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Blocks & Units Introduction 

 

The present SLM on Linear Model & Design of Experiment consists of nine units 

with three blocks. 

 The Block - 1 – Linear Estimation and Analysis of Variance, is the first block, which 

is divided into three units. 

The Unit - 1 – Linear Model and BLUE, is the first unit of present self-learning 

material, which describes Linear Estimation- estimable functions, estimations and error space, 

Best linear unbiased estimate (BLUE), Markov theorem distribution of quadratic form, 

Estimable linear hypotheses generalized F and T tests. 

In Unit – 2 – Analysis of Variance- I, the main emphasis on the Analysis of Variance 

: one-way and two-way classification with equal number of observation per cell and analysis 

with missing observations. 

In Unit – 3 – Analysis of Variance- II, we have focussed mainly on Analysis of 

Variance: one-way and two-way classification with unequal number of observations per cell, 

analysis with missing observations, Tukey’s test general two-way classification, Analyses of 

covariance. 

The Block - 2 –Design of Experiment is the second block with three units. 

In Unit – 4 – Basic Designs, is being introduced the Terminology and basic Principles of 

Design, CRD, RBD and LSD, analysis with missing observations. 

In Unit – 5 – Factorial Experiments is discussed with 23 , 2n , 32 and 33 factorial 

experiments with its analysis.  

In Unit – 6 – Confounding has been introduced, Orthogonality, Complete and Partial 

confounding, construction of confounded factorial experiments. 

The Block - 3 – Advance Theory of Design of Experiment has three units.   

Unit – 7 – BIBD and PBIBD dealt with Balanced Incomplete Block Design (BIBD), 

Partially Balanced Incomplete Block Design (PBIBD), construction of BIBD and PBIBD, 

association schemes and construction, resolvable and affine resolvable design. 

Unit – 8 – Split and Strip Plot Design, comprises the Intra block and inter block 

analysis, Split Plot Design, Strip Plot Design.  

In Unit – 9 – Other Advance Design, we have discussed the Dual and linked block 

design, Lattice Designs, Cross-over designs, optimal designs- optimal criteria, robust 



parameter design, response surface design – orthogonality, rotatability and blocking, weighing 

designs, mixture experiments  

At the end of every block/unit the summary, self-assessment questions and further 

readings are given.  
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Block & Units Introduction 

 

The Block - 1 – Linear Estimation and Analysis of Variance, is the first block of said 

SLM, which is divided into three units. 

 

The Unit - 1 – Linear Model and BLUE, is the first unit of present self-learning 

material, which describes Linear Estimation- estimable functions, estimations and error space, 

Best Linear Unbiased Estimate (BLUE), Markov theorem distribution of quadratic form, 

Estimable linear hypotheses generalized F and T tests. 

 

In Unit – 2 – Analysis of Variance- I, the main emphasis on the Analysis of Variance: 

one-way and two-way classification with equal number of observations per cell and analysis 

with missing observations. 

 

In Unit – 3 – Analysis of Variance- II, we have focussed mainly on Analysis of 

Variance: one-way and two-way classification with unequal number of observations per cell, 

analysis with missing observations, Tukey’s test general two-way classification, Analyses of 

covariance. 

 

At the end of every unit the summary, self-assessment questions and further readings 

are given.  

  



UNIT-1  LINEAR MODEL AND BLUE 

Structure 

1.1 Introduction 

1.2 Objectives 

1.3 Linear Model 

 1.3.1      Least Square Estimation 

           1.3.1.1       Properties of ordinary Least Square Estimation 

 1.3.2      General case of k variables 

 1.3.3      Best Linear Unbiased Estimator (BLUE) 

1.4 Gauss Markov Theorem 

1.5 Estimable Functions 

 1.5.1      Some Properties of Estimable Function 

 1.5.2      Estimation Space and Error Space 

1.6 Gauss – Markov Theorem for Quadratic Form 

1.7 General Linear Hypothesis Testing 

 1.7.1      Estimation under Null Hypothesis 

1.8 Self-Assessment Exercise 

1.9 Summary 

1.10 References 

1.11 Further Reading 

 

1.1 Introduction 

Regression analysis is designed for situations where a researcher thinks that a variable 

is related to one or more other measurements made, usually on the same object. A purpose of 

the analysis is to use data (observed values of the variables) to estimate the form of this 

relationship. An example would be to use information on income and the number of years of 

formal schooling (beyond the sixth grade) to estimate the extent to which a person’s annual 

income is related to his/her years of schooling. One possibility is that for a person with zero 

years beyond sixth grade, a researcher would anticipate an income of a rupee. For each year of 

schooling beyond sixth grade, a person has the researcher would expect that his/her income 

would be larger by b rupees. Thus, for a person with x years of schooling beyond sixth grade, 

the researcher would expect an annual income of a + bx rupees. When we say that the researcher 



would expect an annual income of a + bx rupees, we refer to the average income of all people 

that have had x years of school beyond sixth grade. If y denotes income and x denotes years of 

schooling beyond sixth grade, we write E(y) for expected income. This leads to the relationship  

E(y) = a + bx       (1) 

The attempted description of how we think one variable is related to another variable 

is an example of what is called model building. The model here that a person’s income is 

expected to be a + bx where x is his/her number of years of schooling beyond sixth grade is a 

linear model because we envisage E(y) as being a linear combination of the unknowns a and 

b. These unknowns are called parameters. 

 

1.2 Objectives  

After going through this unit, you should be able to: 

• Understand the basic concepts of linear estimations about the model building, various 

properties, estimable functions etc., 

• Obtain the Best Linear Unbiased Estimator (BLUE) for the full-rank model, 

• Use Markov theorem distribution of quadratic form, 

• Test the general hypotheses of linear estimation using generalized F and t tests. 

 

1.3 Linear Model  

A model is termed as linear if it is linear in terms of parameters i.e., if the partial 

derivative of y with respect to each of the parameter b1, b2 … . b𝑘 are independent of the 

parameters. Linearity of the model is not described by the linearity of the explanatory variable: 

Example:  

1. y = b1x
2 + b2 √𝑥2 + b3 √(logx3) + e is a linear model because 

δ𝑦

δb𝑖
(𝑖 = 1,2,3) are 

independent of b1, b2, b3 

2. 𝑦 = b1
2 + b2𝑥2 + 𝑏𝑥3 + 𝑒 is a nonlinear model because 

δ𝑦

δb1
= 2b1𝑥1 

If in general f is chosen as: 

𝑓(𝑥1, 𝑥2 …… . . 𝑥𝑘 , 𝑏1, ……𝑏𝑘) = 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯……… .+𝑏𝑘𝑥𝑘 

to describe a linear model.  The aim of statistical linear modelling is to determine 𝑏1, 𝑏2 ……𝑏𝑘 

given by the observation on y and 𝑥1, 𝑥2 …… . . 𝑥𝑘. 

 



Consider a simple linear regression model 

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑒𝑖      (2) 

Where 𝑦𝑖   is dependent or study variable and 𝑥𝑖 is termed as the independent or 

explanatory variable. The term  𝑎 𝑎𝑛𝑑 𝑏 are the parameter or regression coefficient of the 

model. The parameter  𝑎 is termed as intercept term and 𝑏 is termed as the slope parameter. 𝑒𝑖 

is the error term which is identically and independently distributed random variable with mean 

zero and constant variance σ2. 

The term 𝑒𝑖 represents the extent to which an observed yi differs from its expected 

value, i.e., 𝑒𝑖 = 𝑦𝑖  − (𝑎 + 𝑏𝑥𝑖). The characteristics of 𝑒𝑖; 𝑠 are: 

a. The expected value of 𝑒𝑖 are zero, i.e., 𝐸(𝑒𝑖) = 0 

b. The variance of 𝑒𝑖 is 𝜎2 for all i, i.e., V(𝑒𝑖) = 𝐸[𝑒𝑖 –  E(𝑒𝑖)]
2 = 𝜎2 

c. The covariance between any pairs of 𝑒𝑖 is zero, i.e., Cov(𝑒𝑖𝑒𝑗) = 𝐸[{(𝑒𝑖 − 𝐸(𝑒𝑖)}{(𝑒𝑗 −

𝐸(𝑒𝑗)}] = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗 

 

1.3.1 Least Square Estimation  

There are several well-recognized methods that can be used for estimating a and b. A 

frequently used method is known as least squares. Least-squares estimation involves 

minimizing the sum of the squares of the deviations of the observed yi’s from their expected 

values. 

Suppose a sample of n sets of paired observations (𝑥𝑖 , 𝑦𝑖) (𝑖 = 1,2… . 𝑛) is available. 

These observations are assumed to satisfy the simple linear regression model, and so we can 

write 

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑒𝑖 (𝑖 = 1,2… . . 𝑛)  

The principle of least squares estimates the parameters a and b by minimizing the error sum 

of square.  

a) When error is vertical difference, then method is known as Direct Regression  

b) When error is horizontal difference, then method is known as Reverse Regression  

c) When error is perpendicular distance, then method is known as Orthogonal Regression.  

Generally, the direct regression approach estimates are referred as the least square estimates 

or ordinary least squares estimates.  

Direct Regression Method 



Assuming that a set of 𝑛 paired observations on  (𝑥𝑖, 𝑦𝑖)  (𝑖 = 1,2… . 𝑛)are available 

which satisfy the linear regression model. So, we can write the model for each observation as: 

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑒𝑖 (𝑖 = 1,2… . . 𝑛) 

Using the direct regression approach minimizing the error sum of the square we get: 

𝑆𝑆𝐸 = ∑ 𝜀𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − 𝑎 −  𝑏𝑥𝑖)
2𝑛

𝑖=1     (3)  

 Now taking the partial derivatives of (3) with respect to 𝑎 is: 

𝛿𝑆𝑆𝐸/𝛿𝑎 = −2∑ (𝑦𝑖 − 𝑎 −  𝑏𝑥𝑖)
𝑛
𝑖=1   

And the partial derivative of SSE with respect to β1 is  

𝛿𝑆𝑆𝐸/𝛿𝑏 = −2∑ (𝑦𝑖 − 𝑎 −  𝑏𝑥𝑖)
𝑛
𝑖=1 𝑥𝑖  

The solution of 𝑎 𝑎𝑛𝑑 𝑏 are obtained by setting 𝛿𝑆𝑆𝐸/𝛿𝑎 = 0 and 𝛿𝑆𝑆𝐸/𝛿𝑏 = 0 

The solution of these two equations is called the direct regression estimators, or usually called 

as the Ordinary Least Square (OLS) Estimators of 𝑎 𝑎𝑛𝑑 𝑏. 

This gives the ordinary least square estimates �̂� of 𝑎 and �̂� of 𝑏 as: 

�̂� = �̅� − 𝑏�̅� 

�̂� =
𝑆(𝑥𝑦)

𝑆(𝑥𝑥)
 

Where,  

S(xy) = ∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛
𝑖=1 , S(xy) = ∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1 , 

x̅ = 1/∑ xi
n
i=1  , y̅ = 1/∑ yi

n
i=1  .  

1.3.1.1 Properties of Ordinary Least Square Estimators 

1. Unbiased Property 

E(𝑎) = E(�̅� − 𝑏�̅�)  

= E(𝑎 + 𝑏�̅� − �̂��̅�)  

= 𝑎 + 𝑏�̅� − �̅�𝐸(�̂�)  

= 𝑎  



𝐸(�̂�) = 𝑏  

â and b̂ are unbiased estimators of a, b respectively.  

 

2. Variance 

 𝑣𝑎𝑟(�̂�) =
σ2

𝑆(𝑥𝑥)
  

𝑣𝑎𝑟(�̂�) = 𝑣𝑎𝑟(�̅� − �̂��̅�) 

= 𝑣𝑎𝑟(y𝑛̅̅ ̅) + 𝑥2̅̅ ̅𝑣(�̂�) − 2�̅�𝑐𝑜𝑣(�̂�, �̅�)  

=
σ2

𝑛
+

𝑥2̅̅̅̅

𝑆(𝑥𝑥)
∗ σ2 + 0  

= σ2 ( 
1

𝑛
  +  

𝑥2̅̅̅̅

𝑆(𝑥𝑥)
)  

var(𝑎) =
σ2

𝑆(𝑥𝑥)
∗

1

𝑛
 ∑ 𝑥𝑖

2  

3. Covariance 

𝑐𝑜𝑣(�̂�, �̂�) = 𝑐𝑜𝑣(�̅� − 𝑏) − �̅�𝑣𝑎𝑟(𝑏)  

𝑐𝑜𝑣(�̂�, �̂�) =
−�̅�σ2

𝑆(𝑥𝑥)
  

4. Residual Sum of Square (RSS) 

𝑆𝑆(𝑟𝑒𝑠) = ∑ (y1̅ − 𝑦�̂�)
2𝑛

𝑖=1   

= ∑ (𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)
2𝑛

𝑖=1   

= ∑ (𝑦𝑖  − 𝑦 ̅ + 𝑏�̅� − 𝑏𝑥𝑖)
2𝑛

𝑖=1   

= ∑ [(𝑦𝑖  − 𝑦 ̅)𝑛
𝑖=1 − 𝑏(𝑥𝑖 − �̅�)2]  

= ∑ (𝑦𝑖  − 𝑦 ̅)2𝑛
𝑖=1 + 𝑏2 ∑ [(𝑥𝑖  − 𝑥 ̅)2𝑛

𝑖=1 − 2𝑏 ∑ (𝑥𝑖  − 𝑥 ̅)(𝑦𝑖  − 𝑦 ̅𝑛
𝑖=1 )  

= 𝑆(𝑦𝑦) − 𝑏2𝑆(𝑥𝑥) − 2𝑏2𝑆(𝑥𝑥)  

= 𝑆(𝑦𝑦) − 𝑏2𝑆(𝑥𝑥)  

= 𝑆(𝑦𝑦) − (
𝑆(𝑥𝑦)

𝑆(𝑥𝑥)
)
2

𝑆(𝑥𝑥)  

= 𝑆(𝑦𝑦) −
𝑆(𝑥𝑦)

2

𝑆(𝑥𝑥)
  



= 𝑆(𝑦𝑦) − 𝑏𝑆(𝑥𝑦)  

Where 𝑆(𝑦𝑦) = ∑ (𝑦𝑖 − �̅�)2, �̅�𝑛
𝑖=1 =

1

𝑛
 ∑ 𝑦𝑖

𝑛
𝑖=1  

Estimation of 𝛔𝟐 

The estimator of σ2 is obtained from the residual sum of squares as follows. Assuming 

that 𝑦𝑖 is normally distributed, it follows that 𝑆𝑆(𝑟𝑒𝑠) has a 𝜒2 distribution with (𝑛 − 2) degree 

of freedom, so: 

 
𝑆𝑆(𝑟𝑒𝑠)

σ2
~𝜒2(𝑛 − 2)  

 Thus, using the result about the expectation of a chi-square random variable, we have: 

𝐸(𝑆𝑆(𝑟𝑒𝑠) = (𝑛 − 2)σ2 

Thus, an unbiased estimator of  σ2 is:  

𝑠2 =
𝑆𝑆(𝑟𝑒𝑠)

𝑛−2
  

 

1.3.2 General Case of k Variables  

The linear model equation is represented as  

𝑦 = 𝑋𝑏 + 𝑒 with 𝐸(𝑦) = 𝑋𝑏 

thus, for k variables  

𝑋 =

[
 
 
 
 
1 𝑥11 ⋯⋯ 𝑥1𝑘

1 𝑥21 ⋯⋯ 𝑥2𝑘

⋮ ⋮ ⋯⋯ ⋮
⋮ ⋮ ⋯⋯ ⋮
1 𝑥𝑁1 ⋯⋯ 𝑥𝑁𝑘]

 
 
 
 

  𝑏 =

[
 
 
 
 
𝑏0

𝑏1

⋮
⋮

𝑏𝑘]
 
 
 
 

  

and y and e defined as above are unchanged  

as we know that 𝐸(𝑒) = 0 and 𝑣𝑎𝑟(𝑒) = 𝐸[𝑒 − 𝐸(𝑒)][𝑒 − 𝐸(𝑒)]′ = 𝐸(𝑒𝑒′) = σ2𝐼𝑁 

by the method of least square estimation  

𝑒′𝑒 = [𝑦 − 𝐸(𝑦)]′[𝑦 − 𝐸(𝑦)] = (𝑦 − 𝑋𝑏)′(𝑦 − 𝑋𝑏)  

= 𝑦′𝑦 − 2𝑏′𝑋′𝑦 + 𝑏′𝑋′𝑋𝑏  

To obtain the estimator �̂�, that value of b that minimizes e’e ,we must differentiate e’e 

with respect to the elements of b and setting the result equal to zero. 



𝛿(𝑒′𝑒)

𝛿𝑏
= −2𝑋′𝑦 + 𝑋′𝑋𝑏 = 0  

−2𝑋′𝑦 + 𝑋′𝑋𝑏 = 0  

𝑋′𝑋𝑏 = 𝑋′𝑦            (4) 

The equation (4) is known as the normal equations. Provided (𝑋′𝑋)−1 exists, they have 

a unique solution for �̂� 

�̂� = (𝑋′𝑋)−1𝑋′𝑦     (5) 

When 𝑋′𝑋 is nonsingular (of full rank) the unique solution of (4) can be written as (5). 

When 𝑋′𝑋 is singular, the solution will take the form:  

b̂ = GX′y      (6) 

Where 𝐺 is a generalized inverse of 𝑋′𝑋. This solution is not unique because 

generalized inverses are not unique.  

By the nature of 𝑋, 𝑋′𝑋 is square of order 𝑘 + 1 with elements that are sums of square 

and products and 𝑋′𝑦 is the vector of sums of products of the observed 𝑥′𝑠 𝑎𝑛𝑑 𝑦′𝑠. As a result, 

we have:  

𝑋′𝑦 =  

[
 
 
 
 

∑ 𝑦𝑖
𝑁
𝑖=1

∑ 𝑥𝑖1𝑦𝑖
𝑁
𝑖=1

⋮
⋮

∑ 𝑥𝑖𝑘𝑦𝑖
𝑁
𝑖=1 ]

 
 
 
 

  

X′X =  

[
 
 
 
 
 

N x. 1 x. 2 ⋯⋯⋯ x. k
x. 1 ∑ 𝑥𝑖1

2𝑁
𝑖=1 ∑ 𝑥𝑖1𝑥𝑖2

𝑁
𝑖=1 ⋯⋯⋯ ∑ 𝑥𝑖1𝑥𝑖𝑘

𝑁
𝑖=1

x. 2 ∑ 𝑥𝑖1𝑥𝑖2
𝑁
𝑖=1 ∑ 𝑥𝑖2

2𝑁
𝑖=1 ⋯⋯⋯ ∑ 𝑥𝑖1𝑥𝑖𝑘

𝑁
𝑖=1

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮

x. k ∑ 𝑥𝑖1𝑥𝑖𝑘
𝑁
𝑖=1 ∑ 𝑥𝑖2𝑥𝑖𝑘

𝑁
𝑖=1 ⋯⋯⋯ ∑ 𝑥𝑖𝑘

2𝑁
𝑖=1 ]

 
 
 
 
 

  

 

Method of Estimation 

In obtaining the least-square estimator, we shall assume a model of the form y = Xb + 

e where X has full column rank, E(y) = Xb, and E(e) = 0. To obtain an alternative to the least-

square estimator, we shall assume that b is a random variable with a known mean and 

covariance matrix.  



1. Ordinary Least Square Estimation 

This involve choosing �̂� as the value of 𝑏 which minimizes the sum of squares of 

observations from their expected values,  

∑ [𝑦𝑖 − 𝐸(𝑦)]2𝑁
𝑖=1 = (𝑦 − 𝑋𝑏)′(𝑦 − 𝑋𝑏)  

The resulting estimator is as we have seen: 

�̂� = (𝑋′𝑋)−1𝑋′𝑦  

2. Generalized Least Squares 

This is also called weighted least squares. Assume that the variance covariance matrix of 𝑒 

is var(e) =V. Now minimize = (𝑦 − 𝑋𝑏)′𝑉−1(𝑦 − 𝑋𝑏) with respect to b. The resulting 

estimator is:  

�̂� = (𝑋′𝑉−1𝑋)−1 𝑋′𝑉−1𝑦 

When it is assumed that the components of 𝑣𝑎𝑟(𝒆) are equal and uncorrelated, that is, 𝑽 =

σ2𝐼, the generalized or weighted least estimators reduced to the ordinary least-square 

estimators. 

1.3.3 Best Linear Unbiased Estimator (BLUE)  

When the least square estimator is the linear unbiased estimator of the parameters of a 

regression that has minimum variance, then it is called as Best Linear Unbiased Estimator 

(BLUE).  

For any row vector 𝑡′ with the same number of columns as there are rows of 𝑏 ,the 

scalar 𝑡′𝑏 is a linear function of the elements of the vector of parameters 𝑏.  

