which satisfy the above equation. One value is 0.201358
and the other is 1t — 0.201358 = 2.940235. In such situations, we take a value close to the
initial approximation. In this case the value close to the initial approximation is 2.940235.
Therefore we take this value as the starting point of the next approximation.

X, = 2.940235

Next we calculate

. = sin~! 2(2.940233) -5
r 3

= 0.2978.76 or 2.843717 : S _
Continuing like this, it needed 17 iterations to obtain the vaiue Xg = 2.88323, which we got

* from the previous form. This means that in this form the convergence is very slow.

- From examples 7 and S.wé learn that if we choose the form x = g(x) properly, then we can get
" the approximate root provided that the initial approximation is sufficiently close to the root. The

initial approximation is usually given in the problem or we can find using the I'V theorem.

Now we shall make a remark here.

iigrution Mothods for Locating K
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Remark : The Assumption () we have given for an iteration function, is a stronger
assumption. In actual practice there are a variety of assumptions which the iteration function
g(x) must satisfy to ensure that the iterations approach the root. But, to use those
assumptions you would require a lot of practice in the application of techniques ‘n
mathematical analysis. In this course, we will be restricting ourselves to functions that
satisfies Assumption (). If you would like to know about the other assumptions, you may
1efer to ‘Elementary Numerical Analysis’ by Samuel D Conte and Carl de Boopr. -

T get some practice over this method, you can try the following exercises.

£

2x+8

Apply fixed point iteration method to the form x = starting with x5 =5, to
obtain a root of x2 = 2x — 8 =0,

a) Apply fixed point iteration method to the following equations with the initial
approximation given alongside. In each case find an approximate root rounded
off to 4 decimal places.

) x=-45+2, xg=-20.

it) x=%+sinx,x0=l.

b) Compuie“ the exact roots of the equation x2+45x -2=0 using quadratic
formula and compare with the approximate root obtained in (a) (i).

~.¢t us now briefly recall what we have done in this unit.

SUMMARY

!n: this unit we have covered the following points :

We have seen that the methods for finding an approximate solution of an equation
involve two steps : '
i) Find an initial approximation to a root.

ii)  Improve the initial approximation to get a more accurate value of the root.

We have described the following iteration methods for improving an initial
approximation of a root.
i) Bisection method

1} Fixed point iteration method.

(A%
o
=28

SOLUTIONS/ANSWERS

El)

Let f(x)=3x - V1 +sinx

Since f(~x) = -3x - m: =3x - m< 0 for x > 0, f(x) has no
negative real root. .

Computing values of f(x) forx = 0, I, 2. ... radians, we get

fl0)=3x 0-VI =-1

and f(1)=3 -Vl +sinl =3 -1+ .84147 = 1.6430, as sin 1 = 0.84147,
approximately, using a calculator, Thus f(0) and f(1) are of opposite signs. Therefore
there exists a root of f(x) =0 lying between O and 1.

Now we randomly take some values between 0 and 1, say 0.3 and 0.5. Then
f(0.3)=.9-1.1381=-0.23181<0
and

f(0.5) = 0.283683619 > 0.



Hence the root lies in J0.3, 0.5[.

Repeating the process once again with the values x = 0.35 and 0.41 etc. we get,
(0.35) <0 ’

and
f(0.41) > 0.

Therefore the root lies between 0.35 and 0.41. This interval is small. If we stop
the iteration here, we may either take 0.41, since f(0.41) is closer to zero, or
(0.35 + 0.41)/2 = 0.38 as the required initial approximation.

: E2) Letf(x) = 2x ~ tan X. Since we want a positive root of f(x) = 0, we evaluate f(x) for

x>0,

Let us consider x =0, 1, 1.5. Then
f0)=0
(1) = 0.443

and ’ , ' : oy
f(1.5)=-11.1014 '

Therefore a root lies between 1 and 1.5. Now if we consider values of f(x) for x = 1.1
and 1.2, we get '

f(1)=0.443 <0
f(L1)=-08648 <0
and
f(1.2)=-0.1722<0 ~

Therefore we get that a root lies in the interval }1, 1.1[. In fact the root lies more.close
to 1. We may take (1 + 1.1)/2 = 1,05 as an initial approximation.

E3) a) Let fx)=e™
and
fo(x) = x

. The graphs of f, and f, are plotted in the following figure : .

1.0

o o

Q2

feration Methods fo o, o o
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E4)

E5)

E6)

b)

a)

b)

-From the graph you can see that the x-coordinate of the point of intersection is

approximately 0.55. Hence the root lies close to 0.55.

The given equation can be written as

f(x) = %4 - (0.4x +9)

0.4x

and 0.4x + 9 are given in the following figure.: h

The graphs of e

From the graph you can see that there are two points of ‘intersections.
x-coordinates of the points are approximately 6 and - 22.5. Hence one root lies
close to 6 and the other root lies close to — 22.5.

We first note that the given function f(x)=e* -2 ~x is continuous in the

“interval [1.0, 1.8]. Also

f(l)=e-2-1=e-3<0
f(1'8) =e'* ~ 3= 6.049647464 -3 >0

using a calculator. ‘
Therefore the interval 1.0, |.8] contains a root of the equation.

Middle point of the interval ¢ = ILzl_S_

= 14. Also, fc) =e'* = 3=4.0552-3 > 0.
Therefore the root lies in the interval |1, 1.4[.

Repeating this process three times more, we get the intervals ]1.0, 1.2[, ]1.1, 1.2
and 1.1, 1.15[. Therefore the improved interval after 4 bisections is J1.1,1.15].
The width of this interval is 0.0S. This shows that the required interval of width
0.05 which contains a root of the equation is |1.1, 1.15[.

Using a calculator you can show that the intervals in each of the four bisections
are given by 13.6, 4.0(, }3.6, 3.8, 13.6..3.7{ and ]3.65. 3.70[. The width of the
last interval is 3.70 — 3.65 = 0.05. Therefore the required interval is ]3.65. 3.70].

After 5 bisections the root lies in ]1.7959, 1.7969][. Therefore the required root correct
to two decimal places is 1.80. ' '

X=g(x)=

2x + 8
-



2

The iterations are given by
2Xi +8

X;

Xi41=

we have

x;=g(5)=3.6
X5 = g(3.6) = 4.2222
X3 = 3.8947
x4 = 4.0540
x5=3.9733

- xg = 4.0134

Xy =3.9933

, xg = 4.0033

| xg = 3.9983
X 10 = 4.0008
Xl 1 = 3.9996.

Since | X111~ X190 | = 0.001, we conclude that an approximate value of a root of
f(x)=0is 4.

E7) a) i) The iteration formula in fixed point iteration method is
Xi+1=8(x),i=0,1,2,...

i.e.xi+,=-45+f—_,i=o, L2,...
]

Here x(, = —20. Starting with x( = ~20, the successive iterations are given by

x;=—~45.1

Xy = —45.04435

X3 = —45.044401

X4 = —45.044401 .

Since x; and x, are the same, we stop the iteration here. Hence the
approximate root rounded off to four decimal places is — 45.0444.

ii) The desired root is 1.4973.

b)  The given equation is x + 45x — 2 = 0, According to the quadratic formula, the
two.roots are

—45+V@s)2+8 _  —45-V(457 +8
- 2

X = 2 » X2

= 0.0444 , =-450444

Comparing with the result in paﬁ (a) (i), we find that the approximate root is the
same as the exact root — 45.0444.

[teration Meihods for Locating a K.
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UNIT3 CHORD METHODS FOR
FINDING ROOTS

Structure

11 Introduction
Objectives

3.2 Regula-Falsi Method

3.3 Newton—Raphson Method
Convergence Criterion

5%  Summary

3.6 Solutions/Answers

3.1 INTRODUCTION ‘

Ir: the last unit we introduced youo two iteration methods for finding roots of an equation
f(x).= 0. There we have shown thiat a root of the equation f(x) = 0 can be obtained by writing
the equation in the form x = g(x). Using this form we generate a sequence of approximations ,
X, =8kx)fori=0,1,2,... We had also mentioned there that the success of the iteration
methods depends-upon the form of g(x) and the initial-approximation x;. In this unit, we
skall discuss-two iteration methods : regula-falsi and Newton—Raphson methods. These
methods produce results faster than bisection method. The first two sections of this unit deal
with derivations and the use of these two methods. You will be able to appreciate these
iteration methods better if you can compare the efficiency of these methods. With this in
view we introduce the concept of convergence criterion which helps us to check the
efficiency of each method. Sec 3.4 is devoted to'the study of rate of convergence of different
iterative methods.

Objectives _

After studying the unit you should be able to

®  apply regula-falsi and secant methods for finding roots
@ ° apply Newton-Raphson method for »fi'nding T00tS

@  define ‘order o; convergence’ of an iterative scheme
@

obtain the order of convergence of thé following four methods :

i) bisection method ' o
ii) fixed point iteration method -
‘iii)  secant method

iv) Newton—Raphson method

3.2 REGULA-FALSI METHOD (OR METHOD OF
FALSE POSITION)

In this section we shall discuss the ‘regula-falsi metbod’. The Latin word ‘Regula Falsi’
means rule of falsehood. It does not mean that the rv e is a false statement. But it conveys
that the roots that we get according to the rule are approximate roots and not necessarily
exact roots. The method is also known as the method of false position. This method is

similar to the bisection method you have learnt in Unit 3.

The bisection method for finding approximate roots has a drawback that it makes use of only
the signs of f(a) and f(b). It does not use the values f(a), f(b) in the computations. For
example, if f(a) = 700 and f(b) = 20.1, then by the bisection method the first approximate
walue of a root of f(x) is the mid value x, of the interval Ja, b[. Butat x,, f(xo) is nowhere



near 0. Therefore in this case it inakes more sense to take a value near to —0.1 than the Chiord Methods for Finding Roots
middle value as the approximation to the root. This drawback is to some extent overcome by
the regula-falsi method. We shall first describe the method geometrically.

Suppose we want to find a root of the equation f(x) = 0 where f(x) is a continuous function.
As in the bisection method, we first find an interval Ja, b{ such that f(a) f(b) < 0. Let us look
at the graph of f(x) given in Fig. 1.

(a\f(@)) (a.f(a))
. ST (c. ()
~ ~
C ! \\ h | dem ¢ > SNC
¢ " ' Sy
~
<L h
(c.f(c)
y={(x)
(b. (b)) (b, (b))

Fig. 1 : Reguia-Falsi Method

The condition f(a) f(b) < 0 means that the points (a, f(a)) and (b, f(b)) lie on the opposite
sides of the x-axis. Let us consider the line joining (a, f(a)) and (b, f(b)). This line crosses the
x-axis at some point (c, 0) [see Fig. 1]. Then we take the x-coordinate of that point as the
first approximation. If f(c) =0, then x = ¢ is the required root. If f(a) f(c) <0, then the roct
lies in ]a, c[ (seé Fig. 1 (a)). In this case the graphof y = f(x) is concave near the root .
Otherwise, if f(a) f(c) > 0, the root lies in Ic. bl (see Fig. 1 (b)). In this case the graph of

y = f(x) is convex near the root. Having fixed the interval in which the root lies, we repeat
the above procedure.

Let us now write the above procedure in the mathematical form. Recall the formula for the
line joining two points in the Cartesian plane [see MTE-05]. The line joining (a, f(a)) and
(b, f(b)) is given by

-f(a)=m3g—§§—@ (x—a)

We carrrewrite this in the form
y—-fa) _x-—a )
f(b)-f(a) b-a’
Since the straight line intersects the x-axis at (c, 0), the poi’nt (c, 0) lies on the straight line.
Putting x = ¢, y = 0 in Eqn. (1), we get o
_—fa _c-a
f(b) - f(a) b-a

. ¢ _a___-f@
1. 5-a b-a f(b)-f(a)

f(a)
f(b) - f(a)

This expression for ¢ gives an approximate value of a root of f(x). Simplifying (2), we can
also write it as

c=? f(b) — b f(a)
~  f(b) - f(a)

Now, examine the sign of f(c) and decide in which interval la, c[ or ]c, bl, the root lies. We
thus obtain a new interval such that f(x) is of opposite signs at the end points of this interval.
By repeating this process, we get a sequence of intervals ]a, b[, la, a, [, Ja, a,...as shown

in Fig. 2.

Thusc=a-

(b-a). N 3}
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4 ®.1®)

[ (a, f(a))

Fig. 2

We stop the process when either of the following holds.
i) The interval containing the zero of f(x) is of suffjciently small length
or .
iiy The difference between two successive approximations is negligible.
In the iteration format, the method is usually written as
. g :(x‘) - xl'f(xoz
(x) - f(xg)

where ]x,, xl[ is the interval in which the root lies.

‘We now summarise this method in the algorithm form. This will enable you to solve
problems easily.

Steﬁ 1 : Find numbers x; and X, such that f(xg) f(x,) <0, using the tabulation method.

o % (%)) = X f(xg) -
Step 2 : Set x 2:,—72)(—1_)_—?&;)‘_' Thig gives the first approximation.

Step 3 : If f(x,) ="®then X, is the required root. If f(x,) # 0 and f(xo) f(x,) < 0, then the next
approximation lies in ]xo, xz‘[. Oth,efwisg it lies in ]"2' "1['

Step 4 : Repeat the process till the magnitude of the difference between two successive
iterated values x, and X, is less than the accuracy required. (Note that 1 x; ;= X; 1 gives

the error after ith iteration).
Let us now understand these steps through an example. -

Example 1 : It is known that the equation x3 + 7x2 + 9 = 0 has a root between -8 and -7.
Use the regula-falsi method to obtain the root rounded off to 3 decimal places. Stop the

srarati S —4
iteration when | Xie1 xil <‘10 .

- Solution : For convenience we rewrite the given iunction f(x) as

f=x>+TxE+9
=x2(x+7)+9

Since we are given that X, = -8andx, = -7, we do not have to use step 1. Now to get.the
first approximation, we apply the formula in Step 2.



T k.

Since, f(x,) = f(-8) = ~55 and f(x ) = f(-7) =9 we obtain
_(=8)9-(=D(=5) _
X, = 9+55 =-7.1406

Therefore our first approximation is ~7.1406.

To find the next approximation we calculate f(x,). We have
f(x,) = f(~7.1406) = (-7. 1406)° + 7(=7.1406)% + §

= 1.862856
Now we compare the sign of f(x,) with the signs of f(x) and f(x,). We can see that f(x)
and f(x,) are of opposite signs. Therefore a root lies in the interval }-8, ~7.1406[. We appiy
the formula again by renaming the end points of the interval as x, = -8, x, =~7.1406. Then
we get the second approximaiion as
= -8 f(=7.1406) + 7.1406 f(-8)
3 - 1.862856 + 55

We repeat this process using steps 2 and 3 given above. The iterated values are given in the
following table.

=-7.168174.

| Table 1
~Nun'1ber of iterations Interval Iterated Values x; The function value f(x.)
1 }-8.-7( -7.1406 1.862856
2 )-8, ~7.1406] —7.l68l74 0.3587607
3 1-8.-7.168174( -7.1735649 0.0683443
4 1-8,-7.1 '_735649[ ~7.1745906 0.01299%4
5 ]78, —7.1745906( -7.1747855 0.00246959
6 1-8,-7.1747855( -7.1748226 0.00046978

From the table, we see that the absolute value of the difference between the 5th and 6th
iterated values is | 7.1748226 — 7.1747855 | = .0000371: Therefore we stop the iteration

here. Further, the values of f(x) at 6th iterated value is .00046978 = 4.6978 x 10~ which is

close to zero. Hence we conclude that —7.175 is an approximate root of x3+7x%2+9=0
rounded off to three decimal places.

Here is an exercise for you.

E1) Obtain an approximate root for the following equations rounded off to three decimal
_ places, using regula-falsi method

a) xlogjgx—-12=0
b) xsinx-1=0

~ You note that in regula-falsi method, at each stage we find an interval ] xo, x, [ which contams a
- ‘root and then apply iteration formula (3). This procedure hasa disadvantage. To overcome this,

regula-falsi method is modified. The modified method is known as secant method. In this
method we choose x, and x, as any two- approximations of the root. The Interval ] Xg» X [ need

not contain the root. Then we apply formula (3) with Xgo Xys f(’.‘o) and f(xl)

The iterations are now defined as :
. xg f(x)) — x, f(xg)
27 f(x,) - f(x)
X, f(xy) = x5 f(x,)
f(xy) - f(x,)

X3=

Chord Methods for Finding Roats
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I T T

-------------------------

_xn-lf(xn)-’xn f(xn—‘lb) l o
X415 f_(x)—f(;(_) — ' RN (-3

iote : Geometrically, in secant Method, we replace the graph of f(x) in the interval
i, o Xn 4 [ by a straight line joining two points (xn, f(x, 4 ) (%) 4 ) f(x,, , ,))on the curve
ard take the point of intersection with x-axis as the approximate value of the root. Any line

joining two points on the curve is called a secant hne That is why this method is known as
.'ecam method. (see Fig. 3).

(ke )

(%e. £(x9) )

Fig. 3

Let us solve an example.

- Example 2 : Determine an approximate root of the equation

‘ cosx—-xe*=0
using
i) secant method Starting with the two initial approximations as xo =1 and xj = 1
and v : ' ' : ' :

ii) fegula falsi method. '
(This example was considered in the book ‘Numerical methods for scientific and
engineering computatnon by MK. Jain, S.R.K. Iyengar and R.K. Jain).

Solution :. Let f(x) = cos X — x €.

Then (0) = 1 and f(1) = cos 1 —e =-2.177979523. Now we apply formula (4) with
x,=0and x| = 1. Then .

oo fx) =X fxg) 0 (-2.177979523) + (1)1
27 fxp-fix) 2177979523 -1

-1 |
= 2T979523 -1 - 3, 5T =0 3146653378,

Therefore the ﬁrst iterated value is 0.3146653378. To get the 2nd iterated value, we apply
Formula (4) with xl =1, X, = =0.3146653378. Now f(l) =~2,177979523 and

£(0.3146653378) = 0.519871175.




Therefore ' T ; Chord Methods for Finding Rools
X, f(xz) =Xy f(xl)
f(x,) - f(x D

_1(0.519871175) —0.3146653378 (=2.177679523)
- 0.519871175 + 2.177979523

=0.4467281466

We continue this process. The iterated values are tabulated in the following table.

X3=

Table 2 : Secant Method
Number of iterations ‘ Tterated values x; : f(x;)
! 0.3146653378 - 0.519871
2 0.4467281466 0.203545
3 0.5317058606 -0.0429311
4 0.5169044676 00259276
s 0.5177474653 0.00003011
6 0.5177573708 -0.215132x 1077
7 0.5177573637 . 0.178663 x 10~'2
8 0.5177573637 _ 0.222045 x 10713

From the table we find that the iterated values for 7th and 8th iterations are the same. Also
the value of the function at the 8th itcration is close to zero. Therefore we conclude that
0.5177573637 is an approximate root of the equation.

ii)  To apply regula-falsi niethod let us first note that £(0) (1) < 0. Therefore a root lies in
the interval ]0, 1. Now we apply Formula (3) with xy = 0 and x, = 1. Then the first

approxlmatlon is
L o2 177979523) + (1) 1
27 2177979523 -1
=0.3146653378

You may have noticed that we have already calculated the expression on the right hand side

of the above equation in part (i).

Now f(x,) = 0.51987 > 0. ThlS shows that the root lies in the mterval 10. 3146653378 1{. To
get the second approximation, we compute
_0.3146653378 f(1) — 1 £(0.3146653378)
3= (1) - £(0.3146653378)
which is same as X4 obtained in (i). We find f(x,) = 0.203545 > 0. Hence the root lies in
]0.4467281446 1{. To get the third approximation, we calculate
0.4467281446 f(1) — 1 £(0. 4467281446)
Y=TTTTH(1) - 1(0.4467281446)
The above expression on the right hand side is different from the expression for_ X, in part

(i). This is because when we use regula-falsi method, at each stage, we have to check the
condition f(x,) f(x, _|) <O.

= 0.4467281446
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The computed values of the rest of the approximations are given in Table 3.

Table 3 : Regula-Falsi Method

No. Interval Iterated value X; : f(x;)

-1 10, 1{ ’ ‘0.3146653378 0.519871

2 1.04467281446, 1{ 0.4467281446 0.203545
3 10.4940153366, 1{ 0.4940153366 0.708023 x 10~
; 4 ‘ 10.5099461404, 1[ . 0.5099461404 0.236077 x 107!
g 5 10.5152010099, 1{ 0.5152010099 0.776011 x 10°2
’E 6 ’ 10.5176683450, 1{ | 0.5177478783 "0.288554 x 1074
3 7 105177478783, 1] 0.5177573636 0.396288 x 10~

From the table, we‘obser\‘re that we have to perform 20 iterations using regula-falsi method -
to get the approximate value of the root 0.5177573637 which we obtained by secant method
after 8 iterations. Note that the end point 1 is fixed in all iteractions given in the table,

»

Here are some exercises for you.

E2) Use secant method to find an dpproximate root of the equation x2 ~2x + 1 =0,
rounded off to 5 decimal places, starting with Xg=2.6 and x, = 2.5. Compare the

result with the exact root 1 + 2. ‘
E3)  Find an approximate root of the cubic equation x3 + x2 - 3x — 3 = 0 using
a) i) regula-falsi method, correct to threé decimal places. )
i) secant method starting with a = 1, b = 2, rounded-off to three decimal pﬁcgs.

-b)  compare the results obtained by (i) and (ii) in.part (a).

Next we shall discuss another iteration method. °

3.3 NEWTON—RAPHSON METHOD

This method is one of the most useful methods for finding roots of an.algebrai'c equatidn.
Suppose that we want to find an approximate root of the equation f(x)‘=;b. If f(x) is continuous,
then we can apply either bisection method or regula-falsi method to find approximate roots. -
Now if f(x) and f’(x) are continuous, then we can use a new iteration method called T
Newton-—Raphson method. You will leam that this method gives the result more faster than the

- bisection or regula-falsi methods. The underlying idea of the method is dpe to mathematician

Isac Newton. But the method as now used is due to the mathematician Raphson.'

Let us begin wiih an equation f(x) = 0 where f(x) and f'(x) and are continuous. Let X be an .
initial approximation and assume that X, is close to the exact root a and f'(xy) # 0. Let

- &=x,+h where his a small quantity in magnitude. Herice f(o) = f(xy+h)=0

' Now we expand f(xo + h) using Taylor’s theorem. Note that f(x) satisfies all the

requirements of Taylor’s theorem. Therefore, we get
f(x,+h) = f(xg)-+ hf'(xo) +...=0

Neglecting the terms coritaining h? and higher powers we get
f(xg) + h f(x;) =0. '

—'f(_xo)
=F (x

Then, h .
. O)



This gives a new approximation to ¢ as

f(xg).
X, =x0+h=x0—?,—(x—o)-.

Now the iteration can be defined by

f(xy)

Xy =Xq= w0
1 0 f(xo)

f(x I.)
1T f(x,)

Xy =X

2

_ f(xn_l)
xn'xn-l-f'(xn_‘)

.. (5

Eqn. (5) is called the Newton—Raphson formula.. Before solving some examples we shall
explain this method geometrically.

Geometrical Interpretation of Newton—Raphson Method
Let the graph of the function y = f(x) be as shown in Fig. 4.

]

_P (xq- T(x0})

S

/%,’T () X

Fig. 4 : Newton—Raphson Method

If x,is an initial approximation to the root, then the corresponding point on the graph is
P(x, f(xo))- We draw a tangent to the curve at P. Let it intersect the x-axis at T (see Fig. 4).
Let x, be the x-coordinate of T. Let S(ct, 0) denote the point on the x-axis where the curve
cuts the x-axis. We know that . is a root of the equation f(x) = 0. We take x| as the new
approximation which may be closer to & than x,. Now let us find the tangent at P(x,, f(x))-
The slope of the tangent at P(x, f(x()) is given by f'(x). Therefore by the point-slope form
of the expression for a tangent to a curve (recall the expression from MTE-05), we can write

y = f(xg) = £'(xg) (x; = X
This tangent passes through the point T(x,. 0) (see Fig. 4). Therefore we get

0 - f(xp) =1 (xg) (x; = Xo)

ie. x, f(xg= xof (xg) = f(xy

- f(x)
ie.x =Xg= -1;(;5

This is the first iterated value. To get the second iterated value we again consider a tangent
at the point P(x;, f(xl)) on the curve (see Fig. 4) and repeat the process.. Then we geta point

Chord Methods for Finding Roots’
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Tx(xz’ 0) on the x-axis. From the figure, we observe that Tl is more closer to S(c, 0) than T.

Therefore after each iteration the approximation is coming closer and closer to the actual
root. In practice we do not know the acrual root of a given function. '

Let us now take up some examples.

Example 3 : Find the smallest positive root of
2x—tanx =0
by Newton—Raphson method, correct to 5 decimal places.

Solution : Let f(x) = 2x ~ tan x. Then f(x) i a continuous function and f'(x) = 2 = sec’

X is
also a'continuous function. Recall that the given equation has already appeared in an
exercise in Unit 2 (see E2 in Unit 2). From that exercise we know that an initial
approximation to the positive root of the equation is x = 1. Now we apply the
Newton—Raphson iterated formula. v . .

o =123
X=X _—5—o 1=1,2,3....
i Ti-1 f’(xi) ‘ p

Here x,= 1. Then f(x,) = f(1) =2 —tan | =0.4425922
| f(xg)=F(1)=2-sec? 1 =2 (1 +tan?l) -
=1-1tan®1
=-1425519 -
04425922 ‘
Therefore x, = b=T1a2s519

=1.31048

‘Fori= 2, we get

x, = 1.31048 2= tan2(1.31048
- ‘1 - tan®(1.31048)

=1.22393

Similarly we get

X, = 1.17605

x, = 1.165926

Xq= 1.165562

X, = 1.165561
Now x4 and x are correct to five decimi;l places. Hence we stop the iteration process here.
The root correct to 5 decimal places is 1:16556. X

Next we shail consider an application of Newton—Raphson formula. We know that finding
the square root of a number is not easy pnless we use a calculator. Calculators use some
algorithm to obtain this value. Now we shall illustrate how Newton—Raphson method
enables us to obtain such an algorithm for calculating square roots. Let's consider an
example. ' '

Example 4 : Find an approximate value of V2 using the Newtdn—Rap'hson formula.
Solution : Let x = V2. Then we have x* = 2 i.e. x* - 2 =0. Hence we need to find the '
positive root of the equation x% - 2 =0. Let L

f(x)=x2-2.

Then f(x) satisfies all the conditions for applying Newlqn—Raphion method. We choose
Xo = 1 as the initial approximation to the root. This is because we know that V2 lies between

VT and V@ and therefore we can assume that the root will be close to 1.



Now we compute the iterated values.

The iteration formula is

Puttingi=1,2,3,..., we get

] 2
X, ==xq+—|=15
1 2[0 x()]

!
Xy = 2[l5+—l—5]-l4l66667

2 .
[' 4166667 + l4l66667]

N

=1.41242157
Similarly
x, = 1.4142136

5= 14142136

Thus the value of V2 2 correct to seven decnmal places is I 4142] 36. Now you can check this
value with the calculator.

Note 1 : The method used in the above ekample is applicable for finding square root of any
positive real number. For example suppose we want to find\an approximate value of vA

where A is a positive real number. Then we consider the equation x> - A =0. The iterated
formula in this case is

1 A
xi=§[xi— 1 +;—‘;:|
. i—

This formula involves only the basic arithmetic operations +, -, X and +.

Note 2 : From examples (3) and (4), we find that Newton—Raphson method gives the root
very fast. One reason for this is that the derivative | f'(x) | is large comipared to If(x)! for any
fx)
f(x)

this case. In general we can say that if | f'(x) | is large compared to 1f(x)) |, then we can

x = x,. The quantity which is the difference between two iterated values is small in

~ obtain the desired root very fast by this method.

The Newton—Raphson method has some limitations. In the following remarks we mention
some of the difficulties.

Remark 1 : Suppose f* (xi)' is zero in a neighbourhood of the root, then ii may happen that

£(x;) =0 for some x.. In this case we cannot apply Newton—Raphson formula, since

division by zero is not allowed.
Remark 2 : Another dlfﬁculty is that it may happen that ') is zero only at the roots. This
happens in either of the situations.

i) f(x) has multiple root at o. Recall that a polynomial function f(x) has a multiple root
o of order N if we can write ’

- f(x) = (x - )N h(x)
where h(x) is a function such that h(ct) # 0. Fora general function f(x), this means
fl)=0=F(a)=...=N"'(c)and N(o) 2 0.

ii)  f(x) has a stationary point (point of maximum of minimum) point at the root [recall
from your calcplus course (MTE-01) that if f’(x) = 0 at some pomt X then X is called a

stationary point).

Chord Methods for Finding Roeot:



Solutions of Non-linear Equations [ such cases some modifications ta the Newton--Raphson method are necessary to get an
‘In ane Variuble accurate result. We shall not discuss the,modifications here as they are beyond the scope of
this course.

You can try some exercises now. Wherever needed, you should use a calculator for
computation.

E4) Starting with xy = 0 find an approximate root of the equation x3 — 4x + 1 = 0, rounded
off to five decimal places using Newton—Raphson method.

E5) The motion of a planet in the orbit is governed by an equatioh of the form

'y =X ~ e sin x where e stands for the eccentricity. Lety = 1 and e = :,lz Then find an

approximate root of 2x — 2 - sin x = 0 in the interval [0, 1t) with error less than 10~5
Start with x5 = 1.5,

E4) Using Newton—Raphson square root algorithm, find the following roots within an
accuracy of 1074,

i) 8'2 starting with xy =3
i) 912 sarting with x, =

£7) Can Newton—Raphson iteration method be used to solve the equation x}/3=0? lee )
reasons for your answer.

In the next section we shall discuss a criterion usmg whlch we can check the efficiency of an
iteration process.

3.4 CONVERGENCE CRITERION

ini this section we shall introduce a new concept called ‘convergence criterion” related to an
iteration process. This criterion gives us an idea of how many successive iterations have to
be carried out to obtain the root to the desnred accuracy. We begin with a definition.

Definition 1 ; Let Koo Xjevoos X

ne - - - be the successive approximations of an iteration

process. We denote the sequence of these approximations as {xn}” . We say that
B n=0

x ! converges to a root o with order p 2 1 if

-
I'xll+|—a|<k|x--a| ... (6)

for some number A >0. piscalled the order of convergence and A is called the asymptotic
error constant, .

For each i, we denote by € =X, — a. Then the above inequality be written as

Thns mequallty shows the relationship between the error in successive approxlmanons For
example, suppose p = 2 and | g |= 10‘ for some i, then we can expect that

l<atle P : ) ST

|+I

l g, =A lO"‘ Thus if p is large, the iteration converges rapidly. When p takes the
integer values 1.2, 3 then we say that the convergence is linear, quadratic and cubic
respectively. In the case of linear convergence (i.e.p = 1). then we require that A < 1, In this
case we can write (6) as

|an—_alSHxn—alforu’lanO _ ‘ "'(8),

_If this condition is satisfied for an ltemuon process then we say thiit the iteration process
converges linearly.
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Sethigh = 0in'the o <8), we get
| xl—al sl xo-a|
Forn=1,weget . k ,
| X, =@ f<sal xl-a| sa?| xo-a|
Similarly for n = 2, we get
| X3—Q l<ald x;,—al <A x|~oc| <3 xo---a]
Using induction on n, we get that

lxn——alsl“lxo—alfornzo .:.(9)

If either of the inequalities (8) or (9) is satisfied, then we conclude that {x“}“ converges
n=0
to the root.

Now we shall find the order of convergence of the iteration methods which you have studicd
so far.

Let us first consider bisection method.
Convergence of bisection method
Suppose that we apply the bisection method on the interval [a,, by} for the equation f(x) = 0.

In this method you have seen that we construct intervals [ag, byl > {a,,b)]1> (a,, b2] D...
each of which contains the required root of the given equation. '

Recall that in each step the interval width is reduced by ,l; i.e.

b,—~a
0 0
bl dl:—‘ 2
b a et 7%
2-82-—- 2 - 22
. b, — 3 '
0 0
~and bn—an=—°-'“2“-— . .‘..(IO)

We know that the equation f(x) = 0 has a root in {ay, b]. Let a.be the rooé of the equation.
. a+b
Then o lies in ali the intervals [ai, bi], i=0,1,2,....Foranyn, let C, = 2 2 L

denote the
middie point of the:interval [a, bn]Q Then ¢y, ¢y, €5, .. . are taken as successive

approximations to-the root a.. Let’s check the inequality (8) for {c"}" 0
’ . n=

For each n,  lies in the interval [an. b“]. Therefore we have

la-c, |

|ot-cn+l | £—2

 Thus {cn}fn converges fo the root .. Hence we can say that the bisection method always
' n=0. :

converges.
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For practical purposes, we should be able to decide at what stage we can stop the weration 10
have an acceptably good approximate valse of . The number of iterations required to
achieve a given accuracy for the bisection method can be obtained. Suppose that we want an
- approximate solution within an error bound of 10 (Recall that you have studied error
bounds in Unit 1, Sec 3.4). Taking logarithms on both sides of Eqgn. (13), we find tha: the
number of iterations required, say n, is approximately given by

_ [ln(bo ~85) ~n 10‘”]
n=int

In2 {1

where the symbal “int’ stands for the integral part of the number in the bracket and lag, byl is
the initial interval in which a root lies,

Lrt us work out an example.

Example 5 : Suppose that the bisection method is used 1o find a zero of f(x) in the interval
5, 1]. How many times this interval be bisected to guarantee that we have an approx:matc

‘root with absolute error less than or equal to 107

Selution : Let n denote the required number. To calculate n, we apply the formula in Eqn
{l!)\mhb =1, 4= OandM 3.

i | LI 1070
In2

Using a calculator, we find

: 11. 5129254?]
It= tl

Then

0.6931471%
= int {16.60964047) =

Similarly you can try the following exercise.

ER) Forthe problem given in Example 5. Unit 2, find the number n of bisections requii'cd
1o have an approximate root with absolute error less than or equal to 1077,

The followmg table gives the minimum number of iterations required to find an approximate ‘
root in the mterval‘}O || for various acceptable errors. .

E ton? 0% ot a0t 1 107
n 7 10 14 17 20 24

This table shows that for getting an approximate value with an absolute error bounded by

11073, we have to perform 17 iterations. Thus even though the bisection method is simple to

use. it requires a large number of iterations to obtain a reasonably good approxlmale root.

- This is one of the disadvantages of the bl‘iﬁCllOl‘l method.

Note : The formula given in Eqn. {11} shows Ihat, given an acceplable_ eITor, the_z number of
iterations depends upon the initial interval and thereby depends upon the initial
approximation of the root and not directly on the values of f(x) 2t thése approximations.

Next we shall obtain the convergence'criteria for the secant method.

Convergence criteria for Secant Method
Let f(x) = O be the given equation. Let ¢ denote a simple root of the equation f(x) 0 Then

. we have f'(¢t) » 0. The iteration schemne for the secant melhod is

KT Xy

e TR R R 7

- (12)

b

Foreach i, setg;=x, — . Then x, = ¢ + 0. Substituting in Eqn. (12) we get
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f(ei+a)—f(si_,+a)

&, tO=g+o- f(e, + o)

6 me - & i)
i+ f(e, + a) - f(e, _ | + )

f(ei+a) (13

Now we expand f(¢, + 0) and f(e, — &1) using Taylor's theorem about the point x = o
Weget  f(e + ) =f(a) + .ﬁ@.‘)_ f_;_".‘l & +

ie. f(s +a)—f(a)[£ +,,f,((a))cl+..] . . (14)
v since f(at) =0

Similarly,

: =f ey >
t(ei_|+a)—t(a)[ei +2f(a)el_l+ ] T..(15)

. _ . €2 - &2 ) Fl@)
Therefore f(g, + o) f(e:i_ﬁ-oz)—f’(oz){ei g _, + (g 2f’(a)+ .‘

=f'(a)(ei-£i~])[l+(ei+ei_,)2?§(‘% } . (16)
Substituting Eqn. (14) and Eqn.(16) in Eqn. (13), we get

]
- I 2 () LGN
&, =8 [s +2el f'(a)+ J [l+ (e ‘”";-1) o ) J—

=gi_,[e 1 21’"(Q)+ }[ 2(8 +€|-l) lﬁ) ]

27 fla) Floy ™
=g~ [e +—2~~F,-((OT)2(82—-£2 85.-1)"‘"'}
. By neglecting the terms involving g e" gt 82 £ _ the above expression, we get
f”(a) .
€l+l~elel_l[2t(a)] 17

This relationship between the errors is called the error equation. Note that this relationship
holds only if o is a simple root. Now using Eqn. (17) we will find a numbers p and A such
that

=reli=o 2. ... (18)

i+
Setting i = j - 1, we obtain

g=rg?
3 J=1i

or
s*Kel_l

‘Télking pth root on both sides, we get

l/p_kl/pe ,
i-

ie. g_,=A"Pe P ... (19)

Combining Egns. (17) and (18), we get

Poge 110
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Substituting the expression for €, _, from Eqn: (19) in the above expression we get

b 2@ aoisp P
lei~2t,(a).£ik "ei

; p_ Q) 1/p 141/
ie. ’"Ei”zf(a)"'pei P ... 20)

Equating‘the'pm;vers of ¢ on both sides of éqn. (20) we get
p=1 +-:;orp2-p— [=0.

This is a quadratic equation in p. The roots are given by

R
T2
Since p cannot be negative we ignore the negative value. Hence we have,
L+\5
p=-~l“2~—5-= 1.618.

Now, to get the number A, we equate the constant terms on both sides of Eqn. (20). Then we

et
- gl(_(l_)_ P/i +p
| 2f()

Hence the order of convergence of the secant method is p = 1.62 and the asymptotic error

o (a)_]P/l +p

constant is| ——=
[2? (o)

Example 6 : The following are the five successive iterations obtained by secant method to
find the root a = ~2 of the equation x1~3x+2=0.

x| = - 2.6, Xy =~ 2.4, Xy = — 2.10659898S5,
x, =~ 2.022641412, and x; =— 2.000022537.

. . 2
Compute the asymptotic error constant and show that €5 3 €,

Solution : Let f(x) = X =3x+2

Then
F(x)=3x?-3,f(=2)=9
f’(x) = 6x, f(-2)=-12

' - .mlx
Therefore A = [.. %J .

5 618
= [- ;] =~0.778351205
Now .
gg=1xg—a | =1-2000022537 +2:|
= 0.000022537
and '

g,= | -2.022641412+2 | =0.022641412.

Then A g, =0.778351205 x 0.022641412

=0.000021246
=0.00002253




Hence we get that A €, = €

Convergence criterion for fixed point iteration method
Recall that in this method we write the equation in the form

x = g(X)
Let o denote a root of the equation. Let x,, be an initial approximation to-the root. The
iteration formula is '

xi+l=g(xi)1i=0’1927--- -.(2])

We assume that g’(x) exists and is continuous and I g'(x) | < 1 in an interval containing the
root . We also assume that x5, X, . .. lie in this interval. '

Since g’{x) is continuous near the root and| g’(x) | < 1, there exists an interval
Jo.— h, o+ h[, where h > 0, such that | g’(x) | < k for some k, where 0 <k < 1.
Since o is a root of the equation, we have
a = g(a). ... (22)
Subtracting (22) from (21) we get
Xjp) &= g(x) - g(o)
Now the function g(x) is coatinuous in the interval ]x,, of and g'(x) exists-in this interval.

Hence g(x) satisfies all the conditions of the mean value thecorem [see vuit 1]. Then, by the
mean value theorem there exists a § between X; and o such that

|x,,—alslexy-ge!slg®! -l
Note that & lies in Jo. — h, o + h{ and therefore | 2'®) | <k and hence

Ix, ~alsix-al

i+
Settingi=0,1,2,...,nwe get

|x|—a|.<.k|x0—a|

| x2—,a|5k | xl—a! Skzlxo—a

. 1N
|x -olsk |50—al

This shows that the sequence of approximations {x,} converges to o prbvided that the initial

approximation is close to the root.

~ We suminarise the result obtained for this iteration process in the following Theorem.

Theorem : If g(x) and g'(x) are continuous in an interval about a root ¢ of the equation
x = g(x), and if '| g'(x) | < 1for all x in the interval, then ‘the successive approximations

X Xgy - - Biven by

X, =g(%_ ) i=1,2,3,...
converges to the root o, provided that the initial approximation x is chosen in the above
interval.

We shall now discuss the order of convergence of this method. From the previods
discussions we have the result.

ixi+,—a|Sg’(§)|(xi-a)|

Chard Mo o0 ol oo
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independent of ii such that

%, -olsel -1

Motz that as the approximations x, get closer to the root ¢, g'(§) approaches a constant value
. ’ «"{ex). Therefore, in the limiting case, as i —» oo, the approximations satisfy the relation

Ix, ~olglg@l I x-al
P herefore, we conclude that if g'(o) = 0, then the convergence of the method is linear.
i g"(0) =0, then we have |
i1 =8 -0
v =g[(xi—a)+aj—a

2

Tavior’s theorom to the _

. o (x; — o)~
ot O and neglecting = g(a) + (X'l - a)g'(a) + _13-_“ gu(g) —o ‘ g

-

since g(0) = o and g’(o0) = 0 and § lies between x; and .. ’
Therefore, in the limiting case we have,

” 2
|x3+1*°‘| S% lg.(a)i lxi—al

Hence, if g'(or) = 0 and g”(c) # 0, then this iteration method is of order 2.
2zample 7 : Suppose o and f are the roots of the equation x? + ax + b =0. Consider a
cearrangement of this equation as
.. flax+b)
3
(ax, +b)

Show that the iteration x; | | = — - will converge near x = 0. when lal>1pl

Sotution : The iteratjons are given by

fax, +b) ]
X = gx)=-—""", i=0,1,2,...
%
By Theorem 1, these iterations convergeito o if | g'(x) | < 1 near ati.e. if lgxyl= -3
) ) B x
< 1. Note that g'(x) is continuous near ¢ If the iterations converge to X = @, then we require
) ! b .
()] | = _~*2‘l <1
. <o ' ’

Thas | b1 <lal?

ie.  lal®sIbl (23)

Now you recall from your elementary a*igebra course (MTE-04) that if o and P are the roots,

then ‘
o+fB=-aandaf=b ’

Therefore| b | =1 | | B 1. Substituting in Eqn. (23), we get

lel?*>lol=lallpl

&2 ‘ ‘ Hence |a|>l!3|



Similarly you can sotv: wi caiusetiig €XErcise.

E9) For the equation given in Example 7, show that the iteration x; , | = +a will
i

converge to the root x = o, when | al <l B l.

Finally we shall discuss the convergence of the Newton—Raphson method.

Convergence of Newton-—Raphson Method
Newton-—Raphson iteration formula is given by
f(x,)
X | =X

i+l i"((xi)

..(24)

To obtain the order of the method we proceed as in the secant method. We assume that o 1y
a simple root of f(x) = 0. Let

X, =0 g, i=0,1,2,...

Then we have

f(si + Q)
£  H+O=E+OQ- Tl
i+l i f(e, + o
g e +o)—fle + o)
e, € e :
i+l "(ei + 0L)

Now we expand (g, + o) and (e, + o), using Taylor's theorem. about the point o. We tiive

f 9
¢
[ if’(u) +E (o) + = f"((x)+

!
{
-
j
( 1
if(a.) +§ f"(a)«: — f"(a)+ }J

g ,=
i+l (o) + € (o) + € F/(0) +. ..

But f (¢} = 0 and f'{a) # 0. Therefore

2 o !
£ —[—Ei—f”(ow ~l~—l~l—l+‘—€—i—(q)+ T
1= 1 ”'Jf'(a)lL o) ...J

t

1 2 , f((l.l
m‘s[‘““’ ][' i Floo * ]

Hence, by negiecting higher powers of g, we get

A
+172f(o0)
()
This shows that the errors satisfy Eqn. (6) with p = 2 and A= 27 EYIS Hence

Newton——Raphson method is of order 2. That is at each step. the error is proportionai to tha
square of the previous error.

Now, we shall discuss an alternate method for showing that the order is 2. Note that we can
write (24) in the form x = g(x) where

g =x-%.
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Then
a0 rer - £
B ='5;[’5 ) %] T eeor
. f®) £(x)
12
Tow,

oo fo)
g» (04 ) - _(.___).,.,_E.;:..).

(el
Hence by the conclusion drawn just above Examplc 7, the method is of order 2. Note that
fitds is true only if o is a simple root. If o is a multiple root i.e. if (&) = 0, then the

={}, since f(or) =0 and f'{o) # 0.

jrmvergence is not quadratic, but only linear. We shall not prove this result, but we shall

ijlustrate this with an example.
Let us consider an example.
2

Example 8 : Let f(x) = (x - 2)* = 0. Starting with the initial approximation Xg=2.1,
compute the iterations x|, x,, X, and x, using Newton—Raphson method. Is the sequence
converging quadratically or linearly?
Sclution : The given function has multiple roots at x = 2 and is of order 4.
Newion—Raphson iteration formula for the given equation is

(x,~2)*

1
Xn|=Xa";‘txi‘“_‘j53’=xa'3("r2)

= 0x-2) ... (25)

Starting with x, = 2.1, the iterations are given by

x=363+9="2 22075
Similarly

X, = 2.05625

: x;:: 2.0421875

Xy = 2.031640625

Now g =x,-2=0.1. & =x,-2=0075 ¢,=005625, €, = 00421875,

£, = 0.031640625.

Then
=,075="~ 01*‘-3'
g = =3 x0.1=7¢,
and : ' i
3
&=
L o3
§5=7%
.3
E4“‘4&3



Thus the convergence is linear in this case. The error is reduced by a factor of i— with Cu..

iteration. This result can also be obtained directly from Eqn. (25).

You can try this exercise now :

et

E10) The quadratic equation x4 — 4x2 + 4 = 0 has a double root at x = V2. Starting with Xq =

1.5. compute three successive approximations to the root by Newton—Raphson
method. Does the result converge quadratically or linearly 7

We now end this unit by giving a summary of it.

3.5 SUMMARY

In this unit we have

®  described the following methods for finding a root of an equation f(x) =0
i)  Regula-falsi method :

The formula is

_af(b) - bf(a)
T f(b) - f(a)

where ]a, b[ is an interval such that f(a) f(b) < 0.
ii)  Secant method :

The iteration formula is

Xio1 SO = xiflx ) o,

T TR — )

where xg and x; are any two given approximations of the root,
iii) Newton—Raphson method :
The iteration formula is

xi+]=xi_f'(xi)"l=0'1'2’”'

where xj is an initial approximation to the root.,

©® _introduced the concept called convergence criterion of an iteration process

®  discussed the convergence of the following iterative methods
i) Bisection method .

ii)  Fixed point iteration method
ii1) A Secant method _
iv) | Newton-Raphson method.

3.6 SOLUTIONS/ANSWERS

CEi) i) Letf(x)=xlogjgx~12=0

We have to first find two numbers a and b ‘such that. f(a) f(b) < 0. Since
the function log;yx is defined only for positive values of x, we consider
only positive numbers x. Let us take x = 1,2, 3, ... Then, using a calculator,

f(l) =1 (loglo 1)-' 1.2 =—1.2‘<0
f(2) = 2 (log; 2) — 1.2 =2 (.30103) -1.2 = -.59794 < 0
£(3) = 3 (log)y 3) - 1.2 =3 (47712) -1.2= 23136 >0



Solutions of Non-linear Equations . This shows that f(2) f(3) < 0 and therefore a root lies in ]2, 3[. Now put a=2
/in one Varinble and b = 3. Then the first approximation of the root is -

=210 = b @)
f(b) - f(a)
_ 2(23136) - 3 (~.59794)
T 23136 +.59794
=2.72102 .
Now (2.72102) = 2.72102 (log, 2.72102) — 1.2 = 1.18291 1.2 < 0. Since

f(2.72102) f(3) < 0, a root lies in the interval ]2.72102, 3[. Hence the second
approximation is

v = 272102 £3) = 3 f(272162)
2= f(3) - £(2.72102)
=2.74G2

We find f(x;) = — 0.0004 < 0. Therefore the root lies in the interval J2.7402, 3(.
_The third approximation is obtained as

_ 27402 £(3) - 3 f(2.7402)
3T f(3)-f(2.7402)

=2.7406

»

Since x; and x; rounded off to three decimal places are the same, we stop the’

process here. Hence the desired approximate value of the root rounded off to

three decimal places is 2.740.

Letf(x)=xsinx~1

Since f(0) = -1 and f(2) = 0. 818594854 aroot lies-in the interval )0, 2[. The first

approximation is '
_0f(®) - 2 ) f(0)

2

and f(x;) = -0.02001921

= 1.09975017

Since f(x;) <0 and f(2) >0, t'he root lies in ]—0.02001921. 2[.
The second approximation is‘obtain‘ed‘ as
Xy = 1.2124074
and
 f(xy) =-0.00983461.

B Thé root now lies in ]1 2124074 2[

Similarly we can calculate the third and fourth approxnmauons as
x3=1.11416120
and '

x4 = 111415714

Since x3 and x, rounded off to three decimal places are the same, we slop the process
here. Hence the desired rooti lS 1.114,

E2) Letf(x)=x2-2x-1. Starting’ wnth "0 =2.6and x, = 2 5 the successive
approximations are,
xy= Xq f(x) —x f(xg)
f(x,) - f(xg) _
2.6 £(2.5) = 2.5 f(2.6) S
f(2.5) - f(2.6) ‘ s

: _2.6(.25) = 2.5 (.56)
66 T 25-56




= 241935484
and f(x,) = 0.0145682.

To find the next approx imation we compute
x; f(x9) = xzi(ﬁ_)_
f(x,) — f(xy)

_23 (0.0145682) — (2.41935484) (.25)
(0.0145682) — (.56)

= 2.41436464

Xy =

Similarly you can calculate that
x4 = 241421384
and
xg = 2.41421356
Since x4 and x5 rounded off to 5 decimal places are the same, we stop the process
here. Therefore the required root rounded off to S decimal places is 2.41421.

Now we compare this root with the exact root 1 + V2. Using a calculator we 1 + 2=
2.41421. rounded off to five decimal places. Hence the computed root and exact root
are the same when we round off to five decimal places.

Letf(x)=x3+x2—3x~3=0
i) We first note that f(1) < 0 and f(2) > 0. Therefore a root lies in [1, 2]. The first

approximation x, is

1f(2)=2f(1) _ 11 _
ot =7 =1.57142

and f(x) = -1.36449 <0

X =

Therefore the root lies in ]1.57142, 2[.

Proceeding similarly, we get the values as given in the following Tabie.

"No. Interval Approximation x; f(x,)

i 1 1,2 o 1sTI42 ~1.36449

] 2 1157142, 2( 170540 L 20.24784

| 3 1170540,2( 172788 003936 |
4 1172788, 2 173140 " £0.00615
s 11.73140, 2] " L73194 ;

The table shows that x5 and x4 are correct to three decimal places. Therefore we
stop the process here. Hence the root correct to three decimal places is 1.731.
ii)  Insecant method we start with two approximations a = 1 and b= 2. Then the

first approximation is the same as in part (i), namely

x, = 1.57142
To calculate the next approximation x, we take b and x,. Here also we
are getting the same value as in part (i), namely ‘

X, = 1.70540

Then we take x; = 1.57142 and X, = 1.70540 to get the third approximation X,.
We have ; ] :
az 1.57142 £(1.70540) — 1.70540 f(1.57142) _ 173513
3 £(1.70540) - £(1.57142) o '

U,

Cherts e . o
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The rest of the values are given by
X, = 1.73199 -

and ‘
.xs =1.73205

Since x4 and x rounded off to three decimal places are the same, we stop here.
Hence the root is 1.732, rounded off to three decimal places.

Let us now compare the two methods. We first note that | Xit 1= X ] gives the
error after ith iteration.

In regula-falsi method, the error after Sth iteration is
| xs=x; | =1 173194173140 |

= .,00011
whereas in secant method, the error after Sth iteration is ' N
| xs—x4 | =1 173205 -1.73199 | #

' _ =.00006

. This shows that the error in the case of secant method is smaller than that in
- regula-falsi method for the same number of iter-ations '

E4) The given function f(x) = x3 — 4x + 1 and its derivative: f'(x) =3x2 -4 are contmuous .

‘everywhere.

The initial approximation is x = 0.

The iteration formula is

fixiy)) ) '
xi—xi_l—((xi_l).l-_o. 1L2,...

The first approximation is

=0-10 ___1 __,.
x; =0 F0) " Ca 0.25

“and f(x,) = (0.25)% - 4 (0.25) + 1 = 0.015625

f(x))=3(25)2-4=-38125

The second approximation is givenby

x2 X f(x,)
1 f'(x )
= 25\ + 930—5% | |
=0.254098 | o -
Similarly we get ' .
x3 = 0.254101 |

Since X and X3 rounded off to four decimal plﬁces are the same, we stop the |teratlon
here. Hence the root is 0. 2541.

Let f(x)=2x - 2-sinx. The f(x) and f’ (x) are contmuous everywhere Stamng wnth
X = 1.5, we compute the iterated values by the Newton—Raphson formula. The first

“iteration is

< f(LS)
xlr— 1-5 f’(l.s). ‘
=l.5‘:° 1—sin!l.52 '
2-—cos(l.5)




=15- %‘3‘% = 1.498702
Similarly,
X, = 1.49870)
We find | x,-x, | = | 1.498701 - 1.498702 | < 10-3

Therefore the required root is 1.498701
E6). i) Newton—Raphson iterated formula for computing the V8 is
I 8 |.
xi=-§':xi_ | +-;——J.1=0, 1,2, ...

Starting with xo = 3, we obtain the iterated values as

x, =4 [3 + 3] =2.833333

2|°"3
! 8
xy=o [2.833333 + me]
= 2.828431

and x; = 2.828427

Since | x 3=% 1 <1074, we stop the iteration. Therefore the approximate root
is 2.8284. '

ii) Here the Newton—Raphson formula is

2 X1

xi=ll:xi_‘| +_ﬂ_],i=0, 1,2,. .
; ;
and x; = 10. The iterated values are

x; =9.55

X =9.539398

x3 = 9.539392

Since | X3 =X,y [ <1074 we get the approximate value as 9.5393.

3x/3

E7) No, because f'(x) = is not continuous at the foot x = 0.

minfLS12925]
=1nt0.693147 |=

- ~7
E8) n=im[ln(o.01) In 10 ]

In2

E9) Here g(x)=- -x—:)_—a. The iteration

Xi, =g(x))=
141 g( |) xi+a
converges to.a if | g’(x) | = [——=| < 1 in an interval éontainin a. In particular
g g'(x) x+a)? ‘ g P
we require
1 g = <1
g ==

e (a+a)2<]|bl.
But we have 0.+ = —a and ab=6. Therefore we get
B2>lbl=lal IB].

vielal<lpl

Ghord Methods for Finding i,
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E10) The i’ter‘ated formula igs
Xie 1 =X= 74-xi
The three successive ite;ations are
X, = 1.458333333
X, = 1.436667143
X3 = 1425497619

_ Then we get €5 ;% g and g, =% €. This shows that the sequence is not quadratically

convergent, it is linearly convergent.




"UNIT4 APPROXIMATE ROOTS OF
POLYNOMIAL EQUATIONS

Structure
4.1 Introduction
Objectives
42 Some Results on Roots of Polynomial Equations
4.3 Birge-Vieta Method
4.4 Graeffe's Root Squaring Method
4.5 Summary

4.6 Solutions/Answers

4.1 INTRODUCTION

In the last two units we discussed methods for finding approximate roots of the equation
f(x) = 0. In this unit we restrict our attention to polynomial equations. Recall that a
polynomial equation is an equation of the form f(x) = 0 where f(x) is a polynomial in x.
Polynomial equations arise very frequently in all branches of science especially in physical
applications. For example, the stability of electrical or mechanical systems is related to the
real part of one of the complex roots of a certain polynomial equation. Thus there is a need

. to find all roots, real and complex, of a polynomial equation. The four iteration methods. we
have discussed so far, applies to potynomial equations also. But you have seen that all those
methods are time consuming. Thus it is necessary to find some efficient methods for
obtaining roots of polynomial equations.

The sixteenth century French mathematician Francois Vieta was the pioneer to develop

methods for finding approximate roots of polynomial equations. Later, several other

methods were developed for solving polynomial equations. In this unit we shall discuss two

simple methods : Birge-Vieta’s and Graeffe’s root squaring methods. To apply these

methods we should have some prior knowledge of location and nature of roots of a

polynomial equation. You are alieady familiar with some results regarding location and

nature of roots from the elementary algebra course MTE-04. We shall begin this unit by
listing some of the important results about the roots of polynomial equations.

Objectives

After reading this unit you should be able to :

@  apply the following methods for finding approximate roots of pqunomial equations
i)  Birge-Vieta method
ii)  Graeffe's root squaring method. _

@ iist the advantages of the above methods over the methods disc‘q'ssed in the earlier
units.

4.2 SOME RESULTS ON ROOTS OF POLYNOMIAL
EQUATIONS

The main contribution in the study of polynomial equations is due to the French
mathematician Rene Descarte’s. The resuits appeared in the third part of his famous paper
‘La geometric’ which means “The geometry’.

Consider a polynomial equation of degree n

pxy=ax"+a,_ "'+ raxtag (1)
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where a, al, s a are real numbers.and a, #0. You know that the roots of a polynomlal

equation need not be real numbers itcan be complex numbers, that is numbers of the form.
z=a+ ib where a and b are real numbers. The follewing results are basic *o the study of
roots of polynomial equations. '

Theorem 1 : (Fundamental Theorem of Algebra) : Let p(x) be a polynomlal of degree n2 1
given by Eqn.(1); Then p(x) 0 has at least one root; that is there exists a number ot € C
such that p(a) = 0. In fact p(x) has n complex roots which may not be distinct.
Theorem 2:Let p(x) be a polynomial of degree nand o is 2 real number. Then

p(x)=(x ~ a)qo(x)+r o @

for some polynomlal qo(x) of degree n -1 and some constant numbe} To- qo(x) and ryare

‘called the quotlent polynomlal and the remamder respecnvely

In pamcular, if a is a root of the cquanon P(x) =0, then ry, = 0; that is (x o) divides p(x)

Then we get ' : ~
P(x) = (X ~ &) q(x)

How do we delenhine Gq(x) and r;? We can find them by the method of synthetic divisioh of

a polynom:al p(x). Let us now discuss the synthetic dlvmon procedure.

Consnder the polynomlal p(x) as glven in Eqn 1 :

p(x) ax +a X "+ +ax+ao-

Dmdmg p(x) by X~ 0 we get

PX)=qy(x) (x-a) +15 | * (3
where q(x) is a polynomial of degree n — I-and Tyisa cons@ant.
Let qo(x) be rep_résented as

qo(x)'=b X "+b,_x "'2+' c+bx+b,

(Note that for convemence we are denoting the coefﬁcnents by b,....b,instead of

by b l) Set b, =r Substituting the expressions for qo(x) andr, in Eqn (3) we

get '
.P(X);(x—a)(bx""+b SR TR bxab) b @

Now:. to find b(,. b . b we snmphfy the nght hand side of Eqn. (4) and compare the

coefflments of xii=0, l .--»non both snde.a Note that p (a) b, Companng the
coefficients we get

Coefficient of x" ra;=b, '1 b =a

. .. j’_l . . ) | =
Coefficient of x" 8y =b_ —oab, b =a

Coefficient of t* 3, = by - aka, Cbe=atab,,

_Coefﬁcientofxq‘. tag=by -0, ‘ b0.=ao+ab|



It is easy to perform the caiculations if we write the coefficients of p(x) on a line and Approximate Roots of Palynomial
 perform the calculations b, = a, + 0. b, , | below a, as given in the table below. Equations

Table 1 ; Horner’s table for synthetic division procedure.

| o a, a A, e a ... ay a a,

1 ab, ob ... ab, ... ab, ab, ab,

! : 1
'L bn bn -1 bn -2 bk b2 ) bl b(.)-'_' Po (o)

We shall illustrate this procedure with an example.
Example 1 : Divide the polynomial
p(x) = x5 — 6x% + 8x3 + 8x2 +‘4x -40
by x — 3 by the synthetic division method and find thé remainder.

Solution : Here p(x) is a polynomial of degree 5. If ag, a,, a3, a5, a,, 3 are the coefficients
of p(x). then the Horner’s table in this case is

Table 2
45 a, ay a4 4 4
= 6 8 8 a ~40
. 3 -9 -3 15 57
1 -3 -1 5 19 17
bs b, by by b, by

Hence the quotient polynomial q,(x) is
qy(x) = =3t — X2+ 5x+ 19
and the remainder is ry = by = 17. Thus we have p(3) = bo =17

Do the following exercises on the same lines.

El) Find the quotient and the remainder when 2x3 ~ 5x? + 3x — 1 is divided by x - 2.

