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Blocks & Units Introduction 

 

The present SLM on Decision Theory and Bayesian Analysis consists of eleven units with three 

blocks. 

 The Unit - 1 – Introduction to Decision Theory & Bayesian Analysis, is the first unit of 

present self-learning material, which describes some basic concepts, along with their importance 

and scope with suitable examples. 

The Block - 1 – Basic Elements and Bayes Rules, is the first block, which is divided into 

three units, and deals with the fundamentals of decision theory. 

In Unit – 2 – Basic Elements, is mainly emphasising on the basic elements of decision 

theory in order to create a conceptual clarity. 

In Unit – 3 – Bayes and Minimax Rules, focuses mainly on a comparative study of Bayes 

and minimax rules, with a goal to make the real-world usefulness of these rules clear to learners. 

In Unit – 4 – Bayesian Interval Estimation, is being introduced the interval estimation 

from Bayesian perspective. Also, this unit compares the same with the classical approach. 

The Block - 2 – Optimality of Decision Rules is the second block with four units, and 

focuses on equipping the learner with the knowledge about the optimality criteria for decision rules 

in Bayesian framework. 

In Unit – 5 – Admissibility and Completeness, discusses the concept and criteria for 

admissibility and completeness of decision rules. The object of this exercise is to give the learner 

a sight to ensure the goodness of decisions. 

In Unit – 6 – Minimaxity and Multiple decision Problem has been introducing the problem 

of minimaxity, and the problem of making a decisions out of different available options. 



Unit – 7 – Bayesian Decision Theory explores the decision theory in a Bayesian manner. 

So this unit discusses different aspects from a Bayesian perspective. 

Unit – 8 – Bayesian Inference dealt with the problem of inference in Bayesian Scenario. 

The Block - 3 – Bayesian Analysis has three units.  This block comprises  

Unit – 9 – Prior and Posterior Distributions, focuses on giving an insight about the prior 

and posterior distribution to the learner. After this one will find oneself ready to choose a suitable 

prior necessary for performing the Bayesian analysis. 

In Unit – 10 – Bayesian Inference Procedures, discussed the inferential procedures in 

addition to Unit-8 of Block-2. 

Unit – 11 – Bayesian Robustness, discussed the concept of Bayesian robustness and 

focuses on explaining how this concept helps the Bayesians to ensure the firmness of their 

decisions. Furthermore, this unit discusses the MCMC methods for Bayesian calculations. 

At the end of every block/unit the summary, self-assessment questions and further readings 

are given.  

 

 

 

 



UNIT – 1:         INTRODUCTION TO DECISION THEORY &  

                          BAYESIAN ANALYSIS 

Structure 

 

1.1    Introduction 

1.2          Objectives 

1.3           Various Aspects of Decision Making 

1.4    Bayes theorem and Bayesian Data Analysis 

1.5     Self- Assessment Exercise 

1.6    Summary 

1.7    Further Reading 

 

1.1      Introduction 

The world is full of uncertainty. And making a good decision in this uncertainty has always 

been a challenge for the humanity. This Unit discusses about a few most popular and broader 

classes of decision policies and their basis. 

1.2      Objectives 

After studying this unit, you should be able to  

• Explain types of decisions. 

• Classify the decision problems from the perspective of a statistician. 

• Define various decision policies of importance. 

• Describe Bayesian criteria for decision making. 

1.3      Various Aspects of Decision Making 

 

Consider an example where the game being played only has a maximum of two possible 

moves per player each turn. Then, obvious policy of a player will be of maximizing the benefits, 

and the moves of the opponent will aim to minimize the gains of the first player. Thus, the decision-



making process takes into account all the possible observations or information. And hence it 

involves the making of a decision to a categorical proposition, intended to achieve particular goals. 

The optimistic approach would be the one that evaluates each decision alternative in terms 

of the best payoff that can occur. The decision alternative that is recommended is the one that 

provides the best possible payoff. For a problem in which maximum profit is desired, the optimistic 

approach would lead the decision maker to choose the alternative corresponding to the largest 

profit. For problems involving minimization, this approach leads to choosing the alternative with 

the smallest payoff. Similarly, the conservative approach evaluates each decision alternative in 

terms of the worst payoff that can occur. The decision alternative recommended is the one that 

provides the best of the worst possible payoffs. For a problem in which the output measure is 

profit, the conservative approach would lead the decision maker to choose the alternative that 

maximizes the minimum possible profit that could be obtained. For problems involving 

minimization, this approach identifies the alternative that will minimize the maximum payoff.  

Another one is, minimax regret approach to decision making where one would choose the 

decision alternative that minimizes the maximum state of regret that could occur over all possible 

states of nature. This approach is neither purely optimistic nor purely conservative.  

In statistics we refer to another approach, based on prior information, and observations as 

well as the assessment of the risk associated with each decision, called the Bayesian Decision 

making. This approach makes use of the famous Bayes theorem. 

1.4      Bayes theorem and Bayesian Statistics 

 

Bayes' theorem is named after the Reverend Thomas Bayes, a statistician and philosopher 

of 18th century. Bayes used conditional probability to provide an algorithm that uses evidence to 

calculate limits on an unknown parameter. For any two disjoint events A and B, the Bayes' theorem 

is stated mathematically as: P(A│B)= P(B│A)P(A)/P(B). (Proof can be seen from any graduate 

level text). Thus, this theorem enables the user to move backward in the light of presently available 

observations and the prior information about the unknown parameter. The whole theory of 

Bayesian statistics is based on this fundamental theorem. Bayesian statistics is a theory in 

statistics based on the Bayesian interpretation of probability i.e. probability expresses 

some degree of belief in an event. This degree of belief may be based on prior knowledge about 



the event, obtained as the results of previous experiments, or on personal beliefs (called 

subjectivity) about the event. 

1.5      Self- Assessment Exercise 

1. Discuss about various real world situations and decision policies used by the decision 

makers. 

2. State Bayes theorem and explain how does it help in decision making. 

1.6      Summary 

In our day to day life we come across a number of decision making situations. And there 

we take a decision that suits most to our objectives. Different situations and logics affect our 

decisions. In section 1.3, some of the most popular situations have been discussed. Section 1.4 

explains the basis of such a policy in Bayesian sense followed by a few exercises, summary of the 

unit and a list of suggested readings. 

1.7      Further Reading 

1. Berger, J.O. (1985). Statistical decision theory-Fundamental concepts and methods, Springer 

Verlag. 

2. Ferguson, T.S. (1967). Mathematical statistics- A decision theoretic approach, Academic press. 

3. Lindley, D.V. (1965). Introduction to probability and statistical inference from Bayesian view 

point, Cambridge university press. 
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Block & Unit Introduction 

 

The present block of this SLM consists of three units. 

The Block - 1 –Basic Elements and Bayes Rules,is the first block, which is divided into 

three units, 

In Unit – 2 –Basic Elements, the main emphasis is given to the basic elements of Bayesian 

theory 

 

Unit – 3 –Bayes and Minimax Rules, is focusing mainly on these rules. 

 

In Unit – 4 – Bayesian Interval Estimation, is being introduced the interval estimation in 

Bayesian context. 

 

At the end of every block/unit the summary, self-assessment questions and further readings 

are given.  

  



UNIT-2:  BASIC ELEMENTS 

Structure 

 

3.1 Introduction 

3.2 Objectives 

3.3 Decision Theoretic Problem as a Game Problem and Basic Elements 

2.3.1     Game Theory and Decision Theory 

2.3.2        Decision Function and Risk Function 

2.3.3        Randomization 

       

3.4 Optimal Decision Rules 

3.5 Unbiasedness 

3.6 Invariance Ordering 

3.7 Self- Assessment Exercise 

3.8 Summary 

3.9 Further Reading 

 

2.1        Introduction 

 

Decision theory is the study of the reasoning underlying any decision. Statistical Decision 

theory may be considered as the theory of making decisions in the presence of statistical 

knowledge. In section 2.3, we shall consider a game problem to make the decision theoretic 

problem and related concepts clear. 

 

2.2 Objectives 

After studying this unit, you should be able to  

• Explain decision problem as a game problem. 

• Explain the decision problem from the perspective of a statistician. 

• Define various components and topics of importance. 

• Describe Bayes and minimax criteria. 



2.3 Decision Theoretic Problem as a Game Problem and Basic Elements 

Suppose, you want to buy a new mobile phone. How do you decide which one is best for 

you and from where to buy it? That is a decision problem. Now suppose that you have, anyhow 

finalized the mobile you are willing to have. Then, Decision theory is the study of the reasoning 

underlying this decision. It is closely related to the well-known theory of games. In this chapter, 

firstly a decision problem has been explained as a game problem. Then it is  explained from the 

perspective of a statistician.  Various elements/components along with some other topics of 

importance have also been defined in this section. Next this chapter is focused on Bayes and 

minimax criteria and their description. 

 

2.3.1       Game Theory and Decision Theory: 

 

Basic Elements: the elements of decision theory are similar to those of the theory of games. 

In particular, decision theory may be considered as the theory of two-person game, in which nature 

takes the role of one of the players. The so-called normal form of a zero-sum two-person game, 

henceforth to be referred to as a game, consists of three basic elements: 

1. A non empty set, Θ, of possible states of nature, sometimes referred to as the 

parameter space. 

2. A non-empty set, a, of action available to the statistician. 

3. A loss function, L (θ, a), a real-valued function defined on Θ X а. 

A game in mathematical sense is just such a triplet (Θ, a, L), and any such triplet defines a 

game, which is interpreted as follows. 

Nature choose a point θ in Θ, and the statistician, without being informed of the choice 

nature has made, chooses an action a in a. as a consequence of these two choices, the statistician 

loses an amount L (θ, a).[the function L (θ, a) may take negative values. A negative loss may be 

interpreted as a gain, but throughout this book L (θ, a) represented the loss to the statistician if he 

takes action a when θ is the ‘’ true state of nature’’.] Simple through this definition may be, its 

scope is quite broad, as the following example illustrated. 



Example2.1:  Odd or even:  two contestants simultaneously put up either one or two fingers. One 

of the players, call him player I, wins if the sum of the digits showing is odd, and the other player, 

player II, wins if the sum of the digits showing is even. The winner in all cases receives in dollars 

the sum of the digits showing, this being paid to him by the loser. 

To create a triplet (Θ, a, L), out of this game we give player I the label ‘’nature’’ and the 

player II the label ‘’statistician’’. Each of these players has two possible choices, so that Θ= {1, 

2} =a, in which ‘’1’’ and ‘’2’’ stands for the decision to put up one and two fingers, respectively. 

The loss function is given by the table 1.1.  

Thus L (1, 1) =-2                         

Table 2.1 

                                                                                𝑎        1            2 

𝛩          1    − 2           3 

                                                                                2         3       − 4 

 

L (1, 2) =3, L (2, 1) =3 and L (2, 2) =-4   it is quite clear that this is a game in the sense 

described in the first paragraph. This example is discussed later, in which it is shown that one of 

the players has a distinct advantage over the other. Can you tell which one it is? Which player 

would you rather be?  

Example2.2:   Consider the game (Θ, a, L) in whichΘ = (𝜃1 , 𝜃2 ) , a =(𝑎1, 𝑎2) and the loss 

function L is given by the table 1.2: 

(Table 2.2) 

                                ‘Statistician’ 

     a1 a2 

             ‘nature’              𝜃1    4              1 

                                                           𝜃2    -3             0 

 



In game theory, in which the player choosing a point from Θ is assumed to me intelligent 

and his winnings in the game are given by the function L (loss function of the statistician or gain 

function of the nature), the only ‘’rational’’ choice for him is𝜃1 . No matter what his opponent 

does, he will gain more if he chooses 𝜃1 than if he chooses𝜃2 .thus it is clear that the statistician 

should choose action 𝑎2 instead of action𝑎1 , for he will lose only one instead of four. This is the 

only reasonable things for him to do. 

            Now, suppose that the function L does not reflect the winning of nature or that nature 

chooses a state without any clear objective in mind. Then we can no longer state categorically that 

the statistician should choose action𝑎2if nature happens to chooses𝜃2 , the statistician will prefer 

take action𝑎1. 

2.3.2     Decision Function & Risk Function: 

To give a mathematical structure to this process of information gathering, we suppose that 

statistician before making a decision is allowed to look at the observed value of a random variable 

or vector, X, whose distribution depends on the true state of nature, θ. The sample space denoted 

as 𝔛is taken to be (a Borel subset of) a finite dimensional Euclidean space, and the probability 

distributions of X are supposed to be defined on the Borel subsets, β of 𝔛. thus for each θ є Θ there 

is a probability measure 𝑃𝜃defined on β, a corresponding cumulative distribution function 𝐹𝑋(𝑥 𝜃)⁄  

which represents the distribution function of X when θ is the true state of the nature (the parameter) 

A statistical decision problem or a statistical game is a game (Θ, a, L) coupled with an 

experiment involving a random variable X whose distribution 𝑃𝜃depends on the state θЄΘ chosen 

by nature. 

         On the basis of the outcome of the experiment X=x (x is the observed value of X), the 

statistician chooses an action d(x)є a .such a function d, which maps the sample space  𝔛 in to a, 

is an elementary strategy for the statistician in this situation .The loss is now the random quantity 

L (θ, d(x)).The expected value of L (θ, d(x)) when θ is the true state of nature is called the risk 

function. 



𝑅(𝜃, 𝑑) = 𝐸{𝐿(𝜃, 𝑑(𝑥))}……………………..  (2.1) 

and represented the average loss to the statistician when the true state of nature θ and the statistician 

used the function d. 

Defn. 2.1: Any function d(x) that maps the sample space 𝔛 in to a, is called a non-randomized 

decision rule or a non-randomized decision function, provided the risk function R (θ, d) exists and 

is finite for all θєΘ. The class of all non-randomized decision rules is denoted by D. 

𝑅(𝜃, 𝑑) = 𝐸𝜃𝐿(𝜃, 𝑑(𝑥)) = ∫𝐿(𝜃, 𝑑(𝑥))𝑑𝑃𝜃 (𝑥)…………… (2.2) 

        With such an understanding, D consists of those functions d for which 𝐿(𝜃, 𝑑(𝑥)) is for each 

θєΘ a Lebesgue integrable function of x. In particular, D contains all simple functions. On the 

other hand, the expectation in (2.2) may be taken as the Riemann or the Riemann-Stieltjes integral.  

𝑅(𝜃, 𝑑) = 𝐸𝜃𝐿(𝜃, 𝑑(𝑥)) = ∫𝐿 (𝜃, 𝑑(𝑥𝑗))𝑑𝐹𝑥 (𝑥 𝜃⁄ )………  (2.2) 

In that case D would contain only functions d for which𝐿(𝜃, 𝑑(𝑥)) is for each θєΘ 

continuous on a set of probability one under𝐹𝑥(𝑥 𝜃⁄ ). 

Example 2.1: the game of ‘’odd or even’’ may be extended to a statistical decision problem. 

Suppose that before the game is played the player called ‘’the statistician’’ is allowed to ask the 

player called ‘’nature’’ how many fingers he intends to put up and that  nature must answer 

truthfully with probability 3/4. The statistician therefore observes a random variable X (the answer 

nature gives) taking the value 1 or 2. If θ=1 is the true state of nature, 𝑃𝜃=1
[𝑋=1] =

3

4
= 1− 𝑃𝜃=1

[𝑋=2]
. 

Similarly𝑃𝜃=2
[𝑋=1] = 1/4= 1 − 𝑃𝜃=2

[𝑋=2]
 . There are exactly four possible functions from 𝔛={1,2} in 

to, a={1,2}. There are the four decision rules, 

𝑑1(1) = 1 𝑑1(2) = 1    ; 

𝑑2(1) = 1𝑑2(2) = 2   ; 

𝑑3(1) = 2𝑑3(2) = 1   ; 

𝑑4(1) = 2𝑑4(2) = 2   . 



 Rules 𝑑1and𝑑4ignore the value of X , rule𝑑2 reflects the belief of the statistician that the 

nature is telling the truth, and rule𝑑3, that nature is not telling the truth. The risk Table (2.1) is 

given as: 

(Table 2.1) 

D 

                                                                       𝑑1             𝑑2            𝑑3              𝑑4 

   1           − 2          − 3/4       7/4         3 

                                         Θ     2              3            − 9/4       5/4    − 4 R(θ,d) 

             It is a custom, which we steadfastly observe, that the choice of a decision function should 

depend only on the risk function 𝑅(𝜃, 𝑑) and not other wise on the distribution of the random 

variable𝐿(𝜃, 𝑑(𝑋)). 

         Notice that the original game (Θ, a, L) has been replaced by a new game (Θ,D, R), in which 

the space D and the function R have an underlying structure, depending on a, L, and the distribution 

of X, whose expectation must be the main objective of decision theory. 

A ‘’classical’’ mathematical statistics consists three important categories : 

1. 𝑎 Consists of two points,𝑎 = {𝑎1 , 𝑎2 }: decision theoretic problems in which 𝑎 consists of 

exactly two points are called problem of testing hypothesis. 

Consider the special case in which Θ is the real line and suppose that the loss function 

for some fixed number 𝜃0  given by the formulas: 

𝐿(𝜃, 𝑎1) = {
𝑙1𝑖𝑓𝜃 > 𝜃0
0       𝑖𝑓𝜃 ≤ 𝜃0

and𝐿(𝜃, 𝑎2) = {
0      𝑖𝑓𝜃 > 𝜃0
𝑙2𝑖𝑓𝜃 ≤ 𝜃0

 

  Where  𝑙1 and 𝑙2 are positive numbers. Here we would like to take action 𝑎1  𝑖𝑓𝜃 ≤ 𝜃0  

and action 𝑎2  𝑖𝑓𝜃 > 𝜃0 .the space D of decision rule consists of those functions d from the sample 

space in {𝑎1  ,𝑎2  } with the property that 𝑃𝜃 [𝑑(𝑥) = 𝑎1  ] is well-defined for all values of θєΘ. The 

risk function in this case is , 

𝑅(𝜃, 𝑑) = 𝐸𝐿(𝜃, 𝑑(𝑥)) 



= 𝑙1𝑃𝜃[𝑑(𝑥) = 𝑎1  ]𝑖𝑓𝜃 > 𝜃0  

= 𝑙2𝑃𝜃[𝑑(𝑥) = 𝑎2  ]𝑖𝑓𝜃 ≤ 𝜃0  

In this case probabilities of making two types of error are involved.    For𝜃 > 𝜃0  ,𝑃𝜃[𝑑(𝑥) = 𝑎1  ] 

is the probability of making the error of taking action 𝑎1  when we should take action 𝑎2  and θ is 

the true state of nature. Similarly, for ≤ 𝜃0𝑃𝜃[𝑑(𝑥) = 𝑎2  ] = 1 − 𝑃𝜃[𝑑(𝑥) = 𝑎1  ] , is the 

probability of making the error of taking action 𝑎2  when we should take action 𝑎1  and θ is the true 

state of nature. 

2. 𝑎 Consists of k points,{𝑎1  , 𝑎2  , ……𝑎𝑘}, 𝑘 ≥ 3.  these decision theoretic problems are 

called multiple decision problems. For an example an experimenter is to judge which of treatments 

has a greater yield on the basis of an experiment.  

He may (a) decide treatment 1 is better, (b) decide treatment 2 is better, or (c) withhold judgment 

until more data are available. In this exp. k=3 

3. 𝑎 Consists of a real line, 𝑎 = (−∞,∞). 

such decision theoretic problems are referred to in a board sense as point estimation of a real 

parameter. Consider the special case in which Θ is also a real line and suppose that the loss 

function is given by the formula,            

𝐿(𝜃, 𝑎) = 𝑐(𝜃 − 𝑎)2  , 

Where, c is some positive constant. A decision function d, in this case a real–valued 

function defined on a sample space, may be considered as an ‘’estimate’’ of the true unknown state 

of nature θ. It is the statistician desire to choose the function d to minimize the risk function.   

𝑅(𝜃, 𝑑) = 𝐸𝐿(𝜃, 𝑑(𝑥)) 

                                                                      = 𝑐𝐸𝜃(𝜃 − 𝑑(𝑥))
2
 ,  

The criterion arrived here is that of choosing an estimate with a small mean squared error 

in some sense. 



2.3.3    Randomization:  

   It is often useful to recognize explicitly that in any decision problem, the statistician may 

wish to choose a decision from D by means of an auxiliary randomization procedure of some short, 

such as by tossing a coin. In other words, the statistician may wish to make a mixed or randomized 

decision δ by assigning probabilities 𝑝1, 𝑝2 , …… to the elements 𝑑1,𝑑2, … … of decisions from D 

and then one of the decisions δ on the basis of these probabilities is chosen. 

More generally, a randomized decision for the statistician in a game (Θ, a, L) is a 

probability distribution over 𝑎 (it is understood that a fixed σ-field of subsets of 𝑎containing the 

individual points of 𝑎is given). If P is probability distribution over 𝑎 and Z is a random variable 

taking values is 𝑎.whose distribution is given by P, the expected or average loss in the use of 

randomized decision P is, 

𝐿(𝜃, 𝑃) = 𝐸𝐿(𝜃, 𝑍)………………..  (3.1) 

Provided it exists. This formula is to be regarded as an extension of the domain of definition 

of the function 𝐿(𝜃, ·) from𝑎 to the sample space of randomized decisions, for each element a є𝑎 

may, and shall, be regarded as the probability distribution degenerate at a ,that is, the distribution 

giving probability one to point a. the space of randomized decisions, P, for which𝐿(𝜃, 𝑃) exists 

and is finite for all θєΘ is denoted by 𝑎∗ . 

With this definition, the game (Θ,𝑎∗, L) is to be considered as the game (Θ, a, L) in which 

the statistician is allowed randomization.  𝑎∗𝑐ontains all the probability distributions giving mass 

one to a finite number of points of𝑎. 

 By analogy, we may extend the game (Θ, D, R) to (Θ, 𝐷∗, R) where𝐷∗ is a space containing 

probability distribution over D. if δ denotes a probability distribution over D, R(θ ,δ) is defined 

analogously to (3.1) as, 

R(θ , δ) = E R(θ , Z) …………….  (3.2) 

Where Z is a random variable taking values in D, whose distribution is given by δ. 



Defn.3.1: Any probability distribution δ on the space of non-randomized function, D, 

is called a randomized decision function or a randomized decision rule, provided the risk function 

(3.2) exists and is finite for all θєΘ. The space of all randomized decision rule is denoted by D*. 

D* contains all the probability distributions giving mass one to a finite number of point of D. 

The space D of non-randomized decision rules may, and shall, be considered as a subset of 

the space D* of randomized decision rules D є D* by identifying a point d є D with the probability 

distribution δ є D* degenerate at point d. 

One advantage in the extension of the definition of L (θ, ·) from 𝑎𝑡𝑜𝑎
∗
 and the definition 

of R (θ, ·) from D to D* is that these functions become linear on 𝑎
∗
and D*, respectively. In other 

words, if𝑃1є𝑎
∗,𝑃2є𝑎

∗ and 0 ≤ 𝛼 ≤ 1. 

𝑃 = 𝛼𝑃1 + (1− 𝛼)𝑃2є𝑎
∗
and𝐿(𝜃, 𝛼𝑃1 + 1 − 𝛼̅̅ ̅̅ ̅̅ ̅𝑃2) = 𝐿(𝜃, 𝑃) = 𝐸𝐿(𝜃, 𝑍) 

= 𝛼𝐿(𝜃, 𝑃1) + (1 − 𝛼)𝐿(𝜃,𝑃2)……………. (3.3) 

Similarly, if𝛿1є𝑎
∗,𝛿2є𝑎

∗ and 0 ≤ 𝛼 ≤ 1.then 

𝛿 = 𝛼𝛿1 + (1 − 𝛼)𝛿2є𝐷
∗ 

𝑅(𝜃, 𝛿) = 𝐸𝑅(𝜃, 𝑍) = 𝛼𝑅(𝜃, 𝛿1) + (1 − 𝛼)𝑅(𝜃, 𝛿2)……………..  (3.4) 

Example3.1:  Let the game be defined as, 

 

                                𝑎1        𝑎2             𝑎3 

Θ    𝜃1        4          1            3 

        𝜃2         1          4            3 

If nature chooses𝜃1, action𝑎3 is preferable to action 𝑎1.if, on the other hand, nature 

chooses𝜃2 , action𝑎3 is preferable to action 𝑎2. thus𝑎3 is preferred to either of the other action under 

the proper circumstances. However, suppose the statistician flips a fair coin to choose between 

actions 𝑎1 and𝑎2; that is suppose the statistician’s decision is to choose 𝑎1if the coin comes up 

heads and choose 𝑎2if the coin comes up tails. This decision, denoted by δ, is a randomized 



decision; such decisions allow the actual choice of the action in 𝑎 to be left to a random mechanism 

and the statistician chooses only the probabilities of the various outcomes. In game theory δ would 

be called a mixed strategy. The randomized decision δ chooses action 𝑎1 with probability ½, action 

𝑎2 with probability ½, action𝑎3 with probability zero. The expected loss in the use of δ is given 

by, 

𝐿(𝜃,𝑃) = 𝐸𝐿(𝜃, 𝑍) = 1/2𝐿(𝜃, 𝑎1) + 1/2𝐿(𝜃, 𝑎2) + 0𝐿(𝜃, 𝑎3) 

=
1

2
. 4 +

1

2
. 1 + 0.3 =

5

2
𝑖𝑓𝜃 = 𝜃1 

=
1

2
+
4

2
. 1 + 0.3 =

5

2
𝑖𝑓𝜃 = 𝜃2  

Because it is understood that the choice between strategies is to be made on the basis of 

expected loss only,   𝛿 is certainly to be preferred to𝑎3 for no matter what the true state of nature, 

the expected loss is smaller if we use δ than if we use𝑎3. 

𝑃1 = (
1

4
 ,
1

2
  ,
1

4
) ,              𝑃2 = (

3

8
 ,
5

8
  ,0) 

𝐿(𝜃,𝑃1) =
4

4
+
1

2
+
3

4
=
9

4
𝑖𝑓       𝜃 = 𝜃1  

         =
1

4
+
4

2
+
3

4
=
12

4
𝑖𝑓𝜃 = 𝜃2 

𝐿(𝜃, 𝑃2) =
3

8
. 4 +

5

8
. 1 + 0.3 =

17

8
𝑖𝑓    𝜃 = 𝜃1 

         =
3

8
+
5

8
. 4 + 0.3 =

23

8
𝑖𝑓  𝜃 = 𝜃2  

“If randomized decisions are allowed and the choice between strategies is based on 

expected loss only, the statistician should never take action  𝑎3 .’’ 

2.4  Optimal Decision Rules 



The fact that a best rule usually does not exist, a general method, which has been proposed 

for arriving at a decision rule, is frequently satisfactory. 

Method of Restricting the Available Rules: 

2.5 Unbiasedness 

Suppose the problem is such that for each θ there exist a unique correct decision and that 

each decision is correct for some θ. Assume further that 𝐿(𝜃1 , 𝑑) = 𝐿(𝜃2, 𝑑) for all d wherever 

some decision is correct for both𝜃1𝑎𝑛𝑑 𝜃2 . Then the loss𝐿(𝜃, 𝑑′) depends only the actual decision 

taken, say d’ and the correct decision d. thus the loss can be denoted by L(d, d’) and this function 

measures how for a past d and d’ are. Under these assumptions a decision function δ(x) is said to 

be unbiased w.r.t. the loss L if for all θ and d’       

𝐸𝜃𝐿(𝑑
′,𝛿(𝑥)) ≥ 𝐸𝜃𝐿(𝑑, 𝛿(𝑥))……………  (3.5) 

Where the subscript θ contains the distribution w.r.t. which the expectation can take and 

where d is the correct decision for θ. Thus, δ is unbiased if on the average δ(x) closer to the correct 

decision than to any wrong one. Extending this definition, δ is said to be L-unbiased for an arbitrary 

decision problem for all θ and θ’.   

𝐸𝜃𝐿(𝜃
′, 𝛿(𝑥)) ≥ 𝐸𝜃𝐿(𝜃, 𝛿(𝑥))…………  (3.6) 

Example3.2: In two decision problem, let 𝜔0 and 𝜔1be the set of θ values for which𝑑0and𝑑1 are 

correct decisions. Assume that  

𝐿(𝜃, 𝑑0) = 0        𝜃є𝜔0𝐿(𝜃, 𝑑1) = 𝑏𝜃є𝜔0                       = 𝑎𝜃є𝜔1                                      

= 0        𝜃є𝜔1 

𝐸𝜃𝐿(𝜃
′, 𝛿(𝑥)) = 𝐿(𝜃′, 𝑑0)𝑃𝜃[𝛿(𝑥) = 𝑑0] + 𝐿(𝜃

′, 𝑑1)𝑃𝜃[𝛿(𝑥) = 𝑑1] 

= 𝑎𝑃𝜃 [𝛿(𝑥) = 𝑑0]𝑖𝑓𝜃′є𝜔1 

= 𝑏𝑃𝜃 [𝛿(𝑥) = 𝑑1]𝑖𝑓𝜃′є𝜔0 

So that (3.6) reduced to  



𝑎𝑃𝜃 [𝛿(𝑥) = 𝑑0] ≥ 𝑏𝑃𝜃[𝛿(𝑥) = 𝑑1]𝑓𝑜𝑟𝜃є𝜔0 

With reverse inequality holding for𝜃є𝜔1 

Since𝑃𝜃 [𝛿(𝑥) = 𝑑0] + 𝑃𝜃[𝛿(𝑥) = 𝑑1] = 1 the unbiasedness contains (3.6) reduces to,   

𝑃𝜃[𝛿(𝑥) = 𝑑1] ≤
𝑎

𝑎+𝑏
𝑓𝑜𝑟𝜃є𝜔0 

           And          𝑃𝜃 [𝛿(𝑥) = 𝑑1] ≥
𝑎

𝑎+𝑏
𝑓𝑜𝑟𝜃є𝜔1 

Example3.3: In the problem of estimating the real valued function 𝑔(𝜃) with square of the error 

as loss, the condition of unbiasedness become, 

𝐸𝜃 [𝛿(𝑥) − 𝑔(𝜃′)]
2 ≥ 𝐸𝜃[𝛿(𝑥) − 𝑔(𝜃)]

2 For all θ and θ’…………. (3.7) 

𝐸𝜃 [𝛿(𝑥) + 𝐸𝜃∗𝛿(𝑥) − 𝐸𝜃∗𝛿(𝑥) − 𝑔(𝜃′)]
2 ≥ 𝐸𝜃[𝛿(𝑥) + 𝐸𝜃𝛿(𝑥) − 𝐸𝜃𝛿(𝑥) − 𝑔(𝜃′)]

2 

Let 𝐸𝜃𝛿(𝑥) = ℎ(𝜃) 

𝐸𝜃 [𝛿(𝑥) − ℎ(𝜃) + ℎ(𝜃) − 𝑔(𝜃′)]
2 ≥ 𝐸𝜃 [𝛿(𝑥) − ℎ(𝜃) + ℎ(𝜃) − 𝑔(𝜃)]

2 

[ℎ(𝜃) − 𝑔(𝜃′)]2 ≥ [ℎ(𝜃) − 𝑔(𝜃)]2       For all θ and θ’ 

If 𝑔(𝜃) is continuous over Ω and which is not continuous in any open subset of Ω, and that 

ℎ(𝜃) = 𝐸𝜃𝛿(𝑥) is continuous function of θ for each estimate𝛿(𝑥) of𝑔(𝜃) . Thus (3.2) reduces to, 

𝑔2(𝜃′) − 2ℎ(𝜃)𝑔(𝜃) ≥ 𝑔2(𝜃) − 2ℎ(𝜃)𝑔(𝜃) 

Or 𝑔2(𝜃′) − 𝑔2(𝜃) ≥ 2ℎ(𝜃)(𝑔(𝜃′) − 𝑔(𝜃)) 

[𝑔(𝜃) − 𝑔(𝜃′)][𝑔(𝜃′) + 𝑔(𝜃)] ≥ 2ℎ(𝜃)[𝑔(𝜃′) − 𝑔(𝜃)] 

If θ is neither a relative minimum or maximum of 𝑔(𝜃) it follows that there exist points θ’ 

arbitrary chosen θ both such that, 

𝑔(𝜃′) + 𝑔(𝜃) ≤ 2ℎ(𝜃)    Hence 𝑔(𝜃) = ℎ(𝜃) 

Thus 𝛿(𝑥) is unbiased if𝐸𝜃𝛿(𝑥) = 𝑔(𝜃).                Proved 



2.6  Invariance Ordering 

 

Generally, an invariant is a quantity that remains constant during the execution of a given 

operation or transformation. In other words, none of the allowed operations changes the value of 

the invariant. For example, any two scalar quantities the result is invariant with respect to product 

i.e. axb equal bxa. In statistics this property is helpful in attempting the given problem using a 

more preferred form out of many available order invariant forms.  

2.7 Self-Assessment Exercise 

 

1. Discuss the decision theoretic problem as a game problem using an example from your 

surroundings. 

2. Explain the concept of optimal Bayes rules with example. 

2.8 Summery 

 

In this unit, section 2.3 consists of the basics of Decision Theory Problem as a Game 

Problem and sections 2.4, 2.5 and 2.6 discuss about some Basic Elements of decision theory 

namely optimal decision rules, unbiasedness, and invariance ordering. In next unit we will learn 

more about the structures of Bayes problems. 

2.9 Further Readings 

4. Berger, J.O. (1985). Statistical decision theory-Fundamental concepts and methods, Springer 

Verlag. 

