Uttar Pradesh Rajarshi Tandon
Open University

Block-1 03-76

UNIT-1 Introduction to Network Programming

UNIT-2 Elementary Sockets

UNIT-3 Elementary TCP sockets

UNIT-4 TCP Client/Server

Block-2 77-146

UNIT-5 1/0 Multiplexing

UNIT-6 Socket Options

UNIT-7 Element UDP Sockets

UNIT-8 Name and Address Conversion

Block-3 DAEMON PROCESSES, ADVANCE 1/0
FUNCTIONS AND UNIX DOMAIN PROTOCOLS

147-182

UNIT-9 Daemon Processes

UNIT-10 Advance I/O Functions

UNIT-11 UNIX Domain Protocols

Block-4 BROADCAST, MULTICAST, AND INTER
PROCESS COMMUNICATION 183-236

UNIT-12 Broadcasting

UNIT-13 Multicast

UNIT-14 Inter Process Communication

UNIT-15 Remote Login

Bachelor of Computer
Application

BCA-E7

Network Programming

BCA-E7/1

BCA-E7/2

Bachelor of Computer

Application
BCA-E7
Uttar Pradesh Rajarshi Tandon .
Open University Network Programming
Block
UNIT 1 07-24
Introduction to Network Programming
UNIT 2 25-36
Elementary Sockets
UNIT 3 37-50
Elementary TCP sockets
UNIT 4 51-76
TCP Client/Server

BCA-E7/3

[TESLA-010]
BCA-E7/4

Course Design Committee

Dr. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Prayagraj

Prof. R. S. Yadav Member
Department of Computer Science and Engineering
MNNIT-Allahabad, Prayagraj

Ms Marisha Member
Assistant Professor (Computer Science),

School of Science UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member

Assistant Professor, (Computer Science)
School of Sciences UPRTOU Prayagraj

Course Preparation Committee

Dr. Prabhat Kumar Author (Block 1,2)
Assistant Professor, Department of IT

NIT Patna

Dr. Prabhat Ranjan Author (Block 3.4)

Assistant Professor, Department of Computer Science
Central University of South Bihar

Dr. Rajiv Mishra Editor
Associate Professor, Department of CSE

IIT Patna

Dr. Ashutosh Gupta (Director in Charge)

School of Computer & Information Sciences,

UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Coordinator

Assistant Professor, (Computer Science)
School of sciences UPRTOU Prayagraj

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-11-6

All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar
Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. Arun Kumar Gupta Registrar, Uttar Pradesh
Rajarshi Tandon Open University, 2018.

Printed By : Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu R oad,
Prayagraj.

BLOCK INTRODUCTION

Unit 1: This unit deals with introduction to network programming. It
contains introduction to OSI model, UNIX standards. This unit explains
TCPand U DP. T hisu nitt ells how to e stablish t he ¢ onnection a nd
termination of connection in TCP. In this unit, you will learn about buffer
sizes a nd its limita tions a nd s tandard in ternet s ervices. The p rotocol
usages by common internet application is described in this unit.

Unit 2: This unit deals with elementary sockets. In this unit, you will
learn about a ddress s tructure, va lue-result arguments, b yte o rdering and
manipulation functions and related functions.

Unit 3: Thisuni tde alsw ith elementary T CPs ockets. T his uni t
discusses a bout s ocket, ¢ onnect, bi nd, 1 isten, a ccept, f ork a nd ¢ lose
functions. In this unit, you will learn about concurrent servers.

Unit 4: This unit d eals w ith T CP ¢ lient/server. T his u nit te ls a bout
TCP E cho s erver function, N ormal s tart-up. In this unit, you will 1 earn
about signal handling server process termination, crashing and rebooting
of server host and shutdown of server host.

BCA-E7/5

BCA-E7/6

UNIT-1: INTRODUCTION TO NETWORK

PROGRAMMING

Structure

1.0 Introduction

1.1 Objectives

1.2 OSImodel

1.3 Unix standards

14 TCP and UDP & TCP connection establishment and format
1.6 Buffer sizes and limitation

1.7 Standard internet services

1.8 Protocol usages by common internet application.

1.9 Summary

1.10 Terminal Questions

1.0 INTRODUCTION

In this unit, the focus is to provide a basic und erstanding of the
technical d esign an d ar chitecture o ft he Internetu singt wo d ifferent
models OSI and TCP/IP. The background of Unix standards, IEEE POSIX
and T he O pen G roup's T echnical S tandard de signation t hat w ere 1 ater
converged into The Single Unix Specification Version is discussed.

Most client/server applications use either TCP or UDP as their transport
layer f or which T CP ¢ onnection e stablishment a nd t ermination a re
discussed in detail along with description of Ipv4, Ipv6 and their buffer
size limitations.

We co ver various topics in this unit that fall into this c ategory: TCP's
three-way handshake, T CP's connection termination sequence, plus T CP,
and UDP buffering by the socket layer, and so on.

1.1 OBJECTIVES

After the end of this unit, you should be able to:

. Understandt he OSI Modela nd1i ts va rious ¢ ommunication
processes

. Gain insights regarding the various UNIX standardization schemes

. Differentiate between the TCP and UDP protocols

BCA-E7/7

BCA-E7/8

° Know a bout various bu ffer s izes, standard i nternet s ervices an d
popular protocols.

1.2 OSI MODEL

OSI Model is an abstract model used to understand a wide range of
network architecture. It was proposed as a general approach to ne twork
modelst o standardizet he communicationf unctionsof a
telecommunication or computing system.

The O SI m odel ha s s even | ayers; Starting at the b ottom (nearest t he
physical ¢ onnections), t he 1 ayers a re: (1) P hysical, (2) D ata Link, (3)
Network, (4) Transport, (5) Session, (6) Presentation, and (7) Application.

In the OSI model, control is passed from one layer to the next, starting at
the application layer in one station, and proceeding to the bottom layer,
over the channel to the next station and back up the hierarchy.

Wewill look ateach layerin the O SI model in turn, starting with the
Physical layer. Figure 1.1 shows the layer architecture of OSI model.

7 | APPLICATION LAYER

6 | PRESENTATION LAYER

5 | SESSION LAYER

4 | TRANSPORT LAYER

3 | NETWORK LAYER

2 | DATA LINK LAYER

1 | PHYSICAL LAYER

Figure 1.1 OSI model

e PHYSICAL LAYER

The O SI P hysical la yer d eals w ith th e p hysical a ttributes o fthe
actual wired, wireless, fiber optic, or other connection that is used
to transport data across a single link. It deals with transmission and
reception o f't he uns tructured r aw bi t s tream- electrical i mpulse,
light or radio signal over a physical medium.

It provides the hardware means of sending and receiving data on a
carrier, i ncluding d efining cables, cards an d p hysical as pects. It
also does Bit encoding for faster data transmission. Fast Ethernet,

RS232, and ATM are protocols with physical layer components.
DATA LINK LAYER

The data link layer provides error-free transfer of data frames from
one node to another over the physical layer, allowing layers above
it to have error-free transmission over the link. Following are some
of the functions of Data link layer:

1. Logical Link establishment between nodes.

2. Controls Frame traffic by telling transmitting node to "back-
off" when no frame buffers are available.

3. Sequential transfer o f frames by d efining s pecial s equences
to indicate the beginning and end of each packet.

4. Media a ccess m anagement b y defining addressest ot he
stations communicating.

5. Frame error checking using Checksum.

6. Framea cknowledgmentan d retransmission ofnon -
acknowledged frames and handling duplicate frame receipt.

NETWORK LAYER

The ne twork 1 ayer governs how r outers forward pa ckets a cross
multiple hops to get from their source to their destination. It deals
with assigning global “routable” addresses to the various systems
connected to the network.

It is also responsible for subnet traffic control instructing a sending
station to "throttle back" its frame transmission when the router's
buffer fills up. Other functions include:

1. Frame fragmentation and reassembly at destination station if
router's Maximum tr ansmission unit (MTU)1i s1 esst han
frame size.

2. Logical-physical address m apping t hat i nvolves t ranslating
logical addresses, or names, into physical addresses.

3. Keepstrack o fframes f orwarded b y s ubnet intermediate
systems, to produce billing information.

TRANSPORT LAYER

The transport layer ensures that messages are delivered error-free,
in sequence, and with no losses or duplications. It manages packet
loss and retransmission as well as flow control and window size.
Services of Transport layer depend upon the services offered by the
Network layer. Some of the functions of transport layer are:

1. Session multiplexing: Multiplex several message streams, or

BCA-E7/9

BCA-E7/10

sessions onto one logical link.
2. End to end message delivery with acknowledgements.

3. Message s egmentation: acc ept m essage from t he (session)
layer above it, splits the me ssage into s maller units (if not
already small enough), and passes the smaller units down to
the network layer.

SESSION LAYER

The O SI S ession 1 ayer handles e stablishing ¢ onnections be tween
processes running on d ifferent s tations. It allows two application
processes on di fferent machines to establish, use and terminate a
connection, ¢ alled a s ession. Ita lso pr ovides s upportt ot he
sessions established.

PRESENTATION LAYER

The p resentation | ayer formatsthe d atato be pr esented t ot he
application layer. Like a translator, it translates data from a format
used by the application layer into a common format at the sending
station, then translate the common format to a format known to the
application layer at the receiving station. The key functions of the
presentation layer are:

Data ¢ ompression, D ata e ncryption/decryption, C haracter code
translation: for example, ASCII to EBCDIC etc.

APPLICATION LAYER

The a pplication | ayer a llows us ers a nd a pplication pr ocesses t o
access network services. The layer is responsible for functions like
Electronic m essaging (such as m ail), R emote p rinter acces s,
Remote f ileacc ess, N etwork m anagement, Inter-process
communication, Directory services etc.

The applications can be Client applications that initiate connection
or s erver a pplications t hat r espond t o i ncoming ¢ onnection a nd
serve them.

1.3

UNIX STANDARDS

The most interesting Unix standardization activity was being done

by The Austin Common Standards Revision Group (CSRG) that produced
roughly 4,000 pa ges of s pecifications t hat c arry both the IEEE P OSIX
designation as well as The Open Group's Technical Standard designation,
thus leading to multiple names to same standards, for example, ISO/IEC
9945:2002, IEEE S td 1003.1 -2001, and t he S ingle U nix S pecification
Version 3 are various names of same standard, The POSIX Specification.

Background on POSIX
POSIX is an acronym for Portable Operating System Interface. POSIX is

not a s ingle s tandard, buta s et of standards being d eveloped b y t he
Institute for Electrical and Electronics Engineers, Inc., normally called the
IEEE. T he P OSIX s tandards ha ve a Iso be en adopted as in ternational
standards by ISO and the International Electrotechnical Commission (IEC),
called ISO/IEC.

The interesting history of POSIX standards has been covered only briefly

here:

IEEE Std 1003.1-1988 (317 pages) was the first POSIX standard.
It s pecified the C language interface into a U nix-like ke rnel and
covered the following areas: process primitives (fork, exec, signals,
and timers), the environment of a process (user IDs and process
groups), files and directories (all the I/O functions), terminal 1/0,
system databases (password file and group file), and the tar and
cpio archive formats.

The first POSIX standard was a trial-use version in 1986 known as "IEEE-
IX." The name "POSIX" was suggested by Richard Stallman.

IEEE Std 1003.1-1990 (356 pages) wasnext,andit was also
known as ISO/IEC 994 5-1: 1990. M inimal ¢ hanges w ere m ade
from the 1988 to the 1990 version. Appended to the title was "Part
1: S ystem A pplication P rogram Interface (API) [C L anguage],"
indicating that this standard was the C language API.

IEEE Std 1003.2-1992 came next in two volumes (about 1,300
pages). Its title c ontained "Part 2 : Shell and U tilities." T his p art
defined the shell (based on the System V Bourne shell) and about
100 utilities (programs normally executed from a shell, from awk

and basename to vi and yacc). Throughout this text, we will refer
to this standard as POSIX.2.

IEEE Std 1003.1b-1993 (590 pa ges) w as or iginally known a's
IEEE P1003.4. This was an update to the 1003.1-1990 standard to
include t her eal-time extensions de velopedb yt he P 1003.4
working group. T he 100 3.1b—1993 s tandard a dded t he following
items to the 1990 standard: file synchronization, asynchronous I/O,
semaphores, m emory m anagement (mmap and shared m emory),
execution scheduling, clocks and timers, and message queues.

IEEE Std 1003.1, 1996 Edition [IEEE 1996] (743 pages) came
next a nd i ncluded 100 3.1-1990 (the b ase API), 1003.1b —1993
(real-time e xtensions), 1003.1c —1995 (pthreads), a nd 1003.1i —
1995 (technical c orrections t o 1003.1b) . T his s tandard w as a Iso
called ISO/IEC 9945—1: 1996. T hree units on threads were added,
along with additional sections on thread synchronization (mutexes
and c ondition variables), t hread s cheduling, a nd s ynchronization
scheduling. Throughout this text, we will refer to this standard as
POSIX.1.

This standard also contains a Foreword stating that ISO/IEC 9945

BCA-E7/11

BCA-E7/12

consists of the following parts:
Part 1: System API (C language)
Part 2: Shell and utilities

Part 3: System administration (under d evelopment) Parts 1 a nd 2
are what we call POSIX.1 and POSIX.2

IEEE Std 1003.1g: Protocol-independent interfaces (PII) became
an approved standard in 2000. Until the introduction of The Single
Unix Specification V ersion 3, t his P OSIX w ork w as t he m ost
relevant to the topics covered in this book. T his is the networking
API s tandard and it d efines tw o APIs, w hich it ¢ alls D etailed
Network Interfaces (DNIs): 1. D NI/Socket, based on t he 4.4 BSD
sockets API 2. DNI/XTI, based on the X/Open XPG4 specification
Work on t his s tandard s tarted in the late 1980s as the P 1003.12
working group (later renamed P1003.1g). Throughout this text, we
will refer to this standard as POSIX.1g.

Background on The Open Group

The Open Group was formed in 1996 by the consolidation of the X/Open
Company (founded in 1 984) and t he O pen S oftware Foundation (OSF,
founded in 1988). It is an international ¢ onsortium of vendors and e nd-
user customers from industry, government, and academia. Here is a brief
background on the standards they produced:

X/Open published the X/Open P ortability Guide, Issue 3 (XPG3)
in 1989.

Issue 4 w as published in 1992, followed by Issue 4, Version 2 in
1994. This latest version was also known as "Spec 1170," with the
magic num ber 1,170 b eing t he s um of t he num ber of s ystem
interfaces (926), the number of he aders (70), and the num ber of
commands (174). The latest name for this set of specifications is
the " X/Open Single Unix Specification," although it is also called
"Unix 95."

In M arch 1997, V ersion 2 of the Single U nix S pecification w as
announced. Products conforming to this specification were called
"Unix 98." We will refer to this specification as just “UNIX 98"
throughout this text. The number of interfaces required by Unix 98
increases from 1,170t o 1,434, a Ithough fora workstation t his
jumpst 03,030, be causei ti ncludest he C ommon D esktop
Environment (CDE), which in turn requires the X Window System
and the Motif user interface. Details are available in [Josey 1997]
and a t ht tp://www.UNIX.org/version2. T he n etworking s ervices
that are part of Unix 98 are defined for both the sockets and XTI
APIs. This specification is nearly identical to POSIX.1g.

Unification of Standards

Now, Most Unix systems today conform to some version of POSIX.1 and
POSIX.2; many comply with T he S ingle U nix S pecification Version 3.
The focus of this book is on The Single Unix Specification Version 3, with
our main focus on the sockets APIL.

Internet Engineering Task Force (IETF)

The Internet Engineering Task Force (IETF) is a large, open, international
community of ne twork de signers, ope rators, ve ndors, a nd r esearchers
concerned with the evolution of the Internet architecture and the smooth
operation of t he Internet. Itisopento anyinterested i ndividual. T he
Internet s tandards process is documented in R FC 2026 [Bradner 1996].
Internet s tandards nor mally de al w ith pr otocol i ssues a nd not w ith
programming APIs.

Nevertheless, two RFCs (RFC 3493 [Gilligan et al. 2003] and RFC 3542
[Stevens e ta 1. 2003]) s pecify t he s ockets A PI for IPv6. T hese are
informational R FCs, no t s tandards, and w ere producedt os peedt he
deployment of portable applications by the numerous vendors working on
early releases of IPv6. Although standards bodies tend to take a long time,
many APIs were standardized in The Single Unix Specification Version 3.

Check your progress

1. What are the responsibilities of network layer and transport
layer?

2. Explain the connection establishment phase of the TCP protocol.

1.4 TCPAND UDP & TCP CONNECTION
ESTABLISHMENT AND FORMAT

This s ection focuses on t he following transport ayer protocols:
TCP and UDP.

Most client/server applications use either TCP or UDP. Another protocol
SCTP is a newer protocol, originally designed for transport of telephony
signalling across the Internet. These transport protocols use the network-
layer protocol IP, either IPv4 or Ipv6. It is possible for an application to
bypass the transport layer and use IPv4 or IPv6 directly. This is called a
raw socket.

UDPis a s imple,u nreliable d atagram p rotocol, w hile T CPis a
sophisticated, r eliable b yte s tream pr otocol. Letus 1 ook into bot hthe
protocols in detail.

User Datagram Protocol (UDP)

UDP is a connectionless protocol, and UDP s ockets are an e xample of

BCA-E7/13

BCA-E7/14

datagram sockets. There is no guarantee that UDP datagrams ev er reach
their intended destination. The application sends message to a UDP socket,
encapsulated in a UDP datagram, which is then further encapsulated as an
IP datagram, which is then sent to its destination. For a U DP datagram
reaching i ts f inal de stination, t hat or der w ill be pr eserved a cross t he
network, or that datagrams arrive only once is not guaranteed.

Lack of reliability is the drawback w e ha ve w ith ne twork pr ogramming
with UDP. If a UDP Datagram does not reach its destination or is dropped
midway, there is no scope of automatic retransmission.

Each UDP datagram has a | ength. The length of a datagram is passed to
the r eceiving a pplication a long w ith t he da ta. B eing a c onnectionless
service, t here ne ed not be any 1 ong-term r elationship b etweena U DP
client and server. For example, a UDP client can create a socket and send a
datagram to a given server and then immediately send another datagram
onthe s ame s ocket t o a d ifferent s erver. S imilarly, a U DP s erver can
receive several datagrams on a s ingle UDP socket, each from a d ifferent
client.

Transmission Control Protocol (TCP)

TCP is described in RFC 793 [Postel 1981c], and updated by RFC 1323
[Jacobson, Braden, and Borman 1992], RFC 2581 [Allman, Paxson, and
Stevens 1999], R FC 2988 [Paxson a nd A llman 2000], and R FC 3390
[Allman, Floyd, and Partridge 2002].

TCP is a connection oriented protocol and provides connections between
clients and s ervers. A T CP client e stablishes a connection with a given
server, e xchanges data with that s erver a cross t he ¢ onnection, and then
terminates the connection.

It p rovides reliability by using acknowledgement in r eturn and 1 fnot
received retransmitting the data and waiting for a longer duration of time.
It doe s not provide the guarantee to deliver data at the destination. Just
delivering dataifit can be delivered to a notification to end user if data
cannot be sent.

The waiting time for acknowledgement or R oundtrip time(RTT) between
Client and server is estimated by the algorithms in TCP.

TCP also sequences the data by associating a sequence number with every
byte that it sends. For example, assume an application writes 2,048 b ytes
to a TCP socket, causing TCP to send two segments, the first containing
the d ata with s equence numbers 11,024 and the s econd c ontaining the
data with sequence numbers 1,025-2,048. (A segment is the unit of data
that TCP passes to IP.) If the segments arrive out of order, the receiving
TCP w ill r eorder t he t wo s egments ba sed on t heir s equence num bers
before passing the data to the receiving application. Thus TCP can detect a
duplicate data from the sequencing and can discard it.

TCP provides flow control. TCP has the advertised window which tells
peer how many bytes of data it can accept. It guarantees that the sender

cannot ove rflow the receiving bu ffer. T he window c hanges d ynamically
over time: As data is received from the sender, the window size decreases,
but as the receiving application reads data from the buffer, the window
size in creases. Iti s pos sible forthe w indow t or each 0: w hen T CP's
receive buffer for a socket is full and it mu st wait for the application to
read data from the buffer before it can take any more data from the peer.

Finally, a TCP connection is full-duplex. This means that an application
can send and receive data in both directions on a given connection at any
time. This means that TCP must keep track of state information such as
sequence num bers and window s izes f or e ach direction of d ata f low:
sending and receiving.

TCP Connection Establishment and Termination

Let us und erstand how TCP connections are e stablished and terminated,
and TCP's state transition diagram.

Three-Way Handshake

Figure 1.2 s hows t he connection e stablishment of T CP byt hree-way
handshaking.

1. Host A sends a connection request to host B by setting the SYN (a
synchronize message, used to initiate and establish a connection)

bit. Host A also registers its initial sequence number to use (Seq no
fl x).

2. HostB a cknowledgest her equestb ys ettingt he ACK (an
acknowledgment) bit and indicating the next data byte to receive
(Ack no flx + 1). The "plus one" is needed because the SYN bit
consumes one sequence num ber. A tthe same time, host B also
sends ar equest by setting the SYN bit and registering its in itial
sequence number to use (Seq no fl y).

3. Host A acknowledges the request from B by setting the ACK bit
and c onfirming the next data byte to receive (Ack no fl y+ 1).
Note that the sequence number is set to x + 1. On receipt at B the
connection is established.

If dur inga connection e stablishment pha se, one of t he hos ts
decides to refuse a connection request, it will send a reset segment
by setting the R ST bit. Each S YN m essage can s pecify o ptions
such as maximum segment size, window scal- ing, and timestamps.
Because T CP segments can be delayed, l ost, and duplicated, the
initial s equence num ber s hould be di fferent e acht ime a hos t
requests a connection.

BCA-E7/15

Client Server

<LISTEN>
listen()
<5YN_SENT> connect() SYN p accept()
<SYN RECV>
CK H+1
connect() SYNN. A
<ESTABLISHED>
retums
ACk N+
<XXUO(> == State of M accept()
TCP stats maching I inclﬁgm:g:ﬂ" I retumns | JESTABLISHED>

Figure 1.2: TCP Three Way Handshake

TCP Connection Termination

BCA-E7/16

Figure 1.3 shows the TCP connection termination.

One application calls close first, and we say that this end performs
the a ctive c lose. T hise nd's T CPs ends a FIN s egment, w hich
means it is finished sending data.

The other end t hat r eceives t he F IN p erforms t he p assive cl ose.
The received FIN is acknowledged by TCP. The receipt of the FIN
is al so passed to the ap plication as an end of-file (after any d ata
that may have already been queued for the application to receive),
since the receipt of the FIN means the application will not receive
any additional data on the connection.

Sometime | ater, t he ap plication t hat r eceived t he en d-of-file will
close its socket. This causes its TCP to send a FIN.

The TCP on the system that receives this final FIN (the end that
did the active close) acknowledges the FIN.

Initiator Receiver
ESTABLISHED :
connection .
active close * FIN ESTABLISHED

FIN_WAIT_1 \
" CLOSE_WAIT

passivé close

4’/”&9‘5”/
FIN_WAIT_2 /’(-:I;N,,/ LAST_ACK
TIME_WAIT:

ACK
\ CLOSED

CLOSED

Figure 1.3: TCP connection termination

TCP State Transition Diagram

The ope ration of T CP w ithr egard t o ¢ onnection e stablishment a nd
connection termination can be specified with a state transition diagram as
shown in Figure 1.4.

(5% 1
L indicats what iy sered for this ramaition

Figure 1.4: State transition diagram

A connection progresses through a series of states during its lifetime and
transition from s tate to state is based on that current state and segment
received in that state.

The states are: LISTEN, SYN-SENT, SYNRECEIVED, ESTABLISHED,
FIN-WAIT-1, F IN-WAIT-2, C LOSE-WAIT, C LOSING, LAST-ACK,
TIME-WALIT, and the fictional state CLOSED.

LISTEN represents waiting for a connection request from any remote TCP

and port.
BCA-E7/17

BCA-E7/18

SYN-SENT r epresents waiting for a m atching connection r equest a fter
having sent a connection request. SYN-

RECEIVED represents w aiting f ora confirming ¢ onnection r equest
acknowledgment after having both received and sent a connection request.

ESTABLISHED represents a n ope n ¢ onnection, da tar eceived ¢ an be
delivered to the user. The normal state for the data transfer phase of the
connection.

FIN-WAIT-1 represents waiting for a connection termination request from
the r emote T CP, or an acknowledgment of t he ¢ onnection t ermination
request previously sent.

FIN-WAIT-2 represents waiting for a connection termination request from
the remote TCP.

CLOSE-WAIT r epresents w aiting f or a ¢ onnection t ermination r equest
from the local user.

CLOSING r epresents waiting f ora connectiont erminationr equest
acknowledgment from the remote TCP.

LAST-ACK represents waiting for an acknowledgment of the connection
termination request previously sent to the remote TCP (which includes an
acknowledgment of its connection termination request).

TIME-WAIT r epresents waiting for e nough time to pass to be sure the
remote T CP received the ack nowledgment o fits connection t ermination
request.

CLOSED represents no connection state at all.

1.5 BUFFER SIZES AND LIMITATION

The buffer sizes of IP Datagrams have certain limitations that a ffect
the data an application can transmit. The limitations are as follows:

o IPv4 datagram has a maximum size of 65,535 bytes, including the
IPv4 header. Its 16 bit total length field includes header size.

o IPv6 datagram has a maximum size of 65,575 bytes, including the
40-byte IPv6 header. Its 16 bit total length field does not include
header s ize. O n d atalinks w ith a ma ximum tr ansmission unit
(MTU) t hat e xceeds 65,535, IPv6 c an ha ve e xtended pa yload
length field of 32 bits.

o MTU is de pendent on Hardware, for e xample E thernet M TU is
1500 bytes whereas Point to Point Protocol has configurable MTU.
Minimum link MTU for Ipv4 is 68 bytes which means, Maximum
sized he ader (20 b ytes of fixed he ader, 40 b ytes of options) +
minimum s ized fragment (8 b ytes) ¢ an be p assed. H owever,
Minimum link MTU for Ipv6 is 1,280 bytes.

o The smallest MTU in the path between two hosts is called the Path
MTU. For example, the Ethernet MTU of 1,500 b ytes is the path

MTU. MTU between two hosts is different in both directions.

o IP Datagrams with size exceeding Link MTU are fragmented at the
outgoing interface and reassembled at destination by both IPv4 and
Ipv6. IPv4 hos ts pe rform f ragmentation on da tagrams t hat t hey
generate and IPv4 routers perform fragmentation on datagrams that
they forward. For Ipv6, fragmentation of datagrams is performed
only at Ipv6 hosts and notat Ipv6 routers with an e xception of
routers that generate their own datagrams instead of forwarding.

o Fragmentation fields are included in Ipv4 headers but not in Ipv6
headers. If "don't fragment" (DF) bitis set, it s pecifies that this
datagram must not be fragmented, either by the sending host or by
any router. A router that receives an IPv4 datagram with the DF bit
set w hose s ize exceeds t he o utgoing 1 ink's M TU generates an
ICMPv4 " destination unr eachable, fragmentation ne eded but D F
bit set" error message. DF bit is implied with Ipv6 datagrams, so if
a Ipv6 router receives a datagram whose size exceeds the outgoing
link's M TU, it generatesa n ICMPv6 "packett oo bi g" error
message. This DF bit can also be used to discover the path MTU.

o TCP has a maximum s egment size (MSS) that announces to the
peer TCP the maximum amount of TCP data that the peer can send
per segment. It tells the p eer the actual value o fthe r eassembly
buffer size tries to avoid fragmentation. The MSS is often set to the
interface MTU minus the fixed sizes of the IP and TCP headers.

° On a n E thernet us ing IPv4, M SS w ould be 1,460,a nd on an
Ethernet using IPv6, this would be 1,440. (The TCP header is 20
bytes for both, but the IPv4 header is 20 bytes and the IPv6 header
is 40 b ytes.) T he MSS value in the TCP M SS option is a 16-bit
field, limiting the value to 65,535. T his is fine for IPv4, since the
maximum a mount of TCPdatain an IPv4 d atagram i s 65,495
(65,535 minus the 20-byte IPv4 header and minus the 20-byte TCP
header).

TCP Output

When an ap plication cal Is write, the k ernel copies all the d ata from the
application buffer into the TCP socket send buffer and returns only when
the final byte in the application buffer has been copied into the socket send
buffer. Insufficientr oomin the sockets end buffer due t o the larger
application buffer size or socket send buffer already full, blocks the socket
and process is put to sleep.

TCP transmits the data from buffer to peer TCP according to rules of data
transmission a nd di scards t he data from t he bu ffer only after r eceiving
ACKs from the peer. Datais sentin M SS-sized ¢ hunks (announced by
peer T CP) from TCP tol Pw ithi ts he ader p rependedtoit. IPthen
prepends its header to the datagram, searches the appropriate routing table
for destination IP and sends the datagram to proper datalink. IP performs
fragmentation in c ase path M TU di scovery (in newer i mplementations)
not used or M SS option not used. The output queue associated with each

BCA-E7/19

BCA-E7/20

datalink discards the packet and reports an error to TCP via IP in case it is
full.

UDP Output

UDP s ocket h as as end b uffer s ize (which w e can change w ith t he
SO _SNDBUF s ocket opt ion), but thisis simply anupperlimiton the
maximum-sized U DP d atagram t hat can b e written t o t he s ocket. I f an
application w rites a d atagram | arger t han t he s ocket s end b uffer s ize,
EMSGSIZE is returned. Since UDP is unreliable, it does not need to keep
a copy of the application's data and does not need an actual send buffer.

UDP s imply prepends i ts 8 -byte h eader an d p asses t he d atagram to IP.
IPv4 or IPv6 prepends its he ader, d etermines t he out going interface by
performing the routing function, and then either adds the datagram to the
datalink o utput q ueue (ifitf its w ithin th e MTU) o r f ragments th e
datagram and adds each fragment to the datalink output queue. If there is
no room on the queue for the datagram or one of its fragments, ENOBUFS
is often returned to the application.

1.6 STANDARD INTERNET SERVICES

Some of t hes tandard s ervicest hata re pr ovidedb ym ost
implementations of TCP/IP are following:

Name TCP UDP RFC Description
Port Port
Echo 7 7 862 Server returns whatever the

client sends.

Discard 9 9 863 Server discards whatever the
client sends.

Daytime 13 13 867 Server returns the time and
date in human-readable format.

Chargen 19 19 864 TCP server sends a continual
stream of characters, until the
connection is terminated by the
client. UDP server sends a
datagram containing a random
character (between 0 and 512)
each time the client sends a
datagram.

Time 37 37 868 Server returns the time as a 32-
bit binary number. This number
represents the number of
seconds since midnight January
1, 1990, UTC.

Figure 1.5 Standard TCP/IP services provided by most implementations.

If we examine t he p ort n umbers for t hese s tandard s ervices an d o ther
standard TCP/IP services (Telnet, FTP, SMTP, etc.), most are odd numbers.
This is historical as these port num bers are derived from the N CP port
numbers. (NCP, t he Network C ontrol P rotocol, pr eceded T CP asa
transport layer protocol for the ARPANET.) NCP was simplex, not full-
duplex, s o each application r equired t wo c onnections, and an even-odd
pair of port numbers was reserved for each application. When T CP and
UDP became the standard transport layers, only a single port number was
needed per application, so the odd port numbers from NCP were used.

Often, inetd daemon provides these services on Unix hosts.

Check your progress
1. Explain some limitations of buffer sizes of IP datagrams.

2. Enlist Standard Internet Services provided by TCP/IP.

1.7 PORT NUMBERS

TCP a nd U DP i dentify a pplications us ing 16 -bit por t num bers
called P ort num berst hat rangeb etween1 and 1023.S ervers are
represented by their port numbers. For example, a TCP/IP implementation
that provides FTP server provides that service TCP port 21, Telnet service
is provided on P ort 23, TFTP (the Trivial File Transfer P rotocol) is on
UDP port 69. The well-known ports are managed by the Internet Assigned
Numbers Authority (IANA).

A client usually doesn't care what port number ituses onitsend. All it
needs to be certain of is that whatever port number it uses be unique on its
host. C lient por t num bers are ¢ alled e phemeral por ts (1.e., s hort I ived).
This is because a client typically exists only as long as the user running the
client needs its service, while servers typically run as long as the host is up.

The w ell-known por t numbers are contained in the file / etc/services on
most Unix systems. To find the port numbers for the Telnet server and the
Domain Name System, we can execute

sun % grep telnet /etc/services

telnet 23/tcp says it uses TCP port 23
sun % grep domain /etc/services

domain 53/udp says it uses UDP port 53
domain 53/tcp and TCP port 53.

Port numbers in the range of 1 to 1023 are reserved, and are used by some

applications as part of the authentication between the client and server. BCA-E7/21

BCA-E7/22

1.8 PROTOCOL USAGE BY COMMON
INTERNET APPLICATIONS

Application P ICMP | UDP | TCP | 5CTP

ping
traceroute - .

OSPF (routing protocol) .
RIP {routing protocol) .
BGP {routing protocol) .

BOOTT (bootstrap protocol)
DHCT {bootstrap protocol)
NTP (time pratocol)

TFI?

SNMP {network management)

SMTT {electronic mail} .
Telnet {remote login) .
S5H (secure remote login) .
FIT .
HTTP (the Web) .
NNTP (network news) .
LPR (remote printing) .
DMS . .
NES (network filesyslem) . .
Sun RPC . -
DCE RPFC - a
[UA (ISDN over IF) .
M2UA M3UA (557 telephony signaling) .
H 248 (media gateway conlrol) . . .
H.323 (IP telephony) . . .
SIP{IP telephony) . : .

Figure 1.6: summarizes the protocol usage of various common Internet
applications.

The first two applications, ping and traceroute, are diagnostic applications
that use ICMP. traceroute builds its own UDP packets to send and reads
ICMP replies. The three popular routing protocols demonstrate the variety
of transport protocols us ed by routing protocols. O SPF uses IP directly,
employing a raw socket, while RIP uses UDP and BGP uses TCP. The next
five are UDP-based applications, followed by seven TCP applications and
fourt hatus ebot hU DPand T CP. T he f inal f ive a re IPt elephony
applications that use SCTP exclusively or optionally UDP, TCP, or SCTP.

1.9 SUMMARY

The unit introduces many of the terms and concepts that shall be
expanded on throughout the rest of the book. It also gives an overview of
developing protocol-dependent programs.

TCPu sesat hree-way handshake f or e stablishing ¢ onnection w hile a

connection i s t erminated us ing a f our-packet ex change. W hena T CP
connection is established, the connection state is changed from CLOSED
to E STABLISHED, a nd upont ermination, t he s tatei s c hangedt o
CLOSED. There are total 11 states in which a TCP connection may reside.
A s tate tr ansition d iagram s pecifies th e rules for s witching b etween the
states. K nowledge about t he s tate t ransition d iagram i s n ecessary for
understanding w hat happens when an application calls functions such as
connect, accept, and close.

Unlike T CP, U DP doe sn't e stablish a c onnection be fore s ending data, it
just sends. Because of this, UDP is called "Connectionless". UDP packets
are o ften called "Datagrams". An example of UDP in action is the DNS
service. DNS servers send and receive DNS requests using UDP.

UDP is a simple, connectionless, and unreliable protocol, while TCP is a
complex, ¢ onnection- oriented, a nd r eliable. A Ithough m ost of t he
applications on t he Internet use T CP (the Web, Telnet, F TP, and e mail),
thereisa need for UDP as well. In further units, we s hall d iscuss the
reasons to choose UDP instead of TCP.

1.10 TERMINAL QUESTIONS

1. Discuss in detail the layers of OSI model.
2. Explain TCP/IP layering in detail with neat sketch?

3. Explainth e T CP s tate tr ansition d iagram withth eh elpo fa
diagram

4. TCP assumes an MSS of 536 if it does not receive an MSS option
from the peer. Why is this value used?

5. UDPisa simple, c onnectionless, a nd unr eliable pr otocol, w hile
TCP is a complex, connection- oriented, and reliable. Explain the
statement.

BCA-E7/23

BCA-E7/24

UNIT 2 : ELEMENTARY SOCKETS

Structure

2.0 Introduction

2.1 Objectives

2.2 Address structures

2.3 Value- result arguments

2.4 Byte ordering and manipulation functions
2.5 Related Functions

2.6 Summary

2.7 Terminal Questions

2.0 INTRODUCTION

This unit focuses on the description of the sockets API. The socket
address structures described here can be passed in two directions: from the
process to the kernel, and from the kernel to the process. The latter case is
an ex ample o fav alue-result a rgument, a nd we w ill e ncounter other
examples of these arguments throughout the text.

The socket address structure is created by converting a text representation
of an address into the binary value using the address conversion functions.
Most e xisting IPv4 ¢ ode us es i net addr a nd inet ntoa, but t wo n ew
functions, inet_pton and inet ntop, handle both IPv4 and Ipv6.

2.1 OBJECTIVES

After the end of this unit, you should be able to:
e Analyse the problem and develop an algorithm for its solution;

. Represent an algorithm in an abstract language (eg. pseudo-code,
Structure Diagrams);

. Represent an algorithm with the help of flowchart.

. Understand the fundamental principle of program design.

2.2 SOCKET ADDRESS STRUCTURES

Various structures are used in Unix S ocket Programming to hold
information a bout t he address a nd por t, a nd ot her i nformation. M ost
socket f unctions r equire a pointerto a s ocket address s tructureasan

BCA-E7/25

BCA-E7/26

argument. S tructures d efined in this unit are related to Internet P rotocol
Family. The names of these structures begin with sockaddr and end with
a unique suffix for each protocol suite.

The first structure is sockaddr that holds the socket information —

struct sockaddr {
unsigned short sa_family;
char sa_data [14];

}5
Attribute Values Description
AF_INET
sa famil AF_UNIX It represents an address family. In most of the
— y AF NS Internet-based applications, we use AF_INET.
AF IMPLINK
The content of the 14 bytes of protocol specific
Protocol- address are interpreted according to the type of
sa_data Specific address. For the Internet family, we will use port
Address number IP address, which is represented

bysockaddr_in structure defined below.

Thisisa generic s ocket ad dress s tructure, w hich w ill b e p assed as
reference in most of the socket function calls. But any socket function that
takes them as pointers must be support socket address structures from any
supported pr otocol f amilies. T his g eneric s ocket a ddress s tructure is
defined in <sys/socket.h> header.

The below function is an example of function taking pointer to the generic
socket address structure.

#include <sys/socket.h>
int bind (int sockfd, const struct sockaddr *myaddr, socklen t addrlen);

Returns: 0 if OK, —1 on error

Below example shows how the function is called:

struct sockaddr_in serv; /*IPv4 socket address structure */
/* fill in serv{} */

bind (sockfd, (struct sockaddr *) &serv, sizeof(serv));

IPv4 Socket Address Structure

An IPv4 s ocket a ddress s tructure, c ommonly called an "Internet s ocket
address structure," is named sockaddr _in and is defined by including the

<netinet/in.h> he ader. Both the IPv4 address and the TCP or UDP port
number a re always s tored i n t he s tructure i n network b yte or der. The
internet (IPv4) s ocket a ddress s tructure: sockaddr in has be en s hown
below:

struct in_addr {

in_addr ts_addr; /* 32-bit IPv4 address */

/* network byte ordered */

¥

struct sockaddr in {

uint8 t sin_len; /* length of structure (16) */
sa_family tsin family; /* AF_INET */
in_port_t sin_port; /* 16-bit TCP or UDP port number */
/* network byte ordered */

struct in_addr sin_addr; /* 32-bit IPv4 address */
/* network byte ordered */

char sin_zero [8]; /* unused */

}s

We need not set length field evenifitis present unless routing s ockets
come into picture. Only kernels that de al with s ocket address s tructures
from various protocol families (e.g., the routing table code) use it. POSIX
datatypes are shown for the s addr, sin_family, and sin_port members in
socket address.

The socket functions bind, connect, sendto, and sendmsg, that pass socket
address s tructure a 1l g o t hrough a n a dditional sockargs f untion w hich
copies the structure from the process and sets its sin_member to the size of
the structure being passed as the argument.

The functions accept, recvfrom, recvmsg, getpeername, and getsockname
that pass socket address structure from the kernel to the process too set the
sin_len member before returning to the process. The five socket functions
that pass a socket address structure from the kernel to the process, accept,
recvirom, r ecvmsg, getpeername, an d getsockname, al 1 s etthe s in_len
member before returning to the process.

The POSIX s pecification r equires o nly t hree m embers in t he s tructure:
sin_family, s in_addr, and sin_port. A P OSIX-compliant imp lementation
can al so d efine ad ditional s tructure m embers, f or an Internet s ocket
address structure. Almost all implementations add the sin_zero member so
that all socket address structures are at least 16 bytes in size.

BCA-E7/27

BCA-E7/28

Datatype Description Header
inté ¢ Signed &bit integer <gys/types.h»
uines_t Unsigned &-bit integer <gys/types.h>
intls t Signed 16-bil integer «8ys/types. h>
uineis_t Unsigned 16-bit integer <ays/types.h>
int3z t Signed 32-bil integer <gys/types.h»
uint3z t Unsigned 32-bit integer <gys/types.h»
sa family t | Address family of socket address structure <gys/socket h>
socklen t Length of sockel address structure, normally uint32 t | <sys/socket.hs
in_addr t [Pvd address, normally uint32 & <netinet/in.hs
in port t TCP or UDP port, normally uint16_t <netinet/in.h»

Figure 2.1 lists these three POSIX-defined data types

While a ccessing 32 bi t Ipv4 address, ifserv is defined as an Internet
socket a ddress s tructure, 32 -bit IPv4 a ddressi n_addrs tructurei s
referenced as s erv.sin_addr, w hile s erv.sin_addr.s addr r eferences t he
same 3 2-bit [Pv4 address asanin_addr t (typically an unsigned 32 -bit
integer).

IPv6 Socket Address Structure

The IPv6 socket address is defined by including the <netinet/in.h> header
file. The IPv6 family is AF _INET6, whereas the [Pv4 family is AF _INET.
IPv6 socket address structure sockaddr in6 is shown below.

struct sockaddr_in6
{
uint8 t sin6_len; // sizeof this struct - 28 bytes
sa_family t sin6_family; // AF_INET6
in_port_t sin6_port;
uint32 t sin6_flowinfo;
struct in6_addr sin6_addr; // 128 bit IPv6 address

uint32 t sin6_scope id;
}5
struct in6_addr
{
uint8 t s6_addr[16]; // TPv6 addresss (16 bytes - 128 bits)
}5

The m embers in t his s tructure are o rdered s o t hatifthe s ockaddr _in6
structure is 64-bit aligned, so is the 128-bit sin6_addr member. On some
64-bit processors, data accesses of 64-bit values are optimized if stored on
a 64-bit boundary.