E2) Using synthetic division check whether 0 = 3 is a root of the polynomial equation
x4 + x3 = 13x2 = x + 12 = 0 and find the quotient polynomial. '

’ Theorem 3 : Suppose that z = a + ib is a root of the polynomial equation p(x) = 0. Then the
conjugate of z, namely Z, = a — ib is also a root of the equation p(x) = 0, i.e. complex roots
. occur in pairs. : :

We denote by p(—x) the polynomial obtained by replacing x by ~x in p(x). We next give an
important Theorem due to Rene Descarte. . '

Theorem 4 : (Descarte’s Rule of signs) : A polynomial equation p(x) = 0 cannot have

more positive roots than the number of changes in sign of its coefficients. Similarly p(x) =0
cannot have more negative roots than the number of changes in sign of the coefficients

of p(—x).

For example, let us consider the polynomial equation
p(x)=x* - 15x2+7x - 11=0
=1xI - 15x2 4 Tx—-11=0 -

we count the changes in the sign of the coefficients. Going from left to right there are
changes between ! and ~15, between —15 and 7 and between 7 and ~11. The total number 73
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of changes is 3 and hence it can have at most 3 positive roots. Now we consider
p(=x) = (=x)* - 15(=x)2 + T(=x) - 11 =0 '
=x4-15x2=Tx =11

Here there is only one change between 1 and —15 and hence the equation cannot have more
than one negative root.

We now give another theorem which helps us in locating the real roots.

Theorem § : Let p(x) = 0 be a polynomial equation of degree n 2 1. Let 2 and b be two real
numbers with a <b. Suppose further that p(a) # 0 and p(b) # 0. Then,

i) . if p(a) and p(b) have opposite signs, the equation p(x) = 0 has an odd number of roots’
between a and b.

i) if ‘p(a) and p(b) have like signs, then p(x) = 0 either has no root or an even number of
roots between a and b.

Note : In this theorem multiplicity of the root is taken into consideration i.e. if a is a root of
multiplicity k it has to be counted k times. #

As a corollary of Theorem 5, we have the following results.

Corolléry 1: An equation of odd degree with real coefficients has at least one real root

“whose sign is opposite to that of the last term.

Corollary 2 : An equation of even degree whose constant term has the sign opposite to that
of the leading coefficient, has at least two real roots one positive and the other negative.

Corollary 3 : The result given in Theorem 5(i) is the generalisation of the Intermediate
value theorem.

The relationship between roots and coefficients of a polynomial equation is given below.
Theorem 6 : Letor), a,, .. ., & be n roots (n 2 1) of the polynomial gquation

n—_l ’ —
+,...+alx+a0—0.

—n N
p(x)-dnx +an_lx

-—.an_‘_l
Thena|+a2+...+,a =——

n - ag

-2

_,ala2+a2a3+...+an_lan= X

..........................

.......................

Now, you can try to solve some problems using the above theorems.

E3) Howmany negat’ivé roots does the equation 3x7 + x5 + 4x3 + 10x -~ 6 = 0 have? Also
determine the number of positive roots, if any.

E4) Show that tl;levbiquadratic equatién

p(x) = x% + x3.- 2x2 + 4x ~ 24 = 0 has at least two real roots one positive and the other
negative. g

In the next section we shall discuss one of the simple methods for solving polynomial
equations. ' ' ' :




-

4.3 BIRGE-VIETA METHOD

' Approximate Roots of Polynomial
‘'Equations

We shall'now discuss the Birge-Vieta method for finding the real roots of a polynomial
equation. This method is based on an original method due to two English mathematicians
Birge and Vieta. This method is a modified form of Newton — Raphson method.

Consider now, a polynomial equation of degree n, say

pn(x)=anx“+...+alx+ao=0. ... (5)

Let x, be an initial approximation to the root 0. The Newton—Raphson iterated formula for
improving this approximation is
P(X; 1)
X.=x,  ————ni=L2... ...(6

i i-t pn(xi—l) (©)
To apply this formula we should be able to evaluate both pn(x) and p’ (x;) atany X;. The

most natural way is'to evaluate
IR B -1 2
P (X)) =2 % +ay_ X 4. taxTHax tag
n-2 ‘

, _ n-1 _ » '
p“(xi)—nan‘xi +(n-1a _ X +...+2a2xi+al

However, this is the most inefficient way of evaluating a polynomial, because of the amoun.
of computations involved and also due to the possible growth of round off errors. Thus there

is a need to look for some efficient method for evaluating pn(x) and p’n(x).

- Let us consider the 'evaluation of pn(x) and p'n(x) at x, using Homér's method as discussed

in the previous section.

We have
pn(x)=(x—x0)qn_](x)+ro. v AN )]
where
g 0=bx T et X2 bx+ by
and  by=pg=Tg .8

We have already discussed in the previous section how to find b, i_= L2,...n

Next we shall find the derivative p'n(xo) using Horner’s method. We divide
q, . (x) by (x - Xg) using Homner’s method. That is, we write -

() =(x=%Xp) () + 1y
-2 -3 .
qn_l(x)=cnx“ +c X" +...fc3x+c2. _

Comparing the coefficients, we get ¢, as given in the following table

Francois Vieta (1540-1603)

Table 3
b, b,_, e b, b, b
Xo XqCn e X e X0 X2
As observed in Sec. 1, we have
<, =qn_l(x0).’ ...(9
Now, from Eqns. (7) and (8), we have '
p(0)=(x =X q,_,(X)+ 1 JEINE 510
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Differentiating both sides of Eqn. (10) w.r.t. x, we get

0=, 00+ (x=-x) ¢, _,(x). c. (1)
Putting x = X, in Eqn. (11), we get
Pa(%g) =q, _ (). .. (12)
Comparing (9) and ( 12), we get
Pk =q, _ (xp) =c,
Hence the Newton-Raphson method (Eqn. (6)) simplies to
b
xlzxi_l—c—? ... (13)
We summarise the evaluation of b, and c; in the following table.
r Table 4 ‘
& B % & 8 ]
Xq Xob, Xoby 4 | Xgby Xgb, Xoby .
W=t b, b, by by [Po=pyx0
Xy XqCn I Xof3 "oéz ’ Vs
Cn = bn Cn -1 ck ) C-:, c' =P'"(x°)4

Let us consider an example.

Example 2 : Evaluate p’(3) for the polynomial

p(x) = x% = 6x* + 8x% + 8x2 + 4x — 40,

Solution : Here the coefficients are a5=-40,a, =4, 2,=8,0a,=8, a,

compute b,,, we form the following table.
p 0 8 _

=-6and ag=1.To

. Table 5
30 -6 8 R 4 40
R 3 -9 -3 15 57
3 T -3 - s 19 17=p(3) = b,
3 0 -3 6
I 0 -1 2 35=p'@3)=c,

Therefore p’ (3) = 25

To get some practice, why don't you try the following exercises.

ES) Using synthetic division, show that 2 is a simple root of the equation

P(X)=x%~2x3 = 7x2 + 8x + 12=0.
E6) Evaluate p (0.5) and p’(0.5) for

p(x) = ~8x3 +7x4 = 6x3 + 5x2 = 4x + 3

Now we shall illustrate why this method is more efficient than the direct method. Let us

consider an example. Suppose we want to evaluate the polynomial
p(x) = —8x3 +7x4 - 6x3 + 5x2 - 4x+ 3

for any given x.




When we evaluate by direct method, we compute each power of x by multiplying with x the
preceding power of x as '

x3=x(x?), x4 = x(x7) etc.

Thus each term cx* takes two multiplications for k > 1. Then the total number of
multiplications involved in the evaluation of p(x)is 1 +2+2+2+2=9.

- When we use Horner’s method the total number of multiplications is 5. The number of

additions in both cases are the same. This shows that less computation is involved while
using Horner’s method and thereby reduces the error in computation.

Let us now solve some problems using Birge-Vieta method.

Example 3 : Use Birge-Vieta method to find all the positive real roots, rounded off to three
decimal places, of the equation '

T3 +24x2+x-15=0

Stop the iteration whenever | X; | —X; | <0.0001

Solution ; We first note that the given equation
PyX) = K+ T3+ 24x2+x-15=0

is of degree 4. Therefore, by Theorem 1, this equatior has 4 roots. Since there is only one
change of sign in the coefficients of this equation, Descarte’s rule of signs (see Theorem 4),
states that the equation can have at most one positive real root. .

Now let us examine whether the equation has a positive real root.

Since p,(0) =—15 and p 4('l) = 19, by Intermediate value theorem, the equation has a root
lying in 10, 1[.

We take x, = 0.5 as the initial approximat'ion to the roqt. The first iteration is given by

Py(%g)
X, =Xy =7 C
| 1] p4(x())
P4(0.5)
05-—
P’ 4(0.5)

Now we evaluate p, (0.5) and p’, (0.5) using Horner’s method. The results are given in the

[

following table.

. Table 6
1 7 24 ! -1
05 0.5 375 - 13875 . 7.4375 -
i 7.5 2175 14.875 [—7..5625 = py(0.5)
0.5 0.5 400 15.875 |
: e e
1 8.0 31.75 30.750 =p’, (0.5) !
3
-1.5625
=0.5- =074
Therefore x, 0.5 3075 0.7459
The second iteration is given by
Pa(x)) p4(0.7459)
Xy =X~ ,4 I~ =074 ——,4-————
Pax) P 4(0.7459)

Approximate Roots of Polynomial
Equations
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Using synthetic division, we form the followihg table of values

Table 7 -
1 7 24 1 -15
0.7459 0.7459 sy17T7 . T 222119 173138
1 7.7459 29.7777 232119 | 23138 ]
0.7459 | - 0.7459 6.3340336 26.935717
1 8.4918 36.111701 | 50.146879 |
Therefore x, = 07459 ~ 2 22 = 0.6998
Third iteration is given by
p,(0.6998)
X3=%~ W .
Table8 d
! 7 24 1 -15
0.6998 0.6998 5.3881 20.5649 15.0905
R 7.6998 29.3881 215649 | 00905
0.6998 6998 5.8778 24.6780
1 8.3996 35.2659 46.2429
10,0905
(3= 0.6998 — 2720 = 0.6978
For the fourth iteratipn we have
p4(0 6978)
%=R Ty (0.6978) ,
, Table 9
3 | 7 24 1 -15
©0.6978 ' 0.6978 5.3715248 20.495459 14.999525
T 76978 20371525 21495459 | 0000475
0.6978 * 6978 5.8584497 24583476
' 8.3956 35.229975 46.078926
0.0005
Xy = 0.6978 - 26 678—9 =0, 6978

Since x, and x, are the same, we get | x 4= % | <0.0001 and therefore we stop the iteration
here. Hence the approximate value of the root rounded off to three decimal plac.es is 0.698.

Next we shall illustrate how Birge- Vneta s method helps us to find all real roots of a
polynomial equduon

Consider Eqn. (4)

p(x) = (x = a) (b "~ 4b,_ X"+ byx +D) + g

n

If o is a root of the equation p(x) = 0, then p(x) is exactly divisible by X—0, that is, by 0.
, In finding the approximations to the root by the Birge-Vieta method, we find that by

approaches zero (b, — 0) as x, approaches o (R — ). Hence, if x| is taken as the final

approxnmatlon to the root eausfymg the criterion | X, ~ X, | < €. then to this-

approximation, the required quotient is

qn_l(x)=b[“x“",1 +‘bhﬂ_|x“'2+. +b.




where b’is are obtained by using X and the Homer's method. This polynomial is called the » Approximate Roots of Polynomial

deflated polynomial or reduced polynomial. The next root is now obtained using q, _ (%) Equations
and not p, (). Continuing this process, we can successively reduce the degree of the
~ polynomial and find one real root at a time.
Let us consider an example.
Example 4 : Find all the roots of the polynomial equation p,(x) = x3 + x -3 = 0 rounded off
to three decimal places. Stop the jteration whenever | X1 % | <0.0001.
Solution : The equation py(x) = 0 has three roots. Since there is only one change in the sigr.
of the coefficients, by Descarts’ rule of signs the equation can have at most one positive real
root. The equation has no negative real root since py(-X) = 0 has no change of sign of
coefficients. Since py(x) = 0is of odd degree it has at least one real root. Hence the given
equation x2 4 x =3 =0has one positive real root and a complex pair. Since p(1) = -1 and
p2)=7,by intermediate value theorem the equation has a real root lying in the interval
J1, 2{. Let us find the real root using Birge-Vieta Method. Let the initial approximation
be i.1.
First iteration’
_ Table 10
1 0 4 - =3
l'l._, 1.1 1.21 2431
\ ! 11 , 221 © 0.569
1.1 . 1.1 242
Jr ) 22 | 4.63
-0.569 .
Therefore X, = 1.1 - Tafa 1.22289
Similarly, we obtain
x, = 121347
Xy = 1.21341
- Since | Xy =Xy | <0.0001, we stop the iteration here. Hence the required value of the root is
1.213, rounded off to three decimal places. Next let us obtain the deflated polynomial of
P3(x). To get the deflated polynomial, we have to find the polynomial q,(x) by using the
final approximation X, = 1.213 (see Table 11). '
Table 11 ‘
1 o 1 3 |
1.213 1213 14714 " 29978 \
| T2 241 | o002
Note that p3(1.213) =—0.0022. That is, the magnitude of the error in salisfyfng p3(x$) =0is -
0.0022. '
Wefind  q(0=x2+1213x+24714=0
This is a quadratic equation and its Toots are given by
I ¥ALE: V(12130 - 4x 24714
2 . \
_=1213% 2.9009 i
= > |
= 0.6065 + 1.4505 i 4 79
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4.2, we get

Hence the three roots of the equation rounded off to three decimal places are 1.213, 0.6065
+ 1.4505 i and -0.6065 —- 1,4505 1.

Remark :'We now know that we can determine all the real roots of a polynomial equation
using deflated polynomials. This procedure reduces the amount of computations aiso. But -
this method has certain limitations. The computations using deflated polynomials can cause
unexpected errors. If the roots are determined only approximately, the coefficients of the-
deflated polynomials will contain some errors due to rounding off. Therefore we can expect
loss of accuracy in the remaining roots. There are some ways of minimizing this error. We
shall not bé going into the details of these refinements.

Before going into the next section, you can try these exercises.

E7) Fmd an approx1mauon to one of the roots of the equatlon
p(x) = 24 —3x2+3x~4=0
using Birge-Vieta method starting with the initial approximation xq = -2. Stop the_

iteration whenever | X1~ X <04x 1072 ;

E8) Find all the roots of the equation x3 — 2x — 5 = 0 using Birge- Vieta method.

E9) Find the real root rounded off to two decimal places of the equation
x# — 4x3 - 3x + 23 =0 lying in the interval 12, 3[ by Birge-Vieta method.

4.4 GRAEFFE’S ROOT SQUARING METHOD

In the last section we have discussed a method for finding real roots of polynomial
equations. Here we shall discuss a direct method for soiving polynomial equations. This
method was developed independently by three mathematicians Dandelin, Lobachevsky and
Graeffe. But Graeffe’s name is usually associated with this method. The advantage of this
method is that it finds all roc:s of a polynomial equation simultaneously; the roots may be
real and distinct, real and equal (multiple) or complex roots.

The underlying idea of the method is based on the following fact ; Suppose B,, B,,. .. . B,

are the n real and distinct roots of a polynomlal equation of degree n such that they are
widely separated, that is,

| B l>> B, [>>1By1>>...>> 18 |

where >> stands for ‘much greater than'. Then we can obtain the roots approximately from
the coefficients of the polynomial equation as follows :

Let the polynomial equation whose roots are B, B,. .. ., B be

d+ax+a2x2+ -;-~ax"=0 a, #0.

Using the relations between the roots and the coefﬁcxents of the polynomlal as glven in Sec.

—

n:—I
B, +B+...+B =~

an_2
BI’B2+BI:B3+...+ﬁn_IBn=_a__

>' (1)

...........................




Since | B, | >> | B, | >> | By | >>...9> ] Bn-l. we have from ¢14) the approximations Approximate Roots of Polynomial’

Equations
_1
Bl 5 f_h_"_l

a
B sz.‘:_.__n;:} \> ... (15)

3
a
n

B, B, B, S (-1"

e
These approximations can be simplified as

:a""| 1

|p
1 an
~n=-2 a, - n-2
|B2| Ta a a

“n n-1 n-|
| p, | =203 ezl a3 5 .. (16)
3 : . =
n

So the prqb_lem now is to find from the given polynomial equation, a polynomial equation
whose roots are widely separated. This can be done by the method which we shall describe
now.

In the present course we shall discuss the application of the method to a polynomial
equation whose roots are real and distinct. t

Let o), 0. - -+ Oy be the n real and distinct roots of the polynomial equation of degree n
given by ‘ '
a0+a‘x+azx2+...+anx“=0. A ¥ )
where a,, a,, 35, cees a,_,.a, are real numbers and an 2 0. We rewrite Eqn. (17) by
collecting all even terms on one side and all odd terms on the other side, i.e.

2 4 - a3 pa xS )
ay+a)” +a,x +...=—(@ X + X7 +agX +...) .. (18)

Squaring both sides of Eqn. (18), we get

(a0+a2x2+a4x4+. . .)2=(a|x+a3x3+asx’+. . .)2
Now we expand both the right and left hand sides and simplify by colleclin'g,lhe

'cpcfﬁciéms. We get
a(z) - (af - ZaOaZ)x2 + (ag -2aa,+ 23034)x4 -
(a:Z4 —2a,3, +23,25~ ZaOaG)x" +...+ (—l)"af‘xz" =0 ...(19)
81
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" Putting x% = -y in.Eqn. (19), we-obtain a new equation given by

by+b,y +by2+...+b, =0 | ... (20)

where

The following table helps us to compute the coefficients by, by, . . ., b, of Eqn. (20) dire
from Eqn. (17). ' h

A\

Table 12 .
4 a, a, ay ... ) ]
3 I 2 K
0 ~2a,2, ~2a,a, | -2a,2, 0
0 0 2253, ~2a,8¢ 0
0 -0 0 2808 0
by b, b by by

To form Table 12 we first write the coefﬁcuents ao. a,a,, ...;a, as the first row. Then 1
form(n+1) columns as follows

The terms in each column alternate in sign starting with a positive sign. The first term ir
each column is the square of the coefficients a,k=0,1,2,...,n The second term in ¢

column is twicé the product of the nearest neaghbourmg coefficients, if there are any, wi
negative sign; otherwise put it as zero. For example, the second term in the first column
zero and second term in the second column is —2a, a,. Likewise the second term of the -

“(k + 1)th column is =28, _j a,, ;. The third term in the (k + 1)th column is twice the

product of the next nelghbounng coefficients a, _ 2 and a, _ ,, if there are any, otherwlsc

it as zero. This procedure is continued until there dre no coefficients availabie to form'tt
cross products. Then we add all the terms in each column. The sum gives the coefficien

_ for k=0,1,2,...° nwhich are listed as the last term in each column. Sin;ec the substitu

=~y is used, it is easy to see thatif o), Oy, ooty oin are the n roots of Bl]n.'(l?). then

T a%. cens an are the roots of Eqn. (20).

Thus, starting with a'given polynomial equation, we obtained another polynomlal equati

* whose roots are the squares of the roots of the original equatxon with neganve slgn

We repeat the procedure for Eqn. (20) and obtain another equatlon

co+c|x+...+cnx =0.

whose roots are the squares of the roots of Eqn. (20) with a negative sign i.e., they are fc
powers of the roots of the original equation with a negauve sign. Let this procedure be

- repeated n times. Then, we obtain an equation

GQtqx+...+qx"=0"
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We conclude that if the roots of Eqn (17) are distinct then for large m, the 2'“th powers of
the roots are widely separated. ".

We stop this squaring process when the cross product terms become negllglble in

companson to square terms. ok G R R 4O sty wantared T
Since roots of Eqn. (21) are widely separated wecalculate the:absolute: values of the roots

. ¥y Yy oo My using Eqn (16). We have
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We shall now illustrate this method with an example. cal !
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Example § : Find all the roots of the cubic equation x 3 15,& + 62}( 72 2 = 0 by Graeffe's
method using three squarings. CIAUEIES } 53 g LA

. Solutlon Let P3(x) x> — 15x2 +62x—72 0.: 35 ST “;, e
o] o b

The equation has no negative real roots. Let us no ap)'pl'y‘me root anng method

successively. The we get the followmg results :
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"Table 13
% 3 | n oy
=72 62 -15 1
 al=5184 a?=3844 =225 al=l
0 ..‘23'032 =-216() —2aiag=-‘12l4 0
5184 1684 101 i
b b, b, b;
Theefore the new equation is
x’+101x2+ 1684x +5184=0. |
Applying the squaring method to the new equation we get the following results.
' ' /
Second Squaring L
Table 14 )
5184 1684 101 1
26873856 2835856 - - 10201 . 1
0o - 1047168 -3368 0
26873856 1788688 6833 1
. Thus the new equation is ' _
x* + 6833x + 1788688x + 26873856 = 0,
For the third squaring. we have the following results.
‘Third Squaring - |
Table 15 |
26873856 1788688 6833 I
72220414 x 10" 3.1994048 x 10" | 46689889 1
0 . ~ 3672581 x 1012 ~35771376 0
7220414x 10" 283214x 10" 43112513 1
9y q, 9 Qs
_Hence the new equatlon is ‘ ' A
¥4 43112513x + (283214 |o'2)x + (12220414 x 10") =0
After three squarings, the roots yl. Y and ¥ of this equalion are given by
q | |
Cly =] 2| =a312813 i
|9 - '
AL _2.83214x 1012 '
Al PN TP !
iy l=|R 722204x|o"‘
= P
: q| " 283214x 10

b




Hence, the 1001s @, &, 0, of the original equation are ‘Approximate Roots of Polynomial

oy | = Faa3112513 w9,0017
| | = qg/ 283214102
TRt 43112513

-
o= N 2220810 oo,
2.83214 % 10

Since the equation has no negative real roots, all the roots are positive. Hence the roots can
be taken as 9.0017, 4,001 1 and 1.9990. If the approximations are rounded to 2 decimal
places. we have the roots as 9, 4 and 2, Alternately, we can' substituié the approx:mate roots
in the given equation and find their sign.

You can try these exercises now.

E10) Determine all roots of the following equations by Graeffe's root squaring method,
using three squarings. o

D x3+6x2—36x+40=0
i) x}-2x2-5x+6=0
i) x3 - Sx2— |Tx+ 20 =0.

- We have seen that Graeffe's root squaring method obtains all real roots sirultaneously.

There is considerable saving in time also. The miethod can be extepded to find multiple and
complex roots also. However the method is not efficient to find these roots. We shall not
discuss these extensions,

We shall end this block by summarisihg what we have covered in -ihi:s unit.

4.5 SUMMARY

In this umt we havc

- dnscuSSed the following methods for finding approxlmate roots of polynomtal

equations
i)  Birge-Vieta method -

i) - Graeffe's root squaring method
@ mentioned the advantages and disadvantages of the above methods. -

L

4.6 SOLUTIONS/ANSW_ERS

CEl} Letp(x)= - 5x2+3x-l ' S

Herea;=2,a,= =-5, ay=3,a5= “tand =2, 'IheHomcrstable mlhlscaselsas
follows : :

. o

CE

L.
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.in one Variable

E3)

E4)

1 . ES)

E6)

E7)
|
)
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Forin the Homer s table in this case. From the table you can see that the last term in
the.3rd row is zero. Hence 3 is a root of the equatnon. The quouent polynomial is
B +4x2-x =4,

The equation p(x) =3x7+ x5 +4x3 # 10x = 6= 0 has no negatlve real root, since there
are no changes in the sign of coefficients of p(—x)

Smce there is one change in the sign of coefficients of p(x) the equation can have at
most one positive real root. Since the equation is of odd degree it has at least one real
root which is positive.

Smce. f(O) =-6<0
f(1)=12>0.

 the equation has a positive root lying between 0 and ] (by v theorem)

The given equatnon p(x)=x4+ X3 - 22 +4x - 24 = 0 is of degree 4 i.e. even degree.
The sign of the constant term is negative whereas the sign of the leading coefﬁcwnt is
positive. Therefore by corollary 2, the equation has two real roots, one positive and the

other negative. : «
i ) *

The Horner’s table is as follows : ’ : _
2 1 -2 -7 I 12
2 0! -14 -12 .|
1 0 -7 -6 | 0
2 2 . 6 \
I 2 -3, =12
) .'\

Since p(2) =0 and p’ (2) = 212, 2isa simple root.
PO.5) = 1.6875, p'(0.5) =-3.875
The given equation is p(x) = 2x4 = 3x% + 3x -4= 0

The initial approxlmauon is xo==2. Then thé 1st lteration is

1

Rl e h=re

p(=2) and p*(~2) are given by the following table, s

-2 2 o0 . -3 . 3 -4
: ‘ S S L
) 2 R 5 -1 | 10=p¢2)
L .4 6l -a —
2 -8 .2 | -4
Therefore x| = -2 - — 10 _ 1796

~49 ' K

Repeating the procedure to find x,, we have

-1796 | 2 o -3 . 3 -4

. o -3.592 6.451 -6.197 5742
-1.79 2 ~3.592 3451 . -3197 | 1.742=p(-=1.796)
' -3592 12902 -29.368
2 -7.184. 16353 -32.565 =p’ (~ 1.796)

il
%
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1.742

Therefore xy,=~1.796 = — 32.565 = 1.7425
To find x3,. we have
-17425 | 2 0 -3 3 -4

) ~3.485 60726  -5.3540 3.8952

- 1.7425 2 -3.485 3.0726 ~2.3540 | .1018 =p (- 1.7425)
' ~3.485 12,1452  -26.5229 ‘
2 -6.970 152212 | -28.8770=p’ (- 1.7425)
1018

Therefore x, =—-1.7425 + 28.8770

= 1.7390
Since | x3 - x, | <0.0035 <0.4 x 10-2, we conclude that 1.7390 is the approximate
root. ,
E8) Letp(x)=x3-2x -5

Since there is only one change in the sign of the coefficients of p(x), the equation has
at most one real root. The equation has no negative real root since there is no change

in the sign of the coefficients of p(—x). Also
p(2)=-1<0 |
and ‘
p(3)=16>0
Therefore a root lies in 12, 3[. Using xo = 2.5 as an initial approximation to the root.

you can show that 2.0945 is an approximation to the real root.

“The deflated polynomial is given by the following table

2.0945 r 1 0 -2 -5
- 20945 4.3869 4.9994

| . -
1 2.0945 2.3869

Therefore we get the deflated polynomial as p(x) = x2 + 2.0945 x + 2.3869 = 0. The
roots of this equation are given by ‘

o m20945+ (2.0945)2 - 4 x 2.3869
2
=-1.0473 % 1.1359 o
Hence the roots are givén by 2.0945,-1.0473 + 1.1359i,-1.0473 - 1.13359i.
E9) 2.05 '
EI‘O) i) The given equation is x3+6x2-36x+40=0

First squaring
40 =36 6 1
1600 1296 36 1
~ 480 7
1600 816 108 1

Approximate Roots of Polynomial
' ‘ Equations
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Solutions of Non-lingar Equations  Second squaring
in one Variable . :

1600 816 108 S

2560000 665856 - 11664 o
— 345600 1632 o .
2560000 - 320256 10032 o 1.
Third squaring
2560000 320256 10032 1
65536 x 10" .10256 x 10'2 .10064 x 10° 1
-S13638x 10" - ea0si2x10? 1 :
65536 x 10'3 05120 x 10" BT 1

Hence the new equation is

x>+ 10% + (05120 x 10'2) x + 65536 x 103 =,
The roots Y1» Y2 and ¥; of this equation are given by
[y, | =108

: 12
Iy | = Oi%—;f—'o -05120x104

|y, [ 8:5536x10'3
Bl

=128

05120x 10

Hence the roots of the original equanon are glven by.
Loyl = ¥10% =10

loy | = ¥os120x10% = Vslz %.181015
Loyl = Y128 =183,

Substltutmg the computed values in the onglnal equation, we get that the roots -
are dpproximately - 10, 2.18 .and 1.83. Therefore the roots are -lb 2and 2.

i) Computed values of the roots. are 3.014443, 1.991424 and 0. 9994937
i) Computed values of the roots are 7.017507, —2 974432, 0. .9581706.
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BLOCK 2 SOLUTION OF LINEAR
ALGEBRAIC EQUATIONS

In Block 1, we have discussed various numerical methods for finding approximate

roots of a non-linear equation in one unknown. But there are large number of
physical, biological and engineering situations in which we need to find the solution
or the inverse or the eigenvalues and eigenvectors of the system of linear equations.

 These systems arise, both directly in modelling physical situations and indirectly in

the numerical solution of other mathematical models. For instance, problems such as
determining the potential in certain electrical networks, stresses in a building frame,
flow rates in a hydraulic systems etc. are all reduced to solving a set of algebraic
equations simultaneously. Linear algebraic systems are also involved in the
optimization theory, least squares fitting of data, numerical solution of boundary
value problems for ordinary and partial differential equations, statistical inference
etc. In this block we shall discuss both direct and iterative methods of solving linear

algebraic system of equations.

‘This block consists of four units.

In Unit 5, which is the first unit of this block, we begin with a recall of a few
definitions and properties of matrices and determinants which are necessary to

understand the numerical methods of solving linear system of equations. We shall
then discuss some direct methods i.e., the methods which, in the absence of round-off

or other errors, yield the exact solution in a finite number of elementary arithmetic

.operations.

In Unit 6, we shall discuss the method of adjoints, the Gauss-Jordan reduction
method and LU decomposition method for finding the inverse of a nonsingular

square matrix.
In Unit 7, we shall discuss two iterative methods namely, the :Iacobi iteration method

_and the Gauss-Seidel iteration method for solving the system of linear equations.

These methods start with an initial approximation and by applying a suitably chosen
algorithm, lead to successively better approximations. :

In Unit 8, which is the last unit of this block, we shall deal with the problem of
computation of the absolutely largest eigenvalue or smallest eigenvalue or even all
the eigenvalues of a given square matrix along with the corresponding eigenvectors.
More precisely, we shall discuss the power method and the inverse power method for
solving the eigenvalue problems. :




Notations and Symbols .

A= {aik} : ‘ Matrix with the elements ay
det A = |A] Determinant of a square. matrix A
o  infinity
p Rho
v Nu
B Mu
A Lambda
Norm of a matrix A

Al

Also see the list given in Block 1.

Imaginary unit, iZ = -1.
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UNIT 5_DIRECT METHODS

‘Structure

5.1 Introduction

;5.2 Preliminaries

, '5.3 Cramer’s Rule

5.4 Direct Methods for Special Matrices
'5.5 Gauss Elimination Methed

5.6 LU Decomposition Method

5.7 Summary
5.8 Solutions/Answers

1 5.1 INTRODUCTION

. One of the commonly occurring problems in, applied mathematics is finding one or
more roots of an equation f(x)=0. In most cases explicit solutions are not available

- and we are satisfied with being able to find one or more roots to a specified degree of
accuracy. Tn Block 1, we have discussed various numerical methods for finding tHe

_-roots of an equation f(x)=0. There we have also discussed the convergence of these

. methods. Another important problem of applied mathematics is to find the solution

+ of systems of linear equations. Systems of lingar equations arise in a large number of

~ areas, both directly in modelling physical situations and indirectly in the numerical

: solution of other mathematical models. These applications occur in all areas of the
physical, biological and engineering sciences. For instance, in physics, the problem

) © of steady state temperature in a plate is reduced to solving linear equations.

Engineering problems such as determining the potential in certain electrical

! networks, stresses in a building frame, flow rates in a hydraulic system etc. are all

I reduced to solving a set of algebraic equations simultaneously. Linear algebraic

1 systems are also involved in the optimization theory, least squares fitting of data,

numerical solution of boundary value problems for ordinary and partial differential

equations, statistical inferénce etc. Hence, the numerical solution of systems of linear

algebraic equations play a very important role.

Numerical methods. for solving linear algebraic systems may be divided into two
types, direct and iterative. Direct methods are those which, in the absence of
round-off or other errors, yield the exact solution in a finite number of elementary
! arithmetic operations. Iterative methods-start with an initial approximation and by
applying a suitably chosen algorithm, lead to successively better approximations.

To understand the numerical methods for solving linear system of equations it is
necessary to have some knowledge of the properties of matrices. You might have
already studied matrices, determinants and-their properties in your linear algebra
course (ref. MTE-02). However, we begin with a quick recall of few definitions here.
In this unit, we have also discussed some direct ‘methods for finding the solution of
system of linear algebraic equations. ]

Objectives
-After studying this unit, you should be able to:"

e state the difference between the direct and iterative methods of solving the'system
of linear algebraic equations; ‘

T - e obtain the solution of system of linear algebraic equations by using the direct

S ' methods such as Cramer’s rule, Gauss elimination method and LU decomposition

: ‘ method;

e use the pivoting technique while transforming the coefficient matrix to upper or
lower triangular matrix.
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5.2 PRELIMINARIES

As we have mentioned earlier, you might be already familiar with vectors, matrices,
determinants and their properties (Ref. linear algebra MTE-02). A rectangular array
of (real or complex) numbers of the form

r dz; dypr ... djp
i

S iy dyp ...l sy
L Am) Amy eeee Amn

iz called a matrix. The numbers a,;, a;3,...,a,, are the elements of the matrix. The
“enzontal lines are called rows and the vertical lines are called columns of the matrix.
A matrix with m rows and n columns is called an m X n matrix (read as m by n matrix).
“#'¢ usually denote matrices by capital letters A, B etc., or by (), (by) ete.

It the matrix has the same number of rows and columns, we call it a square matrix
snd the number of rows or columns is called its order. If a matrix has only one column .

it is a column matrix or column vector and if it has only one row it is 3 row matrix
OF TOW vector.

an ‘
The matrices A = ay = [a;; ay; ... anl]T and

Ang

B = [a); ajp .... a,,) are respectively the column and row matrices. We give below
some special square matrices A = (a;) of order n.

1) A matrix A = (a;) in which a; = 0 (i,j = 1,2...,n) is called a null matrix and is
_ denoted by 0.

E.g.,

0 0. .
A = is a 2%2 null matrix.
v 0 0

2) A matrix A in which all the non- dlagonal elements vanish i.e., a; = 0 fori + )
is called a diagonal matrix.

a; O 0
E.g.,A = 0 :7%) 0
‘ 0 0 a3 )

.. ~
is a 3x3 diagonal matrix.

-

3) The identity matrix Iis a diagdnal matrix in which all the diagonal elements are
equal to one. The identity matrix of order 4 is

1000

SO0V

1
0
0

O = O

0
0
1

4) A square matrix is lower triangular if all the elements above the main diagonal
vanish i.e., a; = 0 for j > i. A lower triangular matrix of order 3 has the form

a1 0 0

431 a3 a3
Similarly upper triangular matrices are matrices in which,
a; = 0fori>j.

a4z A
E};',,A = 0 az; Az



2 N

" Two 'matgices A = (ay) and B = (by) are equal iff they nave the same number of rows
and columns and their corresponding elements are equal, that is, a;; = b;; for alli, j.
You must also be familiar with the addition and multiplication of matrices.

Addition of matrices is defined only for matrices of same order. The sum C =A+B
of two matrices A and B, is obtained by adding the corresponding elements of A and
B, i.e. » Cij = @jj + b‘J

For example, if A =[ ? ;J andB = [5 1 g],then

0 301
A+B = 5 3
32 2

- Product of an mXn matrix A = (ay) and an nXp matrix B = (by) is an mxp matrix C
C = AB, whose (i,k)th entry is

Ck = 2 aij b]k = aj blk + ai2b2k+....+ai" bn'k

o _
That is, to obtain the'(i,k)th clement of AB, take the ith row of A and kth column
of B, multiply their corresponding elements and add up all these products. For
example, if o '

- 2 3 -1 1z
A= [1 0 2] andB = | 2 4 1 [ then (1,2)th element’
- 1°2 1
of ABis
S 1]
[2 3 -1] | 4 | =2x1+3x4 +(-1)x2 = 12
2

Note that two matrices ‘A and B can be multiplied- only if the number of columns of
A equals the number of rows of B. In the above example the product BA is not
. defined. -

The n;atrix obtained by“interchangin1g the rows and columns of A is called the
transpose of A and is denoted by A

Co 2 3 -
IfA = then AT = 2 -
R I O O B 13 1

Determinant 1s a number associated with square matrices.

[

. " ‘a3 A
For a 2X2 matrix A =
) az a2 |

N a;; a2 | '
det (A) =det = a8y 84283
2y, ax ‘
. ap a2 A3 ]
Fora3x3matrix A = | az az az
az; a3 a3 N

X ay 823 | _ o [ 82 @ . ay 82 |
det (A) = a;; det 2 -~ fyz det VORB L rapy det
A3 83 | 31 B33 ay  as

" A determinant can be expanded about any row or column. The determinant of an = -

nxn matrix A = (a;) is given by det (A) = (-1)"*" aii det(A;) +(-1)"*%a,

1 dét (Ap) #. (=) 2y, det (Ay), where the determinant is expanded about the -

o2

SR e g

o

2
7

ith row and A;;is the (n—1) X (n—1) matrix obtained from A by deleting the ith row
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* We denote det(A) by |A] also.

\‘.q,{‘

and jth column and i si=n Obvxously, computation is simple if det (A) is expanded
along a row or column that has maximum number of zeros. This reduces the number

of terms to be computed.
The following example will help you to get used to calculating determinants.
Example 1 :

IfA = , calculate det (A).

~] o=
W SN
N = O\

Solution : Let us expand by the first row. We have

A YU ixo-1x3=s |A j¥ > l.‘.—5><2 7x1=3
I 11| - 3 2 - = 21 — 72 - ’
A = 5 4 = 5X3-4x7 = —-13

Al = | 0 | =5x3-4x7 = ~13.

Thus

|A] = (=D IX1x JA ] +(=1)"*?%2X Al (~1)'*2X6X] |Aj3] = 5-6-78 = =79

You may now try this exercise.

El) 3 2 0 2
2 1 0 -1
IfA = 1 0 1 2], calculate det (A).
2 1 -3 1

If the determinant of a square matrix A has the value zero, then the matrix A is éalled
a singular matrix, otherwise, A is called a nonsingular matrix.
We shall now give some more definitions.

Definition : The inverse of an nXn noqsmgular matrix A is an nxn matrix B havmg
the property

AB=BA=1
where 1 is an ldentny matrix of order nxn.

The inverse matrix B if it exists, is dehoted by A !and is unique.

Definition : For a matrix A = (aij), the cofactor A;; of the element ai,-:is gi'ven by
|_| = ( 1)I+J Mu .

where M;; (minor) is the determinant of the matrix of qrder (n-1) X (n-l) obtamed

from A after deleting its ith row and the ]th column.

Definition : The matrlx of cofactors associated with the nXxn matrix Aisannxn matnx

A" obtained from A by replacing each element of A by its cofactor.

Definition : The transpose of the cofactor matrix A° of A'is called the ndjoint of A '
and is written as adj(A). Thus

adj(A) = (AT

Let us now consider a system of n lmear algebraxcﬂluatxons inn unknowns

a;X; + apX; + ... + A, X, = bl "‘%
C A
ayX; + aX, + 0+ a, Xp = bz . : o e (1)
, | W
. * \\\
an1 Xy + a52X2 + ...+ apn Xy = b

where the coefflcnents a;; and the constants b; (i = 1,...,n) are real an§ known. This
system of equations in matrix form may be wntten as 4 ;




sy

SRLIE A, s

R

Ax=b - y ' ()
where o

az1  a...... azpn X2 ) bz

L L b

Ais called the coefficient matrix and has real elemens..

Our problem is to find the values Xy, i=1,2...,n if they exist, satisfying Eqn. (2).
Before we discuss some methods of solving the system (2), we give the following

“definitions. ;

Definition : A system of linear Eqns. (2) is said to be consistent if it has at least _.ie

- solution. If no solution exists, then the system is said to be iniconsistent.

 Deflnition : The system of Eqns. (2) is said fo be homogene&u if b = 0, that is, all

the elements b;, by,....,by are zero, otherwise the system is called nonhomogeneous.
In this uiilt, we shall consider only nonhomogeneous systems.

You also know from your linear algebra that the nonhomogeneous system of Eqns.
(2) has a unique solution, if the matrix A is nonsingular. You may recall.the following
basic theorem on the solvability of linear systems (Ref. Theorem 4, Sec. 9.5, Unit 9,

Block 3, MTE-02).

Theorem 1': A nonhomogeneous system of n linear equations in n unknowns has a
unique solution if and only if the coefficient matrix A is nonsingulat.;

If A is nonsingular, then A~! exists, and the solution of system (2) can bé expressed as
x=A""b. :

In case the matrix A is singular, then the system (2) has no solution if b # 0 or has
an infinite number of solutions if b = 0. Here we assume that A is a nonsingular

| matrix.
| As we have already mentioned in the introduction, the methods of solution of the

system (2) may be classified into two types : .

i) Direct Methods : which in the absence of round-off errors give the exact
solution in a finite number of steps. :

if) Iterative Methods : Starting with an approximate solution vector x®, these
methods generate a sequence of approximate solution vectors {x™*}:which
converge to the exact solution vector x as the number of iterations k — . Thus
iterative methods are infinite processes. Since we perform only a finite number of

.iterations, these methods can only find some approximation to the solution vector
%, We shall discuss iterative methods later in Units 7 and 8. :

" |In this unit we shall discuss only the direct methods. You are familiar with one such

method due to the mathematician Cramer and known as Cramer’s Rule. Let us

{briefly review it. :

53 ;éRAMEiii"s RULE h

~ {In the system (2), let d = dét(A) % O and b #% 0. Then the solution of the system is
_lobtainedas -~ - ' '

Ejédi/d, i=12,...n | 3)
here d; is the determinant of the matrix obtained from A by replacing the ith column
pf A by the column vector b. Let us illustrate the method through an example.

=
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Solution of Linear Algebraic Equations 'Example 2 : Solve the system of equations.

10

3%y + X, + 2%; = 3
2x, - 3x2‘~ X3 = —3
X+ 2%, + X3 =4
using Cramer’s rule.

* Solution : We have,

3 1 2
d = IAl = 2 3 -1 = 8
1 2 1
3 1 2 :
=13 -3 -1 =38 (first column in A is replaced by the column vector b)
4 2 1 '
3 3 2 o
=12 3.-1]| =16 (second column in A is replaced by the column vector b)
1 4 1 : ‘
313
dy3 = 2 -3 3| = -8 (third column in A is replaced by the column vector b)
: 1 2 4 '

Using (3), we get the solution
Xp=d/d =1;x; = dyyd = 2; X3 =dy/d = -1

You may now try the following exercises.

E2) Solve the system of equations - -
3x; + 5x, = § : .
“Xp+t 2% - x3=0
3x; — 6xp + 4x3 = 1

using Cramer’s rule.

" E3) Solve the system of equations

x1+2'x2;3x3+x4=—5"

X2 +3x3+x,= 6
2+ 3+ xs kg = 4
X Xyt x, = 1

using Cramer’s rule.

While going through the example and éttempting the. exercises you must have
observed that in Cramer’s method we need to evaluate n+1 determinants each of
order n, where n is the number of equations.. If the number of operatigns required
.to evaluate a determinant is measured in terms of multiplications only, then to
evaluate a determinant of second order, i.e., ’

i A
= A a»n —appay

a1 ap

we need two multiplications or (2-1) 2! multiplications. To evaluate a determinant ot
third order

a1 ap apg ,
Ay Ay ay | = 311322333-311323332“312321333+312323331+313321332‘alﬁ22331 :
a3 A3 Ay ‘



~

we need 12 multiplications or (3—1)3! multiplications. In general, to evaluate a
determinant of nth order we need (n=1D)n! multlpllcatlons

X ~ Alsofora system of n equations, Cramer’s rule requires n+1 determinants each of
= order n and performs n divisions to obtain x;, i = 1,2,..,,n. Thus the total number of
‘multiplications and divisions needed to solve a system of n equations, using Cramer s
rule becomes

M = total number of’multiplications‘ + total number of divisions’

(n+1) (n=Dn! + n
In Table 1, we have given the values of M for different values of n.

It #

Table 1

- Number of equations : Number of operations

. n . ‘ M

' 8
51

364
2885
25206
241927
2540168

29030409
359251210

[~ TR0 CRE Io MRV W SRV S )

—

From the table, you will observe that as n increases, the number of operations
required for Cramer’s rule increases very rapidly. For this reason, Cramer’s rule is not
. generally used for n>4. Hence for solving large systems, we need more efficient
* methods. In the next section we describe some direct methods which depend on the
-form of the coefficient matrix.

| 5.4_DIRECT METHODS FOR SPECIAL MATRICES | o

© . We now discuss three special forms of matrix A in Eqn. (2) for which thé solution
, . vector x can. be obtained directly.

e Case 1:A= D where D is a diagonal matrix. In this case the system of Eqns. (2)
" are of the form

b1 : !

b, ¢

[

2

=
X
mon

Ann Xp l:’n . ’ . <
and det (A) = au.azz ... Q :

Since the matrix A is nonsingular, a;; # 0 fori = 1,2,....,n and we obtain the solution
as © : :

X = ‘bi/ai‘i,‘ i .? 1,2,.....n

. Note that in this case we need only n divisions to obtain the solution vector.

| Case2: A = L, where L is a lower tnangular matrix (a; = 0, j>i). The system of
Eqns. (2) is now of the form

a;X; v . '= bl
o AXp Tt anX; ' - =b
| ayX; +am;Xp t+axnX; =by
i ‘e \ ' (4)
| T
51X1 + an2x2 + an3x3 +..+ annxn = bh .

and det (A) = ajjaz...ap, . . | ' H
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‘fou may notice here that the first equation of the system (4) contains only x,, the
second equation contains only x; and x, and so on. Hence, we find x, from the first
equation, x, from the second equation and proceed in that order till we get x,, from
thc last equation.

Since the coeft:cxent matrix A is nonsingular, a;; # 0 i=1,2,...,n. We thus obtain
K3 = by /a“
2 = (bz"azle)/azz

o3 o= (by—agXy - apXy)/ay

n--1
e ot .
K, & {bg~ _}, 2pj xj)/an'n
=1
in general, we have for any i
i=1

Xy o= (b, - 2 ainj)/a“, i= 1,2,....,1’1 . (5)
j=1 !

ror example, consider the system of equations

b Sl :Xz = -7

i

Ky + Ay +2x3 = §

From the first equation-we have,
X] == 1

From the second equation we get,
~T+x,
Ky = ""'—“—. =3

-2

and from the third equation we have,
_ 5+X —3X _ 3
fa = =
Since the unknowns in this method are obtained in the prder.xx,xé,....,xn, this method
15 called the forward substitution method.

The total number of mulnphcatlons and divisions needed to obtain the complete
solution vector x, using this method is

M=1+2+.. = n(n+1)/2.

Case3: A=0U, where U is an upper tnangular matrix (a; = 0, j<1). The system )
is now of the form

ap X +d12X2+al3X3 +.+ a1 X, R = bl
Ay0Xs + 323')(3 +...+ aznxn v = b2

bs (6)

a33X3 + san + a3nxn

n-tn—1Xn-1 T a1 0X, = by,

R aﬂn xn
and det (A) = a;)a;...4p,

it
o
)

You may notice here that the nth (last) equation contains only x,, the (n—1)th,
equation contains x, and x,_; and so on. We caf obtain x, from the nth equation,
Xn-1 from the (n— l)th equation and proceed in that order till we get x; from the first
equation. Since the coefficient matrix A is nonsingular, a;; # 0,i = 1,2,...,n and we

obtain

‘{n = bn/ann

Xag-1 = (bn-l _‘an—l,nxn)/an—l.n—l

n

Ry = (bi - E a”' Xj)/a“

i=2 -



ot general

= (b - 2 a; x,)/a,,, i=12,. (7):
j=i+l
Since the unknowns in this method are determined in the order x,,,x,',_l,.' ..,Xy, this

method is called the back substitution method. The total number of multiplications
and divisions needed to obtain the complete solution vector x using this method is
~ again n(n+1)/2.

Let us consider the following example.
. Example 3 : Solve the linear system of equations -

2X1+3X2“X3 =35
-7
-15

~2X; =%y =
-SX3 =

" Solution : From the last equation, we have

X; = 3.

From the second equation, we have

'bz_a x ( 7+3) = 2

‘ 32 (-2)

Hence, from the first equatlon, we get

bl 3%, 781Xy _ (5-3-2+3) _
a, 2.

"You may now try the following exercises :

X =

X; =

-E4) Solve thie systéim of eguations

X1 . 1
2%, =X 1
"3x; — X3 — 2X3 =0
4%; + X5 — %3+ X4 =3 .

5X; = 2X; — X3 —2X4+Xs = 1
 using forward substitution method.
" ES) Solve the system of equations
Xy — 2Xy + 3X3 = 4x4 + 5xs = 3

Xy — 2X3 + 3%y — 4x5 =
X3 = 2%e + 3xs = 2

X4 =25 =

X5 = 1

| ~ using backward substitution method. ya

In the above discussion you have obsewcd that the system of Eqns (2) can be easnly
solved if the coefficient matrix A in Eqns, (2) has one of the three forms D,L or U
or if it can be transformed to one of these forms. Now, you would like to know how

to reduce the given matrix A into one of these three forms? One such method which
transforms the matrix A to the form U is the Gauss elimination method which we
“shall descnt;ﬁ in the next section: .| _ 2

5.5 GAUSS ELIMINATION METHOD

' Gauss elimination is one of thé oldest and most frequently used methods for solving

systems of algebraic equations. It is attributed to the famous German mathematician, '

‘Carl Friedrick Gauss (1777 - 1855). This method is the generalization of the familiar

Gauss (1777-1855)




Solution of Linear Algebraic Equations method of ‘eliminating one unknown between a pair of simultaneous linear equations.

14

You must have learnt this method in your linear algebra course (Ref. : Sec 8.4,
Unit 8, Block 2, MTE-02). In this method the matrix A is reduced to the form U by

- using the elementary row operations which include :

i) interchanging any two rows
ii) multiplying (or dividing) any row by a non-zero constant

.iii) adding (or subtracting) a constant multiple of one row to another row.

The operation R; + mR, is an elementary row operation, that means, add to the
elements of the ith row m times the corresponding elements of the jth row. The
clements in the jth row remain unchanged.

If any matrix A is transformed into another matrix B by a series of elementary row
operations, we say that A and B are equivalent matrices. Formally, we have the
following definition.

Definition : A matrix B is said to be row equivalent to a matrix A, if B can be obtained
from A by using a finite number of elementary row operations.

Also two linear systems Ax = b and A’x = b’ are equivalent provided any solution
of one is a solution of the other. Thus, if a sequence of elementary operations on
Ax = b produces the new system A*x = b* then the systems Ax = b and A%x = b*.
are equivalent.

’

- To understand the Gauss elimination method let us consider a system of three
_equations :

CapXp toapgX; +agx; = by

‘AyiX; + axXp + dyX; = b, ®

a3X; + azX; + az;3x; = by

Let a;; # 0. In the first stage of elimination we multiply the first equation in Eqns. (8)
by my; = (—a,;/a;;) and add to the second equation. I'hen multiply the first equation
by mjy; = .(—as,/a;;) and add to the third equation. This eliminates x, from the second

_ and third equations. The new system called the first derived system then becomes

anX; + apX; + a;3x3 = by

1) My, =pd
a5 X3 + a3y x3 = bf 9)
(1) My, =p®»
a3, Xz + a3 x3 = bj
where,
a
- 21
a§,_’ = an ftall a2
. a
1) - 21
323) = a3 "a—uaxs
a
bD = b, — 2L p,
2 3,
a
D — 31
a§2’ = as ""_aIalZ
o ay, : (10)
a3 = d33 j“—"'au a3 .
a ‘
b(l) = b3 —-—31'b1 R
3 an /

In the second stage of elimination we multiply the second equation in (9) by

ms; = (—al}/a()), al) # 0 and add to the third equation. This eliminates x, from the

third equation. The new system called the second derived system becomes

apk; + apx; + a;3x3 = by
i Dy - n
al) x, +ald x; = b»

2@y = B
a3y’ X3 b3



where

. ,5}/ VN
"1Alb]

@ = )
333 = a

2) — 1
l>§ ) = ta;{)

an
az;
as;

Ay

i

au

(1)
(1)

a
32 a(l)

(
32 b(l)

(1)
an

2+ 3 —x3=35
© 4% + 4x; - 3x3 =3
2%+ My =Xy =1
P ' using Gauss elimination method.

2
2X] + 3XZ - X3 = 5
-~ 2X2 - X3 = -7
‘6X2 - 2X3

In the second ste&e, we eliminate x, from the third equation of system (14). Adding
—6/(~2) = 3 times the second equation to the third equation, we get

. 2X1 + 3X2 - X3 =

- 2X2 = X3

~ 5% = -15 -

6

5
-7

a2 ap

L

ap a3 | by

a3; as3 |

a3 a3
) (1)
Ay 3

1 )

- afp 23
a;2 a3
al) af)
2@

33

b3 Rz "'&LR], Rg—;aglkl

-

b,
b{M

w |
by _

b |

(1)
b

2)
b

Let us illustrate the method through an example.

" Example 4 : Solve the following linear system

System (15) is in upper triangular form and its solution is
*3=3 X2=2 X1=1.‘

a®

‘ : . You may note here that the system of Eqns. (11) is an upper triangular system‘of the
- : ~ form (6) and can be solved using the back substitution method provided 2 # 0.

Solution : To efimin‘ate x,' from the second .and third equations of the system (13)

add 52 = -2 times the first equatlon to the second equation and add -(—2)/2 1

times the first equation to the third equation. We obtain the new system as

You may observe that we can write the above procedure more conveniently in matrix
form. Since the arithmetic operations we have performed here affect only the

- elements of the matrix A and the vector b, we consider the augmented matrix i.e.

‘ [Ab] (the matrix A augmented by the vector b) and perform the elementary row
~ operations on the augmented matrix. ,

(12)

(13)

(14)

(15)

(symboi =

Direct Me!hqns

means equivalent to)

oo

15
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"_.
which is in the desired 10rm where, a0, a{)), a{
Eqns. (1) and (12)

Definition : The dlagonal elements a
called pivots.

all, al), b, bV, a2, al® are given by

1+ 3% and a{? which are used as divisors are

You might have observed here that for a linear system of order 3, the elimination
was performed in 3—1=2 stages. In general for a system of n equations given by Eqns.
(2) the elimination is performed in (n—1) stages. At the ith stage of elimination, we
eliminate x;, starting from (i+1)th row upto the nth row. Sometimes, it may happen
that the elimination process stops in less than (n—1) stages. But this is possible only

when no equatlons containing the unknowns are left or when the coefficients of all
‘the unknowns in remaining equations become zero. Thus if the process stops at the

rth stage of elimination then we get a derived system of the form
b,

(1) My = p
ay; Xy ...+ a5 Xq b;

i

a11X1 + aioXy +...+ a1nXp

(16)
-t Dy = pO=D
al=Vx 4.+ al~Ux, = bl
= pr=D
0= brri-l
0 = brh
n

wherer <nanda;; #0,a() #0,..., al~l # 0.

In the solution of system of linear equations we can thus expect two different
situations

Dr=n 2) r<n.

Let us now illustrate these situations through examples.

_Example 5 : Solve the system of equations

4%, + X2+ X3 = 4
X; + 4x; — 2x3 = 4
2
using Gauss elimination method.

—'xl + ZXZ - 4X3

‘Solution : Here we have

41 1|4
[Ap) =] 1 4 2|4 '
| -1 2 4{2]R + 1R, Ry +1R,
4 1 1 4
~ 159
02 7 |3 |
S 15 -3
L 03 4 Ry =5 R
[ 4 1 1 |4
~ 15 _9 '
~| 0@ -7 |3
_1216
i 0 0 5 |3
using back substitution method, we get
= ——1/2 X, = 1/2;x;, =

(=12) _
A = 36

Also, det(A) 4><1—45 X



L

Thus in this case we observe that r= n = 3and the given system of equations has a
“unique solution. Also the coefficient matrix A in this case is nonsingular. Let us look
at another example.

Exginple 6 : Solve the system of equatiohs

X+ 2% + X3 =3

2+ X3+ x3=0

6x; + 2x, + 4x3" =6

using Gauss elimination method. Does the solution exist?

~ Solutjon : We have.

23213
(A} =12 1-1{0 _
6 2 4/6 |Ry - -%—R.,R;—ZR,
{
‘ 32 1 3
SREH R B
. O-3 3|2
; 0 -2 2| 0|Ry~-6R,
3 2 1] 3]
o 1_1}_
—— 0 3 3.‘ 2 b
00 T |12

: In this case you can see that r<n and elements b,, b{"’ and b{®) are all non-zero.

: -Smce we cannot determine x; from the fast equation, the system has no solunon In
‘such a situation we say that the equatxons are iinconsistent. Also note that
det (A) = Oi.e., the coefficient matrix is singular.

We now consider a situation in which not all b’s are non-zero.

‘ ,_Example 7 : Solve the system of equations

6%, + 22%, + dxs = L2 |
'A4X1 - 3X2 + 2x3_ = 0 .
lle + 25)(2 + 2X‘3 = =11

"“using Gauss elimination method.

- ;Siiludon ¢ In this case we have
' C16 22 4 (-2
[Ab}=] 4 -3 2| 9 .
1225 2|-11JR; -%’.R,, R - 3R,
4 (16 22 4| -2
o=lo- 1| R
. ‘-0 177_ al nlgq ‘,R3 -+ RZ‘
(16 22 4| -2
~ -17 19
= 5 1 5
0 o o 0

Direct Methods

inconsistent if it does not have a
solution.

A system of equations is called
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The sum of first n natural numbers
iy i w20 gng
im

the sum of the squares of the first
n natural numbers is

% 2 o n(+D)(2n+1)

LU ETe
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‘Now in'this case r<in.and-elements b;, b are non-zero, but b{? is zero. Also the last
equation is satisfied for any value of x3 Thus, we get.

X3 = any value
2 (2
17 % 2

X2 =~ - X3)

x = e (=2- 22, - 4x)

Hence the system of equations-has infinitely many solutions.

“Note that in this case also det (A) = 0.
The: conclusions derived from Examples 4,5 and 6 are true for any system of linear
equations. We now summarise these conclusions as follows :

i} Ifr = n, thenthe system of Eqgns. (2) has a unique solution which can be obtained
usmg the back substitution -method. Moreover, the coefficient matrix A in this
case is nonsmgular

ii) if r<n and all the elements b{""", bﬁ:‘z",. '.,bf‘"” are not zero then the system

has no solution. In this case we say that the system of equations is inconsistent.

iii) If r<n and all the elements bV, b21,... b=, if present, are zero, then the

. system has infinite number of solunons In this case the system has only r linearly
independent rows.

In both the cases (ii) and (iii), the matrix A is singular.

Now we estimate the number of operations (multxphcatnon and dmslon) in the Gauss -
elimination method for a system of n linear equations in n unknowns as follows :

H
!

No. -of -divisions ' /

1st step of elimination (n—1) divisions |
2nd step of elimination (n—2).divisions

(n 1)th step of elimination 1 divisions ’ '
. Total number of divisions = (n=1) + n-2) +...... +1

n(n-1
= S(r-1) = 22D
No. .of multiplications
1st step of elimination n(n—1) multiplications

~2nd step of elirhination (n-1) (n—2) multiplications

.................................................... sptersssessersatsnens

(n 1)th step of elimination 2.1 multlphcatlons

. Total number of multiplications = n(n-1) + (n— l) (n-1) + ...... +21
= En(n—l)
3 3n

_ n(@+1) 2n+1) _ n(n+1)
N 6 2

-— n(n+1) (n—-1)

‘Adso the back substitution adds n. dmslons (one division at-each step) and the number
of multiplications added .are :

(n—1)th equation 1"multiplication
/(n -2)th equation 2. multlphcataon

.......................................................

1st equation (un-—l)‘multiplication
", Total -mul'tipliéations z(n 1) = n(n D!

Total operations added by back substitution = %——1)- +n = n—(“%-l—)-
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| You can verify these results for a =3 from Eqns (9) and (1) . Wi Direet-Methods
Thus to find the solution vector x using the Gauss elimination method, we need ’

n(n-1 2 -
M= —(—2—-)— + -%—.n(n -1) + —g-(n+1)

n 2 -
6[2n + 6n 2]
n

=0 L p2_1

=S +n 3 |

operations. For large n, we may say that the total number of operations needed is4 n?
(approximately). Thus, we find that Gauss elimination method needs much lessgr

number of operations compared to the Cramer’s rule.

You may now try a few exercises.

E6) Use Gauss elimination method to solve the system of equations
. e %) +2x;+ X3 =3 o
i 3x, — 2y — 4x3 = =2
; 22X 3 - Xy = =6
i E7) Use Gauss elimination method to solve the system of 'e:qua-tions
& N '3x, + 18x; + 9x3 = 18 E
_ T2k 4 3%y + 3%y = 117
g 4xl + X2 + 2’(3 = 283
E8) Solve the system of equations
1 2 -3 1 X1 -5
) i 01 31 Xa = 6
23 11 X3 4
e SR 110 11 X3 i )

i using Gauss elimination method.

T P

* E9) Using the Gauss elimination methud show that the system of equations

3 2 -1 4] x T 10

i 1 -1 3 -1 x | =] -4

3 2 1 -3 0 X3 1 16.]
0 -1 8 -5 X | 3

RN

o are inconsisient.