5. Degroot, M. H. (1971). HPD statistical decisions, McGraw-Hill. 

6. Ferguson, T.S. (1967). Mathematical statistics- A decision theoretic approach, Academic press. 

7. Lindley, D.V. (1965). Introduction to probability and statistical inference from Bayesian view 

point, Cambridge university press. 

  



UNIT-3:  BAYES AND MINIMAX RULE 

Structure 

 

3.1     Introduction 

3.2 Objectives 

3.3 Bayes and Minimax Principles 

3.4 Generalized Bayes Rule and Extended Bayes Rule 

3.5 Limits of Bayes Rule 

3.6 Self-Assessment Exercise 

3.7 Summary 

3.8 Further Reading 

 

3.1        Introduction 

 

Bayes principle refers to the notion of a distribution on the parameter space Θ called a 

prior distribution. 

3.2      Objectives 

 

After studying this unit, you should be able to  

• Define Bayes Principle 

• Define Decision rules  

• Identify Minimax rules for decision theoretic problems. 

 

3.3 Bayes and Minimax Principles 

 

1. Bayes principle: The Bayes principle involves the notion of a distribution on the parameter 

space Θ called a prior distribution. Two things are needed of a prior distribution τ on Θ. First we 

may able to speak of the Bayes risk of a decision rule δ w.r.t. a prior distribution τ, namely 

𝑅(𝜏, 𝛿) = 𝐸 𝑅(𝑇, 𝛿) …………………..  (3.8)  

Where T is a r.v. over Θ having distribution τ. Second, we need to be able to speak of the joint 

distribution T and X and of the conditional distribution of T, given X, the latter being called the 



posterior distribution of the parameter given the observations. We denote the space of prior 

distribution as 𝛩∗. 

Defn.3.2:  A decision rule 𝛿0 is said to be Bayes w.r.t. the prior distribution τ є𝛩∗ if        𝑅(𝜏, 𝛿0) =
𝑖𝑛𝑓

𝛿є 𝐷∗  
𝑅(𝜏, 𝛿)………… (3.9) 

The value on the R.H.S. is known as the minimum Bayes risk. Bayes risk may not exist even if the 

minimum Bayes risk is defined and finite. 

Defn.3.3:  Let Є> 0. A decision rule 𝛿0 is said to be Є − Bayes w.r.t. the prior distribution τє𝛩∗ 

if  

𝑅(𝜏, 𝛿0) ≤
𝑖𝑛𝑓
𝛿є 𝐷∗  

𝑅(𝜏, 𝛿) + Є  ………………..  (3.10) 

2. Minimax principle:  An essentially different type of ordering of the decision rule may be 

obtained by ordering the rules according to the worst that could happen to the statistician. In other 

words, a rule 𝛿1 is preferred to a rule 𝛿2 if 

𝑠𝑢𝑝
𝜃
𝑅(𝜃, 𝛿1) <

𝑠𝑢𝑝
𝜃
𝑅(𝜃, 𝛿2) 

A rule that is most preferred in this ordering is called a minimax decision rule. 

Defn.3.4: A decision rule 𝛿0 is said to be minimax if                                                                                                    

𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿0) =
𝑖𝑛𝑓 
𝛿𝜖𝐷∗

𝑠𝑢𝑝
𝜃
𝑅(𝜃, 𝛿) ……………………. (3.11) 

The value on the R.H.S. of (3.11) is called the minimax value or upper  value of the game. 

Proposition3.1: A decision rule 𝛿0 is said to be minimax if and only if   

   𝑅(𝜃′, 𝛿0) ≤
𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿) ………………..    (3.12) 

For all θ’εΘ and δε𝐷∗ 

Proof:  let  𝑅(𝜃′, 𝛿0) ≤
𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿)        For all θ’εΘ and δε𝐷∗ 

𝑠𝑢𝑝

𝜃′𝜖Θ
 𝑅(𝜃′, 𝛿0) ≤

𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿)forδε𝐷∗ 

Hence 𝛿0  minimizes the
𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿)         forδε𝐷∗ 



Thus,         
𝑠𝑢𝑝

𝜃′𝜖Θ
𝑅(𝜃′, 𝛿0) =

𝑖𝑛𝑓 
𝛿𝜖𝐷∗

𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿)And𝛿0is minimax. 

Conversely, let    
𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿0) =
𝑖𝑛𝑓 
𝛿𝜖𝐷∗

𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿) 

           ⇒
𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿0) ≤
𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿)forδε𝐷∗ 

         ⇒ 𝑅(𝜃′, 𝛿0) ≤
𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿0) ≤
𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿)for all θ’εΘ , δε𝐷∗Proved 

Defn.3.5: Let Є> 0. A decision rule 𝛿0 is said to be Є - minimax if 

𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿0) ≤
𝑖𝑛𝑓
𝛿

𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿) + Є ………………….   (3.13) 

More simply, 𝛿0 is Є-minimax if for all θ’εΘ and δε𝐷∗ 

                𝑅(𝜃′, 𝛿0) ≤
𝑠𝑢𝑝
𝜃𝜖Θ

𝑅(𝜃, 𝛿) + Є  …………………  (3.14) 

Defn.3.6: A distribution 𝜏0𝜀 𝜃
∗ is said to be least favorable if                                        

𝑖𝑛𝑓
𝛿
𝛾(𝜏0 , 𝛿) =

𝑠𝑢𝑝
𝜏
 
𝑖𝑛𝑓
𝛿
𝛾(𝜏 , 𝛿) ………………..  (3.15) 

The value on the R.H.S. of (3.15) is called the maximin value or lower value of the game. 

Geometrical Interpretation for finite Θ: we give a geometric interpretation of the fundamental 

problem of decision theory in the case in which the parameter space Θ is finite.  

Suppose that Θ contains k points, 𝛩 = {𝜃1, 𝜃2 , … … ,𝜃𝑘 } and consider the set S, to be called the 

risk set, contained in k-dimensional Euclidian space 𝐸𝑘  of points of the form 

(𝑅(𝜃1, 𝛿), 𝑅(𝜃2 , 𝛿),… ……… ,𝑅(𝜃𝑘 , 𝛿)), where δ ranges through 𝐷∗ 

𝑆 = {(𝑦1, 𝑦2, …… , 𝑦𝑘)𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛿є𝐷
∗ , 𝑦𝑗 = 𝑅(𝜃𝑗 , 𝛿) 𝑓𝑜𝑟 𝑗 = 1,2, … , 𝑘} 

                                                                                                      …………. (3.16) 

If k=2 this set may easily be plotted in the plane. 

Defn.3.7: A set S should be convex if when ever 𝑦 = (𝑦1 , 𝑦2 , …… ,𝑦𝑘 )𝑦′ = (𝑦′1, 𝑦′2, …… , 𝑦′𝑘) 

are elements of S, the point  

𝛼𝑦 + 1 − 𝛼̅̅ ̅̅ ̅̅ ̅𝑦′ = (𝛼𝑦1 + 1− 𝛼̅̅ ̅̅ ̅̅ ̅𝑦1
′ , …… ,𝛼𝑦𝑘 + 1− 𝛼̅̅ ̅̅ ̅̅ ̅𝑦𝑘

′ )are also elements of S , 0 ≤ 𝛼 ≤ 1. 

Lemma3.1:  The risk set S is convex subset of  𝐸𝑘 . 



Proof: Let y and y’ be arbitrary point of S. according to the definition of S, there exist a decision 

rules δ and δ’ in 𝐷∗ for which𝑦𝑗 = 𝑅(𝜃𝑗 , 𝛿) 

and𝑦𝑗
′ = 𝑅(𝜃𝑗 , 𝛿′) j=1, 2,....., k .let α be an arbitrary number such that 0 ≤ 𝛼 ≤ 1 and consider 

𝛿𝛼 = 𝛼𝛿 + 1 − 𝛼̅̅ ̅̅ ̅̅ ̅𝛿′. Clearly 𝛿𝛼є 𝐷
∗. (as convex combination of d.f is also a d.f ) 

         𝑅(𝜃𝑗 , 𝛿𝛼) = 𝐸 𝐿(𝜃𝑗 , 𝛿𝛼) = 𝛼 𝐸 𝐿(𝜃𝑗 , 𝛿) + 1 − 𝛼̅̅ ̅̅ ̅̅ ̅𝐸 𝐿(𝜃𝑗 , 𝛿′) 

  = 𝛼𝑅(𝜃𝑗 , 𝛿)+ 1− 𝛼̅̅ ̅̅ ̅̅ ̅𝑅(𝜃𝑗 , 𝛿′) = 𝑍𝑗  

                         𝑍 = (𝑍1, 𝑍2, …… ,𝑍𝑘) є 𝑆Proved 

Defn.3.8: let A be a set. The convex hull of a set A is the smallest convex set containing A or the 

intersection of all convex sets containing A.     

Thus S defined above is the convex hull of the set𝑆0, where 

𝑆0 = {(𝑦1, 𝑦2 , … … , 𝑦𝑘)  𝑦𝑗 = 𝑅(𝜃𝑗 , 𝑑), 𝑑є𝐷, 𝑗 = 1,2, … , 𝑘} ……… (3.17) 

Because the risk function contains all the pertinent information about a decision rule as for 

as we concerned, the risk set S contains all the information about a decision problem. For a given 

decision problem (𝛩,𝐷∗ , 𝑅) for Θ finite the risk set S is convex; conversely, for any convex set S 

in k-dimensional space there is a decision problem, (𝛩, 𝐷∗ ,𝑅) in which Θ consists of k points, 

whose risk set is the set S. 

Bayes Rules:  

let(𝑝1, 𝑝2, …… ,𝑝𝑘)be a probability distribution on Θ. See points that yield the same expected risk. 

∑ 𝑝𝑗
𝑘
𝑗=1 𝑅(𝜃𝑗 , 𝛿) = ∑𝑝𝑗 𝑦𝑗           ,𝑦𝑗 = (𝜃𝑗 , 𝛿)  …………… (3.18) 

are equivalent in the ordering given by the principle for the prior distribution(𝑝1, 𝑝2 , …… , 𝑝𝑘 ). 

Thus all points on the plane∑𝑝𝑗 𝑦𝑗 = 𝑏 for any real number b are equivalent. Every such plane is 

perpendicular to the vector from the origin to the points (𝑝1, 𝑝2, …… , 𝑝𝑘) and because 𝑝𝑗is non 

negative the slope of the line of the interaction of the plane ∑ 𝑝𝑗 𝑦𝑗 = 𝑏 with the coordinate planes 

cannot be positive. The quantity b can best be visualized by noting that the point of interaction of 

the diagonal line 𝑦1 = 𝑦2 =. .= 𝑦𝑘  with the plane ∑𝑝𝑗 𝑦𝑗 = 𝑏 must occur at (𝑏, 𝑏, … , 𝑏) 



Fig (3.1) 

To find the Bayes rules we find the infimum of those values of b, call it 𝑏0, for which the plane 

∑ 𝑝𝑗 𝑦𝑗 = 𝑏 intersected the set S. decision rule corresponding to points in the intersection are Bayes 

rule with respect to the prior distribution (𝑝1, 𝑝2 , … … , 𝑝𝑘 ). There may be many Bayes rules or 

there may not be any Bayes rules. 

 

 

 

Fig (3.2)  



 

Fig (3.3) 

Minimax Rules:  

                 The minimax risk for a fixed δ is 𝑚𝑎𝑥𝑗𝑦𝑗 = 𝑚𝑎𝑥𝑗𝑅(𝜃𝑗 , 𝛿).Any point yєS that give rise 

to the same value of 𝑚𝑎𝑥𝑗𝑦𝑗 are equivalent in the ordering given by minimax principle. Thus all 

points on the boundary of that set  

        𝑄𝑐 = {(𝑦1, 𝑦2 , … … , 𝑦𝑘 ): 𝑦𝑗 ≤ 𝑐    𝑓𝑜𝑟 𝑖 = 1,… … ,𝑘}for any real number c are equivalent. To 

find the minimax rules we find the infimum of those values of c, call it 𝑐0, such that the set 𝑄𝑐  

intersects S. any decision rule δ, whose associated risk point is an element of the intersection  𝑄𝑐0 ∩

𝑆, is minimax decision rule. Of course, minimax decision rule do not exist when the set S does not 

contains its boundary points.  

A minimax strategy for nature which is otherwise called a ‘’least favorable distribution’’ may also 

be visualized geometrically. A strategy for nature is a prior distribution 𝜏 = (𝑝1, 𝑝2, …… , 𝑝𝑘) 

Because the minimum Bayes risk 𝑖𝑛𝑓𝛿ϒ(𝜏, 𝛿) is𝑏0, where (𝑏0, 𝑏0, … … , 𝑏0) in the intersectionof 

the line 𝑦1 = 𝑦2 = ⋯ = 𝑦𝑘  and  the plane, tangent to and below S,                                                                    

and perpendicular to (𝑝1, 𝑝2 , … … ,𝑝𝑘 ), a least favorable distribution is the                                                                

choice of  (𝑝1, 𝑝2, …… , 𝑝𝑘) that makes this intersection as for up the line aspossible. It is clear 

that𝑏0 is not greater than𝑐0, the minimax risk is 𝑐0.This distribution must be least favorable. 

 

 

 

 

 



 

 

 

 

 

 

 Fig (3.4) 

Since 

𝑅(𝜃, 𝛿) = 𝐸 𝑅(𝜃, 𝑍)where Z is a r.v. taking values in D with d.f δ. 

 𝑖𝑓 𝛿0is such that 𝑅(𝜃, 𝛿0) = 𝑖𝑛𝑓δεD∗𝑅(𝜃, 𝛿) then 

𝑅(𝜃, 𝛿0) = 𝐸 𝑅(𝜃, 𝑍)where Z is a r.v. taking values in D with d.f 𝛿0. 

Obviously  ∫𝑅(𝜃, 𝛿0)𝑑𝜏 ≤ ∫𝑅(𝜃, 𝑑)𝑑𝜏  for all dε D 

ϒ(𝜏, 𝛿0) = ∫𝑅(𝜃, 𝛿0)𝑑𝜏 ≤ 𝑖𝑛𝑓dε Dϒ(𝜏, 𝑑) 

ϒ(𝜏, 𝛿0) = 𝑖𝑛𝑓𝛿ε D∗ϒ(𝜏, 𝛿) ≤ 𝑖𝑛𝑓dε Dϒ(𝜏, 𝑑)  ………………… (3.19) 

Also 𝑅(𝜃, 𝛿0) = 𝐸 𝑅(𝜃, 𝑍)         Z is a r.v. taking values in D with d.f 𝛿0. 

                         = ∫ 𝑅(𝜃,𝑍)𝑑𝛿0 

∫𝑅(𝜃, 𝛿0)𝑑𝜏 = ∫[∫𝑅(𝜃,𝑍)𝑑𝛿0] 𝑑𝜏 

                         = ∫[∫𝑅(𝜃, 𝑍)𝑑 𝜏] 𝑑 𝛿0 

         ϒ(𝜏, 𝛿0) = ∫[∫𝑅(𝜃, 𝑍)𝑑 𝜏]𝑑 𝛿0 

                        ≥ ∫[𝑖𝑛𝑓dε D∫𝑅(𝜃, 𝑍)𝑑 𝜏] 𝑑 𝛿0 

                        = 𝑖𝑛𝑓dε Dϒ(𝜏, 𝑑) 

         ϒ(𝜏, 𝛿0) ≥ 𝑖𝑛𝑓dε Dϒ(𝜏, 𝑑)  …………………..  (3.20) 



From (4.19) and (4.20) 

          ϒ(𝜏, 𝛿0) = 𝑖𝑛𝑓dε Dϒ(𝜏, 𝑑) …………………. (3.21) 

            Equation (3.21) states that none of the mixed strategy (randomized decision rule) can 

reduce the risk below the minimum value which can be attained from the non-randomized decision 

D. if Bayes risk ϒ(𝜏, 𝛿0) is finite and is attained for a randomized decision rules 𝛿0, then it follows 

from the above comments that this risk must be attained for some non- randomized decision D. 

            Thus if a Bayes rule with respect to a prior distribution τ exits,there exist a non- randomized 

Bayes rule w.r.t. τ. Therefore, one definite computational advantage that the Bayes approach has 

over the minimax approach to decision theory problem is that the search for good decision rules 

may be restricted to the class of non- randomized decision rules. 

Example3.4:  Let 𝛩 = 𝑎 = {0,1} and let the loss function be L(0,0) = L(1,1) = 0 ,  L(1,0)=L(0,1)=1     

Suppose that the statistician observes the r.v. X with discrete distribution 

𝑃[𝑋 = 𝑥 𝜃⁄ ] = 2−𝐾      𝐾 = 𝑥 + 𝜃       𝑘 = 1,2,3,… …… 

(I) Describe the set of all non- randomized decision rules. 

(II) Plot the risk set S in the plane. 

(III) Find the minimax and Bayes decision rules. 

Sol:  𝔛 = 𝑁 = set of all non- negative integers  

Let A be any finite subset of N.          d:𝔛→ 𝑎 = {0,1} 

      𝐷 = {𝑑:       𝑑: 𝔛 → 𝑎} 

Thus D contains only two types of functions 

            𝑑1(𝑥) = 1       𝑖𝑓 𝑥𝜀𝐴                  𝑑2(𝑥) = 1       𝑖𝑓 𝑥𝜀𝐴′  

                        = 0       𝑖𝑓 𝑥𝜀𝐴′                             = 0       𝑖𝑓 𝑥𝜀𝐴                   

The cardinality of D is C 

𝑅(𝜃, 𝑑) = 𝐸 𝐿(𝜃, 𝑑(𝑋))is risk function of d. 

𝑅(0, 𝑑1) = 𝐸 𝐿(0, 𝑑1(𝑋)) = 𝑃[𝑋𝜀𝐴]  ……………………. (3.22) 

𝑅(1, 𝑑1) = 𝐸 𝐿(1, 𝑑1(𝑋)) = 𝑃[𝑋𝜀𝐴′]  ……………………. (3.23) 

𝑅(0, 𝑑2) = 𝐸 𝐿(0, 𝑑2(𝑋)) = 𝑃[𝑋𝜀𝐴′]  ……………………. (3.24) 



𝑅(1, 𝑑1) = 𝐸 𝐿(1, 𝑑2(𝑥)) = 𝑃[𝑋𝜀𝐴]  ……………………. (3.25) 

𝑅(𝜃, 𝛿) =  ∫𝑅(𝜃, 𝑍)𝑑𝛿   Where Z is a r.v. taking values in D with d.f δ. 

Let A ={0} ,{0,1}, Φ 

𝑅(0, 𝑑1) = 𝑃[𝑋𝜀𝐴] = 0, 1/2, 0              R(1,δ)       (0, 1) 

𝑅(0, 𝑑2) = 𝑃[𝑋𝜀𝐴′] = 1, 1/2, 1    𝑦2  

𝑅(1, 𝑑1) = 𝑃[𝑋𝜀𝐴′] = 1/2, 1/4, 1                         (0, 1)                            

𝑅(1, 𝑑2) = 𝑃[𝑋𝜀𝐴] =
1

2
,
3

4
, 0          𝐿2(0,

1

2
)                             S                         (1, 1

2
) 

(0,1/2)  ,  (1/2,1/4)  ,  (0,1)                            (p,1-p)                                                                                                       

(1,1/2)   ,  (1/2,3/4) ,  (1,0)                                     

𝑆 = {(𝛼, 𝛽): 0 ≤ 𝛼 ≤ 1,0 ≤ 𝛽 ≤ 1}                    (0,0)                                              D       (1,0)         

𝐿1𝑦1=  R(0,δ),  𝑦2 = 𝑅(1, 𝑑) 

𝛼 = 𝑅(0, 𝑑) , 𝛽 = 𝑅(1, 𝑑)         𝑑𝜀𝐷Fig (3.5) 

Thus minimax decision rule 𝛿0 at point D  

i.e line 𝐿1 𝐿2 and intersection of 𝑦1 = 𝑦2  

Line 𝐿1 𝐿2 is 2𝑦2 + 𝑦1 = 1 

Where 𝑦1 = 𝑦2 ⇒ 𝐷 = (
1

3
,
1

3
) 

So corresponding to(
1

3
,
1

3
) 𝑖𝑠 (

2

3
,
1

3
). 

A Bayes decision rule which minimize (3.23) can be found. 

To find a non-randomized rule: 

Let A= {1, 3, 5, 7 …}       d(x) =
0     xϵA
1     xϵA′

 

𝑅(0, 𝑑) = 𝐸𝐿(0, 𝑑) = 𝑃[𝑋𝜖𝐴′] = ∑ 2−𝑥

𝑥=2,4,6,…

 

                                                           =
1

22
+

1

24
+⋯ =

1
4

1−1
4

=
1

3
 



𝑅(1, 𝑑) = 𝐸𝐿(1, 𝑑) = 𝑃[𝑋𝜖𝐴] = ∑ 2−(𝑥+1)

𝑥=1,3,5,…

 

                                                          =
1

22
+

1

24
+⋯ =

1
4

1−
1
4

=
1

3
 

Thus there exist a non-randomized Bayes decision rule such that(1
3
 , 1
3
) =

𝑝𝑜𝑖𝑛𝑡 𝐷 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (2
3
 , 1
3
). A minimax decision rule is(2

3
 , 1
3
) choosing, 

                   d1(x) = 0 if x = 0with probability 
2

3
and 

           =1  if x≥ 1 

                    d2(x) = 1    x ≥ 0 with probability 
1

3
 

This rule is also Bayes rule with (𝑝1, 𝑝2) = (
1

3
 , 2
3
) = (𝑝, 1 − 𝑝) 𝑎𝑠  

1−𝑝

𝑝
(−
1

2
) = −1 ⇒ 2𝑝 = 1− 𝑝 ⇒ 𝑝 =

1

3
 

 

Example3.5: consider the statistical decision problem.  

            𝛺 = (𝜃1 , 𝜃2) 𝐷 = (𝑑1, 𝑑2)𝐿(𝜃, 𝑑) 𝑎𝑠 

 

 

                              𝑑1      𝑑2                 𝜌
∗(𝛼) 

𝐿(𝜃, 𝑑)          𝜃1    0          𝑎1           𝑎𝑖 > 0  𝑖 = 1,2 

                       𝜃2     𝑎2          0 

 

Let    𝛼(𝛿) = 𝑃[𝛿(𝑥) = 𝑑2 𝜃 = 𝜃1⁄ ] 

𝑎𝑛𝑑       𝛽(𝛿) = 𝑃[𝛿(𝑥) = 𝑑1 𝜃 = 𝜃2⁄ ]
8

17

16

17
𝛼 

𝛼(𝛿) 𝑎𝑛𝑑 𝛽(𝛿) 𝑎re the probabilities                                                                     Fig (3.8)                      

that δ will lead to a decision when 𝜃 = 𝜃1 and   𝜃 = 𝜃2   respectively, suppose 𝑃[𝜃 = 𝜃1] = ξ 



𝑃[𝜃 = 𝜃2] = 1 − ξ, 0< ξ < 1 is the prior probability. 

ϒ(𝜏, 𝛿) =∬𝐿(𝜃, 𝛿) 𝑑𝐹(𝑥 𝜃⁄ )𝑑𝜏(𝜃)  

= ∫{𝐿(𝜃, 𝑑1)𝑃[𝛿(𝑥) = 𝑑1 𝜃⁄ ] + 𝐿(𝜃, 𝑑2)𝑃[𝛿(𝑥) = 𝑑2 𝜃⁄ ]}𝑑𝜏(𝜃)  

= [𝐿(𝜃1, 𝑑1)𝑃[𝛿(𝑥) = 𝑑1 𝜃1⁄ ] + 𝐿(𝜃1, 𝑑2)𝑃[𝛿(𝑥) = 𝑑2 𝜃1⁄ ]]ξ 

+[𝐿(𝜃2 , 𝑑1)𝑃[𝛿(𝑥) = 𝑑1 𝜃2⁄ ] + 𝐿(𝜃2 , 𝑑2)𝑃[𝛿(𝑥) = 𝑑2 𝜃2⁄ ]](1 − ξ) 

= 𝐿(𝜃1, 𝑑2)𝑃[𝛿(𝑥) = 𝑑2 𝜃1⁄ ]ξ + 𝐿(𝜃2, 𝑑1)𝑃[𝛿(𝑥) = 𝑑1 𝜃2⁄ ](1 − ξ) 

= 𝑎1𝛼(𝛿)ξ + 𝑎2𝛽(𝛿)(1 − ξ) 

= 𝑎𝛼(𝛿) + 𝑏𝛽(𝛿)…….. (3.33)   Where, 𝑎 = 𝑎1ξ , b = 𝑎2(1 − ξ)  

Example3.6:  𝛩 = {𝜃1, 𝜃2}        а = {𝑎1, 𝑎2} 

                                         𝑎1          𝑎2  

     𝐿(𝜃, 𝑎) =   𝜃1        − 2           3 

                          𝜃2          3        − 4 

A randomized strategy δ𝜖а∗ is represented as a number 0 ≤ 𝑞 ≤ 1, with understanding that 

𝑎1is taken with probability q and 𝑎2 with 1-q 

      𝑆 = {(𝐿(𝜃1, 𝛿), 𝐿(𝜃2, 𝛿)), 𝛿𝜖а
∗} 

𝐿(𝜃1, 𝛿) = 𝐸𝐿(𝜃1 , 𝑧) = 𝐿(𝜃1, 𝑎1)𝑃𝜃1[𝑧 = 𝑎1] + 𝐿(𝜃1, 𝑎2)𝑃𝜃1[𝑧 = 𝑎2] 

                                     = −2𝑞 + 3(1 − 𝑞) = 3 − 5𝑞  

Similarly, 𝐿(𝜃2, 𝛿) = 𝐸𝐿(𝜃2, 𝑧) = 3𝑞 − 4(1 − 𝑞) = 7𝑞 − 4  

          𝑆 = {(3 − 5𝑞, 7𝑞 − 4), 0 ≤ 𝑞 ≤ 1}                                (Fig 3.6) 

  



Which is nearly a line segment joining (-2, 3) and (3, -4) minimax strategy occurs when,   

3 − 5𝑞 = 7𝑞 − 4   𝑜𝑟 𝑞 =
7

12
 

The minimax risk is ( 1
12
, 1
12
) 

Thus, minimax rule is ( 7
12
, 5
12
) 

And this is also Bayes rule since, 

1−𝑝

𝑝
(−
7

5
) = −1 ⇒ 𝑝 =

7

12
 

𝐼𝑓 𝑤𝑒 𝑐ℎ𝑜𝑜𝑠𝑒 𝜃1 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.
7

12
 

        (Fig 3.6) 

𝐴𝑛𝑑𝜃2  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏.
5

12
 . (

7

12
,
5

12
)  𝑖𝑠 𝑝𝑟𝑖𝑜𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦.    

Example3.7:  𝛩 = {1, 2} = а 

          𝑑1(1) = 1     , 𝑑1(1) = 1 

          𝑑2(1) = 1     , 𝑑2(1) = 2 

          𝑑3(1) = 2     , 𝑑3(1) = 1 

          𝑑4(1) = 2     , 𝑑4(1) = 2 

                                                                        𝑑1              𝑑2           𝑑3           𝑑4 

   1           − 2       −
3

4
               

7

4
           3   

2                3         −
9

4
                 

5

4
       − 4  

 

𝑅(𝜃1, 𝛿) = 𝑝1𝑅(𝜃1, 𝑑1) + 𝑝2𝑅(𝜃1, 𝑑2) + 𝑝3𝑅(𝜃1, 𝑑3) + 𝑝4𝑅(𝜃1, 𝑑4) 

                    = −2𝑝1 −
3

4
𝑝2 +

7

4
𝑝3 + 3𝑝4,∑𝑝𝑖 = 1  

   𝑅(𝜃1 , 𝛿) = ∑𝑝𝑖𝑅(𝜃2 , 𝑑𝑖) = 3𝑝1 −
9

4
𝑝2 +

5

4
𝑝3 − 4𝑝4

4

𝑖=1

 

      𝑆 = {(𝑅(𝜃1, 𝛿), 𝑅(𝜃2 , 𝛿)): 𝛿𝜖а
∗}(Fig 3.7)  

(-2, 3) 

 

 

 

 

                                         Minim ax strategy                                                         

                                           S 

                                                (3, -4) 



Line 𝐿1𝐿2 is  𝑦2 = −
21

5
𝑦1 −

27

5
 

           5𝑦2 + 21𝑦1 + 27 = 0  

Line PQ intersects 𝐿1𝐿2 at 

𝑦1 = −
27

26
, 𝑦2 = (−27)/26  Thus  

The Minimax risk at (
−27

26
,
−27

26
) 

Thus 𝛿0 corresponding to this  

Minimum is attained by 

   𝛿0 = (
3

13
,
10

13
, 0,0) . 

Thus 𝛿0 is also bayes w.r.to  

 

(
21

26
,
5

26
) = 𝜏   𝑎𝑠 

1−𝑝

𝑝
(−
21

5
) = −1 ⇒ (1 − 𝑝)21 = 5𝑝 ⇒ 𝑝 =

21

26
 

And minimum Bayes risk 𝛾(𝜏, 𝛿0) =
21

26
 

Also 𝑑1 is non- randomized bayes rule w.r.to τ as  

          𝛾(𝜏, 𝑑1) = 𝑝𝑅(𝜃1, 𝑑1) + (1 − 𝑝)𝑅(𝜃2 , 𝑑1) 

                         =
21

26
(−2)+

5

26
(3)  =

−42 + 15

26
= −

27

26
 

Thus 𝛿0 = (
3

13
,
10

13
, 0,0)is randomized Bayes rule and 𝑑1 is non-randomized Bayes rule w.r.to 𝜏 =

(
21

26
,
5

26
) 

Thus, minimax Bayes risk is −
27

26
  . 

Given the prior distribution τ, we want to choose a non –randomized decision rule d𝜖D that 

minimizes Bayes risk, 

𝛾(𝜏, 𝑑) = ∫𝑅(𝑍, 𝑑)𝑑𝜏                   𝑤ℎ𝑒𝑟𝑒,  𝑍 𝑖𝑠 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑎𝑘𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒𝑠  

                            R (𝜃2 , 𝛿 = 𝑦2 ) 

𝐿1 (−2,3) 

 

                            S                     Q              𝐿4 (
7

4
,
5

4
) 

𝑦1 = 𝑦2  

𝑦1R (𝜃1 , 𝛿) 

Minimax            P 

Decision              

Rule         𝐿2 (
−3

4
,
−9

4
)𝐿3 (3, −4) 

 



  𝑅(𝜃, 𝑑) = ∫𝐿(𝜃, 𝑑(𝑥))𝑑𝐹𝑋(𝑥 𝜃⁄ ) 

  A choice of θ by the distribution τ (θ), followed by a choice of X from the distribution𝐹𝑋(𝑥 𝜃⁄ ), 

determines a joint distribution of θ and X, which in turn, can be determined by first choosing X 

according to its marginal distribution, 

𝐹𝑋(𝑥) = ∫ 𝐹𝑋(𝑥 𝜃⁄ )𝑑𝜏(𝜃)   ………………………    (3.26) 

and then choosing θ according to the conditional distribution of θ, given X=x, τ(𝜃 𝑥⁄ ). Hence by 

a change of integration we may write, 

𝛾(𝜏, 𝑑) = ∫[∫ 𝐿(𝜃, 𝑑(𝑥)) dτ(𝜃 𝑥⁄ )] 𝑑𝐹𝑋(𝑥)  ……………….  (3.27) 

Given that these operations are legal, it is easy to describe aBayes decision rule.  

To find a function d(x) that minimizes the double integral (3.27), we may minimize the inside 

integral separately for each x; that is, we may find for each x the action, call it d(x), that minimizes  

∫𝐿(𝜃, 𝑑(𝑥)) dτ(𝜃 𝑥⁄ ) 

Thus, the Bayes decision rule minimizes the posterior conditional expected loss, given the 

observations. 

Non–Negative Loss Function: 

    Suppose that the distribution of the parameter θ in some decision problem is τ (θ). Let a be a 

given constant (>0), and let 𝜆(𝜃) be a real valued function over parameter space Θ=Ω, such that  

∫ 𝜆(𝜃)𝑑τ(θ) < ∞
𝛺

 

Consider a new loss function 𝐿0 which is defined in terms of the original loss function L by relation  

   𝐿0(𝜃, 𝑑) = 𝑎𝐿(𝜃, 𝑑) + 𝜆(𝜃)       𝜃𝜖𝛺 , 𝑑𝜖𝐷  …………………  (3.28) 

For any decision d𝜖D, let Υ (τ, d) denote the risk which results from the original loss function L. 

      𝛾(𝜏, 𝑑) = ∫𝑅(𝜃, 𝑑)𝑑𝜏 =∫∫𝐿(𝜃, 𝑑)𝑑𝐹(𝑥 𝜃⁄ )𝑑𝜏(𝜃) ………  (3.29) 

And let   𝛾0(𝜏, 𝑑) = ∫∫𝐿0(𝜃, 𝑑)𝑑𝐹(𝑥 𝜃⁄ ) 𝑑𝜏(𝜃)  ……………  (3.30) 

Then for any two decisions 𝑑1𝑎𝑛𝑑 𝑑2𝜖𝐷 



     𝛾0(𝜏, 𝑑1) ≤   𝛾0(𝜏, 𝑑2) ⇔ 𝛶(𝜏, 𝑑1) ≤ 𝛶(𝜏, 𝑑2) …………….. (3.31) 

In particular, a decision d* is Bayes w.r.to τ in the original problem with loss function L (θ, d) if 

and only if d* is a Bayes w.r.to τ in the new problem with loss function𝐿0. 