The three characteristics of the estimator under study are linearity, unbiasedness, and being 

the best estimator (the one with the smallest variance). 

i) Linearity: The estimator is to be a linear function of the observations y. Let this estimator 

be λ′y where λ′ is a row vector of order N. We shall show that λ is uniquely determined by 

the other two characteristics of the estimator. 

ii) Unbiasedness: The estimator λ′y is to be unbiased for t ′b. Therefore, we must have that 

E(λ′y) =  t′b. However, E (λ′y) = λ′ Xb so that λ′ Xb = t ′ b. Since this must be true for 

all b, we have that: 

λ′ X =  t ′.      (7) 



iii) A best estimator: Here, “best” means that in the class of linear, unbiased estimators of  

t′b, the best is the one that has minimum variance. This is the criterion for deriving λ′. 

1.4 Gauss – Markov Theorem 

Assume that for the linear model: 

𝑦 = 𝑋𝑏 + 𝑒, 

𝑣𝑎𝑟(𝑒) = 𝑉. Then the best linear unbiased estimator of 𝑡′𝑏 is: 

𝑡′�̂� = 𝑡′(𝑋′𝑉−1𝑋)𝑋′𝑉−1𝑦 

Proof: 

Since  𝑣𝑎𝑟(𝑒) − 𝑉, 𝑣𝑎𝑟(𝑦) = 𝑉. 

Then var(λ′y)  =  λ′ Vλ  

We must minimize this quantity with respect to the constraint  (λ′X =  t ′ ) in (7). To do this, 

we use the method of Lagrange multipliers. Using 2θ as a vector of Lagrange multipliers, we 

therefore minimize: 

𝑤 = λ′𝑉λ − 2θ′(𝑋′λ − 𝑡) 

with respect to the elements of 𝜆′and 𝜃′. We differentiate 𝑤 with respect to 𝜃., set it equal to 

zero and get (7). Differentiation of 𝑤 with respect to 𝜆 gives: 

𝑉λ = 𝑋θ or  𝜆 = 𝑉−1𝜃 

Since 𝑉−1 exists. Substitution in (7) gives 𝑡′ = λ′𝑋 = θ′𝑋′ 𝑉−1𝑋 and so θ′ = 𝑡′(𝑋′ 𝑉−1𝑋)−1 

Hence, 

 λ′ = θ′𝑋′𝑉−1 = 𝑡′(𝑋′𝑉−1𝑋)−1𝑋′ 𝑉−1    (8)  

The BLUE of 𝑡′𝑏  is:  

𝑡′𝑏 = 𝑡′(𝑋′𝑉−1𝑋)−1𝑋′ 𝑉−1𝑦 

We have shown that the BLUE is weighted or generalized least square estimators. Its variance 

is 𝑣𝑎𝑟(𝑡′�̂�) = 𝑡′(𝑋′𝑉−1𝑋)−1𝑡 

Since (8) is the sole solution to the problem of minimizing 𝑣𝑎𝑟(λ′𝑦) = 𝜆′𝑉λ Subject to 

constraint (7), the BLUE  λ′𝑦  of  𝑡′𝑏 is the unique estimator of 𝑡′𝑏 having the properties of 

linearity, unbiasedness, and “bestness”—minimum variance of all linear unbiased estimators. 

thus, the BLUE of 𝑡′𝑏 is unique λ′𝑦 𝑓𝑜𝑟 𝜆′ as given in (8).  

 

1.5 Estimable Functions  



A linear function of the parameters is defined as estimable if it is identically equal to 

some linear function of the expected value of the vector of observations. This means that 𝑞′𝑏 

is estimable if 𝑞′𝑏 = 𝑡′𝐸(𝑦) for some vector 𝑡′. In other words, if a vector  𝑡′ exists such that,  

𝑡′𝐸(𝑦) = 𝑞′𝑏 then  𝑞′𝑏 is said to be estimable. Note that in no way is there any sense of 

uniqueness about 𝑡′. It simply has to exist. 

1.5.1      Some Properties of Estimable Functions  

i) The Expected Value of Any Observation is Estimable 

The definition of an estimable function is that 𝑞′𝑏 is estimable if  𝑞′𝑏 = 𝑡′𝐸(𝑦) for some 

vector  𝑡′ . Consider a 𝑡′ which has one element unity and the others zero. Then,  𝑡′𝐸(𝑦) will 

be estimable. It is an element of  𝐸(𝑦) the expected value of an observation. Hence, the 

expected value of any observation is estimable.  

 

ii) Linear Combinations of Estimable Functions are Estimable 

Every estimable function is a linear combination of the elements of  E(y).This is also true 

about a linear combination of estimable functions. Thus, a linear combination of estimable 

functions is also estimable. More formally, if  𝑞1
′𝑏and 𝑞2

′𝑏and are estimable, there exists a 

𝑡1
′and a𝑡2

′  such that  𝑞1
′𝑏 = 𝑡1

′𝐸(𝑦) and 𝑞2
′ 𝑏 = 𝑡2

′𝐸(𝑦) Hence, a linear combination 𝑐1𝑞1
′𝑏 +

𝑐2𝑞2
′𝑏 = (𝑐1𝑡1

′ + 𝑐2𝑡2
′ )𝐸(𝑦)and so it is estimable. 

iii) The Forms of an Estimable Function  

If  𝑞′𝑏is estimable using its definition, we have that for some vector  𝑡′ 

𝑞′𝑏 = 𝑡′𝐸(𝑦) = 𝑡′𝐸(𝑋𝑏) = 𝑡′𝑋𝑏    (1) 

Since estimability is a concept that does not depend on the value of b, the result in 

equation (1) must be true for all b.  

Therefore, 𝑞′ = 𝑡′𝑋 for some vector 𝑡′                                                                       (2) 

 

iv) Invariance to the Solution b◦  

 When 𝑞′𝑏 is estimable,  𝑞′𝑏𝑜 is invariant to whatever solution of the normal equations 

𝑋′𝑋𝑏𝑜 = 𝑋′𝑦 is used for 𝑏0. If 𝑞′𝑏 is estimable, then  𝑞′𝑏𝑜has the same value for all solutions 

𝑏0 to the normal equations. 

 

Example: Consider the model 𝑦1 = b1 + b2 + 𝑒1, 𝑦2 = b1 + b3 + 𝑒2 and 𝑦3 = b1 + b2 + 𝑒3. 

Show that 𝑞1𝑏1 + 𝑞2𝑏2 + 𝑞3𝑏3 is estimable if and only if 𝑏1 = 𝑏2 + 𝑏3 



Solution: Consider a linear function 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 is such that its expectation is 𝑞1𝑏1 +

𝑞2𝑏2 + 𝑞3𝑏3 identically. Then  

𝐸(𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3) = 𝑎1(𝑏1 + 𝑏2) + 𝑎2(𝑏1 + 𝑏3) + 𝑎3(𝑏1 + 𝑏2)  

= (𝑎1 + 𝑎2 + 𝑎3)𝑏1 + (𝑎1 + 𝑎3)𝑏2 + 𝑎2𝑏3  

And if this = ∑ 𝑞𝑖𝑏𝑖
3
𝑖=1 ,we have: 

𝑞1 = 𝑎1 + 𝑎2 + 𝑎3, 𝑞2 = 𝑎1 + 𝑎3, 𝑞3 = 𝑎2  

And therefore, 𝑎1 = 𝑎2 + 𝑎3 

Conversely if  𝑎1 = 𝑎2 + 𝑎3 

𝑞1𝑏1 + 𝑞2𝑏2 + 𝑞3𝑏3 = (𝑞1 + 𝑞3)𝑏1 + 𝑞2𝑏2 + 𝑞3𝑏3  

= 𝑞2(𝑏1 + 𝑏2) + 𝑏3(𝑏1 + 𝑏2)  

= 𝑞2𝐸(𝑦1) + 𝑞3𝐸(𝑦2)  

And hence there exists a function 𝑞2𝑦1 + 𝑞3𝑦2 whose expectation is ∑ 𝑞𝑖𝑏𝑖
3
𝑖=1  𝑜𝑟  𝑞𝑖𝑏𝑖 is 

estimable. 

 

1.5.2 Estimation Space and Error Space  

 The space generated by the column vector of X is called the estimation space of X and 

is denoted by 𝑉(𝑥1, 𝑥2 … . . 𝑥𝑝) = Vp, obviously Vp ⊂ 𝑅𝑛(𝑏𝑒𝑐𝑎𝑢𝑠𝑒 , 𝑝 ≤ 𝑘) 

𝜏 = (𝜏1, …… . . 𝜏2)
′belongs to Vp,if it is linear combination of 𝑥𝑖

′𝑠 i.e., if 

𝜏 = ∑ θ𝑗𝑥𝑘
𝑝
𝑗=1  for some real θ1, θ2 …………θ𝑝 

 Thus, Vp = θ1𝑥1 + ⋯……… . . +θ𝑝𝑥𝑝|θ1 ……… . . θ𝑝 ⊂ 𝑅1 

 Clearly, 𝜂 ∈ Vp .Rank of estimation space is the number of independent vectors 

among 𝑥1, 𝑥2 ……𝑥𝑝 

 The vector space 𝐸 that is orthogonal to the vector space 𝑉𝑝 is called the error 

space. Thus if 𝛾 is any vector in 𝐸, 𝛾′𝑥𝑗 = 0 for ∀𝑗 = 1… . . 𝑝 

 

Example: 𝐸(𝑦) = 𝑏01 + 𝑏1 𝑥  where x  = (𝑥1, 𝑥2 … . 𝑥𝑛)′ . Here 𝑋 = (1 𝑥) . 

Estimation space 𝑉2 = 𝜏 = θ11 + θ2𝑥|θ1, θ2 ∈ 𝑅1 ⊂ 𝑅𝑛 and contains the point 𝜂 = 𝑏01 +

𝑏1 𝑥. The error space is space which is orthogonal to 𝑉2i.e., 𝐸 = {𝑎: 𝑎′1 = 0, 𝑎′𝑥 = 0}. 

 



1.6 Gauss – Markov Theorem for Quadratic Form  

The best linear unbiased estimator of the estimable function 𝑞′𝑏 is 𝑞′𝑏𝑜; that is,  

     𝑞′�̂� = 𝑞′𝑏𝑜        (3)   

where by the “hat” notation we mean “BLUE of”. 

Proof:  

Form the property of linearity, unbiasedness, and “bestness” (having minimum variance). 

Since 𝑞′𝑏𝑜 is a linear function of the observation, because 𝑞′𝑏𝑜 = 𝑞′𝐺𝑋′𝑦 

And 𝑞′𝑏𝑜 is an unbiased estimator of 𝑞′𝑏 because  

𝐸(𝑞′𝑏𝑜) = 𝑞′𝐸(𝑏0) = 𝑞′𝐺𝑋′𝑋𝑏 = 𝑡′𝑋𝐺𝑋′𝑋𝑏 = 𝑡′𝑋𝑏 = 𝑞′𝑏     (4) 

In establishing equation (4), we invoke: 

𝑞′𝑏0 = 𝑑′𝑈′𝐺𝑋′𝑦 = 𝑑′𝑈′𝐺𝑈Λ1/2𝑆𝑦 = 𝑑′Λ1/2Λ−1/2Sy = d′Sy  

and, when G is a generalized inverse of  𝑋′𝑋 then 

𝑋 = 𝑋𝐺𝑋′𝑋 which also implies 𝑋′𝑋𝐺𝑋        (5) 

Alternatively, when the singular value decomposition of 𝑋 = 𝑆′Λ1/2𝑈′ then  

𝑋′𝑋 = 𝑈ΛU′ and (X′X)+ = UΛ−1𝑈′ 

and for any generalized inverse of 𝑋′𝑋, 𝑈′(X′X)−𝑈 = Λ−1and therefore: 

(X′X)+ = 𝑈𝑈′(X′X)−𝑈𝑈′ 

Thus, 𝐸(𝑞′𝑏𝑜) = 𝑞′𝐸(𝑏𝑜) = 𝑞′𝐺𝑋′𝑋𝑏 = 𝑑′𝑈′𝐺𝑈Λ𝑈′𝑏 = 𝑑′Λ−1ΛU′b = d′U′b = q′b  

To demonstrate that 𝑞′𝑏0 is a best estimator, we need its variance. We then show that the 

variance of any other linear unbiased estimator of 𝑞′𝑏 is larger. We have that:  

𝑣(𝑞′𝑏0) = 𝑞′𝐺𝑋′𝑋𝐺′𝑞σ2 

= 𝑞′𝐺𝑋′𝑋𝐺′𝑋𝑡σ2  

= 𝑞′𝐺𝑋′𝑡σ2  

= 𝑞′𝐺𝑞σ2           (6) 



Using the equation (5), we now show that 𝑞′𝑏0 has the minimum variance among all the linear 

unbiased estimators 𝑞′𝑏 and hence is the best. Suppose that 𝐾′𝑦 is unbiased,𝐸(𝐾′𝑦) = 𝑞′𝑏 so 

𝑘′𝑋 = 𝑞′. Therefore: 

𝑐𝑜𝑣(𝑞′𝑏0, 𝑘′𝑦) = 𝑐𝑜𝑣(𝑞′𝐺𝑋′𝑦, 𝑘′𝑦) = 𝑞′𝐺𝑋′𝑘σ2 = 𝑞′𝐺𝑞σ2 

Consequently, 

𝑣(𝑞′𝑏0 − 𝑘′𝑦) = 𝑣(𝑞′𝑏0) + 𝑣(𝑘′𝑦) − 2𝑐𝑜𝑣(𝑞′𝑏0, 𝑘′𝑦)  

= 𝑣(𝑘′𝑦) − 𝑞′𝐺𝑞σ2  

= 𝑣(𝑘′𝑦) − 𝑣(𝑞′𝑏0) > 0        (7)  

 Since 𝑣(𝑞′𝑏0 − 𝑘′𝑦) is positive, from equation (7), 𝑣(𝑘′𝑦) exceeds 𝑣(𝑞′𝑏0). Thus 𝑞′𝑏0 

has a smaller variance that any other linear unbiased estimator of 𝑞′𝑏 and hence is the best. 

 If  𝑞′𝑏 is an estimable function, its BLUE is 𝑞′𝑏0 with variance 𝑞′𝐺𝑞σ2. This is so for 

any solution 𝑏0 to the normal equations using any generalized inverse 𝐺 . Both the estimator 

and its variance are invariant to the choice of 𝐺  𝑎𝑛𝑑  𝑏0. 

 Similarly, the covariance between the BLUEs of two estimable functions  

𝑐𝑜𝑣(𝑞1
′𝑏0, 𝑞2

′𝑏0) = 𝑞1
′𝐺𝑞2σ

2 

 Hence, if 𝑄′𝑏0 represent the BLUEs of several estimable functions, the variance 

covariance matrix of these BLUE’s is 𝑣𝑎𝑟(𝑄′𝑏0) = 𝑄′𝐺𝑄σ2 

 

1.7 General Linear Hypothesis  

 In testing of linear hypothesis, four hypotheses of particular interest are:  

(i) H: b = 0, the hypothesis that all of the elements of b are zero;  

(ii) H: b = b0, the hypothesis that bi = bi0 for i = 1, 2,…, k, that is, that each bi is equal to some 

specified value bi0; 

(iii) H: 𝜆′ b = m, that some linear combination of the elements of b equals a specified constant; 

(iv) H: bq = 0, that some of bi’s, q of them where q < k is zero.  

 

To conduct these hypotheses, we need certain assumptions: 

1) When 𝑥~𝑁(μ, 𝑉), the quadratic forms 𝑥′𝐴𝑥 and 𝑥′𝐵𝑥 are distributed independently if and 

only if 𝐴𝑉𝐵 = 0 (or equivalently 𝐵𝑉𝐴 = 0)  



2) The matrix 𝐴′𝐴 is positive definite when A has full-row rank is positive-semi-definite 

otherwise  

 All of the linear hypothesis above and others are special cases of a general procedure 

even though the calculation of the F-statistics may appear to differ from one hypothesis to 

another. 

In general hypothesis we consider is: 

𝐻:𝐾′𝑏 = 𝑚 

Where, 𝑏 ,is the (𝑘 + 1) order vector of parameters of the model, 𝐾′ is any matrix of s 

rows and k+1 columns and m is a vector of order s of specified constants. 𝐾′ must be full row 

rank i.e., 𝑟(𝐾′) = 𝑠 means that the linear functions of  𝑏 must be linearly independent. The 

hypothesis being tested must be made up of linearly independent functions of b and must 

contain no functions that are linear functions of others therein.  

We now develop the F-statistic to test the hypothesis H: K′ b = m.  

We know that: 

𝑦~𝑁(𝑋𝑏, σ2𝐼),�̂� = (𝑋′𝑋)−1𝑋′𝑦  and �̂�~𝑁[(𝑋′𝑋)−1σ2] 

Therefore,  

𝐾′�̂� − 𝑚~𝑁[𝐾′𝑏 − 𝑚,𝐾′(𝑋′𝑋)−1𝐾𝜎2] 

By the Assumption 1), the quadratic form:  

𝑄 = (𝐾′�̂� − 𝑚)′[𝐾′(𝑋′𝑋)−1𝐾]−1(𝐾′�̂� − 𝑚) 

In = (𝐾′�̂� − 𝑚) with matrix [𝐾′(𝑋′𝑋)
−1

𝐾]−1 has a non-central 𝜒2-distribution. We have that: 

   
𝑄

𝜎2 ~𝜒2′{𝑠, 
(𝐾′�̂�−𝑚)′[𝐾′(𝑋′𝑋)

−1
𝐾]−1(𝐾′�̂�−𝑚)

2σ2 }     (1) 

 We now show the independence of Q and SSE using Assumption 1), we first express 

Q and SSE as quadratic forms of the same normally distributed random variable. We note that 

the inverse of 𝐾′(𝑋′𝑋)−1𝐾  exists because 𝐾′ has full row rank and 𝑋′𝑋 is symmetric.  

Now, in (1), we replace �̂� with (𝑋′𝑋)−1𝑋′𝑦. Then (1) for Q becomes:  

𝑄 = (𝐾′(𝑋′𝑋)−1𝑋′𝑦 − 𝑚)′[𝐾′(𝑋′𝑋)−1𝐾]−1(𝐾′(𝑋′𝑋)−1𝑋′𝑦  − 𝑚) 

The matrix  𝐾′ has full-column rank. Assumption 2), K′K is positive definite. Thus K′K−1exists. 

Therefore, 



(𝐾′(𝑋′𝑋)−1𝑋′𝑦 − 𝑚) = 𝐾′(𝑋′𝑋)−1𝑋′[𝑦 − 𝑋𝐾(𝐾′𝐾)−1𝑚] 

As a result, Q may be written: 

𝑄 = [𝑦 − 𝑋𝐾(𝐾′𝐾)−1𝑚]′ 𝑋′(𝑋′𝑋)−1𝐾[𝐾′(𝑋′𝑋)−1𝐾]−1𝐾′(𝑋′𝑋)−1𝑋′[𝑦 − 𝑋𝐾(𝐾′𝐾)−1𝑚] 

The next step is to get the quadratic form for SSE into a similar form as Q: 

𝑆𝑆𝐸 = 𝑦′[𝐼 − 𝑋(𝑋′𝑋)−1𝑋′]𝑦 

Since, 𝑋′[𝐼 − 𝑋(𝑋′𝑋)−1𝑋′] = 0 and [𝐼 − 𝑋(𝑋′𝑋)−1𝑋′]𝑋 = 0,we may write  

𝑆𝑆𝐸 = [𝑦 − 𝑋𝐾(𝐾′𝐾)−1𝑚]′[𝐼 − 𝑋(𝑋′𝑋)−1𝑋′][𝑦 − 𝑋𝐾(𝐾′𝐾)−1𝑚] 

 We have expressed both 𝑄 and SSE as quadratic forms in the normally distributed 

vector 𝑦 − 𝑋𝐾(𝐾′𝐾)−1𝑚.  Also, the matrices for 𝑄 and SSE are both idempotent, so we again 

verify that they have  𝜒2-distribution. More importantly, the product of the matrices for Q and 

SSE are null. We have that: 

[𝐼 − 𝑋(𝑋′𝑋)−1𝑋]′ 𝑋′(𝑋′𝑋)−1𝐾[𝐾′(𝑋′𝑋)−1𝐾]−1𝐾′(𝑋′𝑋)−1𝑋′ 

 Therefore, by assumption 1) Q and SSE are distributed independently. This gives us the 

F-distribution needed to test the hypothesis 𝐻:𝐾′𝑏 = 𝑚. We have that: 

𝐹(𝐻) =
𝑄

𝑠⁄

𝑆𝑆𝐸
[𝑁−𝑟(𝑋)]⁄

=
𝑄

𝑠σ2̂
  

~𝐹′(𝑠, 𝑁 − 𝑟(𝑋),
(𝐾′b−𝑚)′[𝐾′ (𝑋′𝑋)

−1
𝐾]−1(𝐾′b−𝑚)

2σ2       (2 

 Under the null hypothesis 𝐻:𝐾′𝑏 = 𝑚𝐹(𝐻)~𝐹(𝑠,𝑁−𝑟(𝑋)), Hence, 𝐹(𝐻) provides a test 

of the null hypothesis is  𝐻: 𝐾′𝑏 = 𝑚 and the F-statistics for testing this hypothesis is: 

   𝐹(𝐻) =
𝑄

𝑠𝜎2̂
=

(𝐾′b−𝑚)′[𝐾′ (𝑋′𝑋)
−1

 𝐾]−1(𝐾′b−𝑚)

𝑠σ2̂
    (3)  

With s, and N-r degree of freedom. 