E10) Use Gauss elimination method to solve the system of equations

2 -1 0 0 0 rl
-1 2 -1 0 0 0

0 -1 2 -1 0 =10 .
0 0 -1 2 -1 o .

0 0 0 -1 2 1

It is clear from above that you can apply Gauss elimination method to a system of
equations of any order. However, what happens if one of the diagonal clements i.e.

- the pivots in the triangularizaiion process vanishes? Then the method will fail. In such
situations we modify the Gauss elimination method and this procedure is called
pivoting. - ‘
Pivoting R
In the elimination procedure the pivots a,y; aly seeeesttl®™= 1 are used as divisors. If at

any stage of the elimination one of these pivots say al} "', (a‘l‘:) =.a;,), vanishes then 19




Solution of Linear Algebraic Equations  the elimination procedure cannot be continued further (see Example 8). Also, it may
happen that the pivot a{~", though not zero, may be very small in magnitude .

compared to the remaining elements in the ith column. Using a small number as a
divisor may lead to the growth of the round-off error. In such cases tae multipliers
—a(i=2) —ali=3 .

(.l ]')‘ , (‘ — will be larger than one in magnitude. The use of large -

2 : _

mulnphers will lead to magmflcatlon of errors both during the elimination phase and
during the back substitution phase of the solution. To avoid this we rearrange the .
remaining rows (ith row upto nth row) so as to obtain a non-vanishing pivot or to
make it the largest element in magnitude in that column. The strategy is called
pivoting (see Example 9). The pivoting is of the two types; partial plvotmg and
complete pivoting.

(e.g.

Partial Pivoting

in the first stage of elimination, the first column is searched for the largest ‘element
in magnitude and this largest element is then brought at the positipn of the first pivot
by interchanging the first row with the row having the largest element in magnitude
in the first column. In the second stage of elimination, the second column is searched
for the largest element in magnitude among the (n—1) elements leaving the first
element and then this largest element in magnitude is brought at the position of the
second pivot by interchanging the second row with the row having the largest element
in the second column. This searching and interchanging of rows is repeated in all the
‘n—1 stages of the elimination. Thus we have the following algorithm to find the pivot.

Fori = 1,2,.....n, find j such that
]« e [ 15k

and interchange rows i and j.

Complete Pivoting

In the first stage of elimination, we search the entire matrix A for the largest element
in magnitude and bring it at the position of the first pivot. In the second stage of
elimination we search the square matrix of order n—1 (leaving the first row and the
first-column) for the largest element in magnitude and bring it to the position of . -
second pivot and so on. This requires at every stage of elimination not only the -
interchanging of rows but also mterchangmg of columns, Complete plvotmg is much
more complicated and is not often used.

In this unit, by pivoting we shall mean only partial pivoting.

Let us now understand the pivoting procedure through examples.

Example 8 : Solve the system of equations

Xy + Xa+ X3 =6 ‘

Xi+ X+ 4x3, = 20

X+ Xa+ 3x; =13

using Gauss elimination method wnh pamal plvotmg

Solution : Let us first attempt to solve the system without pivoting. We have

|
[Alb} =1 3
2 13 | R, = 3R, R; — 2R,

20 ‘ 0 -1 1




"

Note that in the above matrix the second pivot has the value zero and the ehmmatmn o Direci Methods
procedure cannot be continued further unless, pivoting is used. o

Let us now use the partial pivoting. In the first column 3 is the largest element.
Interchanging the rows 1 and 2, we have

C3 37420
[Ab}=| 11 1|6
|21 3|13 )R - L R.Ry - £ R

-3 3 4 | 20
=0 0 -13}|-23

0 -1 13| -13

In the second column, 1 is the largest element in magmtude leaving the flrst element
Interchanging the second and third rows we have -

i 3 3 4 | 20
[Ab] =] 0 -1 13]-13
0 -Q -13|-23

You may observe here that the resultant matrix is in triangular form'"an"d no further
' :ehmmatlon is reqmred Using back substitution method, we obtam the solutlon

g X3 =2,%=1,x =3.
Let us consider another example.

_ Example 9 : Solve the system of equatlons _
i 00003x1+ 1.566 x, = 1.569 _
0.3454 x; — 0. 436 x, = 3.018 : amn

; . ~usmg Gauss elimination methgd with and without pivoting. Assume that the numbers
in arithmetic. calculatlons are rounded to four slgmﬁcant dxglts The exact solutlon of
the system A7) is x, =10, x; = 1. = . .

-Solution : Without Pivoting

my = — -;j-:- = - 8%‘; = -:1151.0 .(‘r'eunded to four ';;lr‘aees)‘t _

al) = - 0436 ~ 1.566 x 1151
= - 0.436 - 1802.0 — 1802.436
— 1802.0

"3.018 - 1.569 x 1151.0

3.018 — 1806.0

~ 1803.0
Thus, we get the system of equations
~.0.0003 x; + 1.566 x, = 1.569

N
- b

| - 18020 x; = —1803.0 - TR I
which gives :
., = 18030 _ S
1569 — 1.566 x 1.001 _ 1.569 — 1.568
X = =go003 —Wﬁ
= 3.333

o Wthh is highly maccurate compared to the exact solutlon A ' ' 21
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We interchange the first and second equations in (17) and get
0.3454 x| ~ 0.436 x, = 3.018
0.0003 x; + 1.566 x, = 1.569

we obtain

)
my = — =% = — (.0009
an

1.566 — 0.0009 x (0.436)
1.566 — 0.0004

]

A1)
)

i

= 1.566

b{" = 1.569 — 3.018 x (0.0009)
= 1.569 — 0.0027
= 1.566

Thus, we get the system of equations
0.3454 x; — 0.436.x, = 3.018

1.566 x, = 1.566
which gives
X =1 N
- 3.018 + 0.436 _ _3.454 =10
1 0.3454 0.3454
which is the exact solution.

We now make the following two remarks about pivoting,.

Remark : If the matrix A is diagonally dominant i.e.,

n R * . Ry .
|aii| = 2|aij|, then no pivoting is needed. See Example 5 in which A is
"
diagonally dominant.

‘

Remark : If exact arithmetic is used throughout the computation, pivoting is not-
necessary unless the pivot vanishes. However, if computation is carried upto a fixed
number of digits, we get accurate results if pivoting is used.

There is another convenient way of carrying.out the pivoting procedure. Instead. of
physically interchanging the equations all the time, the n original equations and the
various changes made in them can be recordéd in a systematic way. Here we use an .
nX(n+1) working array or matrix which we call W:and is same as our augmented
matrix [A|b]. Whenever some unknown is eliminated from an equation, the changed
coefficients and right side for this equation are calculated and stored in the working
array W in place of the previous coefficients.and:right side. Also, we.use.an'n-vector
which we.call p. = (p;) to keep track of which equations have already-been-used as-
pivotal equation (and therefore should not be changed any further) and-which' ,
_equations are still to be modified. Initjally, the ith entry p; of p. contains the integer

1, 1=1,...... ,n and working array W-is of the form
A11 A1 eeeenns ayn bl

W = (Wii) = ' A1 A2 ..eend « 8zp bz
dnp dp ceeeeen ann bnv

Further, one has (v be careful in the selection of the pivotal equation for each step.
For each step the pivotal equation must be selected on the basis of the current state

of the system under consideration i.e. withou* foreknowledge of the effect of the
selection on later steps. For this, we calculate initia'lv the size d; of row i of A, for
i=1,.....,n, where d; is the number :

di = max laij

1<j=n
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'Step;l Nowl Pul,_.%' P21|.=%=_%_’

Atthe begmmng of say kth’ step of elimination, we pick.as: pwotalaequat;on thatone Direct: Methods
from the available n—k, which has the absolutely largest.coefficient of x; relative to

the size of the equation. This means that the integer j is selected:between k and n

for which

We can-also store the multlplxers in the working array- Wrinstead: of storing zeros.
‘That is, if p; is the first pivotal equation and we use the multipliers: mp, 0 i=2,.0..,0
to. climinate: x; from the remaining (n—1) positions of the first column then:in:the

first column we can store the muitxphexs My, 4 i=2,...., n, instead-of stormg Zeros:.

Let us now solve the followmg system ofilinear equations by:scaled: pamal pivoting:
by storing the multipliers and mamtammg vaotal vector

Example 10:: Solve the following system:of linear equations. with' pivoting:

X;— Xp+3x; =3
2X‘ + x; + 4X3 =7
3X'1v+.SX2 - ZX3 = 6

Solution : Here the workihg matrix-is

1 -1 33 .
3 5 -26] ' |

andd; =3, d, = 4andd; = 5.

Note that d’s will not change in the 'successiVe steps. L

3 1. I

- Sincer- 2 >, E

57 20 3
. opy=:3y pz==2andp3>- 1,

R

Weruse:the:third equationitoseliminate:x;. fronx:firstand: second~ cquauons and: store.
corresponding:multipliers anstcadaoﬁstomngzeros in:the: working: matrix:

Thh;mu/l:tipliér-s:atefm? , ='--U- i =23

Plk
COomgy = "‘—"—w"h S A %’
o Y11 w3, ’
W
W W3‘

After the first step'thc work?mg;_:matnxais*tr-ansforméd-to ’

. 3.7

B
(
1)

- '3‘ 'i 3 I,.w- (Pan:Ps) =321

e,
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. w .
) A P2l = | w2 =13 _ 1
|WP$,2| - |w1,2| 83 _38
dp, d; 9 |
Now —8— > T72 so that we have p = (p1, P2» P3)” = (3, 1, )T
M v g . - WPiz I
ultiplier is m, = =, i=3
N P22
cm =2 - 213 1
My, T M TR TRE T

That is, we use the first equation as pivotal equation to eliminate x, from second
equation and also we store the multiplier. After the second step, we have the
following working matrix. '

[ _8l u ]
3| 73

W = @ %—181 p=0312

5 .

-2 6

In the working matrix the circled numbers denote ‘multiplicrs and squared ones
denote pivotal elements. Rearranging the equations (i.e., 3rd equation becomes the
first equation, 1st becomes the 2nd and 2nd becomes the third) we get the reduced.
upper triangular system which can be solved by back substitution.

3X1 + 5X2 - 2X3 =6
- '%‘ X2 + "1'3'1" X3 = 1
=17

S, -

2 S N .
By back substitution, we get x; = 1, x; = land x3 = 1.
We now make the following two remarks.

Remark : We do not interchange rows in Step 1 and 2, instead we maintain a pivotal
vector and use it at the end to get upper triangular system. : '

Remark : We store multipliers in the working matrix so that we can easily solve .
Ax = ¢, once we have solved Ax = b. This will be explained to you in detail in Unit 6
when we discuss the method of obtaining inverse of a matrix A.

Here is now an exercise for you.

E11) Solve the system of equations

0.729x + 0.81y + 0.9z = 0.6867
X+ y+ z = 0.8338
1.331x + 1.21y + 1.1z = 1.000 §

using Gauss elimination method with and without pivoting. Round off the
numbers in arithmetic calculations to four significant digits. The exact'solution
of the system rounded to four Significant digit is -

x = 0.2245,y = 02814,z = 0.3279 _

e g < n e on

IR

We shall now describe the triangularization method which is also a direct method for
the solution of system of equations. : {

In this method the matrix of coefficients of the linear system being solved is factored
into the product of two triangular matrices. This method is frequently used to solve
a large system of equations. We shall discuss the method in the next section.
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5.6 LU DECOMPOSITION METHOD __

Let us consider the system of Eqns. (2), where A is a non-singular matrix. We first
write the matrix A as the product of a lower triangular matrix L and an upper
triangular matrix U in the form S

A =1U
or in matrix form we write ' (18)
_a1; 312 ..or ip u B 11] 0 ... 0 - - U1 ’ U2 «oor Uyp o
art azz vees Qop’ 121 122 . 0 0 Uz .... Uy
= . . . (19)
L ani a,,z'.... ann Jd. |- lnl 1,.2 e lnn B L 0 0 l.... Uan i

'The left side matrix A has n’ elements, whereas L and U have 142+...+n=n(n+1)/2
elements each. Thus, we have nZ+n unknowns in L and U which are to be

~.determined. On comparing the corresponding elements on two sides in Eqn. (19), we

get n” equations in n’+n unknowns and hence n unknowns are undetermined. Thus,
we get a solution in térms of these n unknowns i.e., we get a n parameter family of

- solutions. In order to obtain a unique solution we either take all the diagonal

elements of L as 1, or all the diagonal elements of U as 1.

Foru, = 1,i=1,2,...,n, the method is called the Crout LU decomposition method.

- Forl;=1,i=1.2,...,nwehave Doolittie LU decomposition method. Usually Crout’s

;\lf' \

3 N
. .
PP - - N ¥

LU decomposition method is used-unless it is specifically mentioned. We shall now
explain the method for n = 3 with u; = 1, i =1,2,3. We have

a;; a2 33 iy 0 0 1 up ug
a3 Ay a3 | = | la L2 O 01 ‘up
ay ax a3y Iy lz s 00 1
or
a;p 42 13 L v liugs
.

ay ap ax | = | la lavtle  laUntlats
as a3x a3 | Ly lauptla  hayuatluastls

On comparing the elements of the first column, we obtain

Iy = ay, L= ag, 1y = asi ‘ : N o (20)
‘i.e., the first column of L is determined. '

On comparing the remaining elements of the first row, we get -

11U = 2125 lUa = g3

which gives '

U2 = apfliy; uys = ap/ly (2_1)
Hence the first row of U is determined. '

On comparing the elements of the second column, we get

Liugg + 12 = 2 - '

lyugz + b2 = 23z

which gives

lyy = a5 — 121“12] .
(22)

L, = a3, — Iajug

Direct Methods

25



Solution of Linear Algebraic Equations Now the second column of L is determined.

26

On comparing the elements of the second row, we get -

Itz + lpplzs = aps

which giVCS Uy3 = (323 - ]21 1113)/122 (23)
and the second row of U is determined.

On comparing the elements of the third column, we get

lajugs + bagugs + 133 = 233 .

WhiCh giVCS 133 = 33 — 131U13 - l32U23 ) (24)
You must have observed that in this method, we alternate between getting a column
of L and a row of U in that order. If instead of u; = 1,i = 1,2,...,n, we take

1, =1,i = 1,2,...n, then we alternate between getting a row of U and a column of
i in that order.

Thus, it is clear from Eqns. (20) — (24) that we can determine all the elements of L
and U provided the nonsingular matrix- A is such that

a a
ay #0, ] 0 40
az; axn

Similarly, for the general system of Eqns. (2), we obtain the élcments of Land U
using the relations

, -1
1; = a; — E Lk, 1 =]
k=1

v i1
u; = (a8 — 2 L)L, i = §
k=1

U = 1
A]SO, det (A) = 111122.”.,1!“,.

Thus we can say that every nonsingular matrix A can be written as the product of a
lower triangular matrix and an upper triangular matrix if all the principal minors of
A are nonsingular, i.e. if

a1 32 313

a; # 0, [a“ a‘z] 40, | 2 % |4 L |Al#0.

a; axp a3 a3 Ay

Once we have obtained the elements.of the matrices L and U, we write the system
of equations ) -

Ax=b ' ©(25)
in the form

LUx=b L - .(26)
The system (26) may be further written as the following two systems

" Ux=y @
Ly=b ‘ ‘ .(28)

Now, we first solve the system (28), i.e.,

"Ly=b,

using the forward substitution method to obtain the solution vector y. Then using this
y, we solve the system (27), i.e., ‘

Ux =y, .
using the backward substitution method to obtain the solution vector x. .

The number of operations for this method remains the same as that in the
Gauss-elimination method. ' :
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§ . We now illustrate this method through an example. |
| Example 11 : Use the LU decomposition method to solve the system of equations
\\\.\ X1 + Xy + X3 = 1 .
- 4x1 + 3X2 - X3 = 6
3x, + 5%, + 3x; = 4

il

Solution : Using I; = 1, i = 1,2,3, we have

11 1 ‘1 0 0 Uy Up '“13’ Y,
4 3 -1 = 1 121A 1 01 0 Uy Ups . .
35 3 by e 1] [0 0 uym | "
T Wz us

= | lagun vt uz Ljuyatugs o

Ity lsupt louz  lauist Iz +uss

first row Crup =1, up= luz=1
firstcolumn  : b= 4, 1 = 3 '
‘secondrow  :uUp=-1, upy=-35

'second column : Iy =-2
thirdrow. .- ! U3 = -10
Thus, we have

i 00
L=]4 10)hU=10-1 -5
o 3 -2 1 0o 0.-10
Now fr9m4ﬁe system
Ly=b>b :
or
1 00 1 1 4
4 10| |vnt=]6 : o
13 -2 1 ¥ 4| :
we get
nw=1,y2=2, y3=35
and from the system
Ux=y
or
1 1 1 X1 1
0o -1 -5 x2 | =1 2
0 0 -10 X3 5
we get

X3 = "'1/2, X5 = 1/2,')(1 = 1.
‘You may now try the following exercises :

‘On comparing the elemént/.s of row and column alternately, on both sides, we obtain -

"E12) UsetheLU decomposition method with u;; = 1,i = 1,2,3 to solve the system
. of equations given in Example 11.
E13) Usethel U decomposition method wit\h 1i=1,i=1273t0 solve the system

/

of equations given in E7. /

El4) UseLU decomposition method tg/ solve the system.of equations given in E10.

Direct Methods
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Solution of Linear Algebraic Equations  'We now end this unit by giving a summary of what we have covered in it.

5.7 SUMMARY

In this unit we have covered the following:

I)

2y

'3)

4)

0

For a system of n equations

= b (see Eqn. (2))
in n unknowns, where A is an nxn non- smgular matnx the methods of finding
the solution vector x may be broadly classified into two types: (1) direct metﬁods ‘
and (i) iterative methods

Direct methods produces the exact solution in a finite number of steps provided
there are no round-off errors. Cramer’s rule is one such method. This method
gives the solution vector as

= d‘"—l’z
X =—=1i=12..n

where d = [A] and d; is the determinant of the matrix obtained from A by
replacing the ith column of A by the column vector b. Total number of operations
required for Cramer’s rule in solving a system of n equations are

M = (n-+1) (n=1)n!+n
Since the number M increases very rapidly, Cramer’s rule is not used for n > 4.

For larger systems, direct methods become more efficient if the coefficient matrix
A is in one of the forms D (dlagonal) L (lower mangular) orU (upper
triangular).

Gauss elimination method is another direct method for solving large systems
(n>4). In this method the coefficient matrix A is reduced to the form U by using
the elementary row operations. The solution vector x is then obtained by usiiig.
the back substitution method. For large n, the total number of operations

required in Gauss elimination method are % n’ (approximately).

“In Gauss elimination method if at any stage of the elimination any of the pivots

vanishes or become small in magnitude, elimination procedure cannot be
continued further. In such cases pivoting is used to obtain the solution vector x.

Every nonsingular matrix A can be written as the product of a lower triangular
matrix and an upper triangular matrix, by the LU decomposition method, if all
the principal minors of A are nonsingular., Thus, LU decomposition method,
which is a modification of the Gauss elimination method can be used to obtain
the solution vector x.

5.8 SOLUTIONS/ANSWERS

El) det (A) =8 '
E2)d=11, d, =11, dy =11, d; = 11

X = Xg =Xg=1

E3) d =20, d; =0, d; =20, dy = 40, dy = ~20

050, =1, x3=2, x4.= -1

’ E4) x1=X2=x3=x4=x5=1

ES) X5=X4=X3=XZ=X1=1_.

E6)

2 1] 3
-2 4| -2
—1 —6 R2 e 3R1, R3 - 2R1

1
3
2
3
8 -7 |-11"
-1 -3 -12 13\3—-5%112



1 21713 ] , R ' Pi?.*“!“@“wﬂ"
" Final derived system” | 0 -8 -7 . -1r
| 17| ss
L0 0 -3 8
5 X3=95, X5 = -3, x;=4
! | 3 189 | 18
4 o E7) Final derivedsystem : —9 -3 105
: | Al I ]
; 3 3

Xs=4, o= -13, x; =72

E8) Final derived system :

12 -3 1] -5
01 31| 6
0 0 10 0} 20
00 0 2] -2

xe=-1,%=2 %=1 x=0
.E9) Final derived system :

2 -1 -4 10
-5/3 108 13 | -2213
0 -3 135 | 545
0 0 0 29

3
Ov
o
0
We cannot determine x, from the last equation.
E10) Final derived sy§tém:
2 -1 0 0 01
032 -1 0 012
0 0 43 -1, 0113
0
0

0 0 54 -11}14
0 0 0 .6/5]6/5

. X5>=‘x4=x3‘= Xy = X; =,1.

- E11) Solution without pivoting :
~ Using myy = 1.372 :
‘ m; = 1.826 and ms, = 2,423
The final derived system is

0.7290 0.8100 0.9000 0.6867
0.0 -0.1110 -0.2350 | -0,1084
-1 0.0 0.0  0.02640 | -0,0087
li

! -. The solution is ' o
| - x'=0.2251, y= 0.2790, z = 0,3295
_,M'S«}lu-tik}a ith pivoting;
" Interc anging first gnd' the third row and using
i, = 0.7513_ _ o .
my = 0.5477 , . 29




Soluti i Igebrai F uations
Solution of Linear Algebraic Equati and Mmsy = 0.6171

the final derived system is

1.331 1.210 .‘ 1.100 1.000
0.0 01473 02975 | 0.139
0.0 0.0  -0.0100 | -0.003280
The solution is x = 0.2246, y = 0.2812, z = 0.3280,

1 0 0 _ 171 1
‘El2) L=]4 -1 0 {;U=]015
3 2 210 00 1 |
| 115 1 1=
=12 4fie 14 -4
1 0 0 318 9
EI3) L=1| 233 1 0;Uu=/|0 -9 -3
| 43 239 1 0 0 -7/3
| 8 =
y=|18 105 - L x =172 13 4|
- 20 0 0 o
-1.320 0 0
El4) L= 0 -1 43 0 0 |;
0

0 0 -1 5/4
0 0 0 -1 6/

1 <12 0 0 0
01 =23 p 0
U=|0 0 1 =34 o0
0 0 0 .1 45
00 0 0 1

1111471 L1 F
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UNIT 6 INVERSE OF A SQUARE MATRIX

_Structure

6.1 Introduction

6.2 The Method of Adjoints

6.3 The Gauss-Jordan Reduction Method
6.4 LU Decomposition Method

6.5 Summary ‘

6.6 Solutions/Answers

- 6.1 INTRODUCTION

In the previous unit, you have studied the Gauss elimination and LU decomposition
methods for solving systems of algebraic equations A x = b, when A is a nxn
nonsingular matrix. Matrix inversion is another-problem associated with the problem
of finding solutions of a linear system. If the inverse matrix A~" of the coefficient
matrix A is known then the solutjon vector x can be obtained from x = A™1 b. In
general, inversion of matrices for solving system of equations should be avoided
whenever possible. This is because, it involves greater amount of work and also it is

difficult to obtain the inverse accurately in many problems. However, there are two

cases in which the explicit computation of the inverse is desirable. Firstly, when
several systems of equations, having the same coefficient matrix A but different right
hand side b, have to be solved. Then computations are reduced if we first find the
inverse matrix and then find the solution. Secondly, when the elements of A™!
themselves have some special physical significance. For instance, in the statistical
treatment of the fitting of a function to observational data by the method of least
squares, the elements of A™! give information about the kind and magnitude of errors
in the data. '

In this unit, we shall study a few important methods for finding the invef;se of a
nonsingular square matrix.

Objectives

After studying this unit, you should be able to :

® obtain the inverse by adjoint method for n < 4; '

® obtain the inverse by the Gauss-Jordan and LU de&omposition methods;

@ obtain the solution of a system of linear equations using the inverse method.

6.2 THE METHOD OF ADJOINTS

You already know that the transposé.of the matrix of the cofactors of elements of A
is called the adjoint matrix and is denoted by adj(A) (Ref. Unit 9, Block 3 of
MTE-02, Linear Algebra).

Formally, we have the following definition.

Definition : The transpose of the cofactor matrix A® of A is called the adjoint of A
and is written as adj(A). .
Thus,

adi(A) = (A9 |
The inverse of a matrix can be calculated using the adjoint of a matrix.

We obtain the inverse matrix A~! of A from

\

A7l = mtlA_) adj (A) - | - (1)

- This method of finding the inverse of a matrix is called the method of adjoints.

\



Solution of Linear Algebraic Equations * Note that det(A) in Eqn. (1) must not be zero and therefore the matrix A riust be
_ nonsingular.

We shall not be going into the details of the method here. We shall only illustrate it
through examples. T

Example 1 : Find A™! for the matrix
1

1
-1

A =

H O O
w N 00

and solve the system of equations

Ax=bD )
for |
2 1} 1
ijb = -1 1, i)y b = 01, i) b = -2
3 0 3

Solution : Singe det (A) = —1 # 0, the inverse of A exists. We obtain the cofactor
matrix A® from A by replacing each element of A by its cofactor as follows :

/
- -5 4 -8
A°=111 -9 17
6 -5 10
-5 11 6
. adj(A) = (AT = |. 4 -9 -5
-8 17 10
-1 _ 1 . ‘
Now A™. = =" A) adj (A)
-5 11 6 5 -11 -6
AT = - 4 -9 -5 |=|-4 9 5
-8 17 10 8 -17 -10
Also the solution of the given systems of equations aré
C s -1 6] [ 2 3
Hhx=Ab=|-4 9 5. -1 =] =2
| 8 -17 -10 § | 3 3
~ 5 -11 6| [1 5 y
i)y x=ATb=| -4 9 5 0f=1-4%
S [T TS VAR U I U | 8
. 5 -11 6| [ 1 9
i) x=A"b=| -4 9 5 2 |=1| -7
| 8 -17 -10 | | 3 12
~ We now take up an example in which the given matrix A is lower tﬁangular and we
- shall show that its inverse is also a lower tria}ngular maltrix.
* Example 2 : Find A" for the matrix X
100 /:
A=1]2 30 .
32 4 56

e
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'Solution ;' We have

det(A) = 18 # 0. Thus A1 exists.

Now .
T 18 -12 -2
A=l 0o 6 -5
0o 0 3
18 00 1 0 o
T
oAl A 1l s0|l=|-23 13 o0
adj(A) 18 | 5 5 3 19 -518 16

Thus, A_f‘ is again a lower triangular matrix. Similarly, we can illustrate that the
inverse ‘of an upper triangular matrix is again upper triangular.

Example 3 : Find A~ for the matrix

[ N 4
[= RV RV

"1
A=1]0
0

Solution : Since, det (A) = 24 # 0, A~ exists.

We obtain
24° 00
A= ["-12 6 0
2 -5 4
24 -12 27 1 -12 -112°
g A-‘=-21Z ‘0 6 -5 |= |0 14 -524
0 0 4 0o 0 16

which is again an upper triangular matrix.

You may now try the following exercises. .

El) Solve the system of equations
3, + X +2%3= 3
2% — Xy — X3 = 1
X; — 2% + X3 = -4
using the method of adjoints.

J

E2) Solve the system of equations I
2 03 4 1 % 3
1 2 0 1 X3 2
t 2 3 1 -1 X3 = 1
[1-2-1 4] Lx 5

using the method of adjoints.

The method of adjoints provides a systematic procedure to obtain the inverse of a
given matrix and for solving systems of linear equations. To obtain the inverse of an
nxn matrix, using this method, we need to evaluate one determinant of ordern, n
determinants each of order n—1 and perform n? divisions. In addition, if this method -

' ) : Inverse of a Sauare Matrix

33



Solution of Linear Algebraic Equations js ysed for solving a linear system we also need matrix multiplication. The number

34

of operations (multiplications and divisions) needed, for using this method, increases
very rapidly as n increases. For this reason, this method is not used when n > 4.

For large n, there are methods which are efficient and are frequently used for finding
the inverse of a matrix and solving linear systems. We shall now discuss these

methods.

6.3 THE GAUSS-JORDAN REDUCTION METHOD

This method is a variation of the Gauss elimination method. In the Gauss elimination
method, using elementary row operations, we transform the matrix A to an upper
triangular matrix U and obtain the solution by using back substitution method. In
Gauss-Jordan reduction not only the elements below the diagonal but also the
clements above the diagonal of A are made zero at the same time. In other words,
we transform the matrix A to a diagonal matrix D. This diagonal matrix may then
be reduced to an identity matrix by dividing each row by its pivot element.
Alternately, the diagonal elements can also be made unity at the same time when the
reduction is performed. This transforms the coefficient matrix into an identity matrix.
Thus, on completion of the Gauss-Jordan method, we have

[Alb] Sauss_ (1] | 3)

The solution is then given by

X = di, i=12,..... N (4)
In this method also, we use elementary row operations that are used in the Gauss
elimination method. We apply these operations both below and above the diagonal
in order to reduce all the off-diagonal elements of the matrix to zero. Pivoting can

be used to make the pivot non-zero or to make it the largest element in magnitude
in that column as discussed in Unit 5. We illustrate the method through an example.

Example 4 : Solve the system of equations .
X1+ X+ x3=1 4

4x; + 3%, - x3=6

3% + 5Xp 4+ 3x; = 4

using Gauss-Jordan method with pivoting.

Solution : We have

f1 1 117
J ~1]6 (interchaﬁging first and second row)
35 3}14] ’

(Alb]

i
&

(4 3 -1

L3 s 3|4 R~ LIRyR - 3R,

4
(43 -1] 67.
=10 %— % -% (interchanging second and third row)
A1)l
0% 47
(4 3 -1]6 ]
~ 1 1511
7 T |2 |
1 511 - =12
05 7 -7 R; — U11Ry, Ry —g7 Re




T
00 4| -FJR+ERR - 2R
40 0 |4
Slomo |y
00 —1-(11 —1—51- —}I R; (divide first row by 4),
£ R (divide second row by 11/4), .
1L R, (divide third row by 1011).
1 00| 1 ﬂ'
= 1 %
00 1 _—%
which is the desired form. _ -
‘Thus, we obtain
xp=1, Xp= %.- X3 = _%‘T

The method can be easily extended to a general system of n equatlons Just as we
calculated the number of operations needed for Gauss elimination method in Unit 5,
in the same way you can verxfy that the total number of operations needed for this

1 3
‘methodisM = ‘2 n’ + - 2 +n

E3) Verify that the total number of operatlons needed for Gauss Jordon reduction

3
method is 2 n + 2 + n

Clearly this method requires more number of operations compared to the Gauss
elimination method. We;, therefore, do not use this method generally for solving system
of equations but is very commonly used for finding the inverse matrix. This is done
by augmenting the matrix A by the identity matrix I of the order same asthat of A,
Using elementary row operations on the augmented matrix [A|I] we reduce the

" matrix A to the form I and in the process the matrix I is transformed ta A™!

" That is

(Al SRS [1]A 7] | ' . o

We now illustrate the method through examples.

Example 5 : Find the inverse of the matrix

3.1 2]
A=]|2 -3 -1

1 -2 1
using the Gauss-Jordan method.

Solution : We hav:

3 1 2(100
[All = | 2 -3 =10 1 0
: 1-21_001-%-111

e
-
A

Inverse of a Square Matrix
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Solut{on of Linear Algebrak Equations Fl 1/3 2/3 1 B30 0
=2 -3 - 0 10
1 -2 1
1 113 . 23| 1130 0
= 0 -11/3 ~73]|-23 1 0
0 =73 13| -13 0 1 '(—
[‘1 13 23| 113 0 0
=~ 1 711 2111 -3/111 0
[ 0 =73 13| -1/3 0 1
[’1 0 511 | 311 111 0
= 0 1 711 {211 -3/11 0
N 11
| 0 0 2011 1/11 7711 1 56
(‘1 0 511|311 111 o
=l 0 1 7711|211 -3/11 o0
00 1 [120 -720 11120
(1 00|14 vs -1a
=l 0 1 0}320 -120 =720
| o 1120 =720 11720
" Thus we obtain
14 114 -1/
A7 =320 -120 -7120
120 =720 1120
Example 6 : Find the inverse of the matrix
2 0 0 o
1 1”2 0 o0
A=12 0 -3 9
1 7”7 -17 55/3
using the Gauss-Jordan method
Solution : Here we have )
(2 0 0 0 ]100:0
1 1”2 0 o0 0100
All=12 0 -3 o 0010
1 =72 -17 553 |0 0 0 1
’—1 .0 0 0 12 0 0 0
1 12 0 o 0 100
~l2 0 -3 o 0 010
1 =72 <17 S53| 0 0 0 1

36
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R,

Rl—

R,

1

3

11

Rz"' R], R3“"2R1,R4"' Rl

0 * 0 1 .Rz ._V'ZRI', R3. - Rl
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1 0 v U 12 0 0 07 Inverse of a Square Matrix
0 12 0 0 [-12 100
=0 0 -3 0 |- 010
| 0 =72 -17 553 | -12 0 0 1 | 2R,
1 0 0 0 12 0 0 07
0 1 0 0 |-1 200
=0 0 -3 0 |-1 010
| 0 =72 -17 553 | =12 0 0 1 |R, +—Z-R2
~10 0 O 12 0 0 0
01 0 0 |-1 200
=] 00-3 0 |-1 010
[ 00 -7 556|470 1 |(-3R)
‘["1 0 0 0 722 0 0 0
g Jo1 0 o [-1 2 0 0
~]0o0 1. 0 | 130 -130
00 <17 53| -4 7 0 1 (—-1-17—124)
~10 0 0 7 0 0 0 —I
01 0 0 |-1 2 0 0
~|loo 1 o 73 0 -13 0
| 0 0 -17 553 | 417 -717 0 -U17 | R4— R
100 0 72 0 -0 0
010 0 -1 2 0 0
~| 001 0 73 0 =13 0 .
| 0 0 0 -5551 | -5/51 -717 13 -117 (—%m)
~1 0 00| 12 0 0 0% . \
0100]-1 2 0 0 '
~|00 10} 13 0 -13 ° 0
| 00 0 1| 111 2155 -17/55 3/55
Hence ,
rw o o 0
-1 2 0 0
Al = 13 0 -13 0 '
| 111 2155 -17/55 3/55

is the inverse of the given lower triangular matrix.

Let us now consider the problem of finding the inverse of an upper triangular matrix.

Example 7 : Find the inverse of the matrix

1 32 2 1R

40 1 -4 1
A= 0 0 1 273
0 0 0 1

using the Gauss-Jordan method. . ' _ 37



. Solution of Linear Alaebnié ‘Equatkuu .solu“on : Here, we have

B 2 121100 0
0 1 -4 1lo100
Am=10 o 1230001 0
[ 000 0 1j0001|R-3R
10 8 -1 |1 -32 0 0
01-4 1{0 1 00
~]loo 123{0 0 10
[ 00 0 1]0 0 01 |R, -8Ry R,+4R,
"1 0 0 -193 |1 <32 -8 0
010 W3[0 1 40
=001 230 0o 10
000 1 ]JO0 0 01
R1+l3-R4,R2—-131-R4,‘R3—%R4
10001 -32-8 193
01000 1 4 -1
~]loo10]0o 0 1 -23
0001}0o o0 0 1
Hence
1 =32 -8 193
) 0 1 4 -113.
A'=10 0 1 -23
0 0 0 1

which is the inverse of the given upper triangular matrix.

Note that in Examples 2,3,6 and 7, the inverse of a lower/ipper- triangllar matrix is
again a lower/upper triangular matrix. There is anothermethod of finding the inverse
of a matrix A which uses the pivoting strategy. Recall that in Sec. 5.5. of Unit 5, for
the solution of system of linear algebraic equation Ax = b, we showed you how the
multipliers m,,; ,’s can be stored in working array W during the process of
elimination. The main advantage of storing these multipliers is that if we have already
solved the linear system of equations Ax = b or order n, by the elimination method
and we want to solve the system Ax =.¢ with the same coefficient matrix A, only the
right side being different, then we do not have to go through the entire elimination
process again. Since we have saved ip the working matrix W all the multipliers used
and also have saved the p vector, we have only to repeat the operations on the right
hand side to obtain ¢, such that Ux = CT'is equivalent to Ax = c.

b

In order to understand the calculations necessary to derive €, from ¢ consider the
changes made in the right side b during the elimination process. Letk be aninteger .
between 1 and n, and assume that the ith equation was used as pivotal equation
during step k of the elimination process. Then i = p,. Initially, the right side of
equation i is just b;. '

If k > 1, then afterStep 1, the right side is

bl(l) = bi -~ m;; bpl

If k > 2, then after Step 2, the right side is
b® = b® — m;, bY -
38 = bi —= m; bPl — My b 92)



In the same manner, we have the right side of equation i = p, as

— 1) k-2
b = by = myp by~ mp b~ =y b (6)
Replacing i by P« in Eqn. (6), we get '
k-1) _ _- ) - (k=2)
o = B ™ Mpp bpy — My by mPk’k—lbpk_l M
=1,2,....,n.
Also, since Ej = bg"),j = 1, 2,...., n, we can rewrite Eqn. (7) as
by ='by, - My by—my ,by— ... = My, b , (8)
k=1,...n.

~ Eqn. (8) can then be u%ed to calculate the entries of b. But since the multipliers m’;

are stored in entries wy’s of the working matrix W, we can also write Eqn. (8)in the
form

by = by — 2 Wo.i b;, k=1, ... , n )

Hence, if we just know the final content of the first n columns of W and the pivoting
strategy p then we can calculate the solution x of Ax = b by using the back substitution
method and writing

2 kaj ]

j=k+1 :
X, = ,k=n,n-1, ..... , 1 (10)
k : Wor A ,

. . +T .
The 'vector x = [x; x5 ...... X,| will then be the solution of Ax = b.

For fmdmg the inverse of an nXn matrix A, we use the above algonthm We first
calculate the final contents of the n columns of the working matrix W and the pivoting
vector p and then solve each of the n systems

Ax = e, =1, ... , N : (11)

wheree; =[1 0..... O] e;=[0 1 0... O]T, ..... ,en=1[0 0..... 1]T with the

help of Eqns (9) and (10). Then for each j=1,....,n the solution of system (11) will
be the corresponding column of the inverse matrlx A~'. Thé following example will -
help you to understand the above procedure. :

Example 8 : Find the inverse of the matrix

2 -1 :
A = 1 0
-11 2

using partial pivoting.

Solution : Initially p = [p;, p,, p3] = [1,2,3]" and the working matrix is

. 1 2 -1
w = 2 / )
11 2 '

Nowd, =2,dy = 2, ds = 2.

1 IWPZ.II
2’ d,

.prl,ll _ _ 2. _
Step 1 : a =5 =

*1>% —é‘ ' Pl‘=2 Pz = 1, Pz—3

We use the second equation to eliminate x, from first and third equations and store

‘corresponding multipliers instead of storing zeros in the working matrix. The

multipliers are

Inverse of a Square Matrix
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wPi,1
m, = i =2,3
Pit w
P11
W,
P21 1
m 3 m 2 e =2 —
P21 u W 2.
P11
w. '
P31 1
P31 3Ty 2.
P11

we get the following working matrix

- . -
@1
W = 2 1 o |,p=@13"
3
3 3 -
b L
.prz,zl - |W13| . 32 _ 3
Step2 - =4, "2 "%
[Wosol _ IWsal _32 _ 3
dp, d,. 2 4
Sinde 72— = % so we take p = (2, 1, 3)T
w,
Now m, = —t2 i =3
1,2 sz‘z
‘ = = a2 _ 32 _
' mp3,2 M2 = Wi2 T3

“We use the first equation as pivotal equation to eliminate x; from the third equation

and also store the multipliers. After the second step we have the following working

" matrix .

@ [

W@ = 2 1 0o |.p=@213"

Now in this case, W is our final working matrix with pivoting strategy p = 2,1, 3)T

Note that circled ones denote multipliers and squared ones denote pivot elements in
the working matrices. '

To find the inverse of the given matrix ‘A, we have to solve
Ax = e; = [bybybs]" '

Ax = ¢ = [by b, bs]"

Ax = ¢ = [by by bs]" .

where e, = [1 00]T, e, = '[0 10]%, es=1001]"



Firs{ we solve the system Ax = e; and consider '

‘OE1] [
Ez: 1 0 X; | = 0}.p=@, 13" | (12)
@ @ 3 X3 0
_ J L 4 L J
' Using Eqn. (9), we get : N

withp; =2, b, =b, =0
with pz = 1, 52 = b] - Wy ‘El
=1—|1].
1-[4]s
=1
withp; =3, by =b; — w3 b, — wyb,
—o-[-1lo-11=-
=0 [ 1 ] 0-11=~1
Using Eqn. (10), we then get the following system of equations
3X3 = -1
-%xz -~ X3 =1
2x14+ Xy = 0 )
which gives x3 = -~ %, Xy = i91' andx; = — %—

. T, .
i.e., vector x = [ - %— - —3— - —%— ] is the solution of system (12). .
Remember that the solution of system (12) constitutes the first column of the inverse
matrix A7, .

In the same way we solve the system of equations Ax = e; and AX = e;, or

Using Eqns (9) and (10), we obtain the solution of system (13) as

9 9 3

R T
(14),ie.x = [-% 2 %] as the third colum of A~

T
X = [—5— 11 ] which is the second column of A™! and the solution of system

'@ 3] -1 T ] [o]

2 () o | =|=]1]re-cryr @
@ 1 3 X3 0
and ST T
..‘%‘ % -1 -xl- v-o—

2 1 0 | |=]01],p=@13" - (14)
'—% 1 3 x | 1

) Inverse of a Square Matrix
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il O Ol
|
|
i Ol o=

W= Ol Ol

Hence A™! =

You may now try the following exercises

E4) In Examples 6 and 7 verify that
AAT'=ATTA =1
ES) Solve the system of equation
X+ 2%+ x3 =0
2%, + 2%, + 3x3 = 3
-x; — 3x; = 2
using the Gauss-Jordan method with pivoting.

E6) Find the inverse of the matrix

2 -1 0 0

-1 2 -1 0

A= 0 -1 2 -1
0 0 -1 2

using the Gauss-Jorddan method.

E7) Find the inverse of the matrix

1 0 0
A = 2 10
1 L
15 1

using the Gauss-Jordan method.

You may recall that in Sec. 5.6 of Unit 5 we discussed the LU decompositivn method. '
Using this method we can factorize any nonsingular square matrix A into the product
of a lower triangular matrix L and an upper triangular matrix U. That is, we can write

A=LU. , ... (15)

.

In the next section we shall discuss how.form (15) can be used to find the inverse of
nonsingular square matrices.

6.4 L U DECOMPOSITION METHOD

Let us consider Eqn. (15) and take tlte inverse on both the sides. If we use the fact
that the inverse of the product of matrices is the product of their inverscs taken in
reverse order (ref. Theorem 6, Sec. 7.6 of Unit 7, Block 2, Linear Algebra MTE-02),
then we obtain ' ) ‘ '

Al'=@u)yt=u'L"! (16)

We can now find the inverses of U and L separately and obtain the invicse matrix
A~ from Eqn. (16):

Remark: It may appear to you that finding an inverse of a matrix by this mcihod is
a lengthy process. But, in practice, this method is very useful because of the fact that
here we deal with triangular matrices and triangular matrices are easily invertible. It
involves only forward and backward substitutions.

Let us now consider an example to understand how the method works."



Example 9 : Find the inverse of the matrix Inverse of a Square Matrix

31 2 ‘
A=]2 -3 -1
1 -2 1

using LU decomposition method.

Solution : We write,

3 1 2 1“ «O 0 1 Up U
A= 2 3 -1 | =LU=[1l; I 0 101 uy | (17)
]. "'2 1 13] ‘132 133 0 0 1 )

Comparing the coefficients on both sides of Eqn. (17), we obtain

L,y =3, 15 =2, I33=1 (multiplying the rows of L by the first column of U)

=1, u, = —%— -« (multiplying first row of L. by the

lhui =2, u;3=2/3 second and third column of U)

The second column of L is obtained from ?

: 2

biug + 1y = gy, Ipp = =3——5~ = ~ “1:%
i+l =ag, = "2*‘% = = %‘

u,3 is obtained from _

' —1—=2(2/3) _
btz + lupy = a3, U3 = *——;—1‘1‘/(-3—1 = ‘1-71'

I35 is.obtained from

l3jups + lsgugs + i3 =1, 134 =%—(1)

Thus we have

3 0 0 1 13 23
L=]|2 ‘1—31 0 |andu=|0 1 711
-1 20
=3 47 ] 0 0 1

Now since L is a lower triangular matrix, L™!is also a lower triangular matrix. Let
us assume that

. i, 0 0
L™ = by bk 0
b b2 ks

Using the identity LL™! = 1, we have

4 30 0 oo o0 100

LL ! =1} 2 —l31— 0 b 0 | =|0 10
1 —% Si’-(ll A 00 1

comparing the coefficients, we get
=4 h=-F w=5
Also, ‘
2”1"‘131‘12'1=0»|2'1=%=’%
b= 2w+ Bu=o00 5 = 5

AT R
—3122 +~T1—l32=0‘ |"2 = - T ) 43
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1/3 0 0

LU= fo2nt =311 0

1720 -7/20 11/20,

Similarly, since U is an upper triangular matrix, U ~!is also an upper triangular
matrix. Using UU™! = I, we obtain by backward substitution.

1 13 23 1 -13 -511
U=|0 1 71 andU™' =0 1 -711
0 0 1 0 0 1
Therefore, we have from Eqn. (16)
1 -1/3 -5/11 173 0 0
AT'=vUT'L=]0 1 -1 | {211 =311 0
0 0 1 120 =720 11/20

-

o~

V4 U4 -4
= | 320 -120 -7/20
| 120 -720 1120

And now a few exercises for you.

E8) Find the inverse of the matrix

1
A=

B O W

-1

using the LU decomposition method. .

E9) Find the inverse of the matrix

301 2
A=]2 -1 4
1 -2 1

using the LU decomposition method

E10) Find the inverse of the matrix given in E6) using the LU decompésit,ion method.

E11) Find the inverse of a matrix

105 2
-1 410
A=| 30 41
2113

We now end this unit by giving a summary of what we have covered in it.

/.

6.5 SUMMARY

In this unit we have covered the foilowing :

1) Using the method of adjoints, the inverse of a given nonsingular matrix A can be
obtained from

AT = le(‘ﬂ adj (A) (see Eqn. (1))-



Since the number of operations in the adjoint method to find the inverse of an X n
nonsingular matrix A increases rapidly as n increases, the method is not generaily
used for n>4.

2) For large n, the Gauss-Jordan reduction method, which is an extension of the

Gauss elimination method can be used for finding the inverse matrix and solve
the linear systems

Ax =b (see Eqn. (2))
using the Gauss-Jordan methoo :

a) the solution of system of Lqns (2) can be obtained by using elementary row
operations.

[Alb] reduced to _ [1d]
b) the inverse matrix A~ can be obtained by using elementary row operations
1AlN reduced to [I{A“']

3) For large n, another uscful method of finding the inverse matrix A lis LU

decomposition method. Using this method any nonsingular matrix A is first
decomposed into the product of a lower triangular matrix L and an upper
triangular matrix U. That is
A = LU.
U~! and L™ can be obtained by backward and forward substitutions. Then the
inverse can be found from '
At =uUuT'Lh

6.6 SOLUTIONS/ANSWERS )

-3 -3 3
E) A=| -5 1 7 ; det (A) = —18
1 7 -5
/6 5/18 -1/18 1
Al=| 6 -118 -718 | ;x = | 2
1/6 -7/18 5/18 -1
S 0 -15 -5
32 -3 14 -21
E2) A= -39 11 7 17 |; det (A) = =355

-19 11 2 =3

-1/11  =32/55 39/55  19/55 1
0 35 -5 15 0
A~ = | 311 -1455 -7/55 255 |;x =10
/11 21/55 -17/55  3/55 1
E3) No. of divisions
Ist step of elimination : n
2nd step of elimination : (n—1)
nth step of climination : 1
. Total number of divisions = n + (n—1) + ........ +1
- _ n(n+l)
_3 0 =20,

Inverse of a Square Malrix
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Solution of Linear Algebraic Equations No. of multiplication
' st step : " elimination in 2nd equation : n
" elimination in 3rd equation : n
elimination in nth equation : n
. Total of 1st step = n(n—1)
2nd step : elimination in 1st equation : (n—1)
elimination in 3rd equation : (n—1)
climination in nth equation : (n—1)
". Total of 2nd step = (n—-1) (n-1)
3rd step : elimination in 1st equation = (n-2)
elimination in 2nd equation = (n-2)
elimination in 4th equation = (n-2)
elimination in nth equation = (n—-2)
. Total of 3rd step = (n—=1) (n-2)
(n—1)th step : elimination in 1st equation = 1
elimination in 2nd equation = 1
elimination in nth equation = 1
.". Total of (h-l) th step = 1.(n-1) :
Total multiplications = ‘n(n—1) + (n~1) (n~1) + (n—1) (1=2) + ... + 1(n-1)
(n=1) [n + (n—1) + (n-2) + .... + 1]

. (n-l)z n = :(n-—l); (n+2)

We also need n divisions to find the solution vector
n(n2+1)' + (n—l),nz(n+2) +

I

".". Total operations =

3 2
=0 _n?
2+2+n.

/ , E4) In Example 6

(2 0 0 o0 =12 o0 0 0

12 0 o -1 2 0 0
AA =12 0 -3 o 3. 0 -1/3 0
Lt e 217 sss | | 21/55 -17/55 3/55

It
[ R =)
S - O o
o O o

0

Similarly, check for Example 7.

ES) Elementary Tow operations required on the augmented matrix
[AlT] in order are :

Interchange first and second row; R, — % R, R; + —1 Ry;

interchanging second and third row; R, + L 3.2, R; + — Ry;

% R, - 2Ry, R, + B,



s

E6)

E7)

ES)

E9)

L R:R, + Rl;% Ry R, + L Ry, Ry +Ry; %Rg,;Rl

‘2“R3§R4+R33‘(51‘R4;R1 + %R‘L‘.Rz +

Final derived system is

2 0 0 =27

0 -4 01 =207

11 118

0 0 3 11/8
Solution is x; = — -;- Xy = - ~:;~.x3 = -17

Elementary row operations required on the augmented matrix [A{l] in order
are :

+%R3,R2 +

5 ReRs + 3Ry

2 2

3
We find
4/5 3/5 2/5 1/5
35 65 4/5 2/5
Al = 25 45 615 35
15 25 35 4/5

Elementary row operations required on the muatrix [A|l] are

R, = 2R;,R3+ Rj5 Ry — —I‘Rz

2
we obtain
1 0 0
Al =] 22 1 0
_1
2 5 0
5 0 0 5 0 0
L=]|0 2 0 LT = 0 12 0
4 -175 -1/10 8 -17 -10
1 85 15 ' 1 -85 3/5
U= 1 1/7 =10 1 -1r
0 0 1
-11 -6
A"l = UTiL!
~17 ~10
30 07 173 0 0
L=]2 -3 0 |;L'=]25 -3 0
1 =773 18/5 | 3/18 -7/18 5/18
1 13 213 1 =13 -1/5
U=|0 1 75 |;ut=l0 1 -75
0 0 1 0 0 1

/6 5/18 -1/18
A'=U"L"' = | 6 -1/18 -718
/6 -7/18 5/18

Inverse of a Square Matrix
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E10) L

I
o

-1

(1 -12 0 07
0 1 -23 o
U=|0 0o 1 -3
0 0 o 1 ]

172

0

173 273

0
0

L7! =

V4 2/4 3/4

0
0
0

| VS 25 35 45

1

0
0
K

172 173 1/4
1. 23 2/4
0 1 34

0

0

A~ = UTIL! =

-1 4 0
El) L=| 3 ¢ -11
-2 1

5
32
1
0

O O O

[ 1
1/4
3/11

F 10 0

4/5
3/5
2/5
1/5

0
0
0

2
172

511
1

0

1/4
0

1

3/5
6/5
4/5
2/5

19/2 24/11

0
0

2/5
4/5
6/5
3/5

0
0

-11 0

1/5
2/5
3/5
4/5

| -37/9 -11/9 38/96 44/96

[ =5 311

=312

21

<
]

(== R =}

= UL =

1

-5/11

0 1

~15/32
-11/48

43/96
~37/96

~1/32
11/48
5196
-11/96

9/16
5124
~-13/48
19/48

8

viz | W
-5/24
11124



UNIT 7 ITERATIVE METHODS

Structure

7.1 Introduction

7.2 The General Iteration Method

7.3 The Jacobi Iteration Method

.7.4 The Gauss-Seidel Iteration Method \
7.5 Summary

7.6 Solutions/Answers

7.1 INTRODUCTION

In the previous two units, you have studied direct methods for solving linear system

of equations Ax = b, A being nXn non-singular matrix. Direct methods provide the
exact solution in a finite number of steps provided exact arithmetic is used and there

is no round-off error. Also, direct methods are generally used when the matrix A is
dense or filled, that is, there are few zero elements, and the order of the matrix is
not very large say n < 50.

Iterative methods, on the other hand, start with an initial approximation and by
applying a suitably chosen algorithm, lead to successively better approximations.
Even if the process converges, it would give only an approximate solution. These
methods are generally used when the matrix A is sparse and the order of the matrix
A is very large say n > 50. Sparse matrices have very few non-zero elements. In most
cases these non-zero elements lie on or near the main diagonal giving rise to
tri-diagonal, five diagonal or band matrix systems. It may be noted that there are no
‘fixed rules to decide when to use direct methods and when to use iterative methods.
However, when the coefficient matrix is sparse or large, the use of iterative methods
is ideally suited to find the solution which take advantage of the sparse nature of the
matrix involved. ;

In this unit we shall discuss two iterative methods, namely, Jacobi iteration and
Gauss-Seidel iteration methods which are frequently used for solving linear system
of equations.

Objectives

After studying this unit, you should be able to: .

® obtain the solution of system of linear equations, Ax = b, when the matrix A is
large or sparse, by using the itetative method viz; Jacobi methiod 6r the
Gauss-Seidel method;

o tell whether these iterative methods converge or not;

® obtain the rate of convergence and the approximate number of itérations needed
for the required accuracy of these.iterative methods.

7.2 THE GENERAL ITERATION METHOD °

In iteration methods as we have already mentioned, we start with some initial
approximate solution vector xX* and generate a sequence of approximants {x)}.
which converge to the exact solution vector x as k — . If the method is convergent,

each iteration produces a better approximation to the exact solution. We repeat the
iterations till the required accuracy is obtained. Therefore, in an iterative method the

amount of computation depends on the desired accuracy whereas in direct methods
the amount of computation is fixed. The number of iterations needed to obtain the
desired accuracy also depends on the initial approximation, closer the initial
approximation to the exact solution, faster will be the convergence.

Consider the system of equations
Ax=Db e (D
where A is an n X n non-singular matrix.
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- In general we_can write. the iteration method for solving the linear system of

If we define the error vector at the kth iteration as

- THus, we get rom Eqn. (8)

# s S r———

Writing the system in expanded fonh. we get

anX; + a;Xs + ..., 810X, ='b,
1%y + anX; + ... Xy = by ‘ (¥3)]
AniXy + 8poXy + ... + apX, = b,

We assume that the diagonal coefficients a; # 0, (i=1,...,n). If some of a; = 0, then
we rearrange the equations so that this condition holds. We then rewrite system (2) as

1 A b
X = - "a—‘- (312’(2 + a;3Xy + ... + amx,,) + —L
1 a
-1 b
Xy = o= e (azlxl + a3%X3 + ...... + az,,x,,) + —= (3)
an a2 :
.1 . bn
Xy = = ‘5——-(8"1)(1 + AnaXy + ... + a,,,,..,x,,..l) + .
nn i nn
In matrix form, system (3) can be written as
x = Hx + ¢ /
where . ‘ '
0 -2z _8y, .. _ 8, " !
an ay ap;
a1 0 — 23 -
axp a .83 :
H=1 . reeteerae st )
- am -8 ... TS )
L ann ann ann -

and the elements of care ¢; = -aE“'-(i = 1,2,....,n).

: 1
To solve system (3) we make an initial guess x® of the solution vector and substitute
into the r.h.s. of Eqn. (3). The solution f Eqn. (3) will then yield a vector x™, which
hopefully is a better approximation to the solution than x®, We then substitute x(*
into the r.h.s. of Eqn. (3) and get another approximation, xX®. We continue in this
manner until the successive iterations x*) have converged to the required number of
significant figures. ' .

Eqns. (1) in the form

xX¥*D = Hx® y¢, k=01.... o )
where x® and x(“,_“) are the approximations to the solution vector x at the kth and
the (k+1)th iterations respectively, H.is called the iteration matrix and depends on

A. cis a column vector-and depends on both A and b. The matrix H is generally a
constant matrix. : .

When the method (5) is convergent, then
lim x® = [im x®*) = 4
k—oﬂfl k-2
and we obtain ff'Bhi'th. (5 .
x=Hx+¢ ‘ . (6)

€M = 509 _

. . : ™
then subtracting Eqn. (6) from Eqn. (5), we obtain '
' e = 1 ™) ' .

(®)

€ = Hek D s P eD o o gk e® , )
where € is the error in the initial approximate vector. Thus, for the convergence
of the iterative method, we must have ' ‘

lim €® = 0 ' ‘ -

kesos

independent of €®©).



Before we discuss the above convergence criteria, let us recall the followmg
definitions from lmear algebra, MTE 02.

Definition : For a square matrix A of order n, and a number X\ the value of A for
which the vector equation Ax = Xx has a non-trivial solution x # 0, is called an
cigenvalue or characteristic value of the matrix A.

Definition : The largest eigenvalue in magnitude of A is called the spectral radius of
A and is denoted by p(A).

The eigenvalues of the matrix A are obtained fror1 the characteristic equation
det (A—Al) =

which is an nth degree polynom1a1 in A. The roots of this polynomial Ay, A,,...,\, are
the eigenvalues of A. Therefore, we have

- p(A) = max |\ (10)
We now state a theorem on the convergence of the iterative methods.

Theorem 1 : An iteration method of the form (5) is.convergent for arbitrary initial
approximate vector x@ if and only if p(H)<1.

We shall not be proving this theorem here as its proof makes use of advanced
concepts from linear algebra and is beyond the scope of this course.

We define the rate of convergence as follows:

Defirition : The number v = —log,o p(H) is called, the rate of convergence of an
iteration method.

Obviousiy, smailér the value of p(H), larger is the value of v.

Definition : The method is said to have converged to m significant digits if
max ]e (k)l < 107™, that is, largest element in magnitude, of the error vector

e(k) < 10™™. Also the number of iterations k that will be needed to make
max |€®] < 107"

‘is given by

k=" (11)
v . . :
Therefore; the number of iterations that are required to achieve the desired accuracy
depends on v. For a method having higher rate of convergence, lesser number of
iterations will be needed for a fixed accuracy and fixed initial approximation.

There is another convergence cnterlon for iterative methods which. is based on the
norm of a matrix.

The norm of a square matrix A of order n can be ‘defined in the same way as we
define the norm of an n-vector by comparing the 51ze of Ax with the size of x (an
n-vector) as follows:

IAX];
fixll

based on the euclidean vector norm, |[xl|, = v/ |x; 2+ [x,]*+ -+ |x, |2

i) [Af; = max

and

Ax|
Max. , based on the maximum vector norm, ||xfl.. = max |x;],

ii) JAll. = max ——~2
” ”oo ) I<isn

In (i) and (ii) above the maximum is taken over all (non zero) n-vectors. The
most commonly used norms is the maximum norm ||All.., as it is easier to
calculate. It can be calculated in any of-the following two ways:

Alle = max Elaikl (maximum absolute column-sum)
ko

or

Al

max zlaikl (maximum absolute row sum)
i k ‘ I

Iterative Methods

[|A}| denotes the norm of A,



Solution of Linear Algebraic Equations The norm of a matrix is a non-negative number which in addition to the property
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IAB| < ||l [[BI
satisfies all the properties of a vector nori, viz.,
a) Al =0and|A]=0iff A=0
b) JlaAll = | of JAll, for all numbers a.
lA+B] < ||A] + [B]
where A and B are square matrices of order n.

We now state a theorem which gives the convergence criterion for iterative methods
in terms of the norm of a matrix.

‘Theorem 2 : The iteration method of the form (5) for the solution of system (1) ~

converges to the- exact solution for any initial vector, if |[H| <l

Also note that
Il = p(). \
This can be easily proved by considering the eigenvalue problem Ax = Ax.
Then [[Ax]| = x| = | A| fix]
or [\ [l = llax| < JA]l x|
i.e., \| < ||A] since ]| # 0 _
Since this result is true for all eigenvalues, we have
p(A) < JA].

The criterion given in Theorem 2 is only a sufficient condition, it is not necessary.
Therefore, for a system of equations for which the matrix H is such that either

max 2 |hy] < 1 or max 2 Ihy| < 1, the iteration always converges, but if the
koi=1 i k=1
condition is violated it is not necessary that the iteration diverges.

There is another sufficient condition for copvergence as follows:

Theorem 3 : If the matrix A is strictly diagonally dominant that is, -

pJ>2m,h1z ........ .
5
j#i

then the iteration method (5) converges for any initial approximation xg).
If no better initial approximation is known, we generally take x©@ = 0.

We shall mostly use the criterion glven in Theorem 1 whxch is both necessary and
sufficient.