Now consider 𝜆0(𝜃) =
𝑖𝑛𝑓
𝑑𝜖𝐷

 𝐿(𝜃, 𝑑) 

𝐼𝑓 ∫ 𝜆0(𝜃)𝑑𝜏(𝜃) < ∞𝛺
 , We can replace L now by a new loss function 𝐿0 which is defined as, 

                 𝐿0(𝜃, 𝑑) = 𝐿(𝜃, 𝑑) − 𝜆0(𝜃) 

Then loss function 𝐿0 has the following property 

                 𝐿0(𝜃, 𝑑) ≥ 0    𝑓𝑜𝑟 𝑎𝑙𝑙  𝜃 𝑎𝑛𝑑 𝑑 𝑎𝑛𝑑

𝑖𝑛𝑓
𝑑𝜖𝐷

𝐿0(𝜃, 𝑑) = 0                 
}    …………..  (3.32) 

It has been found convenient in many problems to role with non-negative loss function of this type, 

although the use of such function makes it appear that the statistician must continually choose 

decisions from which he can never realize a positive gain. 

3.4 Generalized Bayes Rules and Extended Bayes Rules  

 

Defn.3.9: A rule δ is said to be limit of Bayes rules𝛿𝑛, if for almost all x 

𝛿𝑛(𝑥) ⟶ 𝛿(𝑥) (In the sense of distribution) for non-randomized decision rules this definition 

becomes 𝑑𝑛⟶ 𝑑 if  𝑑𝑛(𝑥) ⟶ 𝑑(𝑥) for almost all x. 

Def 3.10: A rule 𝛿0 is said to be generalized Bayes rules if there exist a measure τ on Θ (or non 

decreasing function on θ if Θ is real), such that 𝑅(𝜏, 𝛿) = ∫∫𝐿(𝜃, 𝛿)𝑓(𝑥 𝜃⁄ )𝑑𝜏(𝜃) takes on a 

finite minimum value when δ = δ0  

Def 3.11: A rule 𝛿0 is said to be extended Bayes rules if 𝛿0 is 𝜖- Bayes for every𝜖 > 0.  

In other words, 𝛿0 is extended Bayes rules if for every𝜖 > 0 there exist a prior distribution τ such 

that 𝛿0 is 𝜖- Bayes w.r.to τ i.e 

           𝛶(𝜏, 𝛿0) ≤
𝑖𝑛𝑓

𝛿
 𝛶(𝜏, 𝛿) 

Example3.8:  let 𝑋~𝑁 (𝜃, 1) and let 𝜏(𝜃) = 𝑁(0, 𝜎2) 

   𝐿(𝜃, 𝑑) = (𝜃 − 𝑑)2  The joint p.d.f of (θ, x) 



        ℎ(𝜃, 𝑥) =
1

2πσ
exp [

−(𝑥−𝜃)2

2
−

𝜃2

2𝜎2
] 

        𝑓𝑋(x) =
1

2πσ
∫exp [

−(𝑥−𝜃)2

2
−

𝜃2

2𝜎2
]dθ  

= [2𝜋(1 + 𝜎2)]
−1
2 exp [

𝑥2

2(1 + 𝜎2)
] 

Posterior density of θ given x, 

             𝑓(𝜃 𝑥⁄ ) =
(1+𝜎2 )

−1
2

(2𝜋𝜎2)
−1
2

exp[
−1+𝜎2

2𝜎2
(θ −

𝑥𝜎2

1+𝜎2
)2] 

                            ~𝑁(
𝑥𝜎2

1 + 𝜎2
,
𝜎2

1 + 𝜎2
) 

The Bayes rule w.r.to 𝜏𝜎  is posterior mean i.e  𝑑𝜎(x) =
𝑥𝜎2

1+𝜎2
 

The Bayes risk, 𝛶(𝜏𝜎 , 𝑑𝜎) = 𝐸[𝐸(𝜃 − 𝑑𝜎(𝑥))
2 𝑋⁄ ] =

𝜎2

1+𝜎2
 

Thus d(x)=x is not Bayes.  

But 𝑑𝜎(x) ⟶ d(x) as σ⟶ ∞. 

Theorem 3.1: for any constants a, b >0, let 𝛿∗ be a decision rule such                    that  𝛿∗(𝑥) =

𝑑1          𝑖𝑓 𝑎𝑓1(𝑥) > 𝑏𝑓2(𝑥) 

                      = 𝑑2          𝑖𝑓 𝑎𝑓1(𝑥) < 𝑏𝑓2(𝑥) 

where𝑓𝑖 denote the conditional p.d.f of X for𝜃 = 𝜃𝑖  , 𝑖 = 1,2 

The value of 𝛿∗(𝑥) may be either 𝑑1 𝑜𝑟  𝑑2 if𝑎𝑓1(𝑥) = 𝑏𝑓2(𝑥). Then for any other decision 

function δ we have 

                 𝑎𝛼(𝛿∗) + 𝑏𝛽(𝛿∗) ≤ 𝑎𝛼(𝛿) + 𝑏𝛽(𝛿) 

Proof:     let 𝑆1 = {𝑥: 𝛿(𝑥) = 𝑑1}  , 𝑆2 = {𝑥: 𝛿(𝑥) = 𝑑2} = 𝑆1
𝑐 

          𝐴 = {𝑥: 𝑎𝑓1(𝑥) > 𝑏𝑓2(𝑥)}        𝐵 = {𝑥: 𝑎𝑓1(𝑥) < 𝑏𝑓2(𝑥)} 

Then             𝑎𝛼(𝛿) + 𝑏𝛽(𝛿) = 𝑎 ∫ 𝑓1𝑑𝜇 +𝑆2
𝑏∫ 𝑓2𝑑𝜇𝑆1

 

= 𝑎 + ∫ (𝑏𝑓2 − 𝑎𝑓1)𝑑𝜇𝑆1
  ………………. (3.34) 



(3.34) will be minimum if ∫ (𝑏𝑓2 − 𝑎𝑓1)𝑑𝜇𝑆1
< 0 

Thus  𝑎𝛼(𝛿∗) + 𝑏𝛽(𝛿∗) ≤ 𝑎𝛼(𝛿) + 𝑏𝛽(𝛿). 

Finding a decision function δ which minimize the linear combination  

𝑎𝛼(𝛿) + 𝑏𝛽(𝛿)is equivalent to finding a set 𝑆1 for which the integral  

∫ (𝑏𝑓2 − 𝑎𝑓1)𝑑𝜇𝑆1
is minimized. This integral will be minimized if the set 𝑆1includes every point x 

ε S (sample space) for which the integral is negative and excludes every point x ε S for which the 

integral is positive. 

Remark:  the posterior distribution of  𝜃 = 𝜃1 given X=x , denoted as α(x) is given by, 

     𝛼(𝑥) = 𝑃[𝜃 = 𝜃1 𝑋 = 𝑥⁄ ] 

               = lim
 ℎ→0

𝑃[𝜃 = 𝜃1, 𝑥 − ℎ < 𝑋 ≤ 𝑥 + ℎ]

𝑃[𝑥 − ℎ < 𝑋 ≤ 𝑥 + ℎ]
 

               = lim
ℎ→0

𝑃[𝑥 − ℎ < 𝑋 ≤ 𝑥 + ℎ 𝜃 = 𝜃1⁄ ]𝑃(𝜃 = 𝜃1)

𝑃[𝑥 − ℎ < 𝑋 ≤ 𝑥 + ℎ]
 

                =
𝑓(𝑥 𝜃1⁄ )𝑃(𝜃 = 𝜃1)

𝑓𝑥(𝑥)
=
𝛼𝑓(𝑥 𝜃1⁄ )

𝑓𝑥(𝑥)
=

𝛼𝑓1(𝑥)

𝛼𝑓1(𝑥)+ 1− 𝛼𝑓2(𝑥)
 

Provided limit exists, where 

𝑓1(𝑥) = 𝑓(𝑥 𝜃1⁄ )  , 𝑓2(𝑥) = 𝑓(𝑥 𝜃2⁄ ) 

Posterior risk of 𝑑1 = 𝐿(𝜃1, 𝑑1)𝛼(𝑥) + 𝐿(𝜃2, 𝑑1)(1 − 𝛼(𝑥)) 

                                      = 𝑎2(1 − 𝛼(𝑥))       Similarly,  𝑑2 = 𝑎1𝛼(𝑥) 

We choose  𝑑2 if (i.e 𝑑2 is Bayes rule) posterior risk of  𝑑2 < posterior risk of 𝑑1 . i.e 

𝑎1𝛼(𝑥) < 𝑎2(1 − 𝛼(𝑥))  𝑜𝑟 𝑎1𝛼𝑓1(𝑥) < 𝑎21− 𝛼̅̅ ̅̅ ̅̅ ̅𝑓2(𝑥) 

Thus 𝛿∗(𝑥) = 𝑑2(𝑥) 𝑖𝑓𝑎1𝛼𝑓1(𝑥) < 𝑎21 − 𝛼̅̅ ̅̅ ̅̅ ̅𝑓2(𝑥) 

Let 𝑆2 = {𝑥:
𝑓2(𝑥)

𝑓1(𝑥)
>

𝑎1𝛼

𝑎2(1−𝛼)
}   then, 𝛿∗(𝑥) = 𝑑2(𝑥)          𝑖𝑓𝑥𝜀𝑆2 

                                                                              = 𝑑1(𝑥)          𝑖𝑓𝑥𝜀𝑆2
𝑐
 



For testing 𝐻0: 𝜃 = 𝜃1𝑎𝑔𝑎𝑖𝑛𝑠𝑡 𝐻1: 𝜃 = 𝜃2 , 

                     𝑑1 = 𝑎𝑐𝑐𝑒𝑝𝑡𝐻0 , 𝑑2 = 𝑟𝑒𝑗𝑒𝑐𝑡𝐻0 ,  

𝛿∗(𝑥) = {0, 1}i.e choosing 𝑑1with prob. 0 and 𝑑2with prob.1. 

Or 𝛿∗(𝑥) = 1       𝑖𝑓 𝑥𝜀𝑆2 

                  = 0       𝑖𝑓 𝑥𝜀𝑆2
𝑐 

For each θ we have a d.f. of r.v. X as F(𝑥 𝜃⁄ ). Let G (θ) is the d.f. of r.v. θ. Then,  

𝐹(𝑥 𝜃⁄ ) = lim
𝑘→0

𝑃[𝑋≤𝑥,𝜃−𝐾<𝜃<𝜃+𝐾]

𝑃[𝜃−𝐾<𝜃<𝜃+𝐾]
= lim
𝑘→0

∫ ∫ 𝑓(𝑡,𝑣)𝑑𝑡𝑑𝑣
𝜃+𝑘

𝜃−𝑘

𝑥

−∞

∫ 𝑓𝜃(𝑣)𝑑𝑣
𝜃+𝑘

𝜃−𝑘

 

Provided such 𝑓(𝑡, 𝑣),𝑓𝜃(𝑣) exist and also limit exists. If 𝑓(𝑡, 𝑣) and 𝑓𝜃(𝑣) are 

continuous. 

𝐹(𝑥 𝜃⁄ ) = lim
𝑘→0

2𝐾∫ 𝑓(𝑡,𝑣0)𝑑𝑡
𝑥

−∞

2𝐾𝑓𝜃(𝑣0)
       Where 𝑣0𝜀(𝜃 − 𝑘, 𝜃 + 𝑘) 

 =
∫ 𝑓(𝑡, 𝜃)𝑑𝑡
𝑥

−∞

𝑓𝜃(𝜃)
 

Since 𝑓(𝑡, 𝑣) is assumed to be continuous, then 

𝐹(𝑥 𝜃⁄ ) =
𝑓(𝑥, 𝜃)

𝑓𝜃(𝜃)
=
𝑓(𝑥, 𝜃)

𝑔(𝜃)
                   𝑔(𝜃) = 𝑓𝜃(𝜃) 

Similarly,  𝐹(𝑥 𝜃⁄ ) = lim
𝑘→0

𝑃[𝑋≤𝑥,𝜃−𝐾<𝜃<𝜃+𝐾]

𝑃[𝜃−𝐾<𝜃<𝜃+𝐾]
=  =

∫ 𝑓(𝑥,𝑣)𝑑𝑣
𝑥

−∞

𝑓𝑋(𝑥)
 

The posterior density of 𝜃 given x (when observation X=x is taken.) 

        𝐹(𝑥 𝜃⁄ ) =
𝑓(𝑥, 𝜃)

𝑓𝜃(𝜃)
=

𝑓(𝑥, 𝜃)

∫ 𝑓(𝑥, 𝜃)𝑑𝜃
=

𝐹(𝑥 𝜃⁄ )𝑔(𝜃)

∫ 𝑓(𝑥 𝜃⁄ )𝑔(𝜃)𝑑𝜃
 

This is a continuous version of Bayes theorem. 

3.5  Limit of Bayes Rules 

 



the limiting Bayes method): Suppose�̅� is not admissible, and without loss of generality we may 

assume σ=1. Then there exists 𝛿∗ such that 

𝑅(𝜃, 𝛿∗) ≤
𝐼

𝑛
   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃

<
𝐼

𝑛
  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜃

  }  (𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)  

R (θ, δ) is a continuous function of θ for every δ, so that there exist  

𝜀 > 0 𝑎𝑛𝑑 𝜃0 < 𝜃1such that 

𝑅(𝜃, 𝛿∗) ≤ 𝐼

𝑛
− 𝜀   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃0 < 𝜃 < 𝜃1  (as in Theorem 4.3) 

Let 𝛾𝑇
∗  be the average Bayes risk of 𝛿∗ with respect to prior distribution 𝜏 ∼ 𝑁(0, 𝑇2) and let 𝛾𝑇 

be the Bayes risk of the Bayes decision rule with respect to 𝑁(0, 𝑇2). Thus by exp. 3.11 for σ=1 

1
𝑛 −𝛾𝑇

∗

1
𝑛 −𝛾𝑇

=
1

√2𝜋𝑇
∫ [1

𝑛
−𝑅(𝜃,𝛿∗)]𝑒

−𝜃2

2𝑇2𝑑𝜃
∞
−∞

1
𝑛−

𝑇2

1+𝑛𝑇2

 

                            ≥ 𝑛(1+𝑛𝑇2)𝜖

𝑇√2𝜋
∫ 𝑒

−𝜃2

2𝑇2𝑑𝜃
𝜃1
𝜃0

            ………………  (4.15) 

By Lebesgue dominated convergence theorem, as the integral 

𝑒
−𝜃2

2𝑇2 → 1 As T→ ∞, the integral converges to(𝜃1 − 𝜃0)and the  

R.H.S→ ∞ ⇒
1
𝑛−𝛾𝑇

∗

1
𝑛−𝛾𝑇

→ ∞ thus there exist 𝑇0 such that,𝛾𝑇0
∗ < 𝛾𝑇0 , which contradicts the fact that 𝛾𝑇0 

is the Bayes risk for 𝑁(0, 𝑇0
2). 

𝑅(𝜃, 𝛿) = 𝐸(𝛿 − 𝜃)2 = 𝑣𝑎𝑟𝜃(𝛿) + 𝑏
2(𝜃),where𝑏(𝜃) = 𝐸𝜃(𝛿) − 𝜃 

                ≥ 𝑏2(𝜃) + [1+𝑏′(𝜃)]2

𝑛𝐼(𝜃)
by F C R bound. ………….. (4.16) 

In the present case 𝜎2 = 1, 𝐼(𝜃) = 1 

Suppose now δ is any estimator satisfying 

            𝑅(𝜃, 𝛿) ≤ 1

𝑛
𝐹𝑜𝑟 𝑎𝑙𝑙 𝜃…............ (4.17) 

and hence, 𝑏2(𝜃) + [1+𝑏′(𝜃)]2

𝑛𝐼(𝜃)
≤ 1

𝑛
  f𝑜𝑟 𝑎𝑙𝑙  𝜃 …………… (4.18) 

We shall then show that (4.18) ⇒ 𝑏(𝜃) ≡ 0 for all θ. i.e δ is unbiased. 



1.  Since |𝑏(𝜃)| ≤ 1

√𝑛
 the function b is bounded. 

2. From the fact that 1 + 𝑏′2(𝜃) + 2𝑏′(𝜃) ≤ 1 ⇒ 𝑏′(𝜃) ≤ 0 so that b is non-increasing. 

3. Next, there exists a sequence of 𝜃𝑖 → ∞ and such that 𝑏′(𝜃𝑖) → 0 

    For suppose that 𝑏′(𝜃) were bounded away from 0 as θ→ ∞,                                               𝑠𝑎𝑦 𝑏′(𝜃) ≤

−𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙  𝜃, then 𝑏(𝜃) can not be bounded 

as θ→ ∞, which contradicts 1. 

4. Analogically it is seen that there exist a square 𝜃𝑖 → −∞ and such that 𝑏′(𝜃𝑖) → 0 .Thus 

𝑏(𝜃) → 0 as 𝜃 → ±∞ with inequality (4.18). Thus 𝑏(𝜃) ≡ 0 follows from 2. 

Since 𝑏(𝜃) ≡ 0 ⇒ 𝑏′(𝜃) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 ⇒ (4.16) 𝑎𝑠 𝑅(𝜃, 𝛿) ≤
1

𝑛
𝐹𝑜𝑟 𝑎𝑙𝑙 𝜃 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑅(𝜃, 𝛿) ≡ 1

𝑛
 

This proves that �̅� is admissible and minimax. This is unique admissible and minimax estimator. 

Because if δ’ is any other estimator such that𝑅(𝜃, 𝛿′) ≡ 1

𝑛
 . Then let 𝛿∗ =

1

2
(𝛿 + 𝛿′) 

           𝑅(𝜃, 𝛿∗) <
1

2
[𝑅(𝜃, 𝛿) + 𝑅(𝜃, 𝛿′)] = 𝑅(𝜃, 𝛿) 

Which contradicts that δ is admissible. Thus δ=δ’ with prob. 1. 

3.6  Self-Assessment Exercise 

 

1. Clearly differentiate between Bayes and Minimax Principles. 

2. Discuss the concepts of Generalized Bayes Rule, Extended Bayes Rule and Limits of Bayes 

Rule along with their usefulness. 

 

3.7  Summary 

  This unit explains the concepts of various structures of decision rules and hence enables 

the reader to make use of them in various decision-making situations. Section 3.3 discusses in 

detail about the Bayes and Minimax decision policies. Section 3.4, 3.5 and 3.6 cover the concepts 

of Generalized Bayes Rule, Extended Bayes Rule, and Limits of Bayes Rule. 

3.8  Further Readings 

 



1. Berger, J.O. (1993) Statistical Decision Theory and Bayesian Analysis, Springer Verlag. 

2. Bernando, J.M. and Smith, A.F.M. (1994). Bayesian Theory, John Wiley and Sons. 

3. Box, G.P. and Tiao, G.C. (1992). Bayesian Inference in Statistical Analysis, Addison-Wesley.  

4. Robert, C.P. (1994). The Bayesian Choice: A Decision Theoretic Motivation, Springer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



UNIT-4:  BAYESIAN INTERVAL ESTIMATION 

Structure 

 

4.1       Introduction 

4.2       Objectives 

4.3        Bayesian Interval Estimation 

4.4       Credible Intervals 

4.5       HPD Intervals 

4.6      Comparison with Classic Confidence Intervals 

4.7      Self- Assessment Exercise 

4.8     Summary 

4.9    Further Reading 

 

4.1        Introduction 

Estimation is the method of drawing conclusions regarding an unknown population 

parameter with the help of a sample from that population. Unlike point estimates, which are 

single-value estimates of a unknown population parameter, interval estimates are likely to 

contain the value of interest to a certain probability. Confidence intervals are the most well-

known of the various forms of statistical intervals. 

 

4.2     Objectives 

 

After studying this unit, you should be able to  

• Define the HPD intervals and credible sets. 

• Obtain suitable techniques to derive the HPD regions. 

• Solve questions in deriving HPD regions. 

4.3 Bayesian Interval Estimation 

In Bayesian approach, a credible interval is an interval in the domain of a posterior 

probability distribution, within which the value of the unknown parameter falls with certain 

probability.  



In choosing a credible set for θ, it is usually described to try to minimize its size. To do this 

one should include in the set only those points with the largest posterior density i.e the most 

likely values of θ. 

 

4.4 Credible Intervals 

 

Definition: A 100(1 − 𝛼)% credible set for θ is subset of Θ such that, 

1 − 𝛼 ≤ 𝑃[𝐶 𝑥⁄ ] = ∫ 𝑑𝐹𝜋 (𝜃 𝑥⁄ )⁄ (𝜃)
𝐶

 

                                = ∫ 𝜋 (𝜃 𝑥⁄ )⁄ 𝑑𝜃 
𝐶

  𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑐𝑎𝑠𝑒  

                                = ∑𝜋 (𝜃 𝑥⁄ )⁄

𝜃𝜖𝐶

     𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑐𝑎𝑠𝑒 

               Since the posterior distribution is an actual prob. distribution on Θ, one can speak of 

the probability that θ is C. this is in contrast to classical confidence procedures, which can only 

be interpreted in term of coverage probability that is the probability that the random variable 

X will be such the confidence set C(X) contains θ. 

                 In choosing a credible set for θ, it is usually described to try to minimize its size. To 

do this one should include in the set only those points with the largest posterior density i.e the 

most likely values of θ. 

Def: The 100(1 − 𝛼)% HPD credible set (HPD region) for θ is the subset C of Θ of the form 

𝐶 = {𝜃𝜖𝛩: 𝜋(𝜃 𝑥⁄ ) ≥ 𝐾(𝛼)} 

𝑊ℎ𝑒𝑟𝑒 𝐾(𝛼) Is the largest constant such that, 

                                             𝑃[𝐶 𝑥⁄ ] ≥ 1 − α. 

 

4.5 HPD Intervals 

 

Exp: let (𝑋1, … , 𝑋𝑛) be a random sample from N (𝜃, 1). Let the prior p.d.f of θ be N 

(𝜇, 𝜏2). Find the HDD regions for θ. 



Solution:    𝑓(𝜃 𝑥1, … , 𝑥𝑛⁄ ) = 𝑓(𝑥1,…,𝑥𝑛 𝜃⁄ )π(θ)

∫ 𝑓(𝑥1,…,𝑥𝑛 𝜃⁄ )π(θ)dθ
∞
−∞

 

             =
𝑒𝑥𝑝−

∑(xi−x̅)
2

2
−
n(x̅−θ)2

2
 exp−

(θ−μ)2

2τ2

𝑒𝑥𝑝−
∑(xi−x̅)

2

2 ∫ exp−
n(x̅−θ)2

2
 exp−

(θ−μ)2

2τ2
dθ

∞

−∞

  =
𝑒𝑥𝑝−

n(x̅−θ)2

2
 exp−

(θ−μ)2

2τ2

∫ exp−[
n(x̅−θ)2

2
 exp−

(θ−μ)2

2τ2
]dθ

∞

−∞

 

∫ exp − [
n(x̅2 + θ2 − 2x̅θ)

2
+
(θ2 + μ2 + 2θμ)

2τ2
]dθ

∞

−∞

 

= exp (−(
nx̅2

2
+
μ2

2τ2
)∫ exp −

1

2
[θ2 − 2θ (x̅ +

μ

τ2
) +

μ2

τ2
]dθ 

∞

−∞

)  

= exp (−(
nx̅2

2
+
μ2

2τ2
)∫ e−

1
2 [θ2 − 2θ (x̅ +

μ

τ2
) +

μ2

τ2
] dθ)   

∞

−∞

 

= exp (−(
nx̅2

2
+
μ2

2τ2
)∫ e−

1
2 [θ2 − 2θ(x̅ +

μ

τ2
) + (x̅2+

μ

τ2
)− (x̅2 +

μ

τ2
) +

μ2

τ2
] dθ)   

∞

−∞

 

= exp (−
nx̅2τ2+μ2

2τ2
−
1

2
(x̅ +

μ

τ2
)
2

−
μ2

2τ2
∫ e−

1
2 [θ − (x̅ +

μ

τ2
)]
2

dθ   )  
∞

−∞

 

Let 𝜇 = 0 

∫ exp − [
nx̅2 + θ2 − 2x̅θ

2
+
θ2

2τ2
] dθ

∞

−∞

 

       = exp (
−nx̅2

2
−
x̅2

2
)∫ exp −

1

2
[θ − x̅]2dθ

∞

−∞

 

       = √2π exp −
1

2
(−nx̅2+x̅2) 

∴      𝜋(𝜃 𝑥⁄ ) =
1

√2π
exp −

(nx̅ − θ)2

2
−
θ2

2τ2
+
1

2
(−nx̅2+x̅2) 

            =
1

√2π
exp −

1

2
[nx̅2 + nθ2 − 2nx̅θ +

θ2

τ2
−nx̅2−x̅2] 



            =
1

√2π
exp −

1

2τ2
[nθ2τ2 − 2nx̅θτ2 + θ2−x̅2τ2] 

            =
1

√2π
exp −

1

2τ2
[θ2(1 + nτ2) − 2nx̅θτ2−x̅2τ2] 

𝜋(𝜃 𝑥⁄ ) = 𝑁(𝜇(x̅), 𝑃−1) 

       𝜇(x̅) =
τ2x̅

τ2+σ
2

n

  ,   P =
nτ2+σ2

τ2σ2
     ,
1

P
=

τ2σ2

nτ2 + σ2
 

4.6 Comparison with Classic Confidence Interval 

 

In classical approach we consider that a parameter has one particular true value, and 

conduct an experiment whose resulting conclusion, irrespective of the true value of the parameter, 

will be correct with at least some minimum probability; while in Bayesian approach we say that 

the parameter's value is fixed but has been chosen from some probability distribution, called the 

prior probability distribution. This "prior" might be known or it might be an assumption drawn out 

of experience of the experimenter or otherwise. Clubbing this prior with the observed information 

Bayesians obtain the "posterior." Bayesian approaches can summarize their uncertainty by giving 

a range of values on the posterior probability distribution that includes 95% of the probability and 

this is called a "95% credibility interval. 

 

4.7 Self-Assessment Exercise 

 

1. Clearly differentiate between the Bayesian and classical interval estimation. 

2. Discuss the concept of HPD intervals and its importance. 

4.8 Summary 

  

This unit aims in section 4.3, 4.4 and 4.5 at enabling the reader with the concept of interval 

estimation and to obtain the interval estimates from Bayesian point of view. And in section 4.6, 



the reader learns the difference between the classical and Bayesian approaches of interval 

estimations. 

4.9 Further Readings 

 

1 Gemerman, D and Lopes, H. F. (2006) Markov Chain Monte Carlo: Stochastic Simulation 

for Bayesian Inference, Chapman Hall. 

2 Lee, P.M. (1997) Bayesian Statistics: An Introduction, Arnold.  

3 Leonard, T. and Hsu, J.S.J. (1999) Bayesian Methods, Cambridge University Press. 

4 Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods, Springer Verlag. 
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Block & Unit Introduction 

 

The present block of this SLM has four units. 

The Block - 2 – Optimality of Decision Rules is the second block with four units, which 

impasses about the different rules. 

In Unit – 5 – Admissibility and Completeness is discussed with respect to Bayes rule and 

prior distribution minimal complete class. 

In Unit – 6 – Minimaxity and Multiple decision Problem has been introduced, along with 

complete class theorem and admissibility rules. Equalizer rules have been discussed and maximin 

and minimax strategies have been explained. 

Unit – 7 – Bayesian Decision Theory dealt with theorem on optimal Bayes decision 

function, Relationship of Bayes and minimax decision rules and least favourable distributions. 

Unit – 8 – Bayesian Inference dealt with Bayesian sufficiency, On informative Priors, 

Improper prior densities 

At the end of every block/unit the summary, self-assessment questions and further readings 

are given.  

  



UNIT-5:  ADMISSIBILITY AND COMPLETENESS 

Structure 

 

8.1 Introduction 

8.2 Objectives 

8.3 Admissibility  

8.4 Completeness 

8.5 Minimal Complete Class 

8.6 Separating and Supporting Hyperplane Theorems 

8.7 Exercise 

8.8 Summary 

8.9 Further Reading 

5.1        Introduction 

Admissibility refers to a set of rules for making a decision such that no other rule exists 

which is always better than the defined rules. 

5.2    Objectives 

After studying this unit, you should be able to  

• Define admissibility of a set of rules. 

• Check for admissibility with respect to Bayes’ rules. 

• Define completeness and minimal complete class. 

 

5.3    Admissibility 

 

Theorem 4.2: Assume that 𝛩 = (𝜃1, 𝜃2, … , 𝜃𝑘) and a Bayes rule𝛿0 w.r.to the prior distribution 

(𝑝1, 𝑝2, … , 𝑝𝑘) exists. If 𝑝𝑗 > 0 for    j=1, 2, …, k, then 𝛿0 is admissible. 



Proof: Suppose that𝛿0 is inadmissible, then there exist a 𝛿′𝜀𝐷∗ 

which is better than𝛿0. That is, 

𝑅(𝜃𝑗 , 𝛿′) ≤ 𝑅(𝜃𝑗 , 𝛿0)        for all j  

𝑅(𝜃𝑗 , 𝛿′) < 𝑅(𝜃𝑗 , 𝛿0)          for some j 

Because, all 𝑝𝑗 are positive 

∑𝑅(𝜃𝑗 , 𝛿′)𝑝𝑗 <∑𝑝𝑗𝑅(𝜃𝑗 , 𝛿0) 

The strict inequality showing that 𝛿0 is not Bayes w.r.to(𝑝1, 𝑝2 , … , 𝑝𝑘). This is a 

contradiction. 

The following counter example shows that 𝛿0 is not necessarily admissible if the 

hypothesis 𝑝𝑗 > 0 for    j=1, 2,…,k is violated. 

Ex 4.1:  let Θ = {𝜃1, 𝜃2  } , 𝐿(𝜃, 𝑎) as follows: 

                                            𝑎1     𝑎2     𝑎3      𝑎4 

        𝐿(𝜃, 𝑎)       𝜃1           1       1       2        2 

                            𝜃2            0      1        0        1 

        𝑑(0) = 𝑎1,   𝑑(0) = 𝑎2,   𝑑(0) = 𝑎3,   𝑑(0) = 𝑎4 

𝑅(𝜃1, 𝑎1) = 1,   𝑅(𝜃2, 𝑎1) = 0,…… ,𝑅(𝜃1, 𝑎4) = 2, 𝑅(𝜃2 , 𝑎4) = 1 

               𝑅(𝜃1, 𝛿) = ∑𝛼𝑖

4

𝑖=1

𝑅(𝜃1, 𝑎1)𝑆 = {𝑅(𝜃1, 𝛿), 𝑅(𝜃2 , 𝛿):         𝛿 ∈ 𝐷
∗}𝑅(𝜃2, 𝛿) 

= {(𝑦1, 𝑦2):      1 ≤ 𝑦1 ≤ 2; 0 ≤ 𝑦2 ≤ 1} 

Bayes rule w.r.to (1,0) 

Let the prior distribution, 𝑝1 = 1, 𝑝2 = 0 



∑ 𝑝𝑖𝑅(𝜃𝑖 , 𝛿)
4
𝑖=1 = 𝑅(𝜃1, 𝛿) = 𝑦1      

 

 

 

 

               

                              S 

                                                                                                 𝑅(𝜃1, 𝛿)   1             2                    

 

Thus, any decision rule that minimizes ∑𝑝𝑖𝑅(𝜃𝑖 , 𝛿) and that achieved the minimum value 

=1=𝑦1 will be a Bayes rule w.r.to prior (1, 0). 

Thus the rule 𝑅(𝜃1, 𝛿0) = 𝑅(𝜃2, 𝛿0) = 1 is Bayes w.r.to (1, 0).that 𝑎2  and 𝑎1 are Bayes 

rules w.r.to (1,0). But 𝑎2 is not admissible since  

𝑅(𝜃1, 𝑎2) ≤ 𝑅(𝜃2 , 𝑎1)and 𝑅(𝜃2 , 𝑎2) > 𝑅(𝜃2, 𝑎1). 

Def 4.5: A point 𝜃0  in 𝐸1(one dimensional Euclidian space) is said to be in support of a distribution 

τ on the real line if for ∀ε> 0 the interval (𝜃0 − 𝜀, 𝜃0 + 𝜀) has positive probability, 

𝜏(𝜃0 − 𝜀, 𝜃0 + 𝜀) > 0 

Theorem 4.3: let 𝛩𝜀𝐸1 and assume that 𝑅(𝜃, 𝛿) is a continuous function of θ for all𝛿𝜀𝐷∗. If 𝛿0 is 

a Bayes rule w.r.to a probability distribution τ on the real line, for which ϒ(𝜏, 𝛿0) is finite and if 

the support of τ is the whole real line, then 𝛿0 is admissible. 

Proof: As before, assume that 𝛿0 is not admissible. Then, there exists a  𝛿′𝜀𝐷∗for which  

                         𝑅(𝜃, 𝛿′) ≤ 𝑅(𝜃, 𝛿0)        for all θ. 

                   𝑅(𝜃0 , 𝛿′) < 𝑅(𝜃0 , 𝛿0)          for some 𝜃0𝜀𝐸1. 