2.3 VALUE-RESULT ARGUMENTS

When a socket address structure is passed to any socket function, it
is always passed by reference (a pointer to the structure is passed). The
length of the structure is also passed as an argument.

The way in which the length is passed de pends on w hich direction the
structure is being passed:

1. From the process to the kernel

2. From the kernel to the process

From process to kernel

Bind, connect, and sendto arethe functions t hat p ass a s ocket ad dress
structure from the process to the kernel. Two of the A rguments to these
functions are:

e The pointer to the socket address structure
e The integer size of the structure

Because of these two arguments, k ernel knows how much datato copy
from process to kernel.

struct sockaddr_in serv;
/* fill in serv{} */

connect (sockfd, (SA *) &serv, sizeof(serv));

The datatype for the size of a socket address structure is actually socklen t
and not int, but the POSIX specification recommends that socklen t be
defined as uint32 t.

From Kkernel to process

Accept, recvfrom, getsockname, and getpeername are the functions that
pass a socket address structure from the kernel to the process.

Two of the Arguments to these functions are:
e The pointer to the socket address structure

. The pointer to an integer containing the size of the structure.

struct sockaddr un cli; /* Unix domain */
socklen t len;

len = sizeof(cli); /* len is a value */
getpeername(unixfd, (SA *) &cli, &len);

/* len may have changed */

Value-result argument (Figure 3.2): the size changes from an integer to
be a pointer to an integer because the size is both a value when the
function is called and a result when the function returns.

BCA-E7/29

BCA-E7/30

° As a value: it te lls the kernel the size of the structure so that the
kernel does not write past the end of the structure when filling it in

. As a result: it te lIs the process how much information the kernel
actually stored in the structure

For two other functions that pass socket address structures, recvmsg and
sendmsg, t he | ength fieldi sno ta function a rgument but a s tructure
member.

If the s ocket ad dress s tructure is fixed-length, the value returned by the
kernel will always be that fixed size: 16 for an Ipv4sockaddr in and 28 for
an [pv6 sockaddr in6. But with a variable-length socket address structure
(e.g., a Unix domainsockaddr un), the value returned can be less than the
maximum size of the structure.

user process

int *
| length |
F Y socket
address
% = structure
g B
=
F 3
protocol
address
¥ kernel

Figure 2.2: Value-result argument

CHECK YOUR PROGRESS
1. What is sockaddr?

2. How is the length of socket address structure sent from a process
to kernel?

2.4 BYTE ORDERING FUNCTIONS

A 16-bit integer made up of 2 bytes can be stored in memory in two ways:
e Little-endian order: low-order byte is at the starting address.

. Big-endian order: high-order byte is at the starting address.

- increasing memory
addresses

address A+1 address A
little-endian byte order: high-order byte low-order byte
MSB 16-bit value LSB
big-endian byte order: high-order byte low-order byte
address A address A+1

increasing memory 2y
addresses

Figure 2.3: Byte Order

Figure 2.3 shows increasing memory addresses from right to left in the
top and left to right in the bottom. Byte ordering used by a given
system is called host byte order. The same applies to 32-bit integer.
There are a variety of systems that can between little and big endian
byte order at system reset or run time.

Since, a Il n etworking p rotocols s pecify the ne twork b yte or der w hile
transferring d ata, itis imperative for a p rogrammer t o unde rstand t he
ordering di fferences. F or e xample, T CP s egments transferred between
nodes contain a 1 6-bit port number and a 32 bi t [IPV4 ne twork a ddress.
The r eceiving and s ending ne twork p rotocol s tacks m ust a gree on t he
order in w hich th ese multibyte f ields a re transmitted. The I nternet
protocols use big-endian byte ordering for these multibyte integers.

But, both history and the POSIX specification say that certain fields in the
socket address structures must be maintained in network b yte order. We
use the following four functions to convert between these two byte orders:

#include <netinet/in.h>
uintl6_t htons(uint16 t hostl6bitvalue);

uint32 t htonl(uint32_t host32bitvalue); /* Both return: value in network
byte order */

uintl6_t ntohs(uint16 t netl6bitvalue);

int32 t ntohl(uint32_t net32bitvalue); /* B oth return: value in host b yte
order */

° h stands for Ahost

° n stands for network

BCA-E7/31

BCA-E7/32

. s stands for short (16-bit value, e.g. TCP or UDP port number)
o | stands for long (32-bit value, e.g. [Pv4 address)

When using these functions, we do not care about the actual values (big-
endian or little-endian) for the host byte order and the network byte order.
What we must do is call the appropriate function to convert a given value
between the host and network byte order. On those systems that have the
same b yte or dering ast he Internet pr otocols (b ig-endian), t hese f our
functions are usually defined as null macros. An 8-bit entity is a “Byte”
but most Internet standards use the term octet instead of Byte.

Byte Manipulation Functions

Socket address structures are manipulated using two groups of functions
that operate on Multibyte fields. These functions do not interpret data and
do not a ssume da ta a s nul I-terminated C s tring. T hese f unctions a re
necessary to manipulate socket assress structures which have IP addresses
that have bytes of 0 and not null-terminated C strings. The two groups of
function are as follows:

*+ Ones whose names start with b (for byte) are from 4.2BSD and are
still pr ovided b y almost a ny s ystem t hat s upports t he s ocket
functions. Examples for this type are bzero, bcopy and bemp.

void bzero(void *dest, size tnbytes);
void beopy(const void *src, void *dest, size tnbytes);
int bemp(const void *ptrl, const void *ptr2, size tnbytes);

/*Returns: 01 fe qual, nonz eroi f
unequal*/

bzero i s used t o initialize t he s ocket addresses as it s ets th e s pecified
number of bytes to 0 at destination, bcopy moves the specified number of
bytes from the source to the destination, and bcmp compares two arbitrary
byte strings.

% Ones whose names start with mem(for memory), are from ANSI C
standard and are provided with any system that supports an ANSI
C lib rary. E xamples f or th is t ype a re me mset, me mcpy a nd
mememp.

void *memset(void *dest, intc, size tlen);
void *memcpy(void *dest, const void *src, size tnbytes);
int memcmp(const void *ptrl, const void *ptr2, size tnbytes);

/*Returns: 0 if equal, <0 or >0 if unequal*/

memset sets the specified number of bytes to the value ¢ in the destination,
memcpy is similar to bcopy, but the order of the two pointer arguments is
swapped. bcopy correctly handles overlapping fields, while the be havior
of memcpy is undefined if the source and destination overlap.

The two pointers for memcpy are written in the same left-to-right order as
an a ssignment s tatement in C . A Il memxxx functions r equire a length
argument which is the final argument me mecmp c ompares tw o arbitrary
byte strings and returns 0 if they are identical. If not identical, the
return value is either greater than 0 or less than 0, depending on w hether
the first une qual b yte pointed to by ptrl is greater than or less than the
corresponding byte pointed to by ptr2. The comparison is done assuming
the two unequal bytes are unsigned chars.

2.5 RELATED FUNCTIONS

inet_aton, inet_addr, and inet_ntoa Functions

We w ill de scribe t wo groups o fa ddress ¢ onversion f unctions i n t his
section a nd t he ne xt. They convert Internet ad dresses b etween A SCII
strings (what hum ans pr efer t o us) a nd network b yte or dered bi nary
values (values that are stored in socket address structures).

1. inet aton, inet ntoa, and inet addr convert an IPv4 address from a
dotted-decimal string (e.g., "206.168.112.96") to its 32-bit network
byte ordered binary value. You will probably encounter these functions
in lots of existing code.

2. The newer functions, inet pton and inet ntop, handle both IPv4 and
IPv6 addresses. We describe these two functions in the next section
and use them throughout the text.

#include <arpa/inet.h>

int inet_aton(const char *strptr, struct in_addr *addrptr);
Returns: 1 if string was valid, 0 on error

in_addr tinet addr(const char *strptr);

Returns: 32-bit binary network byte ordered IPv4
address; INADDR NONE if error

char *inet ntoa(struct in_addr inaddr);

Returns: pointer to dotted-decimal string

The first of these, inet aton, converts the C character string pointed to by
strptr into its 32-bit binary network byte ordered value, which is stored
through the pointer addrptr. If successful, 1 is returned; otherwise, 0 is
returned.

An undocumented feature of inet aton is that if addrptr is a null
pointer, the function still performs its validation of the input string but
does not store any result.

inet_addr does the same conversion, returning the 32-bit binary network
byte ordered value as the return value. The problem with this function is
that all 232 possible binary values are valid IP addresses (0.0.0.0 through

BCA-E7/33

BCA-E7/34

255.255.255.255), but the function returns the constant INADDR NONE
(typically 32 on e-bits) on an error. This means the dotted-decimal string
255.255.255.255 (the IPv4 limited broadcast address)

cannot be ha ndled b y t his f unction s ince i ts b inary va lue a ppears t o
indicate failure of the function.

A potential problem with inet addr is that some man p ages state that it
returns 1 ona n error, instead of INADDR NONE. T hiscanleadto
problems, depending on the C compiler, when comparing the return value
of the function (an unsigned value) to a negative constant.

Today, inet addris de precated and any ne w c ode s hould us e i net_aton
instead. B etter still is to use th e n ewer functions d escribed in the n ext
section, which handle both IPv4 and IPv6.

The inet_ntoa function converts a 32-bit binary network byte ordered 1Pv4
address into its corresponding dotted-decimal string. The string pointed to
by the return value of the function resides in static memory. This means
the f unction is not r eentrant. F inally, not ice t hat t his f unction t akes a
structure as its argument, not a pointer to a structure.

Functions th at ta ke a ctual s tructures a s arguments a re r are. Itis more
common to pass a pointer to the structure.

inet_pton and inet_ntop Functions

These two functions are new with IPv6 and work with both IPv4 and IPv6
addresses. We use these two functions throughout the text. The letters "p"
and "n" stand for presentation and numeric. The presentation format for an
address is often an ASCII string and the numeric format is the binary value
that goes into a socket address structure.

#include <arpa/inet.h>
int inet_pton(int family, const char *strptr, void *addrptr);
Returns: 1 if OK, 0 if input not a valid presentation format, -1 on error

const char *inet ntop(int family, const void *addrptr, char *strptr, size t
len);

Returns: pointer to result if OK, NULL on error

The family argument for both functions is either AF_INET or AF_INET®6.
If family is not supported, both functions return an error with errno set to
EAFNOSUPPORT.

The first function tries to convert the string pointed to by strptr, storing the
binary result through the pointer addrptr. If successful, the return value is 1.

If the input string is not a valid presentation format for the specified family,
0 is returned.

inet ntop doe st her everse conversion, f rom num eric (addrptr) t o
presentation (strptr).

The len argument is the size of the de stination, t o pr event t he function
from ove rflowing the cal ler's bu ffer. T o he Ip s pecify t his s ize, t he
following t wo de finitions a re de fined b y including t he < netinet/in.h>
header:

#define INET _ADDRSTRLEN 16 /* for IPv4 dotted-decimal */
#define INET6_ ADDRSTRLEN 46 /* for IPv6 hex string */

Iflen is too small to hold the resulting presentation format, including the
terminating null, a null pointer is returned and errno is set to ENOSPC.

The strptr argument to inet _ntop cannot be a null pointer. The caller must
allocate memory for the destination and specify its size. On success, this
pointer is the return value of the function.

Check your progress

1. What is host byte order?

2. What do inet_pton and inet_ntop Functions do?

2.6 SUMMARY

Sockets ar ¢ an i ntegral p art o f ev ery n etwork p rogram. T he ad dress
structures of the sockets are filled and passed as pointers to the various socket
functions. Whenap ointert o o ne o ft hese s tructures i s p assed t o a so cket
function, it fills in the contents. These structures are always passed by reference
and t he s ize o f't he s tructure is p assed as another argument. Whena socket
function fills the structure, the length is also passed as reference, so that the value
of the length can be updated by the function. These are termed as value-result
arguments.

The address structures are self-defining because they contain a field (“domain")
that specifies the address family containedi n the structure. Newer
implementations supporting variable-length address structures also contain a
length field at the beginning, indicating the length of the entire structure.

The two functions that convert IP addresses between presentation format
(what we write, such as ASCII characters) and numeric format (what goes
into a s ocket address s tructure) are inet pton and inet_ntop. T hese t wo
functions a re, how ever, pr otocol- dependent. A be tter t echniqueisto
manipulate the socket address structures as opaque objects, knowing just
the pointer to the structure and its size.

BCA-E7/35

BCA-E7/36

2.7 TERMINAL QUESTIONS
1. Define socket and list out its types.
2. Comparet he IPV4, IPV6, U nix dom ain a nd datal ink s ocket
address structures. State your assumptions.
3. Describe IPV4 and IPV6 socket address structure.
4. What is byte ordering function?
5. Explain in detail about address conversion functions.
6. Explain value-result arguments.

UNIT-3: ELEMENTARY TCP SOCKETS

Structure

3.0 Introduction

3.1 Objectives

3.2 ‘socket’ function
33 ‘connect’ function
34 ‘bind’ function
3.5 ‘listen’ function
3.6 ‘accept’ function
3.7 ‘fork’ function
3.8 Concurrent Servers
3.9 ‘close’ Function
3.10 Related function
3.11 Summary

3.12 Terminal Questions

3.0 INTRODUCTION

Thisuni t describest hes ocketne twork Inter P rocess
Communication (IPC) i nterface, w hich ¢ anbe us ed b y p rocessest o
communicate with other processes, regardless of where they are running,
i.e. t he s ame i nterfaces c an be us ed for bot h i nter a nd 1 ntra m achine
communication. T he socket interface can be used to communicate using
many di fferent ne twork pr otocols. H owever, our di scussion s hall be
restricted to the TCP/IP protocol suite, since it is the de facto standard for
communicating over the Internet.

3.1 OBJECTIVES

After the end of this unit, you should be able to:

e Understandt he di fferent e lementary f unctions r equired f or
establish a TCP connection between a server and client

e Understand the difference between concurrent and iterative servers
e Implement a concurrent server

¢ Gain an insight of other functions related to socket communication

BCA-E7/37

BCA-E7/38

3.2 ELEMENTARY TCP SOCKETS AND
SOCKET FUNCTION

The timeline of a typical scenario that takes place between a TCP
client and server has been shown in Figure 3.1. First, the server is started,
and then sometime later, a client is started that connects to the server. We
assume that the client sends a r equest to the server, the server processes
the request, and the server sends a reply back to the client. This continues
until the client closes its end of the connection, which sends an end-of-file
notification to the server. The server then closes its end of the connection
and either terminates or waits for a new client connection.

TCPF Server

socket ()
et [_pinat)_]
port

blocks unil connection

Fig. 3.1: TCP Client and Server

A socket is an abstraction of a communication endpoint. Just as they would use
file d escriptors to acc ess files, ap plications u se so cket d escriptors t o ac cess
sockets. S ocket d escriptors ar e implemented as f ile d escriptors i n t he U NIX

System. Indeed, many of the functions that deal with file descriptors, such as read
and write, will work with a socket descriptor.

To pe rform network I/O, the first thinga process mustdo is call the socket
function, s pecifying t he t ype of ¢ ommunication pr otocol de sired (TCP using
IPv4, UDP using IPv6, Unix domain stream protocol, etc.).

#include <sys/socket.h>
int socket(int domain, int type, int protocol);

Returns: file (socket) descriptor if OK, —1 on error

The domain parameter specifies the nature of the communication, as well
ast he
address format. T able 3. 1 1ists the dom ains s pecified by P OSIX.1. T he
constants start with AF (for address family) because each domain has its
own representation format for an address.

Domain Description

AF INET IPv4 Internet domain
AF INET6 [Pv6 Internet domain
AF Local UNIX domain

AF ROUTE | Routing sockets

AF KEY Key socket

AF UNSPEC | Unspecified

Table 3.1: Socket Communication Domains

The second parameter type specifies the type of the socket, which further
determines the communication characteristics. T able 3.2 summarizes the
socket types defined by POSIX.1.

Type Description

SOCK DGRAM fixed-length, connectionless, unreliable messages

SOCK:SEQPACKET fixed-length, s equenced, r eliable, ¢ onnection-
oriented messages

SOCK_STREAM sequenced, r eliable, bi directional, ¢ onnection-
oriented byte stream
SOCK RAW datagram interface to IP (optional in POSIX.1)

Table 3.2: Socket Types

The third argument protocol is usually zero, to select the default protocol
for t he g iven dom ain a nd s ocket t ype. W hen m ultiple pr otocols a re
supported for the same domain and socket type, we can use the protocol
argument t o s elect ap articular pr otocol. T he de fault p rotocol f or a
SOCK_STREAM socket in the AF_INET communication domain is TCP
(Transmission C ontrol P rotocol). T he de faultpr otocolf ora
SOCK DGRAM socket in the AF_INET communication domain is UDP
(User D atagram P rotocol). T able 3.3 1 ists t he protocols de fined for the
Internet domain sockets.

BCA-E7/39

BCA-E7/40

Protocol Description
IPPROTO_TCP TCP transport protocol
IPPROTO _UDP UDP transport protocol
IP PROTO_SCTP SCTP transport protocol

Table 3.3: Protocols defined for Internet domain sockets

On success, the socket function returns a small non-negative integer value. This
is termed as socket descriptor, denoted by sockfd. This socket descriptor depends
upon t he pr otocol family (IPv4, IPv6, or Unix) and the type of the (stream,
datagram, or raw).

These s ockets s upport bi directional communication. T he /O ope rations on a
socket can be disabled by using the shutdown function.

#include <sys/socket.h>
int shutdown(int sockfd, int how);

Returns: 0 if OK, —1 on error

If how is set to SHUT RD, then reading from the socket is disabled. If Zow is
SHUT_WR, then the socket can’t be used for transmitting data. The value of how
can be set to SHUT RDWR to disable both data transmission and reception.

If a socket can be closed then, why a shutdown is required? There can be several
reasons.

e First, close will deallocate the network endpoint only when the last
active reference is closed. If we duplicate the socket (with dup, for
example), the socket won’t be deallocated until we close the last
file descriptor referring to it. The shutdown function allows us to
deactivate a s ocket i ndependently of t he num ber of a ctive file
descriptors referencing it.

® Second, it is sometimes convenient to shut a socket down in one
direction only. For example, we can shut a socket down for writing
if we want the process we are communicating withtobe able to
tell when we are done transmitting data, while still allowing us to
use the socket to receive data sent to us by the process.

3.3 CONNECT FUNCTION

A connection-oriented network s ervice (SOCK STREAM or
SOCK SEQPACKET)r equirest hatb efore datai sex changed, a
connection m ust be e stablished be tweent he socket of t he pr ocess
requesting the s ervice (the client) and the process providing the service
(the server). The connect function to create a connection.

#include <sys/socket.h>
int connect(int sockfd, const struct sockaddr *addr, socklen t len);

Returns: 0 if OK, —1 on error

Here, sockfd is a socket descriptor returned by the s ocket function. The
second and third arguments are a pointer to a socket address structure and
its size. The socket address structure must contain the IP address and port
number of the server.

While connecting to a server, the connect request might fail for multiple
reasons. F or a co nnect request to succeed, the machine to which we are
trying to connect must be up and running, the server must be bound to the
address we are trying to contact, and there must be room in the server’s
pending connect queue.

Check your progress
1. What are the reasons of shutting down a socket?

2. Enlist some reasons of the connect request failure.

3.4 BIND FUNCTION

The bi nd function a ssigns a | ocal pr otocol address t o a s ocket.
With the Internet pr otocols, t he protocol a ddress 1s t he c ombination of
either a 32-bit IPv4 address or a 128-bit IPv6 address, along with a 16-bit
TCP or UDP port number.

#include <sys/socket.h>
int bind (int sockfd, const struct sockaddr *myaddr, socklen t addrlen);

Returns: 0 if OK, —1 on error

The second argument is a pointer to a protocol-specific address, and the
third argument is the size of this address structure.

The bind function lets us specify the IP address, the port, both, or neither.
Table 3.4 enlists the values to which sin_addr and sin_port, or sin6_addr
and sin6_port, can be set as per the requirement.

Process Specifies Result

IP address Port

Wildcard 0 Kernel chooses IP address and port

Wildcard nonzero | Kernel chooses IP address, process specifies port
Local IP 0 Process specifies IP address, kernel chooses port
address

Local IP nonzero | Process specifies IP address and port

address

Table 3.4: Result when specifying IP address and/or port number to bind

BCA-E7/41

BCA-E7/42

If IPv4 is being used, the wildcard address can be denoted by the constant
INADDR ANY, whose value is normally 0. T his i nforms the ke rnel to
choose the IP address.

struct sockaddr in servaddr;

servaddr.sin_addr.s_addr = htonl (INADDR_ANY); /* wildcard */

This technique cannot be used with IPv6, since the length of IPv6 address
is 128 -bit which can be stored in a structure. (The C language does not
allow a constant structure on t he right-hand side of an assignment.) The
following code snippet shows the method of assigning wildcard address in
case of IPv6.

struct sockaddr in6 serv;

serv.sin6_addr = in6addr_any; /* wildcard */

The e xtern d eclaration oft he v ariable i n6addr onlyi s p resentint he
<netinet/in.h> h eader file. T he s ystem s hall al locate t he m emory and
initialize the in6addr any variable to the constant INGADDR_ ANY INIT.

The va lue of INADDR_ANY (0) s hall be t he s ame i n e ither hos t or
network. T his e liminates t he ne ed of ht onl. H owever, s ince t he he ader
<netinet/in.h> de fines all the INADDR constants in host b yte order, the
function htonl should be used with any of these constants.

3.5 LISTEN FUNCTION

A server announces that it is willing to accept connect requests by
calling the listen function. The call to the socket function always created
an active socket, i.e. a cl ient s ocket that can issue a co nnect. T he listen
function ¢ onverts a n u nconnected s ocket i nto a pa ssive s ocket. T his
denotes t hat t he ke el s hould a ccept i ncoming connection requests
directed to this socket.

#include <sys/socket.h>
int listen(int sockfd, int backlog);

Returns: 0 if OK, —1 on error

The backlog argument provides a hint to the system regarding the number
of out standing c onnect r equests that it s hould e nqueue on be half of the

process. The actual value 1s determined by the system, but the upper limit
is specified as SOMAXCONN in <sys/socket.h>.

To unde rstand t he ba cklog a rgument, w e m ust realize that fora given
listening socket, the kernel maintains two queues:

An incomplete connection queue, which contains an entry for each SYN
that has arrived from a client for which the server is awaiting completion
of the TCP three- way handshake. These sockets are in the SYN _RCVD
state.

A completed c onnection que ue, w hich c ontains an entry for each client
with whom the T CP three-way h andshake has completed. These sockets
are in the ESTABLISHED state.

Figure 3.2 depicts these two queues for a given listening socket.

completed connection queue
(ESTABLISHED state)

incomplete connection queue
(SYN_RCVD state)

Fig 3.2: Queues maintained by TCP for a listening socket

Whenever an entry is created in the incomplete queue, the arguments from
the 1isten s ocket are copied to the newly created connection. Once t he
queue is full, the system will r eject a dditional c onnect r equests, s o t he
backlog value must be chosen based on the expected load of the server and
the amount of processing it must do to accept a connect request and start
the service.

3.6 ACCEPT FUNCTION

Once a server has called listen, the socket can receive connect
requests. The accept function is used to retrieve a connect request and
establish a connection.

#include <sys/socket.h>

int a ccept(int s ockfd, s truct s ockaddr *r estrict addr, s ocklen t *r estrict
len);

Returns: file (socket) descriptor if OK, —1 on error

If the call to acceptis successful, a “new” descriptor is returned by the
kernel. T his new descriptor identifies the T CP connection that has been
established w ith th e c lient. T he s ockfd a rgument s pecifies t he 1istening
socket (created upon s uccessful call t ot he s ocket function) w hile t he

BCA-E7/43

BCA-E7/44

return v alue o fa ccepti st ermed as t he connected s ocket. A s erver
normally creates only one listening socket which exists for the lifetime of
the server. A connected socket is created for each client connection that is
accepted (i.e., for which the TCP three-way handshake completes). When
the server is finished serving a client, the connected socket is closed.

This function r eturns up to t hree v alues: an 1nteger r eturn code thatis
either a new socket descriptor or an error indication, the protocol address
of t he c lient pr ocess (through t he ¢ liaddr poi nter), and t he s ize of this
address (through the addrlen pointer). If the protocol address of the client
is not required, both cliaddr and addrlen are set to null pointers.

3.7 FORK AND EXEC FUNCTION

The fork function is used for creating a new process in Unix.

#include <unistd.h>
pid_t fork(void);

Returns: 0 in child, process ID of child in parent, —1 on error

The fork function is “called once but returns twice”. The process ID of the
newly created child process is returned to the parent (the calling process)
while the value 0 is returned to the child process.

The reason why 0 is returned to the child, instead of the process ID of the
parent, is that a child has only one parentanditcan always obtain the
parent's process ID by calling getppid function. A parent, ont he ot her
hand, can have any number of children, and there is no way to obtain the
process IDs of its children. If a parent wants to keep track of the process
IDs of all its children, it must record the return values from fork.

Any descriptor opened by the parent process before calling fork shall be
shared with the child process after fork executes successfully. This feature
isused b ythen etwork s ervers w here t he p arent f irst cal Is ac cept t o
establish a connection with the client and then calls fork. This ensures that
the connected socket is shared between the parent and the child process.
The child process can then read and write on the connected socket and the
parent can close the same connected socket.

The fork function is generally used for the following purpose:

1. Making a copy of the process ensures that so that one copy handles
one operation while the other copy performs another task. This is,
generally, the case in network servers.

2. When a p rocess w ants t o ex ecute an other p rogram, it first cal Is
fork to make a copy of itself, and then one of the copies (child)
calls exec to replace itself with the new program. This is the case
for programs such as shells.

The only way in which an executable program file on disk can be executed
by Unix is for an existing process to call one ofthe six exec functions.
exec replaces the current process image with the new program file, and
this ne w pr ogram nor mally s tarts at the m ain function. T he process ID
does not change. W e refer to the process that c alls ex ec as the cal ling
process and the newly executed program as the new program.

The differences in the six exec functions are:

a) whether the program file to execute is specified by a filename or a
pathname;

b) whether the arguments to the new program are listed one by one or
referenced through an array of pointers; and

¢) whether the environment of the calling process is passedtothe
new program or whether a new environment is specified.

The six variants of the exec function have been shown below:

#include <unistd.h>
int execl (const char *pathname, const char *arg0, ... /* (char *) 0 */);
int execv (const char *pathname, char *const argv[]);
int execle (const char *pathname, const char *arg0, ... /* (char *) 0,
char *const envp[] */);
int execve (const char *pathname, char *const argv([], char *const envp[]);
int execlp (const char *filename, const char *arg0, ... /* (char *) 0 */);
int execvp (const char *filename, char *const argv[]);

All six return: -1 on error, no return on success

These functions return to the caller onlyifan error oc curs. O therwise,
control passes to the start of the new program, normally the main function.

Figure 3.3 depicts the relationship among these six variants of the e xec
function. It should be noted that, only execve is a system call while the
remaining five are library functions that internally call execve.

BCA-E7/45

BCA-E7/46

execlp/file, ary, .., 0) execl (pth, ary, .., 0) execle (pth, arg, ..., 0, emop)

create argy creale arge create arge
1 Y
convert file add system
execvp (file, arge) o execy (puth, arye) o execve (ih, argo, envyp) -

Figure 3.3: Relationship among the six exec functions

There exist following differences among these variants of exec functions:

The functions execlp, execl and execle considers each string parameter as
a separate parameter to the exec function, with a null pointer terminating
the v ariable n umber o f p arameters. T he f unctions e xecvp, e xecv a nd
execve have an argv array, that contains pointers to the string parameters.
The argv array must contain a null pointer to specify its end, since a count
is not specified.

The functions ex eclp and ex ecvp require a file parameter specifying the
filename. T his is converted into a pathname by using the current PATH
environment v ariable. H owever, i f t he filename p arameter to ex eclp or
execvp contains a s lash (/) anywhere in the string, the PATH variable is
not us ed. T he remaining functions r equire a fully qua lified pa thname
argument.

The functions execlp, execl, execvp, and execv do not require an explicit
environment pointer. The current value of the external variable environ is
used for building an environment list that is passed to the new program.
The functions execle and execve require an explicit environment list. The
parameter envp is an array of pointers terminated by a null pointer.

Check your progress
1. What is the default value of INADDR ANY?

2. What is the use of Fork function?

3.8 CONCURRENT SERVERS

When a client request requires longer time to complete, it is not
feasible to d edicate a single server for one client. The server shouldbe
able to s erve mu ltiple client r equests atth e s ame time.Suchtypeof
servers is termed as concurrent servers. The simplest method to implement

a co ncurrent s erveristo forkach ild p rocess fors erving e ach client
request. T he f ollowing ¢ ode s nippet s hows t he i mplementation f or a
typical concurrent server.

pid_t pid;
int listenfd, connfd;
listenfd = Socket(...);
/* fill in sockaddr_in{} with server's well-known port */
Bind(listenfd, ...);
Listen(listenfd, LISTENQ);
for (;;){
connfd = Accept (listenfd, ...); /* probably blocks */
if((pid = Fork()) == 0) {
Close(listenfd); /* child closes listening socket */
doit(connfd); /* process the request */
Close(connfd); /* done with this client */
exit(0); /* child terminates */
j

Close(connfd); /* parent closes connected socket */

}

When a connection is established, accept returns, the server calls fork, and
the child process services the client (on connfd, the connected socket) and
the parent process waits for another connection (on listenfd, the listening
socket). The parent closes the connected socket since the child handles the
new client.

The function does whatever is required to service the client. W hen this
function returns, we explicitly close the connected socket in the child. This
is n ot r equired s ince t he n ext s tatement cal Is e xit, an d p art o f p rocess
termination is to c lose all o pen d escriptors b y t he ke rnel. W hether t o
include th is e xplicitc allto c loseo rn otis a ma ttero fp ersonal
programming taste.

3.9 CLOSE FUNCTION

The close function is used to close an open socket and terminate
the TCP connection.

#include <unistd.h>
int close (int sockfd);

Returns: 0 if OK, -1 on error

The de fault a ction of close function witha T CP socketistomark the
socket as closed and return to the calling process immediately. The socket
descriptor s hall no 1 onger be usable by the process. It cannot be further
used for either data transmission or reception. However, TCP will try to
send any data that has already been queued to be sent, after which the TCP
connection termination procedure takes place.

BCA-E7/47

BCA-E7/48

Check your progress

1. Whata ret hef unctions of g etsockname and g etpeername
methods?

2. How can you implement concurrent servers?

3.10 RELATED FUNCTIONS

These getsockname f unction r eturns t he 1 ocal protocol a ddress
while t he f unction ge tpeername r eturns t he foreign pr otocol address
associated with a socket.

#include <unistd.h>

int g etsockname(ints ockfd, s tructs ockaddr *1 ocaladdr, s ocklen t
*addrlen);

int g etpeername(ints ockfd, s tructs ockaddr *pe eraddr,s ocklen t
*addrlen);

Both return: 0 if OK, -1 on error

The functions return the c ombination of an IP address and port num ber
associated with one of the two ends of a network connection.

These two functions are required for the following reasons:

. After connect successfully returns in a TCP client that does not call
bind, g etsockname r eturns t he 1 ocal IP a ddress and 1 ocal por t
number assigned to the connection by the kernel.

e After calling bind with a port number of 0 (telling the kernel to
choose the local port number), getsockname returns the local port
number that was assigned.

e getsockname can be called to obtain the address family of a socket.

° In aT CPs ervert hat bindst he w ildcard IP address, onc € a
connectioni ses tablishedw ithacl ient (acceptr eturns
successfully), the server can call getsockname to obtain the local
IP a ddress a ssigned t o t he ¢ onnection. T he s ocket de scriptor
argument in this call must be that of the connected socket, and not
the listening socket.

e Whenaserveris execed by the process that calls accept, the only
way th e s erver ¢ an o btain th e id entity o fth e clientis to c all
getpeername.

Example: Obtaining the Address Family of a Socket

The sockfd to family function returns the address family of a socket. The
following c ode s nippet de monstrates r eturning t he a ddress family o fa
socket.

1 #include "unp.h"
2 int sockfd to family(int sockfd)

44
5 struct sockaddr storage ss;
6 socklen_t len;
7 len = sizeof(ss);
8 if (getsockname(sockfd, (SA *) &ss, &len) < 0)
9 return (-1);
10 return (ss.ss_family);
11}
Check your progress

Write a p rogram t o ex change o ne h ello m essage b etween server and
client to demonstrate the client/server model.

3.11 SUMMARY

A call to the socket function returns a socket descriptor which can
be used for inter process communication between two different machines
or on the same machine. Clients wishing to establish a connection with the
server call the c onnect function w hile s ervers c all t he bind, 1isten, a nd
accept function to accept connections from the client. Open socket scan be
closed by issuing a call to the standard close function, although there also
exist a shutdown function for the similar purpose.

TCP servers should be able to serve concurrent requests from the clients.
This is achieved by calling fork function for every client connection being
handled by the server. However, UDP servers are, generally, iterative in
nature.

3.12 TERMINAL QUESTIONS

1. Describe the procedure and sequence of function calls required for
establishing a TCP connection between a client and the server.

2. In Section 3.4, we stated that the INADDR constants defined by
the <netinet/in.h> header are in host byte order. How can we tell
this?

3. Aniterative server waits for the child to execute the command and
exit before accepting the next connect request. Write a pseudocode
for the server so that the time to service one request doesn’t delay
the processing of incoming connect requests.

BCA-E7/49

BCA-E7/50

Refer to code for concurrent servers in Section 3.7. A ssume the
child runs first after the call to fork. The child then completes the
service o fthe client before the call to fork returns to the parent.
What happens in the two calls to close?

Write a program to implement a chat room environment for one
client and one server.

Write a pr ogramt o1 mplement a chat r oom e nvironment for
multiple client and one server.

UNIT4 : TCP Client/Server

Structure

4.0 Introduction

4.1 Objectives

4.2 TCP Echo server function

4.3 Normal start-up

4.4 Terminate and Signal Handling Server Process Termination
4.5 Crashing and Rebooting of server host

4.6 Shutdown of server host

4.7 Summary

4.8 Terminal questions

4.0 INTRODUCTION

A s erver pr ovides a s erviceona givenpor tb y waiting f or
connections from future clients. A client can connect to a service once the
serveri st eadyt o a ccept co nnections (accept). Inor dert o m ake a
connection, the client must know the IP number of the server machine and
the port number of the service. If the client does not know the IP number,
itne eds t o r equest na me/number r esolution. O nce t he ¢ onnection i s
accepted by the server, each program can communicate via input-output
channels over the sockets created at both ends.

4.1 OBJECTIVES

After the end of this unit, you should be able to:
° Understand the various functions of TCP Echo server

. Gain 1 nsights r egarding nor mal s tartup, t erminate a nd s ignal
handling server process termination

e Differentiate between crashing and rebooting of server host

° Know about shutdown of server host

4.2 TCP ECHO SERVER FUNCTION

TCP Echo Server: Main Function
BCA-E7/51

BCA-E7/52

The concurrent server program has been represented through the following

code:

#include “unp.h”

Int main(int argx, char **argv)

{

Int listenfd, connfd;

pid_t childpid;

socklen t clien;

struct sockaddr in cliaddr,servaddr;

listenfd=Socket(AF INET,SOCK STREAM,0);

bzero(&servaddr,sizeof(servaddr));

servaddr.sin_family=AF INET;

servaddr.sin_addr.s addr=htonl(INADDR_ANY);

servaddr.sin_port=htons(SERV_PORT);

Bind(listenfd, LISTENQ);

for(; ;) {

clien = sizeof(cliaddr);

connfd = Accept(listenfd, (SA*) &cliaddr, &clilen);

if((childpid = Fork()) == 0) { /* child process */
Close(listenfd); /*close listening socket*/
str_echo(connfd); /*process the request */

exit(0);
}

Close(connfd); /*parent closes connected socket */

The actions processed by the code are as follows:

Create socket, bind server's well-known port
< A TCP socket is created.

< An Internet s ocket a ddress s tructure is filled inw iththe
wildcard ad dress (INADDR ANY)a ndt he s erver's well-
known port (SERV_PORT, here defined as 9877 in header).

Binding th e w ildcard a ddress te lls th e s ystem that we will
accept a connection destined for any local interface, in case
the system is multihome. It should be greater than 1023 (we
donot need a reserved port), greater t han 500 0 (to a void
conflict w ithth e e phemeral p ortsa llocatedb y many
Berkeley-derived implementations), less than 49152 (to avoid
conflict with the "correct" range of ephemeral ports), and it
should not conflict with any registered port.

< The socket is converted into a listening socket by listen.

e Wait for client connection to complete

o,

< Theserver blocks in the call to accept, waiting for a client
connection to complete.

e Concurrent server

< For each client, fork spawns a child, and the child handles the
new c lient. T he c hild closes t he | istening s ocket a nd t he
parent closes the connected socket.

TCP Echo Server: str_echo Function

The function str_echo is responsible for conducting the server processing
foreach client. Itreads data fromthe clientand echoesitbackto the
client.

#include "unp.h"
void
str_echo(int sockfd)

{

ssize t n;
char buf[MAXLINE];

again:
while { {n = read{sockfd, buf, MAXLINE)) > Q)
wWriten({sockfd, buf, n};
if{n <0 && errmno == EINTR)
goto again;
else if (n < Q)

err_sys("str_echo: read error™);

BCA-E7/53

BCA-E7/54

The code provided above processes the following actions:

e Read a buffer and echo the buffer
< Read reads data from the socket and the line is echoed back
to the client by writen. If the client closes the connection (the
normal s cenario), the receipt o f the client's F IN cau ses t he
child's read to return 0. This causes the str_echo function to
return, which terminates the child.
Check your progress
1. What are the steps involved in startup of TCP client/server?
2. What are choices of disposition?

4.3 NORMAL START-UP

Normal start-up of TCP client/server includes following steps:

Start TCP server in background on host system.
linux % tcpserv0l &
[1] 17870

When th e s erver s tarts, it ¢ alls socket, bind, listen, and accept,
blocking in the call to accept. State of the server's listening socket
is verified through netstat program. netstat command is used along
with -a flag to see all listening sockets.

Start the client on the same host, specifying the server's IP address
of 127.0.0.1 (the loopback address).

The client calls socket and connect, the latter causing TCP's three-
way handshake to take place.

When the three-way handshake c ompletes, connect returns in the
clientan dac cept returnsi nt hes erver andco nnectioni s
established.

The cl ient cal Is str cli, w hichw ill b lock inthecallto fgets,
because we have not typed a line of input yet.

When accept returns in the server, it calls fork and the child calls
str_echo. T his f unction c alls readline, w hich calls r ead, w hich
blocks while waiting for a line to be sent from the client.

The server parent, on the other hand, calls accept again, and blocks
while waiting for the next client connection.

4.4 TERMINATE AND SIGNAL HANDLING
SERVER PROCESS TERMINATION

Normal Termination

At this point, the connection is established and whatever we type to the
client is echoed back.

linux % tcpcliOl 127.0.0.1 # this line has been represented

earlier hello, world # now this is typed

hello, world # the line is echoed

good bye

good bye

D # Control-D is the terminal EOF character

If netstat is executed immediately, the following is received:

linux % netstat -a | grep 9877
tep 0 0*9877 koK LISTEN
tcp 0 Olocalhost:42758 localhost:9877 TIME WAIT

The output of the netstat is piped into grep. This prints only the lines in
possession of the port acquainted with the server:

o The client's side of the connection (since the local portis 42758)
enters the TIME_ WAIT state

o The listening server still waits for another client connection.

The following steps are involved in the normal termination of client and
server:

o When we type our EOF character, fgets returns a null pointer and
the function str_cli returns.

. str_cli r eturns to th e ¢ lient ma in function, w hich te rminates b y
calling exit.

. Part of process termination is the closing of all open descriptors, so
the client socket is closed by the kernel. This sends a FIN to the
server, to which the server TCP responds with an ACK. This is the
first ha If of t he T CP c onnection t ermination s equence. A t th is
point, the server socket is in the CLOSE_WAIT state and the client
socket is in the FIN. WAIT 2 state.

° When the server TCP receives the FIN, the server child is blocked
in a call to read, and read then returns 0. T his causes the str_echo
function to return to the server child main.

BCA-E7/55

BCA-E7/56

. The server child terminates by calling exit.
e All open descriptors in the server child are closed.

e Theclosing ofthe connected socket by the child causes the final
two segments of the TCP connection termination to take place: a
FIN from the server to the client, and an ACK from the client.

. Finally, the SIGCHLD signal is sent to the parent when the server
child terminates.

o This occurs in this example, but we do not catch the signal in our
code, and the default action of the signal is to be ignored. Thus, the
child e nters th e z ombie s tate. W e can v erify t hiswiththeps
command.

linux % ps -t pts/6 -o pid,ppid,tty,stat,args,wchan

PID PPIDTT STAT COMMAND WCHAN
22038 22036 pts/6 S -bash read chan
17870 22038 pts/6 S ./tcpservOl wait for connect
1931517870 pts/6 Z [tcpservOl <defu do_exit

The STAT of the child is now Z (for zombie).

Zombie Process: It is a process that has completed execution (via the exit
system call) but still has an entry in the process table. This process is in
the “Terminated State”. This occurs for child processes, where the entry is
still needed to allow the parent process to read its child's exit status: once
the e xit s tatus is r ead via th e wait system c all, t he z ombie's e ntry i s
removed from the processtableanditissaid tobe "reaped". A child
process always first be comes a zombie be fore being r emoved from the
resource table. In most cases, under normal system operation zombies are
immediately waited on by their parent and then reaped by the s ystem —
processes t hat s tay zombies foral ong time are generally an error and
cause a resource leak.

We need to clean up our zombie processes and doing this requires dealing
with Unix signals. The following section sheds light on signal handling.

POSIX Signal Handling

A signal is a notification to a p rocess regarding occurrence of an event.
Often, signals ar e r egarded as software interrupts. Signals usually o ccur
asynchronously. This means that a process is not provided any information
regarding the time of occurrence of a signal before its actual occurrence.
There are different types of signal as following:

https://en.wikipedia.org/wiki/Child_process
https://en.wikipedia.org/wiki/Parent_process
https://en.wikipedia.org/wiki/Exit_status
https://en.wikipedia.org/wiki/Wait_(system_call)
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/Resource_leak

Name Description Default action
SIGABRT Abnormal T ermination | Terminate + core
(abort)
SIGALRM Timer expired (alarm) terminate
SIGBUS Hardware Fault Terminate + core
SIGCANCEL Threads 1 ibrary i nternal | Ignore
use
SIGCOUNT Continue s topped | Continue/ignore
process
SIGEMT Hardware fault Terminate + core
SIGFPE Arithmetic exception Terminate +core
SIGFREEZE Checkpoint freeze Ignore
SIGHUP Hang-up terminate
SIGILL Illegal instruction Terminate + core
SIGINFO Status requestf rom | ignore
keyword
SIGINT Terminal in terrupt | terminate
character
SIGIO Asynchronous 1/O Terminate / Ignore
SIGIOT Hardware fault Terminate + core
SIGIVM1 Javav irtual m achine | ignore
internal use
SIGKILL Termination terminate
SIGLOST Resource lost terminate
SIGLWP Threads 1 ibrary i nternal | Terminate/ignore
use
SIGPIPE Write to p ipe w ith no | terminate
readers
SIGPOLL Pollable event (poll) terminate
SIGVTALRM Virtual time | terminate
alarm(settimer)
SIGWAITING threads lib rary internal | Ignore

use

Table 4.1: UNIX System signal

BCA-E7/57

BCA-E7/58

Signals can be sent:
. By one process to another process (or to itself)
. By the kernel to a process.