For using the iteration method (5), we need the matrix H and the vector ¢ which
depend on the matrix A .and the vector b. The well-known iteration methods are
based on the splitting of the matrix A in the form '

A=D+L+U : )

where D is the diagonal matrix, L and U are respectlvely the lower and upper
triangular matrices with zero diagonal elements. Based on the splitting (12), we now

discuss two iteration methods of the form (5).

7.3 THE JACOBI ITERATION METHOD

~ We write the system of Eqn. (1) in the form (2), viz.,

a; Xy + a12X2 - <+ ...+ Q1pXp = b1
31X + apX; + ... + ApXp = b2

\

aniX; + 252Xz + ... + Ak, = by,



We assume that ayy, ag......a,, are pivot elements and a; # 0, i = 1,2,...,n. If any. Iterative Methods
of the pivots is'zero, we can interchange the equations to obtain non-zero pivots
(partial pivoting). :

Note that, A being a non-singular matrix, it is possible for us to make all the pivots
non-zero. It is only when the matrix A is singular that even complete pivoting may
not lead to all the non-zero pivots.

We rewrite system (2) in the form (3) and define the Jacobi iteration method as

1 .
x{<D = —a-:(a,zxg") + a;ax$” + o+ ax(V-b))
. ' 1
X = — ;,Z;(az.xé") + agsx$® + .+ a,x(V—by)
. |
(k+1) _ (k) (k) (k)
Xn = - (@niX] 7+ @pX3 .o+ 8y pog Xo —Dby)
nn
LI
k+1 k . _
or x{**1 = — A [ 2 a;j Xf )-bi],l=l,2....n, k=0,1,... (13)

The method (13) can be put in the matrix form as

- - - ! ~rr -1r - S B
x, &0 — 0 ap..a, x{ b,
an |
xR =~ Py ay 0 .. x$9 | - b, |
. 22 . . .
[ x{+D - 31— J\Lla, ay..0 JL x{® . b, JdJ
nn
or .
XY = DML+ U)x® +D7'b,k=0,1,... (14)
where ) '
0 Oeveininnnnn, 0
aq 0........ 0 azy R 0
D= 0 A32.c.ens 0 , L= asy a3y 0......... 0
L Aon | ] e
Adp1 < Ag2 Agp—y 0
0 Ay Ajz..e.... Ay,
and U=1]0 0 az; A, :
. . an—l,n .
0 0 O0..... 0 ]

The method (14) is of the form (5), where

H=-D"'"(L+U)andc=D""b
For computational purposes, we obtain the solution vector x**V at the (k+1)th

iteration, element by element using Eqn. (13). For large n, we rarely use the method
in its matrix form as given by Eqn. (14). T

In this method in the gk+ Dth iteration we use the values, obtained at the kth iteration
viz., x{¥, x{,....x{ on the right hand side of Eqn. (13) and obtain the solution
vector xX**Y. We then replace the entire vector x* on the right side of Eqn. (13) by
x**1 to obtain the solution at the next iteration. In other words. each of the
equations is simultaneously changed by using the most recent set of x-values. It is for
this reason this method is also known as the method of simultaneous displacements.

Let us now solve a few examples for betier unde~standing of the method and its
convergence. ‘ ‘ 53



“Selution of Linesr Algebraic Equations Example 1 : Perform four iterations of the Jacobi method for solving the system of

equations
28011 *
1. -5 1 (1)
1 -4

with X9 = 0, the exact solution is x = [-1 —4 3],

Solution : The Jacobi method when applied to the system of Eqns. (15) becomes
x(krd 2 1 [x$9 + x§O~ 1]

1
x§E+D = ?[xfk),+ xgk)_ml (16)
XD = L0 4 x0-7), k= 0,1,....

Starting with x” = [0 0 0]", we obtain from Eqns (16), the following results:

XD =1[0+0-1] = -0.125
x$V _-[o +.0 —16]) = —3.2
X0 =2[0+0~7) = ~175
‘ k=1
x{? =-8-[ -3.2 -1.75 —1] = —0.7438
x§? =—5-[—0.125 ~1.75 ~16],= —3.5750
X2 =-}‘-[40.1‘zs ~32 =7] = —2.5813
k=2
x{¥ =E[ ~3.5750 —2.5813 —1] = —0.8945
X =3 [~0.7438 ~2.5813 ~16] = ~3.8650
X = 2[~0.7438 ~3.5750 ~7] = -2,8297
k=3 :
%Y = [ ~3.8650 —2.8297 —1] = —0.9618
X9 = L[~0.8945 ~2.8297 ~16] = —3.9448 - (17)
‘ B x§¥ ——[—0.8945"—3.8650‘—7] = —2.9399

/
: , ‘ .,
. Thus, after four iterations we get the solution as given in Eqns (17). We find that
o after each iteration, we get better approximation to the exactysolution. :

Example 2 : Jacobi m\ethod,is used to solve the system of eciuations .

4 "'l 1 xl 7 - '
4 -8 1 f[.x =] -21 ©8)
54 -2 1 5 X3 15 . , o / i

"
~
A

[ ——



Determine the rate of convergence of the method and the number of i iterations needed
to make max |€{] < 107 ~

Perform these number of iterations starting with initial approximation x@ = (1227
and compare the result with the exact solution [2 4 3]T

Solution : The Jacobi method when applied to the system of Eqns. (18), gives the
iteration matrix

[~ o
i 0 (82 !.O ao ag
ap; 1
H‘ = - 0 —_— 1] a 0 Ay
a2 1 .
0 0 A a3y a3y 0
L a3 L .
:11 0 0 [ 0 -1 1
=-10 3 0 4 0 1
1 -
| 0 0 s || 2 10
-
I _1
0 4 4
= 1 1
= 5 0 2
2 _1
L5 "5 0]
The eigenvalues of the matrix H are the roots of the characteristic equation.
. det (H=AI) =0
Now
- 1 _1
A 4 4 3
© det (H-AI) = % - % =N -2 =0
2 1
s A

All the three eigenvalues of the matrix H are equal and they‘are equal to

A = 0.3347 .

The spectral radius is : ‘
o(H) = 0.3347 - - (19)
We obtain the rate of convergence as ,

N v = —log;4(0.3347) = 0.4753
The number of iterations needed for the required accurécy is given by

k=2~ ‘ (20)
The Jacobi method when applied to the system of Eqns. ( 18) becomes
1 -1 7
| O 3 3 2
(k+1) _ 1 1] ,.m <t =
X = 3 0 8 X + g , k=0,1,... N (21)
2 1
5§75 0 3

starting with the initial approximation x* = [l‘ 2 2]7, we get from Eqn. (21)
xXV=[175 3375 3.0
D =[1.8437 3.875 3.025]
3 =[1.9625 3.925 2.9625]"
~ x® = [1.9906 3.9766 3.0000]"
x® = [1.9941 3.9953 3.0009]7

Iterative Methods

35



Solution of Linear Algebraje Equations which is the result after five iterations. Thus, you can see that result obtained after

56

five iterations is quite close to the exact solution [2 4 3]T

Example 3 : Perform four iterations of the Jacobi method for solvirg the system of
equations

2 -1 0 0 X;
-1 2 -1 0 X3
0 -1 2 -1 X3
0 0 -1 2 X4

i

(22)

—0 O =

with x©@ = [0.5 0.5 0.5 o. 5]T What can you say about the solution obtained if
the exact solution isx = [1 1 1 17

Solution : The Jacobi method when applied to the system of Eqns. (22) becomes
xgk'ﬂ) =_,;_[1 + xgk)]

k+l) = [x(k) + X:(;k)]

D = 39+ x{Y) @)

xsk-i.-l)"= %[1 + x§"’]\, k=0,l,...

‘Using x@ =[0.5 0.5.0.5 0.5]", we obtain

x® = [0.75 0.5 0.5 0.75]T

x® = [0.75 0.625 0.625 0.75]" .

x®) = [0.8125 0.6875 0.6875 0.8125]T

x@-= [0.8438 0.75 0.75 0.8438]"
You may notice here that the solution is improving after each iteration. Also, the
solution obtained after four iterations is not a good approximation to the exact’

solution x = [1 1 1 1]". This shows that we require a few more iterations to get a
good approximation.

Example 4 : Find the spectral radius of the iteration matrix when the Jacobi method,
is applied to the system of equations

L)

1 0 2 x| -1
0 1 -2 x; | = 5
1 -1 1 X3 | -3

Verify that the iterations do not converge to the exact solution x = [1 3 -1] .

'Solution : The iteration matrix H in this case becomes

1 o oo o 2
H=- 1 0 0 0 -2
0,0 1 1 -1 0
[ 0 0 -2
= 00 2
[ -1 1 0

‘and ¢ = [~ 15 -3]T.

The elgenvalue of H are the. roots ot the characteristic equation -
det (H-AI) = 0. This gives us
-\A? - 4) = '
re. N =0, £2
p(HYy=2>1.



Thus, the condition in Theorem 1 is violated. The iteration method does not corivc/ge. ' _Herative Methods -

We now perform few iterations and see what happens actually. Taking x® = 0 and

using the Jacobi method /
0 0 -2 -1 ]
V=10 o0 2 x4+ 51,
-1 1 0 -3
we obtain

xD = (=15 -3"
X =(5-13)

x® = (=7 11 =97
x® = (17 =13 157
x® = (~31 35 -33)T

and so on, which shows that the iterations are diverging fast. You may also try to
- obtain the solution with other initial approximations.

E1) Perform five iterations of the Jacobi method for solving the system of equations
given in Example 4 with x® = [1 1 1] .

Let us now consider an example to show that the convergence criterion given in
Theorem 3 is only a sufficient condition. That is, there are system of equations which
are not diagonally dominant but, the Jacobi iteration method converges.

‘Example 5 : Perform iterations of the Jacobi method for solving the system of

equations
1 1 1 X1 3
60 2 0 2 | =] 2
0 3 -1 ] X3 1

with x©@ = [0 1 1]F. What can you say about the solution obtained if the exact
solution is x = [0 1 2]™?

Solution : The Jacobi method when applied to the given system of equations becomes
x(*D = 3 — 1 - ;)]
x£k+l) =1 . .
x{HD = [-1 + 3x{9], k=0,1,.....
Using x©@ = [0 1 1], we obtain
xXPV=[112"
xX@=1012]

x®=[012]"

You may notice here that the coefficient matrix is not diagonally dominant but the
iterations converge to the exact solution after only two iterations.

And now a few exercises for you.

E2) Perform four iterations of the Jacobi method for solving the system of equations -

5 2 2 X3 1
2 s 3|{x|[=] -6 ’
2 1 5 X3 -4 A

with x® = 0. Exact solution is x = (1 =1 ~1)T ' o , 57



Solution of Lincar Algebraic Equations E3) Peform four iterations of the Jacobi method for solving the system of equations

-1 3

‘2 > 0 X3 5
~3 2 -4 x2 |=] 0
-3 1

0 5 2 X3 5

with.x® = 0. The exact solution is x = (1 1 1)

E4) Perform four iterations of the Jacobi method for solving the system of equations
! ‘ '

5 -1 -1 =1 |[x | |-4
-1 10 -1 -1 ] x [=]12
-1 -1 5 =1 || x 8
-1 -1 -1 10} x, 34
with x@ = 0. The exact solution isx=[123 4]T ) #

E5) Set up the Jacobi method in inatrix form for solving the system of equaﬁons

C 0 -1 -1 . r%
‘ 1 _1 =| 1
g IR
4 34 3 2
--% —711 0 1L x4 -%.J

and perform four iterations. Exact solution is x = (1 1 1 I)T. Take x©@ = 0.

E6) Jacobi method is used to solve the system of equations

Determine the rate of convergence of the method and the number of iterations
needed to make max |€{'| < 1072, Perform four iterations and compare the
result with the exact solution (1 1 —1)T. ;

We have already mennoned that iterative methods are usually applied to large linear
systems with a sparse coefficient matrix. For sparse matrices, the number of non-zero
entries is small, and hence the number of arithmetic operations to be performed per

- step is small. However, iterative methods may not always converge, and even when
they converge, thcy may requlre a large number of iterations.

We shall now discuss the Gauss-Seidel methiod which is a snmple modification of the
method of simultaneous displacements and has 1mproved rate of convergence.

-

7.4 THE GAUSS-SEIDEL ITERATION METHOD ;

Consider the system of Eqns. (2) written in form (3). For this system of equatxons,
58 : we define the Gauss-Seldel method as: ‘ R



Iterative Methods

1 1
x{D = — ——-(alzxﬁ") + ax$P + ..+ agx{F-by)
XD = — —(a x("“) + ayx§F + ...+ az,,x —b,)
a2
(24)
xx(\kH) = — = (a x(k+1) + a, x(k+1)+ +an e lx(k+1) "bn)

nn

or

1
XD = — - [ 2 aj X Xk 4 2 a;; x{¥ = b; ] =1,2,...,n

j=1 Cj=itl

You may notice here that in the first equation of system (24), we substitute the initial
approximation (x52; x§2,. x(9) on the right hand side. In the second equation,
we substitute (x{, x(o) (0)) on the right hand side. In the third equation, we

- substitute (x§, x§V, x99, x(o)) on the right hand side. We continue in this manner

until all the components have been improved. At the end of this first iteration, we
will have an improved vector (x{®, x§",...,x{"). The entire process is then repeated.
In other words, the method uses an improved component as soon as it becomes
available. It is for this reason the method is also called the method of successive

" displacements.

We can also write the system of Eqns (24) as follows:

ay x(k+)——azx()—a3x cap X9 + by
az xi"“’-l-a X l)=—a3xk) ...—-az,,x,(,)+bz

an1 ng.H) + ap2 x§k+1) + ...t A X (k+l) = bn
In matrix form, this system can be written as
D+L) x**V = —Ux® +b ‘ - (25)

where D is the diagonal matrix

- o

. an 0
D= 0 ax
. a33 .
0 an, | .
L .

and L and U are respectively the lower and upper triangular matrices with the zeros.
along the diagonal and ar¢ of the form :

- o -
0 {1 SO 0 ‘ W 0 a;2  Aaj3...a81p
L= a1 (USPRSSY 0 : U= 0 0 .a33...42,
| am am 0.0 0 0 0 ..y
) ) ’ ) * -1 n
IR An | 0 e 0
From Eqn. (25), we obtain .
x&*D = — (D+L)~! Ux® + (D+L)"* b - (26)

" which is of the form (5) with

H= —(D+L)' Uandc = (D+L)™"b.

‘ It may again be noted here, that if A is diagonally dommant then the 1terauon always

converges.

Gauss-Seidel method will generally converge if the Jacobi method converges, and will
converge at a faster rate. For symmetric A, it can be shown ‘that -

p(Gauss-Sendel iteration method) = [p(Jacobx lteration method)]2 59
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Solution of Linear Algebraic Equations Fence the rate of convergence of the Gauss-Seidel method is twice the rate of
convergence of the Jacobi method This result is usually true even when A is-not

60

symmetric.

We shall 1llustrate this fact through examples.

Example 6 : Perform four iterations (rounded to four decimal places) usmg ‘the

Gauss-Seidel method for solvmg the system of equatnons

-8 1 1 X, 1
1 -5 1~ X |=] 16
1 1 -4 X3 7

with x@ = 0. The exact solution is X = (--1 -4 =3)T,
Solution : The Gal{ss Seldel method, for the system (25) is

x{¥*D = [xik) +x{0-1]
xSk+l) = ;5—-[X£k+1) + x§k+l»)_16]

§k+1) - [x(k+1) + x(k-~l-1)__7] k = 0 1
Takmg x(o) = 0, we obtain the following 1teratlons
k=0 '
XD =%-[o +0~1] = —0.125
XD = [-0.125 + 0 ~16] = ~3.225

0 =1 [0125 ~3.225 =) = L 5875

k=1
x{? = Ts‘[ —3.225 —2.5875 —1] = —0.8516
@ = 2[~0.8516 ~2.5875 — _16] = ~3.8878
X =1 (08516 ~3.8978 7] = ~2.9349
k=2 -
x{¥ = §[ -3.8878 -2. 9349 -1]1 = -0.9778
X = %[ 0.9778 ~2.9349 —16] = —3.9825
XD = 2 [~0.9778 ~3.9825 ~7] = -2 9901
k=3

x{9 = [ —3.9825 —2.9901 -1} = ' —0.9966
X9 = [ -0. 9966 ~2.9901 —16] = -3.9973

x§® =T[—O.9966 —3.9973 ~7] = ~2.9985

@7

2

- whichisa good approximation to the exact solution x = (=1 —4 —3)T with maximum

absolute error 0.0034. Comparmg with the results obtained i in Example 1, we fmd,

solutlon than the one obtained in Example 1.

i

" that the values of x;, i=1,2,3 obtained here are better approxunates to the exact’
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‘Example 7 : Gauss-Beidel Method is used to solve the system of equations - » Iterative Methods
4 -1 1 X 7 .
4 -8 1 X | =] =21 (29)
-2 15 X3 15 :

Determine the rate of convergence of the method and the number of iterations needed
to make max [€®] < 10™2. Perform these number of iterations with x© = [122F
and compare the results with the exact solution x = [2 4 3T,

Solution : The Gauss-Seidel method (26) when applied to the system of Eqns. (29)
gives the iteration matrix.

4 007 'To -1 1
H=-| 4 -g ¢ 0 0 1
2 15 0 00

~ Since the inverse of a lower triangular matrix is also a lower triangular matrix let

{0 o 4 0 0]
, L=1|1; 1, 0 = 4 -8 0
A i L 1y -2 15
. then
4 0 0 l; 0 0 1 0 o
: -2 15 b 1y 0 0 1

1
8
-0 L -3
=2l + by + 5ly; =0, lax*'m
. _ 1 -
! "122‘*‘5132:0,132{—.?()‘
| ﬂﬂ=1J$=§ '
, - _
| s 0 0
* = 1 _'.l (
L = 3 R 0
301
40 40 5
i g
Hence
i 1 7
~3 0_.- 0 0 -1 1
=[-1 1
H= 38 81 (; 0 0 1
% "% 5|-0 0 0
5 o
: (1 1]
0 3 3
= 1
N % 2 )
° &




Solution of Linear Algebraic Equations

The eigenvalues of the matrix H are the roots of the characteristic ecjuation

- 1 1l
| g 3
det(H-A) = | 0 %-—x 0 =0
' 3 (L
o 3 (10 + x)

We have
ABON® — 20 =1) =0

which giveé

A =0, 0.125, -0.1
Therefore, we have
p(H) = 0.125
The rate of eonvergence of the method is given by

v = —l0g;0(0.125) = 0.9031 '
The number of iterations needed for obtaining the desired accuracy is given by

The Gauss-Seidel method when apphed to the system of Eqns (29) becomes
1 .
x{k+D =7 [7 — x§ + x§9)
XD = - %[—21 — dx{k*D — x{9) _ (30)

XD = %[15 £ 2x{kD - x g+

The successive iterations are obtained as
x =[1.75 3.75 2.95]"

x® =[1.95 3.9688 2.9863]"
x® =[1.9956 3.9961 2.9990]"

which is an approximation to the exact solution after three iterations. Comparing the
results obtained in Example 2, we conclude that the Gauss-Seidel method converges

faster than the Jacobi method.
Example 8 : Use the GaUSS-SBldCl ‘method for solvmg the following system of

equations.

-1 0 1 Xy

-1 2 -1 0 Xy | =
-1 2 =1 || x3
0o 0 -1 2 X4,

G

=

with xX@ = [0.5 0.5 0.5 0.5]™ Compare the results with those obtained in
Example 3 after four iterations. The exact solutionisx =1 1 1 1]

Solution : The Gauss-Seidel method when applied to the system of Eqns (31)
becomes

XKD = 7[1 + x§9]

x£k+1) - [x§k+1)+'x§k);] _ > (32:

NI»—- N{lr—i

X:(;k+l) [ £k+l) + X,(;k)]

VNN
x{EHD = -1-[1 + x§DY k=3, Tae N
2 SNON - AKX



Starting with the initial approximation xX® = [0.5 0.5 0.5 0.5]", we obtain the
following iterates - -

x® =[0.75 0.625 0.5625 0.7813]7
x® =[0.8125 0.6875 0.7344 0.8672]"
x) = [0.8438 0.7891 0.8282 0.9141]"
x® = [0.8946 0.8614 0.8878 0.9439]"
In Example 3, the result obtained after four iterations by the Jacobi method was
x® =[0.8438 0.75 0.75 0.8438]T

Remark : The matrix formulations of the Jacobi and Gauss-Seidel methods are used
whenever we want to check whether the iterations converges or to find the rate of

convergence. If we wish to iterate and find solutions of the systems, we shall use the
equation form of the methods.

And now a few exercises for you.

You may now attempt the following exercises.

E7) Perform four iterations of the Gauss-Seidel method for solving th’e system of
equations given in E2).

E8) Perform four iterations of the Gauss-Seidel method for solving the system of
equations given in E3). '

E9) Perform four iterations of the Gauss-Seidel method for solving the system of
equations given in E4).

E10) Set up the matrix formulation of the Gauss-Seidel method for solving the system
of equations given in ES). Perform four iterations of the method.

E11) Gauss-Seidel method is used to solve the system of equations given in E6).
Determine the rate of JSonvergence and the number of iterations needed to
make maxle )| < 1072, Perform four iterations and compare the results with
the exact solution. ‘

We now end this unit by giving a summary of what we have covered in it.

7.5 SUMMARY

In this unit, we have covered the following: .
1) Iterative methods for solving linear system of equations
Ax=b (see Eqn. (1))

where A is an nXn, non-singular matrix. Iterative methods are generally used
when the system is large and the matrix A is sparse. The process is started using
- an initial approximation and lead to successively better approximations.

- 2) General iterative method for solving the linear system of Eqn (1) canbe written

in the form
xX®*D = Hx® 4 ¢, k = 0,1,........ (see Eqn. (5))

: ’ . 3 . . N :
where x*) and x**? are the approximations to the solution vector x at the kth _

and the (k+1)th iterations respectively. H is the iteration matrix which depends

on A and is generally a constant matrix. ¢ is a column vector and depends on
beth A and b.

3) ‘Iteratlve method of the form given in 2) above converges for any initial vector,
if |H|| <1, which is a sufficient condition for convergence. The necessary and '
sufficient condition for convergence is p(H) <, where p(H) is the spectral radius
of H.

4) In the Jacobi iteration method or the method of simultaneous dlsplacements

H=-D"!'(L+U);c=D"1b

-where D is a diagonal matrix, L and U are respectively the lower and upper.
triangular matrices with zero diagonal elements. ’

Iterative Methods
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In the Gauss-Seidel iteration method or the method of successive displacements

H=-(MD+L)'Wande= (D +L)7'p..

If the matrix A in Eqn. (1) is strictly 'diagonally dominant then t‘1e Jacobx and
Gauss-Seidel methods converge. Gauss-Seidel method converges faster than the ,
Jacobi method.

7.6 SOLUTIONS/ANSWERS

El)

E2)

E3)

“E4)

ES)

E6)

X0 = (-3 7 3T
=6 -1 77
x® = (-15 19 -9)7
X = (17 -13 31T _ ' /
x® = (-63 67 -33)7 |
Iterations do not converge.

xV =102 -12 -0.8]"

x® =[1.0 —0.8 —0.64]"

x® =[0.776 —1.216 —1.04]"

x® = [1.1024 —0.8864 ~0.8672]"

x® =075 0.0 0.25]"

x@ =[0.75 0.625 0.4375]"
x® = [0.9063/ 0.6719 0.7188]"
x@ = [0.9180 0.8594 0.7539]"

XV =[-08 1.2 1.6 3.4]"

x@ =[0.44 1.62 2.36 3.6]"
x® =[0.716 1.84 2.732 3.842]"

x@ =[0.8828 1.9290 2.8796 3.9288]"

!
]
1
J

3
x&+D (k)

O O ple b
Q [T N N

L
]
L

Nlr= D= D= B

Bl Bl © ©
b=l o ©

x®=[05 05 05 0.5]"

x@ =075 0.75 0.75 0.75]™

x® =[0.875, 0.875 0.875 - 0.875]"

x® = [0.9375 0.9375 0.9375 0.9375]"

H={ 0. 0 —%
—711.:.’ ‘_% 0
p(H) = —— = 0.6770 (spectral radius) .

= 0. 1694 (rate of convergence)

k=12 (number of 1teratxons)



x =105 03333 ~0.25)7 : : | . ltefative Methods
x® = [0.625 0.500 —0.5417]7 o

x® = [0.7709 0.6945 -0.6563]T

x@ = [0.8282 0.7709 ~0.7900]"

E7) x® =[02 -128 —0.624]7
x® = [0.9616 -1.2102 -0.9426]"
. x® =[1.0611 ~1.0589 —1.0127)T

“ x®=[1.0286 -1.0038 -1.0107)"

E8) x =[0.75 0.5625 0.6719]"
x® = [0.8906 0.8359 0.8769]
x® = [0.9590 0.9385 0.9539]T °
x = [0.9846 0.9769 0.9827]"

E9) x¥=[0.8 1.12 1.664 3.5984]
x® = [0.4765 1.7739 2.7698 3.9020]"
x® = [0.8891 1.9561 2.9494 3.9795]"
x® = [0.9770 1.9906 2.9894 3.9957]"

1 0 0 0
El) D+L)'=}0 1 0 o
141 o
14 § o 1
- 1 l-
U B
H (D+L)~'U 0 0 5 4 ‘
0 .0 é %
1l 1
___o 0 3 R
in 113 g‘T
C=(D+L) b=[§ -i Z 4]
o l - Pl'!
o o 3 3 3
(k+1) _ 1 () 1
xX*D =1 0 o0 i % x*% 4 3
1 1 3
0 0 5 3 3
1 1 3
'L'O 0 3 8" 4 ]

xP =105 0.5 0.75 0.75]7

x® =[0.875 0.875 0.9375 0.9375]"

x® = [0.9688 0.9688 0.9844 0.9844]T \

x = [0.9922 0.9922 0.9961 0.9961]" ~ 65
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1
Ell) D+L)'=] o 3 0

k=26
-~V

x® =[0.5 03333 -0.5417)

x® = [0.7709 0.6945 ~0.7900)T

x® = [0.8950 0.8600 —0.9038]T
x® = [0.9519  0.9359 -0.9559]"



UNIT 8 EIGENVALUES AND
EIGENVECTORS

Structum

8.1 Introduction

8.2 The Eigenvalue Problem
8.3 The Power Method

8.4 The Inverse Power Method
8.5 Summary

8.6 Solutions/Answers

-

8.1 INTRODUCTION

In Unit 7, you have seen that eigenvalues of the iteration matrix play a major role in
the study of convergence of iterative methods for solving linear system of equations.
Eigenvalues are also of great importance in many physical problems. The stability of
an aircraft is determined by the location of the eigenvalues of a certain matrix in the
complex plane. The natural frequencies of the vibrations of a beam are actually
eigenvalues of a matrix. Thus the cornputauon of the absolutely largest eigenvalue
or smallest eigenvalue, or even all the elgenvalues of a given matrix is an important

problem.
For a given system of equations of the form
Ax = \Xx : 1)
or :
(A=ADx = : 2

“the values of the parameter A, for which the system of Eqn. (2) has a nonzero
solution, are called the eigenvalues of A. Corresponding to these eigenvalues, the
nonzero solutions of Eqn. (2) i.e. the vectors x, are called the eigenvectors of A. The
problem of finding the eigenvalues and the corresponding eigenvectors of a square
matrix A is known as the eigenvalue pmblem In this unit, we shall discuss the

~ eigenvalue problem. To begin wnth we shall give you some definitions and properties
related to eigenvalues.

Objectives

After studying this unit, you should be able to:

e Solve simple eigenvalue problems; ,

o Obtain the largest elgenvalue in magnitude and the correspondmg eigenvector of
a given matrix by using the power method;

e Obtain the smallest eigenvalue in magnitude and an eigenvalue closest to any
chosen number along with the corresponding eigenvector of a given matrix by
using the inverse power method. '

8.2 THE EIGENVALUE PROBLEM

In the previous three units, we were concerned with the nonhomogeneous system of
linear cquanons, Ax = b, We know that this system has a unique solution iff the

matrix A is nonsingular. But, if the vector b = 0, then the system reduces to the
homogeneous system

Ax=0 )

. . A

If the coefficient matrix A, in Eqn.(3) is nonsingular, then system has only the zero
solution, x = 0. For the homogeneous system (3) to have a nonzero solution, the
matrix A must be singular and in this case the soiution is not unique (ref. Theorem

5, Unit 9, Block 3, MTE-02). ‘ 67
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' Solution of Linéar Algebraic Equations * The hombgeneous system of Eqn (2) will \hﬁv-e,_ a ‘hbnzerq solution ‘only when the

‘which ‘implies that A}, A3,...,AZ are the ‘eigenvalues of A2 Further, A and;Az‘ have .

coefficient matrix (A — AI) is singular, thatis,
det(A-A) =0 A . @)
If the matrix A is an nXn matrix then Eqn. (4) gives a polynominal of degree n in
A. This polynomial is called the characteristic equation of A. The nroots Ay, Aj,:.., A,
of this polynomial are the eigenvalues of A. For each eigenvalue A;, there exists a
vector x; (the eigenvector) which is the nonzero solution of the system of equations
(A-\)x%=0 | - )
The eigenvalues have a number of interesting properties. We shall now state and’
prove a few of these properties which we shall be using frequently.

P1 : A matrix A is singular if and only if it has a zero eigenvalue.

Froof : If A has a zero eigenvalue then’
det (A—=01) =0
=> det (A) =0
=> A is singular, o ,
Conversely, if A is singular then e ’ o
det (A) =0 .
=det(A-0I) =0 ' ‘ ‘
= 0 is an eigenvalue of the matrix A.
P2 : A and AT have the same eigenvalues. -

Proof : If \ is an eigenvélue of A then
det (A=) =0 S o
=> det (A — M) = 0 (ref. P6 Sec. 9.3, Unit 9, Block 3, MTE-02)
=2 det (A" — M) = 0 (Ref. Theorem 3, Sec. 7.3, Unit 7, Block 2, MTE-02)
= det (AT -A) =0 '
=3 \ is an eigenvalue of AT,
Hence the result. '

'However, the eigenvectors of A and AT are not the same. .

P3 : If the eigenvalues of a matrix A are Ay, Ay...,\, then the éigeﬁvqlugggf A m
any positive integer, are AT, AJ,...,AT. Also both the matrices A and'A™ have the.
same set of eigenvectors. R ‘ b

Proof : Since ); (i = 1,2,...,n) are the eigenvalués of A, we have

\Kﬂ.f

CAx=\x,i=1,2,...,n ‘
~ Premultiplying Eqn. (6) by A on both sides, we get . o
A% =ANx=NAX) = Nx T

the same eigenvectors. Premultiplying Eqn. (7) (m~1) times by.A on both sndesthp ‘
general result follows. P

v

P4 : If A, A,...,A, are the eigeh\ialucs; of A, then I/XI, llh;,,llx,are tlie

. eigenvalues of A™'. Also both the matrices A and A~ have thé’same set of
* eigenvectors.. K ' '

~ Proof : Since A (i=1.2,...,n), age.»the eigenvalues of A, we have

Ax=\x,i=12,..n : S ®

‘Premultiplying Eqn. (8) on both sides by A™!, we get T , =

AT'Ax =)\ AT
which gives”

* = Xi A'_'lx
or A”lx = Xl—x\ ‘

1 ~

N -
and hence the result.




PS : If Ay, Aa,...,A, are the eigenvalues of A, then Xi - q, i=12,....n are the
eigenvalues of A—ql for any real number q. Both the matrices A and A — gl have
the same set of eigenvectors.
Proof : Since A, is an eigenvalues of A, we have

Ax=)\x,i=1.2,...,n ' _ )]
Subtracting q x from both sides of Eqn. (9), we get

AX — gx = X — gx '
which gives

(A —qhx = (\ — q)x

and the result follows.

+ i=1,2,...,n are the

P6 : If \,, i = 1,2,...,n are the eigenvalues of A then x ]q
(]
exgenvalugs of (A — gI)™! for any real number q. Both the matrices A and (A — q 1)

_have the same set of elgenvcctors ’ e

P6 can be proved by combmmg P4 and PS. We leave the proof to you

E1) Prove P6

We now give you a direct method of calculﬁhg the eigenvalues and eigenvectors of
a matrix. '

Example 1 : Find the eigenvalues of the matrix

—

1 0 0 1 0 o
a)A=|0 2 o0 [|;p)A=}2 3 0
0 0 3__ 4 5 6
1 2 3]
c)A=1]10 4 5
_0 0 6_

Solution : a) Using Eqns. (4), we o‘btgin the characteristic equations as

\

1-x 0 0
det(A-A\) = [ 0 2= 0 | =0
0 0 3-A ’

which gives (1-)) (2-)) (3=)) = 0. ‘
and hence the eigenvalues of A are \j=1,N;=2, A\3=3.
1-» 0 0
b) det(A=Al) = | 2 "3-x 0 | =0
4 5 6-A

which gives (1=\) (3—A) (6=\) =0
Eigenvalues of A are A\;=1, \;=3, A\3=6.

: 1-» 2 3
c) det (A=Al) = 0 4-\ 5§ =0
0 0 6-A

Therefore, (1—-\).(4=\) (6=\) =
Eigenvalues of A dre \;=1, \;=4, A\y=6.

Remark : Observe that in Example 1 (a), the matrix A is diagonal and in parts (b)
_and (c), it is lower and upper tnangular respectively. In these cases the eigenvalues

of A are the diagonal elements. This is true for any diagonal, lower triangular or
upper triangular matnx Formally, we give the result in the followmg theorem.

Figenvalues and El

genvecmr_.\'
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,'A—xl

matrix are the diagonal elements themselves. Let us consider another example.

Example 2 : Find the eigenvalues and the corresponding eigenvectors of the matrices.

oy

2 2 : 1271 1 =27
a)[1 3:,;b)A=[O l]andc)[z 1] ¥ | '

Solution : a) Using Eqns. (4), we obtain the characteristic equation as
e 2 o
N O T TSN

which gives the polynomial

N-S\+4=0

e, A\~1)(A-4)=0 .
The matrix A has two distinct real eigenvalues A\, = 1, A\, = 4. To obtain, the -
corresponding eigenvectors we solve the system of Eqns. (5) for each vafue. of A,
For A=1, we obtain the sytem of equations l ‘

X, + 2%, =.0 ’

X; + 2x; =0
which reduces to a single equation

X; + 2%, =0

[N

‘Taking x, = k, we get x; = -2k, k being arbitrary nonzero constant. Thus, the

eigenvector is of the form

X, -2%k7] " [ -2
= = k

X2 k 1
For A=4, we obtain the sytem of equations

—le + 2)(2 = 0

X — X = 0

which reduces to a single equation

X1 — Xp ={ . ‘ ;
Taking x, = k, we get x; = k and the corresponding eigenvector is SN

La]=+[1] ,

Note: In practice we usually omit k and say that [~2 1]T and [1 1)7 are the

eigenvectors of A corresponding to the eigenvalues A = 1 and A = 4 respccﬁvély.
Moreover, the eigenvectors in this case are linearly independent.
b). The characteristic equation in this case becomes
(A -12=0. _ . -
Therefore, the matrix A has a repeated real cigenvalue. The eigenvector
corresponding to A = 1 is the solution of the system of Eqns. (5), which reduces to
a'single equation : ' ' :
Xy = 0.
Taking x; = k, we obtain the eigenvector as

N

Note: that, in this case of repeated eigenvalues, we got linearly dependent ., -
eigenvectors. ' ‘ o _— Lo
¢j The characteristic equation in this case becomes

M- +5=0
which gives two complex eigenvalues A = 1+ 2j.

Y ek



' The eigenvector corresponding to A = 1+2i is the solution of the system of Eqns. Elgenvalues and Eigenvectors
~(5). In this case we obtain the following equations

iX; +x,=0
X~ ixa=0

which reduces to the single equation
X, — ix; =0 .

Taking x, = k, we get the eigenvector

X =k [ i

X2 8 1
Similarly, for A\ = 1 — 2i, we obtain the eigenvector

x,l i -i

= k
[ "z] 11 ]

In the above problem you may note that corresponding to complex eiganvalues, we
got complex eigenvectors. Let us now consider an example of 3 X 3 matrix.

Example 3 : Determine the eigenvalues and the corresponding eigenvectors for the

matrices .
2 -1 0 6.-2 2
a)A=|-1_ 2 -1 |;b)A=]-2 3 -1
0 -1 2 2 -1 3

‘. R
Solution : a) The characteristic equation in this-case becomes
2-n -1 0
-1 2-x -1 | =0
0 -1 22—\
which gives the polynomial
(2-N) (\2-4r+2) = 0

‘Therefore, the eigenvalues of A are =2,2 + J2 and2 - J2.

The eigenvector of A corresponding to A = 2 is the solution of the system of
.E.qns._ (5), which reduces to
Xg = 0
X, +Xx3=0

‘

Taking x; = k, we obtain the eigenvector

X3 -1 .
Xa = k 0
X3 1

The eigenvector of A corresponding toh =2 + J2 is the solution of the system of .

equations
-J2 -1 0 s I [o
-1 =J2 -l s i=10 C0)

\ 0 -1 —ﬁ X3 0

‘Tofind the solution of system of Eqns.'(l()). we use Gauss elimination method.
Performing R, — LR, we get
et ﬁ -1 0 Xy 1 0
0 -1J2 -l x21=]0 :
0 -1 - ﬁ X3 0 71
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~ which reduces to a single equatlon

Again p‘effo'r'mi"\ng R; - V2 Ry, 'wev'g"et :

- /2 -1 0 X 0
0 -1/2 -1 x |=]0
0 0 0 X3 0

which give the equations

2 x,—x2=0

—xz—ﬁx3=0

Taking x; = k, we obtain the eigenvector

lxl 1
Xy =k \/2_
X3 ' 1

Similarly, corresponding to the eigenvalue A =2~ J2 , the eigenvector is the -
solution of system of equations

V2 -1 o [x] [o°
-1 J2 =1 |l xl=}o

0_ _1 L \/—2_ X3 : O
Using the Gauss elimination method, the system reduces to the equations

ﬁxl"'szo
“\/2—X3=0

Taking x; = k, we obtain the eigenvector

'

Xy . 1 . s ) . v o :. = : Y (
\X2 =k v \/2_ .
X3 1

b) The characteristic equation in this case becomes

(A=-8(A=-27=0 ‘ ,
Therefore, the matrix A has the real e:genvalues 8, 2 and 2 Thc engenvalue 2 lS
repeated two times.
The elgcnvector correspondmg to )\ = 8is: soluthn of system of Eqns (5), .which
reduces to !

X+ Xy ‘-'.x3‘= 0 » A
~2xl + 5X2 "*' X3 = 0 ’ i » o R '(11) .
2~ X = 5%3 = 0 ' o

Subtracting the last equation of system (11) from the second equatlon we obtam thc
system of equations LN T

N R

Xl+X2f-x:;-0

Xa+x3=0" N -
Taking x; = k, the eigenvector is - : ‘
Xi . ' 2 1.
Xa =k -1
X3 . 1 b

The eigenvector correspondmg toA = 2 is 1hc solutlon of system of. Eqns (5), :
.

"X|"X‘9+X1=0 ‘ ) ' (12)

We can take any values for xl and x, whxch need not be related to each other The
two linearly mdependent solutions can be written as: NS

1 - 1.0
k 0 Jork] ! ‘
1] \

-2 1



-+ Note that in Eqn. (12). it is not necessary that we always assign values to x, and x,.

We can assign values to any of the two variables and obtain the corresponding value
of the third variable.

On the basis of Examples 2 and 3, we can make in general, the following observations:

For a given nXn matrix A, the characteristic Eqn. (4) is a polynomjal of degree n in
A. The n roots of this polynomial A,,...,\,, called the elgenvalues of A may be real
or complex, distinct or repeated. Then,

i) For distinct, real eigenvalues, we obtain linearly independent eigenvectors.
(Examples 2(a) 3(a))

ii) For a repeated cigenvalue, there may or may not be linearly independent
eigenvectors. (Examples 2(b) and 3(b))

ili) For a complex eigenvalue, we obtain a complex eigenvector.
iv) An eigenvector is not unique. Any non-zero multiple of it is again an-eigenvector.

How about trying some exercises now?

- Determine. the Eigenvalues and the corresponding eigenvectors of the followmg

matrices.
. [1 2 2]
EDA=| »R2 3 22
2 201
[ 15 4 3]
E2) A = 10 —12 6
| 20 -4 2
) [ -2 2-3]
‘E3) A = 2 1-6
1 =2 0
[ 2 -1 -1 ]
"E&HA=]|3 =21
0 0 1

In the examples considered so far, it was possible for us to find all the roots of the
characteristic equation exactly. But this may not always be possible. This is
particularly true for n > 3. In such cases some iterative method like Newton-Raphson
method may have to be used to find a particular elgenvalue or all the eigenvalues
from the characteristic equation. However, in many practical problems, we do not
require all the eigenvalues but need only a selected eigenvalue. For example, when
we use iterative methods for solving a nonhomogeneous system of linear equations

- Ax = b, we need to know only the largest eigenvalue in magnitude_of the iteration
matrix H, to find out whether the method converges or not. One iterative method,:

which is frequently used to determine the largest eigenvalue in magnitude (also called
the dominant eigenvalue) and the corresponding eigenvector for a given square matrix
A is the power method. In this method we do not find the characteristic equation.

This method is applicable only when all the eigenvalues are real and distinct. If the

magnitude of two or more eigenvalues is the same then the method converges slowly

'8.3 THE POWER METHOD

Let us consider the eigenvalue problem
Ax = \x.

Let A;, Ay,...,A, be the n real and distinct eigenvalues of A such that
N> N > e > g

Therefore, A, is the dominant eigenvalue of A.

\ Eigenvalues and Eigenvectors
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Vector for which scaling has been
done is called a scaled vector
otherwisa, it is unscaled.

In this method, we start with an arbitrary nonzero vector ¥ (not an eigenvecior),

- and form a sequence of vectors (y™)

Y& = Ay® k=01, ... (13)

In the limit as k — o, y* converges to the eigenvector corresponding to the _
dominant eigenvalue of the matrix A. We can stop the iteration when the largest
element in magnitude in y***V =y js less than the predefined error tolerance. For
simplicity, we usually take the initial vector y'* with- all its elements equal t6 one.

Note.that in the process of multiplying the matrix A with the vector y™®, the
elements of the vector y“' may become very large. To avoid this, we normalize (or
scale) the vector y® at each step by dividing y("),.by its largest element in magnitude.
This will make the largest element in magnitude in the vector y**V a5 one and the
remaining elements less than one. - ’

If y™ represents the unscaled vector and y® the scaled vector then, we have the
power method.

OO o -~ (18)
LA

VD __1_y(k+1),k =0,1,.. (15)

my,, ’

with, v(¥ = ¥ and my.; being the largest element in magnitude of y**? We then
obtain the dominant eigenvalue by taking the limit -

o ) "
A = :ﬂw - (16)

~where r represents the rth component of that vector. Obviously, there are n ratios of

numbers. As k— all these ratios tend to the same value, which is the largest
eigenvalue in magnitude i.e., \,. The iteration is stopped when the magnitude of the .

-, difference of any two ratios is less than the prescribed tolerance.
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The corresponding eigenvector is then v**! obtained at the end of the last iteration
performed. : :

We now illustrate the method through an example.

Example 4 : Find the dominant eigenvalue and the corresponding eigenvector correct
to two decimal places of the matrix '

2 -1 0
A= -1 2 -1

0 -1 2
using the power method. |
Solution : We take .

YO=vO =1 1 T

- Using Eqn. (14), we obtain '

; 2 -1 o][1 1
y(l) = AV® = -1 79 1 : _
0 -1 1 1
Nowm; = 1 and ,V-“) = ?Ill_ya) - ao 1).,.‘.;
.y v
Again,
' {2 -1 o]l 2
YO =AW= 1 2 -1l og=]-2
-1 2 11 1 -

: 1 1 : .
= 2  — @ = = @ = -_ T
m,; = 2 and v 2y 2y 1 -1 1) .

FENEN



Proceeding in this manner, we have ' Eigenvalues and Eigenvectors
YO =A@ =3 -4 3T
my = 4

.v<s>=:1‘y<3?=[o.75 -1 0.75]7

y(4) . Av(3) = [25 —35 25]T
my = 3.5

1

v(4)=§?y(4)=[0.7143 -1 0.7143]"
y® =Av® = [2.4286 —3.4286 2.4286]"
ms’ = 3.4286

G
3.4286°

y© =Av® = [2.4166 -3.4166 2.4166]
me = 3.4166 <

v ® = {0.7083 -1 0.7083]"

1

6y V& — T
v saiee? [0.7073 -1 0.7073]
y? =AV® = [2.4146 -3.4146 2.4146]"
m, = 3.4146

1

M - N - - T

v sa1ae? [0.7071 -1 0.7071]

(7
After 7 iterations, the ratios%«‘T;:- are given as 3.4138, 3.4146 and 3.4138. The

maximum error in these ratios is 0.0008. Hence the dominant eigenvalue can be taken
as 3.414 and the corresponding eigenvector is [0.7071 -1 0.7071]"

Note that the exact dominant eigenvalue of A as obtained in Example 3 was
2 + /2 = 3.4142 and the corresponding eigenvector was [1 ~J2 1]" which can also

. 1 1. _ T
bewrittenas [—5 =1 —]" = [0.7071 1 0.7071]

You may now try the following exercises.

Using four iterations of the power method and taking the initial vector y@ with all
its elements equal to one, find the dominant eigenvalue and the corresponding eigen-
vector for the following matrices.

1 2 2
ES)A=]| 2 3 2
|2 21

2 -1 0 0

E)A=| -1 2 -1 0

0 -1 2 -1

. 0 0 -1 2

You must have realised that an advantage of the power method is that the eigenvector
corresponding to the dominant eigenvalue is also generated at the same time.
Usually, for most of the methods of determining eigenvalues, we need to do separate
computations to obtain the eigenvector.

In some problems, the most important eigenvalue is the eigenvalue of least
magnitude. We shall discuss now the inverse power method which gives the least

eigenvalue in magnitude. ~ 75
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We first note that if A is the smallest eigenvalue in magnitude of A, then % is the
largest eigenvalue in magnitude of A™!, The co;responaing eigenvectors are same.
If we apply the power method to A~!, we obtain its largest eigenvalue and the
corresponding eigenvector. This eigenvalue is then the smailest eigenvalue in
magnitude of A and the eigenvector is same. Since power method is applied to A~,
it is called the inverse power method. : ‘

Consider the method
Yy = AN k01,2, (17)

It T (0 IR O )
© Mgy

where y is an arbitrary nonzero vector different from the eigenvector of A.

However, algorithm (17) is not in suitable form, as one has &é find A71, Alternately,
— we write Eqn. (17) as e !

Ay(kn) = y® ' ‘ x
v = Fl——y("“) ,k=0,1,2,.......... _ (18)
k+1 .

We now need to solve a system of equations for y "), which can be obtained using , -
any of the method discussed in the previous units. The largest eigenvalue of ""lrt_s;y
again given by

&+D)y,
n = litn (ym)
koo (VN

The corresponding eigenvector is v+,

~ We now iliustrate the method through an example.

Example 5 : Find the smallest éigénvalue in magnitude and the co'rresponAd'ivh'g. ' i

eigenvector of the matrix. ~
2 -1 0
A= -1 2 -1
0 -1 -2

using four iterations of the inverse power method.

Solution : Taking v = [1 1 1]T, we write -

First iteration

Ay = yO
or B
T 2 -1 o[y 1 : _
-1 2 -1 yzi = 1. 1 1 . (19)
0 -1 2 Y3 11} N

For sc;iving the system of Eqns. (19), we use the LU decompbsitién method. We write

[ 2 -1 0 7 ’ 1‘1’1 0 0 1 Uis 'u,3
» A= -1 2 —1, = LU = ,12l 122“‘ 0 -0 1 Uy - . (20)
0 -1 2 J } 131 132 133 0 0 ' 1

comparing the coefficients on Bqth sides of Eqns. (iO), we obtain

2 oo0oll 1 =1 o

——2.»2‘ )
A=LU=| -1 30 1 -4 - |
‘ -1 4 . _
76 ’ 0 13 0- 0 1



Solving Lz = v
and then Uy = z

we obtain
w3, 3] I’
m = 20
v = Lo [0.75 1.0 0.75}
m,

Second iteration

Ay = v
Solving Lz = v

and UyP =2z

we obtain

T
y? = [ 1.25 1.75 1.25 ]

my; = 1.75
@_1 @ T
v@ =— y® = 107143 1 0.7143
m;
Third iteration
Ay® = v®@
T
y(3)=[1.2143 1.7143 1.2143]
m; = 1.7143
T
W=l e - [0.7083 1 0.7083]
mjy -,
Fourth iteration
@ = ®
Ay v -
y@ =[1.2083 1.7083 1.2083]
m, = 1.7083 _ .
. T
o =L yo - [0.7073 1 0.7073]
my
: yO)r
After 4 iterations, the ratiosmf))—r are given as 1.7059, 1.7083, 1.7059. The

maximum error in these ratios is 0.0024. Hence the dominant eigenvalue of A~ 'can

be taken as 1.70. Therefore, = b.5882 is the smallest eigenvalue of A in

1
1.70
magnitude and the corresponding eigenvector is given by [0.7073 1 ;0.7073]T.
Note that the smallest eigenvalue in magnitude of A as calculated in Example 3 was
2— /2 = 0.5858 and the corresponding eigenvector was [1 /2 1)T or [0.7071 1 0.7071]".

You may now try the following exercise :

"E7) Find the smallest eigenvalue in magnitude and the corresponding eigenvector of

the matrix

2 2
o7 3]

with v = [-1 1], using four iterations of the inverse power method.

The invers¢ power method can be further generalized to find some other selected
eigenvalues of A. For instance, one may be interested to find the eigenvalue of A
which is nearest to some chosen number q. You know from P6 of Sec. 8.2 that the

" matrices A and A—gl have the same set of eigenvectors. Further, for each eigenvalue

A; of A, \;—q is the eigenvalue of A—ql.



Solution of Linear Algebraic Equations  We can therefore use the iteration
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_system (24), we obtain

| YD = (A-qD) 71 v® - | (21
with scaling as described in Eqns. (14) — (16). We determine the dominant
cigenvalue u of (A—qI)~! using the procedure given in Eqn. (18), ie.

(A—qI) y(kﬂ) = y&)

. 1 : ’
v+ g+ D (22
My 4y
Using P6, we have the relation

1 S
= ;‘—:‘E » where X is an eigenvalue of A.

1 : '
ie, AN==4+gq . : 23
p A (

Now since w is the largest eigenvalue in magnitude of (A—qI)~?, 1 must be the
M

smallest eigenvalue in magnitude of A—(qI. Hence, the eigenvalue z +qof Ais

7

closest to q.

Example 6 : Find the eigenvalue of the matrix A, nearest to 3 and also the ‘
corresponding eigenvector using four iterations of the inverse power method where,

2 -1 0
A=) -1 2 -1
0 -1 2
Solution : In this case q = 3. Thus we have
S S
A-3l =] -1 -1 -1
Lo -1 4 ]
To find y**D, we need to solve the system
[ -1 -1 0] -
-1 -1 -1 y(kH) = y(K . (24)
0 -1 -1 _[

and normalise y**" as given in Eqn. (22).
First iteration

Starting with v = [1 1 1] and using the Gauss elimination method to solve the

T
y“)=[0 -1 o}
m1=1

v(1)=iy(l) =[0 -1'0 ]T
my

Second iteration
Ay@ = y®D

. T
y(2)=[1 -1 1}*

m2=1

v(2>=iy(2’——-[1 -1 1]T
my

Third itération
AY® = @

T
y(3)=[2 =3 2]

mj =3




Fourth iteration

Ay® = v®
@=|35 15[
3 733
m, =% =2.333
1 5 s it
@ __1 @ 2 - 2
voT my y [7 ! 7]
(yr

After four iterations, the ratios are given as 2.5, 2.333, 2.5. The maximum

v)r
error in these ratios is 0.1667. Hence the dominant eigenvalue of (A—3I)"" can

be taken as 2. Thus the eigenvalue A of A closest to 3 as given by Eqn. (23) is

ino i o3 5107 Ir
and the corresponding eigenvector is v’ = 5 -1 5 = 0.7143 -1 0.7143
Note that the eigenvalue of A closest to 3 as obtained in Example 3 was 2+.2 = 3.4142.

T
The eigenvector corresponding to this eigenvalue was [ 0.7071 -1 0.7071]

And now a few exercises for you.

E8) Find the eigenvalue which is nearest to ~1 and the corresponding eigenvector for
the matrix '

A = 2 2
Lt 3
T
_ with v©@ = [ -1 1] , using four iterations of the inverse power method.

E9) Using four iterations of the inverse power method, find the eigenvalue which is
nearest to 5 and the corresponding eigenvector for the matrix

[y

2
A= [ Z 4 ] (exact eigenvalues are = 1 and 6)

T
with v@ = [ 1 1]

The eigenvalues of a given matrix can also be estimated. That is, for a given matrix

A, we can find the region in which all its eigenvalues lie. This can be done as follows:

Let \; be an eigenvalue of A and x; be the corresponding eigenvector, i.e.,

Axi = xixi (25)
or _
auxi’l + alzxi'z R alnxi." = )\ix“
aleiyl + azzxi_z + e -+ az,‘xi.n = )\ixi_z
: o (26)
A X;,1 T AkaXi2 F o F AkpXin = NXik

niXi, + ApXi2, o T AnXin = NiXi

Eigenvalues and I



Solution of Linear Algebraic Equations et [x; x| be the largest element in magnitude of the vector [X; 1, X; 2, ..., » Xigl"
Cons1der the kth equation of the system (26) and divide it by x; .. We then have
x xl Zun ‘
ag (x..k) + ay (—x—lﬂ:) + + g + i+ Ay (;:..x) =N - (@

A square matrix A is symmctrlc if
A=AT, '

- Taking the magnitudes on both sides of Eqn. (27), we get

Il < lawl [ 221
[akll + |ak2| +...... + Iakkl + ... + Iaknl (28)
since + |[Shif <1 forj=1,2,....n.
{‘i,k_

Since eigenvalues of A and AT are same (Ref. P2), Eqn.(28) can also be written as

NI = Jag + Jag + ..... + ol + ... + |an] : - (29

Since |x; 4|, the largest element in magmtude, is unknown, we approxlmate Eqns.(28)

. and (29) by
n 9 .

I\| < max [2 lay| | (maximum absolute row sum) (30)

i Lju1 - . w ‘
and
- o -

IA| < max [2 |a| | (maximum absolute column sum) (31)

ioti=to- :

We can also rewrite Eqn. (27) in the form
- = X2 Xin
I)\ akkl ak] (xl_k) + Ay (xi-'k) + eee + Axn (Xi'k)

and taking magmtude on both sides, we get -

n | .

Ni~a < Zlaijl _ A _ (2)
=1 -
i#j

Agam since A and AT have the same eigenvalues Eqn (32) can be written as

Ni—aw < 2[%] : (33)

i=1 -
i#j

Note that since the elgenvalues can be complex the bounds (30), (31) (32) and (33)
represents circles in the complex plane. If the eigenvalues are real, then they
represent intervals. For example, when A is symmetnc then the exgcnvalues of A are
real, : ‘

- Again in Egn. (32) since k is not known, we roplacc the circle by the union of the:

n circles

n : ) .

I\ —ay < z-laij[, i=1,2,.00ee , 0. (39
j=1 o
i#j

Similarly from Eqn. (33), we have that eigenvalues of A lie in the union of circles

A —al < 2 ol 5= 1, ST S ()



\,. Thvg B‘éunds derived in Eqns. (30), (31), (34) and (35) for eigenvalues are all Eigenvalues and Eigenvectors

independent bounds. Hence the eigenvajues must lie in the intersection of these
bounds. The circles derived above are called the Gerschgorin circles and the bounds
are called the Gerschgorin bounds, - s

Let ux now consider the following examples:

_ Example 7 : Estimate the eigenvalues of the matrix

H

"1 -1 2
A=|2 13

-1 3 2
using the Gepsch.gorin bounds.
Selution : The eiéenvalués of A lie in the following regions:
i) absolute row sums are 4, 6 and 6. Hence
I\| <max[4,6,6] =6 - (36)

if) absolute column sums are 4, 5 and 7. Hence
A <7 (37)

" iii) union of the circles [using (34)]

iv) union of the circles [using (35))
A-1 <3
-1 <4
\-2|<5
union of circles in (iii) is \~1] < § (38)

unijon of circles in (iv) as [\—2| < 5 (39)

‘ The eigenvalues lie in all the circles (36), (37), (38) and (39) i.e., in the intersection of

these circles as shown by shaded region in Fig. 1.
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Solution of Linear Algebraic Equations

Example 8 : Estimate the eigenvalues of the symmetric matrix

1 -1 2
A=]-2 1 2
' 2 2 -2

by the Gerschgorin bounds.

Solution The eigenvalues lie in the following regions:

i) Al =max[4,4,6]=6
ii) union of the circles
Ca) r-1f=3

b) A-1l<3

c) \+2/ <4

Since A is symmetric, it has real eigenvalues. Therefore, the eigenvalues lie i in the
intervals

) —-6<rA<6

-
l

i) “union of
a) -3sA-1<3,ie -2<A<4. !
b) ~4<A+2<4,ie. ~6<AS2

union of (a) and (¢) is ~6 < A = ,4.

Intersection of (i) and (ii) is —6 S A <

4. Hence the eigenvalues of A lie in the
interval ~6 < A < 4, -

Note that in Example 8, since the matrix A is syrﬁmetric, the bounds (30) and (31)

~ are same and also the bounds (34) and (35) are same.

82

8.5 SUMMARY

You may now try the following exercise.

E10) Estimate the eigenvalues of the matrix A given in Example 3(a) and 3(b), using
the Gerschgorin bounds.

1Y

.We now énd this unit by giving a‘_ summary of what we have covered in it.

Wk

o

“In this unit we have cbvered_ the following: . e

1) Fora given system of equations of the form
"Ax ='\x (see Eqn. (1))

the values of X for which Eqn. (1) has a nonzero solution: are called the
eigenvalues and the corresponding nonzero solutions (which aré not unique) are
called the eigenvectors of the matrix A.

The following are the steps involved in solving an engenvalue problcm

i)  Find the nth degree polynomial (caued the characteristic equation) in X from
det (A—AD) = 0. .

ii) Find the n roots \;, i = 1,2,...,n of the characteristic equation.

iii) Find the eigenvectors corresponding to each A;.