Since 𝑅(𝜃, 𝛿) is continuous in θ for all δ. Let  



               𝜂 = 𝑅(𝜃0, 𝛿0) − 𝑅(𝜃, 𝛿′)…………………. (4.1) 

For      |𝜃 − 𝜃0| < 𝜀        , 𝜀 > 0 

|𝑅(𝜃, 𝛿) − 𝑅(𝜃0, 𝛿)| <
𝜂

4
Whenever|𝜃 − 𝜃0| < 𝜀  𝑓𝑜𝑟 𝑎𝑙𝑙  𝛿𝜀𝐷

∗ 

Or        −
𝜂

4
≤ 𝑅(𝜃, 𝛿) − 𝑅(𝜃0 , 𝛿) ≤

𝜂

4
|𝜃 − 𝜃0| < 𝜀 ……………. (4.2) 

Or        𝑅(𝜃, 𝛿) ≤ 𝑅(𝜃0, 𝛿) +
𝜂

4
 

          𝑅(𝜃, 𝛿′) ≤ 𝑅(𝜃0 , 𝛿′ ) +
𝜂

4
      for all |𝜃 − 𝜃0| < 𝜀 

                          = 𝑅(𝜃, 𝛿0) − 𝑅(𝜃, 𝛿0) + 𝑅(𝜃0 , 𝛿′ ) +
𝜂

4
 

= 𝑅(𝜃, 𝛿0) − [𝑅(𝜃, 𝛿0) − 𝑅(𝜃0 , 𝛿0) + 𝑅(𝜃0 , 𝛿0) − 𝑅(𝜃0 , 𝛿′)] +
𝜂

4
 

= 𝑅(𝜃, 𝛿0) − [𝑅(𝜃, 𝛿0) − 𝑅(𝜃0, 𝛿0)]– [𝑅(𝜃0 , 𝛿0) − 𝑅(𝜃0 , 𝛿′)] +
𝜂

4
 

≤ 𝑅(𝜃, 𝛿0) +
𝜂

4
− 𝜂 +

𝜂

4
= 𝑅(𝜃, 𝛿0) −

𝜂

2
 

Thus,  𝑅(𝜃, 𝛿′) ≤ 𝑅(𝜃, 𝛿0) −
𝜂

2
   whenever |𝜃 − 𝜃0 | < 𝜀   

Letting T denote the r.v. whose d.f is τ 

 ϒ(𝜏, 𝛿0) − ϒ(𝜏, 𝛿′) = E 𝑅(𝑇, 𝛿0) − E 𝑅(𝑇, 𝛿′ ) 

= E [𝑅(𝑇, 𝛿0) −  𝑅(𝑇, 𝛿′ )] = ∫𝑅(𝑡, 𝛿0) − 𝑅(𝑡, 𝛿′ ) 𝑑𝜏  

= ∫ [𝑅(𝑡, 𝛿0)–𝑅(𝑡, 𝛿
′)]𝑑𝜏 + ∫ [𝑅(𝑡, 𝛿0)–𝑅(𝑡, 𝛿

′)]𝑑𝜏

|𝜃−𝜃0|≥𝜀|𝜃−𝜃0|<𝜀

 

≥ ∫ [𝑅(𝑡, 𝛿0)–𝑅(𝑡, 𝛿
′)]𝑑𝜏

|𝜃−𝜃0|<𝜀

 ≥  
𝜂

2
 𝜏(𝜃 − 𝜀, 𝜃 + 𝜀) 



That is 𝛿0 is not Bayes rule, which is a contradiction.    # 

Def 4.6: A set, S, k- dimensional Euclidian space, 𝐸𝑘  , is said to be bounded from below  if there 

exists a finite number M, such that for every 𝑦 = (𝑦1, 𝑦2 , … , 𝑦𝑘 )ε S𝑦𝑗 > −𝑀 𝑓𝑜𝑟 𝑗 = 1, … , 𝑘 

………..(4.3) 

Thus, a set S is bounded from below if for each fixed j,1≤j≤k the coordinate 𝑦𝑗 is bounded below 

as y ranges through S.  

Def 4.7: Let 𝑥 be a point in 𝐸𝑘 . The lower quant ant at 𝑥, denoted by 𝑄𝑥 is defined as the set 

𝑄𝑥 = {yε𝐸𝑘: 𝑦𝑗 ≤ 𝑥𝑗  𝑓𝑜𝑟 𝑗 = 1, … , 𝑘}………………. (4.4) 

𝑇ℎ𝑢𝑠 𝑄𝑥is a set of risk points as good as 𝑥 and 𝑄𝑥 − {𝑥} is the set of risk points better than 𝑥. 𝑆̅is 

the smallest closed set containing S. 

Def 4.8: A point 𝑥 is said to be a lower boundary point of a convex set S⊂𝐸𝑘  if𝑄𝑥⋂𝑆̅ = {𝑥}. The 

set of lower boundary points of a convex set is defined by λ(S). 

Def 4.9: A convex set S⊂𝐸𝑘  is said to be closed from below if λ(S) ⊂S. 

Theorem 4.4: Suppose that 𝛩 = (𝜃1, 𝜃2 , … , 𝜃𝑘) and the risk set S is bounded from below and 

closed from below. For every prior distribution (𝑝1 , 𝑝2 , … , 𝑝𝑘) for which𝑝𝑗 > 0 for all j=1,…,k, a 

Bayes rule w.r.t. (𝑝1, 𝑝2 , … , 𝑝𝑘 ) exists. 

Proof: Let (𝑝1, 𝑝2, … , 𝑝𝑘) be a distribution over Θ for which 𝑝𝑗 > 0 for all j and let B denote the 

set of all numbers of the form = ∑ 𝑝𝑗 𝑦𝑗  , where 𝑦 = (𝑦1, 𝑦2 , … , 𝑦𝑘)𝜀 𝑆 

                        𝐵 = {𝑏 = ∑𝑝𝑗𝑦𝑗
𝑗

 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦𝜀 𝑆} 

Because S is bounded from below, so is B; let 𝑏0 be the g. l. b. of B. in a sequence of points 𝑦(𝑛)𝜀 𝑆  

for which ∑ 𝑝𝑗 𝑦𝑗
(𝑛) → 𝑏0. 



Each 𝑝𝑗 > 0 implies that each sequence 𝑦𝑗
(𝑛) is bounded above. Thus there exists a finite limit 

point 𝑦0 of the sequence 𝑦(𝑛)and ∑𝑝𝑗 𝑦𝑗
0 = 𝑏0 . We now show that 𝑦0𝜀 λ(S). Since 𝑦0 is a limit 

point of points of S, 𝑦0𝜀 �̅� and {𝑦0} ⊂ 𝑄𝑦0⋂𝑆̅. Further more𝑄𝑦0⋂𝑆̅ ⊂ {𝑦
0}, for if y’ is any point 

of 𝑄𝑦0  other than𝑦0 itself, ∑𝑝𝑗 𝑦𝑗
′ < 𝑏0  so that if   

𝑦′𝜀 �̅� There would exist point y of S for which∑𝑝𝑗 𝑦𝑗 < 𝑏0 . This contradicts the assumption that 

𝑏0 is the lower bound of B. Thus 

𝑄𝑦0⋂𝑆̅ = {𝑦
0},implying that 𝑦0𝜀 λ(S). 

Theorem 4.5: Suppose that 𝛩 = (𝜃1, 𝜃2 , … , 𝜃𝑘) and the risk set S is bounded from below and 

closed from below, the class of decision rules,  𝐷0 = {𝛿𝜀𝐷
∗: 𝑅(𝜃1, 𝛿), … ,𝑅(𝜃𝑘 , 𝛿)𝜀 λ(S)} 

…………  (4.5)  

Then,𝐷0a minimal complete class. 

Proof: First we shall show that 𝐷0 is a complete class. Let δ be any rule not in 𝐷0 and let, 

                      𝑥 = {𝑅(𝜃1, 𝛿),… ,𝑅(𝜃𝑘 , 𝛿)} 

𝑇ℎ𝑒𝑛 𝑥 ∈ 𝑆, 𝑏𝑢𝑡 𝑥 ∉  𝜆(𝑆). 𝐿𝑒𝑡𝑆1 = 𝑄𝑥⋂𝑆̅ ;  𝑆1is non empty, convex, 

[Since closer of convex set is convex and the intersection of two convex sets is convex.] and 

bounded below. Thus 𝜆(𝑆1) is non empty (by theorem 4.4). Let 𝑦𝜀 𝜆(𝑆1) ; then {𝑦} = 𝑄𝑦⋂𝑆1̅ 

further y ε 𝑄𝑥because 𝑦𝜀𝑆1̅ = 𝑄𝑥⋂𝑆̅̅̅ ̅̅ ̅̅ ̅ ⊂ 𝑄𝑥̅̅̅̅ = 𝑄𝑥. Finally 𝑦 𝜀 𝜆(𝑆) because 

{𝑦} = 𝑄𝑦⋂𝑆1̅ = 𝑄𝑦⋂𝑄𝑥⋂𝑆̅̅̅ ̅̅ ̅̅ ̅ = 𝑄𝑦⋂𝑄𝑥⋂𝑆̅ = 𝑄𝑦⋂𝑆̅. 

Thus, because S is closed from below, there exists a 𝛿0𝜀𝐷0 for which 

𝑦 = {𝑅(𝜃1, 𝛿0),… ,𝑅(𝜃𝑘 , 𝛿0)},and which is better than δ since,  

𝑦 𝜀𝑄𝑥 − {𝑥}. This proves 𝐷0 is complete. 

Since every rule in 𝐷0 is admissible. Hence no proper subset of 𝐷0 should be complete. Because, 

every complete class must contain all admissible rules, thus 𝐷0 is minimal complete. 



5.4 Completeness 

 

After the all discussion, now we are ready to learn the following definitions and theorems: 

Definition: A class C of decision rules is said to be complete if, for any decision rule δ not in C, 

there is a decision rule δ' in C, which does not have less risk than δ. 

Definition: A class C of decision rules is said to be minimal complete if C is complete and if no 

proper subset of C is complete. 

5.4    Minimal Complete Class 

 

Definition: A class C of decision rules is said to be complete if, for any decision rule δ not in 

C, there is a decision rule δ' in C, which does not have less risk than δ. 

Definition: A class C of decision rules is said to be minimal complete if C is complete and if 

no proper subset of C is complete. 

 

5.6 Separating and Supporting Hyper Plane Theorems 

 

Lemma 4.2: If S is closed convex set of 𝐸𝑘  and 0∉S, then there exists a vector P∈𝐸𝑘  such that 

𝑃𝑇𝑥 > 0 for all 𝑥 ε S. 

Proof:For every real number 𝛼 > 0 let 𝐵𝛼  is the sphere of radius α centered at origin. 𝐵𝛼 =

{𝑥𝜀𝐸𝑘: 𝑥
𝑇𝑥 ≤ 𝛼2}. Let A be the set of all real 𝛼 > 0 for which  𝐵𝛼  intersects S, 𝐴 =

{𝛼: 𝐵𝛼⋂𝑆 ≠ 𝛷}.Because the Lemma is trivial if S is empty, we consider that S is non empty. Hence 

A is non empty. Let a = g l b of A.  a is finite because A is non empty and positive because S is 

closed and0∉S. 

1. 𝐵𝛼⋂𝑆is non empty. As α→ 𝑎 from above 𝐵𝛼⋂𝑆 is a decreasing intersection of non empty 

compact sets whose limit 𝐵𝛼⋂𝑆 is therefore non empty. 

2. For all 𝑥 𝜀 𝑆, 𝑃𝑇(𝑥 − 𝑃) ≥ 0. Let f(β) denote the square of the distance from the origin to 

the part 𝛽𝑥 + 1− 𝛽̅̅ ̅̅ ̅̅ ̅𝑃 for a fixed 𝑥 𝜀 𝑆, 𝑥 ≠ 𝑃 



 𝑓(𝛽) = (𝛽𝑥 + 1 − 𝛽̅̅ ̅̅ ̅̅ ̅𝑃)
𝑇
(𝛽𝑥 + 1− 𝛽̅̅ ̅̅ ̅̅ ̅𝑃) 

           = 𝛽2(𝑥 − 𝑃)𝑇(𝑥 − 𝑃)+ 2𝛽𝑃𝑇(𝑥 − 𝑃)+ 𝑃𝑇𝑃 ………………… (4.6) 

(4.6) 𝑤𝑖𝑙𝑙 𝑏𝑒𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑖𝑓 𝛽 = 𝛽0 where, 

                 𝛽0 = −
𝑃𝑇 (𝑥−𝑃)

(𝑥−𝑃)𝑇(𝑥−𝑃)
 …………………… (4.7) 

Because,𝑓(1) = 𝑥𝑇𝑥 ≥ 𝑃𝑇𝑃 = 𝑓(0) , it is clear that 𝛽0 < 0, further since 𝛽𝑥 + 1− 𝛽̅̅ ̅̅ ̅̅ ̅𝑃 ∈ S 

,where 0 < 𝛽 < 1 from the convexity of S. it is clear that β0can not be 0 < 𝛽0 < 1 without 

contradicting the fact that no point of S is closer to the origin than P. 𝐻𝑒𝑛𝑐𝑒 𝛽0 ≤ 0. 𝑂𝑟 

equivalently, 

𝑃𝑇(𝑥 − 𝑃) ≥ 0 ⇒ 𝑃𝑇𝑥 ≥ 𝑃𝑇𝑃 > 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥𝜀 𝑆. 

 # 

Lemma 4.3: If S is convex subset of 𝐸𝑘 , A is open subset of 𝐸𝑘 , and 𝐴 ⊂ 𝑆̅,   𝑡ℎ𝑒𝑛 𝐴 ⊂ 𝑆. 

Theorem 4.6:(Supporting Hyper Plane Theorem): If S is closed convex sub set of 𝐸𝑘  and 𝑥0 is 

not an interior point of S (i.e. either𝑥0 ∉ 𝑆  

or𝑥0 is a boundary point of S), then there exists a vector𝑃𝜀𝐸𝑘 , P≠ 0 

Such that 𝑃𝑇𝑥 ≥ 𝑃𝑇𝑥0 for all x ε S. 

Proof: Because𝑥0 is not an interior point of S,𝑥0 is not an interior point of 𝑆̅ by Lemma (4.3). 

Hence there is a sequence 𝑦𝑛 ∉ 𝑆̅ for which𝑦𝑛 → 𝑥0. We shall translate the origin to𝑦𝑛   

successively and applying Lemma (4.2). Let 

                       𝑆𝑛 = {𝑍: 𝑍 = 𝑥 − 𝑦𝑛 , 𝑥𝜀𝑆} 

  Then 𝑆�̅� closed convex set, and 0 ∉ 𝑆�̅� . From Lemma (4.2) there exists a vector 𝑃𝑛𝜀𝐸𝑘  such that 

𝑃𝑛
𝑇𝑍 > 0 for all 𝑍𝜀𝑆�̅�  or𝑃𝑛

𝑇(𝑥 − 𝑦𝑛) > 0 



𝐹𝑜𝑟 𝑎𝑙𝑙 𝑥𝜀𝑆̅ . Let 𝑞𝑛 =
𝑃𝑛

√𝑃𝑛
𝑇𝑃𝑛

 . Then 𝑞𝑛
𝑇𝑞𝑛 = 1 because unit sphere in 𝐸𝑘  is compact, there exists 

a limit point P of 𝑡ℎ𝑒 𝑞𝑛𝑎𝑛𝑑 a subsequence 𝑞𝑛′ → 𝑃  . Hence 𝑞𝑛′
𝑇 (𝑥 − 𝑦𝑛) → 𝑃𝑇(𝑥 − 𝑥0), but 

𝑞𝑛′
𝑇 (𝑥 − 𝑦𝑛) > 0 for all x ε S ⇒ 𝑃𝑇(𝑥 − 𝑥0) ≥ 0 for all x ε S  as was to be proved. 

Theorem 4.7:(Separating Hyper Plane Theorem): Let 𝑆1and 𝑆2 be disjoint convex subsets of 

𝐸𝑘  then there exists a vector 𝑃 ≠ 0 such that 𝑃𝑇𝑦 ≤ 𝑃𝑇𝑥 for all x ε𝑆1 and y ε𝑆2. 

Proof: Let 𝑆 = {𝑍: 𝑍 = 𝑥 − 𝑦 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 x ε𝑆1 and y ε𝑆2.} 

1. S is convex. Let 𝑍1, 𝑍2  elements of S and let 0< 𝛽 < 1. We are to show that𝛽𝑍1 +

1 − 𝛽̅̅ ̅̅ ̅̅ ̅𝑍2𝜀 𝑆. Let 𝑥1,𝑥2𝜀 𝑆1,   𝑦1 , 𝑦2𝜀 𝑆2 such that  

                     𝑍1 = 𝑥1 − 𝑦1, 𝑍2 = 𝑥2 − 𝑦2 𝜀 𝑆  Then,  

                  𝛽𝑍1 + 1− 𝛽̅̅ ̅̅ ̅̅ ̅𝑍2 = 𝛽(𝑥1− 𝑦1) + 1− 𝛽̅̅ ̅̅ ̅̅ ̅(𝑥2 − 𝑦2 ) 

                               = (𝛽𝑥1 + 1 − 𝛽̅̅ ̅̅ ̅̅ ̅𝑥2) − (𝛽𝑦1 + 1 − 𝛽̅̅ ̅̅ ̅̅ ̅𝑦2 )𝜀 𝑆     𝑎𝑠 

                          𝛽𝑥1 + 1 − 𝛽̅̅ ̅̅ ̅̅ ̅𝑥2𝜀 𝑆1  , 𝛽𝑦1 + 1− 𝛽̅̅ ̅̅ ̅̅ ̅𝑦2 𝜀 𝑆2 ⇒ 𝑆 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥.  

2. 0 ∉ 𝑆 For if 0 ∈ 𝑆, there could be point x ε𝑆1,y ε𝑆2. such that  

(x-y)=0 ⇒ x=y contradicts that 𝑆1 and 𝑆2 are disjoint. 

3. From Theorem (4.6) there exists a vector 𝑃 ≠ 0 such that 𝑃𝑇𝑍 ≥ 0 for all Z ε 𝑆. 

Thus𝑃𝑇(𝑥 − 𝑦) ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 x ε𝑆1,y ε𝑆2. completing the proof. 

Lemma 4.4: If S is a convex sub set of 𝐸𝑘  and Z is a k-dimensional random vector for which E 

(Z) exists and is finite, then EZ∈S. 

Proof:  Let Y=Z-EZ and let S’ be the translation of S by E Z, i.e𝑆’ = {𝑌: 𝑌 = 𝑍 −

𝐸𝑍  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑍𝜀𝑆}. Thus S’ is convex 𝑃[𝑌𝜀𝑆′] = 1 and EY=0. We will show that0 ∈ 𝑆′. We prove 

by induction method. The Lemma is trivially true for k=0 in which case Y is degenerate at zero. 

Now suppose the Lemma is true for k-1. We are to show that Lemma is true for k≥ 1. 



Suppose 0 ∉ 𝑆′ then by Theorem (4.6) there exists a vector 𝑃 ≠ 0 such that 𝑃𝑇𝑌 ≥ 0 for all Y ε 

S’. Let U=𝑃𝑇𝑌. The r.v. U has expectation 0, and 𝑃[𝑈 ≥ 0] = 1 ⇒ 𝑃[𝑈 = 0] = 1, then with 

probability one Y lies in the hyper plane𝑃𝑇𝑌 = 0. Let  

𝑆′′ = 𝑆′⋂{𝑦: 𝑃𝑇𝑌 = 0} Then S’’ is convex subset of (k-1) dimensional Euclidian space for which 

𝑃[𝑌𝜀𝑆′′] = 1  𝑎𝑛𝑑  𝐸𝑌 = 0 

𝐵𝑦 𝑡ℎ𝑒 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 0𝜀𝑆’’. Since 𝑆′′ ⊂ 𝑆′ ⇒ 0𝜀𝑆′ which is contradiction of the assumption 0∉ S’. 

       # 

Corollary: S is a convex hull of 𝑆0. 

Lemma 4.5:(Jensen’s Inequality): Let f(x) be a convex real-valued function defined on a non-

empty convex subsets of 𝐸𝑘  and let Z be a k-dimensional random-vector with finite expectation E 

Z for which 𝑃[𝑍 ∈ 𝑆] = 1. Then E(Z)∈S and 𝑓[𝐸( 𝑍)] ≤ 𝐸[𝑓(𝑍)] …………. (4.8) 

Proof: for k=1, the point (𝐸𝑍, 𝑓 (𝐸𝑍)) is on the boundary of the convex set 𝑆1. 

𝑆1 = {
(𝑍1, 𝑍2, … , 𝑍𝑘+1)

𝑇  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥𝜀𝑆, 𝑥𝑇 = (𝑍1, 𝑍2 , … , 𝑍𝑘+1)

                                                                𝑎𝑛𝑑 𝑓(𝑥) ≤ 𝑍𝑘+1
} . (4.9) 

Hence there exists a supporting hyper plane (straight line) at  

(𝐸𝑍, 𝑓 (𝐸𝑍)). Call this 𝑦 = 𝑚 𝑥 +  𝑐 

Because (𝐸𝑍, 𝑓 (𝐸𝑍)) is on this line. It may be written as, 

𝑌 = 𝑓(𝐸𝑍) +𝑚(𝑥 − 𝐸𝑍)  And because this line is never above the curve y=f(x) we have,                                  

f(x) 

𝑓(𝑥) ≥ 𝑓(𝐸𝑍) +𝑚(𝑥 − 𝐸𝑍) 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥. 

𝑓(𝑍) ≥ 𝑓(𝐸𝑍) +𝑚(𝑍 − 𝐸𝑍)      𝑓𝑜𝑟 𝑍𝜀 𝑆.[EZ, f (EZ)] 

𝐸(𝑓(𝑍)) ≥ 𝑓(𝐸𝑍)                                                                        EZ 

Thus, theorem is true for k=1. Suppose theorem is true for k-1, we prove for k≥ 1. 



Since EZ ε S, the point (𝐸𝑍, 𝑓 (𝐸𝑍)) is boundary point of the convex set 𝑆1 defined (4.9) hence 

by supporting hyper plane theorem, there exists 𝑎(𝑘 + 1)-dimensional vector 𝑃 ≠ 0 such that,  

𝑃𝑇𝑍 ≥ 𝑃𝑇(𝐸𝑍, 𝑓 (𝐸𝑍))     𝑜𝑟 

∑ 𝑝𝑗
𝑘+1
𝑗=1 𝑧𝑗 ≥ ∑ 𝑝𝑗

𝑘
𝑗=1 𝐸𝑧𝑗 + 𝑝𝑘+1𝑓(𝐸𝑧)  𝑓𝑜𝑟 𝑎𝑙𝑙(𝑍1, … , 𝑍𝑘)

𝑇𝜀𝑆1 . (4.10) 

We note that;𝑝𝑘+1 can not be negative, for letting 𝑍𝑘+1 → ∞ the inequality (4.10) will not be 

satisfied. Replacing 𝑍𝑘+1  

𝑤𝑖𝑡ℎ 𝑓(𝑍), 𝑍 = (𝑍1, … , 𝑍𝑘)𝜀𝑆and Z with random vector Z.  

𝑝𝑘+1𝑓(𝐸𝑍) ≤ ∑ 𝑝𝑗
𝑘+1
𝑗=1 (𝑧𝑗− 𝐸𝑧𝑗) + 𝑝𝑘+1𝑓(𝑍) ……………. (4.11) 

If 𝑝𝑘+1 > 0 taking the expectation. 

  𝑝𝑘+1𝑓(𝐸𝑍) ≤ 𝑝𝑘+1𝐸𝑓(𝑍) ⇒ 𝑓[𝐸(𝑍)] ≤ 𝐸[𝑓(𝑍)] 

If 𝑝𝑘+1 = 0 (4.11) ⇒ the random vector 

𝑈 = ∑ 𝑝𝑗(𝑧𝑗−𝐸𝑧𝑗) = 𝑃
𝑇(𝑧 − 𝐸𝑧)is non-negative and EU=0⇒P[U=0]=1 that gives all its mass 

to the (k-1) dimensional convex set 𝑆′ = 𝑆⋂{𝑍:∑ 𝑝𝑗(𝑧𝑗−𝐸𝑧𝑗) = 0} by induction method, 

theorem is proved. 

Theorem 4.8: Let â be a convex subset of 𝐸𝑘  and let L (θ, a) be a convex function of a ε â for all 

θ ε Θ there exist a ε> 0 and a c such that𝐿(𝜃’, 𝑎) ≥ 𝜀|𝑎| + 𝑐, then for every P ε â*, there exist 

𝑎𝑛 𝑎0𝜀â such that 𝐿(𝜃, 𝑎0) ≤ 𝐿(𝜃,𝑃) for all θ ε Θ. 

Proof: P ε â* and Z be a random vector with values in â when distribution is given by P. then EZ 

infinite since, 

𝜀𝐸|𝑍| + 𝑐 ≤ 𝐸𝐿(𝜃′, 𝑍) = 𝐿(𝜃′, 𝑃) < ∞ By definition of â∗ . 

𝐿(𝜃, 𝑃) = 𝐸𝐿(𝜃, 𝑍) ≥ 𝐿(𝜃, 𝐸𝑍) = 𝐿(𝜃, 𝑎0)𝑊ℎ𝑒𝑟𝑒, 𝑎0 = 𝐸𝑍𝜀â. 

Remark: If the loss is convex, we can always concern with non-randomized decision rules. The 

non-randomized decision rules form a complete class. 



Exp 4.2:𝛩 = â = [0,1], â is convex set. 

 𝐿 (𝜃, 𝑎) = (𝜃 − 𝑎)2is convex loss function. 

X has b= (2, θ) 

           𝑃𝜃 [𝑋 = 𝑥] = (
2
𝑥
)𝜃𝑥(1 − 𝜃)2−𝑥           𝑥 = 0,1,2 

          𝑑1(𝑥) =
𝑥

2
     𝑑2(𝑥) =

1

2
         𝑓𝑜𝑟 𝑎𝑙𝑙  𝑥 = 0,1,2 

           𝑃[𝑍 = 𝑑1] =
1

2
           𝑃[𝑍 = 𝑑2] =

1

2
 

                  𝐸[𝑍] =
 𝑑1+ 𝑑2

2
=
𝑥+1

4
= 𝑑 

                    𝑅(𝜃, 𝑑) = 𝐸𝐿(𝜃. 𝑑(𝑥)) = 𝐸(𝜃 −
𝑥+1

4
)2 

                                  = 𝜃2 +𝐸(
𝑥+1

4
)2 − 2𝜃𝐸(

𝑥+1

4
) 

                                  = 𝜃2 + 1

16
[𝐸𝑥2 + 1 + 2𝐸𝑥] − 𝜃

2
(𝐸(𝑥) + 1) 

   = 𝜃2 +
1

16
[2𝜃(1 − 𝜃)+ 4𝜃2 + 1+ 2.2𝜃] −

𝜃(2𝜃+1)

2
 

 =
16𝜃2+[2𝜃−2𝜃2+4𝜃2+1+4𝜃]−16𝜃2−8𝜃

16
=
[2𝜃2−2𝜃+1]

16
 

Let 𝑑0 be a randomized decision rule choosing 𝑑1with prob.
1

2
and 

𝑑2with prob. 
1

2
 

                    𝑅(𝜃, 𝑑0) =
1

2
[𝑅(𝜃, 𝑑1) + 𝑅(𝜃, 𝑑2)] 

                 =
1

2
[
1

2
𝜃(1 − 𝜃) +

1

4
(4𝜃2 − 4𝜃 + 1)] =

1

8
(2𝜃2 − 2𝜃 + 1) 

Obvious, 𝑅(𝜃, 𝑑) ≤ 𝑅(𝜃, 𝑑0)   𝑎𝑠 



[2𝜃2−2𝜃+1]

16
≤
(2𝜃2 − 2𝜃 + 1)

8
 

2𝜃2 − 2𝜃 + 1 ≥ 0                1 − 2𝜃(1 − 𝜃) ≥ 0  

as the maximum value of , 𝜃(1 − 𝜃) = 1/4. Thus, the inequality is always true. 

5.7 Self-Assessment Exercise 

 

1.     If g is a continuous and concave function on the interval I and X is a r.v. whose values are in 

I, with certainty, then E[g(X)] ≤ g[E(X)], provided expectations exist. 

2.      State and prove supporting and separating hyper plane theorems along with their uses. 

5.8 Summary 

  Section 5.3 discusses the about the concept of admissibility. Concepts of completeness and 

minimal complete class and related results have been covered in sections 5.4 and 5.5. Separating 

and Supporting Hyperplane Theorems and some others important results and their derivations are 

given in section 5.6. 

5.9 Further Readings 

 

1. Berger, J.O. (1993) Statistical Decision Theory and Bayesian Analysis, Springer Verlag. 

2. Bernando, J.M. and Smith, A.F.M. (1994). Bayesian Theory, John Wiley and Sons. 

3.  Luenberger, David G. (1969). Optimization by Vector Space Methods. New York: John 

Wiley & Sons. p. 133. 
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6.1        Introduction 

 

If for a given decision problem (Θ, D, R) with finite Θ, the risk set S is bounded from 

below and closed from below, then the class of all Bayes rules is complete and admissible Bayes 

rules form a minimal complete class. Minimax theorems state that a wide variety of two-person 

zero-sum games have values and are strictly determined. A multiple decision problem is a problem 

in which only a finite set of actions (more than 2), is available. 

6.2 Objectives 

After studying this unit, you should be able to  

• Define the minimax theorem. 

• State the complete class theorem. 



• Define multiple decision problems. 

• State the continuous form of Bayes’ theorem. 

6.3 Minimax Theorem 

 

Minimax theorem 

As discussed in earlier sections, now we learn the concept of minimax theorems, which 

state that a wide variety of two-person zero-sum games have values and are strictly determined. In 

particular, if parametric space is finite (and certain technical condit ions hold), then the game has a 

value and is strictly determined i.e. these theorem state that the game has a value and that minimax 

rules exist. 

6.4 Complete Class Theorem 

 

Theorem 4.9: (converse of theorem 4.2): If δ is admissible and Θ is finite, then δ is Bayes w.r.to 

some prior distribution τ. 

Proof: If δ is admissible, then 𝑄𝑥⋂𝑆 = {𝑥} where 𝑥 = {𝑅(𝜃1, 𝛿),… …… ,𝑅(𝜃𝑘 , 𝛿)} as S⊂𝑆̅ ⇒

𝑄𝑥⋂𝑆 ⊂ 𝑄𝑥⋂𝑆̅ = {𝑥}. And x ε S. thus, because𝑄𝑥 -{x} and S are disjoint convex sets, there exists 

a vector P≠ 0 such that 𝑃𝑇𝑦 ≤ 𝑃𝑇𝑧 for all 𝑦𝜀𝑄𝑥  -{x}, and z ε S. If some coordinate 𝑝𝑗 of vector 

P were negative then by taking y so that 𝑦𝑗 sufficiently negative, we would have𝑃𝑇𝑦 < 𝑃𝑇𝑥. Hence 

𝑝𝑗 ≥ 0 for all j. we may normalize P so that∑𝑝𝑗 = 1. Because P is now a probability  

Distribution over Θ and ∑𝑝𝑗 𝑅(𝜃𝑗 , 𝛿) ≤ 𝑃
𝑇𝑍 for all Z ε S, δ is a Bayes rule w.r.to P. 

Theorem 4.10:(Complete Class Theorem): If for a given decision problem (Θ, D, R) with 

finite Θ, the risk set S is bounded from below and closed from below, then the class of all Bayes 

rules is complete and admissible Bayes rules form a minimal complete class. 

Exp 4.3: 𝛩 = {𝜃1, 𝜃2}     â = [0,1] 

 𝐿 (𝜃1, 𝑎) = 𝑎
2 , 𝐿 (𝜃2, 𝑎) = 1− 𝑎 



 (Note that loss function is convex in a, for each θ) 

           𝑃𝜃1{𝐻} =
1

3
           𝑃𝜃2{𝐻} =

2

3
 

1. Represent the class D rules as a subset of the plane. 

2. Find the class of all non-randomized rules. 

3. Find minimax Bayes rules. 

Solution:𝐷 = {𝑑: 𝔵 → [0,1]}  𝑤ℎ𝑒𝑟𝑒  𝔵 = {𝐻,𝑇} 

Let 𝑑(𝐻) = 𝑥 , 𝑑(𝑇) = 𝑦 with the interpretation that we estimate θ to be x when H is observed 

and y when T is observed. 

               𝐷 = {(𝑥, 𝑦): 0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1} 

    This is a square in the plane (x, y). 

          𝑅(𝜃1, 𝑑) = 𝐸𝐿(𝜃1, (𝑥, 𝑦)) 

                          = 𝐿(𝜃1, 𝑥)𝑃 [𝐻 𝜃1
⁄ ] + 𝐿(𝜃1, 𝑦)𝑃 [𝑇 𝜃1⁄ ] 

                          = 𝑥21
3
+𝑦22

3
= 1

3
(𝑥2 + 2𝑦2) ……………….. (4.12) 

         𝑅(𝜃2 , 𝑑) = 𝐸𝐿(𝜃2, (𝑥, 𝑦)) 

                      = 𝐿(𝜃2, 𝑥)𝑃 [𝐻 𝜃2
⁄ ] + 𝐿(𝜃2, 𝑦)𝑃 [𝑇 𝜃2⁄ ] 

                      = (1 − 𝑥)2
3
+ (1 − 𝑦)1

3
= 1

3
(3 − 2𝑥 − 𝑦) …………….. (4.13) 

Let (p) and (1-p) be the probability distribution 𝛩 = {𝜃1, 𝜃2} i.e choosing𝜃1with prob. (p) and 

choosing𝜃2with prob. (1-p).  