< For example, whenever a process terminates, the kernel send
a SIGCHLD signal to the parent of the terminating process.

Every signal has a disposition, w hich is also called the action associated
withth es ignal. T hed ispositiono fa s ignalis s etb y calling
the sigaction function. Following are the three choices for the disposition:

1. Catching as ignal. W ecan p rovide af unction cal led a signal
handler that is called whenever a specific signal occurs. The two
signals SIGKILL and SIGSTOP cannot be caught. Our function is
called with a single integer argument that is the signal number and
the function returns nothing. Its function prototype is therefore:

2. void handler (int signo);

For most signals, we can call sigaction and s pecify the signal handler to
catchi t. A few s ignals, SIGIO, SIGPOLL, a nd SIGURG, all r equire
additional actions on the part of the process to catch the signal.

3. Ignoring a signal. We can ignore a signal by setting its disposition
to SIG_IGN. The two signals SIGKILL and SIGSTOP cannot be
ignored.

4. Setting the de fault di sposition for a signal. This can be done by
setting its d isposition to SIG DFL. T he de faulti s nor mally t o
terminate a process on receipt of a signal, with certain signals also
generating a co re i mage o f't he p rocessinits current w orking
directory. There are a few signals whose default disposition is to be
ignored: SIGCHLD and SIGURG (sent on t he a rrival of out -of-
band data) are two that we will encounter in this text.

Signal Function

The P OSIX w ayt o establish t he di sposition ofa s ignali st ocall
the sigaction function, w hich is c omplicated in that one argument to the
function is a structure (struct sigaction) that we must allocate and fill in.

Ane asierw ayto s etth ed ispositiono fa s ignalis to c all
the signal function. The first argument is the signal name and the second
argumenti se ither apoi ntert oa f unctionor one of t he
constants SIG_IGN or SIG_DFL.

However, signal is an historical function that p redates P OSIX. D ifferent
implementations p rovide d ifferent s ignal s emantics w hen iti s cal led,
providing ba ckward ¢ ompatibility, w hereas P OSIX e xplicitly s pells out
the semantics when sigaction is called.

The solution is to define our own function named signal that just calls the
POSIX sigaction function. T his pr ovides a s imple i nterface w ith th e

desired P OSIX s emantics. W e include this function in our own library,
along with our err XXX functions and our wrapper functions.

#include "unp.h"
Sigfunc *
signal(int signo, Sigfunc *func)
{
struct sigaction act, oact;
act.sa_handler = func;
sigemptyset(&act.sa_mask);
act.sa_flags =0;
if (signo == SIGALRM) {
#ifdef SA INTERRUPT
act.sa flags = SA INTERRUPT; /* SunOS 4.x */
#endif
} else {
#ifdef SA RESTART
act.sa flags = SA RESTART; /* SVR4,44BSD */
#endif
}
if (sigaction(signo, &act, &oact) < 0)
return(SIG_ERR);
return(oact.sa_handler);
}
/* end signal */
Sigfunc *
Signal(int signo, Sigfunc *func) /* for our signal() function */
{
Sigfunc *sigfunc;
if ((sigfunc = signal(signo, func)) == SIG_ERR)
err_sys("signal error");
return(sigfunc);

}

Simplify function prototype using typedef

The nor mal function pr ototype for signal is c omplicated by the le vel of
nested parentheses.

BCA-E7/59

BCA-E7/60

| void (*signal (int signo, void (*func) (int))) (int);

To simplify this, we define the Sigfunc type in our unp.h header as

|typedef void Sigfunc(int);

stating that signal handlers are functions with an integer argument and the
function returns nothing (void). The function prototype then becomes

| Sigfunc *signal (int signo, Sigfunc *func);

A pointer to asignal handling functionisthe second argument tothe
function, as well as the return value from the function.

Set handler

The sa_handler member of t he sigaction structureis s ett o
the func argument.

Set signal mask for handler

POSIX allows us to specify a set of signals that will be blocked when our
signal handler is called. Any signal that is blocked cannot be delivered to a
process. We set the sa_ mask member to the empty set, which means that
no a dditional s ignals will be bl ocked w hile our s ignal ha ndleri s
running. POSIX guarantees that the signal being caught is always blocked
while its handler is executing.

Set SA_RESTART flag

SA RESTART is an optional flag. W hen the flagisset, a system call
interrupted by this signal will be automatically restarted by the kernel.

Ift hes ignalbe ingc aughti snot SIGALRM,w es pecify
the SA RESTART flag, i fde fined. T hisi s becauset he pur pose o f
generating the SIGALRM signal is normally to place a timeout on an 1/O
operation, i nw hich c ase, w e w antt he bl ocked s ystemc allt o be
interrupted by the signal.

Call sigaction

We call sigaction and then return the old action for the signal as the return
value of the signal function.

Throughout t his t ext, we w ill u se th e signal function f rom t he a bove
definition.

Handling SIGCHLD Signals

The zombie state is to maintain information about the child for the parent
to fetch later, which includes:

. Process ID of the child,
. Termination status,

o Information on the resource utilization of the child.

If a parent process of zombie children terminates, the parent process ID of
all the zombie children is set to 1 (the init process), which will inherit the
children and c lean t hem up (init will wait for t hem, w hich r emoves t he
zombie).

Handling Zombies

Zombies take up space in the kernel and ev entually we canrunoutof
processes. W henever w e fork children, we must wait for them to prevent
them f rom b ecoming z ombies. W e can es tablish as ignal h andler t o
catch SIGCHLD and call wait within the handler. We establish the signal
handlerb ya ddingt hef ollowing f unctionc alla ftert he call
to listen (in server's main function; it must be done before forking the first
child and needs to be done only once.):

| Signal (SIGCHLD, sig_chld);

The signal handler, the function sig chld, is defined below:

#include "unp.h"
void
sig_chld(int signo)
{
pid t pid;
int stat;
pid = wait(&stat);
printf("child %d terminated\n", pid);
return;

}

Note that calling standard I/O functions such as printf in a s ignal handler
is not recommended. We cal | printf here as a diagnostic tool to see when
the child terminates.

Compiling and running the program on Solaris

This program (tcpcliserv/tcpserv02.c) is compiled on S olaris 9 a nd uses
the signal function from the system library.

solaris % tcpserv02 & # start server in background

[2] 16939

solaris % tcpcliO1 127.0.0.1 # then start client in foreground
hi there # we type this

hi there # and this is echoed

D # we type our EOF character

child 16942 terminated # output by printf in signal handler
accept error: Interrupted system call # main function aborts

The sequence of steps is as follows:

BCA-E7/61

BCA-E7/62

1. Weterminate the client by typing our E OF character. The client
TCP sends a FIN to the server and the server responds with an
ACK.

2. Ther eceiptof t he FINde liversa nE OFt ot hec hild's
pending readline. The child terminates.

3. Thepa renti sbl ockedi ni tsc allt oa cceptw hen
the SIGCHLD signal is delivered. T he sig_chld function ex ecutes
(our signal handler), wait fetches th e c hild's P ID and te rmination
status, a nd printfis ¢ alled f rom th e s ignal h andler. T he signal
handler returns.

4. Since the signal w as ¢ aught by the p arent w hile t he p arent w as
blockedi n as lows ystemcal 1 (accept),t hek ernel causes
the accept to r eturn an error of EINTR (interrupted s ystem c all).
The parent does not handle this error (see server's main function),
so it aborts.

From t his e xample, w e know t hat w hen w riting ne twork pr ograms t hat
catch signals, we must be cognizant of interrupted s ystem calls, and we
must ha ndle t hem. Int his e xample, t he signal function pr ovided in t he
standard C 1 ibrary do es not c ause a n i nterrupted s ystem ¢ all t o be
automatically restarted by the k ernel. S ome o ther s ystems a utomatically
restart the interrupted system call. If we run the same example under BSD,
using i ts 1 ibrary ve rsion of t he signal function, t he k ernel r estarts t he
interrupted system call and accept does not return an error. To handle this
potential problem be tween di fferent ope rating s ystems is one reason we
define our own version of the signal function.

As part of the coding conventions used in this text, we al ways code an
explicit return in our signal handlers, even though this is unnecessary for a
function r eturning void. T his r eads asa reminder t hat t he return m ay
interrupt a system call.

Handling Interrupted System Calls

The term "slow system call" is used to describe any system call that can
block forever, such as accept. That is, the system call need never return.
Most networking functions fall into this category. Examples are:

® Accept: there is no guarantee that a server's call to accept will ever
return, if there are no clients that will connect to the server.

e Read:t hes erver's callt oread in server's str_echo function will
never return if the client never sends a line for the server to echo.

Other ex amples o f's low s ystem cal Is ar e r eads and writes of pipes and
terminal devices. A notable exception is disk I/O, which usually returns to
the caller (assuming no catastrophic hardware failure).

When a process is blocked in a slow system call and the process catches a
signal and the signal handler returns, the system call can return an error
of EINT. S ome k ernels au tomatically r estart s ome i nterrupted s ystem
calls. For portability, when we write a program that catches signals (most
concurrent s ervers ¢ atch SIGCHLD), w e m ust be pr epared f or slow
system calls to return EINTR.

Toha ndlea ni nterrupted accept, w ech anget hecal |1
to accept in server's main function, t he be ginning of the forloop, to the
following:

for (;;) 4
clilen = sizeof (cliaddr);
if ((connfd = accept (listenfd, (SA *) &cliaddr, &clilen)) <0) {
if (errno == EINTR)
continue; /* back to for () */
else
err_sys ("accept error");

}

Note th at this accept is not our wrapper function Accept, since w e must
handle the failure of the function ourselves.

Restarting the interrupted system call is fine for:

e Accept
e Read

e Write
e Select
e Open

However, t here i s one function t hat w e cannot r estart: connect. If't his
function returns EINTR, we cannot call it again, as doing so will return an
immediate error. When connect is interrupted by a caught signal and is not
automatically r estarted, we must call select to wait for the c onnection to
complete.

wait and waitpid Functions

We can call wait function to handle the terminated child.

BCA-E7/63

BCA-E7/64

#include <sys/wait.h>
pid_t wait (int *statloc);
pid_t waitpid (pid_t pid, int *statloc, int options);

/* Both return: process ID if OK, 0 or—1 on error */

wait and waitpid both return two values: the return value of the function is
the process ID of the terminated child, and the termination status of the
child (an integer) is returned through the statloc pointer.

There are three macros that we can call that examine the termination status
(see APUE):

e WIFEXITED: tells if the child terminated normally
e WIFSIGNALED: tells if the child was killed by a signal

e WIFSTOPPED: tells if the child was just stopped by job control

Additional macros let us then fetch the exit status of the child, or the value
of the signal that killed the child, or the value of the job-control signal that
stopped t he ¢ hild. W ew ill us e
the WIFEXITED and WEXITSTATUS macros for this purpose.

If there ar e n o terminated ch ildren for t he p rocess cal ling wait, but the
process has one or more children that are still executing, then wait blocks
until the first of the existing children terminates.

waitpid has more control over which process to wait for and whether or
not to block:

° The pid argument specifies the process ID that we want to wait for.
A value of -1 says to wait for the first of our children to terminate.

e The options argument s pecifies a dditional opt ions. T he m ost
common option is WNOHANG, which tells the kernel not to block
if there are no terminated children.

Difference between wait and waitpid

The f ollowinge xampleillu stratesth ed ifferenceb etween
the wait and waitpid functions when used to clean up terminated children.

We modify our TCP client as below, which establishes five connections
with the s erver and then us es onl y t he first on e (sockfd[0]) in the call
to str_cli. T he pur pose of e stablishing m ultiple c onnections is to s pawn
multiple children from the concurrent server.

#include "unp.h"

int main(int argc, char **argv)

{
int 1, sockfd[5];

struct sockaddr in servaddr;

if (argc !1=2)

err_quit("usage: tcpcli <IPaddress>");

for (i=0;1<5;i++) {
sockfd[i] = Socket(AF _INET, SOCK STREAM, 0);

bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(SERV_PORT);
Inet pton(AF INET, argv[1], &servaddr.sin_addr);
Connect(sockfd[i], (SA *) &servaddr, sizeof(servaddr));

}

str_cli(stdin, sockfd[0]); /* do it all */

exit(0);

}

When the client terminates, all open descriptors are cl osed automatically
by the kernel (we do not call close, only exit), and all five connections are
terminated at about the same time. This causes five FINs to be sent, one on
each connection, which in turn causes all five server children to terminate
at about the same time. This causes five SIGCHLD signals to be delivered
tothe parentat about the s ametime. T his causes t he pr oblem unde r
discussion.

We first run the server in the background and then our new client:

linux % tcpserv03 &

[1]120419

linux % tcpcli04 127.0.0.1

hello # we type this

hello # and it is echoed

D # we then type our EOF character

child 20426 terminated # output by server

BCA-E7/65

BCA-E7/66

Only on e printf is out put, w hen w e e xpect a Il f ive ¢ hildren t o ha ve
terminated. If we execute ps, we see that the other four children still exist
as zombies.

PID TTY TIME CMD

20419 pts/6 00:00:00 tcpserv03

20421 pts/6 00:00:00 tcpserv03 <defunct>
20422 pts/6 00:00:00 tcpserv03 <defunct>
20423 pts/6 00:00:00 tcpserv03 <defunct>

Establishing a s ignal h andler a nd c alling w ait f rom th at h andler a re
insufficient for preventing zombies. The problem is that all five signals are
generated before the signal handler is executed, and the signal handler is
executed o nly o ne time b ecause U nix s ignals a re nor mally not queued.
This problem is nonde terministic. D ependent on the timing o f the FINs
arriving at the s erver h ost, t he signal handler is e xecuted t wo, t hree or
even four times.

The c orrect s olution i s to c all waitpid instead of wait. T he code be low
shows t he ve rsion of our sig_chld function t hat
handles SIGCHLD correctly. T hisv ersionw orksbe cause we
call waitpid within a 1oop, fetching the status of any of our children that
have terminated, with the WNOHANG option, w hich tells waitpid not to
block if there are running children that have not yet terminated. We cannot
call wait in a loop, because there is no way to prevent wait from blocking
if there are running children that have not yet terminated.

#include "unp.h"

void

sig_chld(int signo)

{
pid t pid;

int stat;

while ((pid = waitpid(-1, &stat, WNOHANG)) > 0)
printf("child %d terminated\n", pid);

return;

The code below shows the final version of our server. It correctly handles
areturn of EINTR from accept and 1t es tablishes a s ignal h andler (code
above) that calls waitpid for all terminated children.

#include "unp.h"

int main(int argc, char **argv)

{

int listenfd, connfd;
pid t childpid;
socklen t clilen;

struct sockaddr _in cliaddr, servaddr;
void sig_chld(int);
listenfd = Socket(AF _INET, SOCK _STREAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF INET;
servaddr.sin_addr.s addr = htonl(INADDR ANY);
servaddr.sin_port = htons(SERV_PORT);
Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));
Listen(listenfd, LISTENQ);
Signal(SIGCHLD, sig_chld); /* must call waitpid() */
for (;;) {
clilen = sizeof{(cliaddr);
if ((connfd = accept(listenfd, (SA *) &cliaddr, &clilen)) <0) {
if (errno == EINTR)
continue; /* back to for() */
else
err_sys("accept error");
}
if ((childpid = Fork()) ==0) { /* child process */
Close(listenfd); /* close listening socket */
str_echo(connfd); /* process the request */
exit(0);
}

Close(connfd); /* parent closes connected socket */

BCA-E7/67

BCA-E7/68

The purpose of this section has been to demonstrate three s cenarios that
we can encounter with network programming:

e We must catch the SIGCHLD signal when forking child processes.
e We must handle interrupted system calls when we catch signals.

e A SIGCHLD handler m ust be ¢ oded correctly us ing waitpid to
prevent any zombies from being left around.

Connection Abort before accept Returns

There is another condition similar to the interrupted system call that can
cause accept to re turn a n onfatal error, in w hich ¢ ase w e s hould j ust
call accept again. The sequence of packets shown below has been seen on
busy servers (typically busy W eb s ervers), w here the server receives an
RST for an ESTABLISHED connection before accept is called.

client server
socket, bind, 1isten
sockat LISTEN (passive open)

cennect (blocks) SYN
\. SYN_RCVD
‘__”ELN_’—"M”’
connect returmns
W.
ESTABLISHED

RST

——

accept called

The t hree-way handshake c ompletes, t he c onnection is e stablished, a nd
thent hecl ient T CP s endsan R ST (reset). Ont hes ervers ide, t he
connection is queued by its T CP, waiting for the server process to call
accept w hen t he R ST ar rives. S ometime 1 ater, t he s erver p rocess cal Is
accept.

An e asy w ay to s imulate th is s cenario is to s tart th e s erver, h ave it
call socket, bind, and listen, and then go to sleep for a short period of time
before cal ling accept. W hile the s erver process is as leep, start the client
and h avei tcal 1socketand connect. Ass oon a s connect returns, s et
the SO_LINGER socket option to generate the RST and terminate.

Termination of Server Process

We will now start our client/server and then kill the server child process,
which simulates the crashing of the server process. We must be careful to
distinguish between the crashing of the server process and the crashing of
the server host.

https://notes.shichao.io/unp/figure_5.13.png

The following steps take place:

1.

We start the server and client and type one line to the clientto
verify that all is okay. That line is echoed normally by the server
child.

We find the process ID of the server child and kill it. As part of
process t ermination, all open de scriptors in the child are closed.
Thiscausesa FINtobesenttotheclient, andthe client T CP
responds with an ACK. This is the first half of the TCP connection
termination.

The SIGCHLD signal i s s entt ot he s erver pa rent a nd ha ndled
correctly.

Nothing h appens at the client. T he client T CP receives the F IN
from the server TCP and responds with an ACK, but the problem
is that the client process is blocked in the call to fgets waiting for a
line from the terminal.

Running netstat at this point shows the state of the sockets.

linux % netstat -a | grep 9877

tcp 0 0*9877 *ox LISTEN

tcp 0 Olocalhost:9877 localhost:43604 FIN WAIT2
tcp 1 Olocalhost:43604 localhost:9877 CLOSE WAIT

6.

We can still type a line of input to the client. Here is what happens
at the client starting from Step 1:

linux % tcpeliOl 127.0.0.1 # start client

hello # the first line that we type

hello # is echoed correctly we kill the server child on the
server host

another line # we then type a second line to the client

str_cli : server terminated prematurely

When we type "another line," str_cli calls written and the client TCP sends

the

data to the server. This is allowed by TCP because the receipt of the

FIN by the client TCP only indicates that the server process has closed its
end of the connection and will not be sending any more data. The receipt
ofthe FINdoesnottelltheclient T CPthatt hes erverp rocess h as
terminated (which in this case, it has).

BCA-E7/69

BCA-E7/70

When the server TCP receives the data from the client, it responds with an
RST since the process that had that socket open has terminated. W e can
verify that the RST was sent by watching the packets with tcpdump.

7. Thecl ientp rocess willn ots eet heR STb ecausei t
calls readline immediately after th e ¢ all to w riten a nd r eadline
returns 0 (EOF) immediately because of the FIN that was received
in Step 2. O ur client is not e xpecting to receive an E OF at this
point (str_cli) so it quits with the error message "server terminated
prematurely."

8. When th e c lient te rminates (by c alling err_quit in str_cli), all its
open descriptors are closed.

< If the readline happens before the RST is received (as shown
in t his e xample), t he r esult i s a n une xpected EOF int he
client.

% Ifth eR STa rrivesf irst,th e result is
an ECONNRESET ("Connection reset by peer") error return
from readline.

The p roblem in th is e xample is th at th e c lient is b locked in th e c all
to fgets when the FIN arrives on t he socket. The client is really working
with two descriptors, the socket and the user input. Instead of blocking on
input from onl y one of the two s ources, it s hould bl ock on input from
either source.

SIGPIPE Signal

The rules are:

e Whenap rocess writestoas ocketthath asreceived an R ST,
the SIGPIPE signal is sent to the process. The default action of this
signal is to te rminate th e process, so the process must catch the
signal to avoid being involuntarily terminated.

e Ifthe process either catches the signal and returns from the signal
handler, or ignores the signal, the write operation returns EPIPE.

We can simulate this from th e client by performing tw o writes to the
server (which has sent FIN to the client) b efore r eading an ything b ack,
with the first write eliciting the RST (causing the server to send an RST to
the client). We must use two writes to obtain the signal, because the first
write elicits the RST and the second write elicits the signal. It is okay to
write to a socket that has received a FIN, but it is an error to write to a
socket that has received an RST.

We modify our client as below:

#include "unp.h"

void

str_cli(FILE *fp, int sockfd)
{

char sendline[MAXLINE], recvline[MAXLINE];
while (Fgets(sendline, MAXLINE, fp) != NULL) {
Writen(sockfd, sendline, 1);
sleep(1);

Writen(sockfd, sendline+1, strlen(sendline)-1);

if (Readline(sockfd, recvline, MAXLINE) == 0)

err_quit("str_cli: server terminated prematurely");

Fputs(recvline, stdout);

}

The writen is called two times. The intent is for the first writen to elicit the
RST and then for the second writen to generate SIGPIPE.

Run the program on the Linux host:

linux % tcpelill 127.0.0.1

hi there # we type this line

hithere # this is echoed by the server
here we kill the server child

bye # then we type this line

Broken pipe # this is printed by the shell

We start the client, type in one line, see that line ech oed correctly, and
then terminate the server child on t he server host. W e then type another
line ("bye") and the shell tells us the process died with a SIGPIPE signal.

Ther ecommended w ayt oha ndle SIGPIPE depends onw hatt he
application wants to do when this occurs:

BCA-E7/71

BCA-E7/72

e Ifthere is nothing special to do, then setting the signal disposition
to SIG_IGN is e asy, a ssuming th at subsequent output ope rations
will catch the error of EPIPE and terminate.

e Ifspecial actions are needed, when the signal occurs (writing to a
log file perhaps), then the signal should be caught and any desired
actions can be performed in the signal handler.

e If multiple sockets are in use, the delivery of the signal will not tell
us w hich s ocket e ncountered t he e rror. If w e ne ed t o know
which write caused the error, then we must either ignore the signal
or return from the signal handler and handle EPIPE from the write.

Check Your Progress

e What will this program print?

1. #include<stdio.h>

2. #include<signal.h>

3. #include<unistd.h>

4.

5. void response (int);

6. void response (int sig_no)

7. {

8. printf("%s is working\n",sys_siglist[sig_no]);

9. }

10. int main()

11. {

12. alarm(5);

13. sleep(50);

14. printf("Sanfoundry\n");

15. signal(SIGALRM,response);

16. return O;

17. }

4.5 CRASHING AND REBOOTING OF SERVER
HOST

This section discusses the case when we will establish a connection
between the client and server and then assume the server host crashes and
reboots. T he e asiest way to simulate this is to establish th e c onnection,
disconnect t he s erver from t he ne twork, s hut d own the s erver host and

then reboot it, and then reconnect the server host to the network. We do
not want the client to see the server host shut down. The following steps
take place:

. We start the server and then the client. We type a line to verify that
the connection is established.

° The server host crashes and reboots.

. We type a line of input to the client, which is sent as a TCP data
segment to the server host.

e Whenthe s erver hos t r eboots a fter ¢ rashing, i ts T CP 1 oses a 1l
information a bout ¢ onnections t hat e xisted b efore t he ¢ rash.
Therefore, the server T CP responds to the received data segment
from the client with an RST.

o Ourc lientis bl ockedinthecallto readline whenthe R STis
received, causing readline to return the error ECONNRESET.

Check your progress
1. How are zombies handled?

2. What happens when a system does not catch SIGTERM signal?

4.6 SHUTDOWN OF SERVER HOST

When a Unix system is shutdown, the init process normally sends
the SIGTERM signal to all processes (this signal can b e c aught), w aits
some fixed amount of time (often between 5 a nd 20 s econds), and then
sends SIGKILL signal (which w e cannot catch)t oany process s till
running. This gives all running processes a short amount of time to clean
up and terminate.

If we do not catch SIGTERM and terminate, our server will be terminated
by SIGKILL signal. When the process terminates, all the open descriptors
are closed, and we then follow the same sequence of steps discussed under
—termination of server process. Weneedto selectthes electorp oll
function in the client to have the client detect the termination of the server
process as soon it occurs.

Problem: To write an algorithm for TCP echo client server
Solution: Server-

STEP 1: Start

STEP 2: Declare the variables for the socket

STEP 3: Specify the family, protocol, IP address and port number
STEP 4: Create a socket using socket() function

STEP 5: Bind the IP address and Port number

STEP 6: Listen and accept the client’s request for the connection

BCA-E7/73

BCA-E7/74

STEP 7: Read the client’s message
STEP 8: Display the client’s message
STEP 9: Close the socket

STEP 10: Stop

Client-

STEP 1: Start

STEP 2: Declare the variables for the socket

STEP 3: Specify the family, protocol, IP address and port number
STEP 4: Create a socket using socket() function

STEP 5: Call the connect() function

STEP 6: Read the input message

STEP 7: Send the input message to the server

STEP 8: Display the server’s echo

STEP 9: Close the socket

STEP 10: Stop

4.7

SUMMARY

In this unit, we discuss TCP client/server mechanism with concept

of T CP e cho s erver. C lient s erver s cenario i s e xplained us ing s ocket
programming in Linux host. V arious conditions t hat m ay o ccur dur ing
course of execution of server and client, starting from normal start up to
server f ailure. Unit also ¢ overs va rious s ignal ha ndling f unction a nd
interrupt handling in server.

4.8 TERMINAL QUESTIONS

1. Which IP address for server is used at time of client initialization
and why?

2. Write a code segment for sigaction function to establish
disposition of a signal.

3. Explain the significance of wait and wait_pid along with their
limitations.

4. Discuss the cases of crashing of server and server host.

5. Distinguish the behavior of server at time of server shut down and
server reboot.

6. What is the output of this program?

#include<stdio.h>

#include<signal.h>
#include<stdlib.h>
void response (int);

void response (int sig_no)

printf("%s\n",sys_siglist[sig_no]);
printf("This is singal handler\n");
h
int main()
{
pid_t child;
int status;
child = fork();
switch (child){
case -1 :
perror("fork");
exit (1);
case 0 :
kill(getppid(),SIGKILL);

printf("I am an orphan process because my parent has
been killed by me\n");

printf("Handler failed\n");
break;
default :

signal(SIGKILL,response);
wait(&status);
printf("The parent process is still alive\n");
break;

}

return O;

}
What is the output of this program?
#include<stdio.h>
#include<signal.h>

void response (int);

void response (int sig_no)

{

printf("%s\n",sys_siglist[sig_no]);
) BCA-E7/75

int main()
{
pid_t child;
int status;
child = fork();
switch(child){
case -1:
perror("fork");
case 0:
break;
default :
signal(SIGCHLD,response);
wait(&status);
break;

BCA-E7/76

Uttar Pradesh Rajarshi Tandon
Open University

Bachelor of Computer
Application

BCA-E7

Network Programming

Block

UNIT 5 81-104
Multiplexing

UNIT 6 105-126
Socket Options

UNIT 7 127-134
Element UDP Sockets

UNIT 8 135-146

Name and Address Conversion

BCA-E7/77

BCA-E7/78

Course Design Committee

Dr. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Prayagraj

Prof. R. S. Yadav Member
Department of Computer Science and Engineering
MNNIT-Allahabad, Prayagraj

Ms Marisha Member
Assistant Professor (Computer Science),

School of Science UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member

Assistant Professor, (Computer Science)
School of Sciences UPRTOU Prayagraj

Course Preparation Committee

Dr. Prabhat Kumar Author (Block 1,2)
Assistant Professor, Department of IT

NIT Patna

Dr. Prabhat Ranjan Author (Block 3.4)

Assistant Professor, Department of Computer Science
Central University of South Bihar

Dr. Rajiv Mishra Editor
Associate Professor, Department of CSE

IIT Patna

Dr. Ashutosh Gupta (Director in Charge)

School of Computer & Information Sciences,

UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Coordinator

Assistant Professor, (Computer Science)
School of sciences UPRTOU Prayagraj

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-11-6

All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar
Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. A run Kumar G upta R egistrar, Uttar P radesh
Rajarshi Tandon Open University, 2019.

Printed By : Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu R oad,
Prayagraj.

BLOCK INTRODUCTION

Unit 5: This unit deals with I/O multiplexing wherein the different 1/O
models are discussed. It also explains the select function, Batch Input and
Buffering, Shutdown Function and Poll Function.

Unit 6: The various socket options are discussed in this unit. Y ou will
learn about the socket states, Generic socket options, IPV6 socket options,
ICMP6 socket options along with TCP socket options.

Unit 7: The el ementary U DP s ockets are b riefed i n t his u nit. E cho
server f unctions, | ost da tagram, 1 ack o ff low ¢ ontroli n U DP a nd
determining out going i nterface w ith U DP are a Iso t he s ub-topics t o be
focused.

Unit 8: This unit covers the DNS protocol of application layer that is
responsible f or na me a nd a ddress ¢ onversion. The g ethostb y N ame
function, R esolver options, Functions and IPV6 support, Uname function
and other networking information is also discussed.

BCA-E7/79

BCA-E7/80

UNIT-5: 1I/O MULTIPLEXING

Structure

5.0 Introduction

51 Objective

5.2 /O Models

5.3 Select Function

5.4 Batch Input and Buffering
5.5 Shutdown Function

5.6 Poll Function

5.7 Summary

5.8 Terminal Questions

5.0 INTRODUCTION

/O mu ltiplexing is th e c apability o fh andling mu lItiple /O
conditions (i.e., input is ready to be read or the descriptor is ready to take
more output). There are various situations where I/O multiplexing is being
required.

° When a client is handling multiple descriptors.
® When aclient is to handle multiple sockets at the same time.

° If a TCP server handles both a listening socket and its connected
sockets.

° If a server handles both TCP and UDP.

° If as erver ha ndles multiple s ervices a nd pe rhaps m ultiple
protocols.

5.1 OBJECTIVE

This unit imparts the basic knowledge of I/O multiplexing.
o The different kinds of I/O model and select function is discussed.
. Buffering and Batch Input are explained.

e Use and working of Shutdown and Poll functions is discussed.
BCA-E7/81

BCA-E7/82

5.2 1/0 MODELS

There are five basic I/O models that are available in Unix.
e Blocking I/O
e Nonblocking I/O
e [/O multiplexing (select and poll)
° Signal driven I/O (SIGIO)

e Asynchronous I/O (the POSIX aio_ functions)
There are normally two distinct phases for an input operation:
1. Waiting for the data to be ready:

This involves waiting for data to arrive on t he network. When it
arrives, it is copied into a buffer within the kernel.

2. Copying the data from the kernel to the process.

This means copying the (ready) data from the kernel's buffer into
our application buffer.

Blocking I/0 Model

The most prevalent model for I/O is the blocking I/O model. By default,
all sockets are blocking. The scenario is shown in the figure below:

application kernel
~ read » no data ready _
system call
wait
process for data
blocks in
acall data ready -
to read copydata
copy data
from kemel
return OK to user
process ¢ copy complete -
— data

Figure 5.1: Blocking I/O Model

Weuse UDP for this e xample i nstead of T CP because w ith U DP, the
concept of data being "ready" to read is simple, either an entire datagram
has been received or it has not. With TCP it gets more complicated, as
additional variables such as the socket's low-water mark come into play.

We also refer to recvfrom as a system call to differentiate b etween o ur
application and the kernel, regardless of how recvfrom is implemented.

In the figure above, the process calls recvfrom and the system call does
not r eturn unt il the datagram arrives and is c opied into our application
buffer, or an error occurs. We say that the process is blocked the entire
time from when it calls recvfrom until it returns. W hen recvfrom returns
successfully, our application processes the datagram.

Nonblocking I/0 Model

When a socket is set to be nonblocking, we are telling the kernel "when an
I/O op eration t hat Ir equest ¢c annot be ¢ ompleted w ithout put ting t he
process t o s leep, do no tput the processto s leep, but return an e rror
instead". The figure is below:

application kermnel
system call .
— [ECVITOM SHOULD BLOCK no datagram ready _
< wait for data
system call "
recviiom SHOULD BLOCK no datagram ready
process repeatedly :
calls recvirom,
f system cal -
:r?gl:(grg:lrn recvirom £ » datagram ready
(poling)
copy datagram
v copy data from
., retum OK kemel to user
__ process datagram € Copy complete

Figure 5.2: Nonblocking I/O Model

o For t he first t hree r ecvfrom, t here isno da tatoreturn andthe
kernel immediately returns an error of EWOULDBLOCK.

e Forthe fourth time we call recvfrom, a datagram is ready, it is
copiedi ntoour a pplication buf fer,a nd recvfromr eturns
successfully. We then process the data.

BCA-E7/83

BCA-E7/84

When an application sitsin a 1oop c alling r ecvfrom on a nonbl ocking
descriptor lik e this, it is c alled polling. T he application i s ¢ ontinually
polling the kernel to see if some operation is ready. This is often a waste
of C PU time, but this model i s oc casionally encountered, nor mally on
systems dedicated to one function.

I/O Multiplexing Model

With I/O multiplexing, we call select or poll and block in one of these
two system calls, instead o f blocking in the actual I/O system call. T he
figure is a summary of the I/O multiplexing model:

application kernel

= system call
slect —2 > no data ready _

process
blocks wait

waiting for for data
one of

many fds retum readable
. s dataready -
e e, copydata
copy data
process from kemel
s retum OK fo user
process ¢ copy complete -

~ data

Figure 5.3: I/O Multiplexing Model

Web lockin a callto s elect, w aiting f or th e d atagram s ocketto b e
readable. W hen s elect r eturns t hat t he s ocket i s r eadable, w e t hen c all
recvirom to copy the datagram into our application buffer.

Multithreading with blocking I/0

Another closely related I/O model is to use multithreading with blocking
I/O. That model very closely resembles the model described above, except
that in stead o fu sing s elect to b lock o n mu ltiple file d escriptors, th e
program uses multiple threads (one per file descriptor), and each thread is
then free to call blocking system calls like recvfrom.

Signal-Driven I/O Model

The signal-driven I/0 model uses signals, telling the kernel to notify us

with the SIGIO signal when the descriptor is ready. The figure is below:

application kernel
establish SIGIO sigaction system cahll 3
signalhandler o |
s return
process |
continues wail for data
executing
; deliver SIGIO
(signalhandler ————————— datagram ready)
recviron —— LM al - copy datagram _}
process blocks while '
data Cﬁpi\(‘d nto ¢ copy data from
application buffer kernel to user
return OK '
-——— copy complete J
~ process
datagram

Figure 5.4: Signal-Driven /O Model

e We first enable the socket for signal-driven I/O and install a signal
handler us ing t he s igaction system c all. T he r eturn f rom th is
system c all is imme diate a nd o ur p rocess ¢ ontinues; it is n ot
blocked.

e Whenthed atagramisreadytoberead,the SIGIO s ignalis
generated for our process. We can either:

< Readt he d atagram f rom t he s ignal h andler by calling
recvirom and t hen not ify the mainloopthatthedatais
ready to be processed

< Notify the main loop and let it read the datagram.

The advantage to this model is that we are not blocked while waiting for
the datagram to arrive. The main loop can continue executing and just wait
to be notified by the signal handler that either the data is ready to process
or the datagram is ready to be read.

Asynchronous I/O Model

Asynchronous I /O is de fined b y t he P OSIX s pecification, a nd va rious
differences i nt he real-time functionst hata ppearedi nt he v arious

BCA-E7/85

BCA-E7/86

standards w hich cam e together to form the current P OSIX s pecification
have been reconciled.

These functions work by telling the kernel to start the op eration and to
notify us when the entire operation (including the copy of the data from
the ke rnel to our bu ffer) is complete. The main difference be tween this
model and the signal-driven I/O model is that with signal-driven 1/O, the
kernel t ellsus w hen an I/O ope ration ¢ an be 1 nitiated, but w ith
asynchronous I/0, the kernel tells us when an I/O operation is complete.
See the figure below for example:

application kemnel
aio_read system call » nodatagram ready)
T Tetum
wait for data
process canbinues *
executing datagram ready
copy datagram
copy data from
kemel to user
f
i deliver signal
signal handler e copy complete
process specihed in aio_read J

datagram

Figure 5.5: Asynchronous I/O Model

e Wecallaio read (the P OSIX asynchronous I/O functions be gin
with aio_ or lio) and pass the kernel the following:

< Descriptor, buffer poi nter, buf fers ize (the s amet hree
arguments for read),

< File offset (similar to Iseek),
< Method to notify us when the entire operation is complete.

This s ystem ¢ all r eturns imme diately and o ur p rocess is n ot
blocked while waiting for the I/O to complete.

e We assume in this example that we ask the kernel to generate some
signal when the operation is complete. This signal is not generated

until the data has been copied into our application buffer, which is
different from the signal-driven I/O model.

Comparison of the I/O Models

The main difference between the first four models is the first phase, as the
second phase in the first four models is the same: the process is blocked in
a call to recvfrom while the data is copied from the kernel to the caller's
buffer. Asynchronous I/O, however, handles both phases and is di fferent
from the first four. The figure below is a comparison of the five different

1/O models.

Synchronous I/O versus Asynchronous I/0O

POSIX defines these two terms as follows:

e A synchronous I/O operation c auses the requesting process to be
blocked until that I/O operation completes.

e Ana synchronous I/O ope ration doe s not ¢ auset he r equesting
process to be blocked.

blocking nonblocking | 1/0 multiplexing | signal-driven 1/0 | asynchronous 1/0
initiate check check initiate
check
check
check T
check 2
check g
o check
E check
2 check ready notification
initiate inifiate
= g T
i
complete complete complete complete notification
| o 2N y J
1t phase handled differently, handles both
2nd phase handled the same phases

(blocked in call to recvfrom)

Figure 5.6: I/O Model Comparison

wait for
data

copy data
from kernel
to user

Using these definitions, the first four I/O models (blocking, nonblocking,
I/O multiplexing, and signal-driven I/O) are all synchronous be cause the
actual I/O operation (recvfrom) blocks the process. Only the asynchronous
I/O model matches the asynchronous I/O definition.

BCA-E7/87

BCA-E7/88

5.3 SELECT FUNCTION

The select function allows the process to instruct the kernel to either:

° Wait for any one of multiple events to occur and to wake up t he
process only when one or more of these events occurs, or

° When a specified amount of time has passed.

This means that we tell the kernel what d escriptors we are interested in
(for reading, writing, or an exception condition) and how long to wait. The
descriptors in which we are interested are not restricted to s ockets; any
descriptor can be tested using select.

#include <sys/select.h>

#include <sys/time.h>

int select(int maxfdp1, fd_set *readset, fd_set *writeset, fd_set *exceptset,
const struct timeval *timeout);

/* Returns: positive count of ready descriptors, 0 on timeout, —1 on error */

The timeout argument

The timeout argument t ells t he ke rnel how 1ong t o w ait for one of the
specified de scriptors t o be come r eady. A timeval structure s pecifies t he
number of seconds and microseconds.

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

|5

There are three possibilities for the timeout:

1. Wait forever (timeout is specified as a null pointer). R eturn only
when one of the specified descriptors is ready for I/O.

2. Wait up to a fixed amount of time (timeoutpointst o
a timeval structure). R eturn when one o f the specified descriptors
is ready for I/O, but do not wait beyond the number of seconds and
microseconds specified in the timeval structure.

3. Do not wait at all (timeout points t o a timeval structure and the
timer valueis 0,1 .e. t he num ber of s econds a nd m icroseconds
specified b yt hes tructure ar e 0). R eturni mmediately af ter
checking the descriptors. This is called polling.

Note:

e The wait in the first two scenarios is normally interrupted if the
process catches a signal and returns from the signal handler. For
portability, w e m ust b e pr epared f or select to r eturn a n e rror
of EINTRif w e a re ¢ atching s ignals. Berkeley-derived k ernels
never automatically restart select.

e Although the timeval structure has a microsecond field tv_usec, the
actual r esolution s upported b y t he ke rnel i s of ten m ore ¢ oarse.
Many Unix kernels round the timeout value up to a multiple of 10
ms. There is also a scheduling l1atency involved, meaning it takes
some time after the timer expires before the kernel schedules this
process to run.

e On some systems, t he timeval structure c an r epresent v alues t hat
arenot s upported by select;itw ill f ail w ith EINVAL if
the tv_sec field in the timeout is over 100 million seconds.

e The const qualifier on the timeout argument me ansitis n ot
modified by select on return.

The descriptor sets arguments *

The three middle arguments, readset, writeset, and exceptset, s pecify the
descriptors t hat w e w ant t he ke rnel t o t est f or r eading, w riting, a nd
exception c onditions. T here are only two exception ¢ onditions c urrently
supported:

° The arrival of out-of-band data for a socket.

e The presence of c ontrol s tatus i nformationto be read from t he
master s ide o fa p seudo-terminal t hat ha s be en put into pa cket
mode. (Not covered in UNP)

select uses descriptor sets, typically an array of integers, with each bit in
each i nteger correspondingt o a de scriptor. For e xample, us ing 32 -bit
integers, the first element of the array corresponds to descriptors 0 through
31, the second element of the array corresponds to descriptors 32 through
63,ands oon. A 1lt hei mplementation de tails a re i rrelevantt ot he
application and are hidden in the fd_set datatype and the following four
macros:

void FD_ZERO(fd_set *fdset); /* clear all bits in fdset */
void FD_SET(int fd, fd_set *fdset); /* turn on the bit for fd in fdset */
void FD_CLR(int fd, fd_set *fdset); /* turn off the bit for fd in fdset */

int FD_ISSET(int fd, fd_set *fdset); /* is the bit for fd on in fdset ? */

We allocate a descriptor set of the fd_set datatype, we set and test the bits
int he s etus ing t hese m acros, a nd w e ¢ an a Iso a ssign i tt o a nother
descriptor set across an equals sign (=) in C.

BCA-E7/89

https://en.wikipedia.org/wiki/Out-of-band_data

BCA-E7/90

An array of integers using one bit per descriptor, is just one possible way
to implement select. Nevertheless, it is common to refer to the individual
descriptors within a descriptor setas bits,as in "turn ont he bit for the
listening descriptor in the read set."