2)

For nz 3, it‘may not be possible to find the roots of the characteristic equation
exactly. In such cases, we use some iterative method like Newton Raphson
method to find these roots. However,

3)

2




i)

ii)

when only the largest eigenvalue in magnitude is to be obtained, we use the Eigenvalues and Eigenvectors
power method. In this method we obtain a sequence of vectors {y®y, using
the iterative scheme

Cy*Y = Ay® k=0, 1, ... (see Eqn. (13))
which in the limit as k — «, converges to the eigenvector’corresponding to
the dominant eigenvalue of the matrix A. The vector y@ is an arbitrary
non-zero vector (different from the eigenvector of A).
we use the inverse power method with the iteration scheme

y(k+1) — (A_qI)—I V(k),

ie, (A—qD) y** P =v® k=012, ...
where y© = v is an arbitrary non-zero vector (not an eigenvector)
a) with q = 0, if only the least eigenvalue of A in magnitude and the

corresponding eigenvector are to be obtained and

b) with any q, if the eigenvalue of A, nearest to some chosen number q and
the corresponding eigenvector are to be obtained.

| 8.6 SOLUTIONS/ANSWERS

E1) Characteristic equation : AX> = 5\2 = A\ + 5 = 0

eigenvalués: —1, 1, §
eigenvectqrs: (-1, 0 111 -2 151 »2 17

E2) Characteristic equation: A> + 25\ + 50 A — 1000 = 0

eigenvalues : —20, -10, 5 _
eigenvectors : [-1 122 1J5[-1 -2 1] [14-12 17

E3) Characteristic equation: A> + A2 — 21\ — 45.= 0

eigenvalues: =3, -3, 5
eigenvectors: [1 0 1/3]T4; 01 235 [-1 -2 l]’r

E4) Characteristic éduation: A G A+1=0

eigenvalues: -1, 1, 1 » '
eigenvectors: [1/3 1 0]T;[1 1 O]%;1 1 0fF

ES) y® = [4.4142 5.8284 4.4142]"; m, = 5.8284

4E‘6) yP=[100 1)%m=1

v =[0.7574 1 0.7574]"
y® = [3.6864 5.1422 3.6864]"; m, = 5.1422
V@ =[0.7169 1 0.7169]7
y® =[3.5649 5.0276 3.5649]; m; = 5.0276
v® = [0.7090 1 0.7090]" A
y@ = [3.5412 5.0054 3.5412]; m, = 5.0053
v = 107075 1 0.7075]"

<

o '
After 4 iterations the ratios Ey (3);’ are given by 4.9946, 5.0054, 4.9946. The
v r

maximum error in these ratios is 0.0108. Thus the dominant eigenvalue of A can
be taken as 5.00 and the corresponding eigenvector is [0.7075 1 0.7075]"

=000 1"
Y@ =02 -1 -1 2 m,=2
v@ =11 -05 -05 1)"
Y® =25 ~1.5 -1.5 2.5, m; = 2.5
V=1 -06 -06 1] |
Y9 =256 —16 -1.6 2.6]"; ms = 2.6
v@® = [1 -0.6154 -0.6154 1]T
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Solution of _Linegr Algebraic Equs{!lons (y(4))
r

84

After 4 iterations the ratios-wm-)—— are given by 2.6, 2.6667, 2.6667, 2.6. The
13

maximum error in these ratios is 0.0667. Thus.the dominant eigenvalue of A can
be taken as 2 and the corresponding eigenvector is [1 —0.6154 ~—0.6154 1]T

E7) Starting with v = [~1 1] and solving Ay® = v, we get

T
Wo{_5 3. =5=
y [4 4J,m1 3 1.25

v = [—1 %jl‘

. T ~
9= [—%% ll] ;my =2l =105

: T
v = [._1 ll}
i

T T .
y(a)zl 37 1_6] g =L = 0.8810

roRy) %) |
oo 16
[ L 5 }
@ | 143 \143 -
y “[ a8 148] = 1ag = 0-9662

@_[_y 6
v [ ! 1'43]
After 4 iterations, the ratios 'E_ng—r are 0.9662, 1.0781. The maximum error in

these ratios is 0.1119. Hence the dominant elgenvalue of A™! can be taken as

0.9. The smallest eigenvalue of A is therefore —6—9— = 1.1111.

. . T
The corresponding eigenvector is [—1 _13_%]

E8) [A‘+1] = [ f j];

T 3 2 :
Starting with v© = [-1 1" and solving [1 s ] y = [ I ]

we get
6 4 3
M| 4 =3=
y f[. o o] ™m=5%06
. T" v
v(l)=[-—1 %] :
Similarly,
_—
2) . __8_ i . =._8_.=
y “[ s 1,0] Mz = 75 = 03333
T
-1 2
v -—[ 1 16]
® - 4 0 A TP
Y178 160] '™ T
R ,43‘*T :
@y 2




@ - 207 211 T m 207 ‘ Elgenvalues and Elgcnveclors_
‘ 410 8201

T
@ - |_ 211
v [ 1 414}

' O
After 4 iterations, the ratios Ey G );' are 0.5049, 0.4907. The maximum error in
v,
these ratlo is 0 0142. Hence the dominant eigenvalue of (A+I)' can be taken as
=0.5. The engenvalue of A which is nearest to —1 is obtained from

o l=gs-i=1 ]

A=

The corresponding eigenvector is [ -1 721—1—‘11]

E9) [A-SI] = [ _z _f]

-2 2 1
Starting with y(o) =[1 1] and solving [ 3 : ] y = [ X ]

we get
T
* (1)=§ é . =§=
y [4 4] ymy =% 1.25
T

v(1)=[% 1:'
Similarly,
o [B 1 .1
y "[zo 30| S M2 =55 =095

@o_[B I
v [19 1]

T
@ _ {51 7. _ 77
y=—- = l:——76 TE| M= me = 1.0132

@[5t 7
v "[77 1}

@ o [205 3077 307 _
[308 308 | > ™ =308 - 0908

T
@ - |20
v ‘.[307 1}

After 4 iterations, the ratios%—% are 1.005, 0°.9968. The maximum error in

these ratios is 0.0082. Hence the dominant eigenvalue of (A'—SI)'.1 can be‘tékcn
“as uo= 0.99.
The eigenvalue of A which is nearest to 5-is obtained from
N
L
=—_1_ =
099 t 5 6.0101.
85
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The corresponding eigenvector is 307 1




Solution of Linear Algebraic Equations . E10) a) The exgenvector of A lie in the followmg regions:

11)

-~ |\ = max [3, 4, 3] = 4
union of the circles

a) Z\-2| <1 v
b) \-2| <2

o) h-2[ =

Since A is symmetric, it has real exgenvalues
Therefore, the eigenvalues lie in'the intervals

i) —4=<Aas4 |

i

ii) union of ‘ P

a) —1s\-2<1, 1 <3
b) —2s\-2<s12 0sa<4
union of (a) and (b) islsa<4

Intersection of (i), (ii) is 1 < \ < 4. Hence the eigenvalues of Alic
in the interval 1 € A < 4.

b) The eigenvaiues of A lie in the intervals

i)
if)

-10sA<10

union of

a) —4s>\—6s4 2<As<10
b) -3 < A-3.=3, 0<sAs<6

union of (a) and (b) is 2 € A % 10.
Intersection of (i) and (ii) is 2 € A = 10. Hence the eigenvalues of A
lie in the interval 2 < X < 10.

S
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BLOCK 3_INTERPOLATION

The interpolation has been defined as the art of reading between the lines of a table, and in
elementary mathematics the term usually denotes the process of computing intermediate
values of a function from a set of given values of that function. For example, consider the
table that lists the population of Dethi. The population census is taken every ten years and
the table gives population for the years 1901, 1911, 1961, 1971, 1981 and 1991 in Delhi.
We.would like to know whether this table could be used to estimate the population of
Delhi in 1936 say or even in 1996. Such estimates of population can be made using a
function that fits the given data. '

The general problem of interpolation, however, is much more complex than this. In higher
mathematics we often have to deal with functions whose analytical form is either totally
unknown or else is‘of such a nature (complicated or otherwise) that the function cannot
-easily be subjected to certain operations like differentiation and integration etc. In either
. case, it is desirable to replace the given function by another which can be more readily
.handled.

In this block, we study the polynomial interpolation in detail. We derive various forms of
the interpolating polynomial, Polynomials are used as the basic means of approximation in
nearly all areas of numerical analysis. One major reason for their importance is that they
(uniformly) approximates continuous functions, that is, given any continuous function
_defined on a closed and bounded interval [a,b] there exists a polynomial that is “close” to
- the given function. Another important reason for considering the class of polynomials in
. the approximation of functions is that the derivative and indefinite integral of any
polynomial are easy to calculate and the results are again polynomials. You must have
encountered one application of polynomial approximation in Taylor polynomials, in your
calculus course. But Taylor polynomials, have the property that all information used in the
approximation is concentrated at one point. For general computational purpose, it is more
efficient to use methods that uses information at various points. In the sequel, it is the
construction of this type of polynomials which we are going 1o consider.

We have divided our discussion on polynomial interpolation into 3 units. In Unit 9, we
discuss the Lagrange form of interpolating polynomial to prove the existence and
‘uniqueness of the interpolating polynomial for unequally spaced nodes. Also the general:
expression for the error of polynomial interpolation is proved which gives the estimates of
the error in polynomial approximation. . ' ‘

In the next unit, Unit 10, we deal with another very useful form of interpolating
polynomial called the Newton form of interpolating polynomial. Newton’s Form is derived
.using the concept of divided differences. We also obtain another expression for the error.

- term for the interpolating polynomial in terms of divided differences.

In Unit 11, we deal with some useful forms of interpolating polynomials for equally
spaced nodes like Newton's backward and Newton's forward difference forms, and Gauss-
Stirling central difference interpolating polynomial after introducing the concepts of

~ forward, backward and central differences. In last block (Block 4), you will come across
the use. of polynomial interpolation in numerical differentiation, integration etc.




SOt

TR
NOTATIONS AND SYMBOLS

fIx;) ' Zeroeth divided difference

fIx;, x; .11 o Divided differénce of order 1 .

f[xA. Kig 1o ooos Xiuk) Divided differéncc of order k

5  Delta

E.(X) Interpolation error of f at X

Also see the list given in Blocks 1 and 2.
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UNIT 9 LAGRANGE’S FORM

e
WRINR

Structure

9.1 Introduction

Objectives

9.2 Lagrange's Form

" 9,3 Inverse Interpolation

94 General Error Term

©9.5 Summary

-9.6  Solutions/Answers

9.1 INTRODUCTION

Let f be a real-valued function defined on the interval [a ,b] and we denote f(x,) by f;.
Suppose that the values of the function f(x) are given to be f,, f;, f5, ... f, when x = Xgo Xy
X3, +os X, TESPectively where Xg < X; < X; ... < X, lying in the interval [a,b]. The function
f(x) may not be known to us. The technique of determining an approximate value of f(x)
for a non-tabular value of x which lies in the interval [a, b] is called interpolation. The .
process of determining the value of f(x) for a value of x lying outside the interval [a,b] is

called extrapolation. In this unit, we derive a polynomial P(x) of degree < n which agrees

with the values of f(x) at the given (n + 1) distinct points, called nodes or abscissas. In
other words, we can find a polynomial P(x) such thatP(x)=f;,j=0,1,2, ... n. Sucha
polynomial P(x) is called the interpolating polynomial of f(x). :

In Section 9.2 we prove the existence of an interpolating polynomial by actually |
constructing one such polynomial having the desired property. The uniqueness is proved

" by invoking the corollary of the fundamental theorem of Algebra. In Section 9.3 we derive

general expression for error in approximating the function by the interpolating polynomial

-at a point and this allows us to calculate a bound on the error over an interval. In proving

this we make use of the general Rolle’s theorem.
Objectives
After reading this unit, you should be able to:

® find the Lagrange’s form of interpolating polynomial interpolating f(x) atn+1
distinct nodal points; : ',

®  compute the approximate value of fat a non-tabular point;
o - compute the value of X (approximately) given a number ¥ such that f(x) = (¥)
(inverse interpolation);

® compute the error committed in interpolation, if the function is known, at a non-
" tabular point of interest; -

0 find an upper bound in the magnitude of the error.

9.2 LAGRANGE’S FORM

Let us recall the fundamental theorem of algebra and its useful corollaries.




i3

Iaterpolation Theorem 1: If P(x) is a polynomial of degree n 2 1, that is, P(x) = 2,x" + 2,. L
' + X + 2, with 2g, ..., 2y real or complex numbers and a, #0, then P(x) has at least one .
zero, that is, there exists a real or complex number § such that PE)=0.

Lemma 1: If z;, Z, -.., %, are distinct zeros of the polynomial P(x), lhch
P(x)=(x—2) (x~ Zy) .. (x - Z)R(X)
for some polynomial R(x).

Corollary: If P,(x) and Q,(x) are two polynomials of degree < k which agreeat thek + 1
distinct points Zg, Zy, .. % then Py(x) = Q. (x) identically.

‘You have come across Rolle’s theorem in Section 1.2. We need a generalized version of
this theorem in the Section 9.4 (General Error Term). This is stated below.

" Theorem 2: (Generalized Rolle’s Theorem). Letfbe a real-valued function deﬂned on
{a,b] which isn times differentiable on Ja,bl. If f vanishes at the n + 1 distinct points Xg, «.s
x, in [a,b], then a number ¢ in Ja.b[ exists such that ™ (c) = 0.

We now show the existence of an interpolating polynomial and also show that it is unique.
The form of the interpolating polynomial that we are going to discuss in this section is !
called the Lagrange form of the interpolating polynomial. We start with a relevant

theorem.

_ Theorem 3: Let Xg X;y oo Xg be 0 +1 distinct points on the real line and let f(x) be a real-
valued function defined on some interval I = [a,b] containing these points. Then, there
exists exactly one polynomial P,(x) of degree < m, which interpolates f(x) at Xg, .oy Xqs that
is, P,(x) =f(x),i=0, 1,2, ..o M.

Proof: First we discuss the uniqueness of the interpolating polynomial, and then exhibit
one explicit construction of an interpolating polynomial (Lagrange’s Form).

Let P,(x) and Q,(x) be two distinct interpolating polynomials of degree < n, which
interpolate f(x) at (n + 1) distinct points Xg, Xys e X,- Let h(x) =P,(x) — Q. (x). Note that
h(x) is also a polynomial of degree <n. Also - ‘

h(x) = Pa(x) — Qa0x) = f(x) — f(x) = 0,i=0,1,2, N
That is, h(x) has (n + 1) distinct zeros. But h(x) is of degree <n and from the Corollary to

Lemma 1, we have h(x) = 0. That is P,(x) = Qq(%)- This proves the uniqueness of the
polynomial.

Since the data is given at the points (xs. fo)y (X0 1)y woes (Ko f) let the required polynomial
be written as . )

P.(x) = Loy + LitOfy + v + Lo = Y Lix) i 0))
. is0
Setting x = x; in (1), we get
Px)= O Li(x)) i | ®
i=0 ,

Since this polynomial fits the data exactly, we must have

and L,(XJ) =0, i #j
or Ll(xj) = Sij ) (3)

The polynomials L;(x) which are of degree < n are called the Lagrange fundamental



' polynomials. It is easily verificd that these polynomials are given by , ‘ Lagrange's Form

: (X = %) (X = Xy) .. (X = X)) (X = Xj41) ... (X —X,)
_’Li(x) (x; - Xog (x; ~ Xlx) e (X = Xi—lx) (x; - Xi: D (x5 = x,)

H(x - %)/ H(x, -~ Xj) @

l‘j

‘Substitution of (4) in (1) gives the required Lagrange form of the interpolating polynomial.

Remark: The Lagrange form (Eqn. (1)) of interpolating polynomial makes it easy to show
] ; .the existence of an interpolating polynomial. But its evaluation at a point x; involves a lot
: ‘ computation.

A more serious drawback of the Lagrange form arises in practice due to the following; One
, “calculates a linear polynomial P;(x), a quadratic polynomial Py(x) etc., by increasing the
X number of interpolation points, until a satisfactory approximation P,(x) to f(x) has been
found. In such a situation Lagrange form does not take any advantage of the availability of
‘ P, . ;(x) in calculating P, (x). Later on, we shall see how in this respect, Newton form, !
?v ‘ discussed in the next unit, is more useful.

E . Let us consider some examples to construct this form of interpolation polynomials.

Example 1: Iff(1) = - 3,£(3) =9, {(4) = 30 and f(6) =132, ﬁnd the Lagrange s
'ml.crpolauon polynomial of f(x).

Solutlon. Wehave xg=1,x;=3,%x,=4,x3=6andfy= -3, =9,f,=30,f; = 132.

* ‘ The Lagrahge’s_interpolating polynomial P(x) is given by

P =L fo + L) f + Ly b + Ly) - ,' ()
where |

P - (X = %) (x - x3) (x = X3)
o ‘ Lo ("‘) T (X0 = x1) (X0 — X3) (X0 = X3)
_x=-3)E -4 (x-6) \
i T I-3a-40-9 - \
E = '—-51(-)- (x* - 13x* + 54x - 72)
_ (= xg) (X = %p) (x = x3)
L= R A m e )
g 3 x-D(x-4)(x-6)
‘ ‘ , G-DB-40G <=6

| = 2 (¢ - 122 +34x - 24) /
: P , _ _(x = xp) (x = x1) (x = x3)
! - La(x) = (x2 = o) (x2 = x1) (x2 — X3)
=D Gx-4(x—6)

4-1HH4d-34-6) .

= —g (x* - 105 + 27x - 18)

-~

4,,...,1(.
e i R S A5 RS T
{

1]

| (x = xo) (x = x1) (X = Xy)
LS(X) ()(3 —- XO) (x5 — xl) (X3 - Xz)

x=-Dx-3)(x-4)
T 6-D6-3)@6 -4

£ R AN AR SR SR Xl s M S A OISR e

| = g5 (2 - 8 4 19x - 12)




Interpolation

Substituting Li(x) and f, j =0, 1, 2, 3 in Eqn. (5), we get

2.0 -12) (2.0 - 1.7) 2.0 - 1.8)

Putting x = 1.4 on both sides of (7), we get

£(1.4) = P(L4) =

(L4 — 17 (L4 - 18) 14 = 200 . 33901 +

035 (- 0.6) 0.9
(1.4 — 1.2) (14 = 18) (1.4 = 2.0) o 54739 +

0.5) ( - 0.1 (0.3)

(14 - 12) (L4 = 1.7) (1.4 = 2.0)
0.6) 0.1 (- 0.2) x 6.0496 +

L4 - 12) (14 - 174 = 18) 73891

(0.8) (0.3) (0.2)

.

-

'\-
ay

P = - g [¥ - 1387 S4x - 7] (-3) + g [¥ - 11xP+ 34x - 2] (9) -,
- L - 10604 21x - 18] GO) 4 [0 - sxteaox - 12] (13D
= _1!5 [x* - 13x% + 54x‘ - 72} + —;— [x* - 11x%+ 34x - 2] -;4 :
_s[x - 102w 27x - 18] + R -sa = 19x-12] oy
; Sl I A
R , ' . ".’.
which gives on simplification » -
P(x)=x* —3x* + 5x -6
which is the Lagrange's interpolating polynomial of f(x).
Example 2: Using Lagrange’s interpolation formula, find the value of f when x = 1.4 from
the following table. ' . <‘
" e X .
x 12 17 1.8 20 | o« T
f 3.3201 54739 6.0496 738911 .V ., &
Solution: The Lagrange’s interpolating formula with 4 points is : . ‘
D |
- (x = x;) (X = Xp) (X' = X3) (x = %g) (X = %) (X = %3) . ¢ .
P(X) = Txg = %) (X0 — x2) (Xo — %3) fo + Tx; = %0) (1 — x2) (1 = %3) .ﬂ:’&' i
x = x) (x = x) (x = %) ¢, (X=X (X x) X = %) ‘¢ 15
(xz = Xo) (%2 — %1) (¥2 — %3) AT Xo) (K3 = X1) (%3 — X2) =
t 3
Substituting
Xo = 1.2, Xy = 1.7, Xy = 1.8. X3 =2.0 and
f,=3.3201,f; = 5.4739, f, = 6.0496, f3 = 7.3891
in (6), we get ; .
” . (x-1D(x-18) & - 2.0)
PX).= 7= 1D 02 = 1 A2 - 20 3.3201 +
(x - 1.2) (x = 1.8) (x = 2.0)
oI AT D AT - 20 54739 +
x-12)(x - 1.7 (x — 2.0)
I (8- LD A8 - 200 6.0496 +
(x - 1L2) (x - L7) (x = L8 - . 73891 (7)



_ (=0.3) (- 0.4) (- 0.6)
(0.5 (- 0.6) (- 0.8)

| 02) (0.4 (= 0.6)
0.9 0.0 =03

(0.2) (~ 0.3) (~ 0.6)
(0.6) (0.1) (= 0.2y

x 3.3201 +

X 5.4739 +

X 6.0496 +

! - W“?'z{ SRR * 13891

= 0.99603 + 17.51648 — 18.1488 + 3.69455
= 4.05826
-~ f(x) = 4.05826.

Now you can try some exercises.

ED  Show that

®YL =

i=0

(ii) ZL (x) xk=xk, k<n

i=0

where L;(x) are Lagrange fundamental polynomials

E2) ‘Let w(x) H(X - Xg). Show lhat the interpolating polynomial of degrcc <n with
k=0
the nodes x, Xy, ..., X, can be written as

P.(x) = w(x) E(x - f(xg)
' k=0

X)W )

\

.9.3 INVERSE INTERPOLATION

'
v
A

In inverse interpolation in a table of valuesof x and y = 'f&x). one is given a number ¥ and
,, wishes to find the point X so that f(X) = ¥, where f(x) is the tabulated function. This

g - problem can always be solved if f(x) is (continuous/and) strictly increasing or gecreasing

5 (that is, the inverse of f exists). This is done by considering the table of values x;, f(x;),1=0,
1, ... nto be a table of values y;, g(y;),i=0, 1,2, ..., n for the inverse function g(y) = f ~'(y)

= x by taking y; = {(x)), g(y) = x,,1=0,1,2, ..,n. Thcn we can mterpolatc for the unknown

value g() in this table.

R = | Yx [JEZ0 "_yy’J
i=0 j =0
j#i

and X = P,(¥). This process is called inverse interpolation.

. Let.us consider some examples.

agrecs with the values of x at the given values of y. Hence find the value of x wheny = 2.

.Example 3: From the following table, find ihc Lagrange's interpolating polynomial which -

Lagrange's Form
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Interpolation x 1 19 49 101

y 1 3 4 )

R

Solution: Let x = g(y). The Lagrange's interpolating polynomia'l P(y) of g(y) is given by

Y=DG-HG=95  ;,G=DG-DG=5 L

PO = = a-Ha -9 G-HGE-HG-3)
(=D =D =5 ug. =D =34
GG =HaE=y P E-DG-H6-4 x 101

- -2% [y’ -~ 12y* + 47y - 60] +' -1-42 [y3 - 10y? + 29y - 20]
- %9 [y* - 9y* + 23y - 15] + lgl [y - éyz + 19y - 12
which, on simplification, gives

Py =y -y* + L
The Lagrange’s interpolating polynomial of x is given by P(y).
L x= Py =y -yl
- wheny=2,x=P2)=5.

Example 4: Find the value of x when 'y = 3 from the following table of values.

x 4 7 10 12

y -1 1 2 4

Solution: The Lagrange's interpolation polynomial of x is given by

CDEED) 2D 3)

y+ D@y -D(y—-4) (y+ D (y=-1H(y-2)

* OIOICY) R ¢ W ) N )] 2
L @M=D @) () (= 1)
PO = Tomee @ oo @

W@ ED @) (2 )

oo W Ee o

4 14 40 48

=E-TTIYTS

182 ’

=~ x(3) = P(3) = 12.1333.

“Now you try some exercises.

E3) Find the Lagrange’s interpolation polynomial of f(x) from the following data. Hence
obtain {(2). v

x 0 1 4 5

fx) 8 n 68 123




E8)  Using the Lagrange’s interpolation formula, find the value of y when x = 10.

i

'E4)  Using the Lagrange’s interpolation formula, find the value of f(x) when x = 0 from

the fpllowing table:. -
X 3 2 : 1 -1
f(x) 3 12 15 ‘ -21

ES) * Find the value of y when x = 6 from the following table:

X 1 2 7 ! 8

y 4 .5 5 4

E6) From the following table of values, find the value of y when x = 25

X 0 1 _ 2 4

y _ 5 14 41 98

E7) Find the value of {(5) from the following table:

T

x 0 1 3 4 7

f(x) 4 1 43 112 655

x 5 6 9 o

y 12 13 14 16

E9) In the following table, h is the height above the sea level and pis the bar_bmetric
pressure. Calculate p when h = 5280. ' :

h 0 4763 6942 10594

p 27 25 23 20

E10) In the following table, y represents the perccntége of the number of workers in a
' - factory whose age is less than x years. Find what percentage of workers have their

age less than 35 years. K
X 25 30 40 50
y 52 67.3 84.1 ‘944

Now we are going to find the error committed in approximating the value of the function
by P,(x). :

9.4 ERROR

Let E;(x) = f(x) - P,(x) be the error involved in approximating the function f(x) by an
interpolating polynomial. We derive an expression for E,(x) in the following theorem.

This result helps us in estimating a useful bound on the error as explained in an example.

Theorem 4: Let X, X;, ..., X, be distinct numbers in the interval [a, b] and f has
(continuous) derivatives upto order (n + 1) in the open interval Ja, b[. If P,(x) is the
interpolating polynomial of degree < n, which interpolates f(x) at the points X, ..., X,, then

- for cach x € [a,b], a number &(x) in Ja, b[ exists such that

Lagrange's Form
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Iaterpolation (a+1) \
E,(0) = f(x) ~P,(x) = f—(ﬂlg‘—’,‘ll (x = X0) (X = X1) oo (X = x5). (8)

Proof: If x # x, forany k=0, 1, 2, ..., n, define the function g for tin [a,b] by

80 = 1) = Po() ~ [f(x) = Pu] | [
j=0

(x = x;)
Since £(t) has continuous derivatives upto order (n+1) and P(t) has derivatives of all "
orders, g(t) has continuous derivatives upto (n + 1) order. Now, fork =0, 1, 2, ..., n, we >

have

g00) = £(x4) = Pa(xy) = [£(x) = Py(x)] H(("—;E—xﬁ)l

0 - [f(x) ~ P,(x)}.0 = 0

Furthermore, g(x) = f(x) ~ P,(x) - [f(x) = Py(x)] HH
i=0

f(x) = Pa(x) = [f(x) = Po(x)]. 1 = 0

Thus g has continuous derivatives upto order (n + 1) and g vanishes at the (n + 2) distinct
points x, Xy, ..., X,.. By the generalized Rolle’s Theorem (Theorem 2) there exists &(x) in
Ja,b[ for which gi*+1)(E) = 0. Differentiating g(t), (n + 1) times (with respec to t) and
evaluating at &, we get

0 = g(ni-l)(&) - f(n+i)(§) - (n + 1)! |f(:() - Pn(x)l
' H(X - X;)

i=0

Simplifying we get (error at x = X)

. . (ll + l) - n .

i=Q

The error formula (Eqn. (9)) derived above, is an important theoretical result because
Lagrange interpolating polynomials are extensively used in deriving important formulae
for numerical differentiation and numerical integration. '

Itis to be noted that § = &(x) depends on the point X at which the error estimate is
required. This dependence need not even be continuous. This error formula is of limited
utility since {*1)(x) is not known (when we are given a set of data at specific nodes) and-
the point & is hardly known. But the formula can be used (o obtain a bound on the error of
interpolating polynomial. Let us see how, by an example.

Example 5: The following table gives the values of f(x) = ¢*. If we fit an interpolating
polynomial of degree four to the data, find the magnitude of the maximum possible error
in the computed value of f(x) when x = 1.25. ' )

X 1.2 1.3 1.4 1.5 1.6

f(x) 3.3201 3.6692 4.0552 44817 4.9530

Solution: From Eqn: (9), the magnitude of the error associated with the 4th degree
polynomial approximation is given by

(5)§
[Es(x) = | (x = X0) (x = ;) (x = %X3) (x = X3) (X = x4) - 5!( :

(s
(x - 1.2) (x = 13) (x = 14) (x = L5) (x - 1.6) f—s,@- (10)

-l
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Since f(x) = ¢, F(x) = ¢*.

When x liesin the interval {1.2, 1.6],

Max | fO)(x) | = ¢ = 4.9530 o an

Substituting (11) in (10), and puumg x=1.25, the upper bound on the magmtude of the
crror

4.9530

= 1 (0.05) (= 0.05) (- 0.15) (= 0.25) (= 0.35) | x 22550

=0.00000135.
You may now try the following exercises..

“Ell) Fbr lhé data of Example 5 with last one omitted, i.e., considering only first four

nodes, if we fit a polynomial of degree 3, find an estimate of the magnitude of the
error in the computed value of f(x) when x = 1.25. Also find an upper bound in the
magnitude of the error.

E12) The following table gives the values of x and f(x) = Sinhx. If the value of ‘f'(x) when
x = 0.53 is computed from the second degree interpolation polynomlal find the
estimate of the magnitude of the error.

X 0.50 0.55 0.60 0.65 0.70

f(x) 0.52110 0.57815 0.63665 0.69675  0.75858

E13) Find the value of x when y = 3 from the following table:

x 12 18 24 a2

y -2 1 2 4

El4) Find the value of x when y = 4 from the table given below:

X 8 16 20 72

y | =1 1 3 5
E 15) Find the mterpolatmg polynomial which fits the following data takmg x as the
independent variable, .
x =1 0 1 2
f(x) 1 1 1 -5
'E16)  Using Lagrange's interpolation formula, find the value of {(4) from the following
~ data:
x 1 3 7 13
f(x) 2 5 12 - 20

‘Let us take a brief look at what you have studied in this unit.

95 SUMMARY

In this unit, we have seen how to derive the Lagrange’s form of interpolating polynomial
for a given data. It has been shown that the interpolating polynomial for a given data is

unique. Morcover the Lagrange form of interpolating polynomial can be determined for

equally spaccd or unequally spaccd nodes. We have also seen how the Lagrange's
\

Lagrange's Form
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. Interpolation

14

interpolation formula can be applicd with y as the indcpendent variable and x as the
dependent variable so that the value of x corresponding 10 a given valuc of y can be
calculated approximately when some conditions are satisficd. Finally, we have derived the
general error formula and its usc has been illustrated to judge the accuracy nf our
calculation. The mathematical formulae derived in this unit are listed below for your easy

reference.
1) Lagrange's Form

P,(x) = if(x;) L;(x) where

i=0
’ *
n . n o ';3 :j’.
L) = | [ = x| 1] D0 = % A
i=0 j=0 S
J‘l )*l -

2) Inverse Interpolation

n

T - i)
B = 2l [Ty
o |0

jei

3) Interpolation Error

(n + I)!

E.(x) = f(x) = Pu(x) = £ D) ﬁ(x - x;)
. i=0

9.6 SOLUTIONS/ANSWERS

E1) Iff(x) is a polynomial of degree < n, then

n
f(x)=P,(x) = ZL;(X) [(x;) by uniqueness of interpolating polynomial.
i=0

When {(x) = 1, we get (i).

4w,

When f(x) = x¥, k < n, we get (i) byilhc same argumcnt.

E2) Px)= 2 0(x)Li(x)

=0

n

where Li @) = | [T = x| £ [ T]xi = %) i = 0 m.
j=0 j=0 '
)= i

Since w(x) = f[(x - X;)

j=0

wWix) = H(Xi - x;)

=0
J#1 0
n H(X B xj) (x)
Also II(X - %) = J-(ox <y wa—xxi)
=
j#i
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Hence Li(x) = x = ‘:l()xzv (xi)

Thus P, (x) = Z (X f(X ) wlx)

= x)wix)

E3) x*-x*+3x + 8,18

E4) 6
. 17
ES) 3

E6)  57.265625
ET) 229

E8)  14.6667
E9) 24.5493
E10) 77.405

E11) From Eqn. (9), the magnitude of the error associated Wilh the 3rd degree
polynomial approximation is given by

) ,
JE@) | = | (x = x0) (x = x1) (x = %2) (x = X3) -{759‘ ,
‘ - et
|E@Q.25)] = | (.25 - 1.2) (1.25 - 1.3) (1.25 ~ 1.4) (1.25 = 1.5) 3’-4!-

]

Since f®(x) = e*, when x lies in the interval [1.2,1.5],

Max If(4) (x) l = elS,

Hence| E(1.25)| s &2

.05) (= .15) (= .25). e**
25 )

"E12) 84x10°
E13) 32

514) 36.75

El15) -x* + x + 1

E16) 6.6875.

Lagrange's Form
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UNIT 10 NEWTON FORM OF THE
INTERPOLATING POLYNCOMIAL

Structure

10.1 Inuroduction

Objectives
10.2  Divided Dificrences
10.3  Newton's General Form of Interpolating Polynomial
104  The Error of the Interpolating Polynomial
10.5  Divided Differences and Derivatives

10.6  Further Results on Interpoiation Error
10.7  Summary .

10.8  Solutions/Answers

:10.1 INTRODUCTION

The Lagrange's form of the interpolating polynomial derived in Unit 9 has some drawbacks
compared to Newton form of interpolating polynomial that we are going to consider now.

In practice, one is often not sure as to how many interpolation points to use. One often
calculates Py(x), P5(x), .... increasing the number of interpolation points, and hence the
degrees of the interpolating polynomials till one gets a satisfactory approximation Py(x) to
f(x). In such an exercise, Lagrange form seems to be wasteful as in calculating Py(x), no
advantage is taken of the fact that one has already constructed Py - 1(x), whereas in Newton.
form it is not so. \

Before deriving Newton's generai form of interpolating polynomial, we introduce the
concept of divided difference and the tabular representation of divided differences. Also
the error of the interpolating polynomial in this case is derived in terms of divided
differences. Using the two different expressions for the error term we get a relationship
between nth order divided differcnce and nth order derivative,

Objectives

After studying this unit, you should be able 1o :

e obtain a divided difference in terms of function values;

e form atable of divided differcnces and find divided differcnces with a given set of
arguments from the table;

e show that divided difference is independent of the order of its arguments;
e  obtain the Newton’s divided differences interpolating polynomial for a given data;

e find an estimate of f(x) for a given non — tabular value of x from a table of valucs of
xandy [f(x) ];

e relate the kth order derivative of f(x) with the kth order divided difference from the
expression for the error term.



10.2 DIVIDED DIFFERENCES

" Suppose that we have deiermined a polynomial Py _ 1“ (x) of degree S k — 1 which

interpolates f(x) at the points X, X, ... Xc 1. In order to make use of P, _;(x) in calculating
Py(x) we consider the following problem: What function g(x) should be added to Py _;(x)
to get P, (x)? Let g(x) =P, (x) ~ Py (x). Now, g(x) is a polynomial of degree < k and
8(x) =Pu(x) =P 1 (x)=f(x)) — f(x)=0fori=0,1,..k-1.

Suppose that P, (i) is the Lagrange polynomial of degree at most n that agrees with the
function f at the distinct numbers xg, X;,...., Xq. P (x) can have the following

. representation, called Newton form.
Pux)=Ag+ A (x—X0) + Ap(X=X0) (X — X)) + o ¥ A (X = Xo)ooo (X = Xa-1) (1)
. for appropriate constants Ag, Ay, ..., Ap.

Evaluating P,(x) (Eqn (1)) at xo we get Ag = P, (xg) = f(Xo). Similarly when P,(x) is

f f
evaluated at x,;, we get A; = _(x%_x(_ox,) Let us introduce the notation for divided

differences and define it at this stage: The zeroeth divided difference of the function f,
with respect to x;, is denoted by f[x;] and is simply the evaluation of f at x;, that is, f[x;] = f
(x;). The first divided dlfference of f with respect to x; and x,,l is denoted by f[x;, x;,1]

xxin] = .fL_l_le

Xis1 =X

and deﬁncd as

The'remaining divided differences of higher orders are defined inductively as follows. The
kth divided differences relative 10 X;, X; 4 1, «ees Xj 4 IS deﬁned as

f[xi+lt trey 4 l+k f[xl' ty |+k"l]
T xx*k x -

x5 Xiars oo Xix] =

where the (k — 1)st divided differences f[x;, ..., X;+ k.. 1] and f[X;.+ 1 .. X;+ ) have been determined.
This shows that the kth divided difference is the divided differences of (k — 1)st divided

differences justifying the name. The divided differenge f[x;, X, ..., X,] is invariant under
“all'permutations of the arguments Xy, X3, ..., X, TQ show this we proceed as follows giving
" another eXpression for the divided difference. :

. For any integer k between 0 and n. let Qk(x) be the sum of the fn'st k+1 terms in form (1),

ie., .
QXY= Ag + A, (x Xg) + e + Ap(% ~Xg) o (xka_,?.

Since each of the remaining terms in I-.’.qn‘;1 (‘l') has the fécmr (% = Xg) (X = X1) oo (X = X)),
Eqn. (1) can be rewritten as

Pa(x) = Qu(x) + (x —Xg) ... (x = x,) R(x) for some polynomial R(x). As the ferm (x — Xo)
(x = xy)... (x=x,) R(x) vanishes at each of the points x ... x;, we have f(x;) = P,(x) = Q¢

- (x),i1=0,1,2, ..., k. Since Q. (x) is a polynomial of degree <k, by uniqueness of

mlerpolaung polynomlal Qu(x) = Pr(x).

This shows that P, (x) can be constructed step by step with the addition of the next term in
Eqn (1), as one constructs the sequence Po(x), Py(x) ... with Py(x) obtmned from Py _1(x)
in the form v

Pi(x)=Pe_1(x) + Ap(x =X0) oo (X~ X -1) ' 2
That is, g(x) is"a polynomial of degree <k having (at least) the k distinct zeros Xg, ..., Xg-1.

o Pr(X) = Py 1(x) = g(x) = Ap(X — Xg) ... (x — X; 1), for some constant A,. This constant
A, is called the kth divided difference of f(x) at the points X, ..., X for reasons discussed

‘below and is denoted by f[xg, Xy, ..., XiJ. This coefficient depends only on the values of

Newton Form of the Intere
polating Polynomlal

17



Iaterpolation

18

f(x) at the points X, ..., x;. Thus Eqn. (2) can be rewritten as

Pux) =Py y(x) + fXo, vors Xid (X = X0) (X = X;) vovy (X =Xy }) 3)
To get an explicit expression for f[xy, ...,x,] we make use of Lagrange form of
interpolating polynomial and the uniqueness of interpolating polynomial.
From Eqn. (3) we have

Py(x) =Pp_1(x) + flxo, eoep Xu] (X = Xg) oo (X = Xgy),

since (x — Xo) (X — X) ... (x =% 1) = x* + a polynomial of degree < k, we can
rewrite P,(x) as Py(x) = fxg, ..., x,] X* + a polynomial of degree <k 4

(as P, _.1(x) is a polynomial of degree < k).

But considering the Lagrange form of interpolating polynomial we have

R0 = Pt [[ 222
i=0 j=0 XiT X
i

= Z --——fﬁ-—— xk + a polynomial of degree < k.

P
i=0 H(Xi - X4)

i=0

L j=i

-

Therefore, on comparison with Eqn. (4) we have

f(x;)
(X = X0) oo (X1 = Xio1) oo (Xi = Xie1) on(Xg = X))

. k
f[X(), ...,Xk] =
i=0

This shows that
f[yO, veny yk] = f[Xo, seey Xk]

if yo, ..., Y is a reordering of the sequence Xy, ..., X,. We have defined the zerocth divided
difference of f(x) at x4 by f[x] = f(xo) which-is consistent with Eqn. (5).

Fork =1, we have from Eqn. (5)

] = fx0) | E) £ = 1) | lalAlxo)
Xo-Xy X1-Xo , Xo-X1 X1~Xg

f[Xo, X1

This shows that the first divided difference is really a divided difference.

For k = 2, it can be shown (using Eqn. 5) that

f[XO. X;] - f[X], Xz] .
Xo — X2 '

f[xo, x1, x2] =

“This shows that the second divided difference is a divided difference of divided
differences.

We show below in Theorem 1 that fork > 2

ffx1,.., %] = X000y X2 1]
Xy — Xp

(©)

f[Xo,..., Xk] =
This shows that the kth divided difference is the divided difference of (k — 1)st divided
differences justifying the name. If M= (o, ...., X,) and N denotes any n — 1 elements of

M and the remaining two elements are denoted by o and B, then

{(n - 1)st divided difference on'N anda. — (n — 1)st divided difference on N andB) )
(£lXormves Xa = o -




;
4
i
i
|
|

R Theorem : o Newton Form of the Inter-

) polating Polynomial
f[xl..... x,-] - f[xo.xl,..».. xj_,]

Xj — Xo

f[xb,.... xj] = ®
Proof: LetP;.(x) be the polynomial of degree <i— 1 which interpolates f(x) at~x§, wenr Xim 1
and let Q;.(x) be the polynomial of degree < j — 1 which interpolates f(x) at the points
X1, - Xj. Let us define P(x) as

PO) = TR Q00 + Tl B,

g 'Thxs is a polynomial of degree < j, and P(x;) = f(x;) for i = 0, 1, ..., j. By uniqueness of the
. imcrpblaung polynomial we have P(x) = Pj(x). Therefore .

-x
Pi(x) = T—- x(:,

X; = X
Qj-1(x) + x,.’ — Bi-1(x).
Equating fthc coefficient of x! from both sides of Eqn. (8), we obtain (leading) coefficient of

leading coefficient of Q _ ; (x) leading coefficient of B - ,(x)
Xj — Xo N xj = Xo-

X inPj(x) =

] _ f[xvl,.... Xj]'?f[Xo,..., Xj-]l
il = -

Xj;— Xo ) : o

‘That is f[xo,.... x

- We naw- illustrate this theorem with the help of a few examples but before that we give the
\ “table of divided differences of various orders.

‘Table of divided differences
Suppbsb we denote, for convenience, a first order divided difference of f(i) with any two

-arguments by f[...], a second order divided difference with gny,three arguments by f[..... ]
and so on. Then the table of divided differences can be writign as follows

Table 1
x ] ] ] T -
Xo fo
| flxo.x1]

0 fi . fxo.x1,X2)

: fIx1,%,] f1x9,X1,%2,X3)

X o fTx1.%2,%3] R IESRSBORIEN

| f[x2,x3] A fIx1.x2.x3,%4]
x3 fy - Mxa4%3,%4)
1x3.%4]

» o fa

Example 1: If f(x) =X, find the value of f[a,b,c].

f(b) - f(a) _ b* —al
b-a “ b-a

- Solution: fla,b]

b? + ba + a?=2a + ab + b?
‘19
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Interpolation Similarly,

flbc}=c* + cb + b2=b? + bec + ¢*

- fla,b,c]

- fla.b,c]

Example 2:

Solution:

Similarly,

flb,c]

flabc] =

Similarly,

f{b,c.d]

-~ flabedl o

~ flabed]

_f[b,c]-—f[a,b]

- c—a

_ (b2+bc+c2)—(a2+ab+b2)
- c—a

(2 —a%) +b(c—2)

- c—-a

_ (c-a)(c+a+b)

- (c - a)

=a+b+c

=a+b+ec

1 :
If f(x) = < show that

1
f[a,b,c,d] = - m

1 1
% " @ __a-b _ 1
fla,b] = b—=a _ ab-—a) ab
1 1
-_Ea’f[c'd]_ "Ea— .
[0 S S S
..,_bQ___s_b." =.ﬂ.b____b£
c—a c—-a
c-a
abc 1
1
< bed
c—a
U]
c—-a  abc
a-d
_ abcd
ol =
S U
- abcd
- 1
= abcd

In next section we shall make use of the-divided differences to derive Newton’s general
form of interpolating polynomial. ‘

103 NEWTON’S GENERAL FORM OF INTERPOLATING
 POLYNOMIAL -

In Sec.10.2 we have shown how Py(x) can be constructed step by step as one constructs the

20

sequence Fg(x), Py(x), P2(X)s..s with P,(x) obtained from Py _1(x) with the addition of the



next term in Eqn.(3), that is, ’ . : Nowton Form of the Intors

. palating Polynomial
P(x)=P, 1 (x) + (x— Xg) (X = X1) oo (X = Xg 1) fTXguererXy)

Ulsing this Eqn. (1) can be rewritten as
P,(x) = flxo) + (x—xg) fXo.X;} + (x—Xo) (x - xy) flxg.x1 %] + ... +

(x - xo) (x- Xp)eoo{X = Xp—g) fIX0X)pereiXn)e &)
This can be written compactly as follows :
n i-1
P(x) = Zf[XO. xf]H(x - x) o 0)
i=0 =0 ’

This is the Newton’s form of interpolating polynomial.

Example 3: From the following table of values, find the Newton's form of interpolating
‘polynomial approximating f(x). ' .

x | -1 o -3 6 7

f(x) 3 -6 39 822 1611

Solution: We notice that the values of x are not equally spaced. We are required tofinda
_polynomial which approximates f(x). We form the table of dividg:d differences of f(x).

Table 2
x fl.] B (% fl.r] TS DY |
— . 3. .., l :
-9 \
| T 6.....
15 R - S '

3 39 . h

, S 261 | o

6 822 | "

. 789

-1 —

Since the divided difference upto order 4 are available, the Newton’s imerpdlating
polynomial P4(x) is given by ‘

P = xg) + (x = %0 flxoy] + (x=%0) (x = X)) flxgXixa] +
(x = Xo) (x = Xp) (x = X} fIXoXy . Xg0Xs] +
(x = Xg) (x — Xp) (% = X) (x = X3) flxo. %) Xa.X3.Xa] (1)

-where xo = -1,x=0,x=3,x3=6and x4 = 7.

The divided differences f(xo), fXo.x1], fXo,X1.X2)s f[xg,X1,X2:X3] and f[xo,%; ,xi.x;,:q]_'arc
those which lie along the diagonal at f(xo) as shown by the dotted line. Substituting the
values of x; and the values of the divided differences in Eqn. (11), we-get

Px) =3+ (x+1) (-9) + x+1Dx(6) + x+Dx(&x =3)() +
: L+ x (x =3) x=-6)(1)

21
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which on simplification gives
P,(x) =x* ~3x3 + 5x2-6
f(x) = Px)=x*-3x* + 5x*-6

We now consider an example to show how Newton's interpolating polynomial can be used
to obtain the approximate value of the function f(x) at any non-tabular point.

Example 4: Find the approximate values of f(x) at x = 2 and x = 5 in Example 3.‘
Solution: Since f(x) = P4(x), from Example 3, we get
| £2) =Py2) =16 ~ 24 + 20-6=6
and
£(5) = P(5) =625 - 375 + 125-6=369
Note 1: When the values of f(x) for given values of x are required to be found, it is not
necessary to find the interpolating polynomial P4(x) in its simplified form given

above. We can obtain the required values by substituting the values of x in
Eqn. (11) xtself Thus,

P2 =3+() 9 + OO (6) +3AEHE + B@ENENT
o P2)=3-27 + 36-30 + 24=6.
Similarly,
PS) =3+ (6)(=9) + (6)(56) + ©) (B + ©) )@ (-1H(D)
=3-54 + 180 + 300 - 60 = 369.
Then f(2) = P,(2) =6
and f(5) =P(5) =369.

Example $: Obtain the divided differences interpolation polynomial and the Lagrange's
interpolating polynomial of f(x) from the following data and show that they are same.

) 3 3

f(x) -4 6 26 64

Solution: (a) Divided differences interpolation polynomial:

Table 3

x fx] fl..] MLl fLore]

2 6 M\sk\\

20 1
3 26 9

38

4 64

P(x) =-4 + x(5) + x(x=2) (5) + x(x=2) x=3) (1)

=x* + x~-4



. k) = a. . Newton Form of the Inter-
polating Polynomial

(b) Lagrange’s interpolation polynomial:

o x = 2){x ~ 3Nx ~ 4) x(x - 3)(x - 4)
PO = =3 0-o Y G-y ©
x(x = 2) (x - 4) -2)(x -

FoCEn @0+ (4) o ay

D (&)

+

-}; (3 - 9x% + 26x — 24) + %(x’ - x4 12x)

- T x3 - 6x% + 8x) + 8(x® - 5x% + 6x).

On simplilying, we get
Px) =x* + x—-4.

Thus, we find that both polynomials ar¢ the same.

You may now try the following exerciscs:

El) Findthe Lagrangc's‘imcrpola‘ting polynomial of {(x) from the table of values given
below and show that it is the same as the Newton’s divided differences
interpolating polynomial.

X 0 1 4 5

{(x) g8 il 68 123 .

E2)  From the table of valucs given below, obtain the value ofy when x = 15 using

\

7 (a) divfded differences interpolation formula.

(b) Lagrange’s interpolation formula,

X 0 12 4 5

) 5 14 41 98 122

“E3)  Using Newton’s divided dilferences mterpolauon formula, find the values of f(8)
and {(15) from the following table.

x 4 5 7 10 13

f(x) 48 100 294 900 - 1210 . 2028

In Unit 9 we have derived the general error term i.e. the crror committed in approxxmatmg
{(x) by P,(x). In the next section we derive another expression for the crror term in term of .
divided dxffcrcnce

A

10.4 THE ERROR OF THE INTERPOLA'" I‘ING |
' POLYNOMIAL L

Let P, (x) be the Newton form of interpolating polynomial of degree < n which interpolates
f(x) at xo, ..., X5. The interpolating error E,(x) of P,(x) is given by

E,(x) = f(x) = P,(x). 12




Interpoiation

Let X be-any point dilfcrent from Xg, «..Xn. If Py 4 1(x) is the Newton form of intcrpolating
polynomial whnch interpolates £(x) at Xg,....Xq and X, then Py 1(X) = [(X). Then by (10) we
have

Py 1(X) =Py(x) + ([Xgu..XpeX] H(x )
j=0

Putting x = X in the above, we have

f(") P, (X} =Py(X) + fIXg, eiXpeX] H(— - x))

j=0
i.e. Ey(X) = £(X) = P,(%) = flXg, XX ] Ha - X;). T (13)
j=0

This shows that the error is like the next term in the Newton form.

10.5 DIVIDED DIFFERENCE AND DERIVATIVE OF THE
FUNCTION

Comparing Eqn.(13) with the error formula derived in Unit 9 Eqn. (9), we can establisha

 relationship between divided differences and the derivatives of the function

E,(X) = i(n_ﬂég_)l fI(',z - x;)
=0

“(n+ 1!

£[XgsX10eees Xp» X] Inl(‘ic' - Xx;).

i=0

o) )

Comparing, we have f{Xg, X;,...Xg 1] = GIDT

(considering X = x,41)
Further it can be shown that E € Jmin x;, max x;[.
We state these results in the following theorem.

Theorem 2: Let f(x) be a real-valued functmn, defined on [a,b] and n times differentiable
in Ja, b[ If Xo,....X, are n + 1 distinct pomts in [a,b], then there exists & € ]a,b{ such that

f{XgeeresXg)] = f(q:l gé)
Corollary 1:
If f(x) = x°, then

fTXgyeenrXy] = -E:— =1
Corollary 2:
If f(x) = xX, k < n, then

fXgreeneXy ] =0

since nth derivative of x¥, k < n, is zero.

For example, consider the first divided difference

f - f
flxo.x;] = _________(x;)l - X(EXO) .



By Mean value theoren 1(x) = f{Xg) + (x;— xo)' FE),xp<E<x, Newton Form of the Iuter-
. pol_aung Polynomial
Substituting, we get '
flxox) =€) 2p<§<xp.

Example 6: If f(x)zank“ v, X4 L ka4 a,, then ﬁnd‘f[xo,xl,...,x.,].

Sol.ution: From Corollaries 1 and 2 we have f[Xg,X1..0Xa] = 25« -:-% + 0 = a,.
- Let us consider another example.
Example 7: Iff(x) = 2x*> + 3x* ~ x +1,find
f1, - 1,231, fla.bic.dl, f4,6,7.8].

Solution: Since f(x) is a cubic polynomial, the 3rd order divided differences of 1(x) with
any set of arguments are constant and equal to 2, the coefficient of x3 in f(x).

Thus, it follows that f[1, — 1,2,3], f[a,b,c,d], and ]4,6,7.8] are each equal to 2: *

You may now try the following exercises:

Ed) If f(x) = 2x> — 3x? + 7x + 1, whatis the value of f]1,2,3,4]?

ES) If_ f(x)= 3;(? - 2x + §,find f11,2), f2,3] and f]1,2,3].

In the next section, we are going to discuss about bounds on the interpolation error.

10.5 FURTHER RESULTS ON INTERPOLATION ERROR

We have derived the error formula .
£+ D Ex) 7T
E,(x) = f(x) ~ P,(x) = T\Tl%'*'" 11(" = %

We assume that f(x) is (n + 1) times continuously differgntiable in the interval of interest
(a,b] = I that cODLAInS Xg,-...X,, and x. Since E(x) is unknown we may replace @+ (E(x))

by Ma% | ¢+ V(x) |. 1f we denote (x — Xg) (x = X1)-..(x = X5) by ¥a(x) then we have

max|fe (B)] ©

|Eat0)] = [£00 = @) | $ Lo pyr— T:x: a4y

Consider now the case when the nodes are equally spaced, that is, x; = Xo + jh, j =0,...N,
and h is the spacing between consecutive nodes. For the case n=1 we have linear
interpolation, If x € [x;-;, x;], then we approximate f(x) by Py(x) which interpolates at

X; -1, and X;. From Eqn. (14) we have |Ei(x)| S -% “max | £7(t)] max |y (x)]
’ tel S tel

where yi(x) = (X =X 1) (X —Xp.

Now,

givesx = (xi_; + X)/2.

Hence, the maximum value of I{(x—x;-1) (x —x) loccurs atx = X = (X5 + X2,
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The maximum value is given by

- xe ) 2
CwnG® | = (i mxion)” »:’-l) = %—-

Thus, we have for linear interpolation, for any x € I

(xi = x; - 1)2 1
Eq(x)| = [f(x) - Pi(x)]| £ \ max | 17(x) |
. I 1 I I 1 l -4 2 xel
s
=M @as)
where | (x)[sMon L.
For the case n=2, it can be shown that forany x € [x;-1, xj+1).
M -rn | , v o
|E2x) | s W] where | £ (x) | < Monl (16)

Example 8: Determine the spacing h in a table of equally spaced values of the function of
f(x)= x between 1and 2, so that interpolation with a first degree polynomial in this
table will yield seven place accuracy.

Solution: Here

fx) = -~ %x“”z

1
max f*(x) 1= =.
1<x<2 | | 4

h2
and | El.(x) [ < T3

For seven place accuracy, h is to be chosen such that

h2
32

or  h?<(160)10~% thatis h < .0013.

< 51078,

E6)  If f(x) takes the values —-21, 15, 12 and 3 respectively when x assumes the values
-.1, 1,2 and 3, find the polynomial which approximates f(x). E

E7)  Using the following table of values, find the polynomial which approximates {(x).
Hence obtain the value of (5). ;

X -1 - 0 2 "3 7 10

f(x) -11 1 1 1 141 561

E8) Find the polynomiai which approximates f(x), tabulated below

X -4 -1 0 2 s

f) 1245 33 59 1335

Also find an approximate value of f{(x) atx =l and x = -2

E9) Iff(3) = 168, f(7) = 120, f(9) = 72 and £(10) = 63, find an approximate value of
£(6).

E10) The following table gives steam pressures P at different temperatures T, measured
in degrees. Find the pressure at temperature 372.1 degrees. |



T 3% 31 3B 3% 39 e olating Palyuomi
TP 154.9 167.0 191.0 2125 244.2
Ell) From the following table, find the valuq of y when x = 102
X 93.0 196.2 100.0 104.2 108.7
y 11.38 12.80 14,70 17.07 19.91
E12) From the following table of values, obtain the value of y atx=3
X -0 1 2 4 5
y 0 16 48 88 0
E13) Obtain the polynomial which agrees with the values of f(x) as shown below
' X 0 1 2 5
f(x) 2 3 12 147

El4) Determine the spacing h in a table of equally spaced values of the function f(x) = |fx
between 1 and 2, so that interpolation with a second-degree polynomial in this table
yields seven-place accuracy.

"~ 'We now end this unit by giving a summary of what we have covered in it.

10.6 SUMMARY

In this unit we have derived a form of interpolating polynomial called Newton’s general
form, which has some advantages over the Lagrange’s form discussed in Unit 9. This form
is useful in deriving some other interpolating formulas. We have introduced the concept of
divided differences and discusscd some of its important properties before deriving
Newton’s gencral form., The crror term has also been derived and utilizing the error term
we have established a rclationship between the divided difference and the derivative of the
function f(x) for which the inicrpolating polynomial has been obtained. The main formulas
derived are listed below: . ,

f[xl,.... Xj] - f[Xo...., Xj- 1]
Xj; = Xo

n i-1 .
2. P.(x)= Zf[xo,..., x;) n(x - X;)

i=0 =0

1. f(XgyenX;) =

3. E0)=f[Xguxex] [ [(* = X))

j=0

4. f[XgseeerXn] = £ (";,(g), £ € Jmin x;, max x;[

10.7 SOLUTIONS AND ANSWERS

El) x*-x*+3x+8
E2) 2635156

E3) Weform the divided differences table of {(x) below



lntcrpolitlon‘ : : Table 4
x ol L] o] Torer]
4 48
52
5 100 15 |
| 97 | 1
\ | 7 294 : 21 |
| ' 202 B
10 900 | 7
310 1
11 1210 | 33
409
13 2028 |

From the Newton’s divided difference interpolation formula, we have
f(x)=48 + (x-4)(52) + (x f-4) x-5(15 + x—4)(x~- 5') x-7Q).

Substituting x = 8 in the above ge‘i

f(8) =48 + 4x'52 + 4x3x15 + 4x3X1
’ =48 + 208 + 180 + 12=448.
substituting x = 15, we get
- £(15)=3150
| B 3 s |
o B 6E-2,EelL26n-2.1 €123, and 6
E6). >x3 -'9x2 +17x + 6 '
E7) X’ -5x + 6x+ 1,31

E8) 3x- 5x° + 6x*—14x + 5,— 5,145

B 47
E10) 1774
. | . Ell) " 15.79
| ED) 84
E13) P+xi-x+2

” 3 - , w3
Elgy () = z* 52 . hence insa:;‘s.z [£*(x)| = 3

28



2n? [3] 1 h? Nowton Formal the Interpolating
IE;(X)I < m Tlg ™ -z-m Polynomlal.

For seven place accuracy, h has to be chosen such that

h3
< 5.10°%. This gives h = 0.0128.

The number of interval is N = --~=§—-1- = 79.
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UNIT 11 INTERPOLATION AT EQUALLY
SPACED POINTS

Structure

11,1 Introduction
Objectives
11.2  Differences

11.2.1 Forward Differences
11.2.2 DBackward Differences

11.2.3  Central Differences )

11.3 Difference Formulas
11.3.1  Newton's Forward Difference Formula s
11.3.2  Newton's Backward Difference Formula P
11.3.3 S‘lirli‘ng's Central Difference Formula

114 Summary

11.5 Solutions/Answers

11.1 INTRODUCTION

Suppose that y is a function of x. The exact functional relation y = f(x) between x and y
may or may. not be known. But, the values of y at (n + 1) equally spaced values of x are

- supposed.to be known, i.e., (x;, ¥); i =0, ..., n are known where x; - x;_ = h (fixed),

i=1,2, ..., n. Suppose that we are required to determine an approximate value of f(x)

or its derivative f'(x) for some values of x in the interval of intercst. The methods for
solving such problems are based on the concept of finite diffcrences. We have .
introduced the concept of forward, backward and central differences and discussed their
interrclationship in Scc. 11.2,

We have alrcady muoduccd two important forms of the interpolating polynomial in Umls
9:and 10. These forms simplify when the nodes are equidistant. For the casc of cqmdlsﬁm
nodes, we have derived the Newton’s forward, backward diffcrence forms and Stirling’s

_central difference form of interpolating polynomial, each suitable for use under a specific

situation. We have derived these methods in Sec. 11.3, and also given the corrcspondmg
error term,

Objectives

- After reading this unit, you should be able to

® write a forward difference in terms of function valucs from a table of forward
differences and locate a difference of given order at a given point;

®  write a backward difference in terms of function valucs from a table of backward
differences and 1dcm1fy differences of various orders at any gwcn point from the
table;

® cxpanda ccnlral difference in terms of functien values and form a table of central
dlffcrcnccs, :

@  establish relations between A, v, 8 and divided difference;

. @ obtain the interpolating polynomial of f(x) for a given data by applymg any one of

the interpolating formulas;




®  compute f(x) approximately when x lies near the beginning of the table and estimate Inter

the error;

e  compute f(x) approximately when x lies near the end of the table and estimate the
error;

o estimate the value of f(x) when x lies near the middle of the table and estimate the

error.
'

11.2 DIFFERENCES

Suppose that we are given a table of values (x;, y),i=0, 1,2, ..., N where y; = f(x) = f;.
Let the nodal points be equidistant. That is

x;=a + ih,i=0, .., N, withN =(b-a)h 4))

For simplicity we introduce a lincar change of variables

s=s(x) = i‘r-%ﬂ so that x = x(s) = Xy + sh )
and introduce the notation
f(x) = f(xo + sh) =f, (3)

The linear change of variables in Eqn. (2) transforms polynomials of degree n in x into
polynomials of degree n is s. We have already introduced the divided-difference table to
calculate a polynomial of degree < n which interpolates f(x) at Xo, X1, ..., X, For equally

spaced nodes, we shall deal with three types of differences, namely, forward, backward

and central and discuss their representation in the form of a table. We shall also derive the
relationship of these differences with divided differences and their interrelationship.

11.2.1 Forward Differences

We denote the forward differences of f(x) of ith order at x = xo + sh by A'f, and define it.
as follows:

) fe i=0
&t = {A(A“‘f,) = A7, - A7, i>0.
Where A denotes forward difference opérator. '
When s =k, that is, x = x,, we have
fori=1 Afy = fk‘” -fi
fori=2 A%, = Afy o, - A
=fivz—~foer = [fin — ]

= fk42—2fkol + fk

Similarly A, =3 = 3fees + s — fi

We recall the binomial theorem
@+by= 2 [5]at @

j=0

where s is a real and non-negative integer.
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* We give below in Lemma 1 the relationship between the forward and divided differences.

This relation will be utilized to derive the Newton's forward-difference formula which
interpolates f(x) at x, + ih,i=0, 1,...,n

Lemma 1: Foralli2 0

f[xc.... kk,,] = h — O, _ )

" Proof: We prove the result by induction.

Fori= 0, both sides of relation (5) are same by convcnﬁon. that is,

Cfxd=fx)=f= A fi.
Assuming that relation (5) holdsfori= n 20,wehavefori=n+1

f[xk, 1reves Xk o n ¢ 1] - f[Xk,...., xk,n]' .
. ) Xkenel = Xk )
[af o1 / nth®] = [A% / nth®]

Xo+ (k+n+Dh —=xo — kh~

f [Xk v Xkelsooos xkfn#l]

PRl A
(n+1)!h“” ‘(n+1)!h"“

This shows that relation (5) holds for i = n + 1 also. Hence (5) is proved. We now give a
result which immediately follows from this theorem in the following corollary

Corollary: IfP,(x) isa polynomxal of degree n with leadmg cocfﬁcxent a,, and xo isan
arbltrary point, then

AP, (xo) an! h"
and : At 1l-",,(xo) =0,i.e., all higher differences are zero.
Proof: ’I;aking k =0 in relation '(5) we have

flXgs con Xi1 = '1"!_'1' A‘fo : o ©
Let us recall that |

f“’(é)' ; o

f[xO,‘..., Xi] =

where f(x) is a real-valued function deﬁned on [a,b] and i times differentiable in ja,b[ and
€ e labl

Taking i = n and f(x) = P,(x) in Eqgns. (6) and (7), we get
- ( ) .
APy(xg) = UIHPyfXg, .. o) = nth® P )

= h°nla,.
Since A™* 1P, (xg) = A"P,(x,) — A™P,(xq) .
= h"nla, ~ h“ri!a,, =.0. |
This completes the prééf
The shift operator E is defined as ,
E.fi=fi¢1, : _ . ’ : (8):'
In general Ef(x) = £(x + h).