       𝑅(𝜏, (𝑥, 𝑦)) = 𝐸𝑅(𝜃, (𝑥, 𝑦)) 

               = 𝑝𝑅(𝜃1, (𝑥, 𝑦)) + 1 − 𝑝𝑅(𝜃2, (𝑥, 𝑦)) 

                =
𝑝

3
(𝑥2 + 2𝑦2) +

1−𝑝

3
(3 − 2𝑥 − 𝑦) 



                = 𝑝

3
(𝑥2 + 2𝑦2 + 2𝑥 + 𝑦 − 3)+ 1

3
(3 − 2𝑥 − 𝑦) ………… (4.14) 

Set of Bayes rules which minimizes (4.14) will be obtained as, 

(2𝑥 + 2)𝑝
3
− 2

3
= 0 ⇒ 𝑥 = 1−𝑝

𝑝
& 

(4𝑦 + 1)
𝑝

3
−
1

3
= 0 ⇒ 𝑦 = 1

4
(
1−𝑝

𝑝
) 

Then the set of Bayes rules are, 

                       𝐵 = {(𝛼,
𝛼

4
) : 0 ≤ 𝛼 ≤ 1} ⊂ 𝐷. 

Now to find minimax Bayes rule, we should have (4.12) = (4.13) for (𝛼, 𝛼
4
) ∈ 𝐵 ⇒ 

1

3
(𝛼2 +

2𝛼2

16
) =

1

3
(3 − 2𝛼 −

𝛼

4
) 

9𝛼2

18
= 3 − 2𝛼 −

𝛼

4
⇒ 9𝛼2 + 18𝛼 − 24 = 0 ⇒ 3𝛼2 + 6𝛼 − 2 = 0 

              𝛼 =
−6±√36+96

6
= −1 ±

5.74

3
= 0.91,         𝑎𝑠 𝛼 ≥ 0 

1−𝑝

𝑝
= 0.91 ⇒ 𝑝 = 0.52 (𝑎𝑝𝑝𝑟𝑜𝑥. ) 

Hence (0.52, 0.48) is prior distribution function (0.91, 0.23) is Bayes rule and since for this (x, y) 

risk is constant have (0.91, 0.23) is minimax Bayes rule. 

Example: 4.4 

Admissibility of �̅� for estimating normal mean: 

First proof: (the limiting Bayes method): Suppose�̅� is not admissible, and without loss of 

generality we may assume σ=1. Then there exists 𝛿∗ such that 

𝑅(𝜃, 𝛿∗) ≤
𝐼

𝑛
   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃

<
𝐼

𝑛
  𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜃

  }  (𝑢𝑛𝑑𝑒𝑟 𝑡ℎ𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑒𝑟𝑟𝑜𝑟 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)  



R (θ, δ) is a continuous function of θ for every δ, so that there exist  

𝜀 > 0 𝑎𝑛𝑑 𝜃0 < 𝜃1such that 

𝑅(𝜃, 𝛿∗) ≤ 𝐼

𝑛
− 𝜀   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃0 < 𝜃 < 𝜃1  (as in Theorem 4.3) 

Let 𝛾𝑇
∗  be the average Bayes risk of 𝛿∗ with respect to prior distribution 𝜏 ∼ 𝑁(0, 𝑇2) and let 𝛾𝑇 

be the Bayes risk of the Bayes decision rule with respect to 𝑁(0, 𝑇2). Thus by exp. 3.11 for σ=1 

1
𝑛 −𝛾𝑇

∗

1
𝑛
 −𝛾𝑇

=
1

√2𝜋𝑇
∫ [

1
𝑛
−𝑅(𝜃,𝛿∗)]𝑒

−𝜃2

2𝑇2𝑑𝜃
∞
−∞

1
𝑛−

𝑇2

1+𝑛𝑇2

 

                            ≥ 𝑛(1+𝑛𝑇2)𝜖

𝑇√2𝜋
∫ 𝑒

−𝜃2

2𝑇2𝑑𝜃
𝜃1
𝜃0

            ………………  (4.15) 

By Lebesgue dominated convergence theorem, as the integral 

𝑒
−𝜃2

2𝑇2 → 1 As T→ ∞, the integral converges to(𝜃1 − 𝜃0)and the  

R.H.S→ ∞ ⇒
1
𝑛−𝛾𝑇

∗

1
𝑛−𝛾𝑇

→ ∞ thus there exist 𝑇0 such that,𝛾𝑇0
∗ < 𝛾𝑇0 , which contradicts the fact that 𝛾𝑇0 

is the Bayes risk for 𝑁(0, 𝑇0
2). 

Second proof: (the information inequality method): 

𝑅(𝜃, 𝛿) = 𝐸(𝛿 − 𝜃)2 = 𝑣𝑎𝑟𝜃(𝛿) + 𝑏
2(𝜃),where𝑏(𝜃) = 𝐸𝜃(𝛿) − 𝜃 

                ≥ 𝑏2(𝜃) + [1+𝑏′(𝜃)]2

𝑛𝐼(𝜃)
by F C R bound. ………….. (4.16) 

In the present case 𝜎2 = 1, 𝐼(𝜃) = 1 

Suppose now δ is any estimator satisfying 

            𝑅(𝜃, 𝛿) ≤ 1

𝑛
𝐹𝑜𝑟 𝑎𝑙𝑙 𝜃…............ (4.17) 

and hence, 𝑏2(𝜃) + [1+𝑏′(𝜃)]2

𝑛𝐼(𝜃)
≤ 1

𝑛
  f𝑜𝑟 𝑎𝑙𝑙  𝜃 …………… (4.18) 

We shall then show that (4.18) ⇒ 𝑏(𝜃) ≡ 0 for all θ. i.e δ is unbiased. 



5.  Since |𝑏(𝜃)| ≤ 1

√𝑛
 the function b is bounded. 

6. From the fact that 1 + 𝑏′2(𝜃) + 2𝑏′(𝜃) ≤ 1 ⇒ 𝑏′(𝜃) ≤ 0 so that b is non-increasing. 

7. Next, there exists a sequence of 𝜃𝑖 → ∞ and such that 𝑏′(𝜃𝑖) → 0 

    For suppose that 𝑏′(𝜃) were bounded away from 0 as θ→ ∞,                                               𝑠𝑎𝑦 𝑏′(𝜃) ≤

−𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙  𝜃, then 𝑏(𝜃) can not be bounded 

as θ→ ∞, which contradicts 1. 

8. Analogically it is seen that there exist a square 𝜃𝑖 → −∞ and such that 𝑏′(𝜃𝑖) → 0 .Thus 

𝑏(𝜃) → 0 as 𝜃 → ±∞ with inequality (4.18). Thus 𝑏(𝜃) ≡ 0 follows from 2. 

Since 𝑏(𝜃) ≡ 0 ⇒ 𝑏′(𝜃) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃 ⇒ (4.16) 𝑎𝑠 𝑅(𝜃, 𝛿) ≤

1

𝑛
𝐹𝑜𝑟 𝑎𝑙𝑙 𝜃 𝑎𝑛𝑑 ℎ𝑒𝑛𝑐𝑒 𝑅(𝜃, 𝛿) ≡ 1

𝑛
 

This proves that �̅� is admissible and minimax. This is unique admissible and minimax estimator. 

Because if δ’ is any other estimator such that𝑅(𝜃, 𝛿′) ≡ 1

𝑛
 . Then let 𝛿∗ =

1

2
(𝛿 + 𝛿′) 

           𝑅(𝜃, 𝛿∗) <
1

2
[𝑅(𝜃, 𝛿) + 𝑅(𝜃, 𝛿′)] = 𝑅(𝜃, 𝛿) 

Which contradicts that δ is admissible. Thus δ=δ’ with prob. 1. 

6.5 Equalizer Rules 

 

The equalizer rule for exact minimax estimation and then proceeds to minimax  

hypothesis testing (also known as minimax detection). 

 

The Equalizer Rule- 

Suppose Ө is the parameter space and let 𝑑:Ө*Ө→ 𝑅+be a specific loss function. The risk 

of an estimator �̂� is defined as 𝐸𝜃[𝑑(𝜃,̂ 𝜃)], where the expection is taken over the iid random 

sample from the underlying distribution parameterized by the true parameter𝜃. Let 𝜋be the prior 

distribution over the parameter space Ө. The Bayes risk of an estimator �̂�with respect to prior 𝜋is 

defined as- 



𝑅(𝜃,̂ 𝜋) = ∫𝐸𝜃 [𝑑(𝜃,̂ 𝜃)]𝑑𝜋(𝜃) 

The posterior risk of an estimator �̂�with respect to prior 𝜋is and data X is defined as- 

𝑟 (�̂� 𝑋⁄ ) = 𝐸𝜃~𝜋[𝑑(𝜃,̂ 𝜃)/𝑋] 

The Bayes rule estimator with respect to prior 𝜋 is the estimator �̂� that minimizes the posterior 

risk 𝑟 (�̂� 𝑋⁄ ) at every X. 

 

The equalizer rule asserts that an estimator is minimax if it is the Bayes rule with respect to 

some prior 𝜋and achieves the constant risk for all underlying parameter𝜃. 

 

𝑴𝒊𝒏𝒊𝒎𝒂𝒙 𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚 −A minimax strategy for player 2 is a strategy 𝛿𝑀∗that minimizes the 

𝑠𝑢𝑝𝜃𝜖Ө𝐿(𝜃, 𝛿
∗) i.e. the strategy for which  𝑠𝑢𝑝𝜃𝜖Ө𝐿(𝜃, 𝛿

𝑀∗) = inf 𝑠𝑢𝑝𝜃𝜖Ө𝐿(𝜃, 𝛿
∗) 

The R.H.S. is the minimax value of the game and denoted by �̅�. 

 

𝑴𝒂𝒙𝒊𝒎𝒊𝒏 𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚- A maximin strategy for player 1 is a randomized strategy 𝛿𝑀  that 

maximizes𝑖𝑛𝑓𝜃𝜖Ө𝐿(𝜃, 𝑎), i.e. the strategy for which  

𝑖𝑛𝑓𝜃𝜖Ө𝐿(𝜃, 𝛿
𝑀) = sup 𝑖𝑛𝑓𝜃𝜖Ө𝐿(𝜃, 𝑎) 

The R.H.S. is the maximin value of the game and denoted by𝑉. 

 

𝑫𝒆𝒇𝒊𝒏𝒊𝒕𝒊𝒐𝒏 −A strategy 𝜋0 is equalizer for 1 if 𝐿(𝜋0, 𝑎) = 𝐶 (𝑠𝑜𝑚𝑒𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)∀𝑎 ∈ 𝐴. A 

strategy 𝛿0
∗ is an equalizer for player 2 if 𝐿(𝜃, 𝛿0

∗) = 𝐶′ (𝑠𝑜𝑚𝑒𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)∀𝜃 ∈ Ө. 

Theorem- If both the player 1 and 2 have equalizer strategies, then the game has a value and the 

equalizer strategies are the maximin and the minimax strategies. 

 

Proof- If  𝜋 and 𝛿∗are the equalizer strategies then 

𝐿(𝜃, 𝛿∗) = 𝐾1∀𝜃 ∈ Ө, and 𝐿(𝜋, 𝑎) = 𝐾2∀𝑎 ∈ 𝐴 



𝐿(𝜋, 𝛿∗) = 𝐸𝜋𝐿(𝜃, 𝛿∗) = 𝐸𝜋𝐾1=𝐾1 

𝐿(𝜋, 𝛿∗) = 𝐸𝛿
∗
𝐿(𝜋, 𝑎) = 𝐸𝛿

∗
𝐾2 = 𝐾2  

Hence 𝐾1 = 𝐾2. Game has the value 

Example: Binomial distribution.  

 

Suppose 𝑿~𝑩(𝒏,𝜽). Consider the Beta prior𝜽~𝑩𝒆𝒕𝒂(𝜶,𝜷) 

The posterior distribution of 𝜃 conditioned on X is then 𝜽 𝑿⁄ ~𝑩𝒆𝒕𝒂(𝜶 + 𝒙, 𝜷 + 𝒏 − 𝒙) 

Under the squared error loss function 𝑑(𝜃,̂ 𝜃)=(�̂� − 𝜃)2, the bayes rule is the posterior mean: 

�̂�(𝜋) =
𝛼 + 𝑥

𝛼 + 𝛽 + 𝑛
 

 

Taking → 𝛽 → √𝑛
2⁄  , we have 

𝑅(�̂�(𝜋), 𝜃) =
1

4(1 +
1

√𝑛
)2

 

which is a constant function with respect to the underlying parameter 𝜃. Subsequently, by the 

equalizer rulewe claim that the minimax estimator for 𝜃 is 

𝜃=
1

(1+√𝑛)
+

𝑥

(𝑛+√𝑛)
. 

6.6 Multiple Decision Problems 

 

A multiple decision problem is a problem in which only a finite set of actions (more than 

2), is available. 

(NOTE: For more details on this section please refer to Unit 1 of Block 1.) 

6.7 Continuous Form of Bayes Theorem, Its Sequential Nature, Its Need in 

Decision Making 

 



Consider a decision problem specified a parameter Θ whose value are in Θ (parameter 

space), a decision space D, and loss function L. we shall suppose that before the statistician chooses 

the decision in D, he will be permitted to observe sequentially the values of a sequence of 

r.v’s 𝑋1, 𝑋2, ……. we shall suppose also that for any given value Θ=θ, these observations are 

independent and identically distributed. It is then said that the observations are a sequential random 

sample. We shall suppose that the conditional p.d.f. of each observation 𝑋𝑖 when Θ=θ is 𝑓(. 𝜃⁄ ) 

and that the cost of observing the values𝑋𝑖, in turn is C. 

              A sequential decision function or sequential decision procedure has two components. One 

component may be called as sampling plan or stopping rule. The statistician first specifies whether 

a decision should choose without any observations or whether at least one observation should be 

taken. If at least one observation is to be taken, the statistician specifies, for every possible set of 

observed values 𝑋1 =  𝑥1, 𝑋2 =  𝑥2,  𝑋𝑛 =  𝑥𝑛(𝑛 ≥ 1) 

whether sampling should stop and a decision in D chosen without further observations or 

whether another value  𝑋𝑛+1 should be observed. 

               The second component of sequential decision procedure may be called a decision rule. 

If no observations are to be taken, the statistician specifies a decision 𝑑0𝜀𝐷that is to be chosen. If 

at least one observation is to be taken, the statistician specifies the decision 𝑑𝑛( 𝑥1,… , 𝑥𝑛)𝜀𝐷that 

is to be chosen for each possible set of observed values 𝑋1 =  𝑥1, 𝑋2 =  𝑥2,  𝑋𝑛 =  𝑥𝑛 after which 

the sampling might be terminated. 

Let S denote the sample space of any particular o bservation  𝑋1. For n=1, 2… We shall 

let 𝑆𝑛 = 𝑆𝑥𝑆𝑥… 𝑥𝑆 (with n factors) be the sample space of the n observations  𝑋1, 𝑋2, … , 𝑋𝑛and 

we shall let 𝑆∞ be the sample space of the infinite sequence of observations  𝑋1, 𝑋2, … 

A sampling plan in which at least one observation is to be taken can be characterized by a sequence 

of subsets 𝐵𝑛𝜀𝑆
𝑛 (n=1, 2…) which have the following interpretations:  

            Sampling is terminated after the values 𝑋1 =  𝑥1,… ,  𝑋𝑛 =  𝑥𝑛 

have been observed if ( 𝑥1,… , 𝑥𝑛)𝜀𝐵𝑛. Another value 𝑥𝑛+1 is observed if( 𝑥1,… , 𝑥𝑛) ∉ 𝐵𝑛 . If there 

is some value r for which 𝐵𝑟 = 𝑆
𝑟  or more generally if 𝑃[( 𝑥1, … , 𝑥𝑛) ∉ 𝐵𝑛]for n=1, 2… r] =0 



then the sampling must stop after at most r observations have been taken. The specification of the 

sets 𝐵𝑛  for any value of n such that 𝑛 > 𝑟 then become irrelevant never the less, it is convenient 

to assume that the sets 𝐵𝑛  will be defined for all values of n. 

           Each stopping sets 𝐵𝑛  can be regarded not only as a subset of 𝑆𝑛 but also as the subset of 

𝑆𝑟 for any value of r> 𝑛 and as a subset of𝑆∞. When 𝐵𝑛  is regarded as a subset of𝑆𝑟, 𝑟 > 𝑛 , 𝐵𝑛  

is a cylinder set. In other words if ( 𝑥1,… , 𝑥𝑛)𝜀𝐵𝑛 and if ( 𝑦1, … , 𝑦𝑟 ) is any  other set in 𝑆𝑟 such 

that, 𝑦𝑖 = 𝑥𝑖 , i=1,2……..n then ( 𝑦1, … , 𝑦𝑟)𝜀𝐵𝑛  regarded as of the values of the final r-n 

components. 

            Suppose that at least one observation is to be taken with a given sampling plan, and let N 

denote the random total number of observations which will be taken before sampling is terminated. 

We shall [N=n] denote the set of points ( 𝑥1,… , 𝑥𝑛)𝜀𝑆
𝑛 for which [N=n]. in other words, suppose 

that the value 𝑋1 =  𝑥1,… ,  𝑋𝑛 =  𝑥𝑛 are observed in sequence, then sampling will be terminated 

after the value  𝑥𝑛has been observed (and not before) if and only if ( 𝑥1,… , 𝑥𝑛)𝜀[𝑁 = 𝑛]. hence 

[N=1] = 𝐵1 and for 𝑛 > 1 

[𝑁 = 𝑛] = ( 𝐵1 ∪  𝐵2 ∪ …∪ 𝐵𝑛−1)
𝐶 ∩  𝐵𝑛  

Similarly, we shall let [𝑁 ≤ 𝑛] = ⋃ [𝑁 = 𝑖]𝑛
𝑖=1  denote the subset of 𝑆𝑛for which 𝑁 ≤ 𝑛 

the events [𝑁 ≤ 𝑛] and [N=n] involve only the observations 𝑋1, 𝑋2, … , 𝑋𝑛. Hence these events are 

subset of 𝑆𝑛. Also, they can be regarded as subsets of 𝑆𝑟, 𝑟 > 𝑛. further more, events [𝑁 > 𝑛] =

[𝑁 ≤ 𝑛]𝐶involve the observations 𝑋1, 𝑋2, … ,𝑋𝑛 , and it can be regarded as subsets of 𝑆𝑟 for any 

value of r, 𝑟 ≥ 𝑛. 

For any prior p.d.f ξ of θ, we shall let 𝑓𝑛(. 𝜉⁄ ) denote the marginal p.d.f of the observations 

 𝑋1, 𝑋2, … , 𝑋𝑛 

        𝑓(𝑥1, … , 𝑥𝑛 𝜉⁄ ) = ∫ 𝑓(𝑥1 𝜃⁄ ),
𝛩

… ,𝑓(𝑥𝑛 𝜃⁄ )𝜉(𝜃)𝑑𝜈(𝜃) ……….. (6.1) 

Furthermore, we shall let 𝑓𝑛(. 𝜉⁄ ) denote the marginal joint d.f of 𝑋1, 𝑋2, … ,𝑋𝑛. Hence, for 

any event𝐴 ⊂ 𝑆𝑛, 



                  𝑃[𝑥1, … , 𝑥𝑛𝜀𝐴] = ∫ 𝑑𝑓𝑛𝐴
(𝑥1, … , 𝑥𝑛 𝜉⁄ )  ……………  (6.2) 

We can write the following equation: 

                   𝑃[𝑁 ≤ 𝑛] = ∫ 𝑑𝐹𝑛𝐴
(𝑥1, … , 𝑥𝑛 𝜉⁄ )= 

∫ 𝑑𝐹1[𝑁=1]
(𝑥1 𝜉⁄ ) + ∫ 𝑑𝐹2[𝑁=2]

(𝑥1,𝑥2 𝜉⁄ ) + ∫ 𝑑𝐹3[𝑁=3]
(𝑥1,𝑥2, 𝑥3 𝜉⁄ ) +⋯+

∫ 𝑑𝐹𝑛[𝑁=𝑛]
(𝑥1, 𝑥2, … , 𝑥𝑛 𝜉⁄ ) …………… (6.3) 

The decision rule of a sequential decision procedure is characterized by a decision rule 

𝑑0𝜀𝐷 and the sequence of functions 𝛿1, 𝛿2, ….  with the following property: for any 

point( 𝑥1,… , 𝑥𝑛)𝜀𝑆
𝑛, the function 𝛿𝑛   satisfies a decision, 𝛿𝑛( 𝑥1,… , 𝑥𝑛)𝜀𝐷. If the sampling plan 

specifies that an immediate decision in D is to be selected without any sampling then the decision 

𝑑0𝜀𝐷is chosen. If on the other hand, the sampling plan satisfies that at least one observation is to 

be taken and if the observed value ( 𝑥1,… , 𝑥𝑛) satisfies the condition ( 𝑥1, … , 𝑥𝑛)𝜀[𝑁 = 𝑛], then 

sampling is terminated and the decision , 𝛿𝑛( 𝑥1,… , 𝑥𝑛)𝜀𝐷 is chosen. The value of the function , 𝛿𝑛  

need only be specified on the subset [N=n] ⊂𝑆𝑛. A procedure involving a fixed number of 

observations n can always be obtained by adopting a sampling plan in which [N=j] =Φ, the empty 

set for j=1… n-1 and in which [N=n] =𝑆𝑛. In general we can also consider sampling plans for 

which the probability is 1 that sampling will eventually be terminated. In other words, we shall 

assume that, 

             𝑃[𝑁 < ∞] = lim
𝑛→∞

𝑃[𝑁 ≤ 𝑛] = 1 ……………… (6.4) 

[It need not be assumed that there is some finite upper bound n such that𝑃[𝑁 ≤ 𝑛] = 1 ] 

Risk of a Sequential Decision Procedure 

The total risk 𝜌(𝜉, 𝑑) of a sequential decision procedure which at least one observation is 

to be taken is, 

   𝜌(𝜉, 𝛿) = 𝐸{𝐿[𝜃, 𝛿𝑁( 𝑋1, … , 𝑋𝑛)] + 𝐶1 + 𝐶2 +⋯+ 𝐶𝑁} 



= ∑ ∫ ∫ 𝐿[𝜃, 𝛿𝑛( 𝑋1, … ,𝑋𝑛)]𝛩[𝑁=𝑛]
∞
𝑛=1 (𝜃  𝑥1,… , 𝑥𝑛⁄ )𝑑𝜈(𝜃)𝑑𝐹𝑛( 𝑥1, … , 𝑥𝑛 𝜉⁄ ) + ∑ (𝐶1 +

∞
𝑛=1

𝐶2 + ⋯+𝐶𝑁) 𝑃[𝑁 = 𝑛] …………………. (6.5) 

Here ξ(.  𝑥1,… , 𝑥𝑛⁄ )is posterior p.d.f of Θ after the values 𝑋1 =  𝑥1, … ,  𝑋𝑛 =  𝑥𝑛 have been 

observed. Alternatively, 

𝜌(𝜉, 𝛿) = ∫ {∫ 𝐿[𝜃, 𝛿𝑛( 𝑋1, … , 𝑋𝑛)]
[𝑁=𝑛]

} [∏𝑓(𝑥𝑖 𝜃⁄ )𝑑𝜇(𝜇)

𝑛

𝑖=1

] 𝜉(𝜃)𝑑𝜈(𝜃)
𝛺

+∑(𝐶1+ 𝐶2 +⋯+𝐶𝑁)

∞

𝑛=1

𝑃[𝑁 = 𝑛] ………………… . (6.6) 

In the development of theory of sequential statistical decision problem, we shall have little 

need to refer to any specified value ξ (𝜃  𝑥1,… , 𝑥𝑛⁄ ) of the posterior p.d.f of Θ. However, we shall 

often have to refer to the entire posterior distribution as represented by its generalized p.d.f. 

therefore we shall denote the p.d.f simply by𝜉(𝑥1,… , 𝑥𝑛). 𝐼𝑓 𝜉 𝑖𝑠 𝑝𝑟𝑖𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝛩. 

Where𝑋1 =  𝑥1, … ,  𝑋𝑛 =  𝑥𝑛 is𝜉(𝑥1,… , 𝑥𝑛). 

For every p.d.f of θ. Let 𝜌0(𝛷) be defined as follows: 

           𝜌0(𝛷) = 𝑖𝑛𝑓𝑑𝜀𝐷 ∫ 𝐿[𝜃, 𝑑]𝛷(𝜃)𝑑𝜈(𝜃)
𝛺

 ……………… (6.7) 

In other words, 𝜌0(𝛷) is the minimum risk from an immediate decision without any further 

observations when the p.d.f of θ is 𝛷(𝜃). 

A Bayes sequential decision procedure or an optimal sequential decision procedure is a 

procedure δ for which the risk ρ (ξ, δ) is minimized. Wherever a decision in D is chosen after 

sampling is terminated, that decision rule Bayes decision against the posterior distribution of Θ. 

For any such procedure δ which specifies that at least one observation is to be taken, we now have  

𝜌(𝜉, 𝛿) = 𝐸[𝑃0[𝜉(𝑥1,… , 𝑥𝑛). ] + 𝐶1 + 𝐶2 +⋯+𝐶𝑁] …………. (6.8) 

Further, more for the procedure 𝛿0 which specifies that can immediate decision in D should 

be chosen without any observations we must have,  𝜌(𝜉, 𝛿0) = 𝜌0(𝜉)  ………………… (6.9) 



Exp 6.1:𝐿(𝜃1 , 𝑑1) = 𝐿(𝜃2, 𝑑2) = 0       𝛩 = {𝜃1, 𝜃2},𝐷 = {𝑑1, 𝑑2} 

                𝐿(𝜃1, 𝑑2) = 𝐿(𝜃2, 𝑑1) = 𝑏 > 0 

Suppose X is discrete r.v.’s for which 

                        𝑓𝑖(𝑥) = 𝑃[𝑋 = 𝑥 𝜃 = 𝜃𝑖⁄ ] 𝑖 = 1,2 

              𝑓1(1) = 1− 𝛼,          𝑓1(2) = 0,           𝑓1(3) = 𝛼              0< 𝛼 <1 

             𝑓2(1) = 0,             𝑓2(2) = 1 − 𝛼,        𝑓2(3) = 𝛼 

Suppose the cost per observation is C, let the prior distribution of θ is 𝑃[𝜃 = 𝜃1] = 𝜉 = 1 −

𝑃[𝜃 = 𝜃2]                   𝜉 ≤
1

2
 

Solution:    𝜉(𝜃 𝑥⁄ ) =
𝑓(𝑥 𝜃⁄ )𝑃[𝜃=𝜃]

𝑃[𝑋=𝑥]
 

𝜉(𝜃1 1⁄ ) =
(1 − 𝛼)𝜉

(1 − 𝛼)𝜉 + 0
= 1              𝜉(𝜃1 1⁄ ) = 0   

          𝜉(𝜃1 3⁄ ) =
𝑓(3 𝜃1⁄ )𝑃[𝜃 = 𝜃1]

𝑓(3 𝜃1⁄ )𝑃[𝜃 = 𝜃1] + 𝑓(3 𝜃2⁄ )𝑃[𝜃 = 𝜃2]
 

                           =
αξ

αξ + α(1 − ξ)
= ξ  

Similarly,  𝜉(𝜃2 1⁄ ) = 0,     𝜉(𝜃2 2⁄ ) = 1,     𝜉(𝜃2 3⁄ ) = (1 − ξ) 

Thus, after an observation has been taken, either the value of θ becomes known or else the 

distribution of θ remains good as it was before the observation was taken. 

      𝜌0(𝜉) = 𝑖𝑛𝑓𝑑{𝐿(𝜃1, 𝑑1)𝜉 + 𝐿(𝜃2, 𝑑1)(1 − 𝜉), 𝐿(𝜃1, 𝑑2)𝜉 + 𝐿(𝜃2 , 𝑑2)(1 − 𝜉)} 

                  = 𝑖𝑛𝑓𝑑{𝑏(1 − 𝜉), 𝑏𝜉}Without any observation is taken. 

                  = 𝑏𝜉                                  𝑠𝑖𝑛𝑐𝑒 , 𝜉 ≤
1

2
 

If the Bayes decision is chosen when𝑃[𝜃 = 𝜃1] = 𝜉 , the expected loss is bξ. 



If one observation is taken then the expected loss will be 

                𝐸 𝜌0(𝜉(𝑋)),where 𝜉(𝑋) = 𝑃[𝜃 = 𝜃 𝑋 = 𝑥⁄ ] 

𝜌0(1) = 𝜌0(𝜉(1)) 

= 𝑖𝑛𝑓𝑑 {𝐿(𝜃1, 𝛿(1))𝑃[𝜃 = 𝜃1 𝑋 = 1⁄ ] + 𝐿(𝜃2 , 𝛿(1))𝑃[𝜃 = 𝜃2 𝑋 = 1⁄ ]} 

= 𝑖𝑛𝑓𝑑{0, b} = 0 

Now, 𝐿(𝜃1, 𝛿(1))𝑃[𝜃 = 𝜃1 𝑋 = 1⁄ ] + 𝐿(𝜃2 , 𝛿(1))𝑃[𝜃 = 𝜃2 𝑋 = 1⁄ ] 

                        = 0                           𝑖𝑓𝛿(1) = 𝑑1
                        = 𝑏                          𝑖𝑓𝛿(1) = 𝑑1

 

Similarly,𝜌0(2) = 0        𝑎𝑛𝑑     𝜌0(3) = 𝑏𝜉 

𝐸𝜌0(𝑋) = 0𝑃[𝑋 = 1] + 0𝑃[𝑋 = 2] + bξ𝑃[𝑋 = 3] = bξα 

 

The expected loss 𝐸𝜌0( 𝑋1, … , 𝑋𝑛) = bξα
n when the Bayes decision is chosen after n observations 

 𝑋1, … ,𝑋𝑛  have been taken, 

𝜌𝑛 = bξα
n + Cn Total risk for the optimal procedure when exactly n observations taken, assume 

ρ (1) <ρ (0)  

𝑑

𝑑𝑛
ρ(n) = 0 ⇒ 𝑛∗ = [log

bξlog (
1
α)

C
] 1

log (
1
α)

  ………………… (6.10) 

andρ(n∗) = C

log (
1
α)
[1 + log

bξ log(
1
α
)

C
] …………………… (6.11) 

Wolfowitz Generalization of FCR bound and Sequential estimation and 

Testing: 

A sequential provides a set of stopping rules {𝑅𝑛(𝑋1, … ,𝑋𝑛); 𝑛 = 1,2……} which are 𝔅(𝑛)  

designate the Borel σ-field on 𝔵(𝑛), 



n-dimensional Euclidian space; assigning to (𝑋1, … ,𝑋𝑛) an integral value so that if 

𝑅𝑛(𝑋1, … , 𝑋𝑛) = 𝑛, we terminate sampling after the 𝑛𝑡ℎ  observation otherwise, 𝑋𝑛+1 is observed. 

Consider the σ-field𝔅1 ⊂ 𝔅2 ⊂ ⋯  generated by 𝑋1, . . , (𝑋1, … , 𝑋𝑛) a stopping rule R for a 

sequential procedure can be conveniently described by a sequence of sets {𝑅𝑛; 𝑛 = 1,2,… . } where, 

𝑅𝑛𝜀𝔅𝑛  for each n=1,2,….. Sampling is continued as by as consecutive vectors (𝑋1, … , 𝑋𝑛) , 

n=1,2,….. do not enter one of the sets 𝑅𝑛. In another words, the sample size N (a random variable) 

is N= least integral n, n≥ 1 such that (𝑋1, … ,𝑋𝑛)ε𝑅𝑛 

Define sets,𝑅𝑛̅̅̅̅ =
𝑅1                           𝑖𝑓𝑛 = 1

𝑅1̅̅ ̅⋂𝑅2̅̅ ̅⋂…⋂ 𝑅𝑛         𝑖𝑓𝑛 ≥ 2
 

The sets 𝑅𝑛̅̅̅̅  is the set of all sample points which leads to stopping at N=n. The estimation rule for 

estimating a function g (𝑃1, 𝑃1, …) is given by a srquence of functions 𝑔1̂, 𝑔2̂ , … such that 𝑔�̂�𝜀𝔅𝑛  

for all n=1,2… and if N=n then the estimate of g is 𝑔�̂� . 