 The generality of this result merits emphasis. It applies for any linear hypothesis 𝐾′𝑏 =

𝑚,The only limitation is that  𝐾′ has full-row rank. Other than this 𝐹(𝐻)can be used to test any 

linear hypothesis whatever. No matter what the hypothesis is, it only has to be written in the 

form 𝐾′𝑏 = 𝑚,. Then, 𝐹(𝐻)of equation (3) provides the test. Having once solved the normal 

equations for the model 𝑦 = 𝑋𝑏 + 𝑒 and so obtained(𝑋′𝑋)−1,  �̂� = (𝑋′𝑋)−1𝑋′𝑦 and 𝜎2̂ the 

testing of 𝐻:𝐾′𝑏 = 𝑚 can be achieved by immediate application of 𝐹(𝐻). 



1.7.1 Estimation under the Null Hypothesis  

 By the least square method 𝑏�̂� is derived so as to minimize (𝑦 − 𝑋𝑏�̂�)
′
(𝑦 − 𝑋𝑏�̂�) 

subject to the constraint 𝐾′𝑏 = 𝑚 

  With 2θ′ as a vector of Lagrange multipliers, we minimize:  

𝐿 = (𝑦 − 𝑋𝑏�̂�)
′
(𝑦 − 𝑋𝑏�̂�) + 2θ′(𝐾𝑏�̂� − 𝑚) 

 With respect to the elements of 𝑏�̂� and θ′.Differentiation with respect to these elements 

leads to the equations:  

     𝑋′𝑋𝑏�̂� + 𝐾𝜃 = 𝑋′𝑦       (4) 

𝐾′𝑏�̂� = 𝑚 

From these two equations:  

    𝑏�̂� = (𝑋′𝑋)−1(𝑋′𝑦 − 𝐾θ) = �̂� − (𝑋′𝑋)−1𝐾θ   (5) 

And     𝐾′𝑏�̂� = 𝐾′�̂�−𝐾′(𝑋′𝑋)−1𝐾θ = 𝑚 

Hence, θ = [𝐾′(𝑋′𝑋)−1𝐾]−1(𝐾𝑏�̂� − 𝑚)        (6)  

Thus, the constrained least-square estimator  

𝑏�̂� = �̂� − (𝑋′𝑋)−1𝐾[𝐾′(𝑋′𝑋)−1𝐾]−1(𝐾𝑏�̂� − 𝑚)       (7)  

We have estimated 𝑏 under the null hypothesis 𝐻:𝐾′𝑏 = 𝑚. We now show that the 

corresponding residual sum of squares is SSE+Q where Q is the numerator sum of squares of 

the 𝐹 − Statistic used in equation (3), 𝐹(𝐻). We consider the residual: 

(𝑦 − 𝑋𝑏�̂�)
′
(𝑦 − 𝑋𝑏�̂�) = [𝑦 − 𝑋�̂� + 𝑋(�̂� − 𝑏�̂�)]

′
 [𝑦 − 𝑋�̂� + 𝑋(�̂� − 𝑏�̂�)]  

= (𝑦 − 𝑋�̂�)
′
(𝑦 − 𝑋�̂�) + (�̂� − 𝑏�̂�)

′
𝑋′(𝑦 − 𝑋�̂�) + (𝑦 − 𝑋�̂�)

′
𝑋(�̂� −

𝑏�̂�)
′
+ (�̂� − 𝑏�̂�)

′
𝑋′𝑋(�̂� − 𝑏�̂�)  

= (𝑦 − 𝑋�̂�)
′
(𝑦 − 𝑋�̂�) + (�̂� − 𝑏�̂�)

′
𝑋′𝑋(�̂� − 𝑏�̂�)    (8) 

Since, { 𝑥′(𝑦 − 𝑋�̂�) = 𝑋′𝑦 − 𝑋′𝑋(𝑋′𝑋)−1𝑋′𝑦 = 0} 

 

Substituting the constrained least-square estimator equation (7) into equation (8), we get: 

(𝑦 − 𝑋𝑏�̂�)
′
(𝑦 − 𝑋𝑏�̂�) = 𝑆𝑆𝐸 + (𝐾𝑏�̂� −

𝑚)
′
[𝐾′(𝑋′𝑋)−1𝐾]−1𝐾′(𝑋′𝑋)−1𝑋′𝑋(𝑋′𝑋)−1𝐾[𝐾′(𝑋′𝑋)−1𝐾]−1(𝐾𝑏�̂� − 𝑚)′    



= 𝑆𝑆𝐸 + (𝐾𝑏�̂� − 𝑚)′[𝐾′(𝑋′𝑋)−1𝐾]−1(𝐾𝑏�̂� − 𝑚)   (9) 

= 𝑆𝑆𝐸 + 𝑄 

In deriving the constrained least-square estimator, we used an exact constraint 𝐾′𝑏 = 𝑚. 

 

Four Common Hypothesis 

i) First consider 𝐻: 𝑏 = 0 . The test of this hypothesis has already been considered in the 

analysis of variance tables. However, it illustrates the reduction of  F(H) to the F-statistic 

of the analysis of variance tables. To apply 𝐹(𝐻) we need to specify  K′ and m for the 

equation 𝐾′𝑏 = 𝑚. To apply 𝐹(𝐻)we need to specify K′ and m. We have that 𝐾′ = 𝐼, 𝑠 =

𝑘 + 1 𝑎𝑛𝑑 𝑚 = 0. Thus,  [𝐾′(𝑋′𝑋)−1𝐾]−1 becomes 𝑋′𝑋. Then, as before, 

𝐹(𝐻) =  
�̂�𝑋′𝑋�̂�

(𝑘+1)𝜎2̂
=

𝑆𝑆𝑅

𝑟
∗

𝑁−𝑟

𝑆𝑆𝐸
  

Under the null hypothesis 𝐹(𝑅)~𝐹(𝑟,𝑁−𝑟) where 𝑟 = 𝑘 + 1 

The corresponding value of 𝑏�̂� = �̂� − (𝑋′𝑋)−1[(𝑋′𝑋)−1]−1�̂� = 0 

 

ii) We now consider 𝐻: 𝑏 = 𝑏0,that is 𝑏𝑖 = 𝑏(𝑖0) for all i. Rewriting 𝑏 = 𝑏0 as 𝐾′𝑏 = 𝑚 gives: 

𝐾′ = 𝐼, 𝑠 = 𝑘 + 1,𝑚 = 𝑏0 𝑎𝑛𝑑 [𝐾′(𝑋′𝑋)−1𝐾]−1 = 𝑋′𝑋. Thus,  

    𝐹(𝐻) =
(�̂�−𝑏0)′𝑋′𝑋(�̂�−𝑏0)

(𝑘+1)𝜎2̂
               (10) 

   Under the null hypothesis is:  

𝑏�̂� = �̂� − [(𝑋′𝑋)−1]−1(�̂� − 𝑏0) = 𝑏0 

iii) Now, consider 𝐻: λ′𝑏 = 𝑚 . in this case, we have 𝐾′ = λ′,𝑠 = 1 𝑎𝑛𝑑 𝑚 = 𝑚. Since λ′ is 

a vector, 

𝐹(𝐻) =
(λ′�̂�−𝑚)

′
 [λ′(𝑋′𝑋)−1λ]−1(λ′�̂�−𝑚)

σ2̂
=

(λ′�̂�−𝑚)
2

λ′(𝑋′𝑋)−1λσ2̂
  

Under the null hypothesis,𝐹(𝐻) has the 𝐹(1,𝑁−𝑟)-distribution.  

Hence, √𝐹(𝐻) =
(λ′�̂�−𝑚)

σ̂√λ′(𝑋′𝑋)−1λ
~𝑡(𝑁−𝑟) 



This is as one would expect because λ′�̂� is normally distributed with variance λ′(𝑋′𝑋)−1λ 

For this hypothesis, the value of 𝑏�̂� is  

𝑏�̂� = �̂� − (𝑋′𝑋)−1λ[λ′(𝑋′𝑋)−1λ]−1(λ′�̂� − 𝑚)  

= �̂� −
(λ′�̂�−𝑚)

λ′(𝑋′𝑋)−1λ
(𝑋′𝑋)−1λ  

Observe that:  

λ′𝑏�̂� = λ′�̂� − λ′(𝑋′𝑋)−1λ[λ′(𝑋′𝑋)−1λ]−1(λ′�̂� − 𝑚)  

          = λ′�̂� − (λ′�̂� − 𝑚) = 𝑚  

Thus, 𝑏�̂� satisfies the null hypothesis 𝐻: λ′𝑏 = 𝑚 

Note: At this point, it is appropriate to comment on the lack of emphasis being given to the t-

test in hypothesis testing. The equivalence of t-statistics with F-statistics with one degree of 

freedom in the numerator makes it unnecessary to consider t-tests. Whenever a t-test might be 

proposed, the hypothesis to be tested can be put in the form H: 𝜆′ b = m and the F-statistic F(H) 

derived as here. If the t-statistic is insisted upon, it is then obtained as √F(H). No further 

discussion of using the t-test is therefore necessary. 

  

iv) We now consider the case where the null hypothesis is that the first q coordinate of  𝑏 is 

zero, that is,  𝐻: 𝑏𝑞 = 0 i.e.,  𝑏𝑖 = 0 for i =  0, 1, 2, … q −  1, for  q <  k. In this case, we 

have  𝐾′ = [𝐼𝑞    0] and  m =  0 so that s =  q. We write 

𝑏𝑞
′̂ = [𝑏0𝑏1 ……… . . 𝑏(𝑞−1)]  

and partition 𝑏, �̂�  𝑎𝑛𝑑 (𝑋′𝑋)−1 accordingly. Thus,  

b =  

𝑏𝑞  

𝑏𝑝  

 

b̂=   

�̂�𝑞  

�̂�𝑝  

 

   And, (X’X)-1 =  

Tqq Tqp 

Tpq Tpp 

 

Where 𝑝 + 𝑞 = the order of 𝑏 = 𝑘 + 1.then in 𝐹(𝐻) in general hypothesis:𝐾′�̂� = 𝑏�̂� 

And, [𝐾′(𝑋′𝑋)−1𝐾]−1 = 𝑇(𝑞𝑞)
−1 

Giving  𝐹(𝐻) =
𝑏𝑞

′  ̂ 𝑇(𝑞𝑞)

−1
 𝑏�̂�

𝑞𝜎2̂
       (11)  



In the numerator, we recognize the result of “invert part of the inverse”. That means, take 

the inverse of 𝑋′𝑋 and invert that part of it that corresponds to 𝑏𝑞 of the hypothesis 𝐻: 𝑏𝑞 =

0. Although demonstrated here that for a 𝑏𝑞 that consists of the first 𝑞𝑏′𝑠 in b, it clearly 

applies to any subset of q b’s. In particular, for just one b, it leads to the usual 𝐹-test on one 

degree of freedom, equivalent to 𝑡 −test.   

The estimator of 𝑏 under this hypothesis is: 

�̂�𝑐 = �̂�  − (𝑋′𝑋)−1 [
𝐼𝑞
0
] 𝑇𝑞𝑞

−1(�̂�𝑞 − 0)  

= �̂�  − [
𝑇𝑞𝑞

𝑇𝑝𝑞
] 𝑇𝑞𝑞

−1(�̂�𝑞)  =  [
�̂�𝑞

�̂�𝑝

] − [
�̂�𝑞

𝑇𝑝𝑞𝑇𝑞𝑞
−1�̂�𝑞

]  

= [
0

�̂�𝑝 − 𝑇𝑝𝑞𝑇𝑞𝑞
−1�̂�𝑞

]  

Thus, the estimators of 𝑏′s or not in the hypothesis are 𝑏�̂� − 𝑇(𝑝𝑞)𝑇(𝑞𝑞)
−1𝑏�̂�. 

The expression obtained for 𝐹(𝐻) and 𝑏�̂� for these four-hypothesis concerning 𝑏 are in term of 

�̂� . 

1.8 Self – Assessment Exercise 

1. The deciles of a normal distribution are: 

d1 = 17.5056  d4 = 20.6764  d7 = 23.992  

d2 = 18.7189  d5 = 21.6681  d8 = 25.5026  

d3 = 19.7684  d6 = 22.7592  d9 = 27.8952  

Estimate by the method of least squares, the mean and standard deviation of the distribution. 

2. For the model 𝐸(𝑦) = 𝜂 = 𝑏𝐼, 𝑉(𝑦) = σ2𝐼,describe the estimation space and error space 

and find the least square estimate for 𝑏. Show that 𝑋 and 𝑦 − �̂� are orthogonal. Also find  

𝐸(b̂). 

3. For the model = 𝑋𝑏 + 𝑒, 𝑒~𝑁(0, σ2𝐼), 𝑔(𝑦) is some function of y, such that its expected 

value is identically equal to zero. Show that the covariance between g(y) and the element 

to 𝑋′𝑦 is null.  

Let 𝐿(𝑦) be any function of 𝑦, such that its expected value is λ′𝑏. Let λ′b̂ is the BLUE of 

λ′𝑏. Defining 𝑔(𝑦) = 𝐿(𝑦) − λ′𝑏, show that 𝑉(𝐿(𝑦)) > 𝑉(λ′�̂�). 

4. Suppose 𝐸(𝑦1) = 𝐸(𝑦2) = θ,but 𝑉(𝑦1) = 5σ2, 𝑐𝑜𝑣(𝑦1, 𝑦2) = σ2, 𝑉(𝑦2) = 2σ2.Show that 

the BLUE of θ is θ′̂ = (𝑦1 + 4𝑦2)/5 



5. When y has the variance covariance matrix 𝑉 ,prove that the covariance of the BLUE’s of 

𝑝′𝑏 and 𝑞′𝑏 is 𝑝′(𝑋′𝑉−1𝑋)−1𝑞. 

 

1.9 Summary 

The unit covers the basic concepts of linear estimation technique of model building, 

estimable functions etc. In this unit, the procedure of obtaining the Best Linear Unbiased 

Estimator (BLUE) is discussed in detail. Also, the Markov theorem distribution of quadratic 

form is explained. The generalized F and t tests are also covered, which are used to test the 

general hypotheses of linear estimation. 
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2.1 Introduction 

Test of significance based on t- distribution is an adequate procedure only for testing 

the significance of the difference between two sample means. In a situation when we have three 

or more samples to consider at a time, an alternative procedure is needed for testing the 

hypothesis that all the samples are drawn from the same population. For example, when 5 

different fertilizers are applied to four plots each, then we may be interested in finding whether 

the fertilizers have any significant effect on the yield. In other words, we want to see whether 

the samples are coming from the same normal population. 

 In any set of observations, the variation is inherent in nature. The total variation in any 

set of numerical data is due to a number of causes, but mainly classified as: 

(i) Assignable cause of variation:  The assignable cause of variation can be identified, 

measured and controlled.  

 



(ii) Chance cause of variation: The chance cause of variation is beyond the control of 

human hand and cannot be traced separately. 

Analysis of Variance (ANOVA) consists of estimation of the amount of effects due to 

each of independent factors (causes) separately and compare the estimates of effects due to 

assignable factors (causes) with estimates of the effects due to chance factor (cause) or 

experimental error or simple error. 

The following assumptions are made in any analysis of variance procedure: 

(1) The observations are independent. 

(2) Parent population from which observations are taken is normal; and 

(3) Various treatment and environmental effects are additive in nature. 

 

2.2 Objectives  

After going through this unit, you should be able to: 

• Acquire the knowledge analysis of variance (ANOVA) concept, 

• Perform the analysis of variance in one-way classified data with equal (one) observation per 

cell, 

• Able to analyze the two-way classified data with equal (one) observation per cell using 

ANOVA method. 

 

2.3 
Analysis of Variance: One-Way Classification with One 

Observation Per Cell  

 Suppose there are n observations 𝑦𝑖𝑗,(𝑖 = 1,2,⋯ , 𝑘; 𝑗 = 1,2,⋯ , 𝑛𝑖) of a random 

variable Y are grouped into k groups of size 𝑛1, 𝑛2, ⋯ , 𝑛𝑘 respectively. Then n = ∑ 𝑛𝑖
𝑘
𝑖=1  and 

the observation table is as follows: 

Groups Observations Total Mean 

1 y11    y12      ⋯⋯⋯⋯⋯⋯                   y1n1
 T1. = ∑ y1j

n1
j=1   y̅1. = 

T1.

n1
  

2 y21    y22      ⋯⋯⋯⋯⋯⋯                   y2n2
 T2. = ∑ y2j

n2
j=1   y̅2. = 

T2.

n2
  

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

i yi1    yi2           ⋯⋯⋯⋯⋯⋯                yini
 Ti. = ∑ yij

ni
j=1   y̅i. = 

Ti.

ni
  



⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

k yk1    yk2      ⋯⋯⋯⋯⋯⋯                   yknk
 Tk. = ∑ ykj

nk
j=1   y̅k. = 

Tk.

nk
  

Total T.. =∑ ∑ yij
ni
j=1

k
i=1  y̅.. = 

T..

n
 

 

2.3.1 Statistical Analysis  

 The total variation in the observation can be split into the following two components. 

(i) The variation between the classes or assignable cause of variation and 

(ii) The variation within the classes or chance cause of variation. 

 

Hence the mathematical model is given by: 

yij =  μi + eij; j = 1,2,⋯ , ni, i =  1,2,⋯ , k, 

where μi is the average effect of the ithgroup, which can be split as: 

μi = μ + μi − μ = μ + αi with αi = μi − μ, i =  1,2,⋯ , k and μ = 
1

n
∑ niμi

k
i=1 .  

Hence, 

yij = μ + αi + eij; j = 1,2,⋯ , ni, i =  1,2,⋯ , k;      (1) 

Where:   

yij is the jth observation of ith class; j = 1,2,⋯ , ni, i =  1,2,⋯ , k, 

μ is the general mean effect, 

αi is the additive effect due to ithgroup and 

eij is the error effect due to chance and these are assumed to be iid random variables each 

following N(0, σe
2); j = 1,2,⋯ , ni, i =  1,2,⋯ , k. 

The side condition is ∑ niαi
k
i=1   = ∑ ni(μi − μ)k

i=1  = nμ − nμ = 0. 

 

Assumptions 

The statistical analysis of this layout is based on the following assumptions. 

(i) All the observations are mutually independent. 

(ii) Different effects are additive in nature. 

(iii) eij’s are iid random variables each following N(0, σe
2); j = 1,2,⋯ , ni, i =  1,2,⋯ , k. 

 

The null hypothesis to be tested is: 



H0: The groups do not differ significantly or there is no additive effect due to different groups. 

In other words, α1 = α2 = ⋯ = αk = 0. 

 

Summing (1) over j and dividing by ni, we get 

y̅i. = 
1

ni
∑ yij

ni
j=1  = μ + αi + e̅i., ∀ i =  1,2,⋯ , k,                 (2) 

where e̅i. = 
1

ni
∑ eij

ni
j=1  are iid random variables each distributed as N(0, σe

2/ni). 

Summing (1) over i and j and dividing by n, we get: 

y̅.. = 
1

n
∑ ∑ yij

ni
j=1

k
i=1  = μ + e̅.. = μ + e̅..,                            (3) 

where e̅.. = 
1

n
∑ ∑ eij

ni
j=1

k
i=1  are iid random variables each distributed as N(0, σe

2/n). 

Now the total variation in each observation is given by the total sum of squares as: 

T.S.S. = ∑ ∑ (yij − y̅..)
2ni

j=1
k
i=1  = ∑ ∑ (y̅i. − y̅.. +  yij − y̅i. )

2ni
j=1

k
i=1  

= ∑ ∑ (y̅i. − y̅..)
2ni

j=1
k
i=1 + ∑ ∑ (yij − y̅i. )

2ni
j=1

k
i=1   

 = ∑ ni(y̅i. − y̅..)
2k

i=1 + ∑ ∑ (yij − y̅i. )
2ni

j=1
k
i=1 . 

Or T.S.S. = S.S.G. + S.S.E 

Where,  

T.S.S = Total sum of squares = ∑ ∑ (yij − y̅..)
2ni

j=1
k
i=1 ; 

S.S.G = Sum of squares due to groups = ∑ ni(y̅i. − y̅..)
2k

i=1 ; and  

S.S.E = Sum of squares due to error or residuals = ∑ ∑ (yij − y̅i. )
2ni

j=1
k
i=1 . 