We have E*f; = f;,,

For example,

Efi= £, 5, EY =, pand EVRfi=fi_yp

Now,
Af=f,, — §=E - f=(E-Df

Hence the shift and forward differcnce operations.are related by

A=E-1
or E=1+A.
Operating s times, we get
A=E-1D'= D () E D
j=0

Making use of relation (8) in Eqn. (9), we get

Af= ) D (5) s

j=0

®

We now give in Table 1, the forward differences of various orders using 5 values.

Table 1 : Forward Difference Table

lnu-.rﬁolnuomn equally spaced polnt

' _ f . Aa_f ASE

0 fo ..........

.............. ,.Afo e,
l fx ............... A2f0 ““““
f‘ ............. A 3f0 o,
X2 fz A Zf A A4f°
Afz A afl
xa f3 : 2f2
f4 ﬁ ‘

Note that the forward difference A*f, lie on a straight line sloping downwax;d to the right.

11.2.2 Backward Differences -

Let f be a real-valued function of x. Let the values of f(x) at n + 1 equally spaced pomts

X0» X1seens Xp be fo, f1,..., £, reSpectively.

. The backward differences of f(x) of ith order at x, = X + kh are denotcd by vify. They are

defined as follows:

i fk ,‘ 1
Vi = (viievg,)

where v denotes backward difference operator.

0
virlg -, 1021

Using (10), we have for

i=1; Vi = fi—fi,y

(10)
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i=2; v =v(-fio)
= V-V
=fi—26 + -2

i=3;: Vv =V - fi_1] = VX - V3, = V[VR] - V[V& 4]
= V[fi = i) - V[fioy = i3] '
= ka - ka—l - ka-l + fk-Z

fo = focr =2dfoy + fog] + fioa = fios

k'3fk 2+ 3 - 2"ka3

By induction we can prove the following lemma which connects the dxvnded dxfference
with the backward difference.

Lemma 2: The following relation holds

#

Do oo Fa] = —p VEE(xa) | San

‘The relauon between the backward dxfferencc operator v and the shift operator E is ziven by

v=1-E-lorE= (1-v)'

Since vq_q-q,_& 1@-[1-5*]&
Operating s times, we get _
ORI P R AL
Zo(--l)m [ ]fk-m _ | ay N

We can extend the binomial coefficxcnt notation to include negative numbexs. by lemng

-5 =-_s(—s—l)(-s—2) (~s-Li+1) "'(-vlb)‘ s(s+1)....(s+'i-l)
ij - ‘ H o ‘ A

The backward differences of various orders wi;h 5 nodes are given in Table 2.

Table 2 : Backward Difference Table

x () vf CvE v v
Xo fo .
vii
X 6 v =
' v ‘ v’ v
X2 £, : Vi v MV‘Q
' v I M,,,...mV’Q '
X3 f : VT
| I
“ £~

Let us consider the following example:



Example 1: Evaluate the differences
(a) V3 [azxz + ax + ao]
() V? [a;,x3 + 2;x% + asx + ao];
Solution: (a) V2 [arx® + ax + 2] = 0
. (b) V3 [33X3 + axt + ax + ao]

=a,v3(x% + v? [azx2 +ax + ao]

=2a,3 | h?

Note that the backward differences V*f; lic on a straight line sloping upward to the right™
Also note that Afy = Va1 = fier— fic
Try to show that A%fy = V*fa.
Let us now discuss about the central differences.
11.2.3 Central Differences
The first order central difference of f at x,, denoted by £y, is defined as

§f=f(x + W2)—{&x - b2)=f,1p—fi-1p-
Operating with 8, wé cbtain the higher order central differences as

S =51 (80 =8 ho1p— 8 ioin a3
with 8y = fy when s = 0.

The second order central difference is given by

& = §fis1z ~ s n) = i+ 112) "5[fx-1/g]

=fia—fi - fi + fie

= — 26 + fka
Similarly,

Ofe=fiesn —3ein + Miin — f-3n

- and 84fk=fk+2 - 4fk+l + 6fk - 4fk—l-+ fk..z.

Notice that the even order differences at a tabular valye x, are expressed in terms of
tabular values of f and odd order differences at a tabular value x, are expressed in terms of
non — tabular value of f. Also note that the coefficients of 8%, are the same as those of the
binomial expansion of (1 —x)',s=1, 2,3, e -

Since
O =fan—fk-1z= EVR-E"'%) f,
We have the operation relation
§=ER-E"1" R

The central differences at a non-tabular point Xy 12 can be calculated in a similar way.
For example,

8hvin =fer—f

Interpolation at Equally
Spaced Point
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2 ‘
fisin=fhesp =2ho1n + fio1p

: 53fk+m=fkfz =3 + 3fh-fi, asy
L P =fivsn = 4fcoap + 6fiv1n—4f-1n + fclsn
Relation (15) gan be obtained easily by using the relation (14)
We have
= [EIIZ - E—l/Z]'fk
. ' ' s .
= z(_l)s E-i/2 g6-i)2 [] £y
pord i
i=0
= Z<-1> i bvirar-i (16)
i‘o . . I’
The following formulas can also be established;
, | 1
f[x.o.;.., xzm] = (Zm)!h m sszl!‘l'- (17) L
1 -
f[Xo...-. X2m+1] = W szmﬂfmnlz. (18)
f[x_.m’-".’ XQ0sesos xm]""—' W szé‘fo" (19)
f[x-m"“’ X0sees xm*l] = @m+1)h2=T it 8 _ 0)
: o
xemetyes Koren Xa] = Gy 801, @1
~ We now give below the central difference table with S nodes.
Table 3 : Central Difference Table
x £ & 8 kY
X2 f.z
’ , 33 o
X1 f_l ' 82f.1 . . .
8fin ' &f-1n
Xo f & 5
8fip Fhip
X f1 Szfl
3y -
X2 - ' fz

Note that the differences 8*™f; lie on a horizontal line shown by the dotted lines.



Table 4 : Central Difference Table | lnm'Polﬂ“;; ::olzq;:‘l‘l‘y‘
x f 8 .5 S -8
' Xg f
. ; | 31
PO fi ) |
s , 8n 8fin
B X2 fa ‘ 8%, : 5,
Sfsp 8sp
X3 f; 8f;
8tap
X4 fa

Note that the differences §2™f, lie on a horizontal line.

We now define the mean operator Y as follows

pfy = -;- [fk+1/2 +fk-1/2]
- e,

Hence
= _;_ [Ellz+E-'1/2]

Relation Between the Operators A, v, and p

We have expressed A, v, & and f in terms of the operator E as follows

A =E-1
yv=1-E"!
s =E1/2_E-1/2

= vz g2
k= g [EV4ETR]
A =E(I-E")=Ey
=El/2 (Elfl_E-IIZ)=E1fZ8
Also E"? =y + 5

E~-Wz u-

o

Example 2: (a) Express A%f, as a backward difference.
(b)  Express A, as a central difference.

(c) Express 8°f, as a forward difference.
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Solution:

Rt

(@ &% =EV)f =BV = vEM, = v, (A=Ev)

® &% =[EVS]' =B85 = FE, =8, (v =E"%)

| 2 ' -
© &= [E'”za] f, =E-'aYM,=A%E"'f, =A%, (5=E-'2a)

2
Example 3: Prove that (a) p=1 + %—

®) ps=3 (A + V)

S 2
0 |t + p? =1+§2—

Solution:  (a) Wehave p= %— [E"2 + E‘”’]

s (B2 + V22 (EV2 - BTV 4 4
4 3
12 _ g2y
=14+ .(E___Z]::__.l_
=1+ %?-
(b) L.H.S.
I P,
R.H.S.

Z(A +V) = 2[(E )+ (I-E™)] = (E -E™).

Hence, the result.
() Wehave

us = ,;_(Eui + E-M2) (EV2 _ g-12) -

(E-EMN _ (E-E"H)+4 _
= 3 =

1 -
7E-ED

(E+E?
E)

L 14p28? =1+ 7

— -1 V2_p-12y2
T o BB @R
2 2
= 8 ;2 = 1+""'52

El)  Express v*fs in terms of function values.

E2) Show that (E + 1)§ = 2(E — D).

11.3 DIFFERENCE FORMULAS

preceeding section (Section 11.2)

11.3.1 Newton’s Forward—Difference Formula -

' We shall now derive different difference formulas using the results obtamed in the

In Unit 10, we have derived Newton’s form of interpolating polynomial (using divided



clﬁffcrences). We have also established in Sec. 11.2.1, the following relationship between
divided differences and forward differences

O . 1 a
. ' RS : r[xkv esoy xktn] = W Ay (22)

. - Substituting the divided differences in terms of the forward differences in the Newton's

3'-'f('grm'. and simplifying we get Newton’s forward-difference form. The Newton’s form of
interpolating polynomial interpolating at Xy, Xg 4 15 <o Xk 4n is

Pa(x) = 3 (% = %) (6 = Kin) oo (% = X)) flXannns K]

im0
Substituting (22), we obtain

P00 = 30 = %) (6 = ) o (6 = X)) T A @3

i=0
Setting k = 0, we have the form
n 1 .
P.(x) = Z——- (x = x¢) (x = x1) .i(x = x;_,) Ao

.' i
= ilh

(x—xp) Af (x—Xo) (x=%;) A% (x=Xp)...(x=x__,) A",
=fo+ S H T T Tt TR vl CO)

Using the transformation (2), we have
X=X ,;=Xo + sh—[xo + (k+Dh] =(s—k-jh
Hence (23) can be rewritten as

P(x)=P(xg + sh)= D (s —K) (s = k = Do s = k = i+]) &g
i=0

SIS

i=0

=f, + (s—K)Af, + (s — k) (;!— k=D prg 4,4 828 (i!_ n= D aeg.25)

of degree S n.

Setting k = 0 in (25) we get the formula

n ! ‘.
i S
Pyxo + sy = 2,20 H : (26)
i=0 .
The form (23), (24), (25) or (26) is called the Newton’s forward-difference fofmula.
The error term is now given by

E,(x) = [nil] pned £l ()

Example 4: Find the Newton's forward-difference interpolating polynomial which agrees
with the table of values given below. Hence obtain the value of f(x) atx = 1.5.

Interpolation at Equally
Spaced Polat
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x 1 2 3 4 s 6

W 10 19 0 1 142 235

. Solution: We form a table of forward differences of f(x).

Table § : Forward Differences

x () Af ISR |
1 10-.._
T 9%‘% | b
. —
2 19 ~12
a s
3 40 18 ,
39 6
4 79 24
63 | 6
5 142 30
93

6 235

Since the third order differences are constant, the higher order differcnces vanish and we
can infer that f(x) is a polynomial of degree 3 and the Newton's forward-differcnces
interpolation polynomial exactly represents f(x) and is not an approximation to f(x). The
step length in the data is h-= 1. Taking xo = 1 and the'subsequent values of X:88 Xy Xgy sees
xs, the Newton's. forward-differences interpolation polynomial. o

ftx) =fy + (x-1Af + (L:_l_f)(r!‘_‘ﬁ Ay + (x-=-1(x ;! 2) (x = 3) £,

becomes

f(x) =10+ (x—=1) ©9) +£L‘—‘%$ﬂ a2 + E-DEDE- 2 (6)

=10 + (x—l)'+_ 6(x—1)(x;2) + (xi-ll)v(x—2)(x—3)

which on simplification gives-
fx) =x* + 2x + 7
o £(1.S) =(1.5)° + 2(1.5) + 7
| =3375 + 3 + 7= 13375

Note: :
If we want only the value of fkl.S) and the interpolation pblynom-ial' is not needed,
we can use the formula (26). In this case,

_x=—X% _ L5-1 _
s = h = 1 = 0.5
and

(1.5 =10 + 05) ©) + LALED ) , QALENELI ()




it

=10 + 4.5-1.5 + 0375
=13.375.

LT3

E3) The population of a town in the decinnial census was given below. Estimate the

population for the year 1915.

T Yeanx 1911 1921 1931 1941 1951
"7 | Population: y 46 66 81 93 101

(in thousands)

Ethple 5: From the following table, find the number of students who obtained less than

45 marks,
Marks 30-40  40-50  50-60  60-70 7080
-INo. of students 31 42 51 s 3

Solution: We form a table of the number of students f(x) whose marks are less than x. In

other words, we form a cumulative frequency table,

Table 6 : Frequency Table

X f(x) Af AY A% A%
40 oo
a2 ‘
50 : 73 ”'9-..'
51 a5,
60 124 -16 a7
38 12
70 159 4 |
| 31
80 190

- Wehave x, =40, x = 45 and h --"10

L8=0.5

L 1E5) =31 + (05) @) + O 03 (g) 4 03 (23 CLI (g5

+ £0.3) (-0.5) (-1.5) (-2.5)
24

=31 + 21~ 1.125 - 1.5625 — 1.4453

=47.8672 =48

an

The number of students who oblajncd less than 45 marks is approximaiely 48.

lmérpolntlon at Equally
Spaced Polnt
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E4)

ES)

"~ E6)

E7)

E8)

E9)

E10)

Ell)

E12)

From the following table, find the value of y (0.23):
x 020 022 024 026 028 030
y 16596. 16698 16804 16912 17024 17139

Fihd the cubic polynomial which approximate y(x) given that

Y =1y()=0,y@) =1 and y(3) = 10.

The following table gives the values of tan x for 0.1 S x < 0.3, Find the value of tan
(0.12). o : ‘ i

x 010 0.15 0.20 0.25 030

tan x 0.1003 01511 0.2027 0.2553 0.3093

The following table gives the population of a town in ten consecutive censuscs}
Calculate the population in the year 1915 and 1918. Hence obtain the increase¢’in
population during the period 1915 and 1918. . '

Yearx 1911 1921 1931 11941 1951 1961
Population y 12 15 20 27 39 52
(in thousands)

Find the number of men getting wages between Rs. 10 and Rs. 15 from the
following table. .

WagesinRs,x 0-10 '10-20 20-30 30-40

No. of men y 9 - 30 35 42

The following table shows the monthly premiums to be paid to a company at
different ages. Find the premium to be paid at the age of 26 years.

Age . 20 24 28 32 - 36

Premium inRs. 14,27 15.81 12 1996 2248

The area A of a circle of diameter d 1s given in the following table. Find the arca of
the circle when the diameter is 82 units,

d 80 85 90 95 100

A - 5026 5674 6362 7088 7854

In an examination, the number of candidates who secured marks in certain limits
were as follows: ‘ _

Marks - 0-9 20-39 40-59 - 60-79 80-99
No.ofcandidates 41 62 65 50 17

Find the number of candidates whose marks are 25 or less.

The following table gives the amount of a chemical dissolved in water at differcnt
temperatures. e

Temperature 10° 15 200 25° 300 35

Amount dissol_ved 19.97 21.51 2247 23.52 24.65 25.89

Compute the amount dissolved at 8°.



E13) Find a polynomial which fits the following data : . Intorpolation at Equally
‘ ) Spaccd Point

X 3 5 7 9 11

y 6 24 58 . 108 174

11.3.2 Newton’s Backward-Difference Formula

Reordering the interpolating nodes as Xg, X4~ 1, ...y Xo and applying the Newton's divided
difference form, we get ‘ »

P(x) = fx,] + (x=x) fIx, 1, %) + (x=X5) (X =%, 1) fIXq 220 Xa 10 X

+ e+ (X =X) o (X~ %) fIXg, wees X5] . 27

We may also write

P,(x) 13',,[xn + x-}:( : h]

P,[x, +sh] = i(x—x,) (x=x_,) e (x=x__)f [x,,..... x“_i]
in0

]

) Z -i!lw'(x—xn) (x=x_) e (X=X ) Vi, (28)

Sctx = x, + sh, then

X=X; =X, + sh- [x,‘,— (n—i)h] =(s+n-ih
X=X,_j=(s+n-n+jh=(s+jh

and -

(X = Xp) (X = Xpo1) oo (X = Xgoja1) =5(5.+ 1) oo s(s + i = 1}

Equation (28) becomes

P) = D37 S+ o (5 + i = D Vi,

i=0

£+ VA, + S_(?;L) v2p, 4 S8+ -.;“(s-i-n—l) vie )

We have scen already that

-s| s(s+1) ... (s+k=~1) o ,

Hence, equation (29) can be written as

Pn(x)\= f(x) + (-1 [-i] Vi(x,) + (-1)? [_;] V3 (x,)

- (-1)"[":} Vof(x,)

or

P.(x) = 2 (-1)k [—:] VEE(Xq): . ‘ (30)
© k=0 : .

43



Interpolation

Equation (27), (28) or (29) is called the Newton’s backward-difference form.

In this case error is given by

; s(s+1)... (s+n) , . -
| E,.(x)»:; (_ 1)n+l ( 21-5-1(! ) hml fml (&) (31)
The backward-difference form is suitable for approximating the value of the function at x
that lies towards the end of the table.

e

~ Example 6

- Find the Newton’s backaard differences interpolating polynomial for the data of

Example 4.
Solution: We form the table of backward differences of £(x).

Table 7 ;: Backward Difference Table

x 00 vi v v
1 : 10
.
2 19 12
21 - 6
3 40 18
\ 39 S 6
4 79 2%
"~ 63 L6
5 42 ."_..30"'
‘...-~93"“
B —

P

Tables 5 and 7 are the same except that we consider the differences of Table 7 as

backward differences. If we name the abscissas as Xg, X1, «..» Xs,then X, = X5 = 6,f,=f5=
235. With h = 1, the Newton’s backward differences polynomial for the given data is given
by : : . C . :

& + (x—xs) VEs + (x=xs5) (X—X4) g2g. (x—xs) (X;!’M).(X‘hl Vs

\

P(x)

235 + (x—6) (93) + L’S'_%(l:.s_) (30) + (x=6) (X;.S) (x—4) 6)

=235 + 93(x-6) + 15(x—6) + (x=4) (x=5) (x—6)
which on simplification gives -
P(x)=x + 2x + 7,

which is the same as the Newton's forward differences interpolation polynomial in
Example 4. - -



Example 7: Estimate the value of {(1.45) from the data given below: ‘ Interpolation at Equally

Spaced Point

x Il 12 13 14 15

f(x) 1.3357 1.5095 1.6984 19043 . 21293

- Solution: We form the backward differences table for the data given,

Table 8 : Backward Differences Table

X f(x) vl Vi vt v
11 13357
| 0.1738
1.2 1.5095 0.0151
0:1889 00019
13 16984 0.0170 . 0.0002
02089 00021™"
14 1.9043 00191
- _o2s0”
15 21203~

Here x,=1.5,x=145,h=0.1

W $=

X-X, _ L45-L5 _

R = 035 =05

The Newton's backward differences interpolation formula gives

f(x)=

£, + svfn+s(:c2+!-¥) szn+ s(s+l_;!(s+2) V3, + s(s+1) (s4+!2) (s+3) V4fn

2.1293 + (0.5) (0.2250) + (L3O (g 1y

(0.5 (2. 5 (15 0.0021) + L—.O.S) (g‘is) 2:3) (0.0002)

=2.1293 - 0.1125 - 0.00239 - 0.00013 - 0.0000078
=2.01427=2.0143

El4)
EI5)

E16)
El7)

"E13)
El9)

E20)

From the table of values of E4, find the valué of y when x = 0.29.

Using the backward differences interpolation, find the poly'nomvial which agrees
with the values of y(x) where

y(0)=1, y(1)=0, y(2) =1 and y(3) = 10.
From the table of values of E6, find the values of tan (0.26) and tan (0.40).

From the data of E7, find the increase in population from 1954 to 1958 by applyihg
the Newton’s backward differences interpolation formula with 1961 as origin.

Find the area of the circle whén the diameter is 98 from the data of E10.

In E11, find the number of candidates whose marks are less than or equal to (i) 70.
(ii) 89. _

Find the Newton’s backward differences interpolating polynomial which fits the
data of E13.
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11.3.3 Stirling’s Central Difference Form

A number of central difference formulas are available which can be used according to a
situation to maximum advantage. But we shall consider only one such me.hod known as

‘Stirling’s method. This formula is used whenever interpolation is required of x near the

middle of the table of values.

For the central differcnce formulas, the origin Xo, is chosen near the point being

_ approximated and points below xo are labelled as X;, Xz, ... and those directly above as
X1y X2, ... (as in Table 3). Using this convention, Stirling’s formula for interpolation

is given by
‘ , __
P, (x) = f(xo) + 5 [Ofizz + Sf_m] + 37 8%

2__12 1 . ’
+ s(s ) ) [53&/2 + 53f_”2] + ...

s(s? -1%) s(s* ~22) ... [sz.—(p—l
+

2
? 1 %[SZP-IfUZ + 52p-lf-l/2]

2p-D! .
(s -1 .. [ - -]
+ (2P)! b pfo
s(s>~12) ... (s2-p?) 1 . R ;
Gp ! p) 7 [8%" i + 8% ) (2

where s = (x — xo)/h and if n = 2p + 1'is odd.
If n = 2p is even, then the same formula is used deleting the last term,

The Stirling’s interpolation is used for calculation when x lies

between xg ~-};h and xg + '-i—h. '

, . , '
It may be noted from the Table 3, that the odd order differences at x . are.those which
lie along the horizontal linc between xo and X ;. Similarly, the odd order differences at
xy2 are those which lic along the horizontal line between Xq and x;. Even order differences
at xp are those which lie along the horizontal line through xo.

Example 8: Using Stirling’s formula, find the value of f(1.32) from the following table of
values. ( :

X o L1 1.2 1.3 14 1.5
£(x) 1.3357 1.5095 1.6984 1.9043 2.1293
Solution:

Table 9: Central Difference

x ) 8¢ & 8 5
1.1 1.3357
0.1738
12 1.5095 : 0.0151
0.1889 ' 0.0019
(x0) 13 16984 0.0170 0.0002
0.2059 0.0021
14 19043 0.0191
0.2250
1.5 2.1293




———

Choose xg = 1.3 lmrpdnﬂ'g; ol ?;:}3
vem () LIS, |
From Eqn, (32), we have
) =fo+ 3 [or,, +asf,,2]+-‘2-2_r 8%, + 3‘523‘!12)% [, +s5f1,,]+%@-?ﬂ 5%,
Now,
. [, + 862 = (01889 '+ 0.2059) = 01974
3 [B0.,+8002] = L0.0019 + 0.0021) = 0,0020
Also 8%y = 0.0170, 8%, = 0.0002.
Substituting in the above equation, we get
f(x) =1.6984 + (0.2) (0.1974) + -0—2% (0.0170) + w (0.0020)
R 004 £0.96) 0,0002)
=1.6984 + 0.03948 + 0.00034 — 0.00006 ~ 0 |
= 1.73816 = 1.7382.
In the following'exercises, use the Stirling's in‘tcrpolatibn formula,
E21) Find f( 1.725) from the following table.
x 15 1.6 1.7 1.8 1.9
f(x) 44817 4.9530 54739 6.0496 6.6859
E22) Find the valué of f(1.22) from the following table.
X 1.0 1.1 1.2 1.3 14
f(x) 0.8415 0.8912 © 09320 0.9636 "‘ 0.9855
E23) Evaluate f(4.325) from the following. |
X 4.1 42 43 44 45
" f(x) 30.1784 33.3507 -36.8567 40,7316 45.0141
E24) Find the value of y when x = 30 from the table.
X 21 25 29 33 37
f(x) i8.4708 17.814 17.1070 16.3432 155134
E25) Find the approximate value of y (2.15) from the table.
X 0 1 2 3 4’
y 16.9897 7.4036 7.7815 8.1281 84510
47
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11.4 SUMMARY

In this unit, we have derived interpolation formulas for data with equally spaced values of
the argument, We have seen how to find the value of f(x) for a given value of x by
applying an appropriate interpolation formula derived in this section. The application of .
the formulas derived in this section is easier when compared to the application of the’
formulas derived in Units 9 and 10. However, the formulas derived in this unit can only be
applied to data with equally spaced arguments whereas the formulas derived in Units 9 and
10 can be applied for data with equally spaced or unequally spaced arguments. Thus, the
formulas derived in Units 9 and 10 are of a more general nature than those of Unit 11. The
interpolation polynomial which fits a given data can be determined by using any'of the '
formulas derived in this section which will be unique whatever be the interpolation
formula that is used. '

‘The interpolation formulas derived in this unit are listed below:

1.  Newton's forward difference formula:

n

Po(x) = Palxo + sh) = ‘Zo[?]?*‘foo |

iw

fo + SAf + __T'_s(s -1 Mo+ ... + s(s — 1) :!(s il +HA"fo

where s = (x - Xg)/h.

"2.  Newton’s backward difference formula:

. 0 . ~$ .
Pn (X) = pn (xn + Sh) = Z ("'l)k [ k] kan where s = (X - Xo)/h
pyer B o
3.  Stirling's central difference formula:

: 2 2.12
Palx) = Pylro + ) = fo 4 [Stia + 80y, |+ 5y 80 + 5512 3[04 80, ]

2 12y (2 02 2_ (n_1)2
MGl Kb BELGU R Y [ S YOS Sl S

Cp+1)!

s2(s? —12)...(s%- (p=1)?) s2fy _ s3(s* —1%)...(s> —p? . .
+ - (2p)!p. )sfo +3 ( (2p)+1()s! PJ{SZP ‘fxz.+52P 'f_m]

ifn=2p + 1is odd..If n = 2p is even, the same formula is used deleting the last term,

11.5 SOLUTIONS/ANSWERS

El) FromEgn. (12) V%[, =fs - 4f, + 6f; ~ 4fz + f;
E2) . LHS =EM (ER + E- )= E¥22u5 = 2EY2 5
RHS = 2E'2(E ~ EX)u=2EY%u8.

E3) The forward differences table is given below.

Table 10

x _ y Ay Aly Ay - AYy

1911 - 46 -
20
1921 66 -5 :
, ' 15 2 :

1931 81 | -3 -3

, 12 o 1
1941 93 -4

' 8
1951 - 101




*

Taking xo = 1911, x = 1915, h = 10, we get

PR Lt 1 L1 SO

10

(0.4) (—0.6) (~1.6)
6

< y(1915) =46 + (0.4) (20) + -‘-‘—)ﬁ%‘-‘l@ (-5) + @)

4 £0:4) (-0.6) (~1.6) (=2.6)
24

..46+ 8+06+0128+Ol248

= 54. 8528

or y(1915) = 54.85 thousands.

E4) 16751 .
ES) | y=x1=2x? + 1,y(4) =33
E6) 0.1205
E'Z)‘ 12.54 thousands, 13.64 thousands, 1.1 thousands
Eg) 15
E9) 16.25Rs.
E10) 5281
Ell) | 38
E12) 18.79 (Hint: Take all differences into consideration)
E13) 2x*-7x + 9
El4) "1.7081
E15) x*-2x? + 1
EI6) 02662, 04241 | *
E17) ' Population in 1954 is 43.33 thousands and the  population in 1958 is 48.81 Hence
: the increase in population is approximately 5.48 lhousands -
EI8) 7543 |
.E19) Hint: The number of candidates f(x) whose marks are less than or equal to x is as
"~ follows:
X 19 39 59 . v 9% (
f(x) 41 103 168 218 235
(i) —Take 79 as origin and determine £(70)
We get £(70) = 199,
(i) Take 99 as origin and obtain £(89) = 232.
E20) 2x*-7x + 9

Intorpolation at Equally -
: Spaced Polut
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Interpolation ' E21) ~x=l.7~25,_xo=l.7,h=0.1
CL725-1.7
s = ——01— = 0.25
Table 11
x f(x) s & 8 5
15 44817
} 04713
1.6 49530 0.0496
. \ 0.5209 0.0052
1.7 54739 00548 0.0006
0.5757 0.0058
1.8 6.0496 0.0606 s
0.6363 '

1.9 6.6849

uBf, = (0.5209 + 0.5757) = 0.5483
1B, = (000552 + 0.0058) = 0.0055
Also 8%y =0.0548, 8°f, = 0.0006.

=~ £(1.725) =54739 + (0.25) (0.5483) + ( (0.0548)
+ (0.25) (50.9375) (0.0055) + ‘(9.0625)22—0.9375) (0.0006)

0.0625)
2

=5.4739 + 0.13708 + 0.00171 - 0.00021 -0
| 2561248 = 5.6125
E22) 0.9'39.1
E23) 37.7894
E24) 169217

E25) 7.8352
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BLOCK 4 NUMERICAL DIFFERENTIATION
INTEGRATION AND SOLUTION

OF DIFFERENTIAL EQUATIONS

In Block 3, we developed some interpolation techniques for approximating a given
function by a polynomial. In this block, we shall use these appproximating polynomials
for obtaining numerical methods to perform important mathematical operations, viz.,
differentiation and integration. In calculus you must have spent lot of time leamning .
techniques to do these operations. However, if the function is not known explicitly, but
only tabulated. values are known or if the function is too complicated or the function is
such that we cannot perform these operations by using calulus methods. In such cases,
numerical methods permit us to perform these operations. These techniques are also
useful in solving differential equation. This block consists of four units.

In Unit 12, which is lhé first unit of this block, we shall discuss, a few numerical
differentiation methods, namely, the method based on undetermined coefﬁcients,

methods based on finite difference operators and methods based on interpolation.

~

In Unit 13, we shall derive, a few numerical integration methods, namely, the methods
using Lagrange interpolation and methods using Newton’s forward interpolation. We

;. shall also discuss composite rules of integration to obtain more accurate results and

improve the order of the results using Romberg integration in the unit.

In Unit 14, we begin with a recall of few basic concepts from the thcéry of differential

| equations. We shall then derive numerical methods for solving differential equations.
- We shall introduce here two such methods namely, Euler’s method and Taylor series

method to obtain numerical solution of ordinary differential equations (ODEs). We shall
also introduce Richardson’s extrapolation method to obtain higher order solutions to
ODE:s using lower order methods. ’ ‘

In Unit 15, which is the last unit of this block and also of this course, we shall discuss

. Runge-Kutta methods of second, third and fourth order for obtaining the solution of

ODEs. We shall discuss Richardson’s extrapolation method to extrapolate the solutions
obtained by the Runge-Kutta methods also. '

2






UNIT 12 NUMERICAL DIFFERENTIATION

Structure ' ' .

12.1 Iatroduction
Objectives
12.2 Methods Based on Undetermined Coefficients
12.3 Methods Based on Finite Difference Operators
12.4 Methods Based on Interpolation
! 12.5 Richardson’s Extrapolation
| 12.6 Optimum Choice of Step Length
* 12.7 Summary
r 12.8 Solutions/Answers

" 12.1 INTRODUCTION

Differentiation of a function f(x) is a fundamental and nnportam concept in calculus.
When the function is given explicitly its derivatives f (x) £ (x), etc. can be casnly
found using the methods of calculus. For example, if f(x) = x%, we know that £'(x) = -
2x, £"'(x) = 2 and all the higher order derivatives are zero. However, if the function is
not known explicitly but, we are given a table of values of f (x) con'espondmg to a set
of values of x, then we cannot find the derivatives by using calculus methods. For
instance if f(xk) represents distance travelled by a car in time X, k=01, 2, ... seconds,
and we rcqulre the velocny and acceleration of the car at any time X, then thc
derivatives f (x) and ' (x) representing velocity and acceleration respectively, cannot be
found analytically. Hence, the need arises to develop methods of differentiation to
obtain the derivative of a given function f(x), using the data given in the form of a
table which might have been formed as a result of scientific experiments.

Numerical methods have the advantage that they are easily adaptable on. calculators and
computers. These methods make use of the interpolating polynomials, which we
discussed in Block-3. We shall now discuss, in this unit, a few numerical differentiation
methods, namely, the method based on undetermined coefficients, methods based on
fimte difference operators and mcthods based on interpolation.

g

ey T

Obj ectiv‘es

4

}

!
'
3

Ti After studying this unit you should be able to !
e explain the importance of the numerical methods over the calculus methods,

o e use the method of undetermined coefficients and methods based on finit difference
operators to derive differentiation formulas and obtain the derivative of a function at
step points; ¢

e use the methods derived from the interpolation formulas to obtain the derivative of a
function at off step points;

\ e use Richandson’s extrapolation method for obtaining higher order solutions;

. e obtain the optimal steplength for the given formula.

12.2 METHODS BASED ON UNDETERMINED
COEFFICIENTS

i SR e SR N

In Unit 1, we introduced you to the concepts of round-off and truncation errors. In the
derivation of the methods of numerical differentiation, we shall be referring to these
errors quite often. Let us first quickly recall these concepts here before going further.

- 28




Numerical Differentiation Integration
and Solution of Differential Equations

Definition : The round-off error is the quantity R which must be added to the finite
representation of a compuied number in order to make it the true representation of that

number. Thus
y(machine representation) + R = y(true representation).

Definition : The truncation error denoted by TE is the quantity which must be
added to the finite representation of the computed quantity in order that the result be
exactly equal to the quantity we are seeking to generate. Thus

y(true representation) + TE = y(exact)
The total crror E_ is then given by
'Enl = | y(machine representation) — y(exact) |
| y(machine representation) — y(true representation) i

y(true representation) ~ y(exact) |
| y(machine representation) — y(true representation) |

+ W+

| y(true representation) — y(exact) |

IR| + |TE|

Defintion : Let f(h) be the exact analytical value of a given problem obtained by
using an analytical formula and f, be the approximate value obtained by using a

numerical method. If the error f(h) - f, = C bP, where C is a constant, then p is known
as the order of the numerical method.

n

Let us consider a function f(x), whose values are given at a set of tabular points. For
developing numerical differentiation formulas for the derivatives f ‘(x), f “(x), ... at a
point x = X, we express the derivative fYx), q = 1, as a linear combination of the
values of f(x) at an arbitrarily chosen set of tabular points. Here, we assume that the
tabular points are equally spaced with the steplength h i.c. various step (nodal) points are
X, =Xptmhm=01,.. et Then we write

o
D)= Y Vmbeom (1)
Mg '
where y;, i = -85, =5 + L, <eeveey 11 are the unknowns to be determined and £ + m denotes
f(x, + mh). For example,s'when s =n = 1-and q = 1, Eqn. (1) reduces to

BE () = ¥_ificy * Yofic + Vafier,
Similarly, when s = 1, n = 2 and q = 2, we have

b2"(x) = Yo, + Yofi + Yifier + Yofesr

Now suppose we wish to determine a numercial differentiation formula for 3 (x) of
order p using the method of undetermined coefficients. In other words, we want our
formula to give the exact derivative values when f(x) is a polynomial of degree £ p,
that is, for f(x) = 1, x, x2, %>, ..., xP. We then get p+1 equations for the determination
of the unknowns y, i = -5, -8 + 1, ..... , . You know that if a method is of order p,

then its TE is of the form Ch™*’ t(”“”) (@), for some constant C. This implies that if f(x)
=x™ m=0,1,2, ..., p then the me¢thod gives exact results, since
p+l l

x™=0,form=0,1, ...,‘p.

dxp+l

Let us now illustrate this idea to find the numerical differentiation formula of 0 (h‘) for f “(xk).

Derivation of 0(h*) formula for f"'(x)

Without loss of generality let us take x, = 0. We shall take the points symmetrically,
that is, x,, =mb; m =0, £ 1, % 2.
Let £, £, fo £, £ denote the values of f(x) at x = —2h, — b, 0, b, 2h respeciively.
In this case the formula given by Eqn. (1) can be written as
b2 '(0) = Yof o + Yufy + Yofo + Yify + Yofa )
Let us now make the formula exact for f(x) = 1, X, xz, x3, x*, Then, we have
f(x)=1, Q) =0f,=f=f=0=6=1
f(x) = x, £(0) = 0, £, = ~2b; £, = -h; = 0; f; = b; § = 2h;
fx) = % £'(0) = 2, [, =W’ = £ £, = b’ = £, f= O; | 3)



SRS

f(x) = x°, f(O)-Of2_~8h,ll-—h tO—Ofl-h £, = 84’
fx) = x', £°(0) = 0; £, = 16 = £ €, =b* = £; ¢, = 0

Substituting these values in Eqn. (2), we obtain the followmg set of equations for
detenmnms Yy W= 0% 1, i 2

Yoot ¥o+Y + Y; +v,=0

2 =Y +Y¥142Y2=0

Ay, +y  +y +4y,=2 ) 4
By, -y, + ¥, +8y,=0

16y 5 +y_, +v, +16y,=0

Thus we have a system of five equations for five unknowns The solution of this system
of Eqns. (4) is

Yo=Y = -V125y_ =y, =16/12; y4 = 30/12;
Hence, the numerical differentiation formula of 0(h*). for f "(0) as given by Eqn. (2) is

”n " ] ! V
')~ £, = E—z—[-f_ + 16f_,-30f, + 16f,-fz] ®)

Now, we know that the TE of the formula (5) is given by the first non-zero term in the
Taylor expressxon of

£ (xp) — 1—2?[— f(xy- 2h) + 16f(x,- h)- 30£(x) + 16£(xy+ h)-‘f(x0+ 2h)] 6)

. The Taylor series expansions give

f(xo - 26) = £(x;)~ 20f (x;) + 20 £"(x 0)- "¢ "(x 0)+—f“’(xo)

5
4h” v
T £ (xg) + ——

4h°
45

"

f(xy~h) = f(x,)- bf (x°)+ e (xg) - f '(x 0)+—-f'v(x0) 120 L (xo)

H

f(x0+h)_- f(x,) + hf (xo) + f (x0)+ f (xy) + (x0)+ f (xo)

120

+ —hf~fVI(x )+
730 L SN

(g4 2h) = £(xy) + 20f (x0)+ b g )+-—f (0)-+ f“’(xo)+ f Vixp)

6
+ % f VI(xo) S v
Substituting these expansions in Eqn. (6) and simplifying, we get the first non-zero term

or the TE of the formula (5) as
TE=1"(x) - 1—21-113[' k= 20) + 16y~ )= 300x) + 16+ ) Kk 20)]

6
- % fw(a) O<axl.

You may now try the following exercise.

El) A differentiation rule of the form ' -

= ofy + ayf) + a,f,
ls gnven Fmd 0y, @, and o, s0 that the rule is exact for polynomials of degree 2.
. IR

You must have observed that in the numerical differentiation formula discussed above, we
have to solve a linear system of equations. If the number of nodal points involved is large
or if we have to determine a method of high order, then we have to solve a large system of
linear equations, which becomes tedious. To avoid this, we can use finite difference
operators to obtain the differentiation formulas, which we shall illustrate in the next section.

Numerical Differentiation
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= (1-vy!
Lgv2, g2 y
|1-2(B +E ) &
N
»
-
*
;

123 METHODS BASED ON FINITE DIFFERENCE
- OPERATORS

Recall that in Unit 10 of Block 3, we introduced the finize difference cperators E, V, A,
 and O. There we also gave the relations among various operators,

In order to construct the numerical differentiation formulas using these operators, we
shall first derive relations between the differential operator D where Df(x) = € " (x), and
the various difference operators, ’

By Taylor series, we have
f(x +b)= f(x) + bt () + B2 £ (x) + ...
'= [1+hD +1°D%+... ] f(x)
" £(x) , M
Since, Ef (x) = £ (x + h)

we obtain from Eqn. (7), the identity
E= " (8)

which gives the relations

A2 A A
hD-logE=log(1+A)=A—2 +3 gt ®
2 3 ’
hD=IogE=—log(l-V)=V+Y2- +—V§—-%i ... (10)

"We can relate D with § as foliows :

We know that & = E? g2 Using identity (8), we can write
Bf(x) = [e“"/2 —e " ] f(x).— —

Hence, d = 2sin h (hD/2)

orhD = 2sin b7 (3/2) (11)
Similarly u = cosh (bD/2) (12)
We also have pd = sinh (hD) or hD = sinh™* (no) ‘ (13)

_ 2 i
and p = cosh? (hD/2) = 1 + sinh? (AD/2) = 1 + %— (14)

Using the Maclaurin’s expansion of sinh™x, in relation (11), we can express hD as an
infinite series in /2. : ’

Thus, we have
hD = 2sinh” (3/2)
126°  1%3%8°
- + +
2331 2%s!
Notice that this formula involves off-step points when operated on f(x). The formula
involving only the step points can be obtained by using the relation (13), i.e,,
hD = sinh™ (ud)
12|,L363 12-32-;1565 12'32'52'M757 y
31 YT st T 1 T (16)

'

12.3%5%5’
+

=0 BT

(15)

= p,b-—-

Using the relation (14) in Eqn. (16), we obtain

3 5 . 7
iD= oS8 8 | )

6 30 140" an

Thus, Eqns. (9), (10), (15) and (16) give us the relations betwecn hD and various

difference operators. Let us see how we can use these relations to derive numerical
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differentiation formulas for f;, f: etc.
We first derive forinulas for f 'k. From Eqn. (9), we get

27374
Thus forward difference formulas of O(h), O(h ) O(h") and 0(h*) can be obtained by
retaining respectively 1, 2 3, and 4 terms of the relation (9) as follows :

' 2 A3 4
bDA(x,) = hf;=(A-—4—'+5‘-—-A . )ik

0(h) method : b e=f, - £ (18)
r 1 - ’

0(h®) method : hfk=~'2~<—fk+2+4fk+l—3fk) (19)

O(h®) method : b, = é(zfm f,,; + 18f,, - llfk) ' (20)

0(h4) method : hf;" 1—12—(-31’“4 +16f, ;- 36f,+ 48f'|‘,1~ 25fk> (21)

TE of the formula (18) is

TE= £'(x) - %‘—[f(xm) - )] - b ® @2)

and that of formula (19) is

, |
TE = £'(x) - E‘H[-f(xm) +4f(x,, ) - 3f(xk)]2=s T ® (23)

Similarly the TE of fonnulas (20) and (21) can be calculated. Backward difference
formulas of 0O(h), O(h ) O(h ) and O(h"') for f can be obtained in the same way by
using the equality (10) and retaining 1,2,3 or 4 terms. We are leaving it as an exercise

for you to derive these formulas. \

E2)  Derive backward difference formulas for £ "of O(h), O(hz), 0(h3) and 0(h4).

Central difference formulas for f', can be obtained by using the relation (17), i.e.,
- 63 .
hf | = u(é—-é‘-i-...)fk

Note that relation (17) will give us methods of O(hz) and40(h‘), on retaining 1 and 2 terms,

0(b%) method : hf] = -12-( o= ) - (24)
0(b*) method : hf, = 715<- f_,+8f _ +8f, +f, 2) }"’ @5

We now illustrate these methods through an example.

i Example 1 : Given the following table of values of f(x) = e*, t“nd £ (0.2) using
formulas (18), (19), (24) and (25).

X 0.0 0.1 0.2 0.3 0.4
f(x) : 1.000000 1.105171 1.221403 1.349859 - 1.49182S

Solution : Here b = 0.1 and exact value of ¢* at x = 0.2 is 1.221402758.
(0.3 f 0.2
Using(18),(0.2) - 1022102)

1.349859 - 1.221403

or £(0.2) = 0.1
= 1.28456
TE=-2£"0.2) == L %22 _0.061070
H 2 2

Numerical Differentiat
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Actual error = 1.221402758 — 1.28456 = — 0.063157

Using (19), £0.2) = l{- (0.4 + 4803) - 300 = 121701
TE= f”’(o 2.2 0‘ ¢%2 = 0.004071;

Actual error = 0.004393

Using (24), ' (0.2) = 55 [£0.3) — £ (0.1)] = 1.22344

TE-__fm(oz)-_Ogl 0.2

Actual error = - 0.002037

= - 0.0020357;

Using (25), f' (0.2) = —12- [ (0.0) + 8f (0.1) - 8 (0.3) + f (0.49)] = 1.221399167

b VY0. 2) _ 0.0001 o,

TE==5, 30

= 0.4071 x 1075,

. Actual error = 0.3591 x 1075

Numerical differentiation formulas for £, can be obtained by considering

b?D? = A2-A3+%A‘—§-A5+ (26)
= A2+ A%+ 12A‘+2A’ | @n

8t of
= 52—1—2-+-66— (28)

We can write the forward difference methods of O(h), 0(h*), 0(b®) and O(b*) for £", by
using Eqn. (26) and retaining 1, 2, 3 and 4 terms as follows :

O(h) method : b, =f,  ,-2f ,, +f, ' ‘ (29)
O(b*) method : b, = - £, ,+4f ,,-56,, +26 (30
0(t*) method : bf, = (ufw S6f,3+ 114E 5~ 1045, +358) .(3i)
0(b") method : h’f, = 2( By 5# SIf, 4~ 1366, o + 1945, - 144E,,, + 438, (32)

Backward difference formulas can bc written in the same way by using Eqn. (27).
Central difference formulas of O(hz) -and 0(h*) for f are obtained by using Eqn. (28)
and retaining 1 or 2 terms in the form :

0(h?) method : hzf;'-<fk_l- ka-n.-fk”) - (33)

O(b*) method :  b’f, = ( f_o+ 165 _, - 30%, +~16fk¢l-fk¢2) (39)

Let us consider an example,

Example 2 : For the table of values of f(x) = €*, given in Example 1, find f " (0.2)
using the formulas (33) and (34).

Solution : Usinge (33), f* (0.2) = [f (o 1)- 2 (02) + £ (0. 3)] - 12224

001

-0’fM(0.2) _ - (0.01) ™

TE= ——— 12

= ~0.0010178

Actual error = — 0.0009972



N [~ £(0.0) + 16£(0.1) - 30£(0.2) + 16£(0.3) - £(0.4) | Numerical Ditferen
Using Eqn.(34), £ (0.2) = E) Sl =1.221375
i 4pVI, .
TE= 20D 415571 10-s

90
Actual error = 0.27758 x 10~

And no.w the following exercises for you.
E3)  From the following table of values find ' (6.0) using an O(b) formula and £ (6.3)

using an 0(h?) formula. i
X : 6.0 6.1 6.2 6.3 6.4

fx) : 0.1750 —-0.1998 -0.2223 -0.2422  -0.2596

E4) Calculate the first and second derivatives of 1nx at x = 500 from the following table.
? Use 0(h%) forward difference method, Compute TE and actual errors.

X : 500 ‘ 510 520 530
f(x) : 6.2146 6.2344 6.2538 6.2729
¢ - In Secs. 12.2 and 12.3, we have derived numerical differentiation formulas to obtain the

derivative values at nodal points or step points, when the function values are given in
the form of a table. However, these methods cannot be used to find the derivative
: values at off-step points. In the next section we shall derive methods which can be used
] for finding the derivative values at the off-step points as well as at step-points.

12.'4 . METHODS BASED ON INTERPOLATION '

In these methods, given the values of f(x) at a’set of points x,, Xy,.-X,, the general
approach for deriving numerical differentiation formulas is. to obtain the unique
intcrpolating polynomial P (x) fitting the data. We then differentiate this polynomial q
times (q < n), to get (x). The value l’,,(q)(xk) then gives us the approximate value of
t“‘)(xk) where x, may be a step point or an off-step point. We would like to point out

- here that even when the original data are known to be accurate i.e. P (x,) = f(x,),
k=0,1,2, .. n, yet the derivative values may differ considerably at these points. The
approximations may further deteriorate while finding the values at off-stép points or as
thé order of the derivative increases. However, these disadvantages are present in every

* . numerical differentiation formula, as in general, one does not know whether the function
representing a table of values has a derivative at every point or not. .

. We shall first derive differentiation formulas for the derivatives using“ non-uniform nodal _
points. That is, when the difference between any two consecutivé points is not uniform.

, : Ndnfuniform nodal points o

Let the data (x,, £), k = 0,1, ..., n be given at n + 1 points where the step lehgth X=X,
- may not be uniform.

In Unit 9 you have secn that the Lagrange. interpolating polynomial fitting the data
B X £),k=0,1, .., nis given by :

. . R@=3Lwg | (s)
: k=0 :
where L (x) are the fundamental Lagrange polynomials given by
- ) ' - '
L= e Py v (36)

~ ' and 7 (x) = (x—xo)(x-xl)...(x-xn) v | &)
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®(x) = (X - %) (X = X))o (%= X ) (% = Xeo ) oo Xm %) (38)

“The error of interpolation is given by

E, ()= f(x) - P,(x) = 8¢+ D () xc o<,

(n+1)!
Differentiating P, (x) W.r.t. x, we obtain
P (x)= 2 L' (x)t, (39)
k=0
and the error is given by
E (x)= -(n+—11)—!{u‘ ®) £ (@) + 7 (x) (f(m) (a))'} (40)

Since in Eqn. (40), the function Ia(x) is not known in the second term on the right
hand side, we cannot evaluate E_ (x) directly. However, since at a nodal point Xx,,
x(x,) = 0, we obtain ‘

E, (x)= (—:—fxl“—))!f‘“”ca) @n

If we want to obtain the differentiation formulas for any higher order, say qth
(1 < q s n) order derivative, then we differentiate P,(x), q times and get

o s
£9x) = pPx) = > L) £ 42)
k=0
Similarly, the error term is obtained by differentiating E,(x), q times.
Let us consider the following examples.
Example 3: Find { '(x) and the error of approximation using Lagrange interpolation
for the date (x,, f), k = 0, 1.
Solution : We know that P,(x) = Ly(x) f, +L; (X) f;
- X X— X4

X
where L (x) = and L,(x) =
¢ X~ Xy ! X~ Xo

Now,
Pi(x)= Lo+ L (X

’ 1 '
apd L,(x)= " Ly (x) =

0~ X1 X=X
: ; £, . (f-f,
Hence, f (x)= P ((x) = fy —r (- ) 3)
X~ X X~ Xg: (%= Xp)
' . Xo— X " ’ . X=X "
E (xp= (-'(,)__1)'f (@) ‘“dE(xl)-g—l‘i—o)'f (@), xg< <Xy

Example 4 : Find f ' (x) and £"(x) given fy, £}, £; at Xo, Xy, Xz respectively, using the
Lagrange interpolation. .

Solution : By Lagrange’s interpolation formula

f(x)= Pz(x)=L0(x)fo+L1(x)f,+L2(x)f2

where ‘
PN EN L ) m e 1 12
Lo() = (o= X,) (Xg— X5)~ Lolx) (xo= %1) (o= %3)
| o X ko X)) ) e 22
Ll(x)- (x1' xo) (xl__ xz) 3 Ll(X) (xl- xo) (Xl- X2)
L(x)= (x,- Xo) (xp— X))’ Lx) = (x,— Xq) (x5- x;)



Hence, £'(x) =P, (x) = Ly (x) fo + L, (x) f, + L, (x) f, Numerica! Differentiation
ind Py (x) =Ly (x) f+ L (@) £, + Ly (x)
2f, 2f, » 2f,

T (xgm %)) (xg- X3) ¥ (x;= xo) (x)= x;) ¥ (xy- xp) (xi— Xy)

Example 5 : Given the following values of f(x) = 1n x, find the approximate value of
£’ (20) and £ "(2.0). Also find the errors of approximations.

Ix 2.0 22 26
f(x) : 0.69315 0.78846 0.95551

Solution : Using the Lagrange’s interpolation formula, we have

£ (xg) = P} (xg) = ot X1 =2 e Y S ok
Xn) = Xn) = + ,
O O R D o) Ermxg By BT G TR
. we get .
/ 4-22-26 2-26
£@20) ‘- (2-22)(2-26) (0.69315) + (22-2)(22-26) (0.78846)
| ' 2-22 - ’
Co | * 63 s 23 095551 = 049619
‘ The exact value of ' (2.0) = 0.5
Error is given by
. , 1 : "
; E',(xy) = 3 (xg=x)) (xo-x,) £ (2.0)

= 2(20-22)(20-26)(-025)=-0005 .

Similarly,
T x) = 2 ) + ! +- 2
{(xg=x;) (xg = x;) (x) = Xg) (x; = x,) (’Fz = xg) (x5~ "1?
. £ 20)= 2 0:6931S _  __ 0.78846 N 0.95551
T2 (2-26) T 22-2)(22-26) T (26-2) (26-22)

= -0.19642

r The exact value of £” (2.0) = — 0.25.

Error is given by

| E; (x) = -;—(2x0— X= %) £(2.0) + 512 (Xg~ X,) (x,- x,) [£7(2.0) + £V(2.0)]
| = -0.06917
i You may now try the following exercise.
“ . — R
: ES)  Use Lagrange’s interpolation to find't ‘(x)and “(x) atx = 2.5, 5.0 from the
i \ following table v o
L X o 1 2 3 4
T | f(x) 1 16 . 81 256
! R M )

 Now let us consider the case of uniform nodal points.

g Uniform nodal points

' When the difference between any two consecutive points is same, i.e., when we are

) - given values of f(x) at equally spaced points, we can use Newton’s forward or 13
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backward interpolation formulas to find the unique interpolating polynomial P (x). We
can then differentiate this polynomial to find the derivative values cither at the nodal
points or at off-step points.

Let the data (x,, £), k = 0, 1, ..., n be given at (n + 1) points where the step points X,
k=0, 1, .., n are equispaced with step length h. That is, we have

X, = Xg + kb, k=1, 2, vy D
You know that by Newton’s forward interpolation formula

x~-x)) (x-xo)(x—x)
hOAt0+ S !

f(x)=P,(x)= fy+ Aty +

+(x—xo)(x—xl)..,(x—xn_l)A“fo

n b “4
with error
(x=x%xg) x=x) ... (Xx=%) .y
E (x)= @) el AT () xp<a<X, 45)
X=X .
If we put s or X = X, + sh, then Eqns. (44) and (45) reduce respectively to
sAf, s(s-1)A%, ss-1)(-2)4%f
() =P, ()= G+ T+ 75 e —— +
ss=1)...(s-n+1) A" f :
. (s-1)..-( ) A" £y (46)
n!
e (-1 (=0
. _55”1 2o AS = M), o+ 1) oo+ 1)
E, 0= "prpnr b ¢ () (47)
Differentiation of P (x) w.r.t. X gives us
2 .
P (x)= %—[A £, + (252' 1)A2f0+‘(38 ‘g“z)ffo»f...} (48)

At X = X, we have s = 0 and hence

, A, A, A
f(x&:%[zsfo-—i—h—;ﬁ»f—“—"»f...]

which is same as formula (9) obtained in Sec. 12.3 by difference operator method. We can
obatin the derivative at any step or off-step point by finding the value of s and substituting
the same in Eqn. (48). The formula corresponding to Eqn. (47) in backward differences is

2 - .
P (x) = %[v f,+ B2l o, fzs +8e 2 gt ¢ ] (49)

where x = x_ + sh.

Formulas for higher order derivatives can be obtained by differentiating P; (x) further
and the corresponding error can be obtained by differentiating E (X).

Let us illustrate the method through the following examples :

Example 6 : Find the first and second derivatives of f(x) at x = 1.1 from the
following tabulated values.

X 1.0 1.2 1.4 1.6 1.8 2.0
f(x): 0.0000 0.1280 0.5440 1.2960 2.4320 4.0000

14




Solution : Since we have to find the derivative at x = 1.1, we shall use the forward
difference formula. The forward dificrences for the given data are given in Table 1.

Table 1
X f(x) Af(x) A% f(x) A® f(x) A* f(x) A’ f(x)
1.0 0.0’ -
0.1280
1.2 0.1280 : 0.2880
0.4160 0.0480
1.4 0.5440 . - 0.3360 0.0000 .
0.7520 0.0480 0.0000
1.6 1.2960 0.3840 : 0.0000
1.1360 0.0480
1.8 2.4320 _ 0.4320
1.5680
. 2.0 4.0000
" . . , . 1.1-1
Since, x = x; + s h, Xg=1,h = 0.2 and x = 1.1, we have s = 00 = 0.5
Substituting the value of s in formula (48), we get
fy= 1 [Afo - 9'—6§A3f0]. , - (50)

Substituting the values of Af, and A3f0 in Eqn. (50) from Tablé 1, we get
f'(1.1) = 0.63 o
To obtain the second derivative, we differentiate formula (48) and obtain
\

£'x)= Pt = - (8% + 6- 1) 4%

Thus £'(1.1) = 6.6

Note : " If you construct a forward difference. interpolating polynomial P(x), fitting the

data‘given in Table 1, you will find that f(x) = P(x) = x> = 3x + 2. Also, £'(1.1) = 6.3, _

f 'A'(l.l) = 6.6. The values obtained from this equation or directly as done above have to
be same as the interpolating polynomial is unique. -« o

‘Example 7 : Find £/(x) at x = 0.4 from the following table of values.
) » :

Ix 0.1 0.2 03 0.4

f(x) : ‘ 1.10517 1.22140 1.34986 - 1.49182

- Solution :  Since we are required to find. the derivative at the end point, we, will use the
- backward difference formula. The backward difference table for the given data is given by

Table 2
X f(x) A f(x) A% f(x) A% f(x)
0.1 1.10517 '
, 0.11623

02 1.22140 L 0.01223
, 012846 ' 0.00127
03 1.34986 0.1350
| R 0.14196

0.4 - 1.49182

Numerical Differentiation
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Since x, = 0.4, h = 0.1, x = 0.4, we gets = 0

Substtuing the value of  in formula (48, we g

£'(0.9)

1 1 3

¥ [Af3 +58+ 4 f,]
1
01

. 1.14913
How about trying a few exercises now ?

[0.14196 + 9%1_3_5 ' %12_7]

E6)  The position f(x) of a particle moving in a line at various times x, is given in the
following table. Estimate the velocity and acceleration of the particle atx = 1.5 and 3.5

X 0 1 2 3 4
f(x) : -25 -9 0 7 15

E7) Constructa difference table for the following data

x : 13 15 17 19 21 23 25
fx): 3669 4482 5474 6686 8166 9974 12182

Taking b = 0.2, compute f '(1.5) and the error, if f(x) = e*.

You must bave by now observed that to obtain numerical differentiation metbods of
higher order, we require a large number of tabular points and thus a large number of
function evaluations at these tabular points. consequently, there is a possibility that the
round-off errors may increase so much that the numerical results may become useless.
However, it is possible to obtain higher order solutions by combining the computed
values obtained by using the same method with two different step sizes. This technique
is called extrapolation method or Richardson’s extrapolation. We shall now discuss this
method in the next section. ‘ :

12.5 RICHARDSON’S EXTRAPOLATION

.

The underlying idea in this method is as follows :

Let {9 (b) denote the approximate value of t(q)(xk), obtained by using a formula of
order p, with steplength h and £9(rh) denote the value of f(“)(xk) obtained by using the
same method of order p, with steplength rb. Then,

£9(h) = £9x) + CB® + 0 (bP*1) | 61

and £9 (th) = £9 (x) + C (thf’ + 0 (.h” *h ) (52)

“Eliminating C between Eqns. (51) and (52), we get

_ @ £@(h) :
£ (x)= '—pﬁ-q-(%'—lf—q-@+0(w’”) ‘ (53)

The.new approximation to t(q)(xk) is therefore

rpf(q)(h)— f(q)(l’h)

(e (g = -1

4

“The expression on the right hand side of Eﬁn. (54) for finding the value of the qth

derivative by a certain method of order p has now become a method of order p + 1.
This technique of combining two computed values obtained by using the same method



with two different step sizes, to obtain higher order solutions is called Richardson’s Numerical Difercatiation
extrapolation method. '

We know that the truncation error of a numerical method of order p is given by
TE= C,b° + 00",
where Cln 0.

If, instead of denoting the higher order tenns by ok * l), we write down the actual
terms, we have

TE= CbP+ CpP* '+ CoP* 24 .,
~ By repeated application of Rcibardson’s extrapolation technique we can obtain solutions
- of higher orders, i.c. 0(h"""), O(t"*3), 0(®*%) etc. by eliminating C,, C,, C; respectively.

Let us see how this can be done.

Consider the central difference differentiation formula (24) of 0(h®) given by

£ (fiey~-f_y) -
€= 7 2n
Let g(x) = f '(xk) be the exact value of the derivative; which is to be obtained and p
v G-y
gh)=t, =~
be the value given by the O(hz) method. The truncation error of this method may be
written as
gh) = g(x) + C;h2+ Ch* + G + . .. (55)

Let f; be evaluated with different step sizes f;, r=0,12, ...