Lemma 9.1: [𝒘𝒂𝒍𝒅′𝒔 𝒆𝒒𝒖𝒂𝒕𝒊𝒐𝒏]: let(𝑋1, … ,𝑋𝑛 …) be a sequence of i.i.d random variables, 

distributed with some distribution, satisfying E|𝑋| < ∞. For any sequential rule yielding EN< ∞ 

                 𝐸(∑ 𝑋𝑖
𝑁
𝑖=1 ) = 𝐸(𝑋)𝐸𝑁 …………………. (9.2) 

Proof: let (𝑅1,𝑅2, …) be the sequence of stopping regions. Then, 

             𝐸(∑ 𝑋𝑖
𝑁
𝑖=1 ) = ∑ ∫ ∑ 𝑥𝑖

𝑛
𝑖=1𝑅𝑛̅̅ ̅̅

∞
𝑛=1 (∏ 𝑑𝐹(𝑥𝑖)

𝑛
𝑖=1 ) …………. (9.2) 

Now, 𝐸𝑋𝑖 = ∑ ∫ (𝑥𝑖)∏ 𝑑𝐹𝑥𝑖
𝑛
𝑖=1𝑅𝑛̅̅ ̅̅

∞
𝑛=1  

                   = ∑∫ 𝑥𝑖∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1𝑅𝑛̅̅ ̅̅

𝑖−1

𝑛=1

+∑∫ 𝑥𝑖∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1𝑅𝑛̅̅ ̅̅

∞

𝑛=𝑖

 

                   = 𝐸{𝑋𝑖𝐼[𝑁 < 𝑖]} + 𝐸{𝑋𝑖𝐼[𝑁 ≥ 𝑖]} 

∑∫ 𝑥𝑖∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1𝑅𝑛̅̅ ̅̅

 ∞

𝑛=𝑖

= 𝐸{𝑋𝑖𝐼[𝑁 ≥ 𝑖]} = 𝑃[𝑁 ≥ 𝑖]𝐸[𝑋𝑖 𝑁 ≥ 𝑖⁄ ] 



Since [𝑁 ≥ 𝑖] is 𝔅𝑖−1 measure and𝔅0 = 𝔅, therefore 𝑋𝑖 is independent of [𝑁 ≥ 𝑖]. thus  

                     𝐸[𝑋𝑖 𝑁 ≥ 𝑖⁄ ] = 𝐸(𝑋𝑖) 

∑∫ 𝑥𝑖∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1𝑅𝑛̅̅ ̅̅

∞

𝑛=𝑖

= 𝑃[𝑁 ≥ 𝑖]𝐸(𝑋𝑖) 

                                       = 𝑃[𝑁 ≥ 𝑖]𝐸(𝑋) ………………. (9.3) 

Now from (9.1) 

∑ ∫ ∑ 𝑥𝑖
𝑛
𝑖=1 ∏ 𝑑𝐹(𝑥𝑖)

𝑛
𝑖=1𝑅𝑛̅̅ ̅̅

∞
𝑛=𝑖 = ∑ ∑ ∫ 𝑥𝑖𝑅𝑛̅̅ ̅̅

∞
𝑛=𝑖

∞
𝑖=1 ∏ 𝑑𝐹(𝑥𝑖)

𝑛
𝑖=1  …. (9.4) 

(This is permitted as E|𝑋| < ∞) 

          = ∑ 𝑃[𝑁 ≥ 𝑖]𝐸(𝑋)∞
𝑖=1       From (9.3) 

= 𝐸𝑋∑𝑃[𝑁 ≥ 𝑖] = 𝐸(𝑋)𝐸𝑁

∞

𝑖=1

 

𝐸(∑ 𝑋𝑖
𝑛
𝑖=1 ) = 𝐸(𝑋)𝐸𝑁# 

Alternative Proof: Define a r.v. 𝑌𝑖 such that 

𝑌𝑖 = 1, 𝑖𝑓 𝑛𝑜 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑖𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑢𝑝 𝑡𝑜 (𝑖 − 1)𝑡ℎ 𝑠𝑡𝑎𝑔𝑒, 𝑖. 𝑒. 𝑖𝑓 𝑁 > (𝑖 − 1) 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. 

Clearly, 𝑌𝑖 depends only on 𝑋1,𝑋2, … . . , 𝑋𝑖−1   𝑎𝑛𝑑 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑑𝑒𝑝𝑒𝑛𝑑 𝑜𝑛 𝑋𝑖. Also 

𝑆𝑁 =  ∑𝑋𝑛𝑌𝑛

∞

𝑛=1

 

Hence 𝐸(𝑆𝑁) = 𝐸(∑ 𝑋𝑛𝑌𝑛
∞
𝑛=1 )   (9.5) 

Now, 



∑𝐸|𝑋𝑛𝑌𝑛| = ∑𝐸|𝑋𝑛 |𝐸|𝑌𝑛| (𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑋𝑛  𝑎𝑛𝑑 

∞

𝑛=1

∞

𝑛=1

𝑌𝑛 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) 

= 𝐸|𝑋1|∑ 𝐸|𝑌𝑛|

∞

𝑛=1

= 𝐸|𝑋1|∑ 𝑃[𝑁 ≥ 𝑛] (𝑏𝑒𝑐𝑎𝑠𝑢𝑠𝑒𝐸 |𝑌𝑛| = 𝑃[𝑌𝑛 = 1] = 𝑃[𝑁 ≥ 𝑛]) 

∞

𝑛=1

 

= 𝐸|𝑋1|∑ ∑𝑃[𝑁 = 𝑘] =

∞

𝑘=𝑛

∞

𝑛=1

𝐸|𝑋1|∑ 𝑛𝑃[𝑁 = 𝑛]

∞

𝑛=1

 

= 𝐸|𝑋1||𝐸(𝑁)| < ∞ 

Therefore, 𝐸(𝑆𝑁)exists and we may change the order of operation of expectation and 

summation sign in (9.5). Hence,  

𝐸(𝑆𝑁) = 𝐸(∑ 𝑋𝑛𝑌𝑛

∞

𝑛=1

) =∑ 𝐸(𝑋𝑛𝑌𝑛) = 𝐸(𝑋1)∑ 𝐸(𝑌𝑛)

∞

𝑛=1

∞

𝑛=1

 

= 𝐸(𝑋1)∑ 𝑃[𝑁 ≥ 𝑛]

∞

𝑛=1

= 𝐸(𝑋1)𝐸(𝑁) 

Note: Lemma 9.1 holds if only we assume 𝐸(𝑋𝑛) = 𝜇 𝑎𝑛𝑑 𝐸(𝑁) < ∞ and the assumption that 

𝑋𝑖
′𝑠𝑎𝑟𝑒 𝑖. 𝑖. 𝑑. 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦. 

Lemma 9.2: Let(𝑋1, … ,𝑋𝑛) be a sequence of i.i.d random variables, having a common d.f. F(x) 

with mean zero and variance 

𝜎2, 0 < 𝜎2 < ∞for any sequential stopping rule with E(N)< ∞ , if  

𝐸{(∑ |𝑋𝑖 |
𝑁
𝑖=1 )2} < ∞  𝑡ℎ𝑒𝑛, 𝐸{(∑ 𝑋𝑖

𝑁
𝑖=1 )2} = 𝜎2𝐸𝑁  ………… (9.5) 

Proof: As before, 

 𝐸 {(∑𝑋𝑖

𝑁

𝑖=1

)

2

} = ∑∫ (∑𝑥𝑖

𝑛

𝑖=1

)

2

∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1𝑅𝑛̅̅ ̅̅

∞

𝑛=1

 



=∑∫ {∑𝑥𝑖
2

𝑛

𝑖=1

+ 2∑ ∑ 𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

}∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1𝑅𝑛̅̅ ̅̅

∞

𝑛=1

 

=∑∫ (∑𝑥𝑖
2

𝑛

𝑖=1

)∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1

+ 2∑∫ (∑ ∑ 𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

)∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1𝑅𝑛̅̅ ̅̅

∞

𝑛=1𝑅𝑛̅̅ ̅̅

∞

𝑛=1

 

= 𝜎2𝐸𝑁 + 2∑ ∫ (∑ ∑ 𝑥𝑖𝑥𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 )∏ 𝑑𝐹(𝑥𝑖)

𝑛
𝑖=1𝑅𝑛̅̅ ̅̅

∞
𝑛=1  By Lemma 9.1 

Now 

∑∫ (∑ ∑ 𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

)∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1𝑅𝑛̅̅ ̅̅

∞

𝑛=1

=∑∑∑∫ 𝑥𝑖𝑥𝑗
𝑅𝑛̅̅ ̅̅

∞

𝑛=𝑖

𝑖−1

𝑗=1

∞

𝑖=2

∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1

 

But 

  ∑ ∫ 𝑥𝑖𝑥𝑗𝑅𝑛̅̅ ̅̅
∏ 𝑑𝐹(𝑥𝑖)
𝑛
𝑖=1

∞
𝑛=𝑖 = 𝑃[𝑁 ≥ 𝑖]𝐸[𝑋(𝑥) 𝑁 ≥ 𝑖⁄ ] for j<i,   (i=1, 2, 3…) as 𝑋𝑖 

is independent [𝑁 ≥ 𝑖] 

= 𝑃[𝑁 ≥ 𝑖]𝐸𝑋𝑖𝐸[𝑋𝑗 𝑁 ≥ 𝑖⁄ ] = 0   𝑓𝑜𝑟 j < i,   (i = 1, 2, 3 … ) 

The rearrangement is guaranteed by condition 𝐸{(∑ |𝑋𝑖 |
𝑁
𝑖=1 )2} < ∞   

Then 𝐸{(∑ 𝑋𝑖
𝑁
𝑖=1 )2} = 𝜎2𝐸𝑁# 

Alternative Proof: Let 𝑌𝑖 be defined as in Alternative proof of Lemma 9.1. Then 

𝐸(𝑆𝑁)
2 = 𝐸 {(∑𝑋𝑖𝑌𝑖

∞

𝑖=1

)}{(∑𝑋𝑗𝑌𝑗

∞

𝑗=1

)} 

                 = 𝐸(∑ 𝑋𝑖
2𝑌𝑖

2∞
𝑖=1 + ∑ ∑ 𝑋𝑖𝑌𝑖𝑋𝑗𝑌𝑗𝑗𝑖≠𝑗 )                                (9.6) 



𝐸|𝑆𝑁
2| = 𝐸 (∑𝑋𝑖

2𝑌𝑖
2

∞

𝑖=1

+∑∑|𝑋𝑖𝑋𝑗|𝑌𝑖
𝑗𝑖≠𝑗

𝑌𝑗) 

                                                 = 𝐸(∑ |𝑋𝑖 |
𝑁
𝑖=1 )2 < ∞ (𝑏𝑦 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛). 

Hence the order of operation of summation and expectation in (9.6) can be interchanged. Now 

𝐸 (∑𝑋𝑖
2𝑌𝑖

2

∞

𝑖=1

) = 𝐸(𝑋1
2)𝐸 (∑𝑌𝑖

2

∞

𝑖=1

) = 𝜎2𝐸(∑𝑌𝑖

∞

𝑖=1

) = 𝜎2𝐸(𝑁) (𝑏𝑦 𝐿𝑒𝑚𝑚𝑎9.1) 

Again 

𝐸 (∑∑𝑋𝑖𝑌𝑖𝑋𝑗𝑌𝑗
𝑗𝑖≠𝑗

) = 2𝐸 (∑ ∑ 𝑋𝑖𝑌𝑖𝑋𝑗𝑌𝑗

𝑖−1

𝑗

∞

𝑖>𝑗
) = 2∑∑𝐸(𝑋𝑖𝑋𝑗𝑌𝑖)

𝑖−1

𝑗=1

∞

𝑖=2

 

                                         = =2∑ ∑ 𝐸 {𝑌𝑖𝐸{𝑋𝑖𝑋𝑗/𝑌𝑖}}
𝑖−1
𝑗=1

∞
𝑖=2 = 2∑ ∑ 𝐸{𝑌𝑖𝐸(𝑋𝑖)𝐸(𝑋𝑗/𝑌𝑖)} =

𝑖−1
𝑗=1

∞
𝑖=2

0 

as 𝑋𝑗  𝑎𝑛𝑑 𝑌𝑖  𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑋𝑖.                                                                             # 

Generalization of FCR bound for Sequential estimation 

Theorem 9.1: [𝒘𝒐𝒍𝒇𝒐𝒘𝒊𝒕𝒛]: Let(𝑋1, … ,𝑋𝑛, … . ) be a sequence of i.i.d random variables, whose 

common density 𝑓(𝑥;  𝜃) with respect to measure μ belong to a family 𝜓 = {𝑓(. ;  𝜃): 𝜃𝜀𝛩} on 

which the following regularity conditions are satisfied: 

1. Θ contains an interval in a Euclidian k-space. 

2. 𝑓(𝑥;  𝜃)is differentiable w.r.to θ on Θ. 

3. ∫|
𝜕

𝜕𝜃
𝑓(𝑥;  𝜃)|𝑑𝜇 < ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃𝜀𝛩. 

4. 0 < ∫[ 𝜕
𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥;  𝜃)]

2
𝑓(𝑥;  𝜃)𝑑𝜇 < ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃𝜀𝛩. 

5. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛 = 1,2, …… . . 𝑎𝑛𝑑 𝑎𝑙𝑙 𝜃 



∫[∑
|
𝜕
𝜕𝜃
𝑓(𝑥𝑖; 𝜃)|

𝑓(𝑥𝑖; 𝜃)

𝑛

𝑖=1

]2∏𝑑𝐹(𝑥𝑖) < ∞ 

𝑛

𝑖=1

 

  𝑜𝑟 ∫[∑ |
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥𝑖; 𝜃)|

𝑛

𝑖=1

]2∏𝑑𝐹(𝑥𝑖) < ∞

𝑛

𝑖=1

 

           Let (𝑅𝑛, 𝑛 = 1,2 …) be the sequence of stopping regions        associated with a given 

sequential procedure. Let 𝑔(𝜃) be an estimable and differential function on Θ. Let �̂�(𝑋1, … ,𝑋𝑛 , … ) 

be unbiased estimator of 𝑔(𝜃) satisfying the following conditions: 

6. ∫ |𝑔(𝑥1,… , 𝑥𝑛)|
𝜕

𝜕𝜃
∏ 𝑓(𝑥𝜈;  𝜃)∏ 𝑑𝜇(𝑥𝜈)

𝑛
𝜈=1

𝑛
𝜈=1 < ∞ 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 

𝑛 = 1,2 …

 

7. ∑ 𝑑
𝑑𝜃
𝑔𝑛(𝜃)

∞
𝑛=1  converges uniformly on Θ, where 

            𝑔𝑛(𝜃) = ∫ 𝑔(𝑥1, … , 𝑥𝑛)
𝑅𝑛̅̅ ̅̅

∏𝑑𝐹(𝑥𝜈)

𝑛

𝜈=1

 

𝑡ℎ𝑒𝑛 𝑉𝑎𝑟𝜃{𝑔(𝑋1, … , 𝑋𝑛, … )} ≥
[𝑔′(𝜃)]

2

𝐼(𝜃)𝐸(𝑁)
………………. (9.6) 

𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝐸𝑁 < ∞ 

Proof: Let N be the sample size associated with the given sequential procedure. Let 𝑆(𝑋𝑖 ;  𝜃) =

𝑑

𝑑𝜃
𝑙𝑜𝑔𝑓(𝑋𝑖 ;  𝜃); 𝑖 = 1,2 … 

These are i.i.dr.v’s and 1-4 guarantee that E S(𝑋𝑖 ;  𝜃) = 0 and 𝐼(𝜃) = 𝐸[𝑆2(𝑋𝑖 ;  𝜃)] < ∞  by 

condition 4 and the assumption              𝐸(𝑁) < ∞ ⇒ 𝑏𝑦 𝐿𝑒𝑚𝑚𝑎 9.1 

  𝐸[∑ S(𝑋𝑖 ;  𝜃)
𝑁
𝑖=1 ] = 𝐸(𝑁)𝐸S(𝑋𝑖 ;  𝜃) = 0  𝑓𝑜𝑟 𝑎𝑙𝑙  𝜃 ……… (9.7) 

Furthermore, according to condition 5 

     𝐸[∑ |S(𝑋𝑖 ;  𝜃)|
𝑁
𝑖=1 ]2 < ∞ ……………. (9.8) 

   𝐸[{∑ S(𝑋𝑖 ;  𝜃)
𝑁
𝑖=1 }2] = 𝐸(𝑁)𝐸S2(𝑋, 𝜃) = 𝐸(𝑁)𝐼(𝜃) ……… (9.8) 

Consider the expectation, 



         E {�̂�(𝑋1, … ,𝑋𝑛 …)∑S(𝑋𝑖 ;  𝜃)

𝑁

𝑖=1

}         θεΘ  

Where �̂�(𝑋1, … ) is unbiased estimator of𝑔(𝜃). According to (9.7) and by Schwartz inequality we 

have 

         E {�̂�(𝑋1, … ,𝑋𝑁)∑S(𝑋𝑖 ;  𝜃)

𝑁

𝑖=1

} ≤ [E {(�̂�(𝑋1, … , 𝑋𝑁) − 𝑔(𝜃))
2
}E {(∑S(𝑋𝑖 ;  𝜃)

𝑁

𝑖=1

)

2

}]

1
2

 

               For all θ ε Θ ……………… (9.10) 

The quantity E(�̂�(𝑋1, … , 𝑋𝑁…) − 𝑔(𝜃))
2
 is the variance of �̂�(𝑋1, … ,𝑋𝑛 … . ) under the 

sequential procedure. Further 6 & 7 allow the differentiation under the integral sign in, 

𝑔′(𝜃) =
𝑑

𝑑𝜃
∑∫ �̂�(𝑥1,… , 𝑥𝑛)

𝑅�̂�

∞

𝑛=1

∏𝑑𝐹(𝑥𝜈)

𝑛

𝜈=1

 

      =∑ ∫ �̂�(𝑥1, … , 𝑥𝑛)
𝜕

𝜕𝜃𝑅�̂�

∞

𝑛=1

∏𝑓(𝑥𝑖 ;  𝜃)∏𝑑𝜇(𝑥𝑖)

𝑛

𝑖=1

𝑛

𝑖=1

 

      =∑∫ �̂�(𝑥1,… , 𝑥𝑛)(∑
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓(𝑥𝑖 ; 𝜃)

𝑛

𝑖=1

)∏𝑓(𝑥𝑖 ;  𝜃)

𝑛

𝑖=1𝑅�̂�

∞

𝑛=1

𝑑𝜇(𝑥𝑖) 

      = ∑∫ �̂�(𝑥1, … , 𝑥𝑛)(∑𝑆(𝑥𝑖 ;  𝜃)

𝑛

𝑖=1

)∏𝑑𝐹(𝑥𝑖)

𝑛

𝑖=1𝑅�̂�

∞

𝑛=1

 

      = 𝐸[�̂�(𝑋1, … , 𝑋𝑛 …)∑ 𝑆(𝑋𝑖 ;  𝜃)
𝑁
𝑖=1 ] ……………………… (9.11) 

From (9.9) (9.10) & (9.11) 

       𝑉𝑎𝑟𝜃�̂�(𝑋1, ……) ≥
𝐸2[�̂�(𝑋1,…,𝑋𝑛…)∑ 𝑆(𝑋𝑖 ; 𝜃)

𝑁𝑛
𝑖=1 ]

𝐼(𝜃)𝐸(𝑁)
 

                                         =
[𝑔′(𝜃)]

2

𝐼(𝜃)𝐸(𝑁)
# 



Optimality Criterion of Sequential Procedure 

1. Subject to the condition 𝐸𝜃(𝑁) ≤ 𝑚 (m is a fixed integral bound) for all θ, minimize the 

variance of the best unbiased estimator that is,𝐸𝜃(𝑔�̂� −𝑔)
2 uniformly in θ (if such an 

estimator exist.) 

2. Subject to the condition 𝐸(𝑔�̂� − 𝑔)
2 ≤ 𝑣 < ∞(𝑓𝑖𝑥𝑒𝑑 𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒)𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃, 

minimize expected sample size 𝐸𝜃(𝑁). 

3. Minimizes the expected cost of sampling plus expected loss, that is, C𝐸𝜃(𝑁) +

𝐸𝜃(𝑔�̂� −𝑔)
2 

Generally, there is no sequential estimator that can satisfy 3 uniformly in θ. In case 2, 

De𝐺𝑟𝑜𝑜𝑡(1959) 𝑎𝑛𝑑 𝑊𝑎𝑠𝑎𝑛(1964) have shown that a fixed sample size procedure in the 

binomial case does not minimize 𝐸𝜃(𝑁) w.r.to all sequential procedure uniformly in θ, 0< 𝜃 < 1 

subject to the condition that 𝑠𝑢𝑝0<𝜃<1𝑣𝑎𝑟𝜃(�̂�) ≤
1

4𝑚
. 

Sequential Estimation of the Mean of Normal Population 

           Let(𝑋1, … , 𝑋𝑛) be i.i.d r.v’s with mean μ and variance𝜎2, both unknown as an estimate of 

μ, we choose�̅�𝑛, the sample mean. The problem now is to choose n. Let us assume that the loss 

incurred is A|�̅�𝑛 − 𝜇|, where A> 0, is known constant and let each observation cost one unit. Then 

we wish to choose n to minimize, 

              𝐸𝐿(𝑛) = 𝐸{𝐴|�̅�𝑛 − 𝜇|+ 𝑛} ……………………. (9.12) 

We have,     𝐸√𝑛
|�̅�𝑛−𝜇|

𝜎
= √

2

𝜋
 

So that  𝐸𝐿(𝑛) = 𝐴𝐸 (
�̅�𝑛−𝜇

𝜎
√𝑛)

𝜎

√𝑛
+ 𝑛   

                             = 𝐴√
2

𝜋

𝜎

√𝑛
+ 𝑛 ……………….. (9.13) 

Treating as continuous function n we have for minimax, 



               −𝐴√
2

𝜋

𝜎

2(𝑛)
3
2
+ 1 = 0 ⇒ 𝑛0 = (

𝐴𝜎

√2𝜋
)

2

3
 …………………. (9.14) 

At the value n that minimizes (9.13), for this value of n 

        𝜈(𝜎) = 𝐸𝐿(𝑛0) = 𝐴√
2

𝜋
𝜎 (
√2𝜋

𝐴𝜎
)

1
3

+ (
𝐴𝜎

√2𝜋
)

2
3

 

                                      = 𝐴√
2

𝜋
𝜎 (
√2𝜋

𝐴𝜎
)

−1
3

+ (
𝐴𝜎

√2𝜋
)

2
3

 

                                       =
𝐴√

2

𝜋
𝜎+

𝐴𝜎

√2𝜋

(
𝐴𝜎

√2𝜋
)

2
3
= 3(

𝐴𝜎

√2𝜋
)
2
3
= 3𝑛0 ……….. (9.15) 

So that the loss due to the error of estimation is thrice the size of the sample, that is thrice the cost 

of sampling. Of course, this presupposes the knowledge of σ. If we do not know σ, we cannot 

compute 𝑛0. 

When σ is not known, we have the following sequential sampling procedure R:  

         𝑁 =  𝑙𝑒𝑎𝑠𝑡 𝑛 , 𝑛 ≥ 2 𝑤ℎ𝑒𝑟𝑒    𝑛 ≥ (
𝐴𝑠𝑛

√2𝜋
)
2
3
 ……………. (9.16) 

Where,  𝑠𝑛
2 =

∑(𝑥𝑖−𝑥𝑛̅̅ ̅̅ )
2

𝑛−1
  , 𝑥𝑛̅̅ ̅ =

1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1  

We may write this inequality, 

𝑁 =  𝑓𝑖𝑟𝑠𝑡 𝑛 , 𝑛 ≥ 2 𝑤ℎ𝑒𝑛 ∑ (𝑥𝑖 − 𝑥𝑛̅̅ ̅)
2 ≤

2𝜋

𝐴2
𝑛
𝑖=1 (𝑛 − 1)𝑛3  …… (9.17) 

Lemma 9.3: Rule R terminates with probability 1. 

Proof: It is sufficient to show that, 

(
𝐴𝑠𝑛

√2𝜋
)

2
3 𝑃
    ⟶ 𝑛0

     𝑖. 𝑒 lim
𝑛→∞

𝑃[|(
𝐴𝑠𝑛

√2𝜋
)

2
3

− 𝑛0| ≤ 𝜀] = 1    



Or lim
𝑛→∞

𝑃[|(
𝐴𝑠𝑛

√2𝜋
)

2
3
− 𝑛0| > 𝜀] = 0  

Now        lim
𝑛→∞

𝑃 [|(
𝐴𝑠𝑛

√2𝜋
)
2
3
− (

𝐴𝜎

√2𝜋
)
2
3
| > 𝜀] 

                = lim
𝑛→∞

𝑃 [|(
𝑠𝑛

𝜎2
)

1
3
− 1| > (

√2𝜋

𝐴
)

2
3
𝜀] …………….(9.18) 

Since, lim
𝑛→∞

𝑃 [|
𝑠𝑛
2

𝜎2
− 1| > (

√2𝜋

𝐴
)

2
3
𝜀] ≤ lim

𝑛→∞

2

(𝑛−1)
𝜀2(

𝐴𝜎

√2𝜋
)
2
3
= 0    

As      
𝑠𝑛
2

𝜎2
∼
𝜒 𝑛−1
2

𝑛−1
    therefore (9.18) tends to zero as n→ ∞. 

Lemma 9.4: For any fixed n, 𝑋𝑛̅̅̅̅   is independent of 𝑆2
2, 𝑆3

2, … , 𝑆𝑛
2 and hence, 

           𝑃 [√𝑛 (
𝑋𝑛̅̅ ̅̅ −𝜇

𝜎
) ≤ 𝑡 𝑠2

2, … , 𝑠𝑛
2⁄ ] = ∫

1

√2𝜋

𝑡

−∞
𝑒−

𝑥2

2 𝑑𝑥   ………. (9.19) 

Proof:  Define 𝑈𝑖 =
𝑋𝑖−𝜇

𝜎
  𝑖 = 1,2,… , 𝑛 

Then 𝑈𝑖 ∼ 𝑁(0,1) r.v’s and independent i=1,2….. 

Let us write, 

                𝑦𝑖 =
𝑢1 + 𝑢2 +⋯+ 𝑢𝑖 − 𝑖𝑢𝑖+1

√i(i + 1)
, i = 1,2,… , n − 1  

                     𝑦𝑛 = √nu̅   where u̅ =
1

n
∑𝑢𝑖

n

i=1

 

     𝑐𝑜𝑣(𝑌𝑖 , 𝑌𝑗) = 𝐸 [
𝑈1 + 𝑈2 +⋯+𝑈𝑖 − 𝑖𝑈𝑖+1

√i(i + 1)
.
𝑈1 + 𝑈2 +⋯+𝑈𝑗 − 𝑗𝑈𝑗+1

√j(j + 1)
] 

                          = 𝐸 [
(U1

2 +U2
2 + ⋯+ Ui

2) − iEUi+1
2

√i(i + 1)(j + 1)
] = i − i = 0   



                𝐸𝑌𝑖 = 0 , 𝑣𝑎𝑟(𝑌𝑖) =
𝐸U1

2 − i2EUi+1
2

i(i + 1)
=
𝑖 + i2

𝑖(𝑖 + 1)
= 1  

                 𝑌𝑖  𝑎𝑟𝑒 𝑖. 𝑖. 𝑑 𝑁(0,1) 𝑖 = 1,2,… , 𝑛 

          𝑆𝑖
2 =

1

𝑖 − 1
∑(𝑋𝑗 − �̅�)

2

𝑛

𝑗=1

 

                =
𝜎2

𝑖 − 1
∑𝑌𝑗

2

𝑖−1

𝑗=1

=
𝜎2

𝑖 − 1
(𝑌1

2 +⋯+𝑌𝑖−1
2), 𝑖 = 2,3,… , 𝑛  

It follows that 𝑌𝑛 is independent of 𝑆𝑖
2 for i=2,…,n this is the same as saying 𝑋𝑛̅̅̅̅  is independent of 

𝑆2
2, 𝑆3

2, … , 𝑆𝑛
2. 

Let us now compute the average loss for R. 

            𝐿(𝑁) = 𝐴√𝑁 |
𝑋𝑛̅̅̅̅ − 𝜇

𝜎
|
𝜎

√𝑁
+𝑁  

𝐸𝐿(𝑁) =∑𝑃[𝑁 = 𝑛]𝐸[𝐿(𝑁) 𝑁 = 𝑛⁄ ]

∞

𝑛=2

 

              = ∑𝑃[𝑁 = 𝑛]𝐸[𝐴√𝑁 |
𝑋𝑛̅̅̅̅ − 𝜇

𝜎
|
𝜎

√𝑁
+𝑁 𝑁 = 𝑛⁄ ]

∞

𝑛=2

 

              =∑ 𝑃[𝑁 = 𝑛]𝐴𝐸 [√𝑁 |
𝑋𝑛̅̅̅̅ − 𝜇

𝜎
|
𝜎

√𝑁
+𝑁 𝑁 = 𝑛⁄ ] + 𝐸(𝑁)

∞

𝑛=2

 

              = ∑𝑃[𝑁 = 𝑛](𝐴√
2

𝜋

𝜎

√𝑁
)

∞

𝑛=2

+𝐸(𝑁) 

              = 𝐴√
2

𝜋
𝜎𝐸 (𝑁

−1
2 )+ 𝐸(𝑁) 



              = 2𝑛
0

3
2𝐸 (𝑁

−1
2 )+ 𝐸(𝑁) 

Proposition: For large 𝑛0𝑃[𝑁 ≤ 𝑛] ≥
1

2
 

Proof: We have, 𝑃[𝑁 ≤ 𝑛] ≥ 𝑃 [𝑌1
2 + 𝑌2

2 +⋯+ 𝑌𝑛−1
2 ≤

(𝑛−1)𝑛3

𝑛0
3 ] for 𝑛 = 𝑛0 

        𝑃[𝑁 ≤ 𝑛] ≥ 𝑃[𝑌1
2 + 𝑌2

2 +⋯+ 𝑌𝑛0−1
2 ≤ 𝑛0 − 1] 

                            = 𝑃[𝜒(𝑛0−1)
2 ≤ 𝑛0 − 1] 

                            = 𝑃[𝜒(𝑛0−1)
2 − 𝑛0− 1̅̅ ̅̅ ̅̅ ̅̅ ̅ ≤ 0] 

                            = 𝑃[𝑍 ≤ 0] =
1

2
      Where, 𝑍 ∼ 𝑁(0,1)# 

Theorem 9.2: Let(𝑍1, … , 𝑍𝑛) be i.i.d- r.v’s such that 𝑃[𝑍𝑗 = 0] ≠ 1 set  

𝑆𝑛 = 𝑍1 + 𝑍2…+ 𝑍𝑛and for two constants 𝐶1, 𝐶2 𝑤𝑖𝑡ℎ 𝐶1 < 𝐶2, define the random quantity N as 

the smallest n for which 𝑆𝑛 ≤ 𝐶1 𝑜𝑟 𝑆𝑛 ≥ 𝐶2, 𝑠𝑒𝑡 𝑁 = ∞ 𝑖𝑓 𝐶1 < 𝑆𝑛 < 𝐶2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. thus there 

exist 𝐶 > 0 𝑎𝑛𝑑 0 < 𝜌 < 1 such that, 

𝑃[𝑁 > 𝑛] ≤ 𝐶𝜌𝑛   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛.  ………………. (9.20) 

Proof: The assumption 𝑃[𝑍𝑗 = 0] ≠ 1 implies that𝑃[𝑍𝑗 > 0] > 0. Let us suppose that 𝑃[𝑍𝑗 >

0] > 0 then there exists 𝜀 > 0 such that 𝑃[𝑍𝑗 > 𝜀] = 𝛿 > 0 in fact if 𝑃[𝑍𝑗 > 𝜀] = 0 𝑓𝑜𝑟 ∀> 𝜀, 

then in particular 𝑃 [𝑍𝑗 >
1

𝑛
] = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛. but 𝑃 [𝑍𝑗 >

1

𝑛
] ↑ 𝑃[𝑍𝑗 > 0] and we have 0 =

lim
𝑛
𝑃 [𝑍𝑗 >

1

𝑛
] = 𝑃[𝑍 > 0] which is a contradiction. 

Thus for 𝑃[𝑍𝑗 > 0] > 0 𝑤𝑒 ℎ𝑎𝑣𝑒 𝑃[𝑍𝑗 > 𝜀] = 𝛿 > 0 ……… (9.21) 

With 𝐶1, 𝐶2 and ε, there exist a positive integer m such that, 

                       𝑚𝜀 > 𝐶2−𝐶1 ……………….. (9.22) 

For such m we have, 



⋂ [𝑍𝑗 > 𝜀] ⊆ [∑ 𝑍𝑗 > 𝑚𝜀
𝑘+𝑚
𝑗=𝑘+1 ]𝑘+𝑚

𝑗=𝑘+1 ⊆ [∑ 𝑍𝑗 > 𝐶2−𝐶1] 
𝑘+𝑚
𝑗=𝑘+1 …. (9.23) 

𝑃[∑ 𝑍𝑗 > 𝐶2−𝐶1] ≥ 𝑃{ ⋂ [𝑍𝑗 > 𝜀]

𝑘+𝑚

𝑗=𝑘+1

} 
𝑘+𝑚

𝑗=𝑘+1
 

             =∏ 𝑃[𝑍𝑗 > 𝜀]  = 𝛿
𝑚 , 𝑎𝑠 𝑍𝑗 ′𝑠 𝑎𝑟𝑒 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 .

𝑘+𝑚

𝑗=𝑘+1
 

Clearly, 

            𝑆𝑘𝑚 =∑[𝑍𝑗𝑚+1 +⋯+𝑍(𝑗+1)𝑚]

𝑘−1

𝑗=0

 

Now we assert that,   𝐶1 < 𝑆𝑖 < 𝐶2 , 𝑖 = 1,2, … , 𝑘𝑚 ⇒ 

           𝑍𝑗𝑚+1 +⋯+𝑍(𝑗+1)𝑚 ≤ 𝐶2−𝐶1  , 𝑗 = 1,2,… , 𝑘 − 1  ………. (9.24) 

This is because, if for some 𝑗 = 1,2,… , 𝑘 − 1 we suppose that  𝑍𝑗𝑚+1 + ⋯+𝑍(𝑗+1)𝑚 >

𝐶2−𝐶1  , this inequality together 

𝑆𝑗𝑚 > 𝐶1  would imply 𝑆(𝑗+1)𝑚 > 𝐶2  , which is a contradiction to the first part of (9.24). 