Degrees of Freedom for various Sums of Squares 

T.S.S = Total sum of squares = ∑ ∑ (yij − y̅..)
2ni

j=1
k
i=1  is computed from n quantities of the form 

(yij − y̅..) with one constraint ∑ ∑ (yij − y̅..)
ni
j=1

k
i=1  = 0. Hence, T.S.S will have n – 1 degrees 

of freedom. 



S.S.G = Sum of squares due to groups = ∑ ni(y̅i. − y̅..)
2k

i=1  is computed from k quantities of 

the form (y̅i. − y̅..) with one constraint  ∑ ni(y̅i. − y̅..)
k
i=1  = 0. Hence, S.S.G will have k – 1 

degrees of freedom. 

S.S.E = Sum of squares due to error or residuals = ∑ ∑ (yij − y̅i. )
2ni

j=1
k
i=1  is computed from n 

quantities of the form (yij − y̅i.) with k constraints ∑ ∑ (yij − y̅i. )
ni
j=1

k
i=1  = 0. Hence, S.S.E will 

have n – k degrees of freedom. 

Mean Sum of Squares 

The sum of squares divided by its degrees of freedom gives the corresponding mean 

sum of squares. Thus: 

Mean sum of squares due to groups = M.S.G.= 
S.S.G.

k−1
. 

Mean sum of squares due to error = M.S.E.= 
S.S.E.

n−k
 

2.3.2 Least Square Estimates  

In the mathematical model (1), μ and  αi, i =  1,2,⋯ , k are the unknown parameters 

which have to be estimated by the principle of least squares. Hence, we consider the sum of 

squares due to errors, which is given by: 

S.S.E = ∑ ∑ eij
2ni

j=1
k
i=1  = ∑ ∑ (yij − μ − αi)

2ni
j=1

k
i=1        (4) 

Differentiating (4) with respect to μ and  αi and equating to zero individually, we get: 

dS.S.E

dμ
 = 0 ⇒ −2∑ ∑ (yij − μ − αi)

ni
j=1

k
i=1  = 0 

    ⇒ ∑ ∑ (yij − μ − αi)
ni
j=1

k
i=1  = 0  

    ⇒ ∑ ∑ yij
ni
j=1

k
i=1  = nμ + ∑ niαi

k
i=1 = nμ  [∵ ∑ niαi

k
i=1  = 0 by side condition.] 

Hence, the estimate of μ is given by: 

μ̂ = 
1

n
∑ ∑ yij

ni
j=1

k
i=1  = y̅... 

dS.S.E

dαi
 = 0 ⇒ −2∑ (yij − μ − αi)

ni
j=1  = 0, i =  1,2,⋯ , k. 

   ⇒ ∑ (yij − μ − αi)
ni
j=1  = 0 



   ⇒ ∑ yij
ni
j=1  = niμ + niαi 

   ⇒ α̂i = 
1

ni
∑ yij

ni
j=1 − μ̂ = y̅i. − y̅... 

Variance of the Estimates  

We have μ̂ = y̅.. and α̂i = y̅i. − y̅... 

V(μ̂ ) = E[y̅.. −  E(y̅.. − α0)]
2= E[μ + e̅.. −  μ]2= E[e̅..]

2= E(e̅..
2) 

          =  V(e̅..)= 
σe

2

n
. 

Also, we have α̂i −  E(α̂i) = y̅i. − y̅.. −  E(y̅i. − y̅..) 

           = μ + αi + e̅i. −  μ − α0 − e̅.. −  E(μ + αi + e̅i. −  μ − e̅..) 

           = μ + αi + e̅i. −  μ − e̅.. − μ + μ 

           = αi + e̅i. − e̅... 

Hence, V(α̂i ) = E[αi + e̅i. − e̅..]
2= E(αi

2) + E[e̅i.
2 + e̅..

2 − 2e̅i.e̅..] 

  = αi
2 + E(e̅i.

2) +  E(e̅..
2) −  2E(e̅i.e̅..). 

Now, E(e̅i.e̅..) = E(
1

ni
∑ eij

ni
j=1

1

kni
∑ ∑ eij

ni
j=1 )k

i=1  

  = 
1

kni
2 E[ei1

2 + ei2
2 + ⋯+ eini

2 ] +
1

kni
2 E [∑ eij ∑ (eh1 + ⋯+ ehni

)k
h≠i=1

ni
j=1 ] 

  = 
1

kni
2 E[ei1

2 + ei2
2 + ⋯+ eini

2 ]   since E(eijehj) = 0 for h ≠ i; 

  = 
1

kni
2 ∑ E(eij

2)
ni
j=1  = 

1

kni
2 ∑ V(eij)

ni
j=1   

= 
1

kni
2 niσe

2 = 
σe

2

kni
. 

Hence, V(α̂i ) = αi
2 + 

σe
2

ni
+ 

σe
2

n
−  2

σe
2

kni
 = αi

2 +
σe

2

ni
(1 −

2

k
) + 

σe
2

n
. 

In particular if all group sizes are equal, say to r, i.e., if ni = r, ∀ i =  1,2,⋯ , k, then n = rk and: 

V(α̂i ) = αi
2 +

σe
2

r
(1 −

2

k
) + 

σe
2

rk
 = αi

2 + 
σe

2

r
(1 −

2

k
+ 

1

k
) = αi

2 +
(k−1)σe

2

rk
. 

Expectation of Sum of Squares 

We have yij = μ + αi + eij; j = 1,2,⋯ , ni, i =  1,2,⋯ , k; 



     y̅i. = 
1

ni
∑ yij

ni
j=1  = μ + αi + e̅i., ∀ i =  1,2,⋯ , k, and 

     y̅.. = μ + e̅.., 

Then: 

E(yij
2) = E(μ2 + αi

2 + eij
2 +  2μαi +  2μeij + 2αieij) 

 = E(μ2) +  E(αi
2) + E(eij

2) +  2μE(αi) +  2μE(eij) + 2E(αi)E(eij) 

 = μ2 + αi
2 + σe

2 + 2μαi . 

E(y̅i.
2) = E(μ2 + αi

2 + e̅i.
2 +  2μαi +  2μe̅i. + 2αie̅i.) 

 = E(μ2) +  E(αi
2) + E(e̅i.

2) +  2μE(αi) +  2μE(e̅i.) + 2E(αi)E(e̅i.) 

 = μ2 + αi
2 + 

σe
2

ni
 + 2μαi. 

E(y̅..
2) = E(μ2 + e̅..

2 +  2μe̅..) 

 = E(μ2) +  E(e̅..
2) +  2μE(e̅..) = μ2 + 

σe
2

n
. 

E(S.S.G.) = E{∑ ni(y̅i. − y̅..)
2k

i=1 } 

                = E{∑ niy̅i.
2 − ny̅..

2k
i=1 } 

                = ∑ niE(y̅i.
2) − nE(y̅..

2k
i=1 ) 

                = ∑ ni (μ
2 + αi

2 + 
σe

2

ni
 +  2μαi) − n(μ2 + 

σe
2

n

k
i=1 ) 

               = nμ2 + ∑ ni
k
i=1 αi

2 +  k σe
2 +  2μ∑ niαi

k
i=1 −  nμ2 − σe

2 

               = ∑ ni
k
i=1 αi

2 + (k − 1)σe
2. 

Or E(M.S.G.) = E (
S.S.G

k−1
) = 

1

(k−1)
∑ ni

k
i=1 αi

2 + σe
2. 

Now E(S.S.E.) = E{∑ ∑ (yij − y̅i. )
2ni

j=1
k
i=1 }  

                =   E{∑ ∑ yij
2 − ∑ niy̅i.

2k
i=1

ni
j=1

k
i=1 } 

                = ∑ ∑ E(yij
2ni

j=1
k
i=1 ) − ∑ niE(y̅i.

2k
i=1 ) 

               = ∑ ∑ (μ2 + αi
2 + σe

2  +  2μαi )
ni
j=1

k
i=1 − ∑ ni(

k
i=1 μ2 + αi

2 + 
σe

2

ni
 + 2μαi) 



 = nμ2 + ∑ ni
k
i=1 αi

2 + nσe
2 + 2μ∑ niαi

k
i=1 − nμ2 − ∑ ni

k
i=1 αi

2 − kσe
2 −

2μ∑ niαi
k
i=1  

             = (n − k)σe
2 

Or E(M.S.E.) = E (
S.S.E

n−k
) = σe

2 

Thus, under H0, α1 = α2 = ⋯ = αk = 0. Hence, 

E(M.S.G.) = σe
2 = E(M.S.E.). 

Also, under H0, S.S.G. follows a χ2 distribution with k – 1 degrees of freedom and S.S.E. 

follows a χ2 distribution with n – k degrees of freedom. 

Hence, for testing H0, the test statistic is given by F = 
S.S.G/(k−1)

S.S.E./(n−k)
 = 

M.S.G

M.S.E
 which will follow a 

central F distribution with k – 1 and n – k degrees of freedom. 

 

2.2.3 ANOVA Table 
  

Sources of 

Variation 

Degrees of 

freedom 

Sum of Squares Mean Sum of 

Squares 

Variance 

Ratio 

Groups k – 1  S.S.G.= ∑ ni(y̅i. − y̅..)
2k

i=1  M.S.G = 
S.S.G.

k−1
 F = 

M.S.G.

M.S.E
 

Error n – k   S.S.E.=∑ ∑ (yij − y̅i. )
2ni

j=1
k
i=1  M.S.E. = 

S.S.E

n – k
  

Total n – 1  T.S.S. =∑ ∑ (yij − y̅..)
2ni

j=1
k
i=1   

 If the calculated value of F is greater than the tabulated value of F at k – 1 and n – k 

degrees of freedom, then reject the null hypothesis H0 otherwise it may be accepted. 

 

Critical Difference 

If the null hypothesis is rejected, then we may test for the equality of two classes means i.e.  

H0, µi = µi′ ; i≠i’=1,2…p 

Here we apply t-test satisfying the test statistic t:  

|t| =    
yi.̅̅̅̅ − yi.′̅̅ ̅̅ ̅

√MSE(
1

ni
+

1

ni′
)

  ~ tα

2

(n –  k) 

 if n1= n2 = ⋯… . np = n0, then  



|t| =  
yi.̅̅̅̅ − yi.′̅̅ ̅̅ ̅

√
2MSE

n0

 ~     tα

2

(n –  k) 

and if |t| ≤ tα

2

(n –  k), then we accept our null hypothesis H0 at α x 100% level of significance, 

otherwise reject. 

The quantity √
2MSE

n0
, tα

2

(n –  k) is known as the “critical difference” or “least significant 

difference”.  

 

For Practical Calculations 

We have T.S.S = ∑ ∑ (yij − y̅..)
2ni

j=1
k
i=1 = ∑ ∑ (yij

2ni
j=1

k
i=1 + y̅..

2 −  2yijy̅..) 

                        = ∑ ∑ yij
2ni

j=1
k
i=1 +  ny̅..

2 −  2y̅.. ∑ ∑ yij
ni
j=1

k
i=1  

= ∑ ∑ yij
2ni

j=1
k
i=1 +  ny̅..

2 −  2ny̅..
2    

[∵ y̅.. = 
1

n
∑ ∑ yij 

ni
j=1

k
i=1 ⇒ ny̅..  = ∑ ∑ yij 

ni
j=1

k
i=1 ] 

= ∑ ∑ yij
2ni

j=1
k
i=1 −  ny̅..

2 =  ∑ ∑ yij
2ni

j=1
k
i=1 − 

(∑ ∑ yij 
ni
j=1

k
i=1 )

2

n
       

= ∑ ∑ yij
2ni

j=1
k
i=1 − 

T..
2

n
   

T.S.S = Raw Sum of Squares (R.S.S.) – Correction factor (C.F.). 

S.S.G  = ∑ ni(y̅i. − y̅..)
2k

i=1  =  ∑ ni(y̅i.
2k

i=1 + y̅..
2 −  2y̅i. y̅..)   

= ∑ niy̅i.
2 +  nk

i=1 y̅..
2 −  2 y̅.. ∑ ni

k
i=1 y̅i.    

= ∑ niy̅i.
2 +  nk

i=1 y̅..
2 −  2ny̅..

2   

=  ∑ niy̅i.
2 −  nk

i=1 y̅..
2 = ∑ ni (

Ti.

ni
)
2

−  nk
i=1 (

T..

n
)
2

  

= ∑
Ti.

2

ni

k
i=1 − 

T..
2

n
 = ∑

Ti.
2

ni

k
i=1 −  C. F. 

S.S.E. = T.S.S. – S.S.G. 

Example: To assess the significance of possible variation in performance in a certain test 

between the convent schools of a city, a common test was given to a number of students taken 



at random from the senior fifth class of each of the four schools concerned. The results are 

given below. Make an analysis of variance of data. 

Schools 

A B C D 

8 12 18 13 

10 11 12 9 

12 9 16 12 

8 14 6 16 

7 4 8 15 

Solution:  

Sample-I Sample-II Sample-III Sample-IV 

X1 𝑋1
2 X2 𝑋2

2 X3 𝑋3
2 X4 𝑋4

2 

8 64 12 144 18 324 13 169 

10 100 11 121 12 144 9 81 

12 144 9 81 16 256 12 144 

8 64 14 196 6 36 16 256 

7 49 4 16 8 64 15 225 

∑𝑋1 =

45  

∑𝑋1
2 =

421  

∑𝑋2 =

50  

∑𝑋2
2 =

558  

∑𝑋3 =

60  

∑𝑋3
2 =

824  

∑𝑋4 =

65  

∑𝑋4
2 =

875  

 

G = ∑X1 + ∑X2 + ∑X3 + ∑X4 = 220  

Correction Factor =  
T2

N
=

(220)2

20
= 2420  

Total Sum of Squares (TSS)  = (∑X1
2 + ∑X2

2 + ∑X3
2 + ∑X4

2) −
T2

N
= 2678 −  2420 =

258  

Sum of Squares between Groups (SSG) =
(∑X1)2

N
+

(∑X2)2

N
+

(∑X3)2

N
+

(∑X4)2

N
−

T2

N
  

 = 2470 − 2420 = 50  

Sum of Squares due to Error (SSE) = Total Sum of Squares – Sum of Squares between samples 

         = 258 – 50 = 208 

ANOVA Table 

Sources of 

Variation 

Degrees of 

freedom 

Sum of 

Squares 

Mean Sum of 

Squares 

Variance Ratio 

FCal. FTab. 

Groups 3 50 16.7 1.285 𝐹(3,5) = 3.24 



Error 16 208 13.0   

Total 19 258    

 

The calculated value of F is less than the tabulated value and hence, the difference in the mean 

value of the samples is not significant i.e., the samples could have come from the same 

universe.  

 

2.4 
Analysis of Variance: Two-Way Classification with One 

Observation Per Cell  

Suppose there are n observations 𝑦𝑖𝑗,(𝑖 = 1,2,⋯ , 𝑘; 𝑗 = 1,2,⋯ , ℎ) of a random variable 

Y are grouped into k rows and h columns respectively. Then n = ℎ𝑘 and the observation table 

is as follows: 

 

Rows Columns Row Totals Row 

Means 1                       2           ⋯          j          ⋯            h 

1 y11                  y12         ⋯        y1j         ⋯         y1h T1. = ∑ y1j
h
j=1   y̅1. = 

T1.

h
  

2 y21                   y22        ⋯         y2j          ⋯      y2h T2. = ∑ y2j
h
j=1   y̅2. = 

T2.

h
  

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

i yi1                     yi2         ⋯       yij          ⋯      yih    Ti. = ∑ yij
h
j=1   y̅i. = 

Ti.

h
  

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

k yk1                     yk2      ⋯            ykj        ⋯    ykh Tk. = ∑ ykj
h
j=1   y̅k. = 

Tk.

h
  

Column 

Totals 

T.1 = ∑ yi1
k
i=1  T.2 = ∑ yi2

k
i=1 ⋯ T.j = ∑ yij

k
i=1  ⋯ 

T.h = ∑ yih
k
i=1  

T..=

∑ ∑ yij
h
j=1

k
i=1  

 



Column 

Means 

y̅.1 = 
T.1

k
          y̅.2 = 

T.2

k
      ⋯       y̅.j = 

T.j

k
           ⋯       

y̅.h = 
T.h

k
          

 y̅..= 
T..

hk
 

 

2.4.1 Statistical Analysis  

The total variation in the observation can be split into the following two components: 

(i) The variation between the classes or assignable cause of variation which are due to 

classification into different rows and column, and 

(ii) the variation within the rows or columns or chance cause of variation. 

 

Let yij denote the value of the observation in the (i, j)th cell and suppose that yij’s are iid 

random variables, distributed according to N(μij, σe
2). Then the mathematical model is: 

yij =  μij + eij; i =  1,2, ⋯ , k; j =  1,2,⋯ , h   

where eij′s are the error effect due to chance and these are assumed to be iid random variables 

each following N(0, σe
2); i =  1,2,⋯ , k, j = 1,2,⋯ , h. 

μij is further split into: 

(1) μ = 
1

n
∑ ∑ μij

h
j=1

k
i=1  = 

1

hk
∑ ∑ μij

h
j=1

k
i=1 , the over all mean; 

(2) the row effect  αi = μi. −  μ, where μi. = 
1

h
∑ μij

h
j=1 ; and 

(3) the column effect βj = μ.j −  μ, where μ.j = 
1

k
∑ μij

k
i=1 .  

Obviously, 

∑ αi
k
i=1  = ∑ (μi. −  μ)k

i=1  = ∑ μi. −  k μk
i=1  = k μ −  k μ = 0.  

Similarly, 

∑ βj
h
j=1  = ∑ (μ.j −  μ)h

j=1  = ∑ μ.j −  h μh
j=1  = h μ − h μ = 0. 

Thus, 

μij = μ + μi. −  μ + μ.j −  μ = μ + αi + βj 

 

Hence the mathematical model is given by: 

yij = μ + αi + βj + eij; i =  1,2,⋯ , k; j =  1,2,⋯ , h    (1) 

Where, 



yij is the observation of ith row and jth column; i =  1,2,⋯ , k, j = 1,2,⋯ , h, 

μ is the general mean effect 

αi is the additive effect due to ithrow; i =  1,2,⋯ , k;  

βj is the additive effect due to jthcolumn; i =  1,2,⋯ , k; and 

eij′s are the error effect due to chance and these are assumed to be iid random variables each 

following N(0, σe
2); i =  1,2,⋯ , k, j = 1,2,⋯ , h. 

The side conditions are ∑ αi
k
i=1  = ∑ βj

h
j=1  = 0. 

Summing (1) over j and dividing by h, we get 

y̅i. = 
1

h
∑ yij

h
j=1  = μ + αi + e̅i., ∀ i =  1,2,⋯ , k,                 (2) 

and 

e̅i. = 
1

h
∑ eij

h
j=1  are iid random variables each distributed as N(0, σe

2/h). 

Summing (1) over i and dividing by k, we get 

y̅.j = 
1

k
∑ yij

k
i=1  = μ + βj + e̅.j, ∀ j =  1,2,⋯ , h,                 (3) 

and 

 e̅.j = 
1

k
∑ eij

k
i=1  are iid random variables each distributed as N(0, σe

2/k). 

Summing (1) over i and j and dividing by n = hk, we get 

y̅.. = 
1

hk
∑ ∑ yij

h
j=1

k
i=1  =  μ + e̅..,                          (4) 

where  e̅.. = 
1

n
∑ ∑ eij

ni
j=1

k
i=1  are iid random variables each distributed as N(0, σe

2/hk). 

The null hypothesis to be tested is:  

H01: The rows do not differ significantly or there is no additive effect due to different rows. In 

other words, α1 = α2 = ⋯ = αk = 0 and 

H02: The columns do not differ significantly or there is no additive effect due to different 

columns. In other words, β1 = β2 = ⋯ = βh = 0. 

 

Now the total variation in each observation is given by the total sum of squares as 



T.S.S. = ∑ ∑ (yij − y̅..)
2h

j=1
k
i=1  = ∑ ∑ (y̅i. − y̅.. + y̅.j − y̅.. +  yij − y̅i. − y̅.j +  y̅..)

2h
j=1

k
i=1  

          = ∑ ∑ (y̅i. − y̅..)
2h

j=1
k
i=1 + ∑ ∑ (y̅.j − y̅..)

2h
j=1

k
i=1 + ∑ ∑ (yij − y̅i.  −  y̅.j +  y̅..)

2ni
j=1

k
i=1   

          = h∑ (y̅i. − y̅..)
2k

i=1 + k ∑ (y̅.j − y̅..)
2h

j=1 + ∑ ∑ (yij − y̅i.  −  y̅.j +  y̅..)
2ni

j=1
k
i=1 . 