Then, we have

‘ 2 4 3 6
Ch? Ch* Cip

h . . .
g(i)-g(x““ 4 *Tl6 tea T 56)

h ch? cp* cp '
3(4)'8(."““ 16 © 256 T 2096 T 6D
Eliminating C; from Eqns. (55) and (56), we get

‘ : 4 3
(%) - g(h C,h* SCh : :

g(l)(h)=ﬂgi¢)3—g£_)_.g(xk)‘—24f——-—l36’“.#"" . . (58)

Elfminating C, from Eqns. (56) and (57), we obtain

4 [ o
wfb) _ dgh-ghs o _Ch G o
g (z) E g(x,) 64 ~T024 T ' (59)

Notice that the methods g(l)(h) and g(l)(h72) given by Eqns. (58) and (59) are O(h%)
. approximations to g(x,) g

Eliminating C, from Eqns. (58) and (59), we get

6
16gMMy2) - gy Cab
15 64
which gives an 0(h°) approximation to g(x,). Generalising, we find that the successive
higher order methods can be obtained from the formula,

g% =

o 4 (m-l)(b/Z)_ (m =Dy
g = HE—=e ()

m=1,2".,wihg®=gh) - , (60) 4 : 17
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This procedure is known as the Richardson’s repeated extrapolation to the limit.

These extrapolations can be stopped when

b
) - g "(5)

for a given error tolerence e.

<t (61)

Similarly, forward difference method of O(hz) can be obtained by considering

(fk+ 1~ fk) )

g(0) = f= =

and using Richardson’s extrapolation technique in the form
h
; 2g\2/- g(h)
gy = —5 57— (62)

This method is of O(h?).

You may nete that in Richardson’s extrapolation, each improvement made for forward
(or backward) difference formula increases the order of solutions by one, whereas for
central difference formula each improvement increases the order by two.

Let us now solve the following preblems.

Example 8 : The following table of values of f(x) = x*, is given :

4 5 6 7
1296 2401

X -1 1 2 3

fx): 11 16 81 256 625

f{x,) - f(x)

Using the formula f '(xl) = [ 5 ] and Richardson’s extrapolation method

find £'(3).

Solution : Note that in this example x, = 3.0. The largest step h that can'be taken

is h = 4. Computations can also be done by using step lengths b, = % = 2 and
h,=h/2 =1

Using the formula -

f(xz)" f(x())

g(b) = '(x)) = —>
we get .
g (b)= f()—'SM =300 0(b?) method.
g(%) - %fﬂ—) =156 - 0(h?) method.
g(%) - ﬁ‘l;—-@- - 120 0(b%) method.
Therefore, using the formula given by Eqn. (60), we have
g
4g 2] -g(h)
g )= —5—-= 624 3 20 _ 108 0(a*) metbod.
[5)-¢(2
dgla)-gl2
g‘“(%) - 3 - 380 3 136 . 108 | 0(b*) method.
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16803 - g% ~ "
gP(h) T =108 e 0(b%) method.

* Writing in tabular form, we have

Step - ~ Second Fourth Sixth

length ' order method order method order method
! b g (B) = 300 gV(b) = 108 ‘
{’ b/2 O g@2)=156 g?(b) = 108
J A g“)(g) = 108
i b/4 g (b/4) = 120 A

Thus £'(3) = 108, must be the exact solution as we have

- ‘s‘“(h)-sa)(%) - 7).

_ Exampfe 9: Letf(x)=e" Usihg a central difference formula of O(hz) find f’”(l).
Improve this value using Richardson’s extrapolation by. taking h = 0.1 and h = 0.05,

‘Solution : With h = 0.1 and

£ o by -26+6
k- h2 ’

. we get

el - 2el 4 09
0.1y

€)= ( ) = 2.720548 o
105 _ 24 4 095

D05y - 2718848

With b = 0.05 we get £"(1) = &
* Both the solutions are O(hz) approximations. Rjchardson’s approximation usihg relation
- (54) with r = 00—015- =2and p = 2, gives us B '

T4

] =2.718281

" 4(2.718848) - 2.720548
£'(1) = 3

The actual value is ¢ = 2.718282 °

Your may now try the following exercises :

E8)  Compute £"(0.6) from the following table using 0(h?) central difference formula,
_ Improve it by Richardson’s extrapolation method using step lengths b = 0.4,0.2,0.1.

: x i 02 0.4 05 06 07 0.8 1.0
P f(x) : 1.4200721.881243 2.128147 .2.386761 2.657971 2.942897 3.559753

E9)  Using central difference formula of O(hz) find £ "(0.3) from the given table and improve
| the accuracy using Richardson’s extrapolation method using step lengths h = 01,02

Ix o0l 0.2 0.3 0.4 0.5

fix) : 0.091 0155 o, 182 01N 0.130
In the numerical differentiation methods, the truncation error is of the form Ch? which
fends to zero as h—>0. However, the method which approximates £‘Y(x) contains h9 in

- - S . . . i T e s
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the denominator. As h is successively reduced to smaller values, the truncation error
decreases but the round-off error in the method may increase as we arc dividing by a
small number. It may happen that after a certain critical value of b, the round-off error
may become more dominant than the truncation error and the nuwerical results obtained
may start worsening as h is further reduced, The problem of finding 2 steplength h
small enough so that the truncation error is small, yet large enough so that round-off
error does not dominate the actual error is referred to as the step size dilemma. Such a
step length, if it can be determined is called the optimal steplength for that formula.
We shall now discuss in the next section how to determine the optimal steplength.

12.6 OPTIMUM CHOICE OF STEPLENGTH

We begin by considering an example.
Consider the numerical differentiation formula

| :

f = b (fk+ - fk> . (63)
Let f(x) = ¢* and we want to approximate f'(1) by taking b = _1-;)2—";' m=1,2,..,7
We have from the differentiation formula (63),

e1+h_ e

f'(1) =

‘

The exact solution is f'(1) = 2.718282. The actual error is ¢ — £'(1) and the truncation

error is — eh/2. With h = -1—(?')-5, m =1, 2,..., 7, we have the results as given in Table 3.

Table 3
h t'(1) Actual error Approximate Truncation error
2x 107 3.009175 - 0.290893 - 0271828
2x 107 2.745650 - 0.027368 - 0.027183
2x 107 2.721000 - 0.002718 - 0.002718
3 x 107 2.720000 - 0.017180 —27x 107
2x10° 2.700000 ~ ~0.018280 -27x 107
c2x 10 2.500000 © -0.218218 . =27x10°
2x 107 0.000000 . -0.718282 ~-27x 107

If you look at Table 3, you will oHSewe that the improved accuracy of the formula,
i.e. f'(1), with decreasing b does not continue indefinitely. The truncation error agrees

. with the actual error till b = 2 X 107 = 0.002. As b is further reduced, the truncation

error ceases to approximate the actual error. This is because the actual error is
dominated by round-off error rather than the truncation crror. This effect gets
worsened as b is reduced further, In such cases we-determine the optimal steplength.

When f(x) is given in tabular form, these values may not be exact. These values contain
round-off errors. In other words, f(x,) = fi + &, where f(x,) is the exact value, f, is the’
tabulated value and ¢, is the round-off error. For the numerical differentiation farmula

(63), we bave

' £ - "
r(xk).(“*‘h k)-%f (@), X < & <Xy

If the round-off errors in f, and f , | are & and & ., then we have

"

£ =)= ’ll;[(fku +g, )= (f+ Ek)] = ';'f (o)
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f,=f §,16\ h .»
- k+ 1 K ke | k__ )
i

ik
[ " ]+R TE

where R is the round-off error and TE is the truncation crror.

If we take € = max (lakl),( I

) and M, = max |f”(x)|, we find tbat

IR| = —-and |TE|s L]

We define the optimum value of h as the one which satisfies either of the following
conditions :

(i) |R|=|TE| (i)  |R|+|TE| = minimum (64)

. By the first condition in (64), we have

gl’;, EM de orh=?2 \,FF-NZ

h 2 M,

The value of the crror is
IR| |TE| = VeM;.

If we use the second condition |R| » |[TE] = min, we have

2. : ' '
B + - mvm. » : \ | : | (65)
To find the minimum is Eqn. (65), we differentiate the left hand side of Eqn. (65) with
respect to ’ >
2% M
" + -2—2 =0or,h’= M or,b 2V?K/T

. The minimum total error = |R| + |TE| = VeM, .
Let us now consider an example.

Example 10 : For the method

t.'_("3f"’4fk.1 k+2) n?

L= % f "(@),x, < a<x,,

determine the optimal value of h using the criteria

IR| = |TE| and (ii)  |R| + |TE| = min.

.Usmb this method and the first criterion, find the value of h and determine the value of

£'(2.0), from the following tabulated values of f(x) = Inx. 1t i is given that the
maximum round-off error in the function evaluatiop is 5 % 107

x 2.0 2.01 202 206 2.12
fx) : 069315  0.69813 = 0.70310 0722711 075142

Solution : If €y, €, and &, are the round-off errors in the given function evaluations of
fp £y, f; respectively, then we havc

) (- 3f0+ 4f1 - fz) (,- 3£0+ 4£} — 82) ) h2 " !
f,= > + 2h +3 0 (@ ‘ 2]
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fk+1 —tk £k+l-ek h nb
() e b

£.,~-6) =
= (————k” k)w—R+’l‘E
h
where R is the round-off error and TE is the truncation crror.

If we take £ = max (lekl) ,(Iek”') and M, = max [f”(x)], we find that

IR| = %’:and ITE|s %Mz
We define the optimum value of h as the one which satisfies either of the following
conditions :
() |R|=|TE| (i)  |R]+ |TE] = minimum (64)

. By the first condition in (64), we have

2e h 2 4e
m - - —— =2\ 7“
1 2M20rh M:orh & V €[N

The value of the error is
IR| |TE| = veM, .

If we use the second condition |R| = |TE| = min, we have

2¢e th . ] ’
b + 3 - m‘m. . \ | _ (65)
To find the minimum is Eqn. (65), we differentiate the left hand side of Eqn. (65) with
respect (o : S
2 M, 2 4de 5
- -h—z- + —2—'-001’,[! -K‘—z‘m’h.‘ ZVWZ

" The minimum total error = [R| + |TE| = VEM, .
Let us now consider an example.

"Example 10 : For the method

o (=3f+af -1 ) b .,
f = £ 2khl ke 2 +3f (@), x < o< X,

determine the optimal value of h using thc'critc.ria
[R| = |TE| and (ii)  |R] + |TE| = min.

U,sing this method and the first criterion, find the value of h and determine the value of
£(2.0), from the following tabulated values of f(x) = In X. It is given that the
maximum round-off error in the function evaluation is S x 107

x 2.0 2.01 202 2.06 212
f(x): 069315 069813 °~ 070310 072271  0.75142

Solution : If €, €, and e, are the round-off errors in the given function evaluations of
fo £, [, respectively, then we have

o (C3Mpraf - ) (-3egrde-) B L,
fo= ST 2 i@
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. determine h_, using the criteria.

opt
() IR|=|TE|and
j (ii) |R| + |TE| = minimum.

| 'Using this method and the second criterion, find hop for f(x) = 1nx and determine.
| the value of f'(2.03) from the following table of values of f(x) if it is given that the
maximum round-off error in the function evaluation is 5 x 107

x : 02 201 202 203 204 2.06
fx) : 0.69315 0.69813 0.70310 0.70804 0.71295 0.72271

We now end this unit by giving a summary of what we have convered in it.

127 SUMMARY

i In this unit we have covered the following :

1) .If a function f(x) is not known explicitly- but a table of values of f(x) corresponding to
> a set of values of x is given then its derivatives can be obtained by numerical
differentiation methods.

'2) Numerical differentiation formulas using
(i) the method of undetermined coefficients and
(ii) methods based on finite difference operators can be obtained for the derivatives

of a function at nodal or step points when the function is gwen ln the form of -
table.

3) When it is required to find the derivative of a function at off-step points then the
methods mentioned in (2) above gapnot be used. In such cases, the methods derived
from the interpolation formulas are useful. -

- 4) Higher order solutions can be obtaiped by Richardson’s'extrapolation method which
uses the lower order solutions. These‘ results are more accurate than the results
obtained directly from higher order differentiation formulas.

5) Round-off errors play a very important role in'numerical differentiation. Sometimes,
if the step size is too small, the round-off errors gets magnified unmanageably. In
such cases the optimal step length for the given formula could be uscd provided that
it can be detcnnmed

128 SOLUTIONS/ANSWERS

E1) Letf'(x)‘= o fo + 0, £ + o, ;. Setting £(x) = 1, X, X%, We obtain
oy+o, +0,=0 |
(@, +20a)h=1
(@, +4a)bi=1

| . : . . 3, 2 1
: Solving we obtain o, = — 2h’ a = Y S, = Ty

, -3f+4f - £
Hence, f; = (-—i——l-—l)

%.
E2) O(b)method : hf, = (& £, )

) , (3f-2f +f .\
23
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E3)

E4)

ES)

E6)

0(h*) method :  bf,

O(h‘) method :  hf,

, (urk -226,_, +96 _,- 6t‘k_3)
= 6

, (25fk-56fk_l +366,_,-24f, +3q‘_‘)
= 12

Using formula (18), we have

£(6.0) = [5(9—11()?1—{(6—")] - - 37480

Using formula (33),

f'6.3)= [36—"" <o)+ (620,

Using {ormula (20), we have

36(500) + 46(510) — £(520)
’ 2h

£'(500) = [‘ = 0.002

Using (32), we have

26(500) - S£(510) + 4£(520) - £(530)
h2
Exactvalue f'(x) = 1/x = 0.002; £ "'(x) =~ 1/x* =~ 0.4x 107 .

£"(500) -[ ]- - 05x10°

Actual error in f'(500) is 0, whereas in £ ’(500) it is 0.1 X 107>, Truncation error in

2011 v
£'(x)is Tl — =~ 5.33x 107 and in £"(x) it is 1“;:‘

-9
3 8.8x10

In the given problem xo=1,x,=2,X,=3,X;=4and fy=1,f; =16 f,=81 and f; = 256.

Constructing the Lagrange fundamental polynomials, we get

3_gy? A 3 'a2
Lyt = - (x - 9x ;26x—24)';Ll(x)',(x - 8x -;19x—12)

3 2, : 3 2
X' =7x"+14x - 8) . X" -6x“+11x-6
e

P =L f+Ly () 6+ Ly () E+L (0 6

Py (x) =Ly (%) fy + L; (x) f; + Ly () §, ¥ L} (x) ‘

Py (x) =Ly (x) +L; (x) f, + L, (x) 5+ Ly (x) £y

We obtain after substitution,

P, (2.5) = 62.4167; P} (2.5) = 79; P; (S) = 453.667; P; (5) = 234.

The exact values of f '(x) and f "(x) are tfrom f(x) = x‘)

£'(2.5) = 62.5, £'(5) = 500; £ (2.5) = 75; £"(5) = 300.

We are required to find £ '(x) and £(x) at x = 1.5 and 3.5 which are off-step points.
Using the Newton’s forward difference formula with x, = 0, x = 1.5, s = 1.5, we get

£'(1.5) = 8.7915 and £"(1.5) = - 4.0834.

Using the backward difference formula with x, = 4, x = 3.5, s = - 0.5, we get
£'(3.5) = 7.393 and £"(3.5) = 1.917.



E7) The difference table for the given problem is : | ‘ Numerical Differentiativ

X f(x) Af A’f. A'E A*f

1.3 3.669 '

.v 0.813

1.5 4.482 : 0.179
0.992 0.41

1.7 - 5.574 0.220 0.007

. 1.212 0.48

1.9 16.686 A 0.268 0.012
1.480 0.060

2.1 8.166 - 0328 . 0.012
1.808 ’ 0.072

2.3 9.974 0.400
2.208

2.5 12.182

' Taking x;, = 1.5 we see that s = 0 and we obtain from the interpolation formula

, 1 A%, A%, A,
f(l.5)-B-Afo——+ -2y

2 3 4

0220 , 0.048 0.012
2 3 4

= [0.992 - ] =4.475

~Exact valueise!’ = - 4.4817 and error is = 0.0067

E8)  Use the O(h’) formula (33). With b = 0.1, £"(0.6) = 1.259%, h=02,¢" (06) 126545,
b =04, (0.6) = 1.289394,

Using Ricbardson’s extrapolation formula,

£0.2) - [MZ—)] = 1.25765

g“’(o.4)-[—5————L—4 (0‘2)3' (0'4)]-1.257468 o

These two results are of 0(h*). To get O(b®) result we repeat the cxtrapolatnon
techmque and obtain

(1) (1), .
¢%(0.4) = [163 ©. 2’ g (© 4’] - 1257662

.E9) Using (24) with h = 0.1, 0.2, we have

g (0.1)=£"(0.3) = ~3.8; g (0.2) = - 3.575

g“’(o.zy-[--g———g——4 L (0'2)]-3.875 | R S ‘

: EIO) If s_,, € €, are the round-off errors in the given function evaluations {_, ), f,

"

respectively, and if & -max |e ll Itol |el| andM, maxlf (x)| then

} £ . h2 l . . ) .
|R| s Eand |TE| s ?My v 25
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If we use |R}| = | TE|, we get

v3

3¢
)

“and error is given by

v3

M
IR - |TE| *(73)

If we use |R| = |TE| = min. then
V3

3¢
oo

and cnoris-M—% 25%
T 312

‘For f(x) = 1n x and using the second criterion, we get

By = (30 x 107 ")w ~ 0.03.

For h = 0.03, we get

0.72271 - 069315

£'(2.03) = = 0.492667.

0.06

If we take b = 0.01, we get

£'(2.03) = 0.4925.

The exact value of £’ (2.03) = 0.492611.

The result deteriorate for h <h .

+
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UNIT 13 NUMERICAL INTEGRATION

Structure

13.1 Introduction
Objectives
13.2 Mecthods Based on Interpolation
Methods Using Lagrange Interpolation
Methods Using Newton’s Forward Interpolation
‘ ' 13.3 Composite Integration
| 13.4 Romberg Integration
‘ 13.5 Summary
13.6 Solutions/Answers

13.1 INTRODUCTION

In Unit 12, we developed methods of differentiation to obtain the derivative of a
‘function f(x), when its values are not known explicitly, but are given in the form of a
table. In this unit, we shall now derive numerical methods for evaluating the definite
integrals of such functions f(x). You may recall that in calculus, the definite integral of
f(x) over the interval [a, b} is defined as '

b
£(x) dx = lim R[b
J_fx) dx = lim R(b]

where R[h] is the left-end Riemann sum for n subintervals of length h = Q_;‘-_a) and-is
given by

n-1

R{b}= > bf(x)
k=0 ’

The need for deriving accurate numerical methods for evaluating. the definite integral
arises mainly, when the integral is either * '

B . 2 T '
‘ i) a complicated function such as f(x) =e™*, f(x) = ﬂli(ﬁ etc. which have no

j anti-derivatives expressible in terms of elementary functions, or'

! ii) when the integrand is given in the form of tables.

Many scientific experiments lead to a table of values and we may not only require an
approximation to the function f(x) but also may require approximate represcntation of
~ the integral of the function. Moreover, analytical evaluation of the integral may lead to
- transcendental, logarithmic or circular functions. The evaluation of these functions for a
-given value of X may not be an accurate process. This motivates us to study numerical
integration metbods which can be easily implemented on calculators.

In thi$ unit we shall develop numerical integration methods wherein the integral is
approximated by a lincar combination of the values of the integrand ‘i.e.,

b
J f(x) dx = By fxg) + B, fx )+ +8, f(x) (1)
3 !
where Xg, X, ceeenee , X, are the boints which divide the interval [a, b] into n
sub-intervals and f, By, weeerens , B, are the weights to be determined. We shall

discuss in this unit, a few techniques to determine the unknowns in Eqn. (1).
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Objectives

After studying this unit you should be able to

® use trapezoidal and Simpson’s rules of integration to integrate functions given in the
form of tables and find the errors in these rules;

® improve the order of the results using. Romberg integration or its accuracy, by
composite rules of integration.

13.2 METHODS BASED ON INTERPOLATION

In Block 3, you have studied several interpolation formulas, which fits the given
data (x,, £), k=0, 1,2, ......... , n. We shail now ste how these interpolation
formulas can be used to develop numerical integration methods for evaluating the
definite integral of a function which is given in a tabular form. The problem of

_numerical integration is to approximate the definite integral as a linear combination

of the values of f(x) in the form

b n
[ fx)dx = > Bt 2
3 k=0
where the n + 1 distinct points x,, k = 0, 1, 2, ...... , it are called the nodes or
abscissas which divide the interval [a, b] into n sub-intervals (xy < x; < X; < ... X,)

and B, k=0,1, ... , i are called the weights of the integration rule or »
quadrature formula. We shall denote the exact value of the definite integral by I
and denote the rule of integration by .

n
Lifl= Y Bk €)
k=0 .
The error of approximating the integral I by L [f] is given by

b " :
Eh[f]=f f(x)dx=2 B, f, - )

The order of the integration method (3) is de-...»d as follows :

- Definition : An integration method of the form (3) is said to be of order p if it

produces exact results for all polynomials of degree less than or equal to p.

In Eqn. (3) we bave 2n + 2 unknowns viz., n + 1 nodes X, and the n + 1 weights B,
and the method can be made exact for polynomials of degree < 2n + 1, Thus, the -
method of the form (3) can be of maximum order 2n + 1. But, if some of the nodes are
prescribed in advance, then the order will be reduced. If all the n + 1 nodes are
prescribed, then we have to determine only n + 1 weights and the corresponding
method will be of maximum order n. '

We first derive the numerical method based on Lagrange interpolation.

13.21 Methods Using Lagrange Interpolation

Suppose we are given the n + 1 abscissas x,'s and the corresponding values £ ’s. We
know that the unique Lagrange interpolating polynomial P.(x) of degree = n, satisfying
the interpolatory conditions P ) = 1(x), k=0,1, 2 ... , 1, is given by

f(x)= P (x) = 2 L(x)f
k=0

©)
with the error of interpolation
X n+ .
n+1[P(x)] (_-(_l)ﬁf Ho Xp <O <X, )
(x=%p) (x=x) .o (X~%_ ) (x=x, ;) ... (x=%))

where L (x) =

(x= Xg) (X~ &)« (x= %)) (xk— Xep 1) « o« (K= Xp)



and & (x) = (X—Xg) (X~X;) . . . (x=X).

We replace-the function f(x) in the definite integral (2) by the Lagrange interpolating
polynomial P (x) given by Eqn. (5) and obtain

L[] = f P,(x) dx-E f L, (x) £, dx
a ke 0 a

=2 Bk o
k=0
where b A
Be=J Li(x) dx. | S ®
The error in lhclinlegration rule is
b
E.lf]= J E.. i [P ()] dx o ﬂz,“)—.f"” (@) dx ©
We have
* @ "I; S, @ N ()

.where M, | = max f"’l(x)l

x <x<x

Let us consider now the case when the nodes xk ’s are equispaced with X, = 3, X, = b,
and the length of each subinterval is b = -b—— The numencal integration methods
given by (7) are then known as Newton-Cotes formulas and the weights B,’s given by
(8) are known as Cotes numbers. Any point x € [a, b] can \Be written as x =,.x0 + sh.

With this substitution, we have

m(x)=b"" s (s-1) (5-2) (s-3) . .. (s-n)

(1" ¥ s(s-1)....(s-k+1)(s-k=-1) ...(s-n) .
L= STl fokelkot) o a

Usinge x = x, + sh and changing the variable of mtegratlon from X to s, we obtain

o=k
lﬁk‘.-i—(!:(—i-)—ﬁ-!-hfos(s—l)(s-Z) .....(;-kutl»)(t-k—l)....(sen)ds 12)
hn*szl,Jp ' ) ' 13
and s TSI ‘s(s- 1)(s-2) ...(8-n)ds : (13)

‘We now derive some of the Newton Cotes formulas viz. trapezoidal rule and Simpson’s.
rule by using first and second degree Lagrange polynomials with equally spaced nodes.
You might have studied these rules in your calculus course.

| Tra pezoidal Rule

When 1t = 1, we have xj = 3, X, % b and h = b-a. Using Eqn. (12) the Cotes numbers
can be found as

Bo-—hf;(s—l)ds-g-;

andﬁlth sds-% .

- Substituting the values of j, and B, in Eqn. (7), we get

Iﬂﬂeg[fm,] o e
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The error of integration is

|5Tlfl‘ s —z—szos(s- Dds==-5M, (15)
where M, = max £ )| (16)

<
X°<x xl

b
Thus, by trapezoidal rule, f f(x)dx is given by
a

—
1= 26+ 0 -15M,

The reason for calling this formula the trapezoidal rule is that geometrically when f(x)
is a function with positive value then -hz- (f, + fy) is the arca of the trapezium with
height h = b — a and parallel sides as and f,. This is an approximation to the actual
area under the curve y = f(x) above the x-axXis bounded by the ordinates X = Xg, X = X;.
(see Fig. 1.). Since the error given by Eqn. (15) contains the second derivative,

trapezoidal rule integrates exactly polynomials of degree s 1.

ey Xi=b

Fig. 1

Let us now consider an example.

Example 1 : Find the approximate value of
i
s
o l+Xx

_using trapezoidal rule and obtain a bound for the error. The exact value of I'= 1n2 =

0.693147 correct to six decimal places.
Solution : Here xo =0, x, =1 and h = 1 — 0 = 1. Using Eqn. (14), we get

1. [f) = —;-(1+%)=0.75

Actual error = 0.75 — 0.693147 = 0.056853.

The error in the trapezoidal rule is given by

= 1. 0.166667.

1
‘E'r[fll * 12 =0T:f1 (1+x)3

Thus, the error bound obtained is much greater than the actual error.

We now derive the Simpson’s rule.
Simnson’s Rule
. b
For n = 2, we have h =b——i, xo=a,xl=§rz——and Xy = b.

2
From (12), we find the Cotes numbers as

Bo=%f:)(s-l)(s—2)ds=%



‘ 4 , b b
Bl-hfos(s-Z)ds-?,Bz-Ef:s(s-l)ds-:_?-.

Eqn. (7) in tais case reduces to
b .
L[f]= 5.[f0 +4f, + fz] 17

Eqn. (17) is the Simpson’s rule for approximating I =ff(x) dx .
The magnitude of the error of integration is

: b‘M
B0 s 572 Ists- D -2 as

oy o ‘ -
= h;V!Is f:) s(s-1) (s-2) ds + ff s(s- 1) (s- 2) ds]

- 1
hﬁMz -(84 3 z) (54 3 zﬂ
= = || =8 +8°| +|—~s"+s
3! _4 o 4 L

Mari_ 1
4"

|~

3! 4

This indicates that Simpson’s rule integrates polynomials of degree 3 also exactly.

" Hence, we have to write the error expression (13) with n = 3. We find
N b°M,
Bl —;

fos(s— 1)(s-2)(s=3) ds
h5M4 .l ! ‘ .
54 [fo §(s- 1) (s-2) (s— 3)ds +f: s{s— 1) (s-2).(s-3)ds ‘_ (18)

\

- b°M,
90

£ ()|

where M, = max
Xo<x(xJ

Since the error in Simpson’s rule contains the fourth derivative. Simpson’s rule
"intégrates exactly all polynomials of degree < 3. . :

-4

b o o
Thus, by Simpson’s rule, f f(x)dx is given by
a

b B
1 [f]: 5[f0+4f1 +f2] —5'6M4

Geém_etrically, ’g‘[fo +4f + fz] represents the area boundéd by the quadratic curve -

‘ passing through (x,, fy), (x,, f;) and (x,, f,) above the x-axis and lying between thie
ordinates X = X;, X = X, (see Fig. 2).

4
S

-~

~P

Numerical Integration
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In case we are given only ‘one tabulated value in the interval [4, b], then h = b — a, and
the interpolating polynomial of degree zero is Py(x) = fi. In this casc, we obtain the
rectangular integration rule given by

I [f]= fb f, dx = bf, (19

The error in the integraﬁon rule is obtained from Eqn. (13) as

WM,
Eglf] s — (20)

where M, = max It (x)]
a<x<b

If the given tabulated value in the interval [a, b] is the value at the mid-point, then we

have x, = @—;2)', and f, = £, , Inthiscase b= b —a and we obtain the integration

rule as 2

b
I, [f1= [ f, dx= b, 1)
: 2 2 »

Rule (21) is called the mid-point rule. The error in the rule calculated from (13) is

n? ot
Eylfl= Zf_vzsdsn().

This shows that the mid-point rule integrates polynomials of degree one exactly. Hence
the error for the mid-point rule is given by

: p’M, % n°M
E, [f]s _2_2 f_ S ds= —# | (22)

where M, = max [f" (x)| and h =b-a
sa<x<b

We now illustrate these methods through an example.
I 2 )

Example 2 : Evaluate f e dx using
o

a) rectangular rule b) mid-point rule c) trapezoidal rule and d) Simpson’sb rule.

H the exact value of the integral is 0,74682 correct to S decimal places, find the error
in these rules.

Solution : The values of the function f(x) = e"‘z at x - 0, 0.5 and 1 are
f(0) = 1, £(0.5) = 0.7788, f(1) = 0.36788
Taking b =1 and using
a) I[f] = hf, we getIg[f] =1. °
b) Iylf] = bf,,, we getI[f] = 0.7788. '
c) 1;[f]= -;— (£ + £,], we get I {f] = %—(1+ 0.36788) = 0.68394 , Taking h = 0.5 gnd

using Simpson’s rule, we get

& L[ =5 [fo+ 46 + ]
- g[f(o) + 4£(0.5) + £(1)]
= 0.74718 .

Exact value of the integral is 0.74682.



The errors in these rules are given by -
Eglf] ='- 0.25318, Ey[f] = - 0.03195
Eq{f] = 0.06288, E,[t| = — 0.00036.

You may now try the following exercise :

AR -

El) Usc the trapezo:dal and Simpson’s rule to approximate the followmg integrals. Compare
the approximations to the actual value and find a bound for the error in each case.

a) lenxdx
1

0.1
b x” dx
) ||

o ‘
c tan x dx
) J.

h

We now derive integration methods using Newton’s forward interpolation formula.
‘ g 2 p

13.2.2 Methods Using Newton’s Forward Interpolation

+ Let the data be given at equi-spaced nodal points X, =Xo+sh,s=0,1, 2 ... , B,

where x, = a and X, = Xg + nh = b.

The step length is given by h = b-;a.

The Newton’s forward finite dlfference mterpolauon formula interpolating this data is given by
s(s— 1) (s~2)...(s- n+ 1)A",

f(x)= P (x) fo+ sAf+ s(s- 1) i

v 23)
with the error of interpolation
h™ 's(s= 1) (5=2) ... (s~ 1) 01
n+1 [f] - (n+ 1) ! £ (a)
Integrating both sides of Eqn. (23) w.r.t. X between the limits a and b, we can
. approximate the dcfinite‘integral I by the numerical integration rule
L[] = fp(x)dx-hf[fo+sAfo+———2A’2fo ds (29)
The error of interpolation of (24) is given by'
hn + 2Mn i 1 )
lEh(f)| < ——1)—'* s(s - 1) (s-2) ... (s~-n)ds

We can obtain the trapezoidal rule (14) from (24) by using lmear interpolation i.e., f(x)
= P\(x) =f, +s A f; We then have

: IT[f]= hfo[fo+sAfo]ds

1

. §2
h[sf0+—Af0}
0 .

h[t‘ +-—-—J [fo t']

with the error of integration given by (15).

Similarly Simpson’s rule (16) can be obtained from (24) by using quadratic
interpolation i.e., f(x) = P,(x).

Numerical [gtegration
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and Solution of Differential Equations Taking xo = 3, X, = Xo + b, X; = Xo + 2h = b, we have

I [f]=f:’ £(x) dx = hf: [fo+sAfo+ﬂ§§—l)-A2fo]ds

A%,
h| 26+ 245 + 5=

i

-g-[fo+4fl+f2].

The: error of interpolation is given by Eqn. (18).
. ) }dx ,
Example 3 : Find the approxinate value of I = fol*' = using

Simpson’s rule. Obtain the error bound and compare it with the actual error. Also
compare the result obtained here with the one obtained in Example 1.

Solution : Here x5 = 0, x, = 0.5, x,=1and h = -12-

Using Simpson’s rule, we have

L= % [£(0) + 4£(0.5) + £(1)] = é [1 + % + r).s] = 0.694445
Exact value of I = In2 = 0.693147.

Actual error = 0.001297. The bound for the error is given by

=24,
1+ x)5

5
JE[fl]s g—o M, = 0.00833, where M, = max

Here too the actual error is less than the given bound.

Also actual error obtained here is much less than that obtained in Example 1.
You may now trv the following exercise. -

15
E2) Find an approximation tof e*dx,using
11

a) the trapezoidal rule with b = 0.4
b) Simpson’s rule with h = 0.2

AR —— ]

Fhe Newton-Cotes formulas as derived above are generally unsuitable for use over large
integration intervals. Consider for instance, an approximation to

4
f ¢* dx, using Simpson’s rule with h = 2. Here
0 ,
) 2/0. 42, .4 |
J x5 (e +4e? + ¢”) = 56.76058.
0 3 v

Since the exact value in this case is e* — ¢ = 53.59815, the error is —3.17143. This
“error. is much larger than what we would generally regard as acceptable. However, large
error is to be expected as the step length h =.2.0 is too large to make the error
expression meaningful. In such cases, we would be required to use higher order
: formulas. An alternate approach to obtain more accurate results while using lower -
| order methods is the use of composite integration methods, which we shall discuss in
the next section.

13.3 COMPOSITE INTEGRATION

: In composite integration we divide the given interval [a, b] into a number of
subintervals and evaluate the integral in each of the subintervals using one of the

34




ntegration rules We shall construct composite rules of integration for trapezoidal and
Simpson’s methods and find the correspondmg errors of integration when these
composite rules are used.

Composite Trapezoidal Rule
/ )

We divide the interval [a, b] into N subintervals of length b = N We denote the
subintervals as
xe_;x) k=1,2,..., N where x; = a, Xy = b. Then
b N
1= [ fx)dx = f £(x) dx (25)
2 k=l *x-1

Evaluating each of the integrals on the right hand side by trapezoidal rule, we bave

I [f]= 2 %[fk—]+fk]
k=1
%[fo+f L CRL TR W) (26)

The method (26) is known as composite trapezoidal rule. The error is given by .

- b3
ET[t]-——Et’"(a) (K <O <X k=1,..0.. ,N.

i=l

. Now since f is a continuous function on the interval [a, b], we havc as a.consequence

of Intermediate-value theorem

N N
2 £’ (ai)=f" (§)E 1,wherea<g<b,

im] im}

) —h3 "
. Er[f]= —f (8)N,a<E<b,

Nh
- (g |
~loab ""‘ £ (). ~

If M, = max |f" (E)l Then

ﬂ< <

2
B} &2

M, | - @7
The error is of order b® and it decreases as h decreases.

Composite trapezoidal rule integrates éxactly polynomials of degree = 1. We can try to
remember the formula (26) as '
L[] = ( ) [first ordinate + last ordipate + 2 (sum of the remaining ordinates)].

Composite Simpson’s Rule

In using Simpson’s rule of intcg;a,tion (17), we need three abscissas. Hence, we divide

~ the interval [a, b] into an even number of subintervals of equal length giving an odd

P ’ ' .o _b-—a
number of abscissas in the form a'= x; < X; < X3 < ...... <X,y =bwithh = 2N and

Nusseiai o il
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X, =Xo+ kb, k=0,1, 2, .. 2N. We then write

1= f 10 dx=2 [* ax ‘ 28)

kwl Xk-2

Evaluating each of the integrals on the right hand side of Eqn. (28) by the Sunpson s
rule we have

o
w e

L [f] [f2k—2+4f?k-1+f2k]

L
L
—

W

%t 4 bt )+ G b+ )] 1(29)

Example 4 :

The formula (29) is known as the composite Simpson’s rule of numerical integration.
The error in (29) is obtained from (18) by adding up the errors. Thus we get

sTN
E,[f]= -35[2 fw(“k)]rxu-2<°‘k<x2k
k=]
h’ v
=-5f ® E 1,a< g <b
imi
N ]
- SV
®-a)bh* v
~T1g0 I ®- v
If M, = max v (§)| , We can write using b = (b-a)
asksb 2N
_ ) b (b-a)’M,

The error is of order b* and it approaches zero very fast as h — 0. The rule integrates
exactly polynomials of degree < 3. We can remember the composite Simpson’s rule as

Lif] = (-—) [first ordinate + last ordmate + 2 (sum of even ordinates) + 4 (sum of the

remaining odd ordinates)]

We now illustrate composite trapezoidal and Simpson’s rule through examplcs“.

Evaluate f usmg

(a) cbmposnc trapezoidal rule and (b) composite Simpsan’s rule with 2, 4 and 8
subintervals.

Solution : We give in Table 1 the values of f(x) with h = 1 fromx =0tox = 1.

8
Table 1
x : 0 18 2/8 38 48 S8 68 8 1
fx): 1 89 8/10 811 812 813 8/14 815  8/16
f £, f; f; . & s f &

If N = 2 then b = 0.5 and the ordinates f, f, and f; are to be used.
We get

{6l = 16 + 26, + ] = 27 = 0708333

T[ﬂ 4[0 . 4 8] 24 M .




6] - é[fo +46;+ 5 = 2 = 0.694444

If N = 4 then h = 0.25 and the ordinates fo £, 4,1, £ are to be used.
“We have
i) - 5 [fo*fo+2 (6 L+ )] - 0697024

L(f] = % [fo+ t v 4G+ )+ 21,] = 0.693254

IfN = 8 then b = 1/8 and all the ordinates in Table 1 are to be used,
We obtain

1if] ']%[f-o"' f+2(6+ G+ f+fef, + )] = 0694122

L[f] = 21—4 [fo + Mg+ 4 (fi +0+ 6+ f7) +2 (fz +f,+ fs)] = 0.653147

The exact value of the given integral correct to six decimal places is 1n2 = 0.693147,
We now give the actual errors in Table 2 below. '

Table 2
N E; [f] - _E1[g
2 0.015186 0.001297
4 10.003877 0.000107
8 - 0.000975 _ 0.000008

Note that as h decreases the errors in both trapezoidal and,Simpson’s rule also decreases.
Let us consider another example. ' ' '

1:
Example 5 :  Find the minimum number of intervals required to evaluate f dx with
an accuracy 107, by using the Simpson rule. ol+x
Solution : In Example 4 you may observe from Table 2 that N « 8 gives 107, (1.E - 06)
accuracy. We shall now determine N from the theoretical error bound for Simpson’s
rule which gives 1.E - 06 accuracy. Now'

® —a)5M4 Y
IE.[f“Sm— :

where

M, = max
O<x<]

f”(x)|

=24

= max

T 0<xe 1 (14;x)5

To obtain the required accuracy we should therefore have
24%108

2880 " 8333.3333

28820N4- s107% or N4>

. s Nz95 . v .
We find that we cannot take N = 9 since to make use of Simpson’s rule we should
have even number of intervals. We therefore conclude that N = 10 should be the
minimum number of subintervals to obtain the accuracy LE - 0.6 (i.e., 10'6)

You may now try the following exercises :

N
E3) Evaluatef}—dx—z_ by subdividing'the interval (0, 1) into 6 equal parts and using
- 0l+x C

(a) Trapezoidal rule (b) Simpson’s rule. Hence find the value of & and actual errors.

Numerical Integai.
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E4) A function f(x) is given by the table

x 1.0 1.5 2.0 25 3. o‘—]
f(x) : 1.000 2.875 7.000 14.125 25,000

Find the integral of f(x) using (a) trapezoidal rule (b) Simpson’s rule.

ES) The speedometer reading of a car moving on a straight road is given. Estimatc the
distance travelled by the car in 12 minutes using (a) Trapezoidai rule (b) Simpson’s
rule.

Time: 0 2 4 6 8 10 12
(minutes)

Speedo- ¢ 0 15 25 40 45 20 O
meter

Reading

04
E6) Evaluate f (sin x —Inx + ¢*) dx using (a) Trapezoidal rule (b) Simpson’s rule
taking h = 0 1. Find the actual errors.
E7) Determine N so that the composite trapezoidal rule glves ‘the value of f e  dx correct

upto 3 digits after the decimal point, assuming that e can be calculated accurately.

You must have realised that though the trapezoidal rule is the easiest Newton-Cotes
formula to apply but it lacks the degree of accuracy generally required. There is a way
1o improve the accuracy of the results obtained by the trapezoidal and Simpson rules.
This method is known as Romberg integration, or as extrapolation to the limit.
Richardson’s extrapolation technique (ref. Sec. 12.5 of Unit 12) applied to the
integration methods is called Romberg integration. We shall now discuss this technique
in the next section.

13.4 ROMBERG INTEGRATION

In Romberg integration, first we find the power series cxpansxon of the error term in

the integration method. Then by eliminating the leading terms in the error expression, we

obtain new values which are of higher ordcr than the previously computed values.

If Fo(h) denotes the approximate value obtained by using the composite trapezoidal rule, then
1= Fy(b) + Cp”+ Ch’ £ G+

where 1 is the exact value of the mtegral

Let the integral be evaluated with the step lengths h, g— and %

Then ,
I= Fy)+C 2+ Cht+ s ) (31)
_ by Ci2. S o4 '
I—F0(2)+4h+16h+ ....... (32)

Eliminating C, from Eqns. (31) and (32), we get

1 ==1—[4F ( ) o(h)] F () (33)

Note that this value is of O(h *). Similarly,

R

etc.



Applying this method repeatédly by eliminating C,, then C; etc. we get the Romberg
integration formula
(b
4mFm—1 2 _Fm-l(h)
F ()= yom) ym=1,2 ... _ . (39)
In the same way if Gy(h) denote thc value of the integral obtamed by using the
. Simpson’s rule, then
= Gy(h) + d,h* + d,h® + d;b% +
where [ is the exact value of the integral.

~ Let the integral be evaluated with step lengths h, b/2 and h/d.

Then, we have
= Gyfh) +d;b’ + dh’ + ... ' (36)

e (b dipe, G2y |
I=G (2)+16h+ b’ +... 37N

Eliminating d, from Equs. (36) and (37), we get

do,[3)-a[3)

I= pom G, (h) | (38)
Similarly, h h
S afi)al) |
I= 421 - Gx('z') . : (39
etc. .

Note that these values are of order h®.

Applying extrapolation technique repeatedly, we get
X b
4m+ Gm..x 2]~ gm,;(h)

G, (b)= o mmel2 (40)

We now illustrate this technique through an example.
Example 6 : Find the.value of the integral [-s.f f (x) dx where f (x) = —1—%; using
. 0 7

(a) composite trapezoidal and (b) composite Simpson’&migs, with 3, 5 and 9 nodes.
Use extrapolation techmque to improve the results,’

Solution : We take the computed values from Example 4, The Romberg mtegmnon values are
given in Tables 3 and 4 for composite trapezoidal and compasite Simpson’s rules respectively.

Table 3

N b I [f] ="F§‘V(h‘)“ Fx..(lf) )

2 . % 0.708333 0.693155 0.693148
4 % 0.697024 0.693254

8 : 0.694122

Note that

Numerical Intcgratics
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fs)-x i

d
f)- wonfe) o, )

Table 4
N h I [f] = Gy (h) G, (b) G, (h)
% 0.694444 0.693175 0.693148
4 % 0.693254 0.693148
8 - 0.693155
Note that
1 L
1 16G, | 4 -Gy l2
GI(E)" 15
1 1
| 16G, |8 -Gy l4
GI(Z)= 15
and l 1 -
1 64G, {4 -G, {2
Gz(i)' 63

Suppose that we wish to evaluate the integral in the above example directly by the
trapezoidal and Simpson’s rules to an accuracy 1.0E — 06. What should be the
maximum value of step length to be chosen to achieve this accuracy ?

To answer this question let us calculate the error bound for trapezoidal rule.

) b2 " h® 2 %
E < 7= max [f (X)| == max |—=—| > —
, T[ql 12 0<x<]I ()l 12 O<xcl (I“X)S 48
Hence '
bZ .
’ E<1.E-060rhw0.007
orN = 145,

Thus to-obtain 1.E — 06 accuracy by trapezoidal rule we need to use 145 subintervals,
i.e., 146 function evaluations. But by extrapolation we have used only 9 evaluations and
improved these valucs.

Let us consider another example. 5

Example 7 :  Use composite trapezoidal rule to find fl_ In x dx with N = 3, 6, 12
and improve the accuracy by Romberg integration. !

Solution : We give the result in the form of the following table.

Table 5
N b Iy [f]=Fy(b) F, () F; (b)
3 0.4 0.527395 0.534605 0.534606
6 0.2 0.534591 0.534591
12 0.1 0.534152




You may now try the 160w ing exercise. ' Mumenead o,

E8) The following table gives the values of 1n x forx=1,2, ..., 11. Evaluate the
integral of the tabulated function using Trapezoidal rule with h = 1, 2. Use
Richardson’s extrapolation technique to improve the accuracy-and obtain the
actual error. Compare the results obtained by using Simpson’s rule with h = 1.

x 1 2 3 4 s 6 I
In x 0.0000 0.6931 1.0986  1.383 1.6094 1.7918 |
x 78 9 10 11
In x 1.9459 20974 21972 23026 23979 |

We now end this unit by giving a summary of what we have covered in it.

13.5 SUMMARY

In this unit, we have learnt the following :

1) If a function f(x) is not known explicitly but a table of values of x is given or when it
has no anti-derivative expressible in terms of elementary functions then its integral
cannot be obtained by calculus methods. In such cases numerical integration methods
are used to find the definite integral of f(x) using the given data.

2) The basic idea of numerical integration methods is to approxunate the deﬁmte integral
as a linear combination of the values of f(x) in the form

- f f(x) dx = 2 By f(xy, (see Eqn. (2))

ke0 A
where the (n + 1) distinct nodes x,, k=0, 1, ...... , n, X, < X) <Xy <uii € x dwnde
the integral [a, b] into n subintervals and B, k=0, 1, ...... , I are the welghts of the

integration rule. The error of the integration methods is then given by

IEhlﬂl f f(x) dx - 2 By flxy _(see Eqn. (4))

k=0

3) For equispaced nodes, the integration formulas derived by using Lagrange

" interpolating polynomials P, (x) of degree = n, satisfying the mtcrpolatory conditions
P, (x) =f(x), k=0,1,..,nare known as Newton-Cotes formulas. Corresponding to
n=landn=2, Newton-Cotes formulas viz., trapezoidal rule and Simpson’s rule
are obtained. »

4) For large integration intervals, the Newton-Cotes formulas are generally unsuitable for
they give large errors. Composite integration methods can be used in such cases by
dividing the interval into a lafgc number of subintervals and evaluating the integral in
each of the subintervals using one of the integration rules.

5) For impioving the accuracy of the trapezoidal or Simpson’s rules and to obtain higher
order solutions, Romberg’s integration can be used.

13.6 - SOLUTIONS/ANSWERS
O ED) a) Iif]= 3 [fyr £]=0.346574
)= 3 [+ 46+ 6]
= 0—55[4 10’15 + 1n 2] = 0.385835

Exact value of I = 0.386294 '
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Actual error in I [f] = 0.03972
Actual error in I5[f] = 0.000459

Also
Edf)] 5= % max |L]a-Lu_o0s3334
| T l lzl-v:x;t\Z X2 12 )
B =- LA, 2| - -0.002083
90 lex<2 |X
b) Ip[f]=0.023208, |E,[f]| = none.
I5 [f] = 0.032296, |E [f]| = none .
Exact value = 0.034812 .
¢) Ip[f]=039270, |E, [ql =0.161

15 [£] = 0.34778,, |E [t]l = 0.00831
Exact value = 0.34657 .

E2) 1 [f] =1.49718

I [f] = 1.47754 .
‘E3) With h = 1/6, the values of f(x) =

1+ x>
fromx=0to I are
X : 0 1/6 2/6 3/6 4/6 5/6 1
f(x) : 1 0.972973 0.9 0.8 0.692308 0.590164 0.5

Now

IT[f]-g-[f0+f6+f6+2(f"+f2+f3+f4+fs)]

= (.784241

Lif] = :— [fo + [ + 4(fl +0+ fs) + 2(f2 +Tf4)]

%

= 0.785398

jj)ﬂi = [tan'lx]; = % .

Exact x = 3.141593
1+x :

Value of & from I [f] = 4 x 0.784241 = 3.136963
Error in calculating st by I, {(‘] is Er [f] = 0.004629
Value of & from Ig [f] = 4 x 0.785398 = 3.141592

Error in 7 by I [£] is Eg [f] = 1.0 x 107,
Ed) L f] = (g) [fo +f,+2 (f1 +f+ Q)]
= (1/4[1 + 25 +2 (2.875 + 7 + 14.125)] = 18.5
L= (g) [orfir2h+d(t+ )] |

= (1/6) [1 +25 +2x 7 + 4 (2.875 + 14.125)] = 18




aprs

ES) Letvy =0, v, =15,v,=25,v3 =40, v, = 45,v5 =20, = 0. Thien

12
1-f0 vdt,IT[v]=(%){vo+v6+2(vl+v2fv3+v4+v5)]=290

1 [v]= 8-3%9 =29333.

E6) The values'of f(x) = sin x = 1n x + ¢* are

£(0.2) = 3.02951, £ (0.3) = 2849352, { (0.4) = 2797534

L (f]= (95‘—) (£(02) +2(03) + £(04)] = 057629

L(f]= (93—1) (£(0.2) + 4£(0.3) + £ (0.4)] = 0.574148

s

Exact value = 0.574056
Ep=2234x 107"

Eg=9.2x10™

E7) Errorin composite trapezoidal rule

- (b—3)3 - "
E4lf] 12N? M, M, o‘:‘:f 1If @
Thus ;
1 "
f
lE.rm\ * 12N? onf 1|> )l

: 1,
f(x) = e* L f(x) = e (4" -2)
Ht 2
£ (x)= ™ 4x(3-2x%) = Owhenx=0,x= V15

max |[f” 0, " (1)} = max [2, Ze'l] = 2

For getting the correct value upto 3 digits, we must have

2 w2 10 10*
~ <107 or N® > — =~
12N¢ 6 60
or
’ 100
N>m-12.9.

The interges value is N = 13.

E8) ‘With h = 1, using trapezoidal rule

9
T{f] = F(b) = (-‘;—) {fo ifo+2 t’k‘
. k=1

= 1632125

Numeiwa @
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Withh=2, _

M

I,{f) = F(2h) = (g) fo+fig+2 ) by
ke]

= 16.1001
By extrapolation
F, (b)= % [4F (b) ~F (2h)} = 16.39496667

By Simpson’s rule
’ " , L] 4
I,[ﬂ‘(},’) fo"fm““E by-1 +22 b
kel kel

= 16.39496667 (which is same as the value obtained by extrapolation)

Exact value of the integral = 16.376848

Actual error = 0.01811867.



UNIT 14 NUMERICAL SOLUTION OF
ORDINARY DIFFERENTIAL
EQUATIONS

Structure

14.1 Introduction
Objectives
14.2 Basic Concepts
14.3 Taylor Series Method
14.4 Euler’s Method
14.5 Richardson’s Extrapolation
14.6 Summary
14.7 Solutions/Answers

14.1 INTRODUCTION

In the previous two units, you have seen how a complicated or tabulated function can be
replaced by an approximating polynomial so that the fundamental operations of calculus
viz., differentiation and integration can be performed more easily. In this unit we shall solve
a differential equation, that is, we shall find the unknown function which satisfies a
combination of the independent variable, dependent variable and its derivatives. In physics,
engincering, chemistry and many other disciplines it has become necessary to build
mathematical models to represent complicated processcs. Differential cquations are onc of
the most important mathewatical tools used in modelling problems in the engineering and
physical sciences. As it is not always possible to obtain the analytical solution of differential
equations recourse must necessarily be made to numerical methods for solving differential
equations. In this unit, we shall introduce two such methods namely, Euler’s method and
Taylor series method to obain qumerical solution of ordinary differential equations (CDEs).
We shall also introduce Richardson’s extrapolation method to obtain higher order solutions
to ODEs using lower order methods. To begin with, we shall recall few basic concepts from
the theory of differential equations which we shall be referring quite often.

| Objectives

After studying this unit you should be able to :
e identify the initial value problem for the first order ordinary differential equations;

,9/ obtain the solution of the initial value problems by using Taylor series method and

’ Euler’s method; ~ B

e use Richardson’s extrapolation technique for improving the accuracy of the result
obtained by Euler’s method. .

14.2 BASIC CONCEPTS

In this section we shall state a few definitions from the theory of differential equations
and define some concepts involved in the numerical solution of differential equations.

Definition : An equation involving one or more unknown functions (dependent
variables) and its derivatives with respect to one or more known functions (independent
variables) is called a differential equation.

For example,

x%{-=2y (1)
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-~ -7 = 2
Xox Yy 20 ©)

are diffcrential equations.

Differential equations of the form (1), involving derivatives w.r.t. a single indepchdent
variable are called ordinary differential equations (ODEs) whereas, those involving
derivatives w.r.t. two or more independent variables are partial differential equations
(PDEs). Eqn. (2) is an example of PDE.

Definition : The order of a differential equation is the order of the highest order
derivative appearing in the equation and its degree is the highest exponent of the
highest order derivative after the cquation has been rationalised i.e., after it has been
expressed in the form free from radicals and any fractional power of the derivatives or

negative power. For cxample equation

3 2 2 3
9yl 8y _dy | 2fdx) _
(dx") +2 T ax +X ax 0 3)

is of third order and second degree. Equation P

a9y, 8
y xdx+dy/ﬂx

is of first order and second degree as it can be written in the form

2
y & =X (d—x) +a “)

Definition : When the depen“ent variable and its derivatives occur in the first degree
only and not as higher powers or products, the equation is said to be linears otherwise

it is nonlinear. .
2

Equation S—lz +y =x%is a linear ODE, whereas, (x+y)? g;\i = 1 is a nonlinear ODE.
X

2 2 2
Similarly, 0_§+ 6_22_ 9z = 0, is a nonlinear PDE.
. ox ay dx ay

In this unit we shall be concerned only with the ODEs.

The general form of a lincar ODE of order n can be expressed in the form

Lyl=a Oy 0+a 00+ oo, 0y O+a, OyO =0 ©
where #(t), a, (1), i=1,2,....... , h are known functions of t and

g o d
L =ay(t) E”— +a, (1) Zln—_l Fooean, + a“"md—t +a(t),

“is the linear differential operator. The gel"\ieral nonlinear ODE of order n can be

written as

F,y, 5y ,y", Ceeen Ly =0 - )
or, y? = v,y , ¥y, . ... , y("'l)) . . )

Eqn. (7) is called a canonical representation of Eqn. (6). In such'a form, the highest order
derivative is expressed in terms of lower order derivatives and the independent variable.

The general solution of an nth order ODE contains n arbitrary constants. In order to
determine these arbitrary constants, we require n conditions. If these conditions are
given at one point, then these conditions are known as initial conditions and the
differential equation together with the initial conditions is called an initial value
problem (IVP). The nth order IVP can be written as

y‘") ®= f( Yy , y("'”) '
YW =y® p=0,1,2,........ O T ®)



I{ the n conditions are prescribed at more than one point then these conditions are
known as boundary conditions. The differential equation together with the boundary
conditions is then known as a boundary value problem (BVP).

The ath order [VP (8) is cquivalent to the following system of n first order equations :

Set y =y,. Then

y =y, =y, ¥i{to) = Yo
Y2 =3 Y2 (t) =y
Yo-1 = Ya Yo ()= yg
=t (t t) =y
y ( Y Y oo ; yn) Yoo =ye s
In vector notation, this system can be written as a single equation as
dy ‘
Tty y@=a 9
T .
where y = <Y1 Yo veeennnnn , yn> , f(Ly) = (ylys_ ..... 5 (( AR , yn>
‘ -1
a = (yo,)' O v N (on ))

Hence, it is sufficient to study numerical methods for the solution of the first order IVP.

y' = (L), () =y, (10)
The vector form of these methods can then be used to solve Eqn. (9). Before attempting to
obtain numecrical solutions to Eqn, (10), we must make sure that the problem has a unique

solution. The following theorem ensurcs the existence and uniqueness of the solution to IVP (10).

Theorem 1 : If f(t, y) satisfies the conditions
i) f(t, y) is a real function

i1) f(t, y) is defined and continuous for te [to,b] ,

]
iif) there exists a constant L such that for any te [to.b] and for any two numbers y, and y,

L

lf(t!YI)—f(‘vy2)|sL|y)_-v2|

then for any y,, the IVP (10) has a unique solution. This condition is called the
Lipschitz condition and L is called the Lipschitz constant. ;

We assume the existence and uniqueness of the solution and also that f(t,'y) has
coutinuous partial derivatives w.r.t. t and y of as high order as we desire.

Let us assume that [‘o,b] be an interval over which the solution of the IVP (10) is

required. If we subdivide the interval [‘o.b] into n subintervals using a stepsize

t -t
b= [ L - 0], where t, = b, we obtain the mesh points or grid points to, t;, t,, . ... .. )t
as shown in Fig. 1. '
h h

| | | | | |

| I | | | |

fo 4y . lk - -1 t,=b

Fig. 1

We can then write t, = t, + kb, k =0, 1, ... ., n. A numerical method for the solution
of the IVP (10), will produce approximate values y, at the grid points t,.

Numerical Solution of Ordinwy
Differeatial Equations
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Remeinber that the approximate values Yy may conuwin the wuncation and round-off errors.
We shall now discuss the construction of numerical methods and related basic concepts
with reférence to a simple ODE.

¥(t) = yo v _ , (1m
Let the grid points be deﬂnc;d by

L=lh+jbj=0,1,......... N
where Ato =aand t;+ Nh = b.
Separating the .variablcs and integrating, we find that the exact solution of Eqn. (11) is

At -
YO = y(g) 7 (12)

In order to obtain a relation connecting two successive solution values, we set t 3 t,
and ¢, in Eqn. (12). Thus we get

y(t,) = y(tp) e¥e= %

#

" and ,

y(tml) = Y(to) e}‘(t"l ~fo

Dividing, we get

y(tml) Mo At »

y(tn) - em' -e t)

wsl »

Hence we have

y(tm 1) = ekh y (ln), n=0,1,..... , N-1 (13)

Eqn‘. (13) gives the required relation between y(t,) and y(t,, .

Settingn=0,1,2,..... » N-1, successively, we can find y(t), (b, - ... » Y()
from the given value y(to)-

An approximate method or a numerical method can be obtained by approximating ™ in
Eqn. (13). For example, we may use the following polynomial aproximations. °

.e“‘=1+}»h+0(|)\hlz) | | (14)
, cm=l+>~h+%2-+0(l7\hls) . (15)
e“=1+vw+§;—hi+¥+0(|m‘)_ | (16)
and so‘on. | |

Let us retain (p+1) terms in the expansion of ¢* and denote the approximation to ¢
by E(Ah). The numerical method for obtaining the approximate values Y, of y(t,) can
then be written as

Yoer =E(AD) y,,n=0,1,....... »N-1 ; (17
The truncation error (TE). of the 111eth§d is defined by
TE = y(tn+l) ~ Yoerr

Since (p+1) terms are 'retained in the expansion of ™, we have

p+! P
TE= |1+Mh+...... +QQZ+Q£)—¢°}‘h - l+}»h+....+&
- P! T (peD)! P!



p+l
= (31?1)'c°>'h, 0<0<l.

The TE is of order p+1. The integer p is then called the order of the method.

We say that a numerical method is stable if the error at any stage, i.c. y, — y(t) = g,
remains bounded as n — . Let us examine the stability of the numerical method (17).
Putting y,,, = ¥(4,,,) + €n,y and ¥, = ¥(t)) + ¢, in Eqn. (17), we have

y(t, )+, = E(A\h) [y(tn) + en]

I

ot E(Ab) [y(tn) + an] - Y(tml)

EQ) [¥() +5,] - ¢™y(t,) (using Eqo. (13))

€. [E(xh) - e”‘]y(tn) +E(M) e, (18)
We note from Equ. (18) that the error at t,,, consists of two parts. The first part E[Ah]
_ ¢™ is the local truncation error and can be made as small as we-like by suitably
determining E[Ah). The second part |E(Ab)| €, is the pmpagation error from the
previous step t to t ., and will not grow if |E(Ab)| < L. If |E(Ab)| < 1, then as

n — oo the ‘propagation error tends to zero and method is said to be absolutely stable.
Formally we give the following definition.

Defintion : A numerical method (17) is called absolutely stable if |E(M)| = 1.

You may also observe here that the exact value y(t,) given by Eqn. (13) increases if A
> 0 and decreases if A < 0, with the growth factor ¢™. The approximate value y, given
by Eqn. (17) grows or decreases with the factor |E(Ah)|. Thus, in order to have
meaningful numerical results, it is necessary that the growth factor of the numerical
method should not increase faster than the growth factor of exact solution when A > 0
and should decay at least as fast as the growth factor of the exact solution when A < 0.
Accordingly, we give here the following definition.

Definition : A numerical method is said to be relatively stable if |E (Ab)] s M As>o.

The polynomial approximations (14), (15) and (16) always give relatively stable
methods. Let us now find when the methods y,,, = E(Ah) y, are absolutely stable where
E(Ah) is given by (14), (15) or (16).

This methods are given by
First order : y_,, = (1+Ab) y,

' 2
Second order : y,,, = (1 +Ah + L;.LL) Ya

2% A
2 6 |°®

Third order: vy, = (1 + A+ Ty

These methods are absolutely stable when

First order : |1+ Ab| =1

or—1s AMis 1
or-2s AMis 2
A2n?|
Second order : 1+M]+-—2—— <1
2
or-1sl+AMm+—=s 1

2
The right inequality gives

Mfi#-}f-;i-)so

Numerical Solution of Ordinary
Diftferential Equations
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i.e.,}\hsOand1+-}\2—hzO;

The second condition gives —2 < Ah. Hence the right inequality ginx -2 s A5 0. The
left inequality gives

2+M+%20' \

For -2 < Ab <0, this equation is always satisfied. Hence the stability condition is

4—25)&150

Third order : |1 + b+ —-+ _;f_l s1

Usinge the right and left inequalides, we get
-25sihs0.
These intervals for A are know as stability intervals.