[𝑁 ≥ 𝑘𝑚 + 1] ⊆ [𝐶1 < 𝑆𝑗 < 𝐶2 , 𝑗 = 1,2,… , 𝑘𝑚] 

                                       ⊆ [𝑍𝑗𝑚+1 +⋯+𝑍(𝑗+1)𝑚 ≤ 𝐶2−𝐶1] 

 

 𝑃[𝑁 ≥ 𝑘𝑚+ 1] ≤∏[𝑍𝑗𝑚+1 + ⋯+ 𝑍(𝑗+1)𝑚 ≤ 𝐶2−𝐶1]

𝑘−1

𝑗=0

 

                                       ≤ (1 − 𝛿𝑚 )𝑘  

Thus, 𝑃[𝑁 ≥ 𝑘𝑚 + 1] ≤ (1 − 𝛿𝑚 )𝑘 =
[(1−𝛿𝑚 )

1
𝑚]

𝑚𝑘+1

1−𝛿𝑚 
= 𝐶𝜌𝑚𝑘+1    



𝑃𝑢𝑡   𝐶 =
1

1 − 𝛿𝑚 
      , 𝜌 = (1 − 𝛿𝑚 )

1
𝑚   ,0 < 𝜌 < 1,𝐶 > 0  

𝑡ℎ𝑢𝑠,             𝑃[𝑁 ≥ 𝑛] ≤ 𝐶𝜌𝑛  # 

Theorem 9.3: Let 𝑀𝜃(𝑡) = 𝑀𝜃(𝑒
𝑡𝑧) be the m.g.f of Z, and let it be assumed to exist for all t, 

where 𝑍 = 𝑙𝑜𝑔
𝑓(𝑥,𝜃1)

𝑓(𝑥,𝜃0)
 then a necessary and sufficient condition that there exist a (𝑡 = 𝑡0 ≠ 0) such 

that 𝑀𝜃(𝑡0) = 1 is that 𝐸𝜃(𝑍) ≠ 0 and that Z takes on both positive and negative values with 

positive probability. 

Proof: To prove the sufficiency, we observe that 

𝑀𝜃′′(𝑡) = 𝐸𝜃(𝑍
2𝑒𝑡𝑍) > 0 Unless Z=0 [since𝑀𝜃(𝑡) exists for all t, it is differentiable any number 

of times]. Thus 𝑀𝜃(𝑡)is convex function of t. Now by assumption there exists a value Z’> 0 such 

that 𝑃𝜃[𝑍 > 𝑍′] = 𝑢 > 0, therefore 𝑡 > 0 implies 

            𝑀𝜃(𝑡) = 𝐸𝜃(𝑒
𝑡𝑍) > 𝑒𝑡𝑍

′
𝑃𝜃[𝑍 > 𝑍

′] = 𝑢𝑒𝑡𝑍
′
 ………….. (9.25) 

and𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑙𝑦 𝑀𝜃(𝑡) ⟶ ∞ 𝑎𝑠 𝑡 → ∞.𝐴 similar argument show that 𝑀𝜃(𝑡) ⟶ ∞ 𝑎𝑠 𝑡 → ∞. 

          [𝑀𝜃(𝑡) > 𝑒
𝑡𝑍′𝑃𝜃[𝑍 > 𝑍

′] = 𝑒𝑡𝑍
′
𝑣  

                                   𝑤ℎ𝑒𝑟𝑒 𝑃𝜃[𝑍 > 𝑍
′] = 𝑣 > 0,𝑍′ < 0]  

The 𝑀𝜃(𝑡) assume a minimum value at the unique point 𝑡∗ for which 𝑀′𝜃(𝑡
∗) = 0 𝑛𝑜𝑤 𝑀′𝜃(0) =

𝐸(𝑍) ≠ 0 , so that 𝑡∗ ≠ 0 unless 𝐸𝜃(𝑍) = 0.Since𝑀𝜃(0) = 1 𝑎𝑛𝑑 𝑀𝜃(𝑡
∗) < 𝑀𝜃(0) =

1 wherever   

𝐸𝜃(𝑍) ≠ 0 It must follow that there exist a 𝑡0 ≠ 0 such that 𝑀𝜃(𝑡0) = 1 

To prove the condition is necessary, suppose that 𝑃𝜃[𝑍 ≥ 0] = 1 and let𝑃𝜃[𝑍 = 0] = 𝛼 < 1. Thus 

𝑃𝜃[𝑍 > 0] = 1 − 𝛼, let 𝑡 < 0 for any 0 < 𝜀 < 1 − 𝛼 we can find positive number C such that 

𝑃𝜃[0 < 𝑍 < 𝐶] ≤ 𝜀. Then, 



𝛼 ≤ 𝑀𝜃(𝑡) ≤ 𝑃𝜃 [𝑍 = 0] +∫ 𝑒𝑡𝑍𝑑𝐹 +∫ 𝑒𝑡𝑍𝑑𝐹
∞

𝐶

𝐶

0

 

                      = 𝛼 + 𝜖 + 𝑒𝑡𝐶(1 − 𝛼 − 𝜖) 

       𝑎𝑠 𝑃[𝑍 > 𝐶] = 1 − 𝑃[𝑍 ≤ 𝐶] = 1 − 𝑃[𝑍 = 0] − 𝑃[0 < 𝑍 ≤ 𝐶] 

∴      𝛼 ≤ 𝑀𝜃(𝑡) ≤ [𝛼 + 𝜖][1 − 𝛼 − 𝜖]𝑒
𝑡𝐶    ……………… (9.26) 

And hence,           𝛼 ≤ lim
𝑡→∞

𝑀𝜃(𝑡) ≤ 𝛼 + 𝜖 

Since ε is arbitrary,        lim
𝑡→∞

𝑀𝜃(𝑡) = 𝛼 

We see that,         𝑀′𝜃(𝑡) = lim
𝑡→∞

𝑀𝜃 (𝑡+ℎ)−𝑀𝜃(𝑡−ℎ)

ℎ
> 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 < 0 

and hence 𝑀𝜃(𝑡) = 1 has no solution other than t=0. A similar argument shows that, if 

 𝑃𝜃 [𝑍 ≤ 0] = 1;  𝑃𝜃[𝑍 = 0] < 1 then𝑀′𝜃(𝑡) < 0, for all t > 0, 𝑀𝜃(𝑡) = 1 has no solution other 

than t=0.   # 

Theorem 9.4: [Fundamental Inequality]: 

   For a given θ and for all t such that 𝑀𝜃(𝑡) > 𝜌, where ρ as in Theorem (9.2)  

𝐸𝜃 [𝑒
𝑡𝑆𝑁(𝑀𝜃(𝑡))

−𝑁
] = 1 …………….. (9.27)   

and if  𝑃𝜃 [𝑍 > 0] > 0 𝑎𝑛𝑑  𝑃𝜃[𝑍 < 0] > 0,𝑤ℎ𝑒𝑟𝑒 𝑍 = 𝑙𝑜𝑔
𝑓(𝑥,𝜃1)

𝑓(𝑥,𝜃0)
 

𝑡ℎ𝑒𝑛 (9.27) ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙  𝑡. 

Proof: Let the sequential procedure is defined in Theorem 9.2. Then since,        𝐸𝜃𝑒
𝑡𝑆𝑛 =

𝐸𝜃𝑒
𝑡(𝑍1+⋯+𝑍𝑛) 

                 = ∏ 𝐸𝜃𝑒
𝑡𝑍𝑖𝑛

𝑖=1 = [𝑀𝜃(𝑡)]
𝑛  ………..….. (9.28) 

            𝐸𝜃[𝑒
𝑡𝑆𝑛[𝑀𝜃(𝑡)]

−𝑛] = 1 



                 1 = 𝐸𝜃[𝑒
𝑡𝑆𝑁[𝑀𝜃(𝑡)]

−𝑁]

=         ∑  𝑃𝜃[𝑁 = 𝑗]

𝑛

𝑗=1

𝐸[𝑒𝑡𝑆𝑁 [𝑀𝜃(𝑡)]
−𝑛 𝑁 = 𝑗⁄ ]

+  𝑃𝜃[𝑁 > 𝑛]𝐸𝜃[𝑒
𝑡𝑆𝑁 [𝑀𝜃(𝑡)]

−𝑛 𝑁 > 𝑛⁄ ] 

= ∑  𝑃𝜃[𝑁 = 𝑗]
𝑛
𝑗=1 𝐸[𝑒𝑡𝑆𝑗 [𝑀𝜃(𝑡)]

−𝑗 𝑁 = 𝑗⁄ ] +  𝑃𝜃[𝑁 >

𝑛]𝐸𝜃[𝑒
𝑡𝑆𝑁[𝑀𝜃(𝑡)]

−𝑛 𝑁 > 𝑛⁄ ] ……………………. (9.29) 

Since 𝐸[𝑒𝑡𝑆𝑁[𝑀𝜃(𝑡)]
−𝑛 𝑁 = 𝑗⁄ ] = 𝐸[𝑒𝑡𝑆𝑗 [𝑀𝜃(𝑡)]

−𝑗 𝑁 = 𝑗⁄ ] 𝑎𝑠   

∑𝑍𝑖

𝑗

𝑖=1

 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 ∑ 𝑍𝑖

𝑛

𝑖=𝑗+1

 

Since for N>n, 𝐶1 < 𝑆𝑛 < 𝐶2 then by (9.29) and Theorem (9.2) 

0 ≤ 1 −∑  𝑃𝜃[𝑁 = 𝑗]

𝑛

𝑗=1

𝐸[𝑒𝑡𝑆𝑗 [𝑀𝜃(𝑡)]
−𝑗 𝑁 = 𝑗⁄ ] ≤

𝜌𝑛

[𝑀𝜃(𝑡)]
−𝑛
𝐸𝜃[𝑒

𝑡𝑆𝑛 𝑁 > 𝑛⁄ ]

= (
𝜌

𝑀𝜃(𝑡)
)
𝑛

𝑘(𝑡)  

Where k (t) is positive and for fixed θ depends only on t. Letting as 𝑛 → ∞ we see that for all real 

t such that 𝑀𝜃(𝑡) > 𝜌 equation (9.27) holds. 

Suppose now that Z takes on both positive and negative values so that  𝑀𝜃(𝑡) has a minimum 

value which is assumed at t=t* then it follows from (9.29) that for all t, 

 𝑃𝜃 [𝑁 > 𝑛] <
[𝑀𝜃 (𝑡)]

𝑛

1<(𝑡)
 𝑎𝑛𝑑  𝑃𝜃[𝑁 > 𝑛] <

[𝑀𝜃(𝑡
∗)]𝑛

1<(𝑡∗)
  ……… (9.30) 

And hence  



0 ≤ 1 −∑ 𝑃𝜃 [𝑁 = 𝑗]

𝑛

𝑗=1

𝐸[𝑒𝑡𝑆𝑗 [𝑀𝜃(𝑡)]
−𝑗 𝑁 = 𝑗⁄ ] ≤

[𝑀𝜃(𝑡
∗)]𝑛

1 < (𝑡∗)

𝑘(𝑡)

𝑘(𝑡∗)
 

                                                                                           …………….. (9.31)   

Thus  𝑛 → ∞0 ≤ 1− 𝐸𝜃[𝑒
𝑡𝑆𝑁[𝑀𝜃(𝑡)]

−𝑁] ≤ 0 𝑎𝑠
𝑀𝜃 (𝑡

∗)

𝑀𝜃(𝑡)
< 1  

Or 𝐸𝜃 [𝑒
𝑡𝑆𝑁 [𝑀𝜃(𝑡)]

−𝑁] = 1 # 

OC and ASN function of SPRT 

For brevity we denote by L (θ) the OC (operating characteristic function) of SPRT. 

Let us consider the sequence 𝑍𝑖  of independent r.v’s defined by 𝑍𝑖 = 𝑙𝑜𝑔
𝑓(𝑥𝑖 ,𝜃1)

𝑓(𝑥𝑖 ,𝜃0)
 𝑖 = 1,2,… 

satisfying the assumption of theorem (9.2) them if EZ≠0, there exist one and only ℎ0 ≠ 0 such 

that𝐸(𝑒ℎ0𝑧) = 1; 𝑖𝑓 𝐸(𝑍) = 0, this condition hold only for ℎ0 = 0 let us assume that𝐸(𝑍) ≠ 0. 

Since the distribution of Z depends on θ. Thus let us ℎ0 = ℎ0(𝜃). 

           𝑀𝜃(ℎ0) = 𝑀(ℎ0(𝜃)) = 𝐸𝑒
𝑍ℎ0(𝜃) = 1  ……………. (9.32) 

                      = ∫𝑒𝑍ℎ0𝑓(𝑍, 𝜃) 𝑑𝑍 = 1   

Or ∑ 𝑒𝑍ℎ0 𝑝(𝑍, 𝜃) = 1 ……………………. (9.33) 

𝐸𝜃𝑒
𝑆𝑁ℎ0(𝜃) = ∏ 𝐸𝑁

𝑖=1 𝑒𝑍𝑖ℎ0(𝜃) = 1  ………………. (9.34) 

1 = 𝐸𝜃𝑒
𝑆𝑁ℎ0(𝜃) = 𝐿(𝜃)𝐸𝜃(𝑒

𝑆𝑁ℎ0(𝜃) 𝑆𝑁 ≤ log𝐵⁄ ) + 1 − 𝐿(𝜃)𝐸𝜃(𝑒
𝑆𝑁ℎ0(𝜃) 𝑆𝑁 ≤ log𝐴⁄ ) 

                                                                                                ……………. (9.35) 

1 = L(𝜃) 𝐸𝜃
∗  + [1 − 𝐿(𝜃)]𝐸𝜃

∗∗                                           ………………(9.36) 

Where 𝐸𝜃
∗ , 𝐸𝜃

∗∗ represent the conditional expectations when we accept and reject the hypothesis 

respectively, 



           𝐿(𝜃) =
𝐸𝜃
∗∗−1

𝐸𝜃
∗∗−𝐸𝜃

∗  ………………… (9.37) 

We now find the approximate expression for𝐿(𝜃). Let us consider,  𝑆𝑁 = 𝑙𝑜𝑔𝐵 𝑎𝑛𝑑 𝑆𝑁 =

𝑙𝑜𝑔𝐴 instead of inequality𝑆𝑁 ≤ 𝑙𝑜𝑔𝐵 𝑎𝑛𝑑 𝑆𝑁 ≥ 𝑙𝑜𝑔𝐴. Thus if 𝑆𝑁 = 𝑙𝑜𝑔𝐵  

𝐸𝜃
∗[𝑒𝑥𝑝𝑆𝑁ℎ0(𝜃)] ≈ 𝐸𝜃

∗[𝑒𝑥𝑝(𝑙𝑜𝑔𝐵)ℎ0(𝜃)] 

                                ≈ 𝐸𝜃
∗[𝐵]ℎ0(𝜃) ≈ [𝐵]ℎ0(𝜃) 

Similarly, 𝐸𝜃
∗∗[𝑒𝑥𝑝𝑆𝑁ℎ0(𝜃)] ≈ 𝐸𝜃

∗∗[𝑒𝑥𝑝(𝑙𝑜𝑔𝐴)ℎ0(𝜃)] ≈ [𝐴]
ℎ0(𝜃) 

         ∴      𝐿(𝜃) =
[𝐴]ℎ0(𝜃) − 1

[𝐴]ℎ0(𝜃) − [𝐵]ℎ0(𝜃)
 

When, 𝐸𝜃(𝑍) = 0, 𝑡ℎ𝑒𝑛 ℎ0(𝜃′) = 0 where θ’ is value of θ for which 𝐸𝜃(𝑍) = 0 =

0. Then, 

lim
𝜃→𝜃′

𝐿(𝜃) = 𝐿(𝜃′) = lim
𝜃→𝜃′

[𝐴]ℎ0(𝜃)− 1

[𝐴]ℎ0(𝜃)− [𝐵]ℎ0(𝜃)
 

                       = lim
𝜃→𝜃′

𝐴ℎ0(𝜃)−1
𝜃

𝐴ℎ0
(𝜃)−𝐵ℎ0

(𝜃)

𝜃

=
𝑙𝑜𝑔𝐴

𝑙𝑜𝑔𝐴 − 𝑙𝑜𝑔𝐵
 

For any real ℎ0(𝜃), we can determine the point in the plane with co-ordinate (θ, L (θ)). The locus 

of these points will be approximate graph of the OCfunction. 

Expected value of N i.e𝑬𝜽𝑵 or ASN (Average Sampling Number): 

We know that for 

 EZ≠0 𝐸𝜃 [𝑒
𝑆𝑁ℎ[𝑀𝜃(ℎ)]

−𝑁] = 1 differentiating w.r.to h at h=0 

𝐸𝜃{𝑆𝑁𝑒
𝑆𝑁ℎ[𝑀𝜃(ℎ)]

−𝑁 − 𝑁𝑒𝑆𝑁ℎ[𝑀𝜃(ℎ)]
−𝑁−1̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑀′′𝜃(ℎ))}ℎ=0 = 0 



                𝐸𝜃{𝑆𝑁 −𝑁𝐸𝜃𝑍} = 0 = 𝐸𝜃(𝑁) =
𝐸𝜃(𝑆𝑁)

𝐸𝜃(𝑍)
 

𝐸𝜃
∗ [𝑆𝑁] Denote the conditional expectation of the r.v’s provided 𝑆𝑁 ≤ 𝑙𝑜𝑔𝐵 and 𝐸𝜃

∗∗[𝐵𝑁] the 

conditional expectation of 𝑆𝑁 provided 𝑆𝑁 ≥ 𝑙𝑜𝑔𝐴. 

           𝐸𝜃(𝑆𝑁) = 𝐿(𝜃)𝐸𝜃
∗(𝑆𝑁) + (1 − 𝐿(𝜃))𝐸𝜃

∗∗(𝑆𝑁) 

           𝐸𝜃(𝑁) =
𝐿(𝜃)𝐸𝜃

∗𝑆𝑁 + (1 − 𝐿(𝜃))𝐸𝜃
∗∗(𝑆𝑁)

           𝐸𝜃(𝑍)
 

If 𝑆𝑁 = 𝑙𝑜𝑔𝐵 𝑜𝑟𝑆𝑁 = 𝑙𝑜𝑔𝐴 according as accepting and rejecting hypothesis. 

           𝐸𝜃(𝑁) =
𝐿(𝜃)𝑙𝑜𝑔𝐵 + (1 − 𝐿(𝜃))𝑙𝑜𝑔𝐴

           𝐸𝜃(𝑍)
 

If 𝐸𝜃(𝑍) = 0 we differentiate the fundamental Identity twice, we have, 

𝐸𝜃
′ [{(𝑆𝑁 − 𝑁

𝑀𝜃
′ (ℎ)

𝑀𝜃(ℎ)
)
2

−
𝑁𝑀𝜃

′′(ℎ)𝑀𝜃(ℎ)−𝑁(𝑀𝜃
′ (ℎ))

2

(𝑀𝜃(ℎ))
2 } 𝑒𝑆𝑁ℎ[𝑀𝜃(ℎ)]

−𝑁] = 0  

Taking the derivative at h=0 and using 

𝑀𝜃(0) = 1,𝑀′𝜃(0) = 𝐸𝜃(𝑍) = 0 And 𝑀′′𝜃(0) = 𝐸𝜃1(𝑍
2) ≠ 0 we have 

           𝐸𝜃′(𝑆𝑁
2 −𝑁𝐸𝜃′𝑍

2) = 0 

Or 𝐸𝜃′(𝑁) =
𝐸𝜃′𝑆𝑁

2

𝐸𝜃′ (𝑍
2)
=
𝐿(𝜃′)𝑆𝑁

2+(1−𝐿(𝜃′))𝐸𝜃
∗∗(𝑆𝑁

2 )

𝐸𝜃′ (𝑍
2)

 

                     =
𝐿(𝜃′)(𝑙𝑜𝑔𝐵)+ (1 − 𝐿(𝜃′))(𝑙𝑜𝑔𝐴)2

𝐸𝜃′(𝑍2)
 

         =
𝑙𝑜𝑔𝐴

𝑙𝑜𝑔𝐴 − 𝑙𝑜𝑔𝐵
(𝑙𝑜𝑔𝐵)2 + (1−

𝑙𝑜𝑔𝐴

𝑙𝑜𝑔𝐴 − 𝑙𝑜𝑔𝐵
) (𝑙𝑜𝑔𝐴)2 𝐸𝜃(𝑍

2)⁄  

         = −
𝑙𝑜𝑔𝐴𝑙𝑜𝑔𝐵

𝐸𝜃′(𝑍2)
 



Theorem 9.5: [𝒘𝒂𝒍𝒅] If SPRT is defined by (𝑙𝑜𝑔𝐵, 𝑙𝑜𝑔𝐴), where 

0 < 𝐵 < 1,0 < 𝐴 < 1, then the error probabilities 𝛼,𝛽 satisfy, 

𝐴 ≤
1−𝛽

𝛼
, 𝐵 ≥

𝛽

1−𝛼
 Where, 𝛼 = 𝑃𝜃1[𝑆𝑁 ≥ 𝐴], 𝛽 = 𝑃𝜃0[𝑆𝑁 ≥ 𝐵] 

If we set, 𝐴′ =
1−𝛽

𝛼
, 𝐵′ = 

𝛽

1−𝛼
 then corresponding error probabilities 𝛼′, 𝛽′ satisfy, 𝛼′ ≤

𝛼

1−𝛽
, 𝛽′ ≥

𝛽

1−𝛼
, and if 𝛼 +  𝛽 ≤ 1, 𝑡ℎ𝑒𝑛  

𝛼′ + 𝛽′ ≤  𝛼 + 𝛽 

Exp 9.1: Let(𝑋1, … , 𝑋𝑛) be i.i.d r.v’s having N (θ, 1). The two simple hypotheses are, 𝐻0: 𝜃 =

−1,𝐻1: 𝜃 = 1 

          𝑍 = 𝑙𝑜𝑔
𝑓(𝑋, 1)

𝑓(𝑋, −1)
= 𝑙𝑜𝑔𝑒−

(𝑥−1)2

2 𝑒
(𝑥+1)2

2 = 𝑙𝑜𝑔𝑒2𝑥 = 2𝑋  

m.g.f of X is,   𝐺𝜃
(𝑡) = exp (

𝑡2

2
+ 𝜃𝑡) 

m.g.f of 2X is,  𝑀
𝜃
(𝑡) = e2𝑡

2+2𝜃𝑡   

It follows that, ℎ0(𝜃) = −𝜃 thus, 

             𝐿(𝜃) =
𝑒−𝜃𝑎

𝑒−𝜃𝑎 − 𝑒𝜃𝑏
  𝑤ℎ𝑒𝑟𝑒, −𝑏 = 𝑙𝑜𝑔𝐵, 𝑎 = 𝑙𝑜𝑔𝐴  

                𝐸𝜃(𝑁) =
1

2𝜃
[𝑎

1 − 𝑒𝜃𝑏

𝑒−𝜃𝑎 − 𝑒𝜃𝑏
+ 𝑏

𝑒−𝜃𝑎 − 1

𝑒−𝜃𝑎 − 𝑒𝜃𝑏
] 

For𝐻0: 𝜃 = 𝜃0, 𝐻1:𝜃 = 𝜃1 , 

   𝜆𝑛 =∏
𝑓(𝑋𝑖 , 𝜃1)

𝑓(𝑋𝑖 ,𝜃0)

𝑛

𝑖=1

  𝑜𝑟  𝑙𝑜𝑔𝜆𝑛 =∑
𝑓(𝑋𝑖 , 𝜃1)

𝑓(𝑋𝑖 ,𝜃0)

𝑛

𝑖=1

=∑𝑍𝑖 

                             = ∑
𝑓(𝑋𝑖 − 𝜃1)

2

2

𝑛

𝑖=1

+∑
𝑓(𝑋𝑖 − 𝜃0)

2

2

𝑛

𝑖=1

 



                             = (𝜃1 − 𝜃0)∑𝑋𝑖 +
(𝜃0
2 − 𝜃1

2)𝑛

2
=∑𝑍𝑖  

We continue sampling as long as, 

𝐴 <∑𝑍𝑖 < 𝐵 𝑜𝑟 
𝐴

(𝜃1 − 𝜃0)
+
(𝜃0
2 − 𝜃1

2)𝑛

2(𝜃1 − 𝜃0)
<∑𝑋𝑖 <

𝐵

(𝜃1 − 𝜃0)
+
𝑛(𝜃0

2 − 𝜃1
2)

2(𝜃1 − 𝜃0)
 

               𝑍1 = (𝜃1 − 𝜃0)𝑋1 +
(𝜃0
2 − 𝜃1

2)

2
 

           𝐸𝜃𝑖(𝑍1) = (𝜃1 − 𝜃0)𝜃𝑖 +
(𝜃0
2 − 𝜃1

2)

2
  , 𝑖 = 0,1  

If 𝛼 = .01 , 𝛽 = .95  

         𝐴 ≈ 𝑙𝑜𝑔𝑎’ 𝑤ℎ𝑒𝑟𝑒, 𝑎′ =
1 − 𝛽

1 − 𝛼
 

        𝐴 ≈ 𝑙𝑜𝑔𝑎’ = −1.29667   

𝐵 ≈ 𝑙𝑜𝑔𝑏’ = 𝑙𝑜𝑔
𝛽

𝛼
= 𝑙𝑜𝑔

. 95

. 01
= 𝑙𝑜𝑔95 = 1.97772  

             𝐸0𝑍1 = −
1

2
= −.5  , 𝐸1𝑍1 = .5  

         𝐸0𝑁 ≈
(1 − 𝛼)𝐴 + 𝛼𝐵

𝐸0𝑍1
=
. 99(−1.29667) + .01(1.97772)

−.5
= 2.53  

          𝐸1𝑁 ≈
(1 − 𝛽)𝐴 + 𝛽𝐵

𝐸1𝑍1
= 3.63  

6.8 Self-Assessment Exercise 

 

1. State and prove the minimax theorem. 

2. Explain the role of complete class theorem in estimation theory. 

3. Write a note on sequential nature of Bayes theorem and its need. 



6.9 Summary 

 

In this unit, section 6.3 and 6.4 discusses the minimax theorem and complete class theorem, 

respectively. Equalizer rules are covered in section 6.5. The multiple decision problems are 

discussed in section 6.6. Section6.7 covers the continuous form of Bayes theorem and its sequential 

nature along with its need. 

6.10 Further Readings 

 

1 Lee, P.M. (1997) Bayesian Statistics: An Introduction, Arnold.  

2 Leonard, T. and Hsu, J.S.J. (1999) Bayesian Methods, Cambridge University Press. 

3 Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods, Springer Verlag. 

  



UNIT-7:  BAYESIAN DECISION THEORY 

Structure 

 

7.1      Introduction 

7.2 Objectives 

7.3 Basic Elements of Bayesian Decision Theory 

7.4 Optimal Bays Decision Function 

7.5 Relationship of Bays and Minimax Decision Rules 

7.6 Least Favourable Distribution 

7.7 Exercise 

7.8 Summary 

7.9 Further Reading 

 

7.1        Introduction 

We encounter lots of decision problems in real life. For example, a mobile store might need 

to know whether a particular customer based on a certain age, is going to buy a mobile or not. 

Bayesian Decision Theory helps us in making decisions on whether to select a class with some 

probability or an opposite class with some other probability based on a certain features. There is 

always some sort of risk attached to any decision we choose. The entire purpose of the Bayes 

Decision Theory is to help us select decisions that will cost us the least ‘risk’. 

7.2     Objectives 

After studying this unit, you should be able to describe 

• Some basic elements of Bayesian Decision Theory 

• Optimal Bays Decision Function 

• The Relationship of Bays and Minimax Decision Rules 

• The idea of Least Favourable Distribution 



7.3 Basic Elements of Bayesian Decision Theory 

 

Mainly there are four elements of Bayesian Decision theory, namely Prior information, 

Likelihood (rather the joint distribution of the observations), Posterior and risk involved. In the 

Bayesian framework, we treat the unknown parameter, as a random variable. More specifically, 

we assume that we have some initial guess about the distribution of this unknown parameter. This 

distribution is called the prior distribution. After observing some data, we update the distribution 

of this unknown parameter (based on the prior distribution and thejoint distribution of the 

observations). This step is usually done using Bayes' theorem. That is why this decision theoretic 

approach is called the Bayesian decision theory. As there is always some sort of risk attached to 

any decision we make. The entire purpose of the Bayes Decision Theory is to help us select 

decisions that will cost us the least ‘expected risk’ or loss. 

 

7.4 Optimal Bayes Decision Function 

Admissibility is a useful criterion when searching for optimal decision rules as the optimal 

decision rule gives the minimum error. For example, knowing that an estimator is inadmissible is 

clearly bad in that another estimator with lower risk is guaranteed to exist. One of the most popular 

examples of an inadmissible estimator is given by James and Stein (1961). A detailed discussion 

on the optimality is already given in section 2.4 and 2.5 of Block 1.  

7.5 Relationship of Bayes and Minimax Decision Rule 

This section explores some interesting results to develop an understanding about the 

relationship between Bayes and minimax decision rules. Minimax is a decision rule used 

in decision theory, game theory, statistics, etc for minimizing the possible loss for a maximum 

loss scenario. When dealing with gains, it is referred to as "maximin" – to maximize the minimum 

gain. Hence, in this approach one tries to guard against the highest possible risk in a pessimist’s 

way i.e. by trying to keep the smallest of the highest possible risks. This can be proved that such a 

rule always exists. Whereas a Bayes rule is the decision rule in the class of decision rules that has 

the smallest average risk. Hence it is obvious that if the Bayes rule has constant risk, then it is 

minimax. 



7.6 Least Favourable Distributions 

Let for some decision problem ,δ1 and δ2 be two two Bayes rules w.r.t. prior distributions 

g1 and g2 , respectively. Then, g1 is called least favourable prior distribution if r(g1,δ1)≥r(g2,δ2) 

irrespective of g2. 

7.7 Self-Assessment Exercise 

 

1. If there exist a prior g for some unknown parameter say, µ and let δg be a Bayes rule 

corresponding to g and if r(g,δg)≥supµr(µ,δg); then (i) δg is a minimax rule, (ii) g is the least 

favourable prior distribution. 

2. Define the concept of optimal Bayes decision functions. 

7.8 Summary 

In section 7.3, some basic elements of Bayesian decision theory have been discussed. Section 

7.4 discusses about the optimality criteria for decision functions. Section 7.5 explores the 

relationship between Bayes and Minimax Decision Rules. Then, section 7.6 defines the Least 

Favourable Distribution.  

7.10 Further Readings 

 

1. Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods, Springer Verlag. 

2. Berger, J.O. (1985). Statistical decision theory-Fundamental concepts and methods, Springer 

Verlag. 
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8.1        Introduction 

 

Estimation is used to come to some conclusions regarding an unknown population 

parameter with the help of a sufficiently large sample from that population. Having obtained the 

estimate of unknown parameter from a given sample, the problem is, "Can we make some 

reasonable probability statements about the unknown parameter a in the population, from which 

the sample has been drawn". To answer such questions, we use the technique of Interval 

estimation. Classical approach covers such problems in confidence interval estimation whereas in 

modern or subjective approach Bayesian interval estimation covers such problems. 

8.2     Objectives 

After studying this unit, you should be able to  

• Define the concept of sufficiency in Bayesian sense 



• Explore the use of different priors. 

• Test the hypothesis in Bayesian’s way 

• Elaborate the empirical Bayes Procedures. 

8.3 Bayesian Sufficiency 

 

Kolmogorov, Raifa Scefferetc have discussed various statistical concepts from Bayesian 

point of view in detail. But here we will discuss the concept of sufficiency first in classical sense 

and then in Bayesian sense. Consider, (X,ζ) is a measurable space carrying a family of probability 

measures on parametric space Θ. Then, classical sufficiency is defined as the conditional 

probability on ζ given any sub σ-field is independent of parameter in Θ, but in Bayesian sense 

given any prior ξ on (Θ, A), the posterior on Θ is the same as ζ stA is a σ-field. Because of the 

compelling reasons to perform a conditional analysis and the alternatives of using Bayesian 

machinery to do so there have been attempts to use the Bayesian approach even when no (or 

minimal) prior information is available. What is needed in such situation is a Non informative 

prior, by which is meant a prior which contains no information about θ (or more crudely which 

‘faros’ no possible values of θ over others.) for example, in testing between two simple hypothesis, 

the prior which gives probability ½ to each of the hypothesis is clearly non-informative. 

Exp:  suppose the parameter of interest is normal mean θ, so that the parameter space𝛩 = {−∞,∞}. 

If non-informative prior density is desired, it seems reasonable to give equal weights to all possible 

values of θ. unfortunately, if 𝜋(𝜃) = 𝑐 > 0 is chosen, the π has infinite mean  𝑖. 𝑒 ∫ 𝜋(𝜃)𝑑𝜃 = ∞ 

and is not proper density. Nevertheless, such π can be successfully worked with the choice of c is 

unimportant, so that typically the non-informative prior clearly for this problem is chosen to be 

π(θ)=1 this is often called the informative density on R and was intersected and used by Laplace 

(1812). 

As in the above example, it will frequently happen that natural non-informative prior is an 

improper prior, namely which has infinite mass. 

Exp: instead of considering θ, suppose the problem has been parameterized in terms of𝜂 = 𝑒𝜃, this 

is one-to-one information and should have no bearing on the ultimate answer.   



But if π (θ) is the density of θ, then the correspondently for η is, 

𝜋∗(𝜂) = 𝜂−1𝜋(𝑙𝑜𝑔𝜂) Hence if the non-informative prior of θ is chosen to be constant, we should 

choose the non-informative prior of η to be conditional to 𝜂−1 to maintain consistency. Thus we 

maintain consistency and choose both the non-informative prior 

 Non informative Priors for location and scale parameters:   

Exp: suppose that 𝔵 and Θ are subsets of𝑅𝑘, and that the density of X is of the form 

𝑓(𝑥 − 𝜃) 𝑖. 𝑒 depend on(𝑥 − 𝜃). The density then said to be a location density, and θ is called a 

location parameter. (Sometimes a location vector when𝑘 ≥ 2). The  𝑁(𝜃, 𝜎2), 𝜎2  fixed, is an 

example of location density. 