The following example defines a variable of type fd_set and then turns on
the bits for descriptors 1, 4, and 5:

fd_set rset;

FD_ZERO(&rset); /* initialize the set: all bits off */
FD_SET(1, &rset); /* turn on bit for fd 1 */
FD_SET(4, &rset); /* turn on bit for fd 4 */
FD_SET(5, &rset); /* turn on bit for fd 5 */

It is important to initialize the set, since unpredictable results can occur if
the set is allocated as an automatic variable and not initialized.

Any oft hem iddlet hree argumentst o select, readset, writeset,
or exceptset, can be specified as a null pointer if we are not interested in
that condition. Indeed, if all three pointers are null, then we have a higher
precision time r th an th e normal U nix sleep function. T he poll function
provides similar functionality.

The maxfdpl argument

The maxfdpl argument specifies the number of descriptors to be tested. Its
value is the maximum descriptor to be tested plus one. The descriptors 0,
1, 2, up through and including maxfdp1—1 are tested.

The c onstant FD_SETSIZE, d efined b y i ncluding <sys/select.h>, 1 s t he
number of descriptors in thefd set datatype. Its value is often 1024, but
few programs use that many descriptors.

The r eason t he maxfdpl argument e xists, a long w itht he bur deno f
calculating its value, is for efficiency. Although each fd set has room for
many descriptors, typically 1,024, this is much more than the number used
by a typical process. The kernel gains efficiency by not copying unneeded
portions of the descriptor set between the process and the kernel, and by
not testing bits that are always 0.

readset, writeset, and exceptset as value-result arguments

select modifies t he d escriptor s ets poi nted t o by t he readset, writeset,
and exceptset pointers. These three arguments are value-result arguments.
When we call the function, we specify the values of the descriptors that we
are interested in, and on return, the result indicates which descriptors are
ready. We use theFD ISSET macro on return to test a s pecific descriptor
in an fd_set structure. Any descriptor that is not ready on return will have
its corresponding bit cleared in the descriptor set. To handle this, we turn
onall the bits in which we are interested in all the descriptor sets each
time we call select.

Return value of select

The return value from this function indicates the total number of bits that
are ready across all the descriptor sets. If the timer value ex pires b efore
any of the descriptors are ready, a value of 0 is returned. A return value of
—1 indicates an error (which can happen, for e xample, i f the functionis
interrupted by a caught signal).

Check your progress

1. Explain nonblocking I/O model.

2. What are the possibilities for timeouts?

S.4 BATCH INPUT AND BUFFERING

If we consider the network between the client and server as a full-
duplex pipe, with requests going from the client to the server and replies in
the reverse direction, then the following figure shows our stop-and-wait

mode:

rirrre Ok

client ——p—

rirrre

firrre

rirrre 3

rirre

#irnre

rirrre

rirnre

Clienl ——

]

!\JI'I

&:

£

request I

I request I

| request |

| request

—— ST

| reply

lat— SETVED

I reply

I reply

reply I

Figure 5.7: Stop and Wait Mode

BCA-E7/91

https://notes.shichao.io/unp/figure_6.10.png

BCA-E7/92

Note that this figure:

e Assumes that there is no server processing time and that the size of
the request is the same as the reply

e Showss howonl yt heda tapa ckets,i gnoringt he T CP
acknowledgments that are also going across the network

A request is sent by the client at time 0 and we assume an RTT of 8 units
of time. The reply sent at time 4 is received at time 7.

This stop-and-wait mode is fine for interactive input. The problem is: if
we run our client in a batch mode, when we redirect the input and output,
however, the resulting output file is always smaller than the input file (and
they should be identical for an echo server).

Batch mode

To s ee w hat's h appening, r ealizet hatinab atch m ode, w e can k eep
sending r equests a s fastas t he n etwork can acceptt hem. T he s erver
processes them and sends back the replies at the same rate. This leads to
the full pipe at time 7, as shown below:

Time 7:
—>| request8 | request7 | request6 | requestS >
< replyl reply 2 reply 3 reply 4

Time 8:
—> request9 | request8 | request7 | request6 Q—>
< reply2 reply 3 reply 4 reply 5 \<—

Figure 5.8: Batch Mode
We assume:

o After sending the first request, we immediately send another, and
then another

e Wecan keep sending requests as fast as the network can accept
them, along with processing replies as fast as the network supplies
them.

Assume that the input file contains only nine lines. The last line is sent at
time 8, as shown in the above figure. But we cannot close the connection
after writing this request because there are still other requests and replies
in the pipe. The cause of the problem is our handling of an EOF on input:
The function returns to the main function, which then terminates. But in a
batch mode, an EOF on input does not imply that we have finished reading
from the socket; there might still be requests on the way to the server, or
replies on the way back from the server.

https://notes.shichao.io/unp/figure_6.11.png

The solution is to close one-half of the TCP connection by sending a FIN
to the server, telling it we have finished sending data, but leave the socket
descriptor op en f or r eading. T his i s don e w ith t he shutdown f unction,
described in the next section.

Buffering concerns

When s everal | ines of i nputs a re a vailable f rom t he s tandard i nput
select will cause the code to read the input using fgets which will read the
available lines into a buffer used by stdio. But, fgets only returns a single
line a nd le aves a ny remaining d ata s itting in th e s tdio buf fer. T he
following code writes that single line to the server and then select is called
again to wait for more work, even if there are additional lines to consume
in the stdio buffer. The reason is that select knows nothing of the buffers
used b ys tdio;it w ill only s how r eadability from th e v iewpointo f
the read system call, not calls lik e fgets. T hus, mixing stdio and select is
considered very error-prone and should only be done with great care.

The same problem exists with readline in this example (str_cli function).
Instead of da ta be ing h idden from select in a s tdio buf fer, it is hi dden
in readline's buffer. A function that gives visibility into readline's buffer,
so one possible solution is to modify our code to use that function before
calling select to see if data has already been read but not consumed. But
again, the complexity grows out of hand quickly when we have to handle
the case where the readline buffer contains a partial line (meaning we still
need to read more) as well as when it contains one or more complete lines
(which we can consume).

pselect Function

The pselect function w as invented by P OSIX and i s now supported by
many of the Unix variants.

#include <sys/select.h>

#include <signal.h>

#include <time.h>

int pselect (int maxfdpl, fd_set *readset, fd_set *writeset, fd_set *exceptset,
const struct timespec *timeout, const sigset_t *sigmask);

/* Returns: count of ready descriptors, 0 on timeout, —1 on error */

pselect contains two changes from the normal select function:

1. pselectuses t he timespec structure (another P OSIX 1 nvention)
instead of the timeval structure. The tv_nsec member of the newer
structure s pecifies n anoseconds, w hereas t he tv_usec member o f
the older structure specifies microseconds.

BCA-E7/93

BCA-E7/94

struct timespec {
time_ttv_sec; /*seconds */
long tv_nsec; /* nanoseconds */

|7

2. pselect adds a sixth argument: a pointertoa signal mask. T his
allows the program to disable the delivery of certain signals, te st
some global variables that are set by the handlers for these now -
disabled signals, and then call pselect, telling it to reset the signal
mask.

With regard to the second point, consider the following example:

Our program's signal handler for SIGINT just sets the global intr flag and
returns. If our process is blocked in acal 1to select, the return from the
signal handler causes the function to return with errno set to EINTR. But
when select is called, the code looks like the following:

if (intr_flag)
handle_intr(); /* handle the signal */
/* signals occurring in here are lost */
if ((nready = select(...)) <0) {
if (errno == EINTR) {
if (intr_flag)
handle_intr();

}

The problem is that between the test of intr flag and the call to select, if
the signal occurs, it will be lost if select blocks forever.

With pselect, we can now code this example reliably as:

sigset_t newmask, oldmask, zeromask;
sigemptyset(&zeromask);
sigemptyset(&newmask);
sigaddset(&newmask, SIGINT);
sigprocmask(SIG_BLOCK, &newmask, &oldmask); /* block SIGINT */
if (intr_flag)

handle_intr(); /* handle the signal */
if ((nready = pselect (..., &zeromask)) < 0) {

if (errno == EINTR) {

if (intr_flag)

handle_intr ();

}

Before t esting t he intr_flag variable, w e b lock SIGINT. W hen pselect is
called, i t r eplaces t he s ignal m ask o f't he p rocess w ith an em pty s et
(i.e., zeromask) and then checks the descriptors, possibly going to sleep.
But w hen pselect returns, t he s ignal m ask of the processisresettoits
value before pselect was called (i.e., SIGINT is blocked).

5.5 SHUTDOWN FUNCTION

Then ormalw ayto terminatea n etwork connectionis to c all
the close function. But, there are tw o limita tions w ith close that ¢ an be
avoided with shutdown:

1. close decrements t he d escriptor's r eference co unt an d cl oses t he
socket only if the count reaches 0. With shutdown, we can initiate
TCP's normal connection termination sequence (the four segments
beginning with a FIN in), regardless of the reference count.

2. close terminates b oth d irections o fd atat ransfer, r eading an d
writing. S ince a TCP c onnection i s full-duplex, t here a re t imes
when we want to tell the other end that we have finished sending,
even though that end might have more data to send us. This is the
scenario we encountered in the previous section with batch input to
our str_cli function. T he figure be low s hows t he t ypical function
calls in this scenario.

client server
write data
vwrite data :: read returns >0
shutdown FIN read retumns >0

read retumns ()

M"

data write

read returns >0 data write

read returns >0 FIN cloge
read returns 0 d”/’/’/

A

Figure 5.9: Network Termination using shutdown Function BCA-E7/95

https://notes.shichao.io/unp/figure_6.12.png

BCA-E7/96

#include <sys/socket.h>

int shutdown(int sockfd, int howto);

/* Returns: 0 if OK, =1 on error */

The action of the function depends on the value of the howto argument:

. SHUT RD: The read half of the connection is closed. No more
data can bereceived on the socket and any data currently in the
socket receive buffer is discarded. The process can no longer issue
any o f the read functions on the s ocket. Any data received after
thisc all fora T CP s ocketi s a cknowledged a nd t hen s ilently
discarded.

. SHUT WR: The write half of the connection is closed. In the
case of TCP, this is called a half-close. Any data currently in the
socket s end bu ffer w ill be s ent, f ollowed b y TCP's nor mal
connection t ermination sequence. As w e m entioned e arlier, t his
closing of the write half is done regardless of whether or not the
socket descriptor's reference count is currently greater than 0. The
process ¢c anno I onger i ssue a ny of t he w rite f unctions on t he
socket.

. SHUT RDWR: The read half and the write half of the
connection are both closed. Thisi se quivalentto
calling shutdown twice: f irstw ith SHUT RDandt hen
with SHUT WR.

The t hree SHUT xxx names ar e d efined b yt he P OSIX s pecification.
Typical values for the howto argument that you will encounter will be 0
(close the read half), 1 (close the write half), and 2 (close the read half and
the write half).

Check your progress
1. What are the possible values of howto argument?

2. Explain pselect function?

5.6 POLL FUNCTION

Poll provides f unctionalityth atis s imilarto select,
but poll provides a dditional i nformation w hen d ealing with S TREAMS
devices.

#include <poll.h>
int poll (struct pollfd *fdarray, unsigned long nfds, int timeout);

/* Returns: count of ready descriptors, 0 on timeout, —1 on error */

Arguments:

The first argument (fdarray) is a pointer to the first element of an array of
structures. Each element is apollfd structure that specifies the conditions to
be tested for a given descriptor, fd.

struct pollfd {
int fd; /* descriptor to check */
short events; /* events of interest on fd */

short revents; /* events that occurred on fd */

|7

The conditions to be tested are specified by the events member, and the
functionr eturnst hes tatusf ort hatde scriptori nt he
corresponding revents member. T his data structure (having two variables
per descriptor, one a value and one a result) avoids value-result arguments
(the middle three arguments forselect are value-result). Each of these two
members is composed of one or more bits that specify a certain condition.
The following figure shows the constants used to specify the events flag
and to test the revents flag.

| Constant gvents revents Description

POLLIN X X normal or priority band to read
POLLRDNORM X X normal data to read
POLLRDBAND X X priority band data to read
POLLPRI X X high-priority data to read
[POLLOUT X X normal data can be writien
POLLWRNORM X X normal data can be written
POLLWRBAND X X priority band data can be written
POLLERR X an error has occurred
POLLHUP X hangup has occurred
POLLNVAL X descriptor is not an open file

Figure 5.10: Summary of Constants specifying events and revents flags

The first four constants deal with input, the next three deals with output,
and the f inal t hree d eals w ith er rors. T he f inal t hree cannotb e s et
in events, b ut ar e al ways r eturned i n revents when t he corresponding
condition exists.

Withr egardt oT CPa nd U DP s ockets,t he f ollowing ¢ onditions
cause poll to r eturn t he s pecified revent. Unfortunately, P OSIX 1 eaves
many holes (optional ways to return the same condition) in its definition
ofpoll.

e All regular TCP data and all UDP data is considered normal.

BCA-E7/97

BCA-E7/98

e TCP's out-of-band data is considered priority band.

e When the read half of a TCP connection is closed (e.g., a FIN is
received), t his i s also ¢ onsidered nor mal d ata and a s ubsequent
read operation will return 0.

e The presence of an error for a T CP connection can be considered
either n ormal d ata o r an er ror (POLLERR). In ei ther case, a
subsequent read will r eturn —1 w ith errno set t o t he a ppropriate
value. This handles conditions such as the receipt of an RST or a
timeout.

e The availability of a new connection on a listening socket can be
considered e itherno rmalda taor pr iorityd ata. M ost
implementations consider this normal data.

e The completion of a nonblocking connect is considered to make a
socket writable.

The n umber o fel ementsi nt he ar ray o fs tructuresi s s pecifiedb y
the nfds argument.

The timeout argument s pecifies h ow long the function is to wait be fore
returning. A positive value specifies the number of milliseconds to wait.
The constant INFTIM (wait forever) is defined to be a negative value.

Return values from poll:
e] ifan error occurred
° 0 if no descriptors are ready before the timer expires

® Otherwise,i ti st henum berof de scriptorst hatha vea
nonzero revents member.

Ifwe aren ol ongerinterestedinap articular d escriptor, w e j usts et
the fd member of the pollfd structure to a negative value. Then the events
member is ignored and the revents member is set to 0 on return.

This s ection i s di scusses t he T CP e cho s erver f rom using poll instead
of select.

In the select version we allocate a client array along with a d escriptor set
named rset. W ith poll, we m ust al locate an ar ray o f pollfd structures to
maintain th e ¢ lient in formation in stead o f a llocating a nother array. W e
handlet he fd member o ft hisar rayt he samew ayw eh andled
the client array in the selection version: a value of —1 means the entryis
not in use; otherwise, itis the descriptor v alue. Any entry in the array

of pollfd structures passed to poll with a negative value for the fd member
is just ignored.

/* include fig01 */
#include "unp.h"
#include <limits.h> /* for OPEN_MAX */

Int main(int argc, char **argv)

{
int i, maxi, listenfd, connfd, sockfd;
int nready;
ssize_t n;
char buf[MAXLINE];
socklen_t clilen;

struct pollfd client[OPEN_MAX];
struct sockaddr_in cliaddr, servaddr;
listenfd = Socket(AF_INET, SOCK_STREAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(SERV_PORT);
Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));
Listen(listenfd, LISTENQ);
client[0].fd = listenfd;
client[0].events = POLLRDNORM;
for (i=1; i < OPEN_MAX; i++)
client[il.fd =-1; /* -1 indicates available entry */
maxi = 0; /* max index into client[] array */
/* end fig01 */
/* include fig02 */
for (;;){
nready = Poll(client, maxi+1, INFTIM);
if (client[0].revents & POLLRDNORM) { /* new client connection */
clilen = sizeof(cliaddr);
connfd = Accept(listenfd, (SA *) &cliaddr, &clilen);
#ifdef NOTDEF
printf("new client: %s\n", Sock_ntop((SA *) &cliaddr, clilen));

BCA-E7/99

BCA-E7/100

#endif
for (i= 1; i < OPEN_MAX; i++)
if (client[i].fd < 0) {
client[i].fd = connfd; /* save descriptor */
break;
}
if (i == OPEN_MAX)
err_quit("too many clients");
client[i].events = POLLRDNORM,;
if (i > maxi)
maxi = i; /* max index in client[] array */
if (--nready <=0)
continue; /* no more readable descriptors */
}
for (i = 1; i <= maxi; i++) { /* check all clients for data */
if ((sockfd = client[i].fd) < 0)
continue;
if (client[i].revents & (POLLRDNORM | POLLERR)) {
if ((n = read(sockfd, buf, MAXLINE)) < 0) {
if (errno == ECONNRESET) {
/* connection reset by client */
#ifdef NOTDEF
printf("client[%d] aborted connection\n", i);
#endif
Close(sockfd);
client[i].fd = -1;
} else
err_sys("read error");
}else if (n==0) {
/* connection closed by client */
#ifdef NOTDEF
printf("client[%d] closed connection\n", i);
#endif
Close(sockfd);
client[i].fd = -1;

}

} else
Writen(sockfd, buf, n);
if (--nready <=0)

break; /* no more readable descriptors */

This code does the following:

Allocate array of pollfd structures.
We declare OPEN_MAX elements in our array of pollfd

structures. Determining the maximum number of descriptors
that a process can have opened at any one time is difficult. One
way is to call the POSIX sysconf function with
an argument of SC OPEN MAX (as described in
APUE) and then dynamically allocate an array of the
appropriate size.

Initialize. We u se th e f irst e ntry in th e client array fo rt he
listening socket and set the descriptor for the remaining entries to —
1. We also set the POLLRDNORM event for this descriptor, to be
notified b ypoll when a ne w c onnectionis ready to b e a ccepted.
The v ariable maxi contains t he 1 argest i ndex o f't he client array
currently in use.

Call poll, check for new connection. We cal | poll to w ait
for either a new connection or data on existing connection.

< Whena ne wc onnection is accep ted, w e f indt he f irst
available entry in the client array by looking for the first one
with a negative descriptor.

< We start the search with the index of 1, since client[0] is used
for the listening socket.

< When an available entry is found, we save the descriptor and
set the POLLRDNORM event.

Check for data on an existing connection. The two return
events that we check for are POLLRDNORM and POLLERR. We
did not set POLLERR in the events member because it is al ways
returned w hent he ¢ onditioni s true. T her eason w e ch eck
for POLLERR is be cause s ome implementations return this e vent

BCA-E7/101

BCA-E7/102

whenanR STisr eceived fora ¢ onnection, while ot hers j ust
return POLLRDNORM. In either case, we call read and if an error
has occurred, it will return an error. When an existing connection
is terminated by the client, we just set the fd member to —1.

Check your progress

1. Explain w ith f igure s top a nd w ait m ode f or r equest r eply
messages between client and server in full duplex network.

2. What are the possible return values of the timeout argument and
what do they mean?

5.7 SUMMARY

In this unit, we study about the five different models in Unix for I/O:
o Non-blocking
o Blocking
o I/O multiplexing
o Signal-driven I/O
o Asynchronous I/0O

We see that the Blocking /O is the prevalently applied default. It is also
observed t hat the P OSIX s pecification i s widely used for de fining t rue
asynchronous I/O. The select function is used for I/O multiplexing. T he
descriptors, th e ma ximum w aiting time a long withth e ma ximum
descriptor number incremented by one are provided to the select function.
Readability i s s pecified b y t he callsto select. Itis al so o bserved t hat
arrival of out of band data is the only exception that arises during socket
processes. T he s elect function dictates a | imit on the length of time for
which a block in a function persists. This salient feature can be applied to
administer the time limit length for input operations. Similar functionality
is also provided by the poll function. It also describes information related
to S TREAM de vices. T hough, t he s elect f unctiona s w ell as t he pol 1
function is necessary for POSIX but the select function is preferably used
in most cases.

5.8 TERMINAL QUESTIONS

1. Define I/O multiplexing. Under which circumstances is it used?

2. Compare the different I/O multiplexing models.

What are the five functions used to perform file /O ona U nix
System? Elaborate each function with example.

What is timeout argument? Explain the timeval structure.

Describe t he s teps i nvolved i n C 1 anguage while as signing a
descriptor s et t o a nother one a cross t he e quals s ign w hen t he
descriptor set is an array of integers.

Differentiate between select and poll functions.

What is the consequence when the second argument provided to
shutdown is SHUT RD?

Describe the conditions under which an application calls shutdown
using the argument of SHUT RDWR as an alternative to simply
calling close.

BCA-E7/103

BCA-E7/104

UNIT-6 : SOCKET OPTIONS

Structure

6.0 Introduction

6.1 Objective

6.2 getsockopt and setsockopt Function
6.3 Socket States

6.4 Generic Socket Option

6.5 IPV6 Socket Option

6.6 ICMP6 Socket Option

6.7 TCP Socket Option

6.8 Summary

6.9 Terminal questions

6.0 INTRODUCTION

A socket is an endpoint of a connection across a computer network
which i s r esponsible t o de liver da ta packett o ap propriate p rocess o r
thread. Itis a c ombination of IP address and p ort number. Sockets are
communication points on t he s ame or di fferent ¢ omputers t o ex change
data. T hese are s upported b y Unix, Windows, M ac, a nd m any ot her
operating s ystems. T o be m ore pr ecise,it'sa waytotalkt oot her
computers using standard Unix file descriptors. In Unix, every I/O action
is done by writing or reading a file descriptor. A file descriptor is just an
integer associated with an open file and it can be a network connection, a
text file, a terminal, or something else. To a programmer, a socket looks
and be haves m uch 1 ike a 1 ow-level f ile d escriptor. T hisi s b ecause
commands such as read() and write() work with sockets in the same way
they do with files and pipes.

6.1 OBJECTIVE

To cr eate aw areness ab out t he d ifferent s ocket o ptions av ailable
for the development of application.

e Firstly getsockop and setsockopt functions are discussed, then the
different s ocket s tates a nd g eneric s ocket o ptions ar e ex plained
further.

BCA-E7/105

BCA-E7/106

e This unit also sheds light on s ocket options for IPV6 and ICMP6.
Lastly TCP socket options are specified and the chapter terminates
with summary.

6.2 GETSOCKOPT AND SETSOCKOPT
FUNCTION

There are various ways to control a socket:

getsockopt() is used to retrieve options associated with the socket. If an
option is to be interpreted by the TCP protocol, protocolLevel is set to the
TCP pr otocolnum ber. T hepa rameters optionValuePtr and
optionLengthPtr is used to identify a buffer in which the value(s) for the
requested option(s) are to be returned. The socket in use may require the
process t o ha ve a ppropriate privileges to us e the getsockopt() function.
The option_name argument specifies a single option to be retrieved.

It canb eoneo ft he following v alues w hich h ave b een d efined i n
<sys/socket.h>:

Socket Level Options

The following options are recognized at the socket level:

Data
Type
SO BINDTODEVICE string The d evice n ame, as s et w ith

tfAddInterface(), will b e s tored

as a null-terminated string in the
buffer poi nted t ob y

Protocol Level Options Description

optionValuePtr.
SO DONTROUTE int Enable/disable r outing b ypass
for outgoing messages.
Default 0.
SO _ERROR int Retrieve t he s ocket er ror. This
option is for getsockopt() only!
SO KEEPALIVE int Enable/disable ke ep c onnections
alive.
Default 0 (disable).
SO LINGER linger Linger on close if data is present.

Default ON with a linger time
of 60 seconds.

SO OOBINLINE int Enable/disable r eception of out -
of-band data in band.
Default is 0.

http://wiki.treck.com/tfAddInterface
http://wiki.treck.com/Struct:linger

SO RCVBUF

SO RCVLOWAT

SO _REUSEADDR

SO _REUSEPORT

SO _SNDBUF

SO SNDLOWAT

TM_SO_RCVCOPY

TM_SO_SNDAPPEND

unsigned
long

unsigned
long

int

int

unsigned
long

unsigned
long

unsigned
int

unsigned
int

The buffer size for input.
Default is 8192 bytes.

Thel ow waterm arkf or
receiving in bytes.
Default value is 1.

Enable this socket option to bind
the same port number to multiple
sockets us ing di fferent local IP
addresses.

Default 0 (disable).

Enable this socket option to bind
the s ame | ocal IP ad dress an d
portt om ultiples ockets. If
multiple U DP s ockets ha ve t he
SO REUSEPORT option s et,
then t hose s ockets c an bind t o
the s ame 1 ocal IP ad dress, an d
local UDP port.

Default 0 (disable).

The buffer size for output.
Default is 8192 bytes.

The low water mark for sending
in bytes.
Default value is 2048.

TCP socket: fractionuseo fa
receive b uffer b elow w hich w e
try anda ppendt oa previous
receive b ufferi nt hes ocket
receive queue.

UDP socket: fractionuseo fa
receive b uffer b elow w hich w e
tryandcopytoan ewr eceive
buffer, if there is already at least
a buffer in the receive queue.
Default value is 4 (25%).

TCP socket only. T hreshold in
bytes of s end buf fer be low,
which we try and append to the
previous send buffer in the TCP
send que ue. O nlyus ed w ith
send(), not W ith
tfZeroCopySend().

Default value is 128 bytes.

BCA-E7/107

http://wiki.treck.com/send
http://wiki.treck.com/tfZeroCopySend

BCA-E7/108

TM_SO_SND DGRAMS

TM_SO RCV_DGRAMS

SO UNPACKEDDATA

unsigned
int

unsigned
int

int

Thenum bero fn on-TCP
datagrams that can be queued for
send on a socket.

Default is 8 datagrams.

The number of non-TCP
datagrams that can be queued for
receive on a socket.

Default is 8 datagrams.

TI C3x and C5x DSP
platforms only. If this option is
enabled, all socket data will be
sent and received in byte
unpacked format. If this option
is disabled, all socket data will
be sent in a byte packed format,
as received from the network.
Default 0 (disable)

Table 6.1: Socket level options

IP Level Options

The following options are recognized at the IP level:

protocolLevel Options
IPO_HDRINCL

IPO RCV_TOS

IPO_TOS

IPO TTL

IPO_SRCADDR

Data Type

nt

unsigned
char

unsigned
char

unsigned
char

ttUserlpAd
dress

Description

This is a toggle option used on
raw s ockets only. If the value
isnon -zero, itin structsth e
Treck s tack t hatt heu seri s
including t he IP he ader w hen
sending data.

Default 0

Received IP type of service on
the connection (from the last IP
datagram arrivedon t he
connection.)

IP type of service.
Default 0

IP Time To Live in seconds.
Default 64

Set t he IP s ource a ddress f or
the connection.

Default: The first multi-home
IP address on the outgoing

http://wiki.treck.com/Struct:ttUserIpAddress
http://wiki.treck.com/Struct:ttUserIpAddress

IPO MULTICAST TTL

IPO_MULTICAST IF

IPO_ADD _MEMBERSHI
P

IPO_DROP MEMBERS
HIP

IP BLOCK SOURCE

I[P UNBLOCK SOURCE

IP. ADD SOURCE ME
MBERSHIP

IP. DROP_SOURCE_ME
MBERSHIP

MCAST JOIN_GROUP

MCAST LEAVE GROU
P

MCAST BLOCK SOUR
CE

MCAST UNBLOCK SO
URCE

unsigned
char

in addr

1Ip mre

1Ip mre

ip_mreq_s
ource

ip_mreq_s
ource

ip_mreq_s
ource

1Ip_mreq_S
ource

roup re

roup re

group_sour
ce_req

roup_sour
ce_req

interface

Change the default IP TTL for
outgoing multicast datagrams.

Specify a configuredl P
addresst hatw illun iquely
identify t he out going interface
for multicast datagrams sent on
this s ocket. A zero IP address
parameter i ndicatest hatw e
want to reset ap reviously s et
outgoing interface for multicast
packets sent on that socket.

Add group multicast IP address
to g iven i nterface (see struct

ip_mreq data type).

Delete g roup multicast] P
address to given interface.

Block data from a given source
toa g ivenmu lticast g roup
(mute).

Unblock da taf rom ag iven
sourcet oa given m ulticast
group (un-mute).

Join a source-specific group.

Leave a source-specific group.

Add group multicast IP address
to given interface. T his option
also supports IPPROTO_IPV6.

Delete g roup multicast] P
address to given interface. This
option a Iso s upports
IPPROTO_IPVeé.

Block data from a given source
toa g ivenmu lticast g roup
(mute). T hisopt iona Iso
supports [PPROTO_IPV6.

Unblock da taf rom ag iven
sourcet oa given m ulticast

BCA-E7/109

http://wiki.treck.com/Struct:in_addr
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:ip_mreq
http://wiki.treck.com/Struct:group_req
http://wiki.treck.com/Struct:group_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req

BCA-E7/110

group (un-mute). T his opt ion
also supports IPPROTO_IPV6.

MCAST JOIN SOURCE |group_sour Joina s ource-specific g roup.

_GROUP ce_req This opt iona Isos upports

IPPROTO_IPVé.

MCAST LEAVE SOUR |group_sour | Leave a source-specific group.

CE_GROUP ce_req This option also supports
IPPROTO_IPV6.
IP RCV_TOS unsigned Retrieve the IP header TOS
char from a packet on a TCP

connection, after the TCP
connection has been
established.

Table 6.2: IP level options

6.3 SOCKET STATES

The following socket options are inherited by a connected TCP socket
from the listening socket:

SO DEBUG: Iti sa boolean option w hich r eports w hether
debugging information is being recorded.

SO _ACCEPTCONN: It is a bool ean option which reports s ocket
listening has been enabled.

SO BROADCAST: It is boolean option to report that transmission
of broadcast messages is being supported by the protocol.

SO REUSEADDR: Itisa bool ean option w hich r eports w hether
the r ules us ed i n va lidating a ddresses s upplied t o bind() should
allow reuse of local addresses.

SO KEEPALIVE: It reports whether connections are kept active
with pe riodic t ransmission of m essages. If the connected s ocket
fails to respond to these messages, the connection shall be broken
and threads writing to that socket shall be notified with a SIGPIPE
signal. This option shall store an int value. This is also a boolean
option.

SO _LINGER: It reports w hether t he s ocket l ingers on close() if
data is present. If SO _LINGER is set, the system shall block the
calling thread during close() until it ¢ an transmit the data or until
the e nd of t hei ntervali ndicatedb yt he [linger member,
whichever comes first. If SO LINGER is not specified, and close()
is i ssued, t he s ystem h andles the call in a way thatallows the
calling thread to continue as quickly as possible. This option shall
store a linger structure.

http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://pubs.opengroup.org/onlinepubs/009695399/functions/bind.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/close.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/close.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/close.html

SO _OOBINLINE: R eports w hethert hes ocket] eaves
received out-of-band data (data marked urgent) inline. This
option shall store an int value. This is a Boolean option.

SO _SNDBUF: Reports send buffer size information. T his
option shall store an int value.

SO RCVBUF: R eports r eceive buf fer s ize i nformation.
This option shall store an int value.

SO _ERROR: R eports i nformation a bout e rror status a nd
clears it. This option shall store an int value.

SO_TYPE: Reports the socket type. This option shall store
an int value.

SO DONTROUTE: R eports w hether out going m essages
bypass the standard routing facilities. The destination shall
beona di rectly-connected ne twork, and m essages a re
directed to the appropriate network interface according to
the de stination a ddress. T he e ffect, i f any, of this option
depends on w hat protocol is in use. This option shall store
an int value. This is a Boolean option.

SO RCVLOWAT: Reports the minimum number of bytes
to process for socket input operations. The default value for
SO RCVLOWATis1. If SO RCVLOWAT issettoa
larger value, blocking receive calls normally wait until they
have received the smaller of the low water mark value or
the requested amount. (They may return less than the low
water mark if an error occurs, a signal is caught, or the type
of d atan ext inther eceive q ueue i s d ifferent f rom t hat
returned; for example, out-of-band data.) This option shall
store an int value. Note that not all implementations allow
this option to be retrieved.

SO RCVTIMEO: R eports t he t imeout va lue for i nput
operations. This option shall store a timeval structure with
the num ber of s econds a nd m icroseconds s pecifying t he
limit on how 1 ongt ow ait f ora ni nputope rationt o
complete. If a receive operation has blocked for this much
time without receiving additional data, it shall return with a
partialco unto r errno sett o[EAGAIN]Jo r
[EWOULDBLOCK] if no data was received. T he d efault
for t his opt ion is zero, w hich i ndicates t hat ar eceive
operations hallnot t imeout .N otet hatnot a Il
implementations allow this option to be retrieved.

6.4

GENERIC SOCKET OPTIONS

Protocol-independent ¢ ode (ornot b y any existing pr otocol
module) within the kernel are used to handle these generic socket options.

BCA-E7/111

BCA-E7/112

Someo ptionsar es ockett ypes pecific. F orex ample,
the SO BROADCAST socket o ption is ¢ alled "g eneric," w hich is u sed
only for datagram sockets.

SO _BROADCAST Socket Option

This option controls the ability of the process to send broadcast messages.
Only datagram sockets support broadcasting and networks that support the
concept of a broadcast message (e.g., Ethernet, token ring, etc.).

Applications that doesn’t support broadcast mechanism are not allowed to
do so because applications have to set this socket option before initializing
broadcast. For example, a UDP application might take the destination IP
address as a command-line argument, but the application ne ver intended
fora usertot ypeina br oadcasta ddress. Rathert han f orcingt he
application to try to determine if a given address is a broadcast address or
not, thetestisinthekernel: Ift he de stination a ddressis ab roadcast
address and this socket option is not set, EACCES is returned.

SO_DEBUG Socket Option

This option is supported only by TCP. W hen enabled for a T CP socket,
the kernel keeps track of detailed information about all the packets sent or
received by TCP for the socket. These are kept in a circular buffer_within
the kernel that can be examined with the trpt program.

SO _DONTROUTE Socket Option

This opt ion s pecifies t hat out going p ackets a re t o b ypass t he n ormal
routing mechanisms of the underlying protocol. The destination must be
onad irectly-connected n etwork, an d m essages ar e d irectedt ot he
appropriate ne twork i nterface according t o t he de stination a ddress. F or
example, i ncas e of IPv4 pa cketsa re routedt hrough uni quel ocal
interfaces and if the interface is not found, ENETUNREACH is returned.

The equivalent of this option can also be applied to individual datagrams
using t he MSG_DONTROUTE flag with th e send, sendto
or sendmsg functions. T his opt ioni s of tenus ed b y r outing da emons
(e.g., routed and gated) to bypass the routing table and force a packet to be
sent out a particular interface.

SO_ERROR Socket Option

This option is one that can be fetched but cannot be set. When an error
occurs on a socket, the protocol module in a Berkeley-derived kernel sets
a variable namedso_error for that socket to one of the standard Unix Exxx
values. This is called the pending error for the socket. The process can be
immediately notified of the error in one of two ways:

1. Ifthe process is blocked in a call to select on the socket, for either
readability o rw ritability, select returns w ith e itheror bot h
conditions set.

https://en.wikipedia.org/wiki/Circular_buffer

2. Ift hep rocessi sus ings ignal-driven I/O, t he SIGIO signal is
generated for either the process or the process group.

The pr ocess cant henobt aint heva lueof so errorbyf etching
the SO ERROR socketopt ion. T hei ntegerva luer -eturned
by getsockopt is the pending error for the socket. The value of so_error is
then reset to 0 by the kernel.

e [fso erroris nonzero when the process calls read and there is no
datat or eturn, read returns —1 w itherrnosett ot hev alue
of so_error. The value of so_error is then reset to 0. If there is data
queued for the socket, that data is returned by read instead of the
error condition.

e Ifso erroris nonzero when the process calls write, —1 is returned
with errno set to the value ofso_error and so_error is reset to 0.

SO_KEEPALIVE Socket Option

When the keep-alive option is set for a TCP socket and no data has been
exchanged a cross t he s ocket 1 n e ither di rection f or t wo hour s, T CP
automatically sends a keep-alive probe to the peer. This probeisa TCP
segment to which the peer must respond. One of three scenarios results:

1. The peer responds with the expected ACK. The application is not
notified (since e verything i s oka y). For f urther t wo hour of
inactivity TCP will send a probe.

2. Peer host’s crash or reboot is reported via RST to the local TCP.
Sockets remaining errors are set to ECONNRESET and the socket
is closed.

3. Ifpeerdoesn’tresponset ok eep-alive p robe, B erkeley-derived
TCPs s end 8 a dditional pr obes w ith g ap pe riod of 75 s econds.
After 11 minutes and 15 seconds of inactivity, TCP will give up.

SO _LINGER Socket Option

This opt ion s pecifies how t he close function ope rates for a c onnection-
oriented pr otocol (for TCP, but not for UDP). By de fault, close returns
immediately, but if there is any d ata s till r emaining in th e s ocket s end
buffer, the system will try to deliver the data to the peer.

The SO _LINGER socket opt ion ¢ an ¢ hange t his de fault. T his opt ion
requires t he following s tructure t o b e p assed (as t he *optval argument)
betweent heus erpr ocessa ndt heke mel. Iti sde finedb y
including<sys/socket.h>.

struct linger {
int |_onoff; /* 0=off, nonzero=on */
int |_linger; /* linger time, POSIX specifies units as seconds

*I'h

BCA-E7/113

BCA-E7/114

Calling setsockopt leadst oone of t hef ollowingt hrees cenarios,
depending on the values of the two structure members:

1.

If 1 onoffis 0,t he optionisturned of f. T he v alue of 1 linger is
ignoreda ndt he previouslydi scussed T CPde fault
applies: close returns immediately.

If]1 onoffisnonz ero andl lingerisz ero, TCPa bortst he
connection when it is closed.

** Inthiscase, T CP discards any d ata s till r emaining i n t he

socket s end bu ffer and sends an R ST to the p eer, not the
normal four-packet connection termination sequence.

** This s cenario a voids T CP's T IME_WAIT s tate, but 1 eaves
open the possibility of another incarnation of this connection
being created within 2MSL seconds and having old duplicate
segments f romth e just-terminated ¢ onnection be ing
incorrectly delivered to the new incarnation.

L)

)

* Occasional U SENET p ostings a dvocate t he us e of t his
feature just to avoid the TIME WAIT state and to be able to
restart a listening s erver even if connections are still in use
with the server's well-known port. This should NOT be done
and could lead to data corruption, as detailed in RFC1337.
Instead, the SO REUSEADDR socket option should always
be used in the server before the call to bind. We should make
use ofthe TIME WAIT state to let old duplicate s egments
expire in the network rather than trying to avoid it.

%* There ar e cer tain ci rcumstances w hich w arrant u sing t his
feature t o s end an ab ortive cl ose. O ne ex ample 1s an RS-
232 terminal s erver, whichmig hth ang foreverin
CLOSE_WAIT trying to deliver data to a stuck terminal port,
but would properly reset the stuck portifit gotan RST to
discard the pending data.

If 1 onoffis nonzero and 1 linger is nonzero, then the ke rnel will
linger when the socket is closed.

** Inthis s cenario, if thereis any data still r emaining in the
socket send buffer, the process is put to sleep until either:

1. Allthedataissentandacknowledged bythe peer
TCP, or

2. The linger time expires.

%* If the socket has been set to nonblocking, it will not wait for
the close to ¢ omplete, e ven i f't he | inger t ime 1 s nonz ero.
When us ing t his feature of t he SO LINGER option, it is

important f or t he a pplicationt o ¢ heck t he r eturn va lue
from close, b ecause i f't he | inger t ime ex pires b efore t he
remaining d ata i ss ent an d

https://tools.ietf.org/html/rfc1337
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/RS-232

acknowledged, close returns EWOULDBLOCK and a ny
remaining data in the send buffer is discarded.

Given the above three scenarios, consider the situations when a close on a
socket returns. A ssume that the client writes data to the socket and then
calls close.

Default operation of close: it returns immediately *

client seTver

write data

close FIN =g data queued by TCP
close returns \\‘—.
ACK of data and FIN
‘-_’_—_’_ﬂ——"_—’—_.- cluﬂe

A

—%ﬂ

Figure 6.1: Default operation of close

Assume that when the client's data arrives, the server is temporarily busy,
so the data is added to the socket receive buffer by its TCP. Similarly, the
next segment, the client's FIN, is also added to the socket receive buffer.
Butb yd efault, t he cl ient's close returns i mmediately. Int he s cenario
shown a bove, t he client's ¢ lose can return b efore t he s erver reads t he
remaining data in its socket receive buffer. Therefore, it is possible for the
server host to crash before the server application reads this remaining data,
and the client application will never know.

Close with SO_LINGER socket option set and]l linger a
positive value *

The cl ient cans ett he SO LINGER socket o ption, s pecifying s ome
positive linger time. W hen this oc curs, the client's close does not return
until all the client's data and its FIN have been acknowledged by the server
TCP, as shown in the figure below.

client server

Write dam

close \&l‘—-ﬁdwqmbﬁ'm
*w’ \
olose s application reads queved data and FIN
‘—/‘FEH”’_- close

Figure 6.2: close with SO _LINGER option

BCA-E7/115

https://notes.shichao.io/unp/figure_7.7.png
https://notes.shichao.io/unp/figure_7.8.png

But this still has the same problem as: The server host can crash before the
server application reads its remaining data, and the client application will
never know . W orse, the following figure s hows w hat c an happen w hen
the SO LINGER option is set to a value that is too low.

client servar
write daty
close H\\\Hﬂ: datn queved by TCP
closs rebumns -1 with

ENOULDS fdanmd PN
N BULDRIOT | A ptkaton s qusued daaard FIN
"_,—-EH’/ close

Figure 6.3: close with SO LINGER option set to very low value

Iti si mportantt okn owt hata s uccessful return f rom close, w ith
the SO LINGER socket option set, only tells us that the data we sent (and
our FIN) have been acknowledged by the peer TCP. This does not tell us
whether t he peer a pplicationha sr eadt heda ta. Ifw edonot s et
the SO_LINGER socket option, we do not know w hether the p eer T CP
has acknowledged the data.

6.4 IPV6 Socket Options

The following options are recognized at the IPv6 level:

protocolLevel Options Data Type Description

IPV6_ VOONLY int Force the socket to be IPv6-
only. N ormally, w hen
running w ith b oth
TM _USE [PV4 and
TM_USE IPV6 defined, a
socketc reated with

AF INET6 isa bleto

communicate via both IPv4
and [IPv6.S ettingt his
socket opt ion f orces the
socket t 0 co mmunicate via

IPv6 only.

IPV6 _JOIN GROUP ipv6_mreq | Join an IPv6 multicast
group.

IPV6_LEAVE GROUP ipv6_mreq | Leave an IPv6 multicast
group.