Numerical methods for finding the solution of IVP given by Eqn. (10) may be broadly
classified as

- i) Singlestep methods
ii) Multistep methods

Singlestep methods enable us to find y,, ), an approximation to y(t,,)), if y,, y,,' and b
are known.

Multistep methods enable us to find y_,, an approximaton to y(1,,,), if y;, yi,i=n,
n-1, ..., ... 0-m+l and -h are known. Such methods are called m-step multistep methods.

‘ln this course we shall be discussing about the singlestep methods only.
A singlestep method for the solution of the IVP
=0 y)y (=Y, te (to,b)
is a recurrence relation of the form
Yor1=Yath e (t,,, Yoo h) (19)

K

where ¢ (tn,' Yoo b) is known as the increment function

Ify,,, can be determined from Eqn. (19) by evaluating the right band side, then the
singlestep method is known as an explicit method, otherwise it is known as an imphclt
method. The local truncation error of lhe mc[bod (19} is defined by

TE=Y(ln+1)—Y(‘.,)-h¢(,,, Yor ) o , - 0
The largest integer p such that | |

|b™* TE| = O(6") - @1)
is called the order of the singlestep method. |

Let us now také up an example to understand how the singlestep method works.

Example 1 : find the solution of the IVP y' = Ay, y(0) = 1 in 0 < t < 0.5, using the
first order method '

Yos =(1+A0) y, withh=01and h==1.

Solution : Here the number of ultcrvals are N = th= g—i s

We have y, = 1



(l + Ah) yO (l + )\.h) (1 +0.12) . Numerical Solution of Ordinu
Differential Equatior

=(1 +Mz~)yl=(l+)‘.h) = (1 +0.10)?

ys=(1+Ab)° = (1+0.12)°
. The exact solution is y(t) = €™,

"We now give in Table 1 the values of y, for A = = 1 together with exact values.

Table 1
Solution of y' = Ay, y(0)=1,0 st s 0.5 with h = 0.1
A=1 A=-1
t First Order Exact First Order Exact
method Solution method Solution
{0 1 1 ' 1 1

0.1 1.1 1.10517 0.9 0.90484
0.2 1.21000 1.22140 0.81 , 0.81873
03 ' 1.33100 1.34986 0.729 0.74082
0.4 1.46410 1.49182 0.6561 . 0.67032
0.5 1.61051 1.64872 0.59049 0.60653

In the same way you can obtain the solution using the second order method and
compare the results obtained in the two cases.

-

E1) Find the solution of the IVP
y' =k, y(0)=1

in 0 = t = 0.5 using the second order method

Ah?
Yar1 =(1 +Ah +T) y,Withh=0.1and A =1.

‘We are now prepared to consxder numerical methods for integrating dlfferentlal
equations. The first method we discuss is the Taylor series method. It is not strictly a
numerical method, but it is the most fundamental method to which evcry numerical
method must compare.

143 TAYLOR SERIES METHOD

Let us consider the IVP given by Eqn. (10), i.e.,
y' =1t y), y(t) = Yo et b]

_The function f may be linear or nonlinear, but we assume that f is sufficiently
differentiable w.r.t. both t and y. :

The Taylor series expansion of y(t) about any point t, is given by

/ ( _tk)p
¥y =yt + -y’ (tk)+ 2. y )+ ,

o) + ... 22)

Substituting t = t,, in Eqn. (22), we have

B3y ) ’ hP (p)( :
y(tm) y(t,) + by’ (tk)"’ (‘k o yp,tk) (23)
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o

where t,, = 4+ h. Neglecting the terms of order bP*! and higher order terms, we have

- the approximation -

’ 13 hz " hp ‘
Yier = Y + by, + 21y k"‘---*;'!')’ﬁp)'
=Y +h oy, h) (29

, h L)
where¢(tk’yk’h)=yk+5-!-yk+...+;‘!-ykp

This is called the Taylor Series method of order p- The truncation error of the method

is given by

TE = ¥ (ho) = ¥(6) ~ 1 (4, y(4), B) @5)

p+l
(p+1)!

y**D (1, +6n),0<0<1

When p = 1, we get from Eqn. (24)
Yier = Y + by; . P (26)

which is the Taylor series method of order one.

To apply (24), we must know y(t), y'(t), y"(t), - - . . . .. , yP (tk).

However, y(t,) is known to us and if f is sufficiently differentiable, then higher order
derivatives can be obtained by calculating the total derivative of the given ditferential
equation w.r.t. t, keeping in mind that y is itself a function of t. Thus we obtain for the

first few derivatives as ;

y' =1t y)

y'=f+ff,

y" =€ +2 %f,y+ £, + £, (6 +££) etc.
where f, = 3f/at, £, = 3%/a1 etc.

-

The number of terms to be included in the method dépends on the accuracy
requirements.

Let p = 2. Then the Taylor Series method of O(h?) is

. " -hzyé' : v . ’
Yeer =Y + By, + 2 @D

3 .
with the TE = %—y"’ (@, <a<t,
The Taylor serics method of O(h®), (p=3) is -

N , hzyn h3 , . . -
Yeor = Y + By + —= 4 Sy - - (28)

. .- .
with the TE = gz y™ (@) ,<ac<t,,.

Let us consider the following examples.-

Exaniple 2 : Using the third order Taylor series method find the solution of the
differential equatjon o : .

Xy'=x-y,y2)=2atx=21 taking b=0.1
Solution : We li.ﬁve the derivatives and their values at x=2, y=2 as follows :

o1t )=
y=1-1 y@=0



y'=-f+d | y'@=12 -

X
mo_ T y _Y_ 2X » " \l_
yr =l 2y " @)= 304

Using taylor series method of O(h3) given by Eqn. (28), we obtain
y(2.1) =2 + 0.0025 - 0.000125 = 2.002375.

Example 3 : Solve the equation X 2y’ = 1 - xy - X%y’ ¥(1) = - 1 from x=1 to x=2 by
using Taylor series method of O(h ) with b = 1/3 and 1/4 and find the actual error at
x=2 if the exact solution is y = — 1/x. :

Solution : From the given equation, we have y' » _1.5.. Y_ y2
X X

Differentiating' it w.r.t. X, we get
y et -T2y

Using the second order method (27),
2

Yeer = Vi ¥ by, + —2' Ye

we have the following results

ym=-1, y@®=1, y(@1)=-2

h=3

X, = g—, y(x,) =-0.7778,  y'(x))=0.5409, y'(xy) = —0.8455

X, = % : y(x)=-0.6445,  y(x)=03313,  y"(x;)=-04358

X3 =2, y(x;) =—0.5583 = y(2)

he= %

X, = % - Jx)=-08125,  yl(x)=06298, y'(x)=-10244.
xy= -;- yix)=—068T1,  y(x)=04304, y'()= ~0.5934,
X7, yx) =~05980,  y'(x)=03106,  ¥'(x)==03745.

X, =2, y(x)=—-05321 = y(2)

Since the exact value is y(2) = 0.5, we have the actual errors as '

e, =0.0583 with h =

W |

e, =0.0321 with h =

Note that error is small when the step size h is small.

Your may now try the following exercises’

R

Write the Taylor series method of order four and solve the IVPs E2) and E3).

E2) 1y =x-y%y(0) =1 Findy(0.1)takingh=0.1.

Numerical Solution of Ordiiar
Differential Equat.an
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fork=0,1,......,N

E3) 'y =x*+y y(0) = 0.5. Find y(0.4) taking b = 0.2.
Ed)  Using second order Taylor series helhod solve the IVP
y' =3x + %, y(0) = 1. Find y(0.6) taking h = 0.2 and h = 0.1.

Find the actual error at x = 0.6 if the exact solution is y = — 6x ~12.

Notice that though the Taylor series method of order p ‘gives-us results of desired accuracy
in a few number of steps, it requires evaluation of the higher order derivatives and becomes
tedious to apply if the various derivatives are complicated. Also, it is difficult to determine
the error in such cases. We now consider a method, the Euler’s method which can be
regarded as Taylor series method of order one and avoids these difficulties.

144 EULER’S METHOD

Let the given IVP be
y =€t y), y(to) = Yo
Let [to , b] be the interval over which the solution of the given IVP is to be

determined. Let h be the steplength. Then the nodal points are defined by t, = t; + kh,
k=0,1,2,........ » Nwith ty =t + Nh = b,

Fig, [}

The ex_acf solution y(t) at t= t,,; can be wrjnen by Taylor scries as

» " ‘ 2 v N
CY(t+h) =y(t) +hy’ () + (h;) Yt +... o (29)

Néglecting the term of O(hz) and higher order terms, we get
‘ (30)

Yier = Vi + BY'y B
. 3, . ’ ‘ »
with  TE = S|y (@)t <a<t,, i : (31)
From the given IVP, y' () = f(t, y) = f,
We can rewrite Eqn. (30) as
Ve =Yu+tbE ' | (2)

Eqn. (32) is known as the Euler’s method and it calculates recursively the solution at
the nodal points ¢, k=0, 1,...... , N, ’

" Since the truncation error (31) is of order h%, Euler’s method is of first order. It is also

called an O(h) method.
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Let us now see the geometrical representation of the Euler’s method. Numerical Solution of Usdiict.
Differential Equation.

Geometrical Interpretation

Let y(t) be the solution of the given IVP, Integrating % = f(t, y) from t 10 4y

we get

L deat
o o f ) =300 =Y 33

We know that geometrically f(t, y) represents the slope of the curve y(t). Let us
approximate the slope of the curve between t and t,, by the slope at t, only. If we

approximate y(t,,,) and y(t) bY Yiey and ¥i respectively, then we have

. ‘ko
YVier = Y = (o Y1) L "dt (39
k

= (ty; — ) o Y

= hi(ty, Y
Yis1 = Ve * bf(t., Y k=012..,N

mated by a sequence of line

Thus in Euler’s method the actual curve is approxi
ted by the area of the quadrilateral.

segments and the area under the curve is approxima
(see Fig.3)

Fig. 2 : Geometrical representation of Euler’s method.

Let us now consider the following examples.

Example 4 : Use Euler method to find the solution of y = t+ |yl given y(0) =1

Find the solution on {0, 0.8] with b = 0.2.
. Solution : We have

Yn+1 = yn + hﬂa

y(0.2)= y, = Yo+ (0:2) fo

= 1+(0.2)[0+1}=12
y(0.4)= y,= ¥, + (0.2,

= 1.2+(0.2)[0.2+ 1.2]
1.48
y,+(0:2) f,.
1.48 + (0.2) [0.4 + 1.48]
1.856

y(0.6)= Y,
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y(OS) =Y, = Y+ (02) f3
1.856 + (0.2) [0.6 + 1.856)
= 2.3472

Example 5':  Solve the differential equation y' = t+y, y(0) = 1. t ¢ [0,1] by Euler’s
method using b = 0.1. If the exact value is y(1) = 3.436564, find the exact srrof.

Solution : Euler’s wmethod is

yn+1 =¥ + hy’n
For the given problem, we have

It

Yar1 = Yo th [t +yn]

=(1 +h)y, +ht,
h=0.1,y(0)=1,
yl Yo=(1+0.1) +(0.1) (0) = 1.1
=(1.1) (1.1} + (0.1) (0.1) = 1.22, y, = 1.362
y4 =1.5282, ys = 1.72102, y, = 1.943122, ,
Y¥7=2.197434, y, = 2.487178, y, = 2.815895 #
10 =3.187485 = y(1) '
actual error = y(1) —y o = 3.436564 ~ 3.187485 = 0.2491. -

Remark : Since Euler’s method is of O(h), it requires b to be very small to attaiu the
desired accuracy. Hence, very often, the number of steps to be carried out becomes very

large. In such cases, we need higher order methods to ‘obtain the required accuracy in a
limited number of steps.

Euler’s method construct y, = y(t) foreachk = 1,2, ... N,

where

Yne1 =Yk +bf (tk , yk)

This equation is called the difference equatnon associated with Euler s method. A
difference equatlon of order N is a relation mvolvmg Yor Yoepp o v v v - s Yoen SOWE

simple dlfference equations are

Yoe1 = Yn = 1

Yoei=Yn =0 | ! ' (35)
Yoer —(+1)y, =0 : :

where n is an integer.

‘A difference equatlon is said to be linear if the unknown functions y,,, (k = 0,

B ,» N) appear linearly in the dlffercucc cquation. The gencral form of a
linear nonhomogeneous difference equation of order N i5

YooN T ANy Yot Frovoevvneene +ay,=b (36)

where the coefficients ay_;, ag_g - <« -+ - - . , 3, and b may be functions of n but not of
y- All the Eqns. (35) are linear. It is casy to solve the difference Eqn. (36), when the
coefficients are constant or a_function .of n say lincar of a quadratic function of n.

“The general solution of Eqn. (36) can be written in the form

Ya =_y,,(<=) +¥,(P),

.

where y, (c) is the complementary solution of the homogeneous equation associated
with Eqn. (36) and y, (p) is a particular solution of Eqn. (36). To obtain the
complementary solution of the homogeneous equations, we start with a solution in the
form y, = B" and substitute it in the given equation. This gives us a polynomial of
degree N. We assume that its roots §,, Bs .. ....., By are all real and distinct.



Then by linearity it follows that

Y, =C Bl +CoB+.nnnnnn. + Cy By
for arbitrary constants C, is a solution of the bomogeneous equation associated with
Eqn. (36). A particular solution of Eqn. (36) when b is a constant can be obtained by
setting y(p) = A (a constant) in Eqn. (36) and determining the value of A. For detalil,
you can refer to elementary numerical analysis by Conte- deBoor. We illustrate this
method by considering a few examples.

Example 6 : Find the solution of the initial-value difference equations

Yorz= a1 +3¥, =27 ¥0=0,y, =1

Solution : The homogeneous equation of the given problem is
Yae2 -4Yn+l + 3Yn =0 (37)

Let y, = B". Then Eqn. (37) reduces to

ﬁmz - 4ﬂn+l + 3Bn =0
Dividing by 8", we obtain the characteristic equation

B2-4p+3=0
ie,p=1,3
"y, (©)=C, (1) +C,3)
=C, +3°C, (38)

For obtaining the particular solution we try y,(p) = A2
This gives
224 —4x2"A +3x2°A =2
6r, A=-1
Therefore, the general solution of the given problem is
y,=C, +3C,-1
Using conditions for n = 0, 1, we obtain
C,+Cy=1
C,+3C,=2

o Cy=1/2,C;=1/2and

31
yn"’ 2

(39

which is the required solution.

Note : In the above method we can 6b_tain Y, for all n from one formula given by
Eqn. (39). Whereas, in the Eulers’s method for obtaining the value at cach iteration, we’
require the previous iterated value. We illustrate it by considering another example.

Example 7 : Using difference method find the solution of .y, =y, + h(5+3y,), given
y(0) = 1. Find the solution y(0.6) with b = 0.1.

Solution : We have
Yis1 =(1 +3h) y, =5h ' L (40)
Solution of the homogeneous equation is

y () = C(1 +3b)"
For obtaining the particular solution we try y,(p) = Ab.

This give

5
A-——;.

Numerical Solution of Ordinary
Differential Equations<
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Theiefore, the general solution of the given problem iS
¥, =C(1 +3h)k-§-.

Using the condition y(0) = 1, we obtain C = 8/3. |

Thus

?k=§- (1+3h)“~-§-, | -
Eqn. (41) gives the formula for obiaining Y ¥ k.
Ye=y08)=3 @ +3x01) -3
= 11.204824.

Now Euler’s method is

Yiey = (1 + 3b) y, + Sh

[

-and we get for b = 0.1 ”

Y1 =18y, =284, y, = 4192, Yy = 5.9496, y, = 8.23448, s = 11.204824,
You may now try the following exercises'
Solve the following IVPs using Euler’s method

ES) y'=1-2xy,y(0.2) = 0.1948. Find ¥(0.4) with h = 0.2

E6) y'= y(4) = 4. Find y(4.1) taking b = 0.1

1
x?- 4y,’
E7) y= y;’: 3(0) = 1. Find y(0.1) with b = 0.1

E8) y' =1+ y(0)= 1. Find y(0.6) taking b = 0.2snd h=0.1.

You may recall that in Unit 12 we studied Richardson’s extrapolation technique to

. increase the order of a numerical differentiation formula without increasing the function

evaluations. In Unit 13, we introduced Romberg integration which is the Richardson’s
extrapolationtechnique applied to the integration rules. In both the cases, the order of
the numerical value was improved by the application of the Richardson’s extrapolation.

In the next section we shall use this technique to obtain bighes order sofutions to
differential equations using lower order methods.

145 RICHARDSON’S EXTRAPOLATION
Con;idcr the Euler’s method ‘ | | |
: ‘Yuox"}’k"'hf; ' -

which is an O(b) method. Let F(h) and F(b/2) be the solutions obtained by using step
lengths b and b/2 respectively. . ‘- .

Recall that the Richardson’s. extrapolation method of combining two computed values with two

- diffesent step sizes, to oblain a bigber order method is given by (ref. Formula (54) Unit 12)

FO (o) » EEL-CF) N “)

where p is the order of the method.



Thus, in the case of Euler’s method which is of first order, once we know the values F(b) . Numerical Solution of Ordinary
and F(b/2) at two different step sizes b and b/2, Formula (42) for r = 1/2, p=1, reduces to ' Differeatial Bquations
FD (b = ZF(“f —IF h C (43)

Before illustrating this technique, we give ydu a method of determining numerically, the
order of a method,

Let y,(t,) and y,(t,) be the two values obtained by a numerical method of order p with
step sizes h; and by. If e; and e, are the corresponding errors, then '

Hence the order p of the method is

: 1n(ev&2)
P ™ In(ovs)
- Let us now consider the following examples.

Example 6 : Using the Euler’s method tabulate the solution of the IVP
y'=-21y%y(0)=1

in the interval {0, 1] taking b = 0.2, 0.1. Using Richardson’s extrapolation technique
obtain the improved value at t = 1.

Solution : Euler’s method gives

yk+1=)’k+hfkwheretk=_2'ky§
=yk"2h tky: .

Startiné with t, = 0, y, = 1, we obtain the following table of values for b =02
Table 2: h = 0.2

t : yo
0.2 A 1 ’
0.4 0.92

0.6 0.78458

0.8 0.63684

1.0 , 0.50706

Thus, y(1.0) = 0.50706 with b = 0.2

Similarly, starting with t = 0, y, = 1, we obtain the following table of values for h =.0.1.

Table 3 : h = 0.1

t y(V t vy
, 0.1 1.0 0.6 0.75715 '
0.2 . 0.98 0.7 0.68835
0.3 0.94158 08 . 0.62202
0.4 0.88839 0.9 0.56011
0.5 0.82525 1.0 0.50364
y(1.0) = 0.50364 with b =0.1° - | ©59
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Usiﬁg formula’(43), the extrapolated value at y(1) is given by
" _ 2F(0.1) - F(0.2)
FP©.1) = :
= 2(0.50364) - (0.50706) -
=0.50022

Let us consider another example

Example 7 : Use Euler’s method to solve numerically the initial value problem

y =t+y,y0) =1 with h = 0.2, 0.1 and 0.05 in the interval [0, 0.6]. Apply
Richardson’s extrapolation technique to compute y(0.6). '

Solution : Euler’s method gives

Vs = Ve thi
Yeth (e +y)
(1+b)y, +ht,

Starting with t; = 0, y, = 1, we obtain the following table of values.

Table 4 : h = 0.2

' t ¥
0.2 1.2
0.4 1.48
\ 0.6 1.856

- y(0.6) = 1.856 with b = 0.2

Table §: h = 0.1

t y(t)
0.1 1.1

: 0.2 1.22
0.3 1.362
0.4 1.5282
0.5 1.72102
0.6 1.943122

< y(0.6) = 1.943122 with h.= 0.1

Table 6 : h = 0.05

t y(V) t -y
0.05 1.05 0.35 1.46420
0.1 1.105 0.4 1.55491
015 © 1.16525 0.45 1.65266
0.2 1.23101 0.5 1.75779
0.25 1.30256 - 0.55 © 1.87068
0.3 1.38019 0.6 1.99171

. ¥(0.6) = 199171 with b = 0.05
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By""mcbardson’s extrapolation method (43), we have " Numerical Solution of Ofdallll,f
F(l)(o.nS) = 2F(0 05) -F(O 1) . Differential Equaticns
= 2.040298
F0.1) = 2F(0.1)-F(0.2)
= 2.030244

Repeating Richardson’s technique and using formula (42) with p=2, we obtain

(2)F(0.05) - F¥(0.1)

F%(0.05) = =7

_ 4(2.040298) - 2.030244
- 3

2.043649
The exact solution is y = — (1+4t) + 2¢'

Hence y(0.6) = 2.044238.
The actual error of the extrapolated value is

error = y(0.6) - F?(0.05)

2.044238 - 2.043649
0.000589

And now a few exercises for you

m
E9) ThelIVP
y'=3t+%,y(0)=1.

is given. Find (0.6) with h = 0.2 and h = 0.1, using Euler’s method and extrapolate
the value y(0.6). Compare with the exact solution. '

E10) Extrapolate the value y(0.6) obtained in E8),

U . __J

We now end this unit by giving a summary of what we have covered in it.

‘14.6 SUMMARY : '

‘In this unit, we have covered the following

1) Taylor series method of order p for the solution of the IVP

Y =10.9), 3000 = ¥(0) 1€ [y b] (see Ean. (10)
is given by ' ‘

Y1 =Y tho [‘k')’kvh]

L b L
where ¢ [tk,yk,h] -yk+§—!y kFoeoeenes +-Fy£")andtk=t0+kh,k=0,1,
2,0 N, ty = b. The error of approximation is given by
p+l
TE

+1 .
=, ) y(p )<tk+9<h).0<9<1.

2) Euler’s method is the Taylor series method of order one. The steps involved in
solving the IVP given by (10) by Euler’s method are as follows :
Step 1 : - Evaluate f(ty, yo) '
Step 2: ‘Find‘yl =y, +h f(tg, yb)

Step3: Ifty<b,changetytoty+handy, to y; and repeat steps 1 and 2 61
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Nnmwlcll. Dimnlulhﬂon Integration ' v .
- and Solution of Differeatial Equations Stepd: Ift, = b, write the value of ¥y

i i A MR AL

3) Richardson’s extrapolation method given by Eqn. (42) can be uscd to improve the

values of the function evaluated by the Euler’s method.

14.7 SOLUTIONS/ANSWERS

El) Wehaveyy=1,A=1,h=01

2
Y = (l+0.1+10'—21L)

¥, = (1105Y°

- ¥s= (1.105)°
Table giving the values of ¥, together with exact values is

Table 7.

,
t Second order method Exact solution
0 1 1 ,
0.1 1105 1.10517
0.2 1.22103 1.22140
03 1.34923 1.34986
. 0.4 1.49090 : 1.49182
0.5 1.64745 1.64872
E2)  Taylor series method of ‘O(h") tosolve y' =x —y?, y(0) = Lis
. . \ ‘hz h3 h4' w
Yo =Y by Syl Y Sy
’ : 2 ’ ’
} y=x-y Y@=
y'=1-2yy’ ' y'(©0)=3
yI‘II = __2yyn _ 20’1)2 ‘ yur (0) =-8
yiv ___,_zyy:u _ 6}" yu i . yiv (0) =34
Substituting o
2 ¥ 113 . 4
YO =1-00) 1)+ &L 3y, O g, O°
, 2 6 24 |
= 0.9138083.
E3) . Téylor series method : . i
Y =x*+y? y(0).= 0.5, ¥’ (0) = 0.25, y' (0.2) = 0.35175
y' =2x +2yy’ } ‘ y'(0)=025  y"(0:2)=0.79280
y" = 242yy" + 2(y')? y"(©0)=2375, 'y"(0.2)=3.13278
"V =2yy" + 6y’ y" Y©0)=275,  y“(0.2)=517158

¥(0.2) = 0.55835, ¥(0.4) = 0.64908
E4)  Second order Taylor’s method is -

. LB

Yoe1 =Y, +hy, + R/ R

h=02 »

YO =1  y(0)=05, y(0) =325

o ¥(0.2)=1.165, y'(0.2)=1.1825, ¥"(02) = 3.59125
62 } o y(0.4)= 147333, y'(0.4)=1.93667,  y"(0.4)=3.96833
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ES)

E6)

ET)

ES)

E9)

¥(0.6) = 1.94003

"h=0.1

y"(0.1) = 3.41656 .
y"(0.2) = 3.59167
y'(0.3) = 3.81614
y"(0.4) = 4.01172
y"(0.5) = 421732

y(0.1) = 1.06625,
¥(0.2) = 1.16665,
y(0.3) = 1.46457,
y(0.4) = 1.64688,
y(0.5) = 1.86928,
y(0.6) = 2.13383

y'(0.1) = 0.83313,
y'(0.2) = 118332,
y'(0.3) = 1.63228,
¥'(0.4) = 2.02344,
y'(0.5) = 2.43464,

Euler’s method is Y, 3 ¥, + B = y + b (1-2x, y)
¥(0.4) = 0.1948 + (0.2) (1 -2 0.2 X 0.1948)
=0.379216.
1
"= H 4 = 4s
iy y4)
y(4.1) = y(4) + by'(4)
= 4 + (0.1) (0.05) = 4.005.

y'(d) = 0.05

Euler’s method y' = (y—x) / (y+x), y(0) = 1,y'(0) = 1

Cy(0.1)=1+(0.1)(1)=1.1

Euler’s method is

Yeer =h+ Y, +hyg
Starting with t; = 0 and yo = 1, we have the following tables of valyes

Table 8 : h = 0.2

t y(®)
0.2 1.4
0.4 1.992
0.6 2.9856

= y(0.6) = 2.9856
Table 9: h = 0.1

t y®
0.1 1.2
0.2 " 1.444
0.3 1.7525
0.4 2.1596
0.5 27260
0.6 » 3.5691

- y(0.6) = 3.5691

' h
Yeel = (1 + '2') Y+ 3hbt, .

Starting with to = 0, yo = 1, we have the following table of values
Table 10 : h = 0.2

t . Y®
02 ° 1.1
0.4 1.33
0.6 1.703

- y(0.6) = 1.703

Numerical Solution of Ordinary
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t . ()
0.1 1.05

0.2 1.1325
0.3 | 1.249]1
0.4 1.40156
0.5 1.59164
0.6 1.82122

o y(0.6) = 1.82122
Using formula (42), we have
FY(0.1) = 2F(0.1) ~ F(0.2)

= 1.93944

Exact solution is
t

[SYIN

y = ~6(t+2) + 13e
Hence
¥(0.6) = 1,948164
The actual error of the extrapolated value is
error = y(0.6) - F0.1)
1.948164 ~ 1.93944

i

0.008724

E10) From E8), we have F(0.1) = 3.5691 and F(0.2) = 2,9856
o FN0.1) = 41525
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UNIT 15 SOLUTION OF ORDINARY
» DIFFERENTIAL EQUATIONS
USING RUNGE-KUTTA
METHODS

Structure

15.1 Introduction
) Objectives ‘
15.2 Runge-Kutta Methods

Runge-Kutta Methods of Second Order
Runge-Kutta Methods of Third Order ' -
Runge-Kutta Methods of Fourth Order

15.3 Richardson’s Extrapolation

15.4 .Summary

15.5 Solutions/Answers

151 INTRODUCTION

In Unit 14, we considered the IVPs

y' =t y) y'(t) = Yo m
and developed Taylor series method and Euler’s method for its solution. As mentioned
carlier, Euler’s method being a first order method, requires a very small step size for
reasonable accuracy and therefore may require lot of computations. Higher order Taylor
series methods require evaluation of higher order derivatives either manually or
computationally. For complicated functions, finding second, third and higher order total
derivatives is very tedious. Hence Taylor series methods of higher order are not of
much practical use in finding the solution’ of IVPs of the form given by Eqn. ().

. ‘ _
In order to avoid this difficulty, at the end of nineteenth century, the German
mathematician, Runge observed that the expression foy the increment function ¢ ty b
in the singlestep methods [see Eqn. (24) of Sec. 14.3, Unit 14] Co

Va1 = Yo 0O (Y B) | L @)

can be modified to avoid evaluation of higher order derivatives. This idea was further
developed by Runge and Kutta (another German mathematician) and the: methods given
by them are known as Runge-Kutta methods. Using their ideas, we can construct higher
order methods using only the function f(t, y) at selected points on each subinterval. We
shall, in the next section, derive some of these methods. .

Obj ectives

After studying this unit, you should be able to :
e obtain the solution of IVPs using Runge-Kutta methods of second, third and fourth order;
¢ compare the solutions obtained by using Runge-Kutta and Taylor series methods;

e extrapolate the approximate value of the solutions obtained by the Runge-Kutta
methods of second, third and fourth order. '

15.2 RUNGE-KUTTA METHODS

We shall first try to discuss the basic idea of how the Runge- Kutta methods ate developed.
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- Consider the O(bz) singlestep method
» 2

' h 7 '
Yoer = Yo + Y’ 4+ -y, _ G

If we write Eqn. (3) in the form of Eqn. (2) i.e., in terms of ¢ (t Yo b] involving
partial derivatives of f{t, ¥), we obtain

$6ym = 1)+ Eli ) ebea, v ¢, W @

Runge observed that the r.h.s. of Eqn. (4) can also be obtained using the Taylor series
expansion of f(t, + ph, Yo + ghL) as C

&, + ph, y, + qbt) = £, + ph ¢ (t Ya) + abE, £, (1, y,) G

Comparing Eqns. “ andv(S) we find that p = q = 1/2 and the Taylor series method of
O(h’) given by Eqn. (3) can also be written_ as ‘

h b\ ' : :
ynﬂ:yu"hf(tn*'f'yn*ifn) : ~ (6)

‘Since (5) is of O(h%), the value of y, ., in (6) has the TE of O(L*). Hence the metbod
(6) is of O(h®) which is same as that of (3). '

Tﬁe #dvantage of using (6) over Taylor serics method (3) is that we need to evalﬁate
the function f(t, y) .only at two points (t,, y,) and (tn + -;-, Yo+ -g-t;, . We obsgrve that
f(t;, ¥,) denotes the slope of the solution curve to thé IVP (1) at (1, y,). Further,

f [tn + %’ Y+ (%) vfn} denotes an approximation to the slope of the solution curve at the

2

curve in the i.ntcn\'al [tn, tM] is being approximated by an approximation to the slope at

point [tn + -g—, y(tn + E)J 'Eqn7 '(6) denotes geometrically, that the slope of the solution

the middle points t+ % This idea can be generalised and the slopé of the solution
_cywe in [tu, tm] can be replaced by a weighted sum of slopes at a number of points in
[tn, tM] (called off- step points). This idea is the basis of the Runge-Kutta methods.
Let ué éonsidér for exaﬁple, ﬁc weighted sum of the slopes at the two points [_g. Yol
nnd[§,+ph,yn+qh§,],0<p,q<1§s

O (b Yo ) = Willh, y) + Wofll 4 pb, §, + qbe,] ™

We call W, and W, as weights and p and q as scale factors, We have to determine the
four unknowns W, W,, p and q such that ¢ (t,, y,, h) is of O(hz). Substituting Eqn. )
in (7), we have : : '

oo B) = Wit W [6 b 4, 3 b, 8,5, ®

and the method (2) reduces to

Yaut = Yo 4 b [WiE, 4 W, [f. + pht, (& ¥,) + qb, fy (¢, %.f] |
= Yo+ W, + W) £ + bW, (pf, + qf,f), ®)

“where ( ")a denotes that the quantities inside the brackets are evaluated at (t ¥,
Comparing the r.h.s. of Eqn. () wita Eqn. (3), we find that »

W]+W2=l )
- Wyp=W,q== : 10y

[ 5]



In the system of Eqns. (10), since the number of unknowns is more than the number of
equations, the solution is not unigue and we have infinite number of solutions. The
solution of Eqn. (10) can be written as

W, =1-W,
p=q=1/(2W,) (11)
By choosing W, arbitrarily we nay obtain infinite number of second order Runge-Kutta

methods. If Wy, =1, p=q= —12-and W, = 0, then we get the method (6). Another

choice is W, = 5 which gives p=q=1and W, = -;- With this choice we obtain from

(7), the method

h,.
Yor1 = Yo * 5 [t(tn, y,) +f(t, +h,y + hfn)] : (12)

which is known as Heun’s method.

Note that when f is a function of t only, the method (12) is equivalent to the
trapezoidal rule of integration, whereas the method (6) is_equivalent to the midpoint rule
of integration. Both the methods (6) and (12) are of O(h2). The methods (6) and (12)
can easily be implemented to solve the IVP (1). Method (6) is usually known as
improved tangent method or modified Euler method. Method (12) is also known as
Euler-Cauchy method.

We shall now discuss the Runge-Kutta methods of O(hz), O(h“) and O(h4).
15.2.1 Runge-Kutta Methods of Second Order

The general idea of the Runge-Kutta (R-K) methods is to write the required methods as

Yor1 = Yo + b (Weighted sum of the slopes).
m
=Y, + 2 Wi I<I : ) (13)

where m slopes are being used. These slopes are defined by
K, = b(t, ¥,),
K, = hf(t, + Ch, y, + 3,K,),
K, =bf(t, + Csh, y, + a3, K, + a43Ks),
K, = bf(t, + Cb, ¥, + K + 25K; + 355K3),
etc. In general, we can write

i-1 . .
K=fl,+Ch 3 aKl,i=1,2.. ,mwithC =0 ’ (14)
j=1

The parameters C;, a;;, W; are unknowns and are to be determined to obtain the
Runge-Kutta methods.

We shall now derive the second order Runge-Kutta methods.

-

Consider tbe method as )
Vo1 = Yo + WK + WK, - (19)

where
Kl = hf(tn’ yn) ' .
K, = bi(t, + Cohy y, + ayK) - (16)

where the parameters Cy, a5, W, and W, are chosen 1o make y,,; closer to y(t, )

Solution of Ordinary Differential
Equations using Runge-Kutta Methods
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The exact solution satisfies the Taylor series

2 3
He =y& + @by + 2y @+ Sy s, a7 -
where ' :
y =f(ty)
y'=sf+f fy

Y =G4 2, (,F (G 4 )
We expand K, and K, about the point (W)

K, = be(t, y,) = b,

K, = b(t, + Ch, y, + ayht) ;
= bt 122 2¢. 2 226y
= ity 3) + (CpE + 2, G, £) + 55 (G076, + 2C, 2y B2 1, 4 a2, WG ) ...

" Substituting these values of K, and K, in Eqn. (15), we have

Yue1 = Yo + (W) + W) bE, + b’ [chzft * Wzazifnfy]
+ "hzi W, (Clf, + 2Cay g6, + aglfffyy) e | L)
Comparing Eqn. (18) with (17), we have

W, +W, =1

1
C,W, = 2

W, = %’ A
From these equations we find that if C, is chosen arbitrarily we have

=G W,=1/2C), W,=1-142) , @9)

The R-K method is given by

oo h B WA+ Wat @+ Gy, + G|
and Egn. (f8) becomes

n? C,b’
Vst = Yot Bl + S (4 LB + T (G + 26, 4, + 76 ) 4. @
Subtracting Eqn. (20) from the Taylor se}iés (17), we get the truncation error as '
TE = Yt - Yus1

o G RS E T B
= g[(z _302) y” *3C2f¥’_"';] oo LT - ‘(21)

Since the TE is of O(h*), all the above R-K methods are of second order. Observe that
no choice of C, will make the leading term of TE zero for all f(t, y). The local TE

* depends not only on derivatives of the solution y(t) but also on the function £(t, y). This

is typical of all the Runge-Kutta methods. Generally, C, is chosen between 0 and 1 so

that we are evaluating £(t, y) at an off-step point in [t, t,,.]. From the definition, every

Runge- Kutta formula must reduce to a quadrature formula of the same order or greater

- if £(t, y) is independent of y, where W, and C; will be weights and abcissas of the

1
corresponding numerical integration formula:



Best way -of obtaining the value.of-the arbitrary parameter C, in our formula is to
i) choose some of W,’s zero so as to niinimize the computations.
‘ji) choose the parameter to obtain ieast TE,

iii) choose the parameter to have longer Stability interval.

Methods satisfying either of the condition
methods. '

We made the following choices :

) Cp=t, . _:.2,=-;-,wl 0, W, =1, then

E,‘ &

Yon1 = Y + K21

K, =hf (tn, yn),

K, =hf t +E Y, + K)
/ nT2 e 2
which is. the same as improved tangent or modified Euler’s method.

—li,then

i) Cy=1, =~ oay=1,W,=W,=
o1

Yor1 = ¥n t E(Kl + KZ)’

K, =bf (t, %)

K, = bf (ot Vot K))

which is same as the Euler-Cauchy method or Heun’s method.

2

oA =

1

ry

2

3
3 W, = 7 then

iif) C,= W, =

Yo+l = Yot % (Kl + 3K’2)’

K, =bf (tn, yn),

; .20 2K
’K2=hf(tn+—3-,yn+—3—)

which is the optimal R-K method.
Method (24) is optimal in
above choice of unknowns,
Though several othe
three methods only.
In order to remember the weights W- and scale factors C;and 3;; W
following tables :

w —

e draw the

Solution of Ordinary Differential
Equations using Runge-Kutta Methods

(i) or (iii) are caﬂcd optimal Runge-Kutta

(22)

(€5)

(29

the sense that it has miniraum TE. In other words, with the
the leading term in the TE given by Eqn. (21) is minimum.

r choices are possible, we shall limit our discussion with the above

Optimal method

We now illustrate these methods through an example.

c, | ey 12 | 12
‘ W, W, l 0o 1
| General form lmbrovéd_ tqﬁgent method
. | 1 2/3 | 23
| 12 | 14 14
Heun’s method
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Example 1 :

a) Improved tangent method [modlﬁed Euler method (22)]
b) Heun’s method [Euler-Cauchy method (23))

¢) Optimal R-K method [method (24)]

d) Taylor series method of O(hz)

Compare the results with the exact solution

8]

y@) = -

N.|

Solution : We have the exact values
y(2.1) = 0.82988 and y(2.2) = 0.70422
a) Improved -langcnt method is
Yor1 = Yo + Ky
K, =hf (tn, yn)

n, LK
K, = if tn+2’yn+ > 1

For this problem f(t, y) = — t y* and
K =(01) [(-2)(1)]=-02
K, =(0.1) [(- 2.05) (1~ 071)2] = - 0.16605 .
y(2.1) =1 -0.16605 = 0.83395.

' Taking t; = 2.1 and y, = 0. 83395, we have

_ Kl-hf(l,yl> (0.1) [(-21)(0 83395)2]=—0146049

‘ 0 K,
K,= hf(t1 +5’y1+.-2-).

= (0.1) [- (2.15) (0.83395 - 0.0730245)2] =~ 0.124487
¥(2.2) = y, + K, = 0.83395 —0,124487 = 0.70946
b) Heun ’S‘method is: | |
+ -;- (Ki+Ky)
K, = bf (xn, yn) =-0.2 |
K,= hf(tn +h,y, + K,) =-0.1344
y(2.1) = 0.8328

Taking t; = 2.1 and y, =0.8328, we have
K;=-0.14564, K,= -0.10388
y(2.2) = 0.70804

c) Optimal method is :
-1
Yorr =V¥a t Z(Kl + 3K2)
K, =hf (tn, yn> =-0.2

2h

2K,
Ky =beft,+ 3y, + 54| =0. 15523

y(2.1) = 0.83358-

Solve the IVP y’ = —t y? | ¥(2) =1 and find y(2.1) and y(2.2) with
_ b = 0.1 using tke following R-K methods of O(h )




Taking t; = 2.1 and y; = 0.83358, we have
K, =-0.1459197, K,= —-0.117463

y(2.2) = 0.7090

d) Taylor series method of O(hz) :
h2
Your = Yo +BYL + VS

y =-ty’,y"= —y2—2tyy'

Q)= 1,yY@=-2y"@=7

y(2.1) = 0.8350

Witht =2.1,y,= 0.835, we get

y'(2.1) = - 1.4641725 ,y"(2.1) = 4437627958
y(2.2) = 0.71077

We now summarise the results obtained and give them in Table 1.

Table 1
Solutions and errors in solution of y' = —t y2 y2)=1,h=0.1 Numbers inside
brackets denote the errors.
t Method Method Method Method Exact
(22) (23) (24 Taylor O(h®)  Solution
2.1 0.83395 0.8328 0.83358 0.8350 - 0.8299
(0.00405) (0.0029) (0.00368) (0.0051)
2.2 0.70746 0.70804 0.7090 0.71077 0.7042
(0.0033) (0.00384) (0.0048) (0.00657)

You may observe here that all the above numerical solutions have almost the same error.

~

You may now try the following exercises :°

Solve the following IVPs using Heun’s method of O(hz) and the optimal R-K method
of O(b?). . '
El) 10y = £+ 2, y(0) = 1 Find y(0.2) aking b = 0.1,

E2) y'= 1+ y y(0) = 0. Find y(0.4) taking h = 0.2. Given that thc exact solution is
y(t) = tan t, find the errors. v

Also compare the crrors att = 0.4, obtained here with the one obtained by Taylor
series method of O(h )

E3) y' =3t + 5 ¥ y(0) = 1. Find y(0.2) taking h = 0.1. Given y(t) = 13¢'2 - 6t 12, find
the errors.

[ ”

Let us now discuss the R-K methods of third order.

15.2.2 Runge-Kutta_Methods of Third Order

Here we consider the method as

Yo = Yo+ Wi 1<1+w21<2+w31<3 | (25)

where

K, =h f(t, ¥,)

Solution of Ordinary Different
Equations using Runge- Kutta Metho
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Ky=hf{t,+ Ch,y, +a, K)
Ky = b t, + C;h, Yo+ 33, K| + 25, K)

Expandingl Ky, Kyand y,, | into Taylor series, shbstituting their values in Eqn. (25) and
comparing the coefficients of powers of h, h* and b’, we obtain :

1
8y = Cz C2W2 + C3W3 = E
a3 +a;,=C ngz + ngs = %‘
W+ W, 4 W, = Cray Wy =1 (26)

We have 6 equations to determine the 8 unknowns. Hence the system has two arbitrary
parameters. Eqns. (26) are typical of all the R-K methods. Looking at Eqn. (26), you
may note that the sum of 3;’s in any row equals the corresponding C’s and the sum of
the W,’s is equal to 1, Further, the equations are linear in W, and W; and have'a
solution for W, and W, if and only if 2

¢ G 12
¢ -14| =0

10 Cay, Y%
(Ref. Sec. 8.4.2, Unit 8, Block-2, MTE-02).
Expanding the determinant and simplifying we obtain
Co2-3C) a5, ~C(C, - Cp =, C=0 | @)
Thus we choose C,, C; and 43, satisfying Eqns. (27).

1 C )
Since two parameters of this system are arbitrary, we can choose C,, C; and determine
a3, from Eqn. (27) as ‘ ‘

a2 SG-C)
27C2-3C)

IfC=0,0rC, = C, then C,= %and we can choose ay, = 0, arbitrarily. AllLC’s

should be chosen such that § < C <1 Oﬁce C, and C, are prescribed, W’s and aij’s

can be determined from Equs. (26)

-We shall list a few methods in the following notation

G, a
G a3 a4y
W, W, W,

i) Classical third order R-K method

12 |1z
1 a2
, Y6 465 16
1 . :
Yoer=Yatg (Kx +4K, + Ks) o 28)

Kl = hf(tu’ yn)

h Kl
Kz-hf(tn+2,yn+ 2)
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ii). Heun’s Method

13 {13
3 |0 23

\1/4 0 34

Yo = Yo * % (Ki+ 3K,) | (29)

Kl =h f(tn’ yn)

ho K
Kthf(tn+3'r)’n+‘3“)
2h 2K,
K3=hf(tn+—3—,yn+—3—)
iii) Optimal method
12 - |12
3/4 0 34
209 39 49
1
Yo =ty (2K1 +3K, + 4K3> (30)

Kl =hf(tn’ Yuhs
h K1
K2-hf(tn+2,yn+ 2),

3h 3K,
K3=hf(tn+—4—,yn+—4-—).

We now illustrate the third order R-K methods by solving the problem considered in -
Example 1, using (a) Heun’s method (b) optimal method .

a) Heun’s method

Yor1 = Yn+%(](1 "'3K3)

K, =bf(t, ¥o) .
=-0.2
h K, ' ’
K2=hf(tn+'3_,yn+'3—)
= -0.17697
2h 2K,
K3=hf(tn+-5-,yh+—5—)
--016080

y(2.1) = 0.8294
Takingt, =2.1and y, = 0.8294, we have

K, =—0.14446
K, =-0.13017
K, = —0.11950

y(2.2) = 0.70366
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b) Optimal method

1
Yar1 = Yo + 3(21(1 +3K2+4K3) |

K, =-02
K, = -0.16605
K; = - 0.15905

y(2.1) = 0.8297
Taking t; = 2.1 and y, = 0.8297, we have

K, =-0.14456
K, =-0.12335
K; =-0.11820

¥(2.2) = 070405

You can now easily find the errors in these solutions and compare the results with those
obtained in- Example 1. '

And now here is an exercise for you.
E4)  Solve the IVP : | o
y'=y, y(0)=2 :
using third order Heun’s and optimal R-K methods. F ind (0.2) taking h = 0.1. Given
the exact solution to be y(t) = 1 + t + ¢', find the errors at t = 0.2.

We now discuss the fourth order R~K methods.

15.23 Runge-Kutta Methods of Fourth Order
Consider the method: as .
Va1 =¥, + W, K. F WK, + WK, + W, K, (1)
K, =hf, o)
Ky =bf(t, + Ch, y, +a, K)),
Ky=hf(t, + Cih, y, + 25, K, + 2, K)),
K, =hf, . Ceb, yo + 2y K+, Ky + 3,5 Ky).

Since the expansions of Ky K;, Ky and y_,; in Taylor series are complicated, we shall
not write down the resulting system of equations for the determination of the unknowns.
It may be noted that the system of equations has 3 arbitrary parameters We shall state
directly a few R-K methods of O(h4).;The R-K methods (31) can be denoted by

;
G a7
.Cs | a3, 332 _
C A 3y ag
w,ow, W, W,

For different choices of these unknowns we have the following methods :
i) Classical R-K method

1 L

2 2

I 1

2 0 2

1 () 0 1
1 2 2 1
6 6 6 6



1
K, +2K, + 2K, +K,), 32 - Solution of Ordinary Differential
Yaer= Yo+ 6 ( 142K, + 2K, 4) (32) Equations using Runge-l();tta Melholde

Kl =h f(%"yn)’

h - K
K2=hf(tn+-2-,yn+7),

h K,
K3=hf(tn+§-:yn+7),

Ke=bE(t, +b,y, +Ky)

This is the widely used method due to its simplicity and moderate order. We shall also
be working out problems mostly by the classical R-K method unless specified otherwise.

ii) Runge-Kutta-Gill method

111
2 |2
1 | (¢2-1 2-v2
2 2 2
1 0 - % 1+ g
L =) 0] 1
6 6 6 6
Yoo = Yo + %(K, + (VD K+ QWD K, +K,) (33)

K, =h f{t,, y,).

b K,
K2=hf(ln+5,yn+7),

K3-hf(t“+;,yn (ﬁz-l)l(lq-(z;"zﬁ)xz), v | |

K4=ht‘(tn+h,yn—-‘/221('2+(l+-‘/§2—-)K3),_

4

The Runge-Kutta-Gill method is also used widely. But, in this unit, we shall- mostly -
work out problems w1th the classical R-K method of O(h‘) Hence, whcnevet we refes
to R-K method of O(h*) we mean only the classical R-K method of lo't'Yy) ngcn by
(32). We shall now illustrate thxs method through cxamples

Example 2 : Solve the IVP y' =t + y, y(O) =] by Runge-!(um method of O(h‘) for
t€ [0,0. 5] with b = 0.1. Also find the error at t = 0.5, if the exact solution is
y(t) = 2e'-t-1.

Solution : We use the R-K method of O(h*) given by (32).
Initially, t; = 0, Yo = 1.

‘We have

K, =bf(t, yo) = (0.1) [0+1’1 =0.1

K,
K.,-hf(to+2,yo+—-) (0.1) [0.05 + 1 + 0.05] = 0.11 .
b K,
Ky = bf [t + 3, 7+ 2| = (0.1) [0.05 + 1 +0.055] = 0.1105

“Ko=bE(ty+h, Yo+ K;) = (0.1) [01 + 1 +0.1105] = 0.12105 a5
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Sl

- pe- - o) wu g

Y=o+ (Ki* 2Ky + 2K, 4 K))
/

=l+c(1+022+ O'ZZW}W;
: w v N ’
Taking t; = 0.1 and y, = 1.'11@3:‘?7, we repeat the prodess.

K, =hf(t,, y,) = (0.1) [0.1 ‘-5110341571 2 0121034167

M) (0.121034167)
Ky = hf(tl . % y,+ —él) = (0.1) [0.1 +0.05 + 1.1103416 + & 121334167 ]

’

=0.132085875

Ky=bf (tl +y -ﬁ—’) = 1) [0‘1. +0.05 + 1.11034167 + (0.132085875) J

-
i

= 0.132638461 -
K= hf(t1 +hy + K3> =(0.1)[0.1 + 0.05 + 1.11034167 + 0.132638461] .

= 0.144303013

1
¥, =y1+g(Kl+2K.2+2K3+K4)

= 1.11034167 + é [(0-121034167 + 2(0.132085875) + 2(0.132638461)

+0.144303013] = 1.24280514
Rest of the values y,, y,, ys we give in Table 2.

\ Table 2
\ v Ya
0.0 1 _
0.1 , 1.11034167"
0.2, : 1.24280514
03 - | 1.39971699
| o4 ‘ 158364848 -
05 1.79744128

Now the ckact solution is
y(t)=2¢'-t-1
Erroratt=0.5is

¥(0.5) - y5 = (26*° 0.5 ~1) ~ 1.79 /44128
= 1.79744254 - 1.79744128
= 0.000001261
=0.13x 10°%,

Let us consider another example
E)'mmple 3: Solve the IVP
y' =2y + 3¢, y(0) = 0 using
a)' classical R-K method of O(h*)
b) R-K Gill method of O(1*),

Find y(0.1), y(0.2), y£0.3) taking h = 0.1. Also find the errors at t = 0.3, if the exact
solution is y(t) = 3(¢* - ¢'). : '
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Solution : a) Classical R-K method is

/

Solution of Ordinary Differential
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l .
Ynel .‘Yn + .g (Kl + 2K2 + 2K3 + K4>
Here t,=0, y,=0,h=01

K, =h (g, o) =0.3

h K,
K, =hf|ty+ 3, y,+ 5| = 03453813289

Ky=hf (to + 2 v0 %) = 03499194618

Ke=h(ty+h yp+Ky)= 0.4015351678
y, = 0.3486894582

Taking t; = 0.1, y, = 0.3486894582, we repeat the process and obtain

K, = 0.4012891671,
K, = 0.4641298726,
y(0.2) = 0.8112570941

K, = 0.4584170812
K, = 0.6887058455

Taking t, = 0.2, y, = 0.837870944 and repecating the process we get

K, = 0.53399502,

K, = 0.61072997,

<. y(0.3) = 1.416807999
b) R-K-Gill method is

K, = 0.579481565
K, = 0.694677825

Yoer =Ya ¥ -16- (Kl +(2-V2)K, + (2+2) K, + K4>

‘Taking t, = 0, y, = 1 and h = 0.1, we obtain

K, =03, K, = 0.3453813289
¥, = 0.3480397056, K, =0.4015351678
y(0.1) = 0.3486894582

Taking t; = 0.1, y, = 0.3486894582, we obtain s

K, = 0.4012891671,
K, = 04617635569,
v(0.2) = 0.8112507529

K, = 0.4584170812
K, = 0.5289846936

Taking t, = 0.2, y, = 0.8112507529, we obtain

K, =0.528670978,
K; = 0.6045222614,
y(0.3) = 1.416751936
From the exact solution we get
y(0.3) = 1.416779978
Error in classical R-K method (at t = 0.3) = 0.2802 x 10~
Error in R-K~Gill method (at t = 0.3) = 0.2804 x 10,
You may now try the following exercises.
B
Solve the following IVPs using R—K method of O(h‘)

K, = 0.6003248734
K, = 0.6887058455

¢ ! - L:E = i i = 0 . D
E?) y yat y(0) = 1. Find y(0.5) taking h = 0.5
Eb) .y’ =1-2ty,y(0.2) = 0.1948. Find y(0.4) taking h = 0.2.

7
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E7) - 10ty + y*= 0, y(4) = 1. Find y(4.2) taking h = 0.2. Find the error given the exact

, where ¢ = (0.86137

solution is y(t) = m

E8) y ":5 e v y(1) = = 1. Find y(1.3) taking &t = 0.1. Given the exact solution to be

y{) = %‘, find the erroratt = 1.3,

In the next section, we skaii siudy the application of Richardson’s extrapolation to the
solutions of ordinary differential equations.

15.3 RICHARDSON’S EXTRAPOLATION

- You know that Richardson’s extrapnlation technique improves the approximate value of

¥(t,) and the order of this improved value of ¥(t,) exceeds the order of the method by

one.
z

Here we shall first calculate the solutions F(h;) and F(b,) of the given IVP with

steplengths b, and h, where h, = h,/2 at a given point using a Runge-Kutta method.
Then by Richardson’s extrapolation technique we have for the second order method

4F(h/2) - F(h 4F(h/2) - F(h3] -
FOm) = 022 (L[ (b2 =K ] (34)
and for the fourth order methvod
F(h) = l.“_(l;%);_fﬂll . .115_ [16F (%) - F(h)} (35)

. as the improved solution at that point, which will be of higher order than the original

method. We shall how illustrate the technique through an example.

Example 4 : Using Runge-Kutta method of O(hz) find the solution of the IVP y' = t+ Y,
¥(0) = 1 using b = 0.1 and 0.2 at t = C.4. Use extrapolation technique to improve the
accuracy. Also find the errors if the exact solution is y(t) = 2e'—t-1.

Solution :. We shall use Heun’s second order method (23) to find the solution at
t = 0.4 with b = 0.1 and 0.2. The following Table 3 gives values of y(® att =02
and t = 0.4 with b = 0.1 and 0.2

Y

Table 3
t, F, =F01) F, = F(0.2) - Extapolated  Ertors
| 1
| 3 6 -F) |
02  1.24205 1.24 ' 1.242733 0.725 x 107
0.4 158180 1.5768 1.583472 0.177 x 107

You may now try the following exercises :

E9) Solve E2)taking h = 0.1 and 0.2 using O(hz) Heun’s method. Extrapolate the value at
t = 0.4. Also find the error at t = 0.4, ‘

'E10) Solve E6), taking h = 0.1 and 0.2 using O(hz) Heun’s method. Extrapolate the value

at t = 0.4. Compare this solution with the solution obtained by the classical omY -
R-K method. '

We now end this unit by giving a summary of what we have covered in it.
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In this unit we bave learnt the following : : -
1) Runge-Kutta methods being singlestep methods are self- starting methods.

2) Unlike Taylor series methods, R-K methods do not need calculation of higher order
derivatives of f(t, y) but need only the evaluation of f(t, y) at the off-step points.
3) For a given IVP of the form .
y'=ity), ¥ (t)=Yo, tellpb]
where the mesh points are t=% +jh,j=0,1,...... , I
t, =b = t; + nh, R-K methods are obtained by writing
Yoe] =Yt h (welghted sum of the slopes)

.t 2 W, K,
iml
where m slopes are used. These slopes are defined by
=l s
K, =fjt +Ch, Eau J],1=1,2, ........ ,m, C; =0.
iml

The unknowns Cl, a.and W are then obtained by expanding K’s and y,, in Taylor
series about the pomt (t, yn) and comparing the coefficients of different powers of h.

4) Richardson’s extrapolation techmque can be used to improve the approximate value
of y(t,) obtained by o®m?), O(h ) and O(h*) methiods and obtain the method of order
one higher than the method.

15.5 SOLUTIONS/ANSWERS

E1) Heun’smethod:y = Yoty (K, +K,)

Starting with t; =0,y,=1,h=0.1
« K, = 0.01
K, = 0.010301
y(0.1) = 1.0101505
Takingt, = 0.1, y, = 1.0101505.
K, = 0.0103040403
K, = 0.0181327468
y(0.2) = 1.020709158

' Opumal R-K, method 1y, =y, + -i—(l(1 +3K))
:  14y=0,y,=1,h=0.1

! K, =001, K,=001017823

y(0.1) = 1.010133673

t,=0.1,y, = 1.010133673

K, = 0.0103037, K, =0.010620.
y(0.2) = 1.020675142

E2) Heun’s method:
'K,;=02, K,=0208
y(0.2) = 0.204
K, =0.2083232, K,=0.2340020843

y(0.4) = 0.4251626422 o
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E3)

E4)

ES)

Optimal R-K, method :
- K; =02, Ky=0.2035556
¥(0.2) = 0.2026667
K, =0.2082148, K,=0.223321245
y(0.4) = 0.422211334
Taylor scries method

Sleyiytedy
y0)=0,y(®)=1,y"(0)=0
y(0.2)=02
¥'(0.2) = 1.04,5"(0.2) = 0.416

J04)2 041632

Now the exact solution is y(t) = tan t
Exact y(0.4) = 0.422793219

Error in Hen's method 5 0.236 % 107
Ertor in Optiinal R-K method = 0.582x 10°

Error in Taylor seties method = 0.647x 1072

Heun’s method :
K, =005, K,=00825
¥(0.1) = 1.06625
K, =0.0833125, K,=0.117478125
¥(0.2) = 1166645313
Oplimal R-K, method :
K, =005, K,=0.071666667
y(0.1) = 1.06625
. K, =0.0833125; K, = (.106089583
¥(0.2) = 1.166645313
 Exact y(0.2) = 1167221935

Error in both the methods is same and = 0.577x 107
chn’s method : ¥, =y, + -}(Kl + 3Ky)
Starting with t, = 0, y, = 2, b = 0.1, we have

K, =02, K,=0.203334, K, = 0.206889
y(0.1) = 2.205167

1, =0.1,y, = 2.205167 we have _
K, = 0210517, K,=0.214201,K;=0.218130
y(0.2) = 2.421393717

Optinial R-Kmethod : y_,, =y, + % (2K, + 3K, + 4K3)

K, =02 K,=0205K,= 0.207875

¥(0.1) = 2.205167

t, =0.1,y, = 2205167

K, =0.2105167, K, =0.2160425, K, = 0.219220

¥(0.2)=24213937117 -

exact y(0.2) = 2.421402758
Since y(0.2) is same by both the methods

.

Error = 0.9041 X 107 in both the methods at t = oz
K,=05, K,=0333333
K,=0018004118, K, -02384044816

y(0.5) = 1.33992199,



E6)

E7)

EB)

E9)

K, =0.184416, K,=0.16555904
K, = 01666904576, K, =0.1421615268
y(0.4) = 0.3599794203.

K, =-0005, K,=-0.004853689024

K, = —0.0048544, K,=-0.004715784587
y(4.2) = 0.9951446726.

Exact y(4.2) = 0.995145231, Error = 0.559 107

K, =01, K,=009092913832

K, = 0.09049729525, K, = 0.08260717517
y(1.1) = ~ 0.909089¥93

K, = 008264471138, K, = 007577035491
K, = 007547152415, K, = 0.06942067502
y(1.2) = - 0.8333318022

K, = 006944457204, K, =0.06411104536
K, = 0.06389773475, K, =0.0591559551
y(1.3) = - 0.7692287876 '
Exact y(1.3) = — 0.7692307692
Error=0.19816 x 107

Heun’s method :
with h = 0.1
K, =01, K, =0.101
y(0.1) = 0.1005
K, = 0.101010, K, = 0.104061
y(0.2) = 0.203035
K, = 0.1041223, K;= 0.1094346
y(0.3) = 0.309813
K= 0.1095984, K,= 0.1048047

F(%) = y(0.4) = 0.417014563

with h = 0.2
F(h) = y(0.4) = 0.4251626422 [see E2] ¢
Now

F(0.4) = 4th/2§ - F(b)
= 0.414298537

Exact y(0.4) = 0.422793219
Error = 0.8495 x 107

E10) Heun’s method : withh = 0.1

y(0.2) =0.1948
K, = 0.092208, K,= 0.08277952
y(0.3) = 0.28229375
K, = 0.083062374, K, = 0.07077151
y(0.4) = 0.359210692
Heun’s method with h = 0.2
K, =0.184416, K;= 0.13932541
y(0.4) = 0.35667072
FD(0.4) = 0.360057349
Result obtained by classical R-K method of O(bA) is
$(0.4) = 0.3599794203 (see E6)

Solution of Ordinary Differcntiai
Equations using Runge-Kutta Methods
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