 To derive a non-informative prior for this situation, imagine that, insisted of observing X, 

we observe the random variable Y=X+C. C𝜖𝑅𝑘 . Define 𝜂 = 𝜃 + 𝐶 it is clear that Y has 

density𝑓(𝑦 − 𝜂). If now  

𝔵 = 𝛩 = 𝑅𝑘 Thus the sample space and parameter space for (Y, η) problem are also𝑅𝑘. The (X, 

Θ) &(Y, η) problems are identical and sensitive and it seems reasonable to in sets that they have 

the same non-informative prior. 

Letting π and π* denote the non-informative priors in the (X, Θ) and (Y, η) problems 

respectively, the above arguments implies that π and π* should be equal i.e 

                               𝑝𝜋[𝜃𝜖𝐴] = 𝑝𝜋
∗
[𝜂𝜖𝐴] 

For any set A in𝑅𝑘. Since η=θ+C, it should be true that 

𝑝𝜋
∗
[𝜂𝜖𝐴] = 𝑝𝜋 [𝜃 + 𝐶𝜖𝐴] = 𝑝𝜋[𝜃𝜖𝐴 − 𝐶] 

      𝐴 − 𝐶 = {𝑍 − 𝐶:𝑍𝜖𝐴}   𝑡ℎ𝑒𝑛, 

𝑝𝜋[𝜃𝜖𝐴] = 𝑝𝜋[𝜃𝜖𝐴 − 𝐶]  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃𝜖𝑅𝑘      …………………..  (1) 

Any π satisfying relation (1) is said to be location invariant prior.  



Assuming that the prior has a density then, 

∫ 𝜋(𝜃)𝑑𝜃
𝐴

= ∫ 𝜋(𝜃)𝑑𝜃
𝐴−𝐶

= ∫ 𝜋(𝜃 − 𝐶)𝑑𝜃         𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴𝜖𝑅𝑘

𝐴

 

𝜋(𝜃) = 𝜋(𝜃 − 𝐶)    𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃𝜖𝛩, 𝑜𝑟  𝜋(𝐶) = 𝜋(0)     𝑓𝑜𝑟 𝑎𝑙𝑙 𝐶𝜖𝑅𝑘 

This conclusion is that π must be constant function. It convenient to choose the constant to 

be 1, so the non-informative prior density for a location parameter is 𝜋(𝜃) = 1 

A one-dimensional scale density is a density of the form, 𝛼−1𝑓(𝑥
𝛼
) where𝛼 > 0. The parameter 

𝛼 > 0 is called a scale parameter. The  

𝑁(0,𝜎2)𝐺(𝛼, 𝛽), 𝛼known as scale density. 

To derive a non-informative prior for this situation, imagine that, instead of observing X, we 

observe the random variable Y=CX C> 0.  

Define 𝜂 = 𝐶𝛼, can easy calculation show that the density of Y is 

𝜂−1𝑓(𝑦
𝜂
). If 𝔵=R or (0,∞) then the sample and parameter space for the (X, 𝛼) problems are the 

same as there for the (Y, η) problem. The two problems are thus identical in structure, which again 

indicates that they should have the same non-informative prior. Letting π and π* denote the priors 

in the (X, 𝛼) and (Y, η) problem, respectively, this means that the equality,  

                               𝑝𝜋[𝛼𝜖𝐴] = 𝑝𝜋
∗
[𝜂𝜖𝐴] 

𝑆ℎ𝑜𝑢𝑙𝑑 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ⊂ (0,∞). Since η= 𝐶𝛼, it should also be true that  

         𝑝𝜋
∗
[𝜂𝜖𝐴] = 𝑝𝜋[𝛼𝜖𝐶−1𝐴], 

𝐶−1𝐴 = {𝐶−1𝑍:𝑍𝜖𝐴}. Putting these together, it follows that π should satisfy, 

           𝑝𝜋 [𝛼𝜖𝐴] = 𝑝𝜋[𝛼𝜖𝐶−1𝐴]       𝑓𝑜𝑟 𝑎𝑙𝑙 𝐶 > 0 

And any distribution π for which this is true is called scale invariant. 



∫ 𝜋(𝛼)𝑑𝛼
𝐴

= ∫ 𝜋(𝛼)𝑑𝛼
𝐶−1𝐴

= ∫ 𝜋(𝐶−1𝛼)𝐶−1𝑑𝛼       𝑓𝑜𝑟 𝑎𝑙𝑙 𝐴 ⊂ (0,∞) ⇒ 𝜋(𝛼)
𝐴

= 𝐶−1𝜋 (𝐶−1𝛼)       𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼. 𝑙𝑒𝑡 𝛼 = 𝐶 

𝜋(𝐶) = 𝐶−1𝜋 (1). Setting for convenience, and nothing that above equality must hold for all𝐶 >

0, it follows that a reasonable non-informative for a scale parameter is π𝛼 = 𝛼−1. 

Non-informative prior in general setting: 

        For more general problem, various (somewhat ad hoe) suggestive have been advance for 

determining a non-informative prior. The most widely used method is that of Jeffrey’s method 

which is as follows: 

If 𝜃 = (𝜃1, … , 𝜃𝑘)′ is a vector, Jeffrey’s suggest the use of 

𝜋(𝜃) = [det 𝐼(𝜃)]
1
2                 ′𝑑𝑒𝑡′ = 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡; 

Where  𝐼(𝜃) = [𝐼𝑖𝑗(𝜃)] ⇒ 𝐼𝑖𝑗(𝜃) = −𝐸𝜃[
𝜕2

𝜕𝜃𝑖𝜕𝜃𝑗
𝑙𝑜𝑔𝑓(𝑥 𝜃⁄ )] 

Exp:  A location-scale density is a density of the form 𝜎−1𝑓(𝑥−𝜃
𝜎
) where θ𝜖𝑅, 𝜎 > 0 are the 

unknown parameters. 𝑁(𝜃, 𝜎2)is crucial example of location-scale density Working with𝑁(𝜃,𝜎2), 

𝜃= (θ, σ). Fisher informative matrix is, 

     𝐼(𝜃) = −𝐸𝜃

(
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This is actually the non-informative prior ultimately recommended by Jeffrey’s non-

informative prior is that it is not affected by restriction on the parameter space. Thus if it is known 

that Θ> 0 , the Jeffrey’s non-informative prior is still π (θ) =1. 

Exp: let (𝑋1, … ,𝑋𝑛) be a random sample from N (𝜃1, 𝜃2) let the non-informative prior of (𝜃1, 𝜃2) 

be (𝜃1, 𝜃2)∝ 1

𝜃2
  and 𝜃1&𝜃2assumed to be independent. Find the posterior 

. 𝑑. 𝑓 𝑜𝑓𝑓(𝜃1 𝑥⁄ )& 𝑓(𝜃2 𝑥⁄ ). 

Solution:  𝑓(𝑥1,… , 𝑥𝑛 𝜃1, 𝜃2⁄ ) ∝ 1

(𝜃2)
𝑛
2

exp −
∑(xi−θ1)

2

2θ2
 

𝑓(𝜃1, 𝜃2 𝑥1, … , 𝑥𝑛⁄ ) ∝
1

(𝜃2)
𝑛
2

exp −
∑(xi − θ1)

2

2θ2
1

𝜃2
 

                                        = 
1

(𝜃2)
𝑛
2𝜃2

exp −
∑(x̅ − θ1)

2

2θ2
exp −

n(x̅ − θ1)
2

2θ2
 

                                        = 
1

(𝜃2)
𝑛+2
2

exp−
S2n − 1

2θ2
exp −

n(x̅ − θ1)
2

2θ2
 

𝑓(𝜃1 𝑥⁄ ) ∝ ∫
1

(𝜃2)
𝑛+2
2

exp−
∑(xi−θ1)

2

2θ2

∞

0
𝑑𝜃2   Put 1

2θ2
= 𝑡 ⇒ −𝑑𝜃2

𝜃2
2 = 2𝑑𝑡  

                           ∝ ∫ 𝑡
𝑛+2
2 exp −∑(xi − θ1)

2
∞

0

𝑡 
1

𝑡
 𝑑𝑡  

                           = ∫ 𝑡
𝑛
2
−1 exp −𝑡∑(xi − θ1)

2
∞

0

 𝑑𝑡   

                            ∝
1

[∑(xi−θ1)
2]
𝑛
2

=
1

[∑(xi − x̅)
2 + n(x̅ − θ1)

2]
𝑛
2

 



                            ∝
1

[1+
n(x̅−θ1)

2

∑(xi−x̅)
2 ]
𝑛
2

=
1

[1 + T2

n−1
]
𝑛−1
2

 

𝑊ℎ𝑒𝑟𝑒, 𝑇~ 𝑡 − 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ (𝑛 − 1 )𝑑𝑒𝑔𝑟𝑒𝑒  𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚. 

𝑓(𝜃2 𝑥⁄ ) ∝
1

(𝜃2)
𝑛+2
2

exp−
n − 1̅̅ ̅̅ ̅̅ ̅s2

2θ2
∫ exp −

n(x̅ − θ1)
2

2θ2

∞

−∞

𝑑𝜃1  

                 ∝
(𝜃2)

1
2
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𝑛+2
2

exp −
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2θ2
 

                 =
1

(𝜃2)
𝑛+1
2

exp−
n − 1̅̅ ̅̅ ̅̅ ̅s2

2θ2
 

Let 𝑤 =
n−1̅̅ ̅̅ ̅̅ s2

θ2
      dw =

−n−1̅̅ ̅̅ ̅̅ s2

𝜃2
2  𝑑𝜃2 

𝑓(𝑤 𝑥⁄ ) ∝
(𝜃2)

1
2

(𝜃2)
𝑛+1
2

exp−
w

2
=

1

(𝜃2)
𝑛−3
2

exp −
w

2
 

                 =
1

(𝜃2)
𝑛−1
2
−1
exp−

w

2
 ∝ χn−1

2  

8.4 Improper Prior Densities 

 

After a detailed discussion in preceding section, it is very much clear that in Bayesian 

procedures, we update the observed information with the help of prior information called prior 

densities. But sometimes this information is not integrable or does not have a finite integral, but 

we as statistician has to make use of this. Such prior densities are termed as improper prior 

densities. Examples of improper priors include: The uniform distribution on an infinite 

interval (i.e., a half-line or the entire real line). The beta distribution for α=0, β=0. 

8.5 Natural Conjugate Bayesian Density 



The concept, of Natural Conjugate Bayesian Density or conjugate prior, was introduced 

by Howard Raiffa and Robert Schlaifer in their work on Bayesian decision theory.A similar 

concept had been discovered independently by George Alfred Barnard.  

In Bayesian probability theory, if the posterior distribution is in the same probability 

distribution family as the prior probability distribution , the prior and posterior are then 

called conjugate distributions, and the prior is called a conjugate prior. For example, beta prior 

is a conjugate prior for a binomial population. Similarly, gamma is for Poisson population. 

8.6 HPD Regions and Bayesian Inference for Normal Populations 

For this topic, please refer to section 4.5 of Block 1. 

8.7 Empirical Bayes Procedures 

The purpose here is to give a simple introduction to empirical Bayes methods. Empirical 

Bayes methods are the procedures in which the prior probability distribution is estimated from the 

data itself. Thus, this approach stands in contrast to standard Bayesian methods, for which the prior 

distribution is fixed before any data are observed. Empirical Bayes methods have been around for 

quite a long time. Their roots can be traced back to work by von Mises in the 1940's, but the first 

major work must be attributed to Robbins (1955). These procedures further can be classified into 

"parametric empirical Bayes procedures" and "non-parametric empirical Bayes procedures". The 

major difference is that the parametric approach specifies a parametric family of prior 

distributions, while the non-parametric approach leaves the prior completely unspecified. For 

example, if n iid observations are taken from fλ(.) and the prior distribution for the parameter λ is 

g(.), then the empirical Bayes estimate of parameter λ using the posterior mean is  

E[λ│xn]=( xn+1) m( xn+1)/m(xn) (m(.) is the marginal distribution of Xi=1,2,3,...,n) 

=( xn+1)(number of xi equal to ( xn+1))/(number of xi equal to xn) 

In particular, if the sample is (0,4,2,8,7,4,0,9,3), then nth observation is 3 then the empirical Bayes 

estimate of parameter λ is (3+1)(2)/(1)=8. 



8.8     Posterior Odd Ratio and Bayesian Testing of Hypothesis 

 

Let an event A occurs with probability P[A], then the ratio P[A]/(1-P[A]) is called odds in 

favour of A (say O[A]) and (1-P[A])/P[A] is called odds against A. Hence, in usual notations, 

using Bayes theorem, we get O(H0│x)= P(H0│x)/ P(H1│x) called posterior odds on H0. Which 

gives O(H0│x)= O(H0) P(x│ H0)/ P(x│ H1) i.e. O(H0│x)/ O(H0)= P(x│ H0)/ P(x│ H1) called the 

Bayes Factor in favour of H0 (say B01) which is the ratio of two conditional probabilities of data 

in hand. Jeffreys recommended the following table for testing of hypothesis using Bayes Factors:  

Value of Log10 (B10) Description 

0-0.5 Not substantial evidence against H0 

0.5-1 Substantial evidence against H0 

1-2 Strong evidence against H0 

>2 Decisive evidence against H0 

 

8.9 Self-Assessment Exercise 

1. Explain the concept of Bayes factor and its role in statistical inference. 

2. Test H0: λ=2 against H1: λ≠2 using single observation from Pois(λ) st λ is a Gamma (2,3) 

variate. 

 

8.10 Summary 

 

This unit starts with a detailed discussion over Bayesian Sufficiency and Improper Prior 

Densities, then section 8.5 further explores Natural Conjugate Bayesian Densities. Next then it 

covers HPD Regions and Bayesian Inference for Normal Populations. Then a bit of Empirical 



Bayes Procedures and Posterior Odd Ratio along with their use in Bayesian Testing of Hypothesis 

is discussed at the end. 

8.11 Further Readings 

1. Bernardo, J.; Smith, A. F. M. (1994). Bayesian Theory. John Wiley. 

2. Gelman, A.; Carlin, J.; Stern, H.; Rubin, D. (1995). Bayesian Data Analysis. 

London: Chapman & Hall. 

3. Lee, P. M. (2012). Bayesian Statistics: an introduction. Wiley. 

4. Winkler, Robert (2003). Introduction to Bayesian Inference and Decision (2nd ed.). 

Probabilistic.  
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Block & Unit Introduction 

 

The present block of this SLM has three units. 

The Block - 3 – Bayesian Analysis has three units.  This block comprises  

 

Unit – 9 – Prior and Posterior Distributions, comprises the A detailed note on prior and 

posterior distributions. 

 

In Unit – 10 – Bayesian Inference Procedures, we have discussed the theory of Bayesian 

Inferential procedures.  

Unit – 11 – Bayesian Robustness, gives the idea of Bayesian robustness. 

At the end of every block/unit the summary, self-assessment questions and further readings 

are given.  

  



UNIT-9:  PRIOR AND POSTERIOR DISTRIBUTIONS 

Structure 

 
17.1     Introduction 

17.2 Objectives 

17.3     Subjective probability its existence and interpretation 

17.4 Subjective determination of prior and posterior distribution 

17.5 Improper priors, non-informative priors, invariant priors 

17.6 Conjugate prior families and their construction 

17.7 Exercise 

17.8 Summary 

17.9 Further Reading 

 

9.1        Introduction 

In Bayesian theory, a very important concept is of Subjective probability. It is a type of 

probability derived from an individual's personal judgment or own experience about whether a 

specific outcome is likely to occur. It may or may not contain any formal calculations; hence 

generally it only reflects the subject's opinions and past experience. Thus, subjective probabili ties 

differ from person to person and contain a high degree of personal bias. In Bayesian context it 

plays an important role as here the theory makes use of posterior density which highly depends on 

the prior. In this unit different types of priors have been discussed. 

9.2   Objectives 

After studying this unit, you should be able to  

• Define the concept of subjectivity 

• Choose a suitable prior for different cases 

• Obtain the conjugate prior 

9.3  Subjective Probability its Existence and Interpretation 
 



The world is an uncertain place, and the outcome of future events is mostly unpredictable. But 

we always try to become surer about the future. For this we need information about the event of 

interest that is about to occur in future like it may rain tomorrow or it may not; you might be hired 

after a job interview, or you might not. Many scenarios are simply too complex to describe even 

theoretically and do not allow for repeated experimentation that could be used to assess the chances 

favouring them. So, here we work with our own belief which may or may not be based on some 

facts. And such an estimate of the likelihood of an event is called subjective probability, which 

may be the only option available in such cases. Thus, subjective probability is determining the 

likelihood of an event based on one's opinion or belief and not on any observations or calculations.  

9.4    Subjective Determination of Prior and Posterior Distribution 

There are always 50%-50% chances that the fair coin will land with a head and tail up, but 

one can predict the output of flipping a coin on the basis of one’s belief. For example, one may 

decide that the distribution in some condition is 60%-40%. This will work as the prior distribution 

for Bayesian analysis in this case. And this belief gets updated in presence of observations then 

the updated distribution is called the posterior distribution. In this case, this may become 55%-

45% after updation using Bayes theorem. 

9.5 Improper Priors, Non-Informative Priors, Invariant Priors 

Most of the times, these priors are based on one’s belief hence they may not hold the form 

of some distribution and hence become improper. Mathematically, their integral does not equals 

unity. Such priors are called improper priors (as discussed earlier in block 1). These priors may be 

lead to badly behaved posteriors and paradoxes.  

In another situation, if the experimenter does not have any prior information or idea about 

the distribution of the unknown parameter, then the prior that represents this situation of complete 

initial ignorance is called a non-informative prior. In such situations, one may refer to the 

suggestion of Laplace that take uniform distribution as prior in absence of sufficient reason for 

assigning unequal probabilities to the values of the unknown parameter in the parametric space. A 

variety of such rules have been proposed but two of the most popular rules are first due to Laplace 



(discussed earlier) and second-one is due to H. Jeffrey. Jeffrey suggested a thumb rule for 

determining a non-informative prior for a scale parameter (say µ) as follows: 

Rule 1: If µ𝜖[a,b], where a and b are finite or infinite then take the prior g(µ)=constant. 

Rule 2: If µ𝜖(0,∞), assume (log µ) to be uniformly distributed over the whole real line and 

take g(𝜇) ∝ 1/𝜇. 

Here, if µ is replaced with any linear transformation λ=c µ+d for any choice of c(≠0) and 

d; then rule 1 suggests the non-informative prior g(λ)=constant i.e. rule 1 is invariant with respect 

to linear transformations, similarly rule 2 is invariant under exponential transformation λ=µ k st 

k≠0. 

9.6 Conjugate Prior Families and Their Construction 

In addition to the discussion on conjugate priors in preceding blocks, here we will learn 

more about the conjugate priors. These priors are sometimes called objective priors because the 

sampling distribution completely determines the class of prior distributions. 

Here we will learn a thumb rule for constructing a conjugate prior. Suppose t(x) is a 

sufficient statistic for the parameter µ. Then, using Neyman factorization theorem we can write 

the likelihood as L(x,µ)=k(t(x),µ)h(x) st x=(x1,x2,...,xn) and k(t(x)) is the kernel of likelihood. 

Replace all the terms that are functions of sample in the kernel, by prior hyperparameters to get 

the conjugate prior. 

Example: Let (x1,x2,...,xn) be a sample from Gamma(m,µ) with m>0 known, giving the 

kernel to be k(t(x),µ) =µ-nm exp(-t/µ). Therefore, the respective conjugate prior is  

g(µ)=cµ-a exp(b/µ), which is inverted gamma (a-1, b) with hyperparameters ‘a’ and ‘b’. 

9.7 Self-Assessment Exercise 

1. Prepare a list of conjugate prior families in different cases and verify. 



2. Explain the concepts of Improper Priors, Non-Informative Priors, Invariant Priors along with 

their merits and demerits. 

3. Explain the concept of subjectivity and explain the related issues. 

9.8 Summary 

This Unit covers some very interesting and important concepts of Bayesian approach like 

subjectivity, Improper Priors, Non-Informative Priors, Invariant Priors and conjugate prior 

families. Also, the thumb rule for constructing a conjugate prior for given case equips the learner 

to handle the situation in a relatively more mathematically tractable way. 

9.9 Further Readings 

1. Berger, J.O. (1993) Statistical Decision Theory and Bayesian Analysis, Springer Verlag. 

2. Bernando, J.M. and Smith, A.F.M. (1994). Bayesian Theory, John Wiley and Sons. 

3. Box, G.P. and Tiao, G.C. (1992). Bayesian Inference in Statistical Analysis, Addison-Wesley.  

4. Leonard, T. and Hsu, J.S.J. (1999) Bayesian Methods, Cambridge University Press. 

5. Robert, C.P. (1994). The Bayesian Choice: A Decision Theoretic Motivation, Springer. 
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10.1        Introduction 

The Bayesian approach to inference usually refers to prior, posterior, and predictive 

distributions to obtain estimates of unknown parameters, compare models and test 

hypotheses. Bayesian methods are now becoming widely accepted as a way to solve 

applied problems of real world. In this unit a few aspects of Bayesian inference are 

discussed to equip the learners with some basic understanding of these topics.  

 

10.2    Objectives 

After studying this unit, you should be able to  

• Explain the Bayesian approach to inference 

• Define Credible sets 

• Perform testing of hypothesis in Bayesian sense 

• Define Generalized Bayes Procedures, Admissibility and minimaxity of Bayes  

10.3 Bayesian Inference 

 

Bayesian inference techniques specify how one should update one’s beliefs upon observing 

data. Bayesian updating is particularly important in the dynamic analysis of a sequence of data. 

Thus, Bayesian inference plays an important role in statistics. Bayesian inference has found 



application in a wide range of activities, including science, engineering, philosophy, sports 

etc. More detailed theory of Bayesian Inferential procedures and examples are given in Block 1 

and 2. 

10.4 Credible Sets 

We have now learnt that Bayesian credible intervals incorporate problem-specific 

contextual information from the prior information and in Bayesian analysis it is of interest to find 

the optimal set, i.e. the smallest set with posterior probability at least , with respect to each prior in 

the class, called a credible set. Thus, Bayesian credible sets can be treated as the correct name for 

Bayesian "confidence intervals" (discussed earlier). More specifically, if any set 𝐴𝜖Θ, wrt a 

posterior 𝜋(𝜃|𝑥) has the credible probability 𝑃(𝜃 ∈ 𝐴|𝑥) = ∫ 𝜋(𝜃|𝑥)𝑑𝜃
𝐴

, then A is called a 

credible set for θ. 

10.5 Testing of Hypothesis 

This topic has already been covered under the topic “Posterior Odd Ratio and Bayesian 

Testing of Hypothesis” in detail in Block 2. 

10.6 Generalized Bayes Procedures, Admissibility and Minimaxity of Bayes 

These topics have already been covered in detail in Block 1 and Block 2. 

10.7 Self-Assessment Exercise 

 

1. Define the concept of credible sets and their role in inference. 

2. Define the relationship between credible sets and testing process. 

10.8 Summary 

Though most of the topics in this unit have already been covered but still this unit gives a 

sight to explore those topics in the light of credible sets. 



10.9 Further Readings 

1 Gemerman, D and Lopes, H. F. (2006) Markov Chain Monte Carlo: Stochastic Simulation 

for Bayesian Inference, Chapman Hall. 

2 Lee, P.M. (1997) Bayesian Statistics: An Introduction, Arnold.  

3 Leonard, T. and Hsu, J.S.J. (1999) Bayesian Methods, Cambridge University Press. 

4 Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods, Springer Verlag. 
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11.1        Introduction 

Bayesian analysis, also called Bayesian sensitivity analysis, is a type of sensitivity analysis 

applied to the outcome from Bayesian inference or Bayesian optimal decisions. Robust Bayesian 

analysis, also called Bayesian sensitivity analysis, investigates the robustness of answers from a 

Bayesian analysis to uncertainty about the precise details of the analysis. Robust Bayes methods 

acknowledge that it is sometimes very difficult to come up with precise distributions to be used as 

priors. Likewise, the appropriate likelihood function that should be used for a particular problem 

may also be in doubt. In a robust Bayes approach, a standard Bayesian analysis is applied to all 

possible combinations of prior distributions and likelihood functions selected from classes of 

priors and likelihoods considered empirically plausible by the analyst. In this approach, a class of 

priors and a class of likelihoods together imply a class of posteriors by pair-wise combination 

through Bayes rule. 

11.2 Objectives 

After studying this unit, you should be able to  

• Define the idea of Bayesian Robustness. 

• Define Markov Chain Monte Carlo (MCMC) techniques. 



• List the methods involved in Monte Carlo integration. 

11.3 Ideas of Bayesian Robustness 

 

Broadly robustness defines the sensitivity of the estimates. Bayesian analysis, also called 

Bayesian sensitivity analysis, is a type of sensitivity analysis applied to the outcome from Bayesian 

inference or Bayesian optimal decisions. Robust Bayesian analysis, also called Bayesian 

sensitivity analysis, investigates the robustness of answers from a Bayesian analysis to uncertainty 

about the precise details of the analysis. Robust Bayes methods acknowledge that it is sometimes 

very difficult to come up with precise distributions to be used as priors. Likewise the appropriate 

likelihood function that should be used for a particular problem may also be in doubt. In a robust 

Bayes approach, a standard Bayesian analysis is applied to all possible combinations of prior 

distributions and likelihood functions selected from classes of priors and likelihoods considered 

empirically plausible by the analyst. In this approach, a class of priors and a class of likelihoods 

together imply a class of posteriors by pair-wise combination through Bayes rule. Robust Bayes 

also uses a similar strategy to combine a class of probability models with a class of utility functions 

to infer a class of decisions, any of which might be the answer given the uncertainty about best 

probability model and utility function. In both cases, the result is said to be robust if it is 

approximately the same for each such pair. If the answers differ substantially, then their range is 

taken as an expression of how much (or how little) can be confidently inferred from the analysis. 

11.4 Asymptotic Expansion for Posterior Density 

A framework for Bayesian inference: - Additional information which may update beliefs 

about θare usually in the form of observed data x1, x2, . . . , xn. The information regarding θ 

contained in the data is represented by the likelihood function. Bayes’ theorem can also be used to 

update beliefs about a parameter θ after data are observed. The updated beliefs are represented by 

the posterior distribution. The posterior distribution, which summarizes all the information 

available about θ after observing data, is the primary focus of Bayesian inference. 

Beliefs about an unknown parameter θ are also represented probabilistically in Bayesian 

statistics. A subjective estimate can be made of the probability that the value of θ is θ1, say, that 

is, of the probability P(θ = θ1), for some value θ1. 

If you are certain that θ =  θ1, then P(θ =  θ1)  =  1. However, the value of θ is rarely 

known with certainty. Instead, there will be other values of θ that are possible. Usually, the possible 

values of θ are all values in some continuous interval. For example, if θ is a proportion, then the 

true value of θ could potentially be any value in the interval [0, 1]. However, for simplicity, first 

suppose that θ can only be one of a set of discrete values θ1, θ2, . . . , θn. For each possible value θi, 

the probability P(θ = θi) can be estimated subjectively, so that P(θ = θi) represents beliefs 



about whether or not θ =  θi. If P(θ =  θi) is estimated for all possible values of θi, then these 

probabilities will form a probability distribution for θ. This probability distribution gives a 

probabilistic representation of all the available knowledge about the parameter θ, and is known as 

the prior distribution, or simply the prior. 

Suppose that the random variable X has some distribution with unknown parameter θ. If it 

were known that the value of θis θ0, then the distribution of X would be known exactly. If X is 

discrete then, conditional on θ =  θ0 , the (conditional) probability mass function p(x|θ =  θ0) 

can be written down. Similarly, if X is continuous, the conditional probability density function 

f(x|θ =  θ0) can be written down. 

Given an observation x on a discrete random variable X, the value of the conditional p.m.f. 

p(x|θ =  θ0) can be calculated for each possible value θ0 of θ. Since a value is defined for each 

possible value of θ, these values can be viewed as values of a function of θ, which can be written 

p(x|θ). This function is called the likelihood function, or simply the likelihood. It represents how 

likely the possible values of θ are for the observed data x. 

More generally, in a statistical inference problem, the data consist of n independent 

observations x1, . . . , xnon X. In this case, the likelihood is of the following form: 

L(θ)  =  p(data|θ) =  p(x1|θ) × · · · ×  p(xn|θ)ifX is discrete, 

L(θ)  =  f(data|θ)  =  f(x1|θ) × · · · ×  f(xn|θ)ifX is continuous. 

11.5 Bayesian Calculation 

Suppose a 30-year-old man has a positive blood test for a prostate cancer marker (PSA). 

Assume this test is also approximately 90% accurate. In this situation, the individual would like to 

know the probability that he has prostate cancer, given the positive test, but the information at 

hand is simply the probability of testing positive if he has prostate cancer, coupled with the 

knowledge that he tested positive. Bayes theorem offers a way to reverse conditional probabilities 

and, hence, provides a way to answer these questions. 

Bayesian probability is one of the major theoretical and practical frameworks for reasoning 

and decision making under uncertainty. The historical roots of this theory lie in the late 18th, early 

19th century, with Thomas Bayes and Pierre-Simon de Laplace. 

In its raw form, Bayes Theorem is a result in conditional probability, stating that for two 

random quantities yand θ, 

p(θ|y) =
p(θ,y)

p(y)
=
p(y|θ)p(θ)

p(y)
, 



wherep(⋅) denotes a probability distribution, and p(⋅ | ⋅) a conditional distribution. Where y 

represents data and θ represents parameters in a statistical model, Bayes Theorem provides the 

basis for Bayesian inference. The 'prior' distribution p(θ) (epistemological uncertainty) is 

combined with 'likelihood' p(y|θ) to provide a 'posterior' distribution p(θ|y) (updated 

epistemological uncertainty): the likelihood is derived from an aleatory sampling model p(y|θ) 

but considered as function of θ for fixed y. 

11.6 Monto Carlo Integration 

Monte Carlo methods are numerical techniques which rely on random sampling to 

approximate their results. Monte Carlo integration applies this process to the numerical estimation 

of integrals. Monte Carlo integration uses random sampling of a function to numerically compute 

an estimate of its integral. 

11.7 Markov Chain Monto Carlo Techniques 

Markov Chain Monte Carlo (MCMC) techniques are methods for sampling from 

probability distributions using Markov chains. MCMC methods are used in data modeling for 

Bayesian inference and numerical integration. MCMC techniques aim to construct cleverly 

sampled chains which draw samples which are progressively more likely realizations of the 

distribution of interest. Here, Monte Carlo methods are numerical techniques which rely on 

random sampling to approximate their results. Monte Carlo integration applies this process to the 

numerical estimation of integrals. Monte Carlo integration uses random sampling of a function to 

numerically compute an estimate of its integral. Suppose that we want to integrate the one-

dimensional function f(x) from ato b: 

F = ∫ f(x)dx
b

a
 

We can approximate this integral by averaging samples of the function f at uniform random 

points within the interval. Given a set of N uniform random variables Xi ∈  [a, b) with a 

corresponding pdf of 1/(b −  a), the Monte Carlo estimator for computing F is 

 

F̂ = (b − a)
1

N − 1
∑f(Xi)

N

i=0

 



The random variable Xi ∈  [a, b) can be constructed by warping a canonical random 

number uniformly distributed between zero and one, ξi ∈  [0, 1):Xi =  a + ξi(b −  a). 

Markov chain - Monte Carlo technique. 

Markov Chain Monte Carlo (MCMC) techniques are methods for sampling from 

probability distributions using Markov chains. MCMC methods are used in data modeling for 

Bayesian inference and numerical integration. Monte Carlo techniques are sampling methods. 

Direct simulation: Let X be a random variable with distribution (x) ; then the expectation is given 

by: 

E(X) =∑ xf(x)
x∈ℛ

 

which can be approximated by drawing n samples from f(x) and then evaluating E(X) ≈
1

n
∑ xi
n
i=1 . 

Thus, MCMC techniques aim to construct cleverly sampled chains which (after a burn in 

period) draw samples which are progressively more likely realizations of the distribution of 

interest; the target distribution. 

11.8 Exercise 

1. Define the concept MCMC techniques. 

2. Obtain the value of pi using any simulation method. 

11.9  Summary 

Metropolis–Hastings algorithm: This method generates a Markov chain using a proposal 

density for new steps and a method for rejecting some of the proposed moves. It is actually a 

general framework which includes as special cases the very first and simpler MCMC (Metropolis 

algorithm) and many more recent alternatives listed below: 

1. Gibbs sampling: This method requires all the conditional distributions of the target 

distribution to be sampled exactly. When drawing from the full-conditional distributions is 

not straightforward other samplers-within-Gibbs are used. Gibbs sampling is popular partly 

because it does not require any 'tuning'. Algorithm structure of the Gibbs sampling highly 

resembles that of the coordinate ascent variational inference in that both algorithms utilize 

the full-conditional distributions in the updating procedure 



2. Metropolis-adjusted Langevin algorithm and other methods that rely on the gradient (and 

possibly second derivative) of the log target density to propose steps that are more likely 

to be in the direction of higher probability density 

3. Pseudo-marginal Metropolis–Hastings: This method replaces the evaluation of the density 

of the target distribution with an unbiased estimate and is useful when the target density is 

not available analytically, e.g. latent variable models. 

11.10  Further Readings 
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4. Robert, C.P. (1994). The Bayesian Choice: A Decision Theoretic Motivation, Springer. 

5. Robert, C.P. and Casella, G. (2004) Monte Carlo Statistical Methods, Springer Verlag. 

6. Lindley, D.V. (1965). Introduction to probability and statistical inference from Bayesian view 

point, Cambridge university press. 

 

 

 