BCA-E7/116

http://wiki.treck.com/Struct:ipv6_mreq
http://wiki.treck.com/Struct:ipv6_mreq
https://notes.shichao.io/unp/figure_7.9.png

MCAST_JOIN_GROUP

MCAST LEAVE GROUP

MCAST BLOCK_ SOURCE

MCAST UNBLOCK_ SOUR
CE

roup rc

roup rc

group_sour
ce_req

group_sour
ce_req

MCAST JOIN SOURCE GR | group_sour

oup

MCAST LEAVE SOURCE

GROUP

IPV6 MULTICAST HOPS

IPV6 MULTICAST IF

IPV6_UNITCAST HOPS

CC_rcq

group_sour
ce_req

unsigned
int

int

int

Joina n IPvbm ulticast
group. T hisopt iona Iso
supports [IPPROTO _IP.

Leavea n IPv6 mu lticast
group. T hisopt iona Iso
supports [IPPROTO _IP.

Block da taf roma g iven
sourcet oa g iven IPv6
multicast g roup (mute).
This opt ion a Iso s upports
IPPROTO _IP.

Unblock data from a given
sourcet oa g iven IPv6
multicast g roup (un-mute).
This opt ion a Iso s upports
I[PPROTO IP.

Join a s ource-specific [Pvo
group. T hisopt iona Iso
supports [IPPROTO _IP.

Leave a s ource-specific
IPv6 group. T his opt ion
also supports IPPROTO_IP.

This option allows the user
to set the hop limit field in
thel Pv6 headerf or
multicast p ackets s ent v ia
this socket.

Default 1

Specify the interface i ndex
of the outgoing interface for
multicast datagrams sent on
this s ocket. A ni nterface
index of 0 indicates that we
wanttor esetap reviously
set out going i nterface for
multicast p ackets s ento n
this socket.

This option allows the user
to set the hop limit field in
the IPv6 header for unicast
packets sent via this socket.

Table 6.3: IPv6 socket options

BCA-E7/117

http://wiki.treck.com/Struct:group_req
http://wiki.treck.com/Struct:group_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req
http://wiki.treck.com/Struct:group_source_req

BCA-E7/118

Check your progress
1. Describe SO REUSEPORT option of sockets.

2. Enlist the generic socket options.

6.5 ICMP6 SOCKET OPTIONS

The ICMP6 FILTER s ocket opt ionc anbe us edb ya R AW
application to filter out I[CMPv6 message types that it does not need to
receive. ICMPv6 provides function comparable to ICMPv4 plus IGMPv4
and ARPv4 functionality. An application might be interested in receiving
only a subset of the messages received for ICMPv6.

This option is enabled or disabled with a setsockopt(). The option value
provides a 256 -bit a rray of m essage t ypes t hat s hould be filtered. T o
disable the option, the setsockopt() should be issued with an option length
of 0. This causes the TCP/IP protocol stack's default filter to be in effect.

A getsockopt() with this option returns the value set by a setsockopt(). If a
setsockopt() has not been done, the TCP/IP protocol stack's default filter is
returned.

6.6 TCP SOCKET OPTIONS

The following options are recognized at the TCP level:

Protocol Level

Options Data Type Description

TCP_KEEPALIVE |int Sets the idle time in seconds for a T CP
connection b efore it starts sen ding k eep
alive probes. Note that keep alive probes
will be sent only if the SO KEEPALIVE
socket option is enabled.

Default 7,200 seconds.

TCP_MAXRT int Sets the amount of time in seconds before
the connection is broken once TCP starts
retransmitting, or probing a zero window
when t he pe er doe sno tr espond. A
TCP_MAXRT value of 0 means the
system d efault, and -1 means retransmit
forever. If a positive value is specified, it
may be roundedupt othe connection
nextr etransmission time. Notet hat
unlesst he TCP_ MAXRT v aluei s -1
(transmit f orever), t he connection can
alsobe b rokeni ft henum berof

TCP_ MAXSEG

TCP_NODELAY

nt

nt

maximum r etransmission
TM_TCP_MAX REXMITha sbe en
reached. See TM_TCP_MAX REXMIT
below.

Default 0. Meaning: u set he sy stem
defaultof T M_TCP MAX REXMIT
times network ¢ omputed round trip time
for an established connection. For a non-
established connection, since there isno
computedr oundt rip time yet,t he
connection can be broken when either 75
seconds or \4 hen
TM_TCP_MAX REXMIT times d efault
network r ound t rip t ime ha ve e lapsed,
whichever occurs first).

Sets the maximum T CP seg ment si ze
sent on the network. N otet hatt he
TCP_MAXSEG v alue i s t he m aximum
amount of data (including T CP options,
but not the TCP header) that can be sent
per segment to the peer. This means that
the amount of user data sent per segment
is the value given by the TCP. MAXSEG
option m inus a ny e nabled T CP o ption
(for e xample 1 2b ytes fora TCP time
stamp option). T he T CP_MAXSEG
value can be decreased or increased prior
to a c¢ onnection establishment, but it is
notr ecommendedt os et ittoa v alue
higher than the IP MTU minus 40 bytes
(for e xample 1460 by tes on E thernet),
since this w ould ¢ ause fragmentation of
TCP segments. Note:set ting the
TCP_MAXSEG o ption w ill i nhibit the
automatic ¢ omputation of t hat v alue by
the system based on the IP MTU (which
avoids f ragmentation),a ndw illa lIso
inhibit P ath MTU D iscovery. A fter the
connection has started, this value cannot
bec hanged. N otea lIsot hatt he
TCP_MAXSEG v aluec annotb es et
below 64 bytes. Default value is [P MTU
minus 40 bytes.

Default is IP MTU minus 40 bytes.

Set this option value to a non-zero value,
tod isableth e N aglea lgorithmth at
buffers the s ent da tai nsidet he TCP.
Useful t o a llow cl ient's TCPt o send
small p ackets as soon a s p ossible (like
mouse clicks).

Default 0.

BCA-E7/119

BCA-E7/120

TCP_NOPUSH

TCP_STDURG

TM_TCP 2MSLTI
ME

TM_TCP _DELAY
_ACK

TM_TCP_FINWT2
TIME

TM_TCP_KEEPAL
IVE_CNT

TM_TCP_KEEPAL
IVE_INTV

TM_TCP MAX R
EXMIT

TM_TCP PACKE
T

nt

int

int

int

int

int

int

nt

nt

Set this option value to a non-zero value,
to force TCP to delay sending any T CP
data until a full sized segment is buffered
int he TCPbuf fers.U sefulf or
applications t hats end c ontinuous b ig
chunks of data like F TP, and know t hat
more data is coming. (Normally the TCP
code sends a non full-sized segment, only
if it empties the TCP buffer).

Default 0.

Set this option value to a zero value if the
peer is a Berkeley system since Berkeley
systems set t he u rgent d ata p ointer to
point to last byte of urgent data+1.
Default 1.

Sets the maximum amount of time T CP
will wait in the TIME WAIT state, once
it has initiated a close of the connection.
Default 60 seconds.

Sets the TCPd elayack t imei n
milliseconds.
Default 200 milliseconds.

Sets the maximum amount of time T CP
will w ait for th e remote side to c lose,
after it initiated a close.

Default 600 seconds.

Sets the maximum numbers of keep alive
probes w ithout a ny r esponse f rom t he
remote, be fore TCP gives up and aborts
the connection.

Default 8.

Sets the interval b etween K eep A live
probes i ns econds. S ee
TM_TCP_KEEPALIVE CNT.T his
value can not bec hanged af tera
connection is e stablished, and c annot be
bigger than 120 seconds.

Default 75 seconds.

Sets them aximumnum ber of
retransmissions w ithout anyr esponse
from t he r emote, b efore TCP givesup
and aborts the connection.

Default 12.

Set this option value to a non-zero value
tom ake T CP b ehavel ikea message-
oriented protocol (i.e. respect packet
boundaries) at the a pplication 1l evel i n

TM_TCP_PEND_ A | unsigned long

CCEPT RECV W
ND

TM_TCP_PROBE
MAX

TM_TCP_PROBE
MIN

TM_TCP PURE A
CK_SEGS

unsigned long

unsigned long

nt

both send and receive directions of data
transfer. N otet hat fort her eceive
direction to r espect pa cket boun daries,
the TCP peer which is sending must also
implement s imilar functionality in 1 ts
send direction. This is useful as a reliable
alternative to UDP. Note that preserving
packet boun daries w ith TCP w ill no t
work ¢ orrectly i fy ou us e out -of-band
data. TM_USE TCP_PACKET must be
defined in< trsystem.h>t o uset he
TM_TCP_PACKET option.

Default 0.

Specify the size (in bytes) of the listening
socket's r eceive window. This s ize w ill
override the defaults izeo r the size
specified by setsockopt() withth e
SO RCVBUF flag. Once accept() is
calledon the listenings ocket,t he
window s ize w ill returnto thes ize
specifiedby S O RCVBUF (ort he
default). N ote: This s ize m ay not be
larger t han t he de fault w indow s ize t o
avoid shrinking of the receive window.

Sets the maximum window probe timeout
interval i n m illiseconds. T he ne twork
computed w indow pr obet imeouti s
bound by T M_TCP PROBE MIN a nd
TM_TCP_PROBE MAX.

Default 60,000 milliseconds.

Sets the minimum window probe timeout
interval i n m illiseconds. T he ne twork
computed w indow pr obet imeouti s
bound by T M_TCP_PROBE_MIN a nd
TM_TCP_PROBE MAX.
Default 500 milliseconds.

Option on ly a vailable 1 f
TM_USE TCP_PURE_ACK is de ined.
Sets the number of outstanding un-
ACKed segments, before a pure ACK is
sent (evenif ther ecv window hasnot
changed.) Default value is zero, in which
case thest ackw illb ehaveas if
TM_USE TCP_PURE ACK hadn ot
been d efined, and will only A CK e very
other s egment pr ovidedt hat iti s
combined with a window update, or will
ACK when the delay ACK timer expires
regardless of the window update.

Default 0.

BCA-E7/121

http://wiki.treck.com/setsockopt
http://wiki.treck.com/accept
http://wiki.treck.com/Compile_Time_Macros#TM_USE_TCP_PURE_ACK
http://wiki.treck.com/Compile_Time_Macros#TM_USE_TCP_PURE_ACK

BCA-E7/122

TM_TCP_REXMIT
_CONTROL

TM_TCP_RTO DE
F

TM_TCP_RTO M
AX

TM_TCP RTO MI
N

TM_TCP_SEL AC
K

TM_TCP_SLOW _
START

TM_TCP SSL CLI
ENT

TM_TCP_SSL SE
RVER

TM_TCP_SSLSES
SION

nt

unsigned long

unsigned long

unsigned long

nt

int

nt

int

int

Dynamically m odify the behavior of the
TCPre transmission timer fort he
specified so cket. V alid v alues are 1
(Pause), 2 (Resume),a nd 3 (Reset).
TM_USE TCP_REXMIT CONTROL
must be defined in <trsystem.h> to make
this option available.

Setst he T CPd efaultr etransmission
timeout value in milliseconds, used when
no ne twork r ound t rip t ime ha s be en
computed yet.

Default 3,000 milliseconds.

Setst he maximum retransmission
timeout i n m illiseconds. T he ne twork
computed r etransmissiont imeouti s
boundby T M TCP_RTO MINa nd
TM_RTO MAX.

Default 64,000 milliseconds.

Sets the minimum retransmission timeout
in m illiseconds. The n etwork ¢ omputed
retransmission timeouti s bound by
TM_TCP_RTO MIN a nd
TM_TCP_RTO MAX.

Default 100 milliseconds.

Set this option value to a non-zero value
toen ables endingth e T CPs elective
Acknowledgment option.

Note: This option can only be changed
prior to establishing a TCP connection.
Default 1.

Set this option value to zero, to disable
the TCP slow start algorithm.
Default 1.

Sett his optiont o e nable SSL client
negotiation on t his s ocket, optionLength
must be s izeof(int), a ny non -zero v alue
will enable SSL client.

Set t his o ptiont o en able S SL ser ver
negotiation on t his s ocket, optionLength
must be s izeof(int), a ny non -zero v alue
will enable SSL server. Note that, if you
set this option for a listening socket, all
accepted sockets inherit this option value,
you don’t have to set this option again on
an accepted socket.

Set the S SL s ession I d for t his s ocket.
The op tion | ength m ust be s izeof(int).

http://wiki.treck.com/Compile_Time_Macros#TM_USE_TCP_REXMIT_CONTROL

TM_TCP_SSL SE | int
ND MIN SIZE

TM_TCP_SSL SE |int
ND MAX SIZE

TM_TCP_TS int

TM_TCP_WND S | int
CALE

TM_TCP STATE | int

TM TCP _USER P | ttUserGeneric
ARAM Union

TM TCP CA HY |int
BLA

Note t hat, i f yous et this option for a
listening so cket, a 1l acc epted so ckets
inherit this option value, you don’t have
to set this o ption again on an ac cepted
socket

Set the SSL send minimum size. If user's
send data is less than this value, user data
will be qu eued. O ption length must be
sizeof(int), a nd o ptionva luec ann ot
greater t han 0 xffff. D on’t set this value
too big.

Default value is defined as macro
TM_SSL_SEND DATA MIN SIZE

0

Set the SSL record maximum size. Each
record will at most have that much user
data encapsulated. User data bigger than
this s ize lim itw illb e cut intotw o
records, O ptionl engthm ustbe
sizeof(int), a nd o ptionva luec ann ot
greater than 0x4000 to enable reasonable
encapsulate. Don’t sett his value too
small. (<100 value will be rejected)
Default value is defined as macro
TM_SSL_SEND_DATA MAX SIZE
(8000).

Set this option value to a non-zero value
to enable sending the Time stamp option.
Note: T his option can only be changed
prior to establishing a TCP connection.
Default 1.

Set this option value to a non-zero value
to enable sending the TCP window scale
option.

Note: T his option can only be changed
prior to establishing a TCP connection.
Default 1.

Get the state of the TCP vector associated
with the socket.
Note: Read only value.

Use this option to set/get user data for a
specific T CPso cket. T o enablet his
feature, un comment t he
TM_USE USER_PARAM macro
definition in your <trsystem.h>.

Set this option value to 1, to switch to the
TCPH yblaC ongestion A voidance
Algorithm. T he TCP H ybla a Igorithm

BCA-E7/123

http://wiki.treck.com/Union:ttUserGenericUnion
http://wiki.treck.com/Union:ttUserGenericUnion
http://wiki.treck.com/Compile_Time_Macros#TM_USE_USER_PARAM

BCA-E7/124

yields better p erformance forT CP
connections with a long round trip time
(suchasona high-latency terrestrial or
satellite radio link). Set this option value
t00,t o switchbacktothe T CP R eno
Congestion Avoidance Algorithm.
Default 0.

TM_TCP_PACING | int Set this option value to 1, to turn on TCP
Pacing. With TCP Pacing turned on, the
stack will attempt to send TCP segments
within the congestion window and p eer
receive w indow ov ert he R ound T rip
Time, instead of sending them all at once.
For be tter pe rformance,t his op tion
should be turned on, if the TCP HYBLA
algorithm is switched on. Set this option
value to 0, to turn off TCP Pacing.

Default 0.
T TCP_CA WE |int Set this option value to 1, to switch to the
STOOD TCP W estwood+ C ongestion A voidance

Algorithm. The TCPW estwood+
algorithm yields better performance on
TCP co nnections o ver wireless 1 ossy
links. Set this option value to 0, to switch
backt ot he T CP Reno Congestion
Avoidance Algorithm.

Default 0.

Table 6.4: TCP socket options

Check your progress
1. Explain IPV6 MULTICAST IF option of IPV6 Socket.

2. What is the use of ICMP6_FILTER socket option?

6.8 SUMMARY

This unit details the socket concept and its programming tools. The
two m ain s ocket f unctions a re di scussed w ith br ief de scription of i ts
option p arameter which ar e used t o s et s pecific r equirement. Listening
socketr etrieve s ome parameters f rom connected TCPt oge tt he
connection status know ledge. Idea of generic sockets is also included in
the unit. S ocket options de scription at [Pv6, ICMP6 and T CP level are
included with their syntactic representation.

6.9 TERMINAL QUESTIONS
1. Describe the use of socket options with example.
2. Write a code segment to retrieve output buffer size and set it to
1024 bytes.
3. How default of close function is modified and why it is needed?

Explain what and why of generic options.

BCA-E7/125

BCA-E7/126

UNIT-7: ELEMENTARY UDP SOCKETS

Structure

7.0 Introduction

71 Objective

7.2 Echo Server Function

7.3 Lost Datagram

7.4 Lack of Flow Control with UDP

7.5 Determining Outgoing Interface with UDP
7.6 Solved Questions

7.7 Summary

7.8 Terminal Questions

7.0 INTRODUCTION

The User Datagram Protocol (UDP) is one of the core members
of't he internet pr otocol s uite. UDP 1 st he s impler of t he t wo s tandard
TCP/IP transport protocols where prior communications are not required
to set up transmission ¢ hannels or data paths. Itis ap rocess-to-process
protocol that a dds only port num ber for a ddressing, c hecksum for da ta
integrity and length information of data from the upper layer. With UDP,
computer a pplications ¢ an s end m essages, t o ot her hos ts on a n internet
protocol (IP) network. Although this is an “unreliable” protocol due to no
handshaking but unlike TCP, it does not include mechanisms for retrying
on transmission failures or data corruption and also it has restrictions on
message | ength (al ittle unde r 65536 bytes). Iti s m ostly ne eded f or
applications t hatus e broadcasting or m ulticastinga nd m aypl ay
performance-intensive r oles s uch a s mu Itimedia. UDP is s uitable f or
purposes where error checking and correction is either not necessary and it
also avoids the overhead of such processing at the network interface level.
Time-sensitive a pplications of ten us e U DP be cause dr opping packetsis
preferable to waiting for delayed packets, which may not be an option in a
real-time system.

7.1 OBJECTIVE

To understand the usage, properties and implementation of UDP.
After this unit you will come to know about:

® Tasks performed by echo server function and drawbacks of UDP

e What happens when a datagram is lost.

BCA-E7/127

https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Transmission_channel
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol

BCA-E7/128

e Lack of support for flow control in UDP

e How to determine an outgoing interface with UDP

7.2 ECHO SERVER FUNCTION

UDPisa “connectionless” protocol which enables a p rogram to
use a single UDP socket t o c ommunicate w ith more than one host and
port. UDP port num bers are entirely independent of T CP port numbers,
though the IANA tries to register the same port number for both UDP and
TCP when a given service is offered through both protocols. In fact, one
of the most important practical differences between TCP and UDP is that
there are no message boundaries in a TCP stream, whereas in UDP, every
packet (datagram) is effectively a self-contained message. For applications
where reliability is not a concern and where all messages are known to fit
within the limited size of datagram, this can occasionally make UDP more
convenient to use than TCP. UDP server socket is created in much the
same way as a TCP server socket. The communication between client and
server through UDP protocol is implemented through UDP echo server.

Anechoserveris an application w hichisusedtotestthe connection
between client and server. This server sends back whatever text the client
sent. However, client server is an environment where s erver process the
request sent by client.

In the UDP Echo server, we create a socket and bind to an advertised port
number. Then an infinite loop is started to process the client requests for
connections. Figure 7.1 shows the working of UDP Echo server.

J"I!'qll.".ﬂ'

Client

Fe SO SC

Figure 7.1: Working of UDP Echo server

The process receives data from the client using recvfrom() function and
echoes t he s ame d ata u sing t he s endto() function. It ha ndles m ultiple
clients au tomatically as U DP1sa d atagram b ased p rotocol h ence n o
exclusive connection is required to a client in this case.

Drawbacks of UDP:

TCP has emerged as the dominant protocol used for the bulk of internet
connectivity o wingt os ervices f orb reakingl arged atas etsi nto
individual packets, ¢ hecking for andr esendingl ostpa cketsa nd
reassembling p ackets i nto t he co rrect s equence. Butt hese additional

http://searchnetworking.techtarget.com/definition/protocol
http://searchnetworking.techtarget.com/definition/packet

services come at a co st in terms o f ad ditional data overhead, and delays
called latency.

7.3 LOST DATAGRAMS

UDP s endst he pa ckets ove r1 ower bandwidth overhead a nd
latency. But packets can be lost or received out of order between sender
and receiver. UDP is an ideal protocol for network applications in which
perceivedl atencyi scr iticals uchas gaming, voi cea ndvi deo
communications, w hich ¢ an s uffer s ome da ta | oss w ithout a dversely
affecting pe rceived qua lity. Ins ome ¢ ases, forward e rror correction
techniques are used to improve audio and video quality in spite of some
loss.

UDPc ana Isobe us edi na pplications th atr equire lo ssless d ata
transmission when the application is configured to manage the process of
retransmitting lost packets and correctly arranging received packets. This
approach can help to improve the data transfer rate of large files compared
with TCP.

UDP client/server is not reliable. If a client datagram is lost, the client will
block forever in its call to recvfrom in the function dg_cli. It may wait for
aserverr eply t hat w ill n ever ar rive. S imilarly, i ft he cl ient d atagram
arrives at the server but the server's reply is lost, the client will again block
foreverin its c allto recvfrom. Ho wever, justp lacing atime outo n
the recvfrom cannot be the solution. For example, if we do t ime out, we
cannot t ell whether our datagram never madeitto the server, or ifthe
server's reply never made it back.

74 LACK OF FLOW CONTROL WITH UDP

We now examine the effect of UDP not having any flow control.
First, we modify our dg_cli function to send a fixed number of datagrams.
It no 1 onger reads from standard input. Figure 1 s hows the new version.
This function writes 2,000 1,400-byte UDP datagrams to the server.

We ne xt m odify the s erver to receive d atagrams and c ount t he num ber
received. This server no longer echoes datagrams back to the client. Figure
2 shows the new dg_echo function. When we terminate the server with our
terminal in terrupt k ey (SIGINT), i t pr intst he num ber of r eceived
datagrams and terminates.

udpcliserv/dgcliloopl.c

l.#include "unp.h"

2 #define NDG 2000 /* datagrams to send */

3 #define DGLEN 1400 /* length of each datagram */
4 void

BCA-E7/129

http://searchcio.techtarget.com/definition/data-latency
http://searchenterprisewan.techtarget.com/definition/bandwidth
http://searchnetworking.techtarget.com/definition/network
http://whatis.techtarget.com/definition/gaming
http://searchunifiedcommunications.techtarget.com/definition/data-transfer-rate

BCA-E7/130

5 dg_cli(FILE *fp, intsockfd, const SA *pservaddr, socklen_tservlen)
6 {

7 int 1

8 char sendline[DGLEN];

9 for (1=0;1<NDG;i++) {

10 Sendto(sockfd, sendline, DGLEN, 0, pservaddr, servlen);
11}

12}
udpcliserv/dgecholoopl.c

1 #include "unp.h"

2 static void recvfrom_int(int);

3 static intcount;

4 void

5 dg_echo(intsockfd, SA *pcliaddr, socklen tclilen)

6 {

7 socklen_tlen;

8 char mesg[MAXLINE];

9 Signal(SIGINT, recvfrom_int);

10 for(;;)

11 len = clilen;

12 Recvfrom(sockfd, mesg, MAXLINE, 0, pcliaddr, &len);
13 count++;

14 }

15}

16 static void

17 recvfrom_int(intsigno)

18 {

19 printf("\nreceived %d datagrams\n", count);

20 exit(0);

21}

We now run the server on the host freebsd, a slow SPARCStation. We run
the client on t he R S/6000 s ystem aix, c onnected directly with 100M bps

Ethernet. A dditionally, we run netstat -s on the server, both be fore and
after, as the statistics that are output tell us how many datagrams were lost.

Check your progress

1. What is an echo server?

2. How does UDP improve the data transfer rate of large files
compared with TCP?

7.5 DETERMINING OUTGOING INTERFACE
WITH UDP

A c onnected U DP s ocket c an also be usedto determine t he out going
interface that will be used to a particular destination. This is because of a
side effect o fthe connect function w hen applied to a UDP socket. T he
kernel chooses the local IP address (assuming the process has not already
called bind to explicitly assign this). This local IP address is chosen by
searching the routing table for the destination IP address, and then using
the primary IP address for the resulting interface.

udpcliserv/udpcli09.c

1 #include "unp.h"

2 int

3 main(intargc, char **argv)

44

5 intsockfd;

6 socklen tlen;

7 structsockaddr incliaddr, servaddr;

8 if(arge !=2)

9 err_quit("usage: udpcli<IPaddress>");

10 sockfd = Socket(AF _INET, SOCK_DGRAM, 0);
11 bzero(&servaddr, sizeof(servaddr));

12 servaddr.sin_family = AF INET;

13 servaddr.sin_port = htons(SERV_PORT);

14 Inet pton(AF INET, argv[1], &servaddr.sin addr);
15 connect(sockfd, (SA *) &servaddr, sizeof(servaddr));
16 len = sizeof(cliaddr);

17 Getsockname(sockfd, (SA *) &cliaddr, &len);

BCA-E7/131

BCA-E7/132

18 printf("local address %s\n", Sock ntop((SA *) &cliaddr, len));
19 exit(0);
20 }

If we run the program on the multi hom ed ho st freebsd, w e ha ve the
following output:

freebsd % udpcli09 206.168.112.96
local address 12.106.32.254:52329
freebsd % udpcli09 192.168.42.2
local address 192.168.42.1:52330
freebsd % udpcli09 127.0.0.1

local address 127.0.0.1:52331

The first time we run the program, the command-line argument is an IP
address t hat follows t he de fault route. T he ke rnel a ssigns t he 1 ocal IP
address to the primary address of the interface to which the default route
points. T he s econd t ime, t he ar gumentisthe IP ad dresso fas ystem
connected to a second Ethernet interface, so the kernel assigns the local IP
address to the primary address of this second interface. Calling connect on
a UDP socket does not send anything to that host; it is entirely a lo cal
operation that saves the peer's IP address and port. We also see that calling
connect on an unbound UDP socket also assigns an ephemeral port to the
socket.

7.6 SOLVED EXAMPLES

Ques: What is the largest length that we can pass to sendto for a
UDP/IPv4 socket, that is, what is the largest amount of data that can fit
into a UDP/IPv4 datagram?

Solution:

The 1 argest 1Pv4 da tagram is 65,535 b ytes, | imited b y t he 16 -bit to tal
length field. The IP header requires 20 bytes and the UDP header requires
8 b ytes, 1 eaving a m aximum of 65,507 b ytes for us er data. W ith IPv6
without j umbogram s upport, t he s ize of t he I Pv6 he aderis40b ytes,
leaving a m aximum of 65,487 b ytes for us er data. The new v ersion of
dg cli has been used. If you forget to set the send buffer size, Berkeley-
derived kernels return an error of EMSGSIZE from sendto, since the size
of the socket send buffer is normally less than required for a maximum-
sized UDP datagram. But if we set the client's socket buffer sizes and run
the client program, nothing is returned by the server. We can verify that
the client's datagram is sent to the server by running tcpdump, but if we
put a printf in the server, its call to recvfrom does not return the datagram.
The problem is that the server's UDP socket receive buffer is smaller than
the da tagram w e a re s ending, s o t he da tagram i s di scarded a nd no t

delivered t o t he s ocket. Ona FreeBSD s ystem, we canverifythisby
running netstat -s and looking at the "dropped due to full socket buffers"
counter before and after our big datagram is received. The final solution is
to modify the server, setting its socket send and receive buffer sizes.

7.7 SUMMARY

UDP is an unreliable transport 1ayer protocol. It serves processes
where error ch ecking and correction is not necessary and processes that
are time s ensitive, th atis , r eal ti me s ystem. Being ¢ onnectionless, it
enables to use single socket to communicate with more than one host and
port. Every packet is a self-contained message in UDP. An echo server is
an application used to test the connection between client and server. If a
client datagram is lostitis blocked forever. UDP does not support flow
control, but i sc anbe used f or de termining o utgoing i nterface. T his
protocol is ideal for ne twork a pplications 1ike gaming, voice and video
communication that can suffer some data loss without adversely affecting
the quality.

7.8 TERMINAL QUESTIONS

1. Explain with examples the drawbacks of UDP.

2. “If aclient datagram is lost, the client will block forever in its call
to recvfrom in the function dg_cli”. Explain.

3. State some real life examples of where UDP is used.

4. Write a program to implement Echo server function.

BCA-E7/133

BCA-E7/134

UNIT-8 : NAME AND ADDRESS
CONVERSION

Structure

8.0 Introduction

8.1 Objective

82 DNS

8.3 gethost by Name Function

8.4 Resolver Option

8.5 Function and IPV6 support
8.6 UName Function

8.7 Other Networking Information
8.8 Solved Example

8.9 Summary

8.10 Terminal questions

8.0 INTRODUCTION

There i s s ome IP a ddress a ttached w ith ¢ orresponding dom ain
name s erver (DNS). D NS 1 ookup, N SLOOKUP or IP I ookup arethe
process to find the IP address by searching the DNS until a match found.
The D omain N ame S ystem al so s pecifies t he t echnical functionality o f
the database service that is at its core. A DNS name server is a server that
stores the DNS records for a domain; a DNS name server responds with
answers to queries against its database. In a nutshell, you tell it w hat the
human readable address is for a site and it will give you the IP address.
There are some special IP addresses such as 127.0.0.1 which is default IP
address of every computer. N o m atter w hich c omputer youuse, it will
always have an IP address of 127.0.0.1 and a name 'localhost'. In addition,
a computer ¢ an ha ve more than one IP address. In orderto connectto
other ¢ omputers, i t w ill ha vea n IP addresst hati s know nt o ot her
computers.

8.1 OBJECTIVE

At the end of this unit, we will able to know the working of DNS.

o The 1 mportance and w orking of gethostb y n ame f unctioni s
explained.

o The different resolver options are discussed.

BCA-E7/135

https://en.wikipedia.org/wiki/Database

BCA-E7/136

o Functions of IPV6 and its support is mentioned.

o Use of Uname f unctiona nd ot heri mportant ne tworking
information is explained.

8.2 DNS

DNS1i shi erarchicalna mingc onvention w hich c ontains
information about services or any other resource connected to the network.
It defines the DNS protocol, a detailed specification of the data structures
and d ata communication e xchanges. T he Internet m aintainst wo
principal namespaces, t he d omainn ameh ierarchy! andt he Internet
Protocol address spaces.

Most imp ortantly, it tr anslates mo re r eadily u sed d omain n ames to the
numerical IP addresses needed for the purpose of locating and identifying
that resource. It provides worldwide directory service created in 1983 by
Paul Mockapetris. The Domain Name System delegates the responsibility
of assigning domain names and mapping those names to Internet resources
by designating authoritative name servers for each domain.

There is often confusion about a host name and a domain name. A domain
name is the name that is purchased from a registrar. It will be something
like hc idata.com or hc idata.co.uk. N ote t hat t here i s no “ www” atthe
beginning of a domain name. A domain name can be subdivided into sub-
domains - for example www.hcidata.com. Once you own a domain, there
is no reasonable limit to the number of the sub-domains you can create. In
fact many sub-domains can be allocated to the same host machine. Any
requests for a sub-domain (e.g. www.hcidata.com) are converted to an IP
address by DNS and the IP address is used to route the request through the
network until it reaches the host machine.

In the early years of the internet, each sub-domain would have a unique IP
address so it was common for a host machine to have only one sub domain
name. Network a dministrators m ay de legate a uthority over sub-
domains of t heir a llocated na me s pacet o ot her na me s ervers. T his
mechanism pr ovides di stributed a nd f aultt olerants ervice a nd w as
designed to avoid a single large central database.

Nowadays, the common practice is to have many sub-domains with the
same IP address. It is also common for the domain name to get converted
into the IP address of the host machine that runs the www sub domain. For
example, a hos t m achine t hat c onverts hos t names to IP a ddress us ing
DNS may b e cal led d ns.hcidata.com and a h ost m achine thatisaw eb
server may be called www.hcidata.com.

IP address to Country

IP a ddresses a re a llocated b y r egional or ganizations. Therefore, it is
relatively easy to work out the country in which an IP is likely to reside.
When an IP is allocated to a company they are expected to be used in the

https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Address_space
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/Directory_service
https://en.wikipedia.org/wiki/Authoritative_name_server
https://en.wikipedia.org/wiki/Sub-domain
https://en.wikipedia.org/wiki/Sub-domain

country in which the organization resides. But, there is nothing to stop a
company allocating an IP to a machine in another country. A company is
allocated a r ange of [P a ddresses X .Y.Z.0t o X .Y.Z255forusein
England. This company has a private network with a branch office in New
York. So, it uses most of the IP address in England but uses some of them
in the United S tates. So, we cannot guarantee that the country is 100%
correct w hen ¢ onverting an [P a ddress, but w e w ould e xpectitto be
correct at least 90% of the time.

8.3 GETHOST BY NAME FUNCTION

The gethostbyname functionr etrievesh ostin formation
corresponding to a host name. This function has been deprecated by the
introduction of t he getaddrinfo function. D evelopers c reating W indows
Sockets 2 applications are advised to use the getaddrinfo function instead
of gethostbyname.

struct hostent™ FAR gethostbyname(In_ const char *name);
Return value

If no error occurs, gethostbyname returns a pointer to the hostent structure
described above. Otherwise, it returns a null pointer and a specific error
number. The gethostbyname function does not check the size of the name
parameter before passing the buffer which may result heap corruption.

8.4 RESOLVER OPTION

The OptionsResolver component helps you configure objects with
option a rrays. It s upports de fault va lues, opt ion ¢ onstraints and | azy
options. The resolver is as et of routinesinthe C Iibrary t hat p rovide
access to the Internet Domain Name System (DNS). The OptionsResolver
component he Ips you configure obj ects w ith o ption a rrays. It s upports
default va lues, opt ion c onstraintsa nd 1 azy opt ions. T her esolver
configuration file is designed to be human readable format which contains
a list of keywords with values that provide various type of resolver option.

The different configuration options are:

nameserver- Name server IP address
Internet address of a name server that the resolver should query

Resolver query IP ad dress from t he n ame s erver. If t here ar e m ultiple
servers, the resolver queries them in order. If no nameserver entries are
present, the default is the name server on the local machine.

domain -Local domain name

Short names are used relative to the local domain. If no dom ain entry is
present, the dom ain is d etermined form the I ocal hos tname returned by
gethostname(). The domain part is taken to be everything after the first °.’.

BCA-E7/137

https://msdn.microsoft.com/en-us/library/windows/desktop/ms738520%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms738552%28v=vs.85%29.aspx

BCA-E7/138

The root domain is assumed if the hostname does not contain a dom ain
part.

search -Search list for host-name lookup

The s earch lis t is n ormally d etermined f rom th e lo cal d omain n ame.
However, by default, it contains only the local domain name. This may be
changed by listing the d esired d omain s earch path following the s earch
keyword with space and tabs separating the names. This process may be
slow and may generate network traffic if the servers for the listed domains
are not local. Queries will time out if no server is available for one of the
domains.The search list is currently limited to six domains with a total of
265 characters.

shortlist

Sorted a ddress are r eturned by gethostbyname() t hrough t his option. A
shortlist is s pecified b y IP-address-netmask p airs. T he IP ad dress an d
optional network pairs are separated by slashes.

options

It allows certain internal resolver variables to be modified. The syntax is
options option where option is as follows:

debug
It sets RES DEBUG.
ndots: n

It sets a threshold for the number of dots which must appear in a name
givento res_query be fore a n initial a bsolute que ry w ill be m ade. T he
default value for n is 1. It implies that if there are any dots in a name, the
name will be tried first as an absolute name before any search list elements
are appended to it.

timeout: n

It sets the amount o f time the resolver will wait for a response from a
remote name server. It is measured in seconds.

attempts: n

It sets the number o f time s th e resolver will send a query to its name
server before giving up.

rotate

It makes round r obin s election of name servers by spreading the query
load among all listed servers.

no-check-names

It disables the modern BIND checking of incoming hostnames and mail
names for invalid ¢ haracters s uch a s unde rscore, non -ASCII or ¢ ontrol
characters.

int6

This has the e ffect of tryinga A AAA querybefore an A queryinside
gethostname() function. It maps IPv4 responses in IPv6 “tunneled form”.

ip6-bytestring

It c auses r everse IPv6 lookupst o be made us ingt he bi t-label f ormat
described in RFC 2673.

ip6-dotint/no-ip6-dotint

When this option is clear, reverse IPv6 1 ookups are made in the ip6.int
zone. W hen t his optioniss et, r everse IPv6 1 ookupsaremadeinthe
ip6.arpa z one. r everse IPv6 1 ookups a re m ade i nt he ip6.arpa zone by
default. This option is set by default.

ends(
It enables support for the DNS extension described in RFC 2671.
single-request

Sometime D NS server cannot handle these queries properly and make a
requests time out . T his option di sables t he behaviour and m akes glibc
perform the IPv6 and IPv4 requests sequentially.

single-request-reopen

The r esolver us es t he s ame s ocket for A and AAAA requests. S ome
hardware doe s mistake to send back only one reply. The client sits and
waits for second reply. By turning this option ON, it closes the socket and
opens a new one before sending the second request.

Check your progress
1. Explain how DNS can be used in recursive way?

2. What are the return values returned by gethostbyname function?

8.5 FUNCTION AND IPV6 SUPPORT

Internet Protocol Version 6 (IPv6) is a network layer protocol that
enables d ata communications o ver a p acket s witched n etwork. P acket
switching involves the sending and receiving of data in packets between
two nodes in a network. The working standard for the IPv6 protocol was
published by the Internet E ngineering T ask F orce (IETF) in 1998.J apan

BCA-E7/139

BCA-E7/140

and Korea were acknowledged as having the first public deployments of
IPv6

IPv6 and IPv4 share a similar architecture. The majority of transport layer
protocols that function with IPv4 will also function with the IPv6 protocol.
Most a pplication 1 ayer protocols are expected t o be 1nteroperable w ith
IPv6 as well. A main ad vantage of IPv6 is increased address space. The
128-bit length of IPv6 addresses is a significant gain over the 32-bit length
of IPv4 addresses, allowing for an almost limitless number of unique IP
addresses. The size of the IPv6 address space makes it less vulnerable to
malicious activities such as IP scanning. [Pv6 packets can support a larger
payload than IPv4 packets resulting in increased throughput and transport
efficiency. Notable exception of File Transfer Protocol (FTP).

IPv6 functions

IBM is implementing IPv6 on i5/0S® over several software releases. IPv6
functions are transparent to existing TCP/IP applications and coexist with
IPv4 functions.

These are the main 15/0S features that are affected by IPv6:

If you configure IPv6, you are sending IPv6 packets over an IPv6 network.
Creating an IPv6 local ar ean etwork foras cenariot hatd escribes a
situation in which you configure IPv6 on your network.

The Start and Stop menu items on t he TCP/IP C onfiguration folder are
removed. IPv6 can be started and stopped in the same way as IPv4, with
STRTCP and E NDTCP ¢ ommands. [Pv6 ¢ annot be s tarted or s topped
independent of IPv4.

The Configure IPv6 wizard is removed from iSeries Navigator. The line
configuration options in the wizard are replaced by actions on i ndividual
lines in the Lines folder. Similarly, you can use an ew wizard to create
IPv6 interfaces.

8.6 UNAME FUNCTION

This function is used to get name and information about current
kernel. This is a system call, and the operating system presumably knows
its name, release and version. It also knows what hardware it runs on.
So, four of the fields of the struct are meaningful. On the other hand, the
field nodename is meaningless: it gives the name of the present machine
in some undefined network, but typically machines are in more than one
network and have several names. M oreover, the kernel has no w ay of
knowing about such things, so it has to be told what to answer here. The
same holds for the additional domainname field.

It returns system information in the structure pointed to by buf.
#include <sys/utsname.h>

int uname(struct utsname *buf);

http://www.ibm.com/support/knowledgecenter/en/ssw_i5_54/rzai2/rzai2scenlan6.htm?view=kc#scenlan6

The utsname struct is defined in <sys/utsname.h>:
struct utsname {
char sysname[]; /* Operating system name™*/
char nodename[]; /* Name within "some implementation-defined
network" */
char release[]; /* Operating system release™®/
char version[]; /* Operating system version */
char machine[]; /* Hardware identifier */
#ifdef GNU SOURCE
char domainname][]; /* NIS or YP domain name */
#endif
}3
On success, zero is returned. O n error, -1 is returned, and errno is set
appropriately.

The length of the fields in the struct varies. S ome operating s ystems or
libraries us e a ha rdcoded 9 or 33 or 650r 257. O thers ystems us e
SYS NMLN or SYS NMLN or UTSLEN or UTSNAME LENGTH.
Clearly, itis abad idea to use any of these constants; just use sizeof{...).
Often 257 is chosen in order to have room for an internet hostname.

8.7 Other Networking Information

When looking at networking basics, understanding the way a
network operates is the first step to understanding routing and switching.
The network operates by connecting computers and peripherals using two
pieces of equipment; switches and routers. Switches and routers, essential
networking basics, enable the devices that are connected to your network
to communicate

Networking Basics: Switches

. Switches are used to connect multiple devices on the same network
within a building or campus. For example, a switch can connect
your computers, printers and servers, creating a network of shared
resources. The switch, one aspect of your networking basics,
would serve as a controller, allowing the various devices to share
information and talk to each other. Through information sharing
and resource allocation, switches save you money and increase
productivity.

BCA-E7/141

http://man7.org/linux/man-pages/man3/errno.3.html

BCA-E7/142

There are two basic types of switches to choose from as part of
your networking basics: managed and unmanaged.

% Anunmanaged switch works out of the box and does not
allow you to make changes. Home-networking equipment
typically offers unmanaged switches.

X/
L X4

A managed switch allows you access to program it. This
provides greater flexibility to your networking basics because
the switch can be monitored and adjusted locally or remotely
to give you control over network traffic, and who has access
to your network.

Routers, the s econd valuable ¢ omponent of your ne tworking
basics, are us ed t o tie m ultiple ne tworks t ogether. F or e xample,
you would use a router to connect your ne tworked c omputers to
the Internet and thereby share an Internet connection among many
users. The router will act as a dispatcher, choosing the best route
for your 1 nformationt ot ravel s ot hat your eceivei t qui ckly.
Routers analyse the data being sent over a network, change how it
is packaged, and send it t o another ne twork, or over a di fferent
type of network. They connect your business to the outside world,
protect your information from security threats, and can even decide
which ¢ omputers get p riority ove r ot hers. D epending on your
business and your networking plans, you can choose from routers
that in clude di fferent c apabilities. T hese can include ne tworking
basics such as:

< Firewall: Specialized s oftware t hat ex amines i ncoming
data and protects your business network against attacks.

<+ Virtual Private Network (VPN): A wayto a llow
remote employees to safely access your network remotely.

< IP Phone network: Combine your company's computer
and t elephone n etwork, us ingvoi cea nd conferencing
technology, to simplify and unify your communications.

Check your progress

How does IPV6 improve throughput and transport efficiency of
a network?

What is the use of uname function?