Or T.S.S. = S.S.R. + S.S.C. + S.S.E,  

Where,  

T.S.S = Total sum of squares = ∑ ∑ (yij − y̅..)
2h

j=1
k
i=1 .  

S.S.R = Sum of squares due to rows = h∑ (y̅i. − y̅..)
2k

i=1 .  

S.S.C = Sum of squares due to columns = k ∑ (y̅.j − y̅..)
2h

j=1  and  

S.S.E = Sum of squares due to error or residuals = ∑ ∑ (yij − y̅i.  −  y̅.j +  y̅..)
2
.h

j=1
k
i=1   

Degrees of freedom 

T.S.S = ∑ ∑ (yij − y̅..)
2h

j=1
k
i=1  is computed from hk quantities of the type(yij − y̅..)  with one 

restriction that ∑ ∑ (yij − y̅..)
h
j=1

k
i=1  = 0. Hence, it has hk – 1 degrees of freedom. 

S.S.R = h∑ (y̅i. − y̅..)
2k

i=1  is computed from k quantities of the type (y̅i. − y̅..) with one 

restriction of the type ∑ (y̅i. − y̅..)
k
i=1  = 0. Therefore S.S.R has k – 1 degrees of freedom. 

S.S.C = k ∑ (y̅.j − y̅..)
2h

j=1  is computed from h quantities of the type (y̅.j − y̅..) with one 

restriction of the type ∑ (y̅.j − y̅..)
h
j=1  = 0. Therefore S.S.R has h – 1 degrees of freedom. 

Finally, S.S.E = ∑ ∑ (yij − y̅i.  −  y̅.j +  y̅..)
2h

j=1
k
i=1 = T.S.S – S.S.R. – S.S.C. Hence its degree 

of freedom is given by hk – 1 – (k – 1) – (h – 1) = hk –k –h + 1 = (h – 1). (k – 1). 

 

2.4.2 Least Square Estimates  

In the mathematical model (1), μ , αi and βj , i =  1,2,⋯ , k, j = 1,2,⋯ , h are the 

unknown parameters which have to be estimated by the principle of least squares. Hence, we 

consider the sum of squares due to errors, which is given by: 

S.S.E = ∑ ∑ eij
2h

j=1
k
i=1  = ∑ ∑ (yij − μ − αi − βj)

2h
j=1

k
i=1 .     (5) 



 

Differentiating (5) with respect to μ,  αi and βj and equating to zero individually, we get: 

dS.S.E

dμ
 = 0 ⇒ −2∑ ∑ (yij − μ − αi − βj)

h
j=1

k
i=1  = 0 

    ⇒ ∑ ∑ (yij − μ − αi − βj)
h
j=1

k
i=1  = 0  

    ⇒ ∑ ∑ yij
ni
j=1

k
i=1  = hkμ + h∑ αi

k
i=1 +  k ∑ βj

h
j=1 = hkμ . 

Hence, the estimate of μ is given by: 

μ̂ = 
1

n
∑ ∑ yij

ni
j=1

k
i=1  = y̅... 

dS.S.E

dαi
 = 0 ⇒ −2∑ (yij − μ − αi − βj)

h
j=1  = 0, i =  1,2,⋯ , k. 

    ⇒ ∑ (yij − μ − αi − βj)
h
j=1  = 0 

     ⇒ ∑ yij
h
j=1  = hμ + hαi + ∑ βj

h
j=1  

     ⇒ α̂i = 
1

h
∑ yij

h
j=1 − μ̂  = y̅i. − y̅.. = y̅i. − y̅.. 

dS.S.E

dβj
 = 0 ⇒ −2∑ (yij − μ − αi − βj)

k
i=1  = 0, j =  1,2,⋯ , h. 

    ⇒ ∑ (yij − μ − αi − βj)
k
i=1  = 0 

    ⇒ ∑ yij
k
i=1  = kμ + ∑ αi +  kk

i=1 βj = kμ + kβj 

    ⇒ β̂j = 
1

k
∑ yij

k
i=1 − μ̂  = y̅i. − y̅.. = y̅.j − y̅.. 

Variance of the estimates 

We have μ̂ = y̅.. , α̂i = y̅i. − y̅.. and β̂j = y̅.j − y̅.. 

V(μ̂ ) = E[y̅.. −  E(y̅..)]
2= E[μ + e̅.. − μ]2 

          = E[ e̅....
]
2

= V(e̅..) = 
σe

2

hk
. 

Also, we have α̂i −  E(α̂i) = y̅i. − y̅.. −  E(y̅i. − y̅..). 

Now y̅i. − y̅.. = μ + αi + e̅i. −  μ − e̅.. = e̅i. − e̅.. + αi 

E(y̅i. − y̅..) = αi.  

Hence, α̂i −  E(α̂i) = e̅i. − e̅.. + αi− αi = e̅i. − e̅.. 



Hence, V(α̂i ) = E[e̅i. − e̅..]
2= E[e̅i.

2 + e̅..
2 − 2e̅i.e̅..] 

  = E(e̅i.
2) +  E(e̅..

2) −  2E(e̅i.e̅..). 

Now, E(e̅i.e̅..) = E(
1

h
∑ eij

h
j=1

1

kh
∑ ∑ eij

h
j=1 )k

i=1  

             = 
1

kh2 E[ei1
2 + ei2

2 + ⋯+ eih
2 ] +

1

kh2 E[∑ eij ∑ (eg1 + ⋯+ egh)
k
g≠i=1

h
j=1 ] 

             = 
1

kh2 E[ei1
2 + ei2

2 + ⋯+ eih
2 ] since E(eijegj) = 0 for g ≠ i; 

             = 
1

kh2
∑ E(eij

2)
ni
j=1  = 

1

kh2
∑ V(eij)

h
j=1  = 

1

kh2 hσe
2 = 

σe
2

kh
. 

Hence, V(α̂i ) = 
σe

2

h
+ 

σe
2

kh
−  2

σe
2

kh
  = 

σe
2

h
− 

σe
2

kh
  = 

σe
2

h

(k−1)

k
 . 

Similarly, for V(β̂j ), we have: 

β̂j −  E(β̂j) = y̅.j − y̅.. −  E(y̅.j − y̅..) 

y̅.j − y̅.. =  μ + βj + e̅.j −  μ − e̅..= e̅.j − e̅.. + βj 

E(y̅.j − y̅..)= βj.  

Hence, 

V(β̂j ) = E(e̅.j − e̅..)
2
= E[e̅.j

2 + e̅..
2 − 2e̅.je̅..] 

 = E(e̅.j
2) +  E(e̅..

2) −  2E(e̅.je̅..) 

Now, E(e̅.je̅..) =E(
1

k
∑ eij

k
i=1

1

kh
∑ ∑ eij

h
j=1 )k

i=1  

  = 
1

hk2
E[e1j

2 + e2j
2 + ⋯+ ekj

2 ] +
1

kh2
E[∑ eij ∑ (e1l + ⋯+ ekl)

h
l ≠j=1

k
i=1 ] 

  = 
1

hk2 E[e1j
2 + e2j

2 + ⋯+ ekj
2 ] since E(eijeil) = 0 for l ≠ j; 

  = 
1

hk2
∑ E(eij

2)k
i=1  = 

1

hk2
∑ V(eij)

k
i=1  = 

1

hk2
kσe

2 = 
σe

2

kh
. 

Hence, V(β̂j ) = 
σe

2

k
+ 

σe
2

kh
−  2

σe
2

kh
   = 

σe
2

k
− 

σe
2

kh
 = 

σe
2

k

(h−1)

h
 

Expectation of Sum of Squares 

We have yij = μ + αi + βj + eij; i =  1,2,⋯ , k; j =  1,2,⋯ , h   

 y̅i. = 
1

h
∑ yij

h
j=1  = μ + αi + e̅i., ∀ i =  1,2,⋯ , k,  



y̅.j = 
1

k
∑ yij

k
i=1  = μ + βj + e̅.j, ∀ j =  1,2,⋯ , h,  and 

y̅.. = 
1

hk
∑ ∑ yij

h
j=1

k
i=1  =  μ + e̅.., 

where e̅i. = 
1

h
∑ eij

h
j=1  are iid  random variables each distributed as N(0, σe

2/h), e̅.j = 
1

k
∑ eij

k
i=1  

are iid random variables each distributed as N(0, σe
2/k) and e̅.. = 

1

n
∑ ∑ eij

ni
j=1

k
i=1  are iid  random 

variables each distributed as N(0, σe
2/hk). 

Then: 

E(yij
2) = E(μ2 + αi

2 + βj
2 + eij

2 +  2μαi + 2μβj + 2μeij + 2αiβj + 2αieij + 2βjeij) 

 = E(μ2) +  E(αi
2) + E(βj

2) + E(eij
2) +  2μE(αi) + 2μE(βj) +  2μE(eij) +

                  2E(αi)E(βj) + 2E(αi)E(eij) +  2E(βj)E(eij) 

 = μ2 + αi
2 + βj

2 +  2μαi + 2μβj + 2αiβj + σe
2 . 

E(y̅i.
2) = E(μ2 + αi

2 +  e̅i.
2 +  2μαi +  2μe̅i. + 2αie̅i.) 

 = E(μ2) +  E(αi
2) + E(e̅i.

2) +  2μE(αi) +  2μE(e̅i.) +  2E(αi)E(e̅i.)   

            = μ2 + αi
2 + 

σe
2

h
+  2μαi. 

E(y̅.j
2) = E(μ2 + βj

2+ e̅.j
2 +  2μβj +  2μe̅.j +  2βje̅.j) 

 = E(μ2) + E(βj
2) + E(e̅.j

2) + 2μE(βj) +  2μE(e̅.j) +  2E(βj)E(e̅.j) 

 = μ2 + βj
2 + 

σe
2

k
+  2μβj. 

E(y̅..
2) = E(μ2 + e̅..

2 +   2μe̅..) 

 = E(μ2) + E(e̅..
2) +   2μE(e̅..)   = μ2 +

σe
2

hk
. 

E(S.S.R.) = E{h∑ (y̅i. − y̅..)
2k

i=1 } 

                = E{h∑ y̅i.
2 − hky̅..

2k
i=1 } 

                = h∑ E(y̅i.
2) − hkE(y̅..

2k
i=1 ) 

                = h∑ (μ2 + αi
2 + 

σe
2

h
+  2μαi) − hk(μ2 +

σe
2

hk

k
i=1 ) 

                = hkμ2 +  h∑ αi
2k

i=1 +  k σe
2 + 2μ∑ αk

i=1 i
−  hkμ2 − σe

2 



                = h∑ αi
2k

i=1 + (k − 1)σe
2.           [since ∑ αk

i=1 i
 = 0]. 

Or E(M.S.R.) = E (
S.S.R

k−1
) = 

h

k−1
∑ αi

2k
i=1 + σe

2. 

E(S.S.C.) = E{k ∑ (y̅.j − y̅..)
2h

j=1 } 

     = E{k∑ y̅.j
2h

j=1 − hky̅..
2} 

     = k ∑ E(y̅.j
2)h

j=1 − hkE(y̅..
2) 

    = k ∑ (μ2 + βj
2 + 

σe
2

k
+  2μβj)

h
j=1 − hk (μ2 +

σe
2

hk
) 

    = hkμ2 +  k∑ βj
2h

j=1 + hσe
2 + 2μ∑ βh

j=1 j
− hkμ2 − σe

2 

    = k ∑ βj
2h

j=1 + (h − 1)σe
2.    [since ∑ βh

j=1 j
 = 0]. 

Or E(M.S.C.) = E (
S.S.C

h−1
) = 

k

h−1
∑ βj

2h
j=1 + σe

2 

Now: 

E(S.S.E.) = E{∑ ∑ (yij − y̅i.  −  y̅.j +  y̅..)
2h

j=1
k
i=1 }  

= E{∑ ∑ (yij
2h

j=1
k
i=1 + y̅i.

2 + y̅.j
2 + y̅..

2 − 2yijy̅i. − 2yijy̅.j + 2yijy̅.. + 2y̅i.y̅.j − 2y̅i.y̅.. −

2y̅.jy̅..)} 

= ∑ ∑ E(yij
2h

j=1
k
i=1 ) + h∑ E(y̅i.

2k
i=1 ) + k∑ E(y̅.j

2)h
j=1 + hkE(y̅..

2) −

2E{∑ y̅i.
k
i=1 ∑ yij}

h
j=1 − 2E{∑ y̅.j ∑ yij} + 2E{k

i=1
h
j=1 y̅.. ∑ ∑ yij} +h

j=1
k
i=1

2E{∑ y̅i. ∑ y̅.j} − 2E{hh
j=1

k
i=1 y̅.. ∑ y̅i.}

k
i=1  − 2E{ky̅.. ∑ y̅.j}

h
j=1  

= ∑ ∑ E(yij
2h

j=1
k
i=1 ) + h∑ E(y̅i.

2k
i=1 ) + k∑ E(y̅.j

2)h
j=1 + hkE(y̅..

2) − 2h ∑ E(y̅i.
2)k

i=1 −

2k∑ E(y̅.j
2) + 2hkE(h

j=1 y̅..
2)  + 2hkE(y̅..

2) − 2hkE(y̅..
2) −  2hkE(y̅..

2)  

= ∑ ∑ E(yij
2h

j=1
k
i=1 ) −  h∑ E(y̅i.

2k
i=1 ) − k∑ E(y̅.j

2)h
j=1 + hkE(y̅..

2) 

= ∑ ∑ (μ2 + αi
2 + βj

2 +  2μαi + 2μβj + 2αiβj + σe
2)h

j=1
k
i=1   − h∑ (k

i=1 μ2 + αi
2 +

 
σe

2

h
+  2μαi) −k∑ (μ2 + βj

2 + 
σe

2

k
+  2μβj)

h
j=1 + hk (μ2 +

σe
2

hk
) 



= hkμ2 + h∑ αi
2 + k∑ βj

2h
j=1

k
i=1 + hkσe

2 −  hkμ2 − h∑ αi
2k

i=1 −  kσe
2 −  hkμ2 −

 k∑ βj
2h

j=1 − hσe
2 + hkμ2 + σe

2     

[ since ∑ αk
i=1 i

 = 0 and ∑ βh
j=1 j

 = 0]. 

     = (hk − k − h + 1)σe
2 = (k − 1)(h − 1)σe

2.    

Or E(M.S.E.) = E (
S.S.E

(k−1)(h−1)
) = σe

2. 

Thus, under H01, α1 = α2 = ⋯ = αk = 0⇒ ∑ αi
2k

i=1 = 0.  

Hence, E(M.S.R.) = σe
2 = E(M.S.E.). 

Also, under H01, S.S.R. follows a χ2 distribution with k – 1 degrees of freedom and S.S.E. 

follows a χ2 distribution with (k − 1)(h − 1) degrees of freedom. 

Hence, for testing H01, the test statistic is given by FR = 
S.S.R/(k−1)

S.S.E./(k−1)(h−1)
 = 

M.S.R

M.S.E
 , which will 

follow a central F distribution with k – 1 and (k − 1)(h − 1) degrees of freedom. 

 

Similarly, under H02, β1 = β2 = ⋯ = βh = 0⇒ ∑ βj
2h

j=1 = 0. Hence, 

E(M.S.C.) = σe
2 = E(M.S.E.) 

Also, under H02, S.S.C. follows a χ2 distribution with h – 1 degrees of freedom and S.S.E. 

follows a χ2 distribution with (k − 1)(h − 1) degrees of freedom. 

Hence, for testing H0, the test statistic is given by FC = 
S.S.C/(h−1)

S.S.E./(k−1)(h−1)
 = 

M.S.C

M.S.E
, which will follow 

a central F distribution with h – 1 and (k − 1)(h − 1) degrees of freedom. 

 

2.4.3 ANOVA Table 
 

Sources of 

Variation 

Degrees of 

freedom 

Sum of Squares Mean Sum of 

Squares 

Variance 

Ratio 

Rows k – 1  S.S.R.= h ∑ (y̅i. − y̅..)
2k

i=1  M.S.R = 
S.S.R.

k−1
 FR = 

M.S.R.

M.S.E
 

Columns h – 1  S.S.C.= k ∑ (y̅.j − y̅..)
2h

j=1  M.S.C = 
S.S.C.

h−1
 FC = 

M.S.C.

M.S.E.
 

Error (k –1)(h-1) S.S.E.=∑ ∑ (yij − y̅i. −
h
j=1

k
i=1

y̅.j +  y̅..)
2
 

M.S.E. = 

S.S.E.

(k – 1)( h – 1)
 

 



Total kh – 1  T.S.S. =∑ ∑ (yij − y̅..)
2h

j=1
k
i=1   

 

• If FR < Fα/2,(k−1),(k−1)(h−1), then H01 is accepted, hence we conclude that there is no 

significant difference between µi′s otherwise H01 is rejected at level of significance α.  

 

• If FCal,col < Fα/2(h−1),(k−1)(h−1) then H02 is accepted, hence we conclude that there is no 

significant difference between µj′s otherwise H02 is rejected at level of significance α.  

 

Critical Difference 

If the mean effect due to factor A or factor B differ significantly, then we need to know 

about those pairs of means which differ significantly. For this we calculate the critical 

difference.  

 

1. Critical Difference due to Row  

CDrow = tα/2(k−1),(h−1)√
2MSE

h
 

If |yi.̅ − yi.
′̅ | > CDrow, then ith and i’th row means are said to differ significantly, otherwise 

not. 

2. Critical Difference due to Column 

If |y.j̅ − y.j
′̅ | > CDcol, then jth and j’th column means are said to differ significantly, otherwise 

not. 

 

For Practical calculations 

We have T.S.S = ∑ ∑ (yij − y̅..)
2h

j=1
k
i=1 = ∑ ∑ (yij

2 + y̅..
2 −  2yijy̅..)

h
j=1

k
i=1  

  = ∑ ∑ yij
2 +  khh

j=1
k
i=1 y̅..

2 −  2y̅.. ∑ ∑ yij
h
j=1

k
i=1  

   = ∑ ∑ yij
2 +  khh

j=1
k
i=1 y̅..

2 −  2khy̅..
2 = ∑ ∑ yij

2 −  khh
j=1

k
i=1 y̅..

2 

  = Raw Sum of Squares (RSS) - kh(
T..

hk
)
2

 

  = RSS  − 
T..

2

hk
   



T.S.S = RSS  − Correction Factor (C.F.), 

Where, C.F. = 
T..

2

hk
. 

Similarly,  

S.S.R = h∑ (y̅i. − y̅..)
2k

i=1 = h∑ y̅i.
2 − hky̅..

2k
i=1  

         = h∑ (
Ti.

h
)
2

− C. F.k
i=1  = 

1

h
∑ Ti.

2k
i=1  −C. F. 

S.S.C = k ∑ (y̅.j − y̅..)
2h

j=1  = k ∑ y̅.j
2h

j=1 − hky̅..
2  

         = k ∑ (
T.j

k
)
2

h
j=1 − C. F = 

1

k
∑ T.j

2h
j=1 − C. F . 

S.S.E = T.S.S – S.S.R. – S.S.C. 

Example: The following table gives monthly sales (in thousand rupees) of a certain firm in 

three states by its four salesmen. Set up analysis of variance table and test whether there is a 

significant difference between sales by the firm salesmen and sales in the three states. 

States Salesmen 

I II III IV 

A 6 5 3 8 

B 8 9 6 5 

C 10 7 8 7 

Solution: Let us take the hypothesis that there is no significant difference between the sales 

by the four salesmen, and there is no significant difference between sales in the three states. 

States Salesmen Total 

I II III IV 

A 6 5 3 8 22 

B 8 9 6 5 28 

C 10 7 8 7 32 

Total 24 21 17 20 82 



�̅�  8 7 5.67 6.67  

Correction Factor (CF)  =  
T2

N
=

822

12
= 560.333  

Total Sum of Squares (TSS) = ∑ ∑ yij
24

j=
3
i=1  −  CF = 602 −  560.333 = 41.667  

Sum of Squares between Columns (SSC) =
1

3
∑ y.j

24
j=1  −  CF =

1

3
[242 + 212 + 172 +

202]  −  560.333   

      = 568.67 −  560.333 =  8.337  

Sum of Squares between Rows (SSR) =
1

4
∑ yi.

23
i=1  −  CF =

1

4
[222 + 282 + 322]  −

 560.333   

     = 573 −  560.333 =  12.667  

Sum of Squares due to Error(SSE) = TSS − SSC − SSR = 41.667 − 8.337 − 12.667  

= 20.663 

ANOVA Table 

Sources of 

Variation 

Degrees of 

freedom 

Sum of 

Squares 

Mean Sum of 

Squares 

Variance Ratio 

FCal. FTab. 

Rows 2 12.667 6.334 1.839 𝐹(2,6) = 5.14  

Columns 3 8.337 2.779 0.807 𝐹(3,6) = 4.76  

Error 6 20.663 3.444   

Total 11 41.667  

 

For the sales in the three states (rows), the calculated value of F is less than the tabulated 

value. Hence, there is no significant difference in the states as far as sales are concerned.  

For the sales by the firm salesmen (columns), the calculated value of F is less than the 

tabulated value. Hence, we conclude that the sales of different salesmen do not differ 

significantly.   

2.5 Self-Assessment Exercise 

1. Explain the meaning of Analysis of Variance and state its basic assumptions. 

2. For the one-way classified fixed effect model, yij = µ + αi + εij; (i=1,2,…,k; j=1,2,…,n) 

where the symbols having their usual meanings. Obtain: 

i. The estimates of the parameters µ + αi  



ii. The expectations of the various sum of squares. 

iii. Give the ANOVA table 

3. Give the fixed effect mathematical model for two-way classification with one observation 

per cell, stating clearly the assumptions involved. Also obtain: 

i. The estimates of the parameters in the model 

ii. The variance of the estimates 

iii. The expectation of the various sum of squares 

iv. ANOVA Table 

4. Data collected on the effect of four fixed types of television tube coating on the conductivity 

of the tubes. Do an analysis of variance on these data and test the hypothesis that the four 

coatings yield the same average conductivity. 

I 56 55 62 59 60 

II 64 61 50 55 56 

III 45 46 45 39 43 

IV 42 39 45 43 41 

5. A trucking company wishes to test the average life of each of the four brands of tyres. The 

company uses all brands on randomly selected trucks. The records showing the lives 

(thousands of miles) of tyres are as given in the table below. Test the hypothesis that the 

average life for each brand of tyres is the same.  

Brand-1 20 23 18 17  

Brand-2 19 15 17 20 16 

Brand-3 21 19 20 17 16 

Brand-4 15 17 16 18  

6. Three different methods of analysis M1, M2 and M3 are used to determine in parts per million 

the amount of a certain constituent in the sample. Each method is used by five analysts, and 

the results are given in the table below. Do the results indicate a significant variation either 

between the methods or between the analysts? 

Analyst Method 

M1 M2 M3 

1 7.5 7.0 7.1 

2 7.4 7.2 6.7 

3 7.3 7.0 6.9 

4 7.6 7.2 6.8 

5 7.4 7.1 6.9 

  



2.6 Summary 

This unit makes imparts knowledge about the concept of analysis of variance 

(ANOVA) and teaches how to perform the analysis of variance in one-way and two-way 

classified data with equal (one) observation per cell. 
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3.1 Introduction 

 Experiments are performed to draw inferences about an entire population based on a 

few observations. If the experiments are perfectly repetable and the important factors giving 

rise to the results are perfectly separable, then the analysis and interpretation of results become 

relatively easy. However, experiments are often conducted so that the effect of one factor is 

(unknowingly) mixed up with the effect of a factor not considered in the experiment. These 

reasons, among others, make the analysis of the data from an experiment difficult. The role of 

statistics in experimental design is to separate the observed differences into those caused by 

various factors and those due to random fluctuations. The classical method used to separate 

these differences is Analysis of Variance or ANOVA.   

 When a set of observations is spread out across the different levels of two factors at the 

same time. Suppose that two factors A and B vary in an experiment, the factor A have p levels 



A1, A2, …. Ap, and the factor B have q levels B1, B2, …. Bq. As an example, the factor A may 

be the variety of paddy (different varieties being A1, A2, …. Ap) and B may be the location 

(block) in the rural part of a distinct (different locations being B1, B2, …. Bq, where these 

varieties of crop are cultivated.  

 In such a two-factor experiments, the observations can be arranged in a two-way layout 

or a pxq table, where each row corresponds to a level Ai of A and each column to a level Bj, 

of B. Let nij be the number of observations in the cell (i,j) and yijk be the value of kth observation 

on the (i,j)th cell, k = 1, 2,… nij; p=1,2,… p; j=1,2,… q. In the above example, yijk may be yield 

of paddy on the kth plot in the jth location on which the ith variety of paddy has been sown. We 

assume that the plots are of the same shape and size of unit area, and the kth plot has been 

chosen randomly out of all such plots in the jth location. If 𝑛𝑖𝑗 ≥ 1, ∀(𝑖, 𝑗), the layout is called 

a complete layout. In an incomplete layout, nij = 0 for some (i,j). 

 ANOVA is performed in such a situation as a statistical method to find and measure 

the sources of variation. An extension of traditional two-way ANOVA called ANOVA in two-

way classification with m-observations per cell is used when more than one observation is 

taken for each combination of factors in a two-way classification. This method works best 

when there are multiple readings to make the statistical analysis more reliable. 

 

3.2 Objectives  

After going through this unit, you should be able to: 

• Perform the analysis of variance in a two-way classified data with m-observations per cell, 

• Conduct Tukey’s Test for Non-Additivity for Two-way layout with one observation per cell, 

• Understand the concept of Analysis of Covariance (ANCOVA) for one-way and two-way 

classified data. 

 

3.3 
Analysis of Variance: Two-Way Classification with m-

Observations Per Cell  

In this case of two-way classified data with one observation per cell, we are not able to 

obtain an estimate of, or more make a test for the interaction effect. However, if some or all of 

the cells contain more than one observation, then we can estimate or test for the interaction 

effect. Here, we assume that there is an equal number, say m-observations in each cell. Let the 



m-observations be in the ijth cell and denoted by yij1, yij2, ……., yijk…… yijm. Thus, yijk denotes 

the kth observation for the ith level of factor A and jth level of factor B. 

Factor A Factor B 

B1 ……….. Bj ……….. Bq 

A1 y111  y112 ……. y11m  y1j1  ……. y1jm  y1q1  ……. y1qm 

A2 y211  y212 ……. y21m  y2j1  ……. y2jm  y2q1  ……. y2qm 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

Ai yi11  yi12 ……. yi1m  yij1  ……. yijm  yiq1  ……. yiqm 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

Ap yp11  yp12 ……. yp1m  ypj1  ……. ypjm  ypq1  ……. ypqm 

The above defined scheme is known as “Two Way Classification of data with m-

observations per cell”.  

 

3.3.1 Statistical Analysis  

The total variation in the observation can be split into the following four components: 

(i) The variation due to factor A 

(ii) The variation due to factor B 

(iii) The variation due to interaction effect AB 

(iv) The variation due to random effect 

 

Hence the mathematical model is given by: 

𝑦𝑖𝑗𝑘 = 𝜇𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘;   𝑖 =  1,2,⋯ , 𝑝; 𝑗 =  1,2,⋯ , 𝑞; 𝑘 =  1,2,⋯ ,𝑚    (1) 

Where, 

𝜇𝑖𝑗𝑘 be the true value for the ijth cell and 𝑒𝑖𝑗𝑘 be the error and 𝑒𝑖𝑗𝑘 ~ N (0, σ2). 

Now, 𝜇𝑖𝑗𝑘 can be decomposed as: 

𝜇𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 



Where, 

∑ 𝛼𝑖 = 0 = ∑ 𝛽𝑗𝑗  𝑖   

∑ 𝛾𝑖𝑗 = 0  ∀𝑗 𝑎𝑛𝑑 ∑ 𝛾𝑖𝑗 = 0 ∀𝑖𝑗  𝑖   

Now, our linear model (1) can be re-written as: 

𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + 𝑒𝑖𝑗𝑘       (2) 

Where, 

𝜇 is the general mean effect 

𝛼𝑖 is the effect due to 𝑖𝑡ℎ level of factor A; 𝑖 =  1,2,⋯ , 𝑝;  

𝛽𝑗 is the effect due to 𝑗𝑡ℎ level of factor B; 𝑖 =  1,2,⋯ , 𝑞;  

𝛾𝑖𝑗 is the interaction effect between ith level of factor A and jth level of factor B, and 

𝑒𝑖𝑗′𝑠 are the error effect due to chance and these are assumed to be iid  

 

Here, we want to test the equality (homogeneity) of the different level of factor A as well as 

factor B and independency of A and B. Thus, our hypotheses are: 

H0A: µ10 = µ20  = . . . . . . . =  µ𝑝0  =  µ (=) 𝛼1 = 𝛼2  = . . . . . . . =  𝛼𝑝  = 0 

H0B: µ01 = µ02  = . . . . . . . =  µ0𝑞  =  µ (=) 𝛽1 = 𝛽2  = . . . . . . . =  𝛽𝑞  = 0 

HAB: 𝛾𝑖𝑗 = 0, ∀ 𝑖 & 𝑗  

Against, 

H1A: At least two means are not same. 

H1B: At least two means are not equal. 

HAB: 𝛾𝑖𝑗 ≠ 0, ∀ 𝑖 & 𝑗  

3.3.2 Least Square Estimates  

For testing above hypotheses, we need least square estimates of 𝜇, 𝛼𝑖, 𝛽𝑗 𝑎𝑛𝑑 𝛾𝑖𝑗. 

Thus, the least square estimates can be obtained by minimizing the residual sum of square as: 

𝑆 =  ∑ ∑ ∑ 𝑒𝑖𝑗𝑘
2𝑚

𝑘
𝑞
𝑗

𝑝
𝑖  =  ∑ ∑ ∑ (𝑦𝑖𝑗𝑘 −  𝜇 − 𝛼𝑖  −  𝛽𝑗  −  𝛾𝑖𝑗)

2𝑚
𝑘

𝑞
𝑗

𝑝
𝑖   

The normal equations are: 

𝑑𝑆

𝑑𝜇
 = 0, 

𝑑𝑆

𝑑𝛼𝑖
 = 0, 

𝑑𝑆

𝑑𝛽𝑗
 = 0, 

𝑑𝑆

𝑑𝛾𝑖𝑗
 = 0 

Now, 

𝑑𝑆

𝑑𝜇
 = 0 => �̂� =  �̅�... 



𝑑𝑆

𝑑𝛼𝑖
 = 0 => 𝛼�̂� = �̅�𝑖..  − �̅�... 

𝑑𝑆

𝑑𝛽𝑗
 = 0 => 𝛽�̂� = �̅�.𝑗.  −  �̅�... 

𝑑𝑆

𝑑𝛾𝑖𝑗
 = 0 => 2∑ (𝑦𝑖𝑗𝑘 −  𝜇 − 𝛼𝑖  −  𝛽𝑗  − 𝛾𝑖𝑗)(−1)𝑘 = 0 

    => 𝑚𝛾𝑖𝑗  =  𝑦𝑖𝑗. −  𝑚(𝛼𝑖 + 𝛽𝑗)  −  𝑚𝜇 

    => 𝛾𝑖𝑗 = �̅�𝑖𝑗. −  𝜇 − 𝛼𝑖  − 𝛽𝑗  

   => 𝛾𝑖�̂� = �̅�𝑖𝑗. − �̅�𝑖.. − �̅�.𝑗. + �̅�... 

 

Now, substituting all these estimates in equation (2), we get: 

𝑦𝑖𝑗𝑘 = �̅�... + (�̅�𝑖.. − �̅�...) + (�̅�.𝑗. − �̅�...) + (�̅�𝑖𝑗. − �̅�𝑖..  −  �̅�.𝑗. + �̅�...) + (�̅�𝑖𝑗𝑘 − �̅�𝑖𝑗.) 

𝑦𝑖𝑗𝑘 − �̅�... = (�̅�𝑖.. − �̅�...) + (�̅�.𝑗. − �̅�...) + (�̅�𝑖𝑗. − �̅�𝑖..  −  �̅�.𝑗. + �̅�...) + (�̅�𝑖𝑗𝑘 − �̅�𝑖𝑗.) 

Now, squaring both sides and summing over all observations, we get: 

∑ ∑ ∑ (𝑦𝑖𝑗𝑘 − �̅�...)
2 = ∑ ∑ ∑ [(�̅�𝑖.. − �̅�...) + (�̅�.𝑗. − �̅�...) + (�̅�𝑖𝑗. − �̅�𝑖..  −  �̅�.𝑗. + �̅�...) +𝑚

𝑘
𝑞
𝑗

𝑝
𝑖

𝑚
𝑘

𝑞
𝑗

𝑝
𝑖

(�̅�𝑖𝑗𝑘 − �̅�𝑖𝑗.)]
2
  

∑ ∑ ∑ (𝑦𝑖𝑗𝑘 − �̅�...)
2 = ∑ ∑ ∑ (�̅�𝑖.. − �̅�...)

2𝑚
𝑘

𝑞
𝑗

𝑝
𝑖

𝑚
𝑘

𝑞
𝑗

𝑝
𝑖 + ∑ ∑ ∑ (�̅�.𝑗. − �̅�...)

2 + ∑ ∑ ∑ (�̅�𝑖𝑗. −
𝑚
𝑘

𝑞
𝑗

𝑝
𝑖

𝑚
𝑘

𝑞
𝑗

𝑝
𝑖

 �̅�𝑖..  −  �̅�.𝑗. + �̅�...)
2 + ∑ ∑ ∑ (�̅�𝑖𝑗𝑘 − �̅�𝑖𝑗.)

2𝑚
𝑘

𝑞
𝑗

𝑝
𝑖   

Since the product term will vanish, hence: 

∑ ∑ ∑ (𝑦𝑖𝑗𝑘 − �̅�...)
2 = 𝑞𝑚 ∑ (�̅�𝑖.. − �̅�...)

2 + 𝑝
𝑖

𝑚
𝑘

𝑞
𝑗

𝑝
𝑖  𝑝𝑚 ∑ (�̅�.𝑗. − �̅�...)

2 + 𝑞
𝑗 𝑚 ∑ ∑ (�̅�𝑖𝑗. − �̅�𝑖..  −

𝑞
𝑖

𝑝
𝑖

 �̅�.𝑗. + �̅�...)
2 + ∑ ∑ ∑ (�̅�𝑖𝑗𝑘 − �̅�𝑖𝑗.)

2𝑚
𝑘

𝑞
𝑗

𝑝
𝑖   

TSS = SSA + SSB + SS(AB) + SSE 

Total Sum of Square = Sum of Square due to Factor A + Sum of Square due to Factor B + Sum 

of Square due to Interaction between Factor A and Factor B + Sum of 

Square due to Error 

 

Degrees of Freedom 

TSS has (n-1) degree of freedom 

SSA has (p-1) degree of freedom 



SSB has (q-1) degree of freedom 

SS(AB) has (p-1)(q-1) degree of freedom 

SSE has pq(m-1) degree of freedom 

 

In this case, we see that the degree of freedom is also additive in nature. 

n – 1 = (p – 1) + (q- 1) + (p – 1)(q – 1) + pq(m -1)   

Corresponding mean sum of squares are obtained as: 

𝑀𝑆𝐴 =  
𝑆𝑆𝐴

𝑝 − 1
  𝑀𝑆𝐵 =  

𝑆𝑆𝐵

𝑞 − 1
  

𝑀𝑆(𝐴𝐵)  =  
𝑆𝑆(𝐴𝐵)

(𝑝−1)(𝑞−1)
  𝑀𝑆𝐵 =  

𝑆𝑆𝐸

𝑝𝑞(𝑚−1)
  

 

F-test Statistic 

 Now to obtain appropriate test statistics to test the null hypothesis HOA, HOB and HOAB, 

we find the expectation of mean sum of square from model (2).  

We have by summing model (2) over j and k and dividing by mq: 

�̅�𝑖.. =  µ + 𝛼𝑖 + �̅�𝑖..      (3) 

Summing model (2) over i and k and dividing by pm: 

�̅�.𝑗. =  µ + 𝛽𝑗 + �̅�.𝑗.      (4) 

Similarly, 

�̅�𝑖𝑗. = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + �̅�𝑖𝑗.    

 (5) 

And 

�̅�... = 𝜇 + �̅�...       (6) 

Then,  

𝑆𝑆𝐴 =  𝑚𝑞 ∑ (�̅�𝑖.. − �̅�...)
2

𝑖   

=  𝑚𝑞 ∑ (𝜇 − 𝛼𝑖  −  �̅�𝑖.. − 𝜇 − �̅�...)
2

𝑖   

=  𝑚𝑞 ∑ (𝛼𝑖  + (�̅�𝑖..  − �̅�...))
2

𝑖   

=  𝑚𝑞 ∑ 𝛼𝑖
2

𝑖 + 𝑚𝑞 ∑ (�̅�𝑖..  − �̅�...)
2

𝑖 + 2𝑚𝑞 ∑ (�̅�𝑖..  − �̅�...)𝛼𝑖𝑖   

Now, 

𝐸(𝑆𝑆𝐴)  =  𝑚𝑞 ∑ 𝛼𝑖
2

𝑖 + 𝑚𝑞 ∑ 𝐸(�̅�𝑖.. − �̅�...)
2

𝑖 + 2𝑚𝑞 ∑ 𝐸(�̅�𝑖..  − �̅�...)𝛼𝑖𝑖   

=  𝑚𝑞 ∑ 𝛼𝑖
2

𝑖 + 𝑚𝑞 ∑ 𝐸[�̅�𝑖..
2 +  �̅�...

2  −  2�̅�𝑖.. ∗ �̅�...]𝑖 + 0  



=  𝑚𝑞 ∑ 𝛼𝑖
2

𝑖 + 𝑚𝑞[∑ 𝐸(�̅�𝑖..
2)𝑖  −  𝑝𝐸( �̅�...

2)]  

=  𝑚𝑞 ∑ 𝛼𝑖
2

𝑖 + 𝑚𝑞 ∑
𝜎𝑒

2

𝑚𝑞
 −  𝑚𝑝𝑞 ∗

𝜎𝑒
2

𝑚𝑝𝑞𝑖   

=  𝑚𝑞 ∑ 𝛼𝑖
2

𝑖 + 𝜎𝑒
2 + 𝑝𝜎𝑒

2  

Now,  

SSB = 𝑚𝑝 ∑ (�̅�.𝑗. − �̅�…)
2

𝑗  

= 𝑚𝑝∑ (𝜇 + 𝛽𝑗 + �̅�.𝑗. − 𝜇 − �̅�…)
2

𝑗  

= 𝑚𝑝∑ [𝛽𝑗 + (�̅�.𝑗. − �̅�…)]
2

𝑗  

= 𝑚𝑝∑ 𝛽𝑗
2

𝑗 + 𝑚𝑝 ∑ (�̅�.𝑗. − �̅�…)
2

𝑗  

Now, 

E(SSB)  = 𝑚𝑝 ∑ 𝛽𝑗
2

𝑗  + 𝑚𝑝∑ 𝐸( �̅�.𝑗. − �̅�… )
2

𝑗   

= 𝑚𝑝∑𝛽𝑗
2 + 𝑚𝑝∑ 𝐸[�̅�.𝑗.

2 + �̅�…
2 − 2  �̅�.𝑗. �̅�… ]𝑗   

= 𝑚𝑝∑ 𝛽𝑗
2 + 𝑚𝑝 𝐸 [∑ �̅�𝑗 .𝑗.

2
+ 𝑞 �̅�…

2 − 2 𝑞 �̅�…
2]𝑗  

= 𝑚𝑝∑ 𝛽𝑗
2 + 𝑚𝑝 ∑ 𝐸[𝑒 ̅.𝑗.

2 ] − 𝑞 𝑚𝑝 𝐸[�̅�…
2]𝑗𝑗  

= 𝑚𝑝∑ 𝛽𝑗
2 + 𝑚𝑝

∑ 𝜎𝑒
2

𝑗

𝑚𝑝
− 𝑝𝑞𝑚

𝜎𝑒
2

𝑝𝑞𝑚𝑗  

= 𝑚𝑝∑ 𝛽𝑗
2 + 𝑞 𝜎𝑒

2 − 𝜎𝑒
2

𝑗  

= (𝑞 − 1)𝜎𝑒
2 + 𝑚𝑝 ∑ 𝛽𝑗

2
𝑗  

Again, 

SS(AB) = 𝑚 ∑ ∑ (�̅�𝑖𝑗. − 𝑦 ̅𝑖.. − 𝑦 ̅.𝑗. + �̅�…)
2
  𝑗𝑖  

= 𝑚 ∑ ∑ [(𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + �̅�𝑖𝑗.𝑗𝑖 ) − (𝜇 + 𝛼𝑖 + �̅�𝑖..) − (𝜇 + 𝛽𝑗 + �̅�.𝑗.) + (𝜇 +

�̅�…)]2  

= 𝑚 ∑ ∑ [𝛾𝑖𝑗 + (�̅�𝑖𝑗. − 𝑒𝑖.. − �̅�.𝑗. + �̅�… )]
2

𝑗𝑖  



= 𝑚 ∑ ∑ 𝛾𝑖𝑗
2 + 𝑚 ∑ ∑ (�̅�𝑖𝑗. − �̅�𝑖.. − �̅�.𝑗. + �̅�… )

2
+ 2𝑚∑𝑗 𝑖

∑ 𝛾𝑖𝑗(�̅�𝑖𝑗. − �̅�𝑖.. − �̅�.𝑗. +𝑗𝑖𝑗𝑖

�̅�… )
2
  

Now,  

E[MS(AB)]  = 𝑚 ∑ ∑ 𝛾𝑖𝑗
2 + 𝑚𝐸[∑ ∑ (�̅�𝑖𝑗. − �̅�𝑖.. − �̅�.𝑗. + 𝑒 ̅…)

2
] + 2𝑚 ∑ ∑ 𝛾𝑖𝑗𝐸[�̅�𝑖𝑗. −𝑗𝑖𝑗𝑖𝑗𝑖

�̅�𝑖.. − �̅�.𝑗. + �̅�…]   

=  𝑚 ∑ ∑ 𝛾𝑖𝑗
2 + 𝑚 ∑ ∑ 𝐸[�̅�𝑖𝑗. − �̅�𝑖.. − �̅�.𝑗. + �̅�…]

2
𝑗𝑖𝑗𝑖 +  0 

= 𝑚 ∑ ∑ 𝛾𝑖𝑗
2 + 𝑚 𝐸[∑ ∑ �̅�𝑗 𝑖𝑗.