8.8 SOLVED EXAMPLE

Q. Modify following program to call getnameinfo instead of sock ntop.
What flags should you pass to getnameinfo?

names/daytimetcpclil.c

1 #include "unp.h"

2 int

3 main (int argc, char **argv)
44

5 int sockfd, n;

6 char recvline [MAXLINE + 1];
7 struct sockaddr in servaddr;
8 struct in_addr **pptr;

9 struct in_addr *inetaddrp [2];
10 struct in_addr inetaddr;

11 struct hostent *hp;

12 struct servent *sp;

13 if (arge ! =3)

14 err_quit ("usage: daytimetcpclil ");
15 if ((hp = gethostbyname (argv [1])) == NULL) {
16 if (inet_aton (argv [1], &inetaddr) == 0) {

17 err_quit ("hostname error for %s: %s", argv [1],

18 hstrerror (h_errno));

19 } else {

20 inetaddrp [0] = &inetaddr;
21 inetaddrp [1] = NULL;

22 pptr = inetaddrp;

23}

24 } else {

25 pptr = (struct in_addr **) hp->h_addr_list;

26}

27 if ((sp = getservbyname (argv [2], "tcp")) == NULL)

BCA-E7/143

BCA-E7/144

28 err_quit ("getservbyname error for %s", argv [2]);

29 for (; *pptr != NULL; pptr++) {

30 sockfd = Socket (AF_INET, SOCK_STREAM, 0) ;

31 bzero (&servaddr, sizeof (servaddr)) ;

32 servaddr.sin_family = AF _INET;

33 servaddr.sin_port = sp->s_port;

34 memcpy (&servaddr.sin_addr, *pptr, sizeof (struct in_addr)) ;

35 printf ("trying %s\n", Sock ntop ((SA *) &servaddr, sizeof (servaddr)
)

36 if (connect (sockfd, (SA *) &servaddr, sizeof (servaddr)) == 0)
37 break; /* success */

38 err_ret ("connect error");

39 close (sockfd) ;

40 }

41 if (*pptr == NULL)

42 err_quit ("unable to connect");

43 while ((n = Read (sockfd, recvline, MAXLINE)) > 0) {
44 recvline [n] = 0; /* null terminate */

45 Fputs (recvline, stdout);

46 }

47 exit (0);

48 }

Solution:

Following modifications are made in the code given above.

1. We first allocate arrays to hold the hostname and service name as
follows:
char hostfNI_ MAXHOST], serv[NI MAXSERVT;

2. After accept returns, we call getnameinfo instead of sock ntop as
follows:

if (getnameinfo(cliaddr, len, host, NI MAXHOST, serv,
NI_MAXSERV, NI NUMERICHOST | NI NUMERICSERV) ==
0)

printf("connection from %s.%s\n", host, serv);

3. Since this is a server, we specify the NI NUMERICHOST and
NI NUMERICSERYV flags to avoid a DNS query and a lookup
of /etc/services.

8.9 SUMMARY

The Domain Name System specifies the technical functionality of
the database service that is at its core. A DNS name server is a server that
stores the DNS records for a domain; a DNS name server responds with
answers to q ueries against its d atabase. T he Internet ma intains tw o
principal namespaces, t he d omainn ameh ierarchy! andt he Internet
Protocol address spaces. The resolver is a set of routines in the C library
that provide access to the Internet Domain Name System (DNS). Internet
Protocol Version 6 (IPv6) is a network layer pr otocol that enables data
communications over a packet s witched ne twork. T he 128 -bit length o f
IPv6 a ddresses i s as ignificant gain ove rt he 32 -bit | ength o f IPv4
addresses, allowing for an almost limitless number of unique IP addresses.
The Uname function is used to get name and information about current
kernel. It also know s what ha rdware i t r uns on. Switches a nd r outers
enable the d evices that are c onnected to your network to c ommunicate.
Switches are us ed t o ¢ onnect m ultiple de vices ont he s ame ne twork
providing i nformation s haring and resource allocation that in turn saves
your money and increases productivity. Routers are used to tie multiple
networks together, choosing the best route for your information, connect
your business to the outside world, protect your information from security
threats, and can even decide which computers get priority over others.

8.10 TERMINAL QUESTIONS

1. State the similarities and differences between IPv4 and IPv6.

2. Write a program for choosing the best route for some hypothetical
network.

3. How load balancing is achieved using DNS?

BCA-E7/145

https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Namespace
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/Address_space

BCA-E7/146

Bachelor of Computer
Application

BCA-E7

Uttar Pradesh Rajarshi Tandon Network Pro grammin g

Open University

Block

DAEMON PROCESSES, ADVANCE 1I/0 FUNCTIONS
AND UNIX DOMAIN PROTOCOLS

UNIT 9 151-160
Daemon Processes

UNIT 10 161-168
Advance I/0 Functions

UNIT 11 169-182

UNIX Domain Protocols

BCA-E7/147

BCA-E7/148

Course Design Committee

Dr. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Prayagraj

Prof. R. S. Yadav Member
Department of Computer Science and Engineering
MNNIT-Allahabad, Prayagraj

Ms Marisha Member
Assistant Professor (Computer Science),

School of Science UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member

Assistant Professor, (Computer Science)
School of Sciences UPRTOU Prayagraj

Course Preparation Committee

Dr. Prabhat Kumar Author (Block 1,2)
Assistant Professor, Department of IT

NIT Patna

Dr. Prabhat Ranjan Author (Block 3.4)

Assistant Professor, Department of Computer Science
Central University of South Bihar

Dr. Rajiv Mishra Editor
Associate Professor, Department of CSE

IIT Patna

Dr. Ashutosh Gupta (Director in Charge)

School of Computer & Information Sciences,

UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Coordinator

Assistant Professor, (Computer Science)
School of sciences UPRTOU Prayagraj

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-11-6

All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar
Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. A run Kumar G upta R egistrar, Uttar P radesh
Rajarshi Tandon Open University, 2019.

Printed By : Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu R oad,
Prayagraj.

BLOCK INTRODUCTION

The obj ective of this course is to introduce the basic concept about the
network programming as well as provides a mix o f practical ex perience
and a depth of understanding. The network programming course address
today's most crucial standards, implementations and techniques. The aim
is to provide an extensive variety of topics on this subject with appropriate
examples. The course is organized into following blocks:

Block 3 describes the daemon processes, advance I/0O functions and UNIX
domain protocols.

BCA-E7/149

BCA-E7/150

UNIT-9: DAEMON PROCESSES

Structure

9.1 Introduction

9.2 Objectives

9.3 Daemon

9.4 syslogd Daemon

9.5 syslog Function

9.6 daemon_init Function
9.7 inetd Daemon

9.8 daemon_inetd Function.
9.9 Summary

9.10 Terminal Questions

9.1 INTRODUCTION

In thisunit, we will learn about daemons and characteristics o f
daemon processes. Further on we will look on how to log messages using
syslog facility. Then da emon pr oviding i1 nternet s ervices i s di scussed.
Then we will also have a look on daemon_init function, inetd daemon and
daemon_inetd functions.

9.2 OBJECTIVES

At the end of this unit we will have knowledge about: -
. Daemons and their characteristics.
. Ways to start a daemon.
. syslogd Daemon and syslog function.

. daemon_init function, inetd daemon and daemon_inetd functions.

9.3 DAEMON

A daemon is a process that runs in the background as a background
process instead of being under the direct control of an interactive user. In
other words, it is not associated with controlling terminal or lo gin shell.
Unix systems typically have many processes that are daemons, running in
the background, performing different administrative tasks.

BCA-E7/151

For example: -

e A line printer has a daemon process that is waiting for a request
to print a file on a line printer.

. A remote login program has a daemon process that waits for a
request to come across the network for someone to login.

Generally, in UNIX system, the name of the daemon process end with the
letter d. As for example, syslogd daemon, inetd daemon, sshd daemon, etc.

System daemons have the following characteristics: -

o Started once when the system is initialized.
o Runs until the system is shut down.

o During th e s ervice time , s pends mo st o f th eir time w aiting f or
some event to occur.

o Frequently spawn other processes to handle service requests.
Ways to start a daemon: -

a. Manyd aemons are s tarted b y th e s ystem in itialization s cripts.
These s cripts are mainly in the directory/etc. orina directory
whose name begins with /etc/rc.

b. Many network servers are started by inetd superserver.

c¢. The execution of programs on a regular basis is performed by the
cron daemon, and programs that it invokes run as daemons.

d. The execution of a program at one time in the future is specified
by t he atc ommand. T he ¢ ron da emon nor mally i nitiates t hese
programs w hen t heir t ime ar rives, s o these p rograms run as
daemons.

e. Daemonsc anbe s tarted f romus ert erminals, e itheri nt he
foreground or in the background.

Check Your Progress:
1. Can you define the daemon process?

2. Give the two examples for daemon process.

9.4 syslogd DAEMON

Many versions of UNIX provide a general-purpose logging facility
called syslog. Individual programs that need to have information l ogged
send the information to syslog. In order to handle these logs status syslogd
daemon c omes into pl ay. P urpose of syslogd daemon is to lo g s ystem

BCA-E7/152 messages. It reads the log message and d oes what the configuration file

(normally /etc. / syslog.conf) s pecifies t o do w ith that message. Ifthe
daemon receives the SIGHUP signal, it rereads its configuration file.

Berkeley-derived imp lementations o f's yslogd performt he f ollowing
actions on startup:

1. Thec onfiguration f ile, nor mally/ etc/syslog.conf,i sr ead,
specifying w hat t o do with e ach t ype o f1 og message t hat t he
daemon can receive. T hese m essages canbe appendedtoaf ile
written to a s pecific user, or forwarded to the syslogd daemon on
another host.

2. AU nix dom ain s ocket i s ¢ reated a nd bound to t he pa thname
/var/run/log.

3. AUDP socketis createda nd boundt oport 514 (thes yslog
service).

4. The pa thname / dev/klog i s ope ned. A ny error m essages f rom
within the kernel appear as input on this device.

9.5 syslog FUNCTION

Since daemon doesn’t have a controlling te rminal, it n eeds some
wayt oout putm essages whens omething ha ppensl ike nor mal
informational messages or emergency messages that need to be handled by
an administrator. So, there comes the role of syslog function.

Structure of syslog function:
#include <syslog.h>
void syslog (int priority, const char *message, ...);

Here, priority is combination of level (0 to 7) and facility (to identify the
type of process sending the message). Log messages have a level between
0 and 7, which shown in table 9.1. These are ordered values. If no level is
specified by the sender, LOG_NOTICE is the default.

Level Value Description

LOG EMERG 0 System is unusable (highest priority)
LOG_ALERT 1 Action must be taken immediately
LOG_CRIT 2 Critical conditions

LOG_ERR 3 Error conditions

LOG_WARNING | 4 Warning conditions

LOG NOTICE 5 Normal but significant condition(default)
LOG INFO 6 Informational

LOG_DEBUG 7 Debug-level messages (lowest priority)

Table 9.1: Level of log messages

BCA-E7/153

Log m essages al so contain a facility t o i dentify the t ype of pr ocesses
sending t he m essages. We s how the di fferent values in table 9.2. If no
facility is specified, LOG_USER is the default.

Facility Description
LOG_AUTH Security/authorization messages
LOG _AUTHPRIV Security/authorization
messages(private)

LOG _CRON Cron daemon

LOG_DAEMON System daemons

LOG _FTP FTP daemon

LOG KERN Kernel messages

LOG_LOCALO Local use

LOG LOCALI Local use

LOG LOCAL2 Local use

LOG LOCAL3 Local use

LOG_LOCALA4 Local use

LOG_LOCALS Local use

LOG LOCAL®6 Local use

LOG LOCAL7 Local use

LOG LPR Line printer system

LOG MAIL Mail system

LOG_NEWS Network news system

LOG_STSLOG Messages g enerated internallyb y
syslogd

LOG _USER Random user-level messages(default)

LOG_UUCP UUCP system

Table 9.2: Facility of log messages

The purpose o f facility and level is to allow all m essages from a given
facility to be handled the same in the /etc/syslog.conf file or to allow all

BCA-E7/154 messages of a given level to be handled the same.

Check Your Progress
1. Can you define the steps performed by syslogd Daemon?

2. Can you define the different levels of log message?

9.6 DAEMON INIT FUNCTION

daemon_init function is used to demonize a process i.e. to start an
arbitrary program and run it as a daemon. This function should be suitable
for use on all variants of UNIX but some o ffer C library function called
daemon that provides similar feature.

The program below shows a function named daemon_init that can call to
daemonize the process.

#include “unp.h”
#include <syslog.h>
#define MAXFD 64
extern int daemon_proc;
int
daemon_init(const char *pname, int facility)
{
int 1;
pid_t pid;
if ((pid=Fork ()) <0)
return (-1);
else if (pid)
_exit (0); /*
/* child 1 continues...*/
if(setsid() <0)
return (-1);
signal (SIGHUP,SIG_IGN);
if ((pid =Fork ()) <0)
return (-1);

else if (pid)

BCA-E7/155

BCA-E7/156

_exit (0);

/* child 2 continues...*/
daemon_proc = 1;
chdir(“/”)
/*close off file descriptors */
for (i=0; i<MAXFD; i++)

close(i);
/* redirect stdin, stdout and stderr to /dev/null */
open (“/dev/null”’, O_ RDONLY);
open (“/dev/null”’, O RDWR);
open (“/dev/null”’, O RDWR);
openlog (pname, LOG_PID, facility);

return (0);

}

In the program, the daemon_init function first call fork and then the parent
terminates, and child continues. If the process starts as a shell command in
the foreground, when the parent terminates, the shell thinks the command
is done. This automatically runs the child process in the background. Also,
the child inherits the process group ID from the parent but gets its own
process ID. This guarantees that the child is not a process group leader,
which is required for the next call to setsid.

The setsid is a P OSIX function that creates a new session. T he process
becomes t he s ession | eader o f't he n ew s ession. T he p rocess b ecomes
group l eader o fan ew process group and has no c ontrolling t erminal.

Ignore SIGHUP and call fork again. When this function returns, the parent
is the first child and it terminates, leaving the second child running. The
purpose of t his s econd f ork i st o g uarantee t hat t he da emon ¢ annot
automatically acquire a c ontrolling te rminal s hould it o pen a te rminal
device in the future. The calling fork in a second time, guarantee that the
second ¢ hildi sno | ongera s essionl eader,s o1 tc annot acquire a
controlling terminal.

Then set flag for error functions. Set the global daemon_proc to nonzero.
Then change the working directory to the root directory, although s ome
daemons might have a reason to change to some other directory. After that
close, any ope n de scriptors t hat a re 1 nherited f rom t he pr ocess t hat
executed t he daemon. After t hat r edirect s tdin, s tdout, a nd s tderr t o
/dev/null f or s tandard i nput, s tandard out put, a nd s tandard e rror. T hen
open log is called. The first argument is from the caller and is normally the
name of the program (e.g., argv[0]). The process ID should be added to
each log message. This facility is also specified by the caller.

9.7 INETD DAEMON

inetd r eferst o1 nternets ervice da emon. i netd daemoni sa
superserver (service d ispatcher) d aemon o n m any UNIX systems th at
provide internet services. This daemon is used by servers that use either
TCP or UDP.

This inetd process establishes itself as a daemon using the techniques that
we described with our daemon_init function. It then reads and processes
its ¢ onfiguration f ile, typically/ etc/inetc.conf. This f ile s pecifies t he
services that the super server is to handle, and what to do when a service
request arrives. The table 9.3 shows the fields in inetd.conf file.

Field Description

service-name Must be in /etc/services

socket-type Stream(TCP) or dgram (UDP)

Protocol Must be in /etc/protocols either tep or
udp

wait-flag Typically, nowait for TCP or wait for
UDP

login-name From /etc/passwd: typically root

server-program Full pathname to exec

server-program- Arguments for exec

arguments

Table 9.3: Fields in inetd.conf file

When a TCP packet o r UDP packet ar rives w ith a p articular d estination
port number, inetd launches the appropriate server program to handle the
connection.

The steps performed by inetd shown in figure 9.1. The steps are as
follows: -

o On s tartup, i t r eads t he /etc/inetd.conf and creates as ocketo f
appropriate type for all the services specified in the file.

J bind is called for the socket to specify port and IP address for the
server.

o listen is called for TCP (not needed for datagram sockets).

o After cr eation o f's ocket select is c alled to wait foranyo fthe
socket to become readable.

o When the select returns that a socket is readable, accept is called to
accept the new connection (only for TCP connection).

BCA-E7/157

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol

J The inetd daemon forks and the child process handle the service

request.
socket ())
) For each service
bind ()
~— listed in the /etc/
inetd.conf file
listen ()
(If TCP socket)

%| select () For readability

accept () (if TCP socket)

A2
fork ()
parent child
.1 close connected socket close all descriptors other
(if TCP) than socket

dup socket to descriptors 0,1 and 2; close
socket

|

setgid()
setuid() (if user not root)

exec() server

Figure 9.1: Steps performed by inetd
BCA-E7/158 8 PP Y

9.8 DAEMON_INETD FUNCTION

It demonizes process runb y inetd. This functionis tr ivial
compared t han da emon_init be cause a1l of the daemonization s teps are
performed by inetd when it starts.

The program below shows a function named daemon_inetd
#include “unp.h”
#include <syslog.h>
extern int daemon_proc;
void
daemon_inetd(const char *pname,int facility)
{
daemon_proc =1;
openlog (pname, LOG_PID, facility)
}

The daemonizationa re performedb yi netdw heni ts tarts. T he
daemon_proc flag for e rror functions and o pen logis called. T he first
argument is from the caller and is normally the name of the program. The
process ID should be added t o eachlogmessage. T his facility is also
specified by the caller.

9.9 SUMMARY

Daemons a ret he pr ocesses r unning i n ba ckground anda re
independent of control from all terminals. All outputs from a daemon are
normally sent to syslog daemon by calling the syslog function. Start o f
daemon r equires a few steps. daemon_init handles d etails o f s tarting a
daemon. Many UNIX servers that provide internet services are started by
the inetd daemon.

9.10 TERMINAL QUESTIONS

Define daemon and its characteristics.
Write ways to start a daemon.
Define syslogd daemon and syslog function.

Explain function of inetd daemon.

Explain steps of inetd daemon.

L

Explain daemon_init function with an example.

BCA-E7/159

BCA-E7/160

UNIT-10 : ADVANCE I/0 FUNCTIONS

Structure

10.1 Introduction

10.2 Objectives

10.3 Socket Timeouts

10.4 recv and send Functions

10.5 readv and writev Functions
10.6 recvmsg and endmsg Functions
10.7 Ancillary Data

10.8 How Much Data Is Queued?
10.9 Sockets and Standard I/O
10.10 Summary

10.11 Terminal Questions

10.1 INTRODUCTION

In this unit, we will cover a variety of functions and techniques
that i s cat egorized as “ Advance 1/O”. First, we will see three ways o f
setting a timeout on I/O operation involved in socket. N ext comes three
variations on the read and write functions. We will study about ancillary
data. Then we will also have a 1ook on how to determine the amount of
data in the socket receive buffer and how to use the C standard I/O library
with sockets.

10.2 OBJECTIVE

At the end of this unit we will get to know: -
. Three ways to place a timeout on I/O operation involving a socket.
o Format of variations of read and write.
e About ancillary data
. How to determine the amount of data in the socket receive buffer?

. How to use the C standard I/O library with sockets?

BCA-E7/161

BCA-E7/162

10.3 SOCKET TIMEOUTS

Sockets involve some 1/O operation (like read, write, etc.). So, a
timeout can be placed on these I/O operations.

Following are three ways to place the timeout: -

o Call alarm,w hich generatest he S IGALRM signal whent he
specified time has expired.

o Block w aiting for I/O in select, which has at ime limit b uilt in
instead of blocking in a call to read or write.

o Uset hen ewer SO RCVTIMEO and SO SNDTIMEO socket
options.

10.4 RECV AND SEND FUNCTIONS

recv function is used to receive messages from a socket and may
beusedtoreceivedataonas ocket. Iti sn ormallyused onlyon a
connected socket.

send functionisusedtotransmita m essaget o a nother s ocket. Itis
normally used only on a connected socket.

These two functions are similar to the standard read and write functions,
but one additional argument is required. Header file for these operations is
<sys/socket.h>. Format of read and write functions are given below:

#include <sys/socket.h>

ssize t recv(int sockfd, void *buff, size t nbytes, int flags);
ssize t send (int sockfd, void const *buff, size t nbytes, int flags);
Both return: number of bytes read or write if OK, -1 on error

Here, first three arguments are same as the first three arguments to read
and write. recv read nbytes bytes from socket file d escriptor sockfd into
buffer buff. send function sends nbytes to the socket file descriptor sockfd
from buffer buff starting at buff.

The flags argument is either 0 or is formed by logically OR’ing one or
more of constant shown in table 10.1 below: -

Flags Description recv | Send
MSG DONTROUTE | Bypass routing table lookup *
MSG DONTWAIT | Only this operation is nonblocking | * *
MSG OOB Send or receive out-of-band data * *
MSG PEEK Peek at incoming message *

MSG WAITALL Wait for all the data *

Table 10.1: flags for I/O function

10.5 READV AND WRITEV FUNCTIONS

These two functions are similar to read and write but, readv and
writev let us read into or write from one or more buffers with a single
function call. These operations are called scatter read and gather write.

readv function iovent blocks f rom th e f ile a ssociated w ith th e f ile
descriptor fields into the multiple buffers described by iov.

writev function writes at most iovent blocks described by the iovec to the
file associated with the file descriptor filedes.

Format of readv and writev functions are given below:

#include <sys/uio.h>

ssize treadv(int filedes, const struct iovec *iov, int iovcnt);
ssize t writev(int filedes, const struct iovec *iov, int iovcnt);
Both return: number of bytes read or write if OK, -1 on error

Here, iovec is a structure defined to denote buffer starting address and its
size.

struct iovec{
void *iov_base; /*starting address of buffer*/
size tiov_len;/*size of buffer*/

¥

Header file for these operations is <sys/uio.h>.

Check Your Progress
1. Explain the recv(') and send() function with syntax.

2. Write the difference between readv() and writev() function.

10.6 RECVMSG AND SENDMSG FUNCTIONS

These two functions are the most general of all the I/O functions.
We could replace all calls to read, readv, recv, and recvfrom with calls to
recvmsg. Similarly, all ¢ alls to t he va rious output f unctions ¢ ould be
replaced w ithc allsto sendmsg. Headerf ilet obe 1 ncludedi s
<sys/socket.h>

Format of recvmsg and sendmsg functions are given below:
#include <sys/socket.h>
ssize t recvmsg(int sockfd, struct msghdr *msg, int flags);
ssize t sendmsg(int sockfd, struct msghdr *msg, int flags);

msghdr structure is defined as: -

BCA-E7/163

BCA-E7/164

struct msghdr {

void *msg name;

/*protocol address*/

socklen t msg_namelen; /*size of protocol address*/

struct iovec *msg iov; /*scatter/gather
array*/

int msg_iovlen; /*#e lements in
msg_iov*/

void *msg control, /*ancillary d ata (cmsghdr
struct) */

socklen t msg_controllen; /*length o fa ncillary
data*/

int msg_flags;
recvmsg ()*/

3

/*flags r eturnedb y

Here, msg name and msg namelen members are used when the socket is
not ¢ onnected. msg iov and msg iovlen members s pecify t he array of
input or out put buf fers (the array of iovec structures). msg control and
msg_controllen members s pecify t he 1 ocation a nd s ize of t he opt ional
ancillary data. msg flags member is used only by recvmsg while ignored

by sendmsg.

Summary of the flags that are examined by the kernel for the input and
output f unctions, a s w ell a st he msg flags that might be returned by

recvmsg 1s shown in table 10.2 below:

MSG NOTIFICATION

Flag Examined Examined | Returned by:
by: by: recvimsg
send flags recv flags msg_flags
sendto flags recvfrom
sendmsg flags
flags recvimsg
flags
MSG DONTROUTE
MSG DONTWAIT
MSG_PEEK
MSG WAITALL
MSG _EOR *
MSG OOB * *
MSG BCAST *
MSG MCAST *
MSG TRUNC *
MSG CTRUNC *
%k

Table 10.2: Summary of input and output flags by various I/O functions

The first four flags are only examined and never returned; the next two are
both examined and returned; and the last four are only returned.

10.7 ANCILLARY DATA

Control messages or control information is also called as ancillary
data. Ancillary Data can be sent and received using the msg control and
msg_controllen members of the msghdr structure with the sendmsg and
recvmsg functions. Summary of the various uses of ancillary data is shown

in table 10.3 below.

Protocol | cmag_level cmag_type Description
IPv4 IPPROTO_IP I[P RECVDSTAD | Receive destination address
DR with UDP datagram
IP_RECVIF Receives interface index
with UDP datagram
IPv6 [PPROTO 1Pv6 | IPv6 DSTOPTS Specify destination options
IPv6_ HOPLIMIT Specify hop limit
IPv6_ HOPOPTS Specify hop-by-hop options
IPv6_NEXTHOP Specify next-hop address
I[Pv6_PKTINFO Specify packet information
IPv6_ RTHDR Specify routing header
IPv6_ TCLASS Specify traffic class
Unix SQL _SOCKET | SCM_RIGHTS Send/receive descriptors
domain SCM_CREDS Send/receive user
credentials

Table 10.3: Summary of uses of ancillary data

Ancillary d ata c onsists of one or more ancillary data objects, e ach one
beginning with a cmsghdr structure, defined by including<sys/socket.h>.

struct cmsghdr {

socklen t
this structure*/

cmsg_len; /*length i n b ytes, i ncluding

int cmsg_level, /*originating protocol*/

int cmsg_type; /*protocol-specific type*/
/*followed by unsigned char cmsg_data[]*/
¥
The following five macros are defined by including the <sys/socket.h>
header to simplify processing of the ancillary data: -

BCA-E7/165

BCA-E7/166

#include <sys/socket.h>

#include < sys/param.h>/*f or A LIGNm acroonm any
implementations */

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *mhdrptr) ;

Returns: pointer to first cmsghdr structure or NULL ifno
ancillary data

struct cmsghdr *CMSG_NXTHDR(struct msghdr * mhdrptr, struct
cmsghdr *cmsgptr) ;

Returns: pointer to next cmsghdr structure or NULL ifno
more ancillary data objects

unsigned char *CMSG_ DATA(struct cmsghdr *cmsgptr) ;

Returns: p ointer to f irstb yte o fd ataa ssociated w ith
cmsghdr structure

unsigned int CMSG_LEN(unsigned int length) ;

Returns: value to store in c msg_len given the a mount of
data

unsigned int CMSG_SPACE(unsigned int length) ;

Returns: to tal s ize o f an a ncillary data o bject given th e
amount of data

Check Your Progress

1. Write a brief note on flags that are examined by the kernel for
the input and output functions.

2. What are the various uses of ancillary data?

10.8 HOW MUCH DATA IS QUEUED?

There are times when we want to see how much data is queued to
bereadona s ocket, withoutr eadingt he data. There a re f ollowing
techniques has to covered.

J If the goal is not to block in the kernel because we have something
else to do w hen nothing is ready to be read, nonblocking I/O can
be used.

o If we want to examine the databut still leave it on the receive
queue for some other part of our process to read, we can use the
MSG PEEK flag.

o Some implementations support the FIONREAD command of ioctl.

10.9 SOCKETS AND STANDARD 1/O

One of the methods of performing /O is the standard /O library.

It is specified by the ANSI C standard. The standard I/O library handles
some of the details such as automatically buffering the input and output
streams.

The standard I/O library can b e used with s ockets, but there are a f ew
things to consider: -

A s tandard I/O s tream can b e ¢ reated f rom an'y descriptor b y
calling the fdopen function. Similarly, given a standard 1/O stream,
we can obtain the corresponding descriptor by calling fileno.

TCP and UDP sockets are full-duplex. Standard I/O streams can
also be full-duplex.

The easiest way to handle this read-write problem is to open two
standard I/O streams for a given socket: one for reading and one
for writing.

Standard I/O uses three types of buffering: -

Fully buffered: 1/0 takes place only when the buffer is full, or the
process calls fflush or exit.

Line buffered: 1/0 takes place only when a new line is encountered,
or the process calls fflush or exit.

Unbuffered: 1/0t akes place eacht imea s tandard 1/O o utput
function is called.

Most UNIX implementations of the standard I/O library use the following

rules:

Standard error is always unbuffered.

Standard input and standard output are fully buffered, unless they
refer to a terminal device, in which case, they are line buffered.

All other streams are fully buffered unless they refer to a terminal
device, in which case, they are line buffered.

10.10 SUMMARY

There are three main ways to set a time limit on a socket operation:

Q)]
(i)
(iii)

Use the alarm function and the SIGALRM signal,
Use the time limit that is provided by select and

Uset hen ewer SO RCVTIMEO and SO SNDTIMEO socket
options.

BCA-E7/167

BCA-E7/168

recvmsg and sendmsg aret he most g eneral o fa llth e I/O f unctions
provided. We know the various uses of ancillary data.

10.11 TERMINAL QUESTIONS

1.

Write t he t hree w ays of pe rforming 1/O ope rations involving
sockets.

Write syntax/format of (1) readv and writev function, (ii) recvmsg
and sendmsg function.

What are the three types of buffering used by standard I/O?
What are the different methods to check queued data?

What are the different rules used by most UNIX implementations
of the standard I/O library?

What ar ed ifferent macrosa rede finedb yi ncludingt he
<sys/socket.h> header to simplify processing of the ancillary data?

UNIT-11 : UNIX DOMAIN PROTOCOLS

Structure

11.1 Introduction

11.2 Objectives

11.3 UNIX Domain Socket Address Structure
11.4 Socket pair Function

11.5 Socket Functions

11.6 UNIX Domain Stream Client/Server
11.7 UNIX Domain Datagram Client/Server
11.8 Passing Descriptors

11.9 Receiving Sender Credentials

11.10 Summary

11.11 Terminal Questions

11.1 INTRODUCTION

The UNIX domain protocols are not an actual protocol suite, but a
way of performing client/server communication on a single host using the
same API that is used for clients and servers on different hosts. The UNIX
domain pr otocols are an a lternative t o t he interprocess c ommunication
(IPC) when the client and server are on the same host. It is imp ortant to
note that the protocol addresses used to identify clients and servers in the
UNIX domain are pathnames within the normal file system.

Two types of sockets provided in UNIX domain: -
. Stream sockets (similar to TCP).
. Datagram sockets (similar to UDP).

Reason for using UNIX domain sockets: -

° UNIX domain sockets are often twice as fast as a TCP socket when
both peers are on same host.

. UNIX domain sockets are used when passing descriptors between
processes on the same host.

. Newer i mplementations of U NIX dom ain s ockets pr ovide t he
client's credentials (user ID and group I Ds) to the server, w hich
can provide additional security checking.

BCA-E7/169

BCA-E7/170

Also, we will learn about UNIX domain socket address structure, socket
pair function and socket function are discussed to provide the insight view.
We will s ee p rograms of U NIX d omain s tream/datagram c lient/server.
Then there is discussion on topics descriptors passing and receiving sender
credentials.

11.2 OBJECTIVES

At the end of this unit we get to know about: -
o What are UNIX domain protocols?
o Unix domain socket address structure
e Format of socket pair and socket functions

. UNIX domain s tream c lient/server and UNIX domain da tagram
client/server

. Descriptors passing and receiving sender credentials

11.3 UNIX DOMAIN SOCKET ADDRESS
STRUCTURE

UNIX domains ocket address structure is defined b y i ncludingt he
<sys/un.h>header.

struct sockaddr un{

sa_family t sun_family;
/*AF LOCAL*/
char sun_path[104]; /*null-
terminated pathname™/

¥
(Unix domain socket address structure: socketaddr un)

The pathname stored in the sun_path array must be null-terminated. The
macro SUN LENis providedandittakesa pointertoa sockaddr un
structure and returns the length of the structure, including the number of
non-null bytes in the pathname.

The below program creates a unix domain socket, binds a pathname to it
and then calls get sockname and prints the bound pathname.

#include "unp.h"
int
main (int argc, char **argv)

{

int sockfd;

socklen_t len;

struct sockaddr un addrl, addr2;

if (argc !1=2)

err_quit("usage: unixbind <pathname>");

sockfd = Socket(AF LOCAL, SOCK_STREAM, 0);
unlink(argv[1]); /* OK if this fails */

bzero(&addrl, sizeof(addrl));

addrl.sun_family = AF LOCAL;
strncpy(addrl.sun_path, argv[1], sizeof(addrl.sun_path) - 1);
Bind(sockfd, (SA *) &addrl, SUN LEN(&addrl));
len = sizeof(addr2);

Getsockname(sockfd, (SA *) &addr2, &len);

printf("bound name = %s, returned len = %d\n", addr2.sun_path,
len);

exit(0);
}

In the program, the pathname that bind to the socket is the command-line
argument. B ut th e b ind w ill fail if th e p athname a Iready exists in the
filesystem. T herefore, it calls unlink t o de lete t he pathname, incaseit
already exists. If it does not exist, unlink returns an error, which ignore
bind a nd t hen ge tsockname. C opy t he command-line a rgument u sing
strnepy, to avoid ove rflowing the s tructure i f t he pathname is too long.
Since initialize the structure to zero and then subtract one from the size of
the sun_path array, t he pathname i s nul I-terminated. A fter th at b ind is
called and use the macro SUN_LEN to calculate the length argument for
the function. Then call getsockname to fetch the name that was just bound
and print the result.

11.4 SOCKETPAIR FUNCTION

This function creates two sockets that are then connected together.
This function a pplies only to UNIX domain s ockets. It includes header
<sys/socket.h>

include <sys/socket.h>
int socketpair(int family, int type, int protocol, int sockfd/2]);
Here, family - AF LOCAL

BCA-E7/171

BCA-E7/172

protocol- 0
type - SOCK_STREAM or SOCK_DGRAM

and two s ocket d escriptor that are returned are sockfd[0]
and sockfd[1].

The result of socketpair with a type of SOCK_STREAM is called a stream
pipe. It is similar to a regular Unix pipe, but a stream pipe is full-duplex;
that is both descriptors can be read and written.

Check Your Progress:
1. Write the difference between Unix pipe and stream pipe.

2. Can you create a function for socket pair?

11.5 SOCKET FUNCTIONS

While using UNIX domain sockets there exists several differences
and r estrictions i n t he s ocket f unctions. B elow i st he | ist of P OSIX
requirements w hen a pplicable and note that not all imp lementations are
currently at this level.

. The default file access permissions for a pathname created by bind
should be 0777, modified by the current unmask value.

. The pathname associated with a UNIX domain socket should be an
absolute pathname, not a relative pathname.

. The p athname s pecified in a cal |1 to connect must be a pathname
that i s c urrently bound to an open UNIX domain s ocket of the
same type (stream or datagram).

e The p ermission te sting associated w ith th e connect ofa UNIX
domain socket is the same as if open had been called for write-only
access to the pathname.

e UNIX domain stream sockets provide a byte stream interface to the
process with no record boundaries.

. If s ocket’s qu eue i s full then ECONNREFUSED i s r eturned i n
response to a call to connect for UNIX domain stream socket.

. UNIX domain datagram sockets are similar to UDP sockets.

. Unlike U DP s ockets, s ending a datagram on a n unbound UNIX
domain datagram socket does not bind a pathname to the socket.

11.6 UNIX DOMAIN STREAM CLIENT/SERVER

UNIX domain stream client/server uses stream socket. Most of the

steps are similar to TCP echo client/server. But some modifications have
been dow n like associating p athname t o UNIX. The s teps for cr eating
UNIX domain stream server are following: -

Call socket () - Acallto socket () with the p roper a rguments
creates the UNIX socket. Here, we will pass SOCK_STREAM as
second argument to create a stream socket.

We first unlink the pathname, in case it e xists from an earlier run
of the server, and then initialize the socket address structure before
calling bind (). Rest of steps is same as of TCP echo client/server.

Call bind ()- We get a socket descriptor from the call to socket(),
now bind that to an address in the UNIX domain.

Call listen () - This instructs th e s ocket to lis ten f or in coming
connections from client programs.

Call accept () - This will accept a connection from a client.

Close the connection.

In order to create UNIX domain stream c lient s ome mo difications have
been made to TCP client/socket. The steps are given below: -

The socket address structure to contain the server's address is now
a sockaddr un structure.

Call socket ()-The first argumentto socketis AF LOCAL and
second one is SOCK STREAM.

Call connect () — To connect with server.

The program below shows the unix domain stream protocol echo server.

#include ‘“unp.h”

int

main (int argc, char **argv)

{

int listenfd, connfd;

pid_t childpid;

socklen t clilen;

struct sockaddr un cliaddr, servaddr;

void sig_chld(int);

listenfd = Socket(AF_LOCAL, SOCK_STREAM, 0);

BCA-E7/173

BCA-E7/174

unlink(UNIXSTR_PATH);

bzero(&servaddr, sizeof(servaddr));
servaddr.sun_family=AF LOCAL,;
strepy(servaddr.sun_path, UNIXSTR PATH);
Bind(listenfd, (SA *) &servaddr, sizeof(servaddr));
Listen(listenfd, LISTENQ);

Signal(SIGCHLD, sig_chld);

for (;;) 4

clilen = sizeof{(cliaddr);

if ((connfd = accept(listenfd, (SA *) &cliaddr, &clilen)) <0) {
if (errno == EINTR)

continue; /* back to for() */

else

err_sys("accept error");

}

if ((childpid = Fork()) == 0) { /* child process */
Close(listenfd); /* close listening socket */
str_echo(connfd); /* process request */

exit(0);

}

Close(connfd);

}

}

The program of the server is use the Unix domain stream protocol instead
of T CP. The d atatype oft het wos ocket a ddress s tructuresi s no w
sockaddr un. The first argumentto socketis AF LOCAL,to create a
Unix domain stream socket. The constant UNIXSTR PATH is defined in
unp.h to be /tmp/unix.str. First unlink the pathname, in case it exists from
an earlier run of the server and then initialize the socket address structure
before cal ling bind. A n e rror fro m unlink is acc eptable. The s tream
protocol echo server program in bind call it specify the size of the socket
address structure (the third argument) as the total size of the sockaddr un
structure, not just the number of b ytes oc cupied by the pathname. B oth
lengths are valid since the pathname must be null-terminated.

The program below shows the Unix domain stream protocol echo
client

#include "unp.h"

int

main(int argc, char **argv)

{

int sockfd;

struct sockaddr un servaddr;

sockfd = Socket(AF_LOCAL, SOCK _STREAM, 0);
bzero(&servaddr, sizeof(servaddr));
servaddr.sun_family = AF LOCAL;
strepy(servaddr.sun_path, UNIXSTR PATH);
Connect(sockfd, (SA *) &servaddr, sizeof(servaddr));
Str_cli(atdin,sockfd);
Exit(0);
}

The s ocketa ddresss tructuret oc ontaint hes erver'sa ddressi sa
sockaddr un structure. The first argument to socketis AF_ LOCAL. The
code to fill in the socket address structure is identical to the code shown in
the previous program for the server: Initialize the structure to 0, set the
family to AF_ LOCAL, and copy the pathname into the sun_path member.

11.7 UNIX DOMAIN DATAGRAM CLIENT
/SERVER

UNIX domain d atagram c lient/server requires mo dification to
UDP e cho c lient/server. Important poi nts i n creating UNIX domain
datagram echo server are following: -

e Theda tatype of t he twos ocketa ddresss tructuresi s now
sockaddr un.

. The first ar gumentto s ocketis AF LOCAL, tocreatea UNIX
domain datagram socket.

. We first unlink the pathname, in case it e xists from an earlier run
of the server, and then initialize the socket address structure before
calling bind ().

° Others are same as UDP echo server.

BCA-E7/175

BCA-E7/176

Similarly, in UNIX domain d atagram ech o client, some modifications
have been done.

° The socket address structure to contain the server's address is now
a sockaddr un structure. We also allocate one of these structures to
contain the client's address.

. The first argument to socket is AF_ LOCAL.

e Unlike our UDP client, when using the UNIX domain d atagram
protocol, we must explicitly bind a pathname to our socket so that
the server has a pathname to which it can send its reply. Other is
same as UDP echo client.

The program below shows the Unix domain datagram protocol echo
server.

#include "unp.h"

int

main(int argc, char **argv)

{

int sockfd;

struct sockaddr un servaddr, cliaddr;

sockfd = Socket(AF_LOCAL, SOCK _DGRAM, 0);
unlink(UNIXDG PATH);

bzero(&servaddr, sizeof(servaddr));
servaddr.sun_family = AF LOCAL;
strepy(servaddr.sun_path, UNIXDG PATH);
Bind(sockfd, (SA *) &servaddr, sizeof(servaddr));
dg echo(sockfd, (SA *) &cliaddr, sizeof(cliaddr));
}

In the program, the datatype of the two socket address structures is now
sockaddr un. The first ar gument to socketis AF LOCAL, to create a
Unix domain datagram socket. The constant UNIXDG PATH is defined
in unp.h to be /tmp/unix.dg. First unlink the pathname, in case it e xists
from an earlier run o fthe s erver, and then initialize t he s ocket a ddress
structure b efore calling bind. A n e rror from u nlink i s a cceptable. T he
dg_echo function is used.

The program below shows the Unix domain datagram protocol echo
client

#include "unp.h"

int

main(int argc, char **argv)

{

int sockfd;

struct sockaddr un cliaddr, servaddr;

sockfd = Socket(AF_LOCAL, SOCK_DGRAM, 0);
bzero(&cliaddr,sizeof(cliaddr));

cliaddr.sun family=AF LOCAL,;
strepy(cliaddr.sun_path,tmpnam(NULL));
Bind(sockfd, (SA *) &cliaddr, sizeof{(cliaddr));
bzero(&servaddr, sizeof(servaddr));
servaddr.sun_family=AF LOCAL;
strepy(servaddr.sun_path,UNIXDG PATH);
dg_cli(stdin,sockfd,(SA*) &servaddr,sizeof(servaddr));
exit(0);
}

In the program, the socket address structure to contain the server's address
is now a sockaddr un structure. Also allocate one of these structures to
contain the client's address. The first argument to socket is AF_ LOCAL.
Unlike our UDP client, when using the Unix domain datagram protocol,
then must e xplicitly bind a pathname to socket so that the server has a
pathname to which it can send its reply. The code to fill in the s ocket
address structure with the server's well-known pathname is identical to the
code shown earlier for the server. The function dg_cli is the used.

Check Your Progress

1. Write the difference between Unix domain datagram and Unix
domain stream client/server.

11.8 PASSING DESCRIPTORS

Steps involved in passing a descriptor between two processes are
as follows: -

. Create UNIX domain sockets either a stream socket or a datagram
socket and connect them for communication between a server and
a client.

. One process opens a de scriptor. A ny type o fdescriptor can be
exchanged.

BCA-E7/177

o Sender builds an msghdr structure containing the descriptor to be
passed, an d cal Is sendmsg with t he s tructure a cross one of t he
UNIX domain sockets.

e Reciever calls recvmsg to receive t he de scriptor from t he ot her
UNIX domain socket.