2
+ ∑ ∑ �̅�𝑗 𝑖..

2
+ ∑ ∑ �̅�𝑗 .𝑗.

2
+ ∑ ∑ �̅�𝑗 …

2
−𝑖𝑖𝑖𝑖𝑗𝑖

2∑ ∑ �̅�𝑗 𝑖𝑗.
�̅�𝑖..𝑖 + 2∑ ∑ �̅�𝑖𝑗.�̅�.𝑗.𝑗𝑖 +2∑ ∑ �̅�𝑖𝑗.�̅�... +𝑗𝑖 2∑ ∑ �̅�𝑖..�̅�.𝑗. −𝑗𝑖

2∑ ∑ �̅�𝑖..�̅�… − 2∑ ∑ �̅�.𝑗.�̅�…]𝑗𝑖𝑗𝑖  

= 𝑚 ∑ ∑ 𝛾𝑖𝑗
2 + 𝑚𝐸[∑ ∑ �̅�𝑗 𝑖𝑗.

2
+ 𝑞 ∑ �̅�𝑖 𝑖..

2
+ 𝑝∑ �̅�𝑗 .𝑗.

2
+ 𝑝𝑞 �̅�…

2 − 2𝑞 ∑ �̅�𝑖 𝑖..

2
−𝑖𝑗𝑖

2𝑝 ∑ �̅�.𝑗.
2 + 2𝑝𝑞�̅�…

2 − 2𝑝𝑞�̅�…]𝑗  

= 𝑚 ∑ ∑ 𝛾𝑖𝑗
2 + 𝑚 ∑ ∑ 𝐸[�̅�𝑖𝑗.

2 ] − 𝑚𝑞 ∑ 𝐸[�̅�𝑖..
2 ] − 𝑚𝑝∑ 𝐸[ �̅�.𝑗.

2 ] + 𝑚𝑝𝑞𝐸[�̅�…
2]𝑗𝑖𝑗𝑖𝑗𝑖  

= 𝑚 ∑ ∑ 𝛾𝑖𝑗
2 + 𝑚 ∑ ∑

𝜎𝑒
2

𝑚
− 𝑚𝑞 ∑

𝜎𝑒
2

𝑚𝑞
− 𝑚𝑝 ∑

𝜎𝑒
2

𝑚𝑝
+

𝑚𝑝𝑞𝜎𝑒
2

𝑚𝑝𝑞𝑗𝑖𝑗𝑖𝑗𝑖  

= 𝑚 ∑ ∑ 𝛾𝑖𝑗
2 + 𝑝𝑞𝜎𝑒

2 − 𝑝𝜎𝑒
2 − 𝑞𝜎𝑒

2 + 𝜎𝑒
2

𝑗𝑖  

= (𝑝𝑞 − 𝑝 − 𝑞 + 1)𝜎𝑒
2 + 𝑚 ∑ ∑ 𝛾𝑖𝑗

2
𝑗𝑖  

= (𝑝 − 1)(𝑞 − 1)𝜎𝑒
2 + 𝑚 ∑ ∑ 𝛾𝑖𝑗

2
𝑗𝑖  

Now, 

E [MS(AB)] = 𝐸 [
𝑆𝑆(𝐴𝐵)

(𝑝−1)(𝑞−1)
] 

          = 𝜎𝑒
2 + 𝑚 ∑ ∑ 𝛾𝑖𝑗

2
𝑗𝑖  

Again, 

SSE = ∑ ∑ ∑ (𝑒𝑖𝑗𝑘 − �̅�𝑖𝑗.)
2

𝑘𝑗𝑖  

       = ∑ ∑ ∑ 𝑒𝑖𝑗𝑘
2 + ∑ ∑ ∑ �̅�𝑖𝑗.

2 − 2∑ ∑ ∑ 𝑒𝑖𝑗𝑘�̅�𝑖𝑗.𝑘𝑗𝑖𝑘𝑗𝑖𝑘𝑗𝑖  



       = ∑ ∑ ∑ 𝑒𝑖𝑗𝑘
2 + 𝑚 ∑ ∑ �̅�𝑖𝑗.

2 − 2𝑚 ∑ ∑ �̅�𝑖𝑗.
2

𝑗𝑖𝑗𝑖𝑘𝑗𝑖   

       = ∑ ∑ 𝑒𝑖𝑗𝑘
2 − 𝑚 ∑ ∑ �̅�𝑖𝑗.

2
𝑗𝑖𝑗𝑖  

Now, 

E[SSE] = ∑ ∑ ∑ 𝐸[𝑒𝑖𝑗𝑘
2 ] − 𝑚 ∑ ∑ 𝐸[�̅�𝑖𝑗.

2 ]𝑗𝑖𝑘𝑗𝑖  

 = ∑ ∑ ∑ 𝜎𝑒
2 − 𝑚 ∑ ∑

𝜎𝑒
2

𝑚𝑗𝑖𝑘𝑗𝑖  

 = 𝑝𝑞𝑚𝜎𝑒
2 − 𝑝𝑞𝜎𝑒

2 

 = 𝑝𝑞(𝑚 − 1)𝜎𝑒
2 

Mean Sum of Square 

Dividing sum of squares by its degree of freedom, we get corresponding various mean 

sum of square, 

E[MSA] =𝐸 [
𝑆𝑆𝐴

(𝑝−1)
] = 𝜎𝑒

2 +
𝑚𝑞

𝑝−1
∑ 𝛼𝑖

2
𝑖   

    = 𝜎𝑒
2 + 𝜙1(𝛼𝑖) 

When 𝐻𝑜𝐴 is true, then E[MSA] = E[SSE] 

E[SSA] = 𝜎𝑒
2   

E[MSB] = 𝐸 [
𝑆𝑆𝐵

𝑞−1
] =

1

𝑞−1
𝐸[𝑆𝑆𝐵] 

         = 𝜎𝑒
2 +

𝑚𝑝

𝑞−1
∑ 𝛽𝑗

2
𝑗  

         = 𝜎𝑒
2 + 𝜙2(𝛽𝑗) 

When 𝐻𝑜𝐵 is true then: E[MSB] = E[MSE]  

E[MS(AB)] = 𝐸 [
𝑆𝑆(𝐴𝐵)

(𝑝−1)(𝑞−1)
] 

        = 𝜎𝑒
2 +

𝑚

(𝑝−1)(𝑞−1)
∑ ∑ (𝛾𝑖𝑗)

2
𝑗𝑖  

         = 𝜎𝑒
2 + 𝜙3(𝛾𝑖𝑗) 

When 𝐻𝑜𝐴𝐵 is true then: E[MS(AB)] = E[MSE] 

Hence, when 𝐻𝑜𝐴, 𝐻𝑜𝐵 𝑎𝑛𝑑 𝐻𝑜𝐴𝐵 are true. we have: 

E[MSA] = E[MSB] = E[MS(AB)] =E[SSE] = 𝜎 



And the corresponding test statistics are:  

𝐹𝐴 =
𝑀𝑆𝐴

𝑀𝑆𝐸
~𝐹

{(𝑝−1),𝑝𝑞(𝑚−1)}(
𝛼
2
)
 

𝐹𝐵 =
𝑀𝑆𝐵

𝑀𝑆𝐸
~𝐹

{(𝑞−1),𝑝𝑞(𝑚−1)}(
𝛼
2
)
 

𝐹𝐴𝐵 =
𝑀𝑆(𝐴𝐵)

𝑀𝑆𝐸
~𝐹

{(𝑝−1)(𝑞−1),𝑝𝑞(𝑚−1)}(
𝛼
2
)
 

 

3.3.3 ANOVA Table 
 

Source of 

Variation 

Degrees of 

freedom 

Sum of Square  Mean Sum 

of Square 

Variance 

Ratio 

Factor A 

 

p-1 𝑆𝑆𝐴 = 𝑚𝑞 ∑ (�̅�𝑖.. − �̅�…)2
𝑖   𝑀𝑆𝐴 =

𝑆𝑆𝐴

𝑝−1
  𝐹𝐴 =

𝑀𝑆𝐴

𝑀𝑆𝐸
  

Factor B q-1 SSB = 𝑚𝑝∑ (�̅�.𝑗. − �̅�…)
2

𝑗  𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑞−1
  𝐹𝐵 =

𝑀𝑆𝐵

𝑀𝑆𝐸
  

Interaction 

between A&B 

(p-1)(q-1) SS(AB) = 𝑚 ∑ ∑ (�̅�𝑖𝑗. −𝑗𝑖

�̅�𝑖.. − �̅�.𝑗. + �̅�…)
2
 

𝑀𝑆(𝐴𝐵) =

𝑆𝑆(𝐴𝐵)

(𝑝−1)(𝑞−1)
  

𝐹𝐴𝐵 =
𝑀𝑆(𝐴𝐵)

𝑀𝑆𝐸
  

Error  pq (m-1) SSE = ∑ ∑ ∑ (𝑦𝑖𝑗𝑘 −𝑘𝑗𝑖

−�̅�𝑖𝑗.)
2
 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑝𝑞(𝑚−1)
   

Total n-1 TSS = ∑ ∑ ∑ (𝑦𝑖𝑗𝑘 −𝑘𝑗𝑖

�̅�…)
2
 

  

 

Example: A motor company wishes to check the influences of tyre type and shock absorber 

settings on the roadholding of one of its cars. Two types of tyres are selected from the tyre 

manufacturer who normally provides tyres for the company’s new vehicles. A shock absorber 

with three possible settings is chosen from a range of shock absorbers deemed to be suitable 

for the car. An experiment is conducted by conducting roadholding tests using each tyre type 

and shock absorber setting. The (coded) data resulting from the experiment are given below. 

 



Factor Shock Absorber Setting 

Tyre B1=Comfort B2=Normal B3=Sport 

Type A1 

5 

6 

8 

8 

5 

3 

6 

9 

12 

Type A2 

9 

7 

7 

10 

9 

8 

12 

10 

9 

 

Derive the appropriate ANOVA table. State clearly any conclusions that may be drawn at the 

5% level of significance. 

Solution: 

Factor Shock Absorber Setting Total 

Tyre B1 B2 B3 

Type A1 5 

6 

8 

8 

5 

3 

6 

9 

12 

 

 𝑦11. = 19  𝑦12. = 16  𝑦13. = 27  𝑦1.. = 62  

Type A2 9 

7 

7 

10 

9 

8 

12 

10 

9 

 

 𝑦21. = 23  𝑦22. = 27  𝑦23. = 31  𝑦2.. = 81  

Total 𝑦.1. = 42  𝑦.2. = 43  𝑦.3. = 58  𝑦... = 143  

 

Total Sum of Squares (TSS) = ∑ ∑ ∑ yijk
2  −  

y...
2

N
= 1233 − 

1432

18
= 96.9443

k=1
3
j=1

2
i=1   



Sum of Squares due to Factor A (SSA) = ∑
yi..

2

qm
 −  

y...
2

N
=

622+812

3∗3
−

1432

18
 2

i=1   

=
10405

9
 − 

1432

18
 =  20.056  

Sum of Squares due to Factor B (SSB) = ∑
y.j.

2

pm
 −  

y...
2

N
=

422+432+582

2∗3
−

1432

18
 3

j=1   

=
6977

6
 −  

1432

18
 =  26.778  

Sum of Squares due to Interaction (SSAB) = ∑ ∑
yij.

2

m
 −  

y...
2

N

3
j=1

2
i=1  −  SSA −  SSB  

=
192+162+272+232+272+312

3
−

1432

18
− 20.056 −

26.778 =  5.444  

ANOVA Table 

Source of 

Variation 

Degrees of 

freedom 

Sum of Square Mean Sum 

of Square 

Variance Ratio 

FCal. FTab. 

Factor A 1 20.056 20.056 5.39 F(1,12) = 4.75 

Factor B 2 26.778 13.389 3.60 F(2,12) = 3.89 

Interaction AB 2 5.444 2.722 0.731 F(2,12) = 3.89 

Error 12 44.666 3.722   

Total 17 96.944    

 

The following conclusions may be drawn:  

Interaction: There is insufficient evidence to support the hypothesis that interaction takes place 

between the factors.  

Factor A: Since 5.39 > 4.75 we have sufficient evidence to reject the hypothesis that tyre type 

does not affect the roadholding of the car.  

Factor B: Since 3.60 < 3.89 we do not have sufficient evidence to reject the hypothesis that 

shock absorber settings do not affect the roadholding of the car. 

 



3.4 
Tukey’s Test for Non-Additivity for Two-Way Layout with One 

Observation Per Cell 

 

The linear model for a two-way layout with one observation per cell is: 

 

Rows Columns Row Totals Row 

Means 1                       2           ⋯          j          ⋯            h 

1 𝑦11                  𝑦12         ⋯        𝑦1𝑗         ⋯         𝑦1ℎ 𝑇1. = ∑ 𝑦1𝑗
ℎ
𝑗=1   �̅�1. = 

𝑇1.

ℎ
  

2 𝑦21                   𝑦22        ⋯         𝑦2𝑗          ⋯      𝑦2ℎ 𝑇2. = ∑ 𝑦2𝑗
ℎ
𝑗=1   �̅�2. = 

𝑇2.

ℎ
  

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

i 𝑦𝑖1                     𝑦𝑖2         ⋯       𝑦𝑖𝑗          ⋯      𝑦𝑖ℎ    𝑇𝑖. = ∑ 𝑦𝑖𝑗
ℎ
𝑗=1   �̅�𝑖. = 

𝑇𝑖.

ℎ
  

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

⋮ 

k 𝑦𝑘1                     𝑦𝑘2      ⋯            𝑦𝑘𝑗        ⋯    𝑦𝑘ℎ 𝑇𝑘. = ∑ 𝑦𝑘𝑗
ℎ
𝑗=1   �̅�𝑘. = 

𝑇𝑘.

ℎ
  

Column 

Totals 

𝑇.1 = ∑ 𝑦𝑖1
𝑘
𝑖=1  𝑇.2 = ∑ 𝑦𝑖2

𝑘
𝑖=1 ⋯ 𝑇.𝑗 = ∑ 𝑦𝑖𝑗

𝑘
𝑖=1  ⋯ 

𝑇.ℎ = ∑ 𝑦𝑖ℎ
𝑘
𝑖=1  

𝑇..=

∑ ∑ 𝑦𝑖𝑗
ℎ
𝑗=1

𝑘
𝑖=1  

 

Column 

Means 

�̅�.1 = 
𝑇.1

𝑘
          �̅�.2 = 

𝑇.2

𝑘
      ⋯       �̅�.𝑗 = 

𝑇.𝑗

𝑘
           ⋯       

�̅�.ℎ = 
𝑇.ℎ

𝑘
          

 �̅�.. 

= 
𝑇..

ℎ𝑘
 

 

Let 𝑦𝑖𝑗 denote the value of the observation in the (i, j)th cell and suppose that 𝑦𝑖𝑗’s are iid 

random variables, distributed according to 𝑁(𝜇𝑖𝑗, 𝜎𝑒
2). Then the mathematical model is: 

𝑦𝑖𝑗 =  𝜇𝑖𝑗 + 𝑒𝑖𝑗; 𝑖 =  1,2,⋯ , 𝑘; 𝑗 =  1,2,⋯ , ℎ   

where 𝑒𝑖𝑗′𝑠 are the error effect due to chance and these are assumed to be iid random variables 

each following 𝑁(0, 𝜎𝑒
2); 𝑖 =  1,2,⋯ , 𝑘, 𝑗 = 1,2,⋯ , ℎ. 

𝜇𝑖𝑗 is further split into: 



(1) 𝜇 = 
1

𝑛
∑ ∑ 𝜇𝑖𝑗

ℎ
𝑗=1

𝑘
𝑖=1  = 

1

ℎ𝑘
∑ ∑ 𝜇𝑖𝑗

ℎ
𝑗=1

𝑘
𝑖=1 , the over all mean; 

(2) the row effect  𝛼𝑖 = 𝜇𝑖. −  𝜇, where 𝜇𝑖. = 
1

ℎ
∑ 𝜇𝑖𝑗

ℎ
𝑗=1 ; and 

(3) the column effect 𝛽𝑗 = 𝜇.𝑗 −  𝜇, where 𝜇.𝑗 = 
1

𝑘
∑ 𝜇𝑖𝑗

𝑘
𝑖=1 .  

(4) the interaction effect γij when the ith level of first factor and jth level of second factor occur 

simultaneously and is given by: 𝛾𝑖𝑗 = 𝜇𝑖𝑗 − 𝜇𝑖. − 𝜇.𝑗 + 𝜇, where ∑ 𝛾𝑖𝑗𝑗 = 0 ∀𝑖 = 1,2, . . . . 𝑘 

and ∑ 𝛾𝑖𝑗𝑖 = 0 ∀𝑗 = 1,2, . . . . ℎ 

Obviously, 

∑ 𝛼𝑖
𝑘
𝑖=1  = ∑ (𝜇𝑖. −  𝜇)𝑘

𝑖=1  = ∑ 𝜇𝑖. −  𝑘 𝜇𝑘
𝑖=1  = 𝑘 𝜇 −  𝑘 𝜇 = 0.  

Similarly, 

∑ 𝛽𝑗
ℎ
𝑗=1  = ∑ (𝜇.𝑗 −  𝜇)ℎ

𝑗=1  = ∑ 𝜇.𝑗 −  ℎ 𝜇ℎ
𝑗=1  = ℎ 𝜇 − ℎ 𝜇 = 0. 

Thus, 

𝜇𝑖𝑗 = 𝜇 + 𝜇𝑖. −  𝜇 + 𝜇.𝑗 −  𝜇 + 𝜇𝑖𝑗 − 𝜇𝑖. − 𝜇.𝑗 +  𝜇 = 𝜇 + 𝛼𝑖 + 𝛽𝑗+ 𝛾𝑖𝑗 

 

Hence the mathematical model is given by: 

𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑖𝑗 + 𝑒𝑖𝑗; 𝑖 =  1,2,⋯ , 𝑘; 𝑗 =  1,2,⋯ , ℎ    (1) 

Where, 

𝑦𝑖𝑗 is the observation of 𝑖𝑡ℎ row and 𝑗𝑡ℎ column; 𝑖 =  1,2,⋯ , 𝑘, 𝑗 = 1,2,⋯ , ℎ, 

𝜇 is the general mean effect 

𝛼𝑖 is the additive effect due to 𝑖𝑡ℎrow; 𝑖 =  1,2,⋯ , 𝑘;  

𝛽𝑗 is the additive effect due to 𝑗𝑡ℎcolumn; 𝑖 =  1,2,⋯ , 𝑘;  

𝛾𝑖𝑗 is the interaction effect when the ith level of first factor and jth level of second factor occur 

simultaneously, and 

𝑒𝑖𝑗′𝑠 are the error effect due to chance and these are assumed to be iid random variables each 

following 𝑁(0, 𝜎𝑒
2); 𝑖 =  1,2,⋯ , 𝑘, 𝑗 = 1,2,⋯ , ℎ. 

The side conditions are ∑ 𝛼𝑖
𝑘
𝑖=1  = ∑ 𝛽𝑗

ℎ
𝑗=1  = 0. 

The null hypotheses to be tested in this case are: 

𝐻01: 𝛼1 = 𝛼2 =. . . . . . 𝛼𝑘 = 0;𝐻02: 𝛽1 = 𝛽2 =. . . . . . 𝛽𝑘 = 0;𝐻03: 𝛾𝑖𝑗 = 0;i=1,2,…k; j=1,2,,…k 



First of all, we have to test Ho3, since we cannot test Ho1 or Ho2 (i.e., the hypotheses on the main 

effects), unless it has been established that the interaction effect is zero.  

To test Ho3: 𝛾𝑖𝑗 = 0 ∀𝐼 𝑎𝑛𝑑 𝑗, Tukey developed a procedure known as Tukey’s test. The 

technique consists in partitioning the error sum of squares (𝑆𝐸
2) with (k-1)(h-1) d.f. into two 

components as follows: 

i. 𝑆𝐸1

2  (= 𝑆𝑆𝑁) i.e., the sum of squares due to non-additivity (i.e., interaction) which has single 

d.f. and  

ii. 𝑆𝐸2

2  i.e., the balance error sum of squares which as (k-1)(h-1)-1 d.f. We have:  

𝑆𝐸1

2 = 𝑆. 𝑆. 𝑑𝑢𝑒 𝑡𝑜 𝑛𝑜𝑛 − 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑆𝑁) 

=
[∑ ∑ 𝑦𝑖𝑗�̅�𝑖.�̅�.𝑗 − ℎ

𝑗=1 𝑦..
𝑘
𝑖=1 (𝑆𝐴

2+𝑆𝐵
2+

�̅�..
2

𝑘ℎ
)]

𝑘ℎ𝑆𝐴
2 .𝑆𝐵

2  with 1 d.f. 

𝐴𝑛𝑑, 𝑆𝐸2

2 = 𝑆𝐸
2  −  𝑆𝐸1

2 = 𝑆𝐸
2  −  𝑆𝑆𝑁, 𝑤𝑖𝑡ℎ (𝑘 − 1)(ℎ − 1) 𝑑. 𝑓.  

Test statistics for testing Ho3: 𝛾𝑖𝑗 = 0 ∀𝐼 𝑎𝑛𝑑 𝑗 is: 

𝐹 =
𝑆𝐸1

2

1
⁄

𝑆𝐸2
2

(𝑘−1)(ℎ−1)
⁄

=
𝑆𝐸1

2

𝑆𝐸2
2 ~𝐹1,(𝑘−1)(ℎ−1)−1  

If 𝐹 >  𝐹1,(𝑘−1)(ℎ−1)−1(𝛼), we reject Ho3 at 𝛼 level of significance otherwise we may accept 

Ho3. 

3.5 Analysis of Covariance (ANCOVA) 

The basic objective of the designs considered so far is to make the treatment 

comparisons with the greatest precision by reducing the experimental error through the 

powerful tool of local control. Analysis of Covariance (ANCOVA), like Randomized Block 

Design or Latin Square Design, is a technique of increasing the precision of design by reducing 

the experimental error. 

ANCOVA is a technique in which it is possible to control certain sources of variation 

by taking additional observations on each of the experimental units. Let us suppose that in an 

experiment, y is the response variable and x is another variable which is linearly related to y. 

Moreover, x cannot be controlled by the experimenter but can be observed along with the y’s. 

The variable x is called the covariate / concomitant / independent / ancillary variable. In 

ANCOVA, we adjust for the variation in the response variable (y) for the linear regression 



(effect) of the independent variable (x). If this is not done, then the error mean square will be 

inflated due to the linear effect of x, thus making it difficult to detect the true differences in the 

response variable. ANCOVA procedure is a combination of the Analysis of Variance 

(ANOVA) and the regression analysis. Whenever it is possible to take additional observations 

on one or more the variables from each of the experimental units in the design along with the 

response variable under study, the ANCOVA technique has proved to be useful in many fields 

of research. 

Some examples of ANCOVA are: 

• Suppose we want to compare the effect of some rations (diets) on the weight of animals. 

We can analyze the data by performing the ANCOVA by regarding the final weight of the 

animals taking the ration, after a specified period as the response variable (y) and the initial 

weight of the animals at the time of starting the experiment as the concomitant variable 

(x). To ensure that the real differences in the final weights (y) are due to rations, we must 

adjust for the linear effect of the initial weight (x) on y. 

• Suppose we want to compare the differences in the strength of the filament fibre (y) 

produced by different machines. Obviously, y depends on the thickness (x) of the fibre-

thicker the fiber, stronger it is. The effect of the thickness (x) on the strength (y) can be 

eliminated by performing ANCOVA between the response variable (y) and the 

concomitant variable (x) for testing the differences in the strength of the fibre produced by 

different machines.  

• In plant breeding experiments, suppose an equal number of seeds are sown per plot but at 

the time of harvest, the final number of plants in each plot will not be same due to certain 

reasons like non-germination of certain seeds, early death of certain plants, attack by 

birds/cattle etc.) and will vary from plot to plot. The yield (y) of a crop from different plots 

may depend on the number of plants (x) per plot. To study the real differences between the 

yields, we adjust for the linear effect of the number of plants per plot by performing 

ANCOVA by regarding the yield per plot (y) as the response variable and the number of 

plants per plot (x) as the concomitant variable.  

 

Note: The concomitant variable need not necessarily be measurable. Even if it is a quality 

characteristic which cannot be measured quantitatively., intelligence, poverty, indifference, 

good/bad, presence/absence etc., but can be suitably converted into numerical scores, the use 

of ANCOVA results in a considerable increase in precision. 



 

 

3.4.1 
ANCOVA for One-Way Classification with a Single 

Concomitant Variable in C.R.D. Layout 

 Let us suppose that we are comparing 𝑣  treatments 𝑡1, 𝑡2 … . . 𝑡𝑖, 𝑖
(𝑡ℎ) treatment 

replicated 𝑟𝑖, (𝑖 = 1,2……… . 𝑝) times so that 𝑛 = ∑ 𝑟𝑖
𝑣
𝑖=1  ,is the total number of experimental 

units. Further suppose that the experiment is conducted with a CRD layout.  

 Suppose that along with the response (dependent) variable y we consider a single 

concomitant variable x. then the linear ANOCOVA model will consist of the sum of two 

components-one is the same component as in ANOVA and the second component is due to the 

regression of y on the concomitant variable x.  

 Then assuming a linear relationship between the response variable(y) and the 

concomitant variable (x), the appropriate statistical model (for fixed effects) for ANOCOVA 

for CRD with one concomitant variable is given by:   

    𝑦(𝑖𝑗) = μ + α𝑖 + β(𝑥(𝑖𝑗) −  �̅�. . ) + 𝑒(𝑖𝑗)    (1) 

Where, 

μ is the general mean effect  

α𝑖 is the (fixed) additional effect due to ith treatment (i=1,2,….p) 

β is the regression coefficient of y on x  

𝑥𝑖𝑗  be the concomitant variable corresponding to the response variable yij and  

𝑒ij be the error and 𝑒ij~N(0, σ𝑒
2) 

Obviously ∑α𝑖   = 0  

 

Estimation of Parameters 

Here the residual sum of squares is given by  

SSE= ∑ ∑ 𝑒(𝑖𝑗)
2

𝑗𝑖   = ∑ ∑ (𝑦(𝑖𝑗) − μ − α𝑖 − β(𝑥(𝑖𝑗) −  �̅�. . ))2
𝑗𝑖      (2) 

To estimate we need  

𝜕(𝑆𝑆𝐸)

𝜕μ
= 0,

𝜕(𝑆𝑆𝐸)

𝜕α𝑖
= 0,  

𝜕(𝑆𝑆𝐸)

𝜕β
= 0 

On solving this equation, we get  

μ̂ = �̅�..             (3) 

α�̂� = (�̅�.−�̅�. . ) − β̂(�̅�𝑖. −�̅�. . )         (4) 



 

Also  

𝜕(𝑆𝑆𝐸)

𝜕β
= 0 

 ∑ ∑ (𝑦(𝑖𝑗) −  �̅�. . ) − (𝑦�̅�. −�̅�. . ) + β̂((�̅�𝑖. −�̅�. . ) − β̂(𝑥(𝑖𝑗) − �̅�. . )](𝑥(𝑖𝑗) − �̅�. . ) = 0𝑗𝑖   

∑ ∑ [𝑦(𝑖𝑗) − 𝑦�̅�   − β̂(𝑥(𝑖𝑗) − �̅�𝑖 . )](𝑥(𝑖𝑗) − �̅�. . ) = 0𝑗𝑖   

∑ ∑ [𝑦(𝑖𝑗) − 𝑦𝑖.̅̅ ̅  − β̂(𝑥(𝑖𝑗) − �̅�𝑖. )][(𝑥(𝑖𝑗) − �̅�𝑖 . ) + (�̅�𝑖 . −�̅�. . )] = 0𝑗𝑖   

∑ ∑ [(𝑦(𝑖𝑗) − 𝑦𝑖.̅̅ ̅ )(𝑥(𝑖𝑗) − �̅�𝑖. )] 𝑗𝑖 + ∑ ∑ [(𝑦(𝑖𝑗) − 𝑦𝑖.̅̅ ̅ )(�̅�𝑖. −�̅�. . )𝑗𝑖 − β̂ [∑ ∑ (𝑥𝑖𝑗 −  �̅�𝑖. )
2

𝑗𝑖 −

∑ ∑ [(𝑥(𝑖𝑗) − 𝑥𝑖.̅̅ ̅ )(�̅�𝑖. −�̅�. . )𝑗𝑖 ] = 0  

∑ ∑ [(𝑦(𝑖𝑗) − 𝑦𝑖.̅̅ ̅ )(𝑥(𝑖𝑗) − �̅�𝑖. )] 𝑗𝑖 − β̂∑ ∑ (𝑥𝑖𝑗 −  �̅�𝑖. )
2

𝑗𝑖 = 0  

β̂ =
∑ ∑ [(𝑦(𝑖𝑗)−𝑦𝑖.̅̅̅̅ )(𝑥(𝑖𝑗)−�̅�𝑖.)] 𝑗𝑖

∑ ∑ (𝑥𝑖𝑗−  �̅�𝑖.)
2

𝑗𝑖  
  

Now let  

𝐸(𝑥𝑥) = ∑ ∑ (𝑥𝑖𝑗 −  �̅�𝑖 . )
2

𝑗𝑖   

𝐸(𝑦𝑦) = ∑ ∑ (𝑦𝑖𝑗 −  �̅�𝑖. )
2

𝑗𝑖   

𝐸(𝑥𝑦) = ∑ ∑ [(𝑦(𝑖𝑗) − 𝑦𝑖.̅̅ ̅ )(𝑥(𝑖𝑗) − 𝑥𝑖.̅̅ ̅ )𝑗𝑖   

𝐸(𝑥𝑦) = ∑ ∑ (𝑥(𝑖𝑗) − 𝑥𝑖.̅̅ ̅ )𝑗𝑖 (𝑦(𝑖𝑗) − 𝑦𝑖.̅̅ ̅ )  

𝑇(𝑥𝑥) = ∑ni (𝑥𝑖.̅̅ ̅− �̅�. . )2  

𝑇(𝑦𝑦) = ∑ni (𝑦𝑖.̅̅ ̅− �̅�. . )2  

𝑇(𝑥𝑦) = ∑ni (𝑦𝑖.̅̅ ̅− �̅�. . )(𝑥𝑖.̅̅ ̅− �̅�. . )  

𝑇(𝑥𝑦) = ∑ni (𝑥𝑖.̅̅ ̅− �̅�. . )(𝑦𝑖.̅̅ ̅− �̅�. . )  



𝐸′
(𝑥𝑥) = ∑ ∑ (𝑥𝑖𝑗 − �̅�..)

2
𝑗𝑖   

𝐸′
(𝑦𝑦) = ∑ ∑ (𝑦𝑖𝑗 −  �̅�..)

2
𝑗𝑖   

𝐸′
(𝑥𝑦) = ∑ ∑ [(𝑦(𝑖𝑗) − �̅�. . )(𝑥(𝑖𝑗) − �̅�. . )𝑗𝑖   

𝐸′
(𝑥𝑦) = ∑ ∑ (𝑥(𝑖𝑗) − �̅�. . )𝑗𝑖 (𝑦(𝑖𝑗) − �̅�. . )  

 

Therefore, 

β̂ =
𝐸(𝑥𝑦)

𝐸(𝑥𝑥)
 

The value of α𝑖,μ and β on putting in model 2) we get the unrestricted residual sum of square 

obtained for the above model is:  

SSE = ∑ ∑ [(𝑦(𝑖𝑗) −  �̅�. . ) − (𝑦�̅�. −�̅�. . ) + β̂((�̅�𝑖. −�̅�. . ) − β̂(𝑥(𝑖𝑗) − �̅�. . )]2 = 0𝑗𝑖  

SSE = ∑ ∑ [(𝑦(𝑖𝑗) − 𝑦�̅�.   −  β̂(𝑥(𝑖𝑗) − �̅�𝑖. )]
2 = 0𝑗𝑖  

SSE = ∑ ∑ (𝑦𝑖𝑗 − �̅�𝑖.)
2
  +  𝛽2̂ (𝑥(𝑖𝑗) − �̅�𝑖. )]

2 − 2β∑ ∑ (𝑥(𝑖𝑗) − 𝑥𝑖.̅̅ ̅ )𝑗𝑖 (𝑦(𝑖𝑗) − 𝑦𝑖.̅̅ ̅ ) = 0𝑗𝑖  

𝐸(𝑦𝑦) + (
(𝐸(𝑥𝑦))

𝐸(𝑥𝑥)
)
2

∗ 𝐸(𝑥𝑥) − (
2∗𝐸(𝑥𝑦)

𝐸(𝑥𝑥)
) ∗ 𝐸(𝑥𝑦)  

𝑆𝑆𝐸 = 𝐸(𝑦𝑦) − (
𝐸(𝑥𝑦)

2

𝐸(𝑥𝑥)
)          (5) 

SSE has 𝑛 − 𝑝 − 1 degrees of freedom i.e., (𝑛 − 1) − (𝑝 − 1) − 1 = 𝑛 − 𝑝 − 1 

 

Here the null hypothesis 𝐻0 is such that all the effects due to different treatments in the 

presence of concomitant variables are same i.e.  

𝐻0: α1 = α2 = ⋯… .= α𝑝 = 0 

Under 𝐻0 the model (1) reduces to:  

    y(ij) = μ + β′(𝑥(𝑖𝑗) − �̅�. . ) + e(ij)     (6) 

And the error sum of square under 𝐻0 is given by: 

 SSE ∗= ∑ ∑ 𝑒(𝑖𝑗)
2

𝑗𝑖   = ∑ ∑ [(𝑦(𝑖𝑗) − μ − β′(𝑥(𝑖𝑗) −  �̅�. . )]2𝑗𝑖  

 



For find the estimate μ and β′ we need: 

𝜕(𝑆𝑆𝐸∗)

𝜕μ
= 0 ,  

𝜕(𝑆𝑆𝐸∗)

𝜕β′ = 0 

𝜕(𝑆𝑆𝐸∗)

𝜕μ
= 0  

μ̂ =   �̅�..  

and  

𝜕(𝑆𝑆𝐸∗)

𝜕β′ = ∑ ∑ [(𝑦(𝑖𝑗) − μ − β′(𝑥(𝑖𝑗) −  �̅�. . )]𝑗𝑖 (𝑥(𝑖𝑗) −  �̅�. . )=0 

∑ ∑ [(𝑦(𝑖𝑗) − �̅�. . ) − β′(𝑥(𝑖𝑗) −  �̅�. . )𝑗𝑖 (𝑥(𝑖𝑗) −  �̅�. . )=0 

∑ ∑ [(𝑦(𝑖𝑗) − �̅�. . )(𝑥(𝑖𝑗) −  �̅�. . ) − β′(𝑥(𝑖𝑗) −  �̅�. . )𝑗𝑖
2
=0 

β̂′ = ∑ ∑ [(𝑦(𝑖𝑗) − �̅�. . )(𝑥(𝑖𝑗) −  �̅�. . )/∑ ∑ (𝑥(𝑖𝑗) − 𝑥𝑖.̅̅ ̅ )𝑗𝑖𝑗𝑖
2
  

β̂′ = E(xy)
′ /E′(xx)  

Same as doing the previous procedure we can find SSE* i.e., the restricted residual sum of 

square (i.e., residual sum of square under 𝐻0) is: 

𝑆𝑆𝐸 ∗= ∑ ∑ (𝑦𝑖𝑗 − �̅�..)
2
− β̂′ ∑ ∑ (𝑥(𝑖𝑗) − �̅�. . )𝑗𝑖𝑗𝑖 (𝑦(𝑖𝑗) − �̅�. . )  

  = 𝐸(𝑦′𝑦) −
𝐸(𝑥𝑦)

′2

𝐸(𝑥𝑥)
′   

Degree of freedom for 𝑆𝑆𝐸 ∗ is n − 1 − 1 = n − 2 

 

Thus, the sum of square due to treatment is:  

𝑆𝑆𝑇 = 𝑆𝑆𝐸∗ − 𝑆𝑆𝐸 

Degrees of freedom for 𝑆𝑆𝑇 = degree of freedom for 𝑆𝑆𝐸∗ - degree of freedom for 𝑆𝑆𝐸 

                                               = 𝑛 − 2 − (𝑛 − 𝑝 − 1) = 𝑝 − 1 

𝑀𝑆𝑇 = (𝑆𝑆𝑇)/(𝑝 − 1), 𝑀𝑆𝐸 = (𝑆𝑆𝐸)/(𝑛 − 𝑝 − 1),  

The appropriate test for testing 𝐻0 is based on the test statistic F is given as  

𝐹 = 𝑀𝑆𝑇/𝑀𝑆𝐸~𝐹𝑝−1,(𝑛−𝑝−1)
(𝛼)

 

And 𝐻0 is rejected at level of α ∗ 100% if 𝐹𝑝−1,(𝑛−𝑝−1)
(𝛼)

, otherwise 𝐻0 is accepted  

 

ANOVA Table for One-Way Classification (CRD Layout) 



Sources of 

variance 

Degree 

of 

freedom  

Sum of Square Estimate 

of 𝜷 

 

Adjusted  

𝑺𝑺(𝒚𝒚) 

Adjusted 

Degree of 

freedom  

𝑺𝑺(𝒙𝒙) 𝑺𝑷(𝒙𝒚) 𝑺𝑺(𝒚𝒚) 

Treatment 𝑝 − 1  𝑇(𝑥𝑥) 𝑇(𝑥𝑦) 

 

𝑇(𝑦𝑦) 

 

   

Error 𝑛 − 𝑝  𝐸(𝑥𝑥) 

 

𝐸(𝑥𝑦) 

 

𝐸(𝑦𝑦) 

 

E(xy)

E(xx)
  SSE 𝑛 − 𝑝 − 1  

 

Total  𝑛 − 1  𝐸′(𝑥𝑥) 𝐸′(𝑥𝑦) 𝐸′(𝑦𝑦) 
𝐸′(𝑥𝑦)

𝐸′(𝑥𝑥)
  SSE* 𝑛 − 2  

Difference 

(Total – Error)  

     SSE*-

SSE 

𝑝 − 1  

 

3.4.2 
ANCOVA for Two-Way Classification with a Single 

Concomitant Variable in R.B.D. Layout 

 Suppose that we are comparing p treatments and each treatments replicated q times, so 

that n= pq be the total number of experimental units. Further suppose that the experiment is 

performed with a RBD layout. Here linear model will be 

    𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝜃𝑗 + 𝛽(𝑥𝑖𝑗 − �̅�..) + 𝑒𝑖𝑗    (1) 

Where, 

 𝜇 is a general mean effect 

𝛼𝑖 is additional effect due to 𝑖𝑡ℎ treatment over general mean effect 

𝜃𝑗  is additional effect due to 𝑗𝑡ℎ block over general mean effect 

𝛽 is the regression coefficient of y on x 

𝑥𝑖𝑗 be the concomitant variable corresponding to the response variability  

𝑒𝑖𝑗 be the error and obviously.  

∑ α𝑖𝑖  = ∑ θ𝑗𝑖 = 0  

 

Estimation of Parameters 

Here the residual sum of square is: 

𝑆𝑆𝐸 = ∑ ∑ 𝑒(𝑖𝑗)
2

𝑗𝑖   = ∑ ∑ (y𝑖𝑗 − μ − α𝑖 − θ𝑗 − β(x𝑖𝑗 −  �̅�. . )
2

𝑗𝑖     (2) 



To estimate μ, α𝑖 , θ𝑗𝑎𝑛𝑑 β we need: 

𝜕(𝑆𝑆𝐸)

𝜕μ
= 0,

𝜕(𝑆𝑆𝐸)

𝜕α𝑖
= 0, 

𝜕(𝑆𝑆𝐸)

𝜕θ𝑗 
  

𝜕(𝑆𝑆𝐸)

𝜕β
= 0 

 

Now, 
𝜕(𝑆𝑆𝐸)

𝜕μ
= 2∑ ∑ [y𝑖𝑗 − μ − α𝑖 − θ𝑗 − β(𝑗𝑖 x𝑖𝑗 −  �̅�. . )](−1) = 0 

⟹ ∑ ∑ 𝑦𝑖𝑗𝑗𝑖 − ∑ ∑ μ − ∑ ∑ α𝑖𝑗𝑖 −𝑗 𝑖 ∑ ∑ θ𝑗𝑗 𝑖 − β∑ ∑ (x𝑖𝑗 −  �̅�. . )𝑗 = 0𝑖  

⟹ ∑ ∑ 𝑦𝑖𝑗𝑗𝑖 − 𝑝𝑞