Client and server must have an application protocol so they know when
the descriptor is to be passed.

11.9 RECEIVING SENDER CREDENTIALS

Whenacl ientan ds erver communicate us ing UNIX domain
protocols, the server often needs a way to know exactly who the client is,
to v alidate th at th e ¢ lient h as permission t o a sk for the s ervice b eing
requested.

FreeBSD passes credentials in a cmsgcred structure, which is defined by
including the<sys/socket.h>header.

structcmsgcred {

pid_t cmcred pid; /* PID of sending
process */
uid_t cmcred_uid; /* real UID of

sending process */

uid_t cmcred_euid; /* effective UID of sending

process */

gid t cmcred gid; /* real GID of
sending process */

short cmcred ngroups; /* number of groups
*/

gid t cmcred _groups[CMGROUP _MAX],
/* groups */

}}.

The program below shows the read_cred function that reads and
returns sender's credentials.

#include "unp.h"

#defineCONTROL LEN(sizeof(structcmsghdr)+sizeof(struct
cmsgcred))

ssize t

read cred(int f d, voi d *pt r,s ize tnb ytes, structcm sgcred
*cmsgeredptr)

BCA-E7/178 {

struct msghdr msg;

struct iovec iov[1];

char control[CONTROL LEN];

int n;

msg.msg_name = NULL;
msg.msg_namelen = 0;
iov[0].iov_base = ptr;
iov[0].iov_len = nbytes;
msg.msg_iov = iov;
msg.msg_iovlen = 1;
msg.msg_control = control;
msg.msg_controllen = sizeof(control);
msg.msg_flags = 0;

if ((n = recvmsg(fd, &msg, 0)) <0)
return (n);

cmsgcredptr->cmcred ngroups = 0; / * 1 ndicates no ¢ redentials
returned */

if (cmsgcredptr && msg.msg_controllen > 0) {
struct cmsghdr *cmptr = (struct cmsghdr *) control;
if (cmptr->cmsg len < CONTROL LEN)
err_quit("control length = %d", cmptr->cmsg_len);
if (cmptr->cmsg_level != SOL_SOCKET)
err_quit("control level != SOL_SOCKET");

if (cmptr->cmsg_type = SCM_CREDS)
err_quit("control type != SCM_CREDS");

memcpy(cmsgeredptr, C ~ MSG_DATA(cmptr), s izeof{(struct
cmsgcred));

}

return (n);

}

In the program, the first three arguments are id entical to read, with the
fourth argument being a pointer to a cmsgcred structure that will be filled
in. If credentials were returned, the length, level, and type of the ancillary BCA-E7/179

data are verified, and the resulting structure is copied back to the caller. If
no credentials were returned, then set the structure to 0. Since the number
of groups (cmcred ngroups) is always 1 or more, the value of 0 indicates
to the cal ler t hat n o cr edentials w ere returned by the k ernel. T he m ain
function for echo server, str_echo function is called by the child after the
parent has accepted a new client connection and called fork. If credentials
were returned, they are printed. The further c ode re ads buffers from the
client and writes them back to the client.

The program below shows the str_echo function that asks for client
credentials

#include "unp.h"
ssize tread cred(int, void *, size t, struct cmsgcred *);
void

str_echo(int sockfd)

{

ssize tn;

int 1;

char buff MAXLINE];

struct cmsgcred cred,

again:
while ((n =read_cred(sockfd, buf, MAXLINE, &cred))>0) {
if (cred.cmcred ngroups == 0) {
printf("(no credentials returned)\n");

} else {

printf("PID of sender = %d\n", cred.cmcred pid);
printf("real user ID = %d\n", cred.cmcred uid);
printf("'real group ID = %d\n", cred.cmcred_gid);
printf("effective user ID = %d\n", cred.cmcred euid);
printf("%d groups:", cred.cmcred ngroups - 1);

for (1=1; 1 <cred.cmcred ngroups; i++)

printf(" %d", cred.cmcred_groups[i]);

printf("\n");

}

writen(sockfd, buf, n);
BCA-E7/180

}
if (n <0 && errno == EINTR)

goto again
else if(n<0)

err_sys(“str_echo:read error”);

}

In the program, the main function for e cho serveris str_echo function.
This function is called by the child after the parent has accepted a new
client connection and called fork. If credentials were returned, they are
printed. Further code reads buffers from the client and writes them back to
the client. Here client is to pass an empty cmsgcred structure that will be
filled in when it calls sendmsg.

11.10 SUMMARY

UNIX domain sockets are an alternative to IPC when the client and
server are on the same host. The advantage in using UNIX domain sockets
over some form of IPC is that the APl is nearly identical to a n etworked
client/server. We modified our TCP and UDP echo clients and servers to
use the UNIX domain protocols and the only major difference had to bind
apathnamet ot he U DP c lient's s ocket, s o t hat the UDP s erver h ad
somewhere to send the replies. Descriptor passing is a powerful technique
between clients and servers on the same host and it takes place across a
UNIX domain socket.

11.11 TERMINAL QUESTIONS

Explain UNIX domain protocol.
Write two types of socket provided in UNIX domain socket.
Write structure of UNIX domain socket address.

What is use of Bind () system call?

A

Write a program to show read cred function that reads and returns
sender's credentials.

6. Write a program to show the str_echo function that asks for client
credentials.

BCA-E7/181

BCA-E7/182

Bachelor of Computer
Application

BCA-E7

Uttar Pradesh Rajarshi Tandon Network Pro gramming

Open University

Block

Broadcast, Multicast and Inter Process

Communication

UNIT 12 187-192
Broadcasting

UNIT 13 193-212
Multicast

UNIT 14 213-228
Inter Process Communication

UNIT 15 229-236

Remote Login

BCA-E7/183

BCA-E7/184

Course Design Committee

Dr. Ashutosh Gupta Chairman
Director (In-charge)
School of Computer and Information Science, UPRTOU Prayagraj

Prof. R. S. Yadav Member
Department of Computer Science and Engineering
MNNIT-Allahabad, Prayagraj

Ms Marisha Member
Assistant Professor (Computer Science),

School of Science UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Member

Assistant Professor, (Computer Science)
School of Sciences UPRTOU Prayagraj

Course Preparation Committee

Dr. Prabhat Kumar Author (Block 1,2)
Assistant Professor, Department of IT

NIT Patna

Dr. Prabhat Ranjan Author (Block 3.4)

Assistant Professor, Department of Computer Science
Central University of South Bihar

Dr. Rajiv Mishra Editor
Associate Professor, Department of CSE

IIT Patna

Dr. Ashutosh Gupta (Director in Charge)

School of Computer & Information Sciences,

UPRTOU Prayagraj

Mr. Manoj Kumar Balwant Coordinator

Assistant Professor, (Computer Science)
School of sciences UPRTOU Prayagraj

© UPRTOU, Prayagraj. 2019
ISBN : 978-93-83328-11-6

All Rights are reserved. No part of this work may be reproduced in any form, by
mimeograph or any other means, without permission in writing from the Uttar
Pradesh Rajarshi Tondon Open University, Prayagraj.

Printed and Published by Dr. A run Kumar G upta R egistrar, Uttar P radesh
Rajarshi Tandon Open University, 2019.

Printed By : Chandrakala Universal Pvt. Ltd. 42/7 Jawahar Lal Neharu R oad,
Prayagraj.

BLOCK INTRODUCTION

The obj ective of this course is to introduce the basic concept about the
network programming as well as provides a mix o f practical ex perience
and a depth of understanding. The network programming course address
today's most crucial standards, implementations and techniques. The aim
is to provide an extensive variety of topics on this subject with appropriate
examples. The course is organized into following blocks:

Block 4 covers broadcasting, multicast, inter process communication and
remote login.

BCA-E7/185

BCA-E7/186

UNIT 12 : BROADCASTING

Structure

12.1 Introduction

12.2 Objectives

12.3 Broadcast Addresses

12.4 Unicast versus Broadcast

12.5 dg cli Function Using Broadcasting
12.6 Race Conditions

12.7 Summary

12.8 Terminal Questions

12.1 INTRODUCTION

In th is unit, we w ill | earn about; br oadcasting and i ts us es,

broadcast a ddress, di fference be tween uni cast and br oadcast addressing,
dg cli function using broadcasting and race conditions.

There ar e f our types of a ddressing; U nicast, Anycast, M ulticast a nd
Broadcast. Unicasting i s pr ocessing t alking to e xactly one another
process, f or e xample T CP. A ny castingis addedin IPv6 a ddressing
architecture. M ulticasting s upport i s optional in IPv4 but m andatory in
IPv6. Broadcasting is not available in IPv6. Any IPv6 application that
uses br oad ¢ asting m ust be r ecorded IPv6to use m ulticasting. B road
casting and multicasting require data gram transport such as UDP or raw
IP, they cannot work with TCP.

12.2 OBJECTIVES

At the end of this unit, you should be able to: -

Know what is broadcasting, its uses.

How to write broadcast address.

Able to differentiate between unicast and broadcast address.
Able to write dg_cli function that broadcasts.

Know race conditions.

BCA-E7/187

BCA-E7/188

12.3 BROADCAST ADDRESSES

Broadcasting refers to transferring a message to all the recipients.
Broadcasting r equire d atagram t ransport l ike U DP or raw IP, it c annot
work with TCP.

Uses

° Tolocateas erveront hel ocal s ubnetw hent hes erveri s
assumed to be on the local subnet but its unicast IP address is not
known. This is sometimes called resource discovery.

° To m inimize t he ne twork t rafficon a LAN w hen t here a re
multiple clients communicating with a single server.

Ifw ed enote an IPv4 address as { subnetid, hostid}, w here subnetid
represents the b its that are co vered by the network mask (or the C IDR
prefix) and hostid represents the bits that are not covered, then we have
two types of broadcast addresses. We denote a field containing all one
bits as —1.

a) Subnet-directed broadcast address - <subnetid, -1>:T his
addresses all the interfaces on the specified subnet. For example, if
we have the subnet 192.168.42/24, then 192.168.42.255 would be
the s ubnet-directed b roadcast ad dressf ora 111 nterfaceso n
the192.168.42/24 subnet.

b) Limited broadcast address -<-1, -1, -1>o0r 255.255.255.255:
Datagrams destined to this address must never be forwarded by a
router.

Check Your Progress
1. Can you explain the subnetid and hostid?

2. Can you explain types of broadcast addresses?

12.4 UNICAST VERSUS BROADCAST

Unicast is the term used to describe communication where a piece
of information is sent from one point to another point. In this case there is
just one sender, and one receiver. Unicast uses IP delivery methods such
as T ransmission C ontrol P rotocol (TCP) a nd User D atagram P rotocol
(UDP), w hich are s ession-based pr otocols. W hena W indows M edia
Player c lient connects using unicastto a W indows M edia s erver, t hat
client h as ad irect r elationship to th e s erver. Each u nicast c lient th at
connects to the server takes up additional bandwidth. For example, if you
have 10 clients all playing 100-kilobits per second (Kbps) streams, those

clients as a group are taking up 1,000 K bps. If you have only one client
playing the 100 Kbps stream, only 100 Kbps is being used.

Broadcast is the term used to d escribe communication where a p iece of
information is sent from one point to all other point. In this case there is
just one sender, but the information is sent to all connected receivers.

12.5 DG_CLI FUNCTION USING BROADCASTING

The dg cli function is used to perform most of the client processing in
UDP echo client. In order to broadcast to the standard UDP daytime server
and printing all replies we make some modifications to dg cli function. In
main () function we change the destination port number to 13.

servaddr.sin_port = htons(13);
The working of dg_cli function is as follows: -
e Allocate room for server's address, set socket option.
e Read line; send to socket, read all replies.
e Print each received reply.
The dg_cli function that broadcasts as shown below:
#include "unp.h"
static void recvfrom_alarm(int);
void

dg cli(FILE *fp, int sockfd, const SA *pservaddr, socklen t
servlen)

{
int n;
constinton = 1;
char sendlinef MAXLINE], recvline/ MAXLINE + 1],
socklen_t len,
struct sockaddr *preply addr,
preply addr = Malloc(servien);

Setsockopt(sockfd, =~ SOL SOCKET, SO _BROADCAST,
&on, sizeof(on));

Signal(SIGALRM, recvfrom_alarm);
while (Fgets(sendline, MAXLINE, fp) |= NULL) {

Sendto(sockfd, sendline, strlen(sendline), 0,
pservaddr, servlen);

BCA-E7/189

BCA-E7/190

alarm(5);
Jor (;;){

len = servien,

n = recvfrom(sockfd, recvline, MAXLINE, 0,
preply addr, &len),

ifn<0){
if (errno == EINTR)

break; /* waited long enough
for replies */

else
err_sys("recvfrom error”);
Jelse {
recvline[n] = 0; /* null terminate */
printf("from %s: %s",

Sock ntop_host (preply addr, len),
recvline);

}
free(preply addr),
/

static void

recvfrom_alarm(int signo)

{

return, /* just interrupt the recvfrom() */

/

The dg cli function sets the SO BROADCAST socket option and prints
all the replies received w ithin five s econds. In the program, the malloc
allocates room for the server's address to be returned by recvfrom. T he
SO _BROADCAST socket option is set and a signal handler is installed for
SIGALRM. The nexttwo steps, fgets and sendto of this function are
sending a broadcast datagram, receive multiple replies, call recvfrom in a
loop and print all t he r eplies r eceived w ithin five s econds. After five
seconds, SIGALRM is generated, signal handler is called, and recvfrom
returns t he e rror E INTR. F or e ach r eply r eceived, i n t he pr ogram c all
sock ntop host, which in the case of IPv4 returns a string containing the

dotted-decimal IP address of the server. T his is printed along with the
server's reply.

Check Your Progress

1. Can you explain the major steps of dg cli function?

A race condition is a situation which occurs usually when multiple
processes are accessing data that is shared among them, but the co rrect
outcome depends on the execution order of the processes.

Race conditions are always a concern with threads programming since so
much data is shared among all the threads (e.g., all the global variables).
Race conditions of a different type often exist when dealing with signals.
The problem oc curs because a s ignal can normally b e delivered at any
time while our program is executing. POSIX allows us to block a signal
from being delivered, but this is often of little use while we are performing
I/O operations.

A race condition exists in above program (dg cli function using broadcast)
if force the condition to occur as follows: Change the argument to alarm
from 5 to 1, and add sleep (1) immediately before the printf. When make
these changes to the function and then type the first line of input, the line
is sent as a broadcast and set the alarm for one second in the future. The
block in the call to recvfrom, and the first reply then arrives for our socket,
probably within a few milliseconds. The reply is returned by recvfrom, but
we then go to sleep for one second. A dditional replies are received, and
they are placed into our sockets receive buffer. But while we are asleep,
the alarm t imer ex pires an d t he S IGALRM s ignal i s g enerated: s ignal
handler is called, and it just returns and interrupts the sleep in which we
are blocked. Then 1oop around and read the que ued replies with a one-
second pause e achtime we printar eply. When we h ave read al | the
replies, w e b lock a gain in th e c all to r ecvfrom, b ut th e timeris n ot
running. T hus, w e w ill block f oreveri nr ecvfrom. T he f undamental
problem is that our intent is for our signal handler to interrupt a blocked
recvirom, but the signal can b e de livered at any time, and w e c an be
executing anywhere in the infinite for loop when the signal is delivered.

12.7 SUMMARY

In this unit, we have covered about broadcast addresses, difference
between uni cast a nd br oadcast, dg c/i function u sing b roadcasting an d
also studied race conditions.

Broadcasting sends datagram that all hosts on the attached subnet receive.
While unicasting sends datagram to a single intended host.

There are two ways to write broadcast address

(i) subnet-directed broadcast address and

BCA-E7/191

BCA-E7/192

(i)

limited broadcast address.

12.8 TERMINAL QUESTIONS

1
2
3.
4
5

Explain broadcast address and its uses.

Explain difference between unicast and broadcast?
Explain dg_cli function using broadcasting.

What is race condition?

Write a dg_cli function with race condition.

UNIT 13 : MULTICASTING

Structure

13.1 Introduction

13.2 Objectives

13.3 Multicast Addresses

13.4 Multicasting versus Broadcasting on a LAN
13.5 Multicasting on a WAN

13.6 Source-Specific Multicast

13.7 Multicast Socket Options

13.8 mcast join and Related Functions

13.9 dg cli Function Using Multicasting

13.10 Receiving IP Multicast Infrastructure Session Announcements
13.11 Sending and Receiving

13.12 Simple Network Time Protocol (SNTP)
13.13 Summary

13.14 Terminal Questions

13.1 INTRODUCTION

In this unit, we will learn details about multicasting. We will study
multicasting on LAN and its di fference with broadcasting. Then we get
knowledge about multicasting on W AN. T hen we see difficulties related
to mu Iticasting on W AN and d iscuss s olutions to it in terms of source
specific multicast. Then we will have a look over multicast socket options
and mecast_join and related functions. We will see dg cli function using
multicasting. T hen t here w ill be di scussionont opics R eceiving IP
Multicast Infrastructure Session Announcements, Sending and Receiving,
and Simple Network Time Protocol (SNTP).

Multicast a ddress id entifies a set of IP interfaces. A multicast d atagram
should be received by only those interfaces interested in the datagram, that
is, by the interfaces on the host running applications wishing to participate

BCA-E7/193

BCA-E7/194

in the multicast group. Multicasting is used on a LAN or across a W AN.
Indeed, applications multicast across a subset of internet on a daily basis.

13.2 OBJECTIVES

At the end of this unit, you should be able to know about: -

. Multicast and multicast address.

J Difference between Multicasting versus Broadcasting on a LAN
o Multicasting on a WAN and Source-Specific multicast

o Multicast Socket Options

o mcast_join and related functions and dg_cli Function using
multicasting

o Receiving IP Multicast Infrastructure Session Announcements

J Sending and Receiving multicast datagrams

° Simple Network Time Protocol (SNTP)

13.3 MULTICAST ADDRESSES

A multicast a ddress is a lo gical id entifier for a group o f hosts in
a computer ne twork that ar e av ailable t o p rocess d atagrams o r f rames
intended t o be multicast for a de signated ne twork s ervice. Multicast
addresses identify a set of IP interfaces. IP multicast address ranges and
uses are shown below in table 13.1.

Range Start Range End Description

Address Address

224.0.0.0 224.0.0.255 Reserved for special “well-known”
multicast addresses.

224.0.1.0 238.255.255.255 | Globally-scoped (Internet-wide)
multicast addresses.

239.0.0.0 239.255.255.255 | Administratively-scoped (local)
multicast addresses.

Table 13.1 : IP Multicast Address Ranges and Uses

IPv4 Multicast addresses

In IPv4, class D addresses ranging from 224.0.0.0 to 239.255.255.255 are
the multicast addresses. The lower order 28 bits of class D address form
the multicast groupID and the 32-bit address is called the group address.

Mapping IPv4 multicast address to Ethernet address involves copy of low-
order 23 bi ts of multicast a ddress t o | ow-order 23 -bits of t he E thernet
address. T he hi gh o rder 24 bi ts of t he E thernet a ddress a re always
01:00:5e and the next bit is always 0.

IPv6 Multicast Addresses
The high-order byte of an IPv6 multicast address has the value ff-

The mapping from a 16-byte IPv6 multicast address into a 6-byte Ethernet
address involves copy o f low-order 32 bi ts of the group address into the
low-order 32 bi ts of the Ethernet address. The high-order 2 bytes of the
Ethernet address are 33:33.

The table 13.2 and figure 13.1 shown the IPv6 Multicast Address Format.

Field Name | Size (bits) Description

(Indicator) 8 The f irst e ight bi tsa rea lways “ 1111 11117 t o
indicate a multicast address.

Flags 4 Four bits are reserved for flags that can be used to
indicate the nature of certain multicast addresses. At
the present time, the first three o f these are unused
and setto zero. T he fourthisthe “T” (Transient)
flag. If left as zero, this marks the multicast address
as a p ermanently-assigned, “well-known” mu Iticast
address. Ifs etto o ne,th isme ansth isis

a transient multicast address, me aning that it is not
permanently assigned.

Scope ID 4 Fourbi tsa reus edt ode finet hes cope of the
multicast address; 16 different values from 0 to 15
are possible.

Scope ID Value Multicast Address Scope
Reserved
Node-Local Scope

0
1
2 Link-Local Scope
5 Site-Local Scope
8

Organization-Local Scope

14 Global Scope
15 Reserved
Group ID 112 Group ID: Defines a p articular group w ithin e ach

scope level.

Table 13.2 : IPv6 Multicast Address Format

BCA-E7/195

BCA-E7/196

-
Fi % .

_ 128 bits ’
Groug D

111 1111 Flags " Flage = 4 T 0 Il parmanant, 1 If lemporary

El e el s ..P Prafix for unicast-basad assignments

- - *

8 bits 8 bits 1 =node
2=1Ink
SC0pe = 4 5 = sila

8 = organization
| E=plobal

Figure 13.1 : IPv6 Multicast Address Format

13.4 MULTICASTING VERSUS
BROADCASTING ON A LAN

Broadcast is a term used to describe communication where a piece
of information is sent from one point to all other points. In network case,
there i s j ust one s ender, but the i nformationis s enttoall c onnected
receivers. Broadcastis mostly used in 1 ocal sub ne tworks. In orderto
transmit b roadcast p acket,t he d estination M AC a ddressi ss ett o
FF:FF:FF:FF:FF:FF and all such packets will be received by other NICs.

Multicastis at erm used to d escribe communication w here ap iece o f
information is sent from a source host to a group of destination hosts. The
notion of group is essential to the concept of multicasting. A m ulticast
group address is defined. All the hosts that have joined this group will
receive messages sent to this multicast group address.

13.5 MULTICASTING ON A WAN

We know W AN pr ovides | ong di stance t ransmission of da ta,
image, a udio a nd vi deo i nformation ove r | arge g eographical areas t hat
may comprise a country, a continent, or even the whole world. WAN i.e
wide area network is a combination of LANs connected through routers.

In order to have multicasting on a WAN we need to have multicast routers
for connecting LAN. M ulticast r outers ¢ ommunicate e ach ot her us ing
multicast routing protocol (MRP). Group of hosts belonging to di fferent
LANs may form a multicast group. A new host c an jo in th e mu Iticast
group by sending an IGMP to any attached multicast router which then
exchanges this information with other multicast routers using MRP.

Suppose a host on a LAN want to send a message to a multicast group on
a WAN. It will multicast the message to its LAN. Other hosts on this LAN
belonging t o t he required m ulticast g roup w ill r eceive th is me ssage.
Multicast router attached to this LAN will also receive the message. This
multicast r outer will th en s end th e me ssage to another multicast r outer
attached to it. A 1l mu lticast r outer w ill th en mu Iticast o n its r espective
LAN and multicast routers attached to it. Intended recipient on LAN will
then receive message from multicast.

Multicasting on a WAN has been difficult to deploy for several reasons.

. The biggest problem is that the MRP needs to get the data from all
the senders, which may be located anywhere in the network, to all
receivers, which may similarly be located anywhere.

o Another 1 arge problem is multicast ad dress al location. T here are
not enough IPv4 multicast a ddresses to s tatically assign them to
everyone who wants one, as is done with unicast addresses.

13.6 SOURCE-SPECIFIC MULTICAST

Source-specific mu Iticast (SSM)i sa m ethod of
delivering multicast packets in which the only packets that are delivered to
areceiver are those originating from a specific source address requested
by the receiver.

SSM combines the group address with a system's source address, which
solves the multicasting problems in WAN by the following ways:

o The receivers supply the sender's source address to the routers as
part of joining the group.

o It r edefines th e id entifier f rom s imply being a mu Iticast g roup
address to being a combination of a unicast source and multicast
destination.

IP version 4 (IPv4) addresses in the 232/8 (232.0.0.0 to 232.255.255.255)
range a re d esignated as s ource-specific mu lticast (SSM) d estination
addresses and are reserved for use by source- specific applications and
protocols. F or IP version 6 ([Pv6), the address prefix FF3x::/321s
reserved fo r s ource-specific mu Iticast use. T his doc ument de fines a n
extension to the Internet network service that applies to datagrams sent to
SSM ad dresses and d efines the host and router requirements to support
this extension.

Check Your Progress

1. Can you explain the difference between multicast and
broadcast?

2. What are the advantages of SSM ?

BCA-E7/197

13.7 MULTICAST SOCKET OPTION

The API support for traditional multicasting requires only five new
socket options. Source-filtering support, which is required for SSM, adds
four more. The following are the multicast socket options: -

. IP. MULTICAST IF — Specify d efaulti nterface f or o utgoing
multicasts.

. IP. MULTICAST TTL — Specify TTL for outgoing multicasts.

. IP MULTICAST LOOP — Enable or disable loopback of outgoing
multicasts.

J IPV6_ MULTICAST IF — Specify d efault i nterface f or out going
multicasts.

J IPV6_ MULTICAST HOPS — Specify hopl imitf or out going
multicasts.

e [PV6 MULTICAST LOOP — Enableor di sablel oopback of
outgoing multicasts.

Working with multicast sockets and UNIX (FreeBSD) as follows:

1. Sending socket: - In general, there's nothing special youneed to
do on the sending end. The key is simply to send to a multicast IP
(group) address. Tips:

% Use socket() withAF INET andS OCK DGRAM
arguments as normal.

< Use bind () to associate this socket with a 1ocal address and
port.

< Don ota ttempt to a ssociate th e s ocket w ith a mu Iticast
destination address using connect ().

< Use sendto () for sending data.

2. Receiving socket: - Receiving is ne arly the s ame, but with one
additional system call setsockopt ().

% Use socket() with AF INET andS OCK DGRAM
arguments as normal.

< Use setsockopt () with the IP. ADD MEMBERSHIP option.
This tells the system to receive packets on the network whose
destination is the group address (but not its own).

13.8 mecast join and RELATED FUNCTIONS

The mu lticast socket options for IPv4 are similar to the multicast
BCA-E7/198 socket opt ions f or IPv6,t here are e nough di fferences t hat pr otocol-

independent c ode using mu Iticasting b ecomes complicated with lots o f
#ifdefs. A better solution is to hide the differences within the following
eight functions:

#include "unp.h"

int mc ast_join(int sockfd, ¢ onst s truct s ockaddr * grp, s ocklen t grplen,

const char *ifname, u_int ifindex);
int mcast_leave(int sockfd, const struct sockaddr *grp, socklen_t grplen);

intm cast block source(int sockfd, consts tructs ockaddr* src,

socklen _t srclen, const struct sockaddr *grp, socklen t grplen);

intm cast unblock source(int sockfd, ¢ onst structs ockaddr* src,

socklen _t srclen, const struct sockaddr *grp, socklen t grplen);

int m cast join_source group(int sockfd, c onsts tructs ockaddr * src,
socklen_t srclen, const struct sockaddr * grp, socklen_t grplen, const char

*ifname, u_int ifindex);

int m cast leave source group(int sockfd, ¢ onsts tructs ockaddr * src,

socklen _t srclen, const struct sockaddr *grp, socklen t grplen);
int mcast_set_if(int sockfd, const char *ifname, u_int ifindex);
int mcast_set_loop(int sockfd, int flag);,
int mcast_set_ttl(int sockfd, int ttl);
All above return: 0 if OK, —1 on error
int mcast_get if(int sockfd);
Returns: non-negative interface index if OK, —1 on error
int mcast_get loop(int sockfd);
Returns: current loopback flag if OK, —1 on error
int mcast_get _ttl(int sockfd);

Returns: current TTL or hop limit if OK, —1 on error

BCA-E7/199

BCA-E7/200

mcast_join joins the any-source multicast group whose IP address
is within the socket address structure pointed to by grp, and whose
length is specified by grplen.

mcast_leave leavest he m ulticast g roup w hose [P a ddressi s
contained within the socket address structure pointed to by grp.

mcast_block source blocks reception on the given s ocket of the
source and group whose IP address are contained within the socket
address s tructures pointedto by src and grp, respectively, an d
whose lengths are specified by srclen and grplen.

mcast_unblock _source unblocks reception of traffic from the given
source to the given group.

mcast_join_source_group joins t he s ource-specific g roup w here
the source and group IP addresses are contained within the socket
address s tructures pointedto by src and grp, respectively, an d
whose lengths are specified by srclen and grplen.

mcast_leave source group leaves the source-specific group whose
source and group IP a ddresses a re ¢ ontained w ithin t he s ocket
address s tructures pointedto by src and grp, respectively, an d
whose lengths are specified by srclen and grplen.

mcast_set _if sets the default interface index for outgoing multicast
datagrams.

mcast_set _loop sets t he 1 oopback optiontoeitherOor 1,a nd
mcast_set ttl sets either the [Pv4 TTL or the IPv6 hop limit.

The program below shows the first third of mcast join function. The
program shows how straightforward the protocol-independent API can

be.

#include "unp.h"

#include <net/if.h>

int

mcast_join(int sockfd, const SA *grp, socklen t grplen,

{

const char *ifname, u_int ifindex)

#ifdef MCAST_JOIN_GROUP

struct group req req;

if (ifindex > 0)

req.gr_interface = ifindex;
} else if (iftname != NULL) {
if ((req.gr_interface = if nametoindex(ifname)) == 0) {
errno = ENXIO; /* i/f name not found */
return (-1);

}

} else
req.gr_interface = 0;

if (grplen > sizeof(req.gr group)) {
errno = EINVAL;

return -1;

}

memcpy(&req.gr_group, grp, grplen);
return (setsockopt(sockfd, family to level(grp->sa family),

MCAST JOIN GROUP, &req, sizeof(req)));
#else

In the program, the caller is supplied an index, and then use it directly.
Otherwise, if the caller supplied an interface name, the index is obtained
by calling if nametoindex. Otherwise, the interface is set to 0, telling the
kernel t o ch oose t he i nterface. The caller's s ocket ad dress i s co pied
directly i nto t he r equest's group field. R ecall t hat t he group fieldisa
sockaddr storage, so it is big enough to handle any socket address type the
system s upports. H owever, t o guard a gainst buf fer ove rruns c aused b 'y
sloppy coding, c heck the s ockaddr size and return EINVAL ifitistoo
large. The setsockopt performs the join. The level argument to setsockopt
is determined using the family of the group address and family to level
function. Some systems support a mismatch between level and the socket's
address f amily,f ori nstanceus ing IPPROTO IPw ith
MCAST JOIN _GROUP, even with an AF_INET6 socket, but not all do,
so it turns the address family into the appropriate level.

The program below shows the second third of mcast _join, which handles
1IPv4 sockets.
switch (grp->sa_family) {
case AF_INET:{
struct ip_mreq mreq;
struct ifreq ifreq;

BCA-E7/201

BCA-E7/202

memcpy(&mreq.imr_multiaddr,
&((const struct sockaddr in *) grp)->sin_addr,
sizeof(struct in_addr));
if (ifindex > 0) {
if (if indextoname(ifindex, ifreq.ifr name) == NULL) {
errno = ENXIO; /* 1/f index not found */
return (-1);

b

goto doioctl;

} else if (iftname != NULL) {
strncpy(ifreq.ifr_name, ifname, IFINAMSIZ);
doioctl:
if (ioctl(sockfd, SIOCGIFADDR, &ifreq) < 0)
return (-1);
memcpy(&mreq.imr_interface,
&((struct sockaddr in *) &ifreq.ifr_addr)->sin_addr,
sizeof(struct in_addr));

} else

mreq.imr_interface.s _addr = htonl(INADDR ANY);
return (setsockopt(sockfd, IPPROTO_IP, IP. ADD MEMBERSHIP,
&mreq, sizeof(mreq)));

In the program, the IPv4 multicast address in the socket address structure
isc opiedi ntoa ni p mreq structure. Ifa ni ndex is specified,
if indextoname i s c alled, s toring t he na me into i freq structure. Ift his
succeeds then branch a head is to is sue th e io ctl. The c aller'snameis
copied into an ifreq structure, and an ioctl of SIOCGIFADDR returns the
unicast address associated with this name. Upon success, the [Pv4 address
is copied into the imr_interface member of the ip _mreq s tructure. Ifan
index is not specified and a name is not specified, the interface is set to the
wildcard address, telling the kernel to choose the interface. The setsockopt
performs the join.

The final portion of the function, which handles IPv6 sockets, is shown
below.
#ifdef IPV6
case AF_INET6:{
struct ipv6_mreq mreqo6;
memcpy(&mreq6.ipvoémr multiaddr,
&((const struct sockaddr _in6 *) grp) ->sin6_addr,

sizeof(struct in6_addr));

if (ifindex > 0) {

mreq6.ipvomr_interface = ifindex;

} else if (iftname != NULL) {

if ((mreq6.ipvémr _interface = if nametoindex(ifnhame)) == 0) {
errno = ENXIO; /* 1/f name not found */

return (-1);
}
} else
mreq6.ipvémr_interface = 0;
return (setsockopt(sockfd, IPPROTO _IPV6,
IPV6 _JOIN GROUP,
&mreq6, sizeof(mreqb)));
}
#endif
default:
errno = EAFNOSUPPORT;
return (-1);
}
#endif
}

In the program, first the IPv6 multicast address is copied from the socket
address structure into the ipv6_mreq structure. If an index was specified, it
is stored in the ip vbmr interface me mber; if a name was specified, the
index is obtained by calling if nametoindex; otherwise, the interface index
is set to 0 f or setsockopt, telling the kernel to choose the interface. The
group is joined.

Check Your Progress
1. Can you explain the use of mcast _join and mcast_leave.

2. Can you explain the use of mcast_join_source_group

13.9 dg cli FUNCTION USING MULTICASTING

Modify dg_cli function by removing the call to setsockopt. Run a
modified UDP echo server that joins the all-hosts group, and then run our
program specifying the all hosts group as the destination address. We get a
response from both the system on the subnet. They are each running the
multicast echo server. Each reply is unicast because the source address of

BCA-E7/203

BCA-E7/204

the request which is used by each server as the destination address of the
reply is a unicast address.

13.10 RECEIVING IP MULTICAST
INFRASTRUCTURE SESSION
ANNOUNCEMENTS

The IP multicast infrastructure is the portion of the Internet with
inter-domain m ulticast € nabled. M ulticast i s not e nabled ont he e ntire
Internet.

Inor dert or eceivea m ultimedia c onference ont he IP m ulticast
infrastructure, a s ite ne eds t o know onl y t he multicast a ddress of't he
conference an d t he U DP p orts for t he co nference’s d ata s treams. T he
Session Announcement Protocol (SAP), describes the way this is done (the
packet h eaders an d frequency w ith w hich t hese a nnouncements a re
multicast to the [P mu lticast in frastructure) and the Session Description
Protocol (SDP), describes the contents of these announcements (how the
multicast addresses and UDP port numbers are specified). A site wishing
to announce a session on the IP multicast infrastructure periodically sends
a multicast packet containing a description of the session to a well-known
multicast group and UDP port. Sites on the IP multicast infrastructure run
a program named sdr to receive these announcements.

The below shows the main program to receive SAP/SDP announcements
#include "unp.h"
#define SAP. NAME "sap.mcast.net" /* default group name and port */
#define SAP_PORT "9875"
void loop(int, socklen_t);
int
main(int argc, char **argv)
{
int sockfd;
const int on = 1;
socklen_t salen;

struct sockaddr *sa;

if (argc == 1)
sockfd = Udp client(SAP_NAME, S AP_PORT, (void **) &sa,
&salen);

else if (argc == 4)

sockfd = Udp_client(argv[1], argv[2], (void **) &sa, &salen);
else

err_quit("usage: m ysdr <m cast-addr><p ort#><i nterface-
name>");

Setsockopt(sockfd, S OL SOCKET,S O REUSEADDR, & on,
sizeof(on));

Bind (sockfd, sa, salen);
Mcast_join(sockfd, sa, salen, (argc ==4) ? argv[3] : NULL, 0);
loop (sockfd, salen); /* receive and print */
exit (0);
}

In the program, the multicast address assigned for SAP announcements is
224.2.127.254 and its name is sap.mcast.net. All the well-known multicast
appears in the DNS under the mcast.net hierarchy. The well-known UDP
port is 9875. Inthe program udp client function is call to l1ook up t he
name and port, and it fills in the appropriate socket address structure. In
the program setthe SO _REUSEADDR s ocket o ption to allow mu Itiple
instances of this program to run on a host, and bind the port to the socket.
By binding th e mu Iticast address to the s ocket, prevent the s ocket from
receiving any o ther U DP d atagrams t hat m ay b e r eceived for t he p ort.
After that mcast join function is call to join the group. If the interface
name is specified as a command-line argument, it is passed to function;
otherwise, the kernel chooses the interface on w hich the group is joined.
Lastly call loop function to read and print all the announcements.

13.11 SENDING AND RECEIVING

The program that sends and receives multicast datagrams consists
of two parts. The first part sends a multicast datagram to a specific group
every five seconds and the datagram contains the sender's hostname and
process ID. The second partis an in finite lo op th at jo ins th e mu Iticast
group to which the first part is sending and prints every received datagram
(containing the hostname and process ID of the sender). This allows us to
start the program on multiple hosts on a LAN and easily see which host is
receiving datagrams from which sender.

The program below shows the main function of the program.
#include "unp.h"

void recv_all(int, socklen_t);

BCA-E7/205

BCA-E7/206

void send_all(int, SA *, socklen t);

int

main (int argc, char **argv)

{

int sendfd, recvfd;

constinton=1;

socklen t salen;

struct sockaddr *sasend, *sarecv;

if (argc !=3)

err_quit("usage: sendrecv <IP-multicast-address> <port#>");
sendfd = Udp_client(argv[1], argv[2], (void **) &sasend, &salen);
recvfd = Socket(sasend->sa family, SOCK DGRAM, 0);

Setsockopt(recvfd, S OL SOCKET,S O REUSEADDR, &
sizeof(on));

sarecv = Malloc(salen);

memcpy(sarecv, sasend, salen);

Bind (recvfd, sarecv, salen);
Mcast_join(recvfd, sasend, salen, NULL, 0);
Mcast_set loop(sendfd, 0);

if (Fork () == 0)

recv_all (recvtd, salen); /* child -> receives */

send _all (sendfd, sasend, salen); /* parent -> sends */

on,

Int he p rogram t wo s ockets i s created, on e f or s ending and on e f or
receiving. T he receiving s ocket is to bind the multicast group and port.
Then t he receiving s ocketistojointhe m ulticast group. T he s ending
socket will send datagrams to this same multicast address and port. But if
we try to use a single socket for sending and receiving, the source protocol
address is 239.255.1.2:8888 from the bind (using netstat notation) and the
destination pr otocol a ddress f ort he s endto i1 s a 1so 239.255.1.2: 8888.
However, now the s ource pr otocol a ddress t hat i s bound t o t he s ocket
becomes t he s ource IP address o fthe UDP datagram, and R FC 1122
forbids an IP datagram from having a source IP address that is a multicast

address or a br oadcast a ddress. T he udp c lient f unction ¢ reates t he
sending socket, processing the two command-line arguments that specify
the multicast address and port number. This function also returns a socket
address structure that is ready for calls to sendto along with the length of
this s ocket ad dress s tructure. T hen create the receiving s ocket using the
same a ddress family that was used for the sending s ocket. Then set the
SO REUSEADDR s ocket o ption to a llow mu ltiple in stances o f'th is
program to run at the same time on a host. Then allocate room for a socket
address structure for this socket, copy its contents from the sending socket
address structure, and bind the multicast address and port to the receiving
socket. After that call mcast join function to join the multicast group on
the receiving socket and mcast_set loop function to disable the loopback
feature on the sending socket. For the join, specify the interface name as a
null pointer and the interface index as 0, telling the kernel to choose the
interface. Lastly the fork and then the child is the receive loop and the
parent is the send loop.

The program below shows the send a multicast datagram every five

seconds.

#include "unp.h"

#include <sys/utsname.h>

#define SENDRATE 5 /* send one datagram every five seconds */

void

send_all(int sendfd, SA *sadest, socklen_t salen)

{
char linef MAXLINE]; /* hostname and process ID */
struct utsname myname;
if (uname(&myname) < 0)
err_sys("uname error");;
snprintf(line, sizeof(line), " %s, %d \n", m yname.nodename,
getpid());
for (53) 4
Sendto(sendfd, line, strlen(line), 0, sadest, salen);
sleep(SENDRATE);

}
}

In the program send all function, w hich s ends one m ulticast d atagram
every five s econds. The m ain function pa sses a s a rguments t he s ocket
descriptor, a pointer to a socket address structure containing the multicast

BCA-E7/207

destination and port, and the structure's length. In the program obtain the
hostname from the uname function and build the output line containing it
and t he pr ocess ID. S end da tagram, t hen gotosleep. Thensenda
datagram and then sleep for five seconds.

The program below shows that receive all multicast datagrams for a
group we have joined.
#include "unp.h"
void
recv_all(int recvfd, socklen t salen)
{
int n;
char line[MAXLINE + 1];
socklen t len;
struct sockaddr *safrom,;
safrom = Malloc(salen);
for (;;) {
len = salen;
n = Recvfrom(recvfd, line, MAXLINE, 0, safrom, &len);
line[n] = 0; /* null terminate */
printf("from %s: %s", Sock ntop(safrom, len), line);
}
}

In the program recv_all function, w hich i s t he infinite r eceive l oop. A
socket ad dress s tructure i s al located t o r eceive t he s ender's p rotocol
address for each call torecvfrom. E ach d atagram is r ead b y r ecvfrom,
null-terminated, and printed.

Check Your Progress

1. Write a program to send and receive the multicast datagram
with two sockets.

2. What happens if we create one socket for both sending and
receiving.

13.12 SIMPLE NETWORK TIME PROTOCOL
(SNTP)

Simple Network Time Protocol (SNTP) is a simplified version of
Network Time Protocol (NTP) that is used to synchronize computer clocks
BCA-E7/208

on a network. This simplified version of NTP is generally used when full
implementation of NTP is not needed

SNTP is a simplified access strategy for servers and clients using N TP.
SNTP s ynchronizes a ¢ omputer's s ystem time with a s erver th at h as
already been synchronized by a source such as a radio, satellite receiver or
modem.

SNTP supports unicast, multicast and anycast operating modes. In unicast
mode, the client sends a r equest to a d edicated server by referencing its
unicast ad dress. O nce ar eplyisr eceived f romt he s erver, t he cl ient
determines the time, roundtrip delay and local clock offset in reference to
the server. In multicast mode, the server sends an unsolicited message to a
dedicated IPv4 or IPv6 | ocal br oadcast a ddress. G enerally, a m ulticast
clientdoes not send any requests to the s ervice b ecause o fthe s ervice
disruption ¢ aused b y u nknown a nd unt rusted m ulticast s ervers. T he
disruption ¢ an be a voided t hrough a n a ccess ¢ ontrol m echanism t hat
allows a client to select a designated server he or she knows and trusts.

NTP is a sophisticated protocol for synchronizing clocks across a WAN or
a LAN, and can o ften achieve millisecond accuracy. SNTP, a simplified
but pr otocol-compatible version intended for hosts that do not need the
complexity of a complete N TP imp lementation. It is common for a few
hosts on a LAN to s ynchronize their clocks across the Internet to o ther
NTP hos ts and t hen redistribute th is time o nth e LAN u sing e ither
broadcasting or multicasting.

The below program shows the NTP packet format and definitions
#define JAN 1970 2208988800UL /* 1970 - 1900 in seconds */
struct 1 fixedpt { /* 64-bit fixed-point */
uint32 tint part;
uint32 t fraction;
s
struct s_fixedpt { /* 32-bit fixed-point */
uintl6 tint part;
uint16 t fraction;
s
struct ntpdata { /* NTP header */
u_char status;
u_char stratum;
u_char ppoll;

int precision:8;

BCA-E7/209

BCA-E7/210

struct s_fixedpt distance;
struct s_fixedpt dispersion;
uint32 trefid;
struct 1 fixedpt reftime;
struct 1 fixedpt org;
struct 1 fixedpt rec;
struct 1 fixedpt xmt;
s
#define VERSION__MASK 0x38
#define MODE MASK 0x07
#define MODE CLIENT 3
#define MODE SERVER 4
#define MODE BROADCAST 5

In the program, the 1_fixedpt defines the 64-bit fixed-point values used by
NTP for timestamps and s _fixedpt de fines the 32-bit fixed-point va lues
that are also used by NTP. The ntpdata structure is the 48-byte NTP packet
format.

13.13 SUMMARY

A mu lticast a pplication s tarts b y jo ining th e mu lticast g roup
assigned to the application. This tells the IP layer to join the group, which
in turns tells the datalink layer to receive multicast frames that are sent to
the corresponding hardware layer multicast address.

Multicasting on a WAN requires multicast-capable routers and a multicast
routing protocol. Until all the routers on the Internet are multicast-capable,
multicast is only a vailable to a subset of Internet us ers. The te rm "IP
multicast infrastructure" is use to describe the set of all multicast-capable
systems on the Internet.

Nine socket options provide the API for multicasting:
. Join an any-source multicast group on an interface
. Leave a multicast group
o Block a source from a joined group
o Unblock a blocked source
e Join a source-specific multicast group on an interface

. Leave a source-specific multicast group

. Set the default interface for outgoing multicasts
. Set the TTL or hop limit for outgoing multicasts
. Enable or disable loopback of multicasts

The first six are for receiving, and the last three are for sending.

13.14 TERMINAL QUESTIONS

Explain multicast address.
Write a short note on multicast socket option.

Explain the use of mcast block source.and mcast unblock source

1

2

3

4. Explain source specific multicast.

5 Write about SNTP in terms of multicast.
6

Write a program to show NTP packet format and definitions

BCA-E7/211

BCA-E7/212

UNIT-14 : INTER PROCESS
COMMUNICATION

Structure

14.1 Introduction

14.2 Objective

14.3 File and record locking
14.4 Pipes

14.5 FIFOs

14.6 Streams and Messages
14.7 Name spaces

14.8 System IPC

14.9 Message queues

14.10 Semaphores

14.11 Summary

14.12 Terminal questions

14.1 INTRODUCTION

In this unit, the different methods of IPC will be discussed. In this
unit, we will learn about; File and record locking, Pipes, FIFOs streams
and messages, name spaces, system IPC, message queues and semaphores.

A process is an active operating system entity which ex ecutes programs.
Normally, a process, like a specialist, does one particular job (well). In
real | ife, t here are complex w orkflows a nd we, of ten have mu ltiple
processes collaborating to accomplish certain objectives. In order to work
together, p rocesses n eed t o ex change d ata. So, we ha ve va rious i nter
process communication (IPC) mechanisms.

The figure 14.1 shows the IPC between two processes on a single system.
The information between the two processes going through the kernel. The
figure 14.2 shows the IPC between two processes on different system.

BCA-E7/213

BCA-E7/214

User process User process

r\ o

kernel

Figure 14.1: IPC between two processes on a single system

User Process User Process

—

Kernel \L// Kernel
|

Figure 14.2: IPC between two processes on different system

14.2 OBJECTIVE

At the end of this unit, you should be able to know about: -

Purpose of File and record locking
How to use Pipes and FIFOs.

Streams and messages, Message queues
Name spaces, system IPC

What is the use of Semaphores?

14.3 FILE AND RECORD LOCKING

When multiple process wants to share resource, it is essential that
some form of mutual exclusion be provide so that only one process at a
time can access the resource. T he example is line printer daemon. The
process that places a job on the print queue (to be printed at a later time by
another process) has to assign a unique sequence number to each print job.
Each process that needs to assign a s equence number goes through three
steps:

o It reads the sequence number file
° It uses the number
° It increments the number and writes it back

The problem is that in the time it takes a single process can perform the
same three steps; another process can perform the same three steps. The
need is for a process to be locked so no other process can access the same
file until the first process is done.

In file locking locks an entire file, while record locking allows a process to
lock a s pecified por tion of a file. Usedto ensurethatap rocess h as
exclusive access to a file before using it

#include int lockf (int fd, int function, long size);

fd---file descripter (not a file pointer)

size--- define the record size or lock area: [offset, o ffset + s ize].
size=0 means the rest

of the file. Use Iseek() to move the current of fset. W hen
the offset position is

set to the beginning and size=0 then lock the whole file.
Function:
F ULOCK---unlock a previous lock
F LOCK ---lock a region(blocking)
F TLOCK ---Test and lock a region(nonblocking)
F TEST ---Test a region to see if it is locked.

Example:
Use F TLOCK instead of F TEST and F LOCK.
If (lockf(fd, F_TEST, size)==0) /* If the region is locked, -1 is
returned and the
process is in sleep state*/

Re=1 ockf(fd, F LOCK, s ize);/ *a's mall chancet hat a nother
process locks between

TEST and LOCK*/

BCA-E7/215

BCA-E7/216

rc=lockf(fd, F_TLOCK, size) /* Test +1ock d one as an atomic

operation, If

unsuccessful, 1 ockf() returns —1

and the calling

process ¢ ontinues t o do ot her

things*/

The following are the two types of Linux file locking:

1.
2.

1.

Advisory locking

Mandatory locking
Advisory Locking

Advisory | ocking r equires ¢ ooperation f rom t he pa rticipating
processes. S uppose pr ocess “ A” acquires a WRITE lock,and it
started w riting in to th e file, and p rocess “ B”, without tr ying to
acquire a 1 ock, it can open the file and write into it. Here process
“B” is the non-cooperating process. If process “B”, tries to acquire
alock, thenitmeansthis processis co-operatingto ensurethe
“serialization”. Advisory lockingw illw ork,onl yi ft he
participating processes ar e cooperative. A dvisory | ocking
sometimes also called as “unenforced” locking.

Posix record 1 ocking i s c alled a dvisory I ocking. T his m eans t he
kernel m aintains correct know ledge of all files t hat ha ve be en
locked by each process, but it does not preventa process from
writing to a file that is read-locked by another process. Similarly,
the kernel does not prevent a process from reading from a file that
is w rite-locked b y a nother pr ocess. A p rocess ¢ ani gnore a n
advisory lock and write to a file that is read-locked, or read from a
file th atis w rite-locked, a ssuming t he p rocess ha s a dequate
permissions to read or write the file. A dvisory locks are fine for
cooperating processes.

Mandatory Locking

Mandatory 1 ockingd oesn’tr equire c ooperation f romt he
participating pr ocesses. Mandatory | ocking causes t he k ernel t o
check every open, read, and write to verify that the calling process
isn’t violating a lock on the given file.

1.

2.

Check Your Progress

Write the different between advisory locking with mandatory
locking.

Can you test that whether a region is locked or not.

14.4 PIPES

A pipe provides a one-way flow o f data. Two processes can be
joined by the pipe s ymbol (|) on t he s hell command line. T he s tandard
output of t he first pr ocess be comes t he s tandard i nput f or t he s econd
process. For example,

$ Is -Is | more
Example a pipe provides a one-way flow of data.
int pipe (int * filedes);
int pipefd[2]; /* pipefd[0] is opened for reading; pipefd[1] is opened for
writing */
The program below shows how to create and use a pipe:
main ()
{
int pipefd[2], n;
char buff[100];
if (pipe(pipefd) < 0) err_sys(“pipe error”);
printf(“read fd = %d, write fd = %d\n”, pipefd[0], pipefd[1]);
if (write(pipefd[1], “hello world\n”, 12) !=12) err_sys(“write
error”);

if ((n=read(pipefd[0], buf f, s izeof(buff))) <= 0) err sys(“read
error”);

write (1, buff, n); /*fd=1=stdout*/
}
Result: hello world
read fd=3, write df =4

Properties of Pipe:

e Pipes do not have a name. For this reason, the processes must share
a parent process. T his i s the main drawback t o pipes. H owever,
pipes are treated as file descriptors, so the pipes remain open even
after fork and exec.

. Pipes do not distinguish between messages; they just read a fixed
number of bytes. Newline (\n) can be used to separate messages. A
structure with a length field can be used for m essage c ontaining
binary data.

e Pipescanalsobe usedto gettheoutputof a commandor to
provide input to a command

BCA-E7/217

BCA-E7/218

read fd

T write fd

kernel

—> Flow of data

Figure 14.3: Pipe in a single process

parent process

child process

write fd

read fd

kernel

—>

pipe

_— Flow of data

—

Figure 14.4: Pipe between two processes

The figure 14.3 shows the pipe in a single process and figure 14.4 shows

the pipe between two processes.

One m ajor f eatureo fpi pei st hatt heda taf lowingt hrought he
communication medium is transient, that is, data once read from the read
descriptor cannot be read again. Also, if we write data continuously into
the write descriptor, then we will be able to read the data only in the order
in w hich the data was written. O ne can experiment w ith that by doing

successive writes or reads to the respective descriptors.

14.5 FIFO

A FIFO is similar to a pipe. A FIFO (First in First Out) is a one-
way flow of data. FIFOs have a name, so unrelated processes can share the
FIFO. FIFO is a named pipe. This is the main difference between pipes
and F IFOs. Another m ajor d ifference b etween FIFOs and pipes is t hat
FIFOs last throughout the life-cycle of the system, while pipes last only
during the life-cycle of the process in which they were created. To make it
more clearly, FIFOs exist be yond the life of the process. Since they are
identified by the file system, they remain in the hierarchy until explicitly
removed using unlink, but pipes are inherited only by related processes,
that is, processes which are descendants of a single process.

Create: A FIFO is created by the mkfifo function:
#include <sys/types.h>
#include <sys/stat.h>
int mkfifo(const char *pathname, mode t mode);
pathname — a UNIX pathname (path and filename).
mode — the file permission bits.

FIFO can also be created by the mknod system call, e.g., mknod(“fifol”,
S _IFIFOI|0666, 0) is same as mkfifo(“fifol”, 0666).

Open: mkfifo tries to create a new FIFO. If the FIFO already exists, then
an EEXIST error is returned. To open an existing FIFO, use open (), fopen
() or freopen ()

Close: to close an open FIFO, use close (). To delete a created FIFO, use
unlink ().

The table 14.1 shows the Effect of O NDELAY flag on pipes and FIFOs.
A pipe or FIFO follows these rules for reading and writing:

o A read requesting less data than is in the pipe or FIFO returns only
the requested amount of data.

o If a process asks to read more data than is currently available in the
pipe FIFO, Only the data available is returned. The process must
be prepared to handle a return value from read that is less than the
requested amount.

o If there is no data in the pipe or FIFO, and if no processes have it
open for writing, a read return zero, signifying the end of file. If
the r eader h as s pecified O NDELAY,itcannottellifa return
value of zero means there is no data currently available or if there
are no writers left.

BCA-E7/219

BCA-E7/220

Condition

Normal

O_NDELAY set

Open F IFO,r ead-only
with no pr ocess ha ving
theF IFOope n for

writing

for W aitu ntil a
process ope nst he

FIFO writing

Return
immediately,n o

crror

Open F IFO, write-only

with no pr ocess ha ving

Wait u ntil a p rocess

opens the F IFO f or

Returna ne rror

immediately, e rrno

the F IFOope n for | reading set to ENXIO
reading
read p ipe o r FIFO, no | Waitu ntil th ereis | Return

data

datai nt he pi pe or
FIFO, orunt il no
processesh avei t

openf orw riting;

immediately, return

value of zero

return a value of zero
if no pr ocesses ha ve
itope nf or w riting,
otherwise returnt he

count of data

Write, pi peor F IFO 1 s | Waitu ntil s pace is

full

return imme diately,
available, th en w rite | return value of zero

data

Table 14.1: Effect of O NDELAY flag on pipes and FIFOs.

If a process writes less than the capacity of a pipe (which is at least
4096 bytes) the write is guaranteed to be atomic. This means that if
two processes each write to a pipe or FIFO at about the same time,
either all the data from the first process is written, followed by all
the data from the second process, or vice versa. The system does
not mix the data from the two processes-i.e., part of the data from
one process, followed by part of the data from the other process. If,
however, t he w rite s pecifies m ore da ta t han t he pi pe c an hol d,
there is no guarantee that the write operation is atomic.

If a process writes to a pipe or FIFO, but there are no processes in
existence t hat h ave i t o pen f or r eading, t he S IGPIPE s ignal i s

generated, and the write returns zero with errno set to EPIPE. If the
process has not called signal to handle the SIGPIPE notification,
the d efault a ction is to te rminate th e S IGPIPE s ignal, o rif it
handles the signal and returns from its signal handler.

14.6 STREAMS AND MESSAGES

A STREAM is a general, flexible programming model for UNIX
system communication services. STREAMS define standard interfaces for
character input/output (I/O) within the kernel, and between the kernel and
the rest of the UNIX system. The mechanism consists of a s et of system
calls, kernel resources, and kernel routines.

A S TREAM e nables yout o c reate m odules t o pr ovide s tandard da ta
communications s ervices and then m anipulate the modules on a s tream.
From t he a pplication I evel, m odules ¢ an be dy namically s elected an d
interconnected. N o kernel programming, compiling, and link editing are
required to create the interconnection.

A STREAM provides an e ffective e nvironment for ke rnel s ervices and
drivers r equiring m odularity. S TREAMS parallel the la yering mo del
found in networking protocols. For example, STREAMS are suitable for:

. Implementing network protocols

. Developing character device drivers

. Developing network controllers (for example, for an Ethernet card)
. I/O terminal services

In STREAMS, all in formation is exchanged via messages i.e., both data
and c ontrol m essages of various p riorities. A m ulti-component m essage
structure is used to reduce the overhead of

1. Memory-to-memory copying i.e., via reference counting
2. Encapsulation/de-encapsulation i.e., via composite messages.

Messages may be queued at S TREAM m odules. Many Unix processes
that need t o impose a m essage s tructure ontop ofas tream b ased IPC
facility. More structured message can also be built, and this is what the
Unix message queue form of IPC does. We can also add more structure to
either a pipe or FIFO. We define a message in mesg.h header file as

/*

*Definition of “our” message.

BCA-E7/221

* You may have to change the 4096 to a smaller value, if message
*queues on your s ystem w ere configured w ith “m sgmax” 1 ess
*than 4096.

*/
define MAXMESGDATA (4096-16)

/*w edon’” t want
sizeof(Mesg) > 4096 */

#define MESGHDRSIZE (sizeof(Mesg) - MAXMESGDATA)

/*1 ength of
mesg len and mesg_type*/

typedef struct {

int mesg_len; /*#bytesin mesg data, can be 0 or > 0 */
long mesg_type; /* message type, must be >0 */

char mesg_data [MAXMESGDATA];

} Mesg;

Check Your Progress:

1. Can you write a program that create FIFO in which it writes
first then read?

2. How stream and message are useful in Unix?

14.7 NAME SPACES

The set of possible names for a given type of IPC is called its name
space. The name space is important because all forms of IPC other than
plain pipes, the name is how the client and server connected to exchange
message. The table 14.2 shows the list of available name space below.

IPC type Name Space Identification
pipe No name File descriptor
fifo Path name File descriptor
message queue Key tkey identifier
shared memory Key tkey identifier
semaphore Key tkey identifier
socket-unix domain Path name File descriptor
socket-other domains | Domain depndent File descriptor

BCA-E7/222 Table 14.2 : List of available name space

14.8 SYSTEM IPC

The three types of IPC
. Message queues
o Semaphores
. Shared memory
These are collectively referred as “system V IPC”

Linux s upports t hree t ypes of interprocess communication m echanisms
that first appeared in Unix System V (1983). These are message queues,
semaphores an d s hared memory. T hese S ystem V IPC m echanisms al |
share co mmon au thentication m ethods. P rocesses m ay ac cesst hese
resources only by passing a unique reference identifier to the kernel via
system c alls. A ccessto these S ystem V IPC o bjects i s ch ecked u sing
access p ermissions; much like ac cesses to files are checked. T he access
rights to the System V IPC object is set by the creator of the object via
system calls. The object's reference identifier is used by each mechanism
as an index into a table of resources. It is not a straight forward index but
requires s ome m anipulationt o g enerate t he index. AllL inux d ata
structures r epresenting S ystem V I PC objects in the s ystem in clude an
ipc_perm s tructure which c ontains the ow ner and c reator process's us er
and group identifiers. The access mode for this object (owner, group and
other) and the IPC object's key. The key is used as a way of locating the
System V IPC o bject'sr eference i1 dentifier. Twos etso fk eys are
supported: public and private. If the key is public then any process in the
system, subject to rights checking, can find the reference identifier for the
System V IPC object. System V IPC objects can never be referenced with
a key, only by their reference identifier.

A summary of their system calls is shown in table 14.3.

Message Semaphore Shared
queue memory
Include file <sys/msg.h> <sys/sem.h> | <sys/shm.h>
System call to create | msgget semget shmget
or open
Systemc allf or | msgctl semctl shmet1
control operations
System calls for IPC | msgsnd semop shmat
operations
msgrcv shmdt

Table 14.3:

Summary of system V IPC system calls

BCA-E7/223

The value returned by msgget is the message queue identifier, msqid, or -1
if an error occurred.

14.9 MESSAGE QUEUES

Message queues al low one or more processes to write m essages,
which will be read by one or more reading processes. Linux maintains a
list o f m essage q ueues, in the m sgque vector; each el ement o f w hich
points t o an msqid_ds da ta s tructure t hat f ully de scribes t he m essage
queue. When message queues are created a new msqid_ds data structure is
allocated from s ystem memory and in serted in to th e v ector. For e very
message query in the system, the kernel maintains the following structure
of information

#include <sys/types.h>

#include<sys/ipc.h>

struct msqid_ds{
struct ipc_perm msg_perm;
struct msg *msg_first;
struct msg *msg_last;
ushort msg cbytes;
ushort msg qnum;
ushort msg gbytes;
ushort msg_Ispid;
ushort msg_lrpid;
time t msg stime;
time t msg rtime;
time t msg ctime;

¥

A new message query is created or an existing message queue is accessed
with the msgget system call

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget (key_t key,int msgflag);

The msgflag value is a combination of constants shown in table 14.4.
BCA-E7/224

Numeric Symbolic Description
0400 MSG R Read by owner
0200 MSG W Write by owner
0040 MSG R>>3 Read by group
0020 MSG W >>3 Write by group
0004 MSG R >>6 Read by world
0002 MSG W>>6 Write by world

IPC_CREAT Create new entry
IPC_EXCL Create new entry

Table 14.4: msgflag values for msgget system call.

Each m sqid_ds data s tructure contains anipc_perm da ta s tructure a nd
pointers to the messages entered onto this queue. In addition, Linux keeps
queue modification times such as the last time that this queue was written
toand soon. T he msqid ds also contain two w ait queues; one for the
writers to the queue and one for the readers of the message queue. Each
time a process attempts to write a message to the write queue its effective
user and group i dentifiers a re c ompared with the m ode in this que ue's
ipc_perm d ata s tructure. If the process c an write to the queue then t he
message may be copied from the process's address space into an msg data
structure and put at the end of this message queue. Each message is tagged
with an ap plication s pecifict ype,a greed b etweent he co operating
processes.

However, there may be no room for the message as Linux restricts the
number and length of messages that can be written. In this case the process
will be added to this message queue's write wait queue and the scheduler
will be called to select a new process to run. It will be woken up when one
or more messages have been read from this message queue. Reading from
the queue is a s imilar process. A gain, the processes acc ess rights to the
write queue are checked. A reading process may choose to either get the
first message in the queue regardless ofits type or select messages with
particular types. If no messages match these criteria the reading process
will be added to the message queue's read wait queue and the scheduler
run. W hen a ne w m essage i s written t o t he que ue t his pr ocess w ill be
woken up and run again.

14.10 SEMAPHORES

Semaphores a re s ynchronization pr imitive. T he m ainus e of
semaphores is to synchronize the access to shared memory segments. In its
simplest form, a semaphore is a | ocation in memory whose value canbe
tested an d s et b y m ore t han o ne p rocess. S emaphores can be usedto

BCA-E7/225

implement critical regions, areas of critical code that only one process at a
time should be executing.

The following information is related to semaphore:

1.

The semaphore is stored in the kernel:
a. Allows atomic operations on the semaphore.
b. Processes are prevented from indirectly modifying the value.

A process acquires the semaphoreifithas avalue ofzero. The
value of the semaphore is then incremented to 1. When a process
releasest hes emaphore,t hev alueo ft hes emaphorei s
decremented.

Ift he semaphore ha s non-zero va lue when apr ocesstriest o
acquire it, that process blocks.

In2 and 3,t he semaphore acts as a customer counter. In m ost
cases, it 1S a resource counter.

When a process waits for a semaphore, the kernel puts the process
“to s leep” unt il t he s emaphore is a vailable. T his i s be tter (more
efficient) than busy waiting such as TEST & SET.

The ke rnel m aintains i nformation on e ach s emaphore i nternally,
usinga da tas tructures tructs emis dst hatke epst rack of
permission, number of semaphores, etc.

Apparently, a semaphore in Unix is not a single binary value, but a
set of nonnegative integer values.

There are 3 (logical) types of semaphores:

o Binary s emaphore — have a valueof Oor 1. Similartoa
mutex lock. 0 means locked; 1 means unlocked.

o Counting s emaphore — has a v alue > 0. U sed for c ounting
resources, | ike t he pr oducer-consumer ex ample. N ote t hat
value =0 is similar to a lock (resource not available).

o Set of counting semaphores — one or more semaphores, each
of which is a counting semaphore.

There are 2 basic operations performed with semaphores:
. Wait — waits until the semaphore is > 0, then decrements it.

. Post — increments t he s emaphore, w hich w akes w aiting
processes.

Operations on a semaphore are performed using:

BCA-E7/226

int semop(int semid, struct sembuf *opsptr, unsigned int nops)

semid — value returned by semget.

nops — # of operations to perform, or the number of elements in
the opsptr array.

opsptr — points t o an a rray of one o r m ore ope rations. E ach
operation is defined as:

struct s embuf { us horts em num;/ *s emaphore #,
numbered from 0, 1,2 ... */

short sem_op; /* semaphore operation */

short s em flg;/ *operations f lags,s ucha s 0,
IPC_NOWAIT for nonblocking call,

or SEM UNDOt oh avet hes emaphore
automatically r eleased w hent he processi s
terminated prematurely. */

}5
sem_op = 0 — wait until the semaphore is 0. [IPC_ NOWAIT
causes an error if semval#£0.

sem_op > 0 — increment t he s emaphore v alue: s emval +
sem_op, (acquire)

sem_op < 0 — wait until the semaphore value>|sem_op| and
decrementt he s emaphore v alue:s emval - [sem op],
(release)

Example: How to write lock/unlock (somewhat like P/V operations)
#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/sem.h>

#define SEMKEY 123456L /* key value for semget() */

#define PERMS 0666

static struct sembuf op lock[2]= { 0, 0, 0, / * wait for sem #0 to become 0

*/
0, I, SEM_UNDO /* then increment
sem #0 by 1 */ };
statics tructs embufop unl ock[1]= {0, -1, (IPC_NOWAIT |
SEM _UNDO)
/* decrement sem #0 by 1 (sets it to 0) */ };
ints emid= -1;/* s emaphore id . O nly th e f irst time w ill ¢ reate a

semaphore. */
my lock()
{ if (semid <0) {

if ((s emid=semget(SEMKEY, 1, IPC_ CREAT |PERMS))< 0)
printf(“semget error”); }

BCA-E7/227

BCA-E7/228

if (semop(semid, &op_lock[0], 2) < 0) printf(“semop lock error”);

h
my_unlock()
{
if (semop(semid, & op_unlock[0], 1) < 0) pr intf(“semop unl ock
error”);
§

The semaphore has used for synchronization. T he binary semaphore has
created, a single semaphore value that is either zero or one. For locking
the semaphore call semop() to do operations automatically. First, wait for
the semaphore value to become zero, and then increment the value to one.
This is an ex ample w here m ultiple semaphore ope ration must be done
atomically by the kernel. If it to ok two system calls to do this, one to test
the value and wait for it to be come zero, and another to i ncrement t he
value, the operations would not work. For unlocking the resource, semop(
) will call to decrement the semaphore value. Since we have lock on the
resource, we know that the semaphore value is one before the call, so the
call cannot wait.

14.11 SUMMARY

IPC has traditionally been a massive area in UNIX. In this unit,
we have covered record locking and file locking since the sharing of single
file b etween multiple processes is a common o ccurrence. V arious [PC
techniques 1 ike P IPES, F IFO, M essage que ues, s emaphores a nd s hared
memory are covered.

14.12 TERMINAL QUESTIONS

1. Whatis a signal generated for the writer of a pipe of FIFO when
the ot her e nd di sappears, and for the reader of a P IPE or FIFO
when its writer disappears?

2. What ha ppens w ith t he ¢ lient s erver e xample us ing m essage
queues if the file to be copied is a binary file?

3. What happens to the version that uses the popen function if the file
is a binary file?

What is the use of semaphore?
Can you design a message in mesg.h header file?

List few of the available name spaces.

NS s

Write a program to lock and unlock a semaphore.

UNIT-15: REMOTE LOGIN

Structure

15.1 Introduction

15.2 Objectives

15.3 Terminal line disciplines
15.4 Pseudo- Terminal

15.5 Terminal modes

15.6 Control Terminal

15.7 rlogin overview

15.8 RPC Transparency Issues
15.9 Summary

15.10 Terminal questions

15.1 INTRODUCTION

In this unit, we will learn details about rlogin (remote login). We

will s tudy T erminal li ne d isciplines. T hen w e get know ledge a bout
Pseudo- Terminal. Then we see the terminal modes and control terminal.
Lastly, we will discuss the transparent issues in RPC.

rlogin (remote login) is a UNIX command that allows an authorized user
to login to other UNIX machines (hosts) on a network and to interact as if
the user were physically at the host computer. Once logged in to the host,
the user can do a nything that the host has given permission for, such as
read, edit, or delete files.

15.2 OBJECTIVES

In this unit, we will understand the following:

Terminal line disciplines

Pseudo- Terminal and Terminal modes
Control Terminal

rlogin overview

RPC Transparency Issues

BCA-E7/229

15.3 TERMINAL LINE DISCIPLINES

Terminal drivers are complicated by the line discipline associated

with their Terminal. It is assumed to be a full duplex device so that the
input path and output path are separate. The line discipline is within the
kernel, somewhere between the actual device driver and the user process.
The terminal line discipline is just a module that is pushed onto a stream
on top of the actual terminal device driver. Figure 15.1 s hows a normal
interactive shell showing terminal line discipline.

There are several functions that can be done by a line discipline mode.

BCA-E7/230

Echo the characters entered into lines

Assemble t he characters en tered i nto 1 ines, s ot hata p rocess
reading from the terminal receives complete lines.

Edit th e lin es th ata re input. U NIX allowsy out oer aset he
preceding character and also to kill the entire line being input and
start over with a new line.

Generate s ignals w hen cer tain t erminal k eys ar e en tered. T he
SIGINT an d S IGQUIT s ignals canb e generated t his w ay, fo r
example.

Process flow control characters. For Example, when you press the
control —S key, the output to the terminal is stopped. T he restart
the output, the Control-Q key is entered.

Allow you to enter an end —of-file character.

Do character conversions

=hell

F 3

Stdout stderr shdin

h

Terminal line discipline

F

¥* leernel

Tetrminal device diwver

Y

e

Tacr at a
lezzonnal

Figure 15.1: Normal interactive shell showing terminal line discipline

There are many versions of the line discipline modules. For example, BSD
supplies five modules.

o The “old d iscipline” th atis s imilarto th e v ersions 7 U NIX
terminal handler.

o The new discipline is a superset of the old discipline.

o It provides the features needed for job control along with enhanced
editing capabilities.

o The Berknet line discipline.

° The s erial Line Internet P rotocol ¢ anbe us edt ot ransfer IP
datagrams across serial lines.

Check Your Progress

1. Can you explain the different function in terminal line discipline
mode?

15.4 PSEUDO- TERMINAL

A pseudo-terminal is pair of devices. One half is called the master
and the other halfis called the slave. A process opens a p air o f pseudo-
terminal de vices and gets t wo f ile de scriptors. T he s lave po rtion of
pseudo-terminal devices gets two file descriptors. The slave portion of a
pseudo-terminal presents an interface to the user process that looks like a
terminal device.

A ps eudo-terminal is mainly u sed to ma ke ap rocess b elieve th at it
interacts with a terminal although it a ctually interacts with one or more
processes. The figure 15.2 s hows the Pseudo-terminals as they are used
by script.

.- Write to file (transcript)

Lzer spoace

seript b o—--m— - oo - Bash

atdin
ready stcding}
"""""""""""""""""""" Kermel space
ut el) stdout
stderr stderr

Pzeudo ter-
Terminal P_s:uldu ter- e minal dave
minal master (/dev/pEas . ..}

% ke yboard input

e rminal outpu

Figure 15.2 : Pseudo-terminals

BCA-E7/231

BCA-E7/232

15.5 TERMINAL MODES

In terminal models we are considering only standard terminal line
discipline modules such as old line discipline and the new line discipline
modules supported by 4.3BSD.

4.3BSD considers a terminal device in one of three modes.

J Cooked mode provides a Il t he pr ocessing s teps. T he i nput i s
collected into lines and all s pecial ch aracter p rocessing i s d one.
This is normal mode for interactive use.

o Raw mode lets the process receive every charter asinis input,
with no i nterpretation done by the system. Raw mode is used for
example by full screen editors such as vi and also by programs that
use a serial line something other than interactive use.

o Cbreak mode is somewhere between cooked mode and raw mode.
The cbreak mode provides character at a time input to the process
reading from the terminal, instead of collecting the input into lines.
The signal generating keys are still processed; however the editing
features are disabled.

15.6 CONTROL TERMINAL

In 4.3BSD we have the child process from the fork dissociate from
its ¢ ontrol te rminal b efore it o pens th e p seudo-terminal s lave d evice.
When the slave is opened it becomes the control terminal. Since we only
want t he n ew s hell p rocess t hat t he ch ild p rocess ex ecs t o d isassociate
from its control te rminal- we do not want the r ecording process thatis
reading from your actual te rminal to d o this- we must do t his in child
process and not in the parent. T his is precisely w hy t he ope ning o fa
pseudo-terminal pair into pieces. We do not want to open the slave device
until we are in the child process.

15.7 RLOGIN OVERVIEW

The terminal line discipline on the local system is placed into the
raw mode with echoing disabled by the rlogin client process, so that all
keystrokes are passed to the remote system. The raw mode is required to
run programs such as the vi editor on the remote s ystem. In the normal
UNIX fashion characters that are entered on the local are echoed by the
remote system. If the remote system is in a cooked mode then the echoing
is done by the terminal line disciplines on the remote system. If the remote
system is in a raw mode then the echoing is done by that remote process
itself. The figure 15.3 shows the 4.3BSD rlogin processes.

(parent) (child)
rlogin client rlogin client rlogind server shell
kerne
ry" " T-"~T-~" N~ B
tty line Network Network tty line
discipline protocols protocols discipline

— v

device driver device driver device driver pty master | |pty slave

User at a network

terminal

Figure 15.3 : 4.3BSD rlogin processes

The r login f acility p rovidesa r emote-echoed, I ocally flow-
controlled virtual terminal with proper flushing of output. It is widely used
between UNIX hosts because it provides transport of more of the UNIX
terminal e nvironment s emantics t han do est he T elnet pr otocol, and
because on m any UNIX hosts it can be configured not to require us er
entry of passwords when connections originate from trusted hosts.

Apart from this, rlogin suffers most of the same security disadvantages as
telnet, such as the fact that all c ommunication, i ncluding pa sswords, is
transmitted in c lear-text. T he t rusted hos ts feature b ypasses pa ssword
authentication w hen an rlogin/rhosts-file is s pecified. This poses a great
security risk as the files themselves are not very well secured, and in many
cases, can be found on the host’s NFS share. Because of these problems,
rlogin i s not in much u se today and ha s m ostly been r eplaced byt he
superior SSH protocol.

BCA-E7/233

BCA-E7/234

Check Your Progress
1. What is the role of pseudo terminal?

2. Can you explain the major steps for 4.3BSD rlogin process?

15.8 RPC TRANSPARENCY ISSUES

The system needs to provide a transparent interface for the client,
so that there is no distinction between making a remote procedure call and
making a local function call.

The c lient and s erver s tubs hi de t he ne twork ¢ ode, but t here are ot her
issues that need to be addressed:

Parameter Passing — can’t p ass p arameters by r eference, s ince t he
subroutine and the calling program don’ t s hare the same address space.
Sun RPC allows only a single argument and a single result. A structure is
required for multiple values.

Binding — the client needs some way to determine which host is a server.
Choices are to require that the client knows which host to contact, or uses
super s erver that k eeps track o fthe addresses o feachserver,orusea
centralized database where each host indicates which servers it is willing
to run. S un RPC takes the following approach. The port mapper on t he
remote host is contacted for the port number. The port mapper also accepts
the broadcast requests. If a matching server is found, the request is passed
to the server. T he port number is then r eturned w ith the results, so the
client can be connected directly to the server on future calls.

Transport Protocol — Sun RPC supports TCP and UDP. TCP is a byte-
stream protocol, so there are no message delimiters. To solve this, a 32-bit
integer giving t he num ber of b ytesis placed atthe be ginning o f e ach
record. With UDP on older systems, at most 8192 bytes can be sent for the
arguments or results of one call. The maximum can never exceed the size
of a UDP datagram, which is 64 K — headers.

Exception Handling — notonl y couldt het ypical e rrors, s uch a s
segmentation f ault, oc curi nt he r emote pr ocedure, but a Iso ne twork
problems are a Iso pos sible. A timeout i s us ually used to de tect s erver
crashes.

The client mig ht also wish to te rminate the server. With Sun RPC, the
client cannot send an interrupt to the server. Both UDP and T CP handle

timeouts and retransmissions. UDP w ll te rminate a fter some number o f
unsuccessful attempts.

Call Semantics — because of ne twork pr oblems, t he request t o s tart a
remote pr ocedure might be sent multiple times. P rocedures t hat ¢ an be
executed mu ltiple time s w ithouta p roblem a re ¢ alled i dempotent.
Examples 1 nclude ¢ omputing a s quarer oot or ¢ hecking an a ccount
balance.

There are three different forms of RPC semantics

1. Exactly once-Means that the remote procedure w as ex ecuted one
time period. This type of operation is hard to achieve, owning to
the possibility of server crashes.

2. Atmostonce —Means t hat t he r emote p rocedure w as ei ther n ot
executed at all or it was ex ecuted one time at most. [f a n ormal
return is made to the caller, we know the remote p rocedure w as
executed o ne time. Butif an e rror returnis made, w € are not
certain if remote procedure was executed once or not at all.

3. Atleast o nce-Means t hat t he r emote p rocedure w as ex ecuted at
least one time, but perhaps more. This is typically for idempotent
procedures-the client keeps transmitting its request until it receives
a valid response. But if the client has to send its request more than
oncetoreceive av alid r esponse, t here i s ap ossibility t hat t he
remote procedure was executed more than once.

Data Representation — Need a s tandard representation, so the client and
server can execute on different architectures. Sun RPC uses the XDR data
representation standard.

Performance — there can be considerable o verhead for calling an R PC.
For e xample, the ove rhead might be 100 t imes the overhead of a local
procedure cal 1. S un R PC u ses s everal m echanisms, s uch as passing
pointers, t o m inimize c oping d ata. T he pu rpose of R PCis to simplify
network programming, not just to replace LPC with RPC.

Security — May need to restrict who can execute a program on the server.
In the local case the caller of a function can be sure thatitis calling an
authorised pr ovider of the s ervice, and t he procedure can besureitis
called by an authorised user, because they are linked together at compile
time. With a remote call, neither party can be sure.

To assure clients and server that they are talking to authorised servers and
clients, Sun RPC includes an authentication mechanism. The client sends
its credentials and a verifier to the server with its RPC call, the server

BCA-E7/235

BCA-E7/236

returns 1 ts ow n ve rifier w ith t he r esults. T he s tandard authentication
methods provided by the library are Null, UNIX, Short and DES, but it is
easy to add ne w m ethods. Using th e a uthentication me chanisms is n ot
transparent; it requires some ex tra programming on the client and server
sides.

15.9 SUMMARY

Remote Login is comparatively complicated networking example,
which we have discussed. T he most complicated part of remote login is
terminal handling. Also, Users want remote login to be as simple as local
login. In this chapter 4.3 BSD rlogin client and server was described in a
step wise mode. F irst a recording process was de veloped to understand
the terminal line disciples and pseudo terminals.

15.10 TERMINAL QUESTIONS

Why RPC not pass parameters by reference?

Explain how Sun RPC maintains at-most-once semantics?
What are different terminal modes?

What are the different transparency issues with RPC?

Write short note on (a) Pseudo-Terminal (b) rlogin

A N e

What are the different forms of RPC semantics?

	Block-1
	 PHYSICAL LAYER
	 DATA LINK LAYER
	 NETWORK LAYER
	 TRANSPORT LAYER
	 SESSION LAYER
	 PRESENTATION LAYER
	Byte Manipulation Functions
	The timeline of a typical scenario that takes place between a TCP client and server has been shown in Figure 3.1. First, the server is started, and then sometime later, a client is started that connects to the server. We assume that the client sends a...
	Fig. 3.1: TCP Client and Server
	A socket is an abstraction of a communication endpoint. Just as they would use file descriptors to access files, applications use socket descriptors to access sockets. Socket descriptors are implemented as file descriptors in the UNIX System. Indeed, ...
	3.3 connect Function
	3.4 bind Function
	3.5 listen Function
	Once a server has called listen, the socket can receive connect requests. The accept function is used to retrieve a connect request and establish a connection.
	3.7 fork and exec Function
	3.8 Concurrent Servers
	3.9 close Function
	3.10 Related Functions
	3.11 Summary
	3.12 Terminal Questions
	#include “unp.h”
	Int main(int argx, char **argv)
	{
	Int listenfd, connfd;
	pid_t childpid;
	socklen_t clien;
	struct sockaddr_in cliaddr,servaddr;
	listenfd=Socket(AF_INET,SOCK_STREAM,0);
	bzero(&servaddr,sizeof(servaddr));
	servaddr.sin_family=AF_INET;
	servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
	servaddr.sin_port=htons(SERV_PORT);
	Bind(listenfd,LISTENQ);
	for(; ;) {
	clien = sizeof(cliaddr);
	connfd = Accept(listenfd, (SA*) &cliaddr, &clilen);
	if((childpid = Fork()) == 0) { /* child process */
	Close(listenfd); /*close listening socket*/
	str_echo(connfd); /*process the request */
	exit(0);
	}
	Close(connfd); /*parent closes connected socket */
	}
	}
	The actions processed by the code are as follows:
	 Create socket, bind server's well-known port
	 A TCP socket is created.
	 An Internet socket address structure is filled in with the wildcard address (INADDR_ANY) and the server's well-known port (SERV_PORT, here defined as 9877 in header). Binding the wildcard address tells the system that we will accept a connection destined4
	 The socket is converted into a listening socket by listen.
	 Wait for client connection to complete
	 The server blocks in the call to accept, waiting for a client connection to complete.
	 Concurrent server
	 For each client, fork spawns a child, and the child handles the new client. The child closes the listening socket and the parent closes the connected socket.
	TCP Echo Server: str_echo Function
	The function str_echo is responsible for conducting the server processing for each client. It reads data from the client and echoes it back to the client.
	The code provided above processes the following actions:
	 Read a buffer and echo the buffer
	 Read reads data from the socket and the line is echoed back to the client by writen. If the client closes the connection (the normal scenario), the receipt of the client's FIN causes the child's read to return 0. This causes the str_echo function to retu6
	4.3 Normal start-up
	4.4 Terminate and Signal Handling Server Process Termination
	4.5 Crashing and Rebooting of server host
	4.6 Shutdown of server host

	Block-2
	This unit imparts the basic knowledge of I/O multiplexing.
	 The different kinds of I/O model and select function is discussed.
	 Buffering and Batch Input are explained.
	 Use and working of Shutdown and Poll functions is discussed.
	Blocking I/O Model
	Nonblocking I/O Model
	I/O Multiplexing Model
	Multithreading with blocking I/O

	Signal-Driven I/O Model
	Asynchronous I/O Model
	Comparison of the I/O Models
	Synchronous I/O versus Asynchronous I/O

	5.3 Select Function
	The timeout argument
	The descriptor sets arguments *
	The maxfdp1 argument
	readset, writeset, and exceptset as value-result arguments
	Return value of select

	5.4 Batch Input and Buffering
	Batch mode
	Buffering concerns

	pselect Function
	5.5 Shutdown Function
	5.6 Poll Function
	5.7 SUMMARY
	5.8 Terminal Questions
	Socket Level Options
	Table 6.1: Socket level options
	IP Level Options
	SO_BROADCAST Socket Option
	SO_DEBUG Socket Option
	SO_DONTROUTE Socket Option
	SO_ERROR Socket Option
	SO_KEEPALIVE Socket Option
	SO_LINGER Socket Option
	Default operation of close: it returns immediately *
	Close with SO_LINGER socket option set and l_linger a positive value *

	7.2 Echo Server Function
	7.5 Determining Outgoing Interface with UDP

	8.2 DNS
	IP address to Country
	IPv6 functions
	This function is used to get name and information about current kernel. This is a system call, and the operating system presumably knows its name, release and version. It also knows what hardware it runs on. So, four of the fields of the struct are m...
	The utsname struct is defined in <sys/utsname.h>:
	struct utsname {

	Block-3
	Block-4
	The program below shows the first third of mcast_join function. The program shows how straightforward the protocol-independent API can be.
	14.1 INTRODUCTION
	14.3 FILE AND RECORD LOCKING
	1. Advisory Locking
	2. Mandatory Locking

	14.5 FIFO
	14.6 STREAMS AND MESSAGES
	14.7 NAME SPACES
	Blank Page
	Blank Page

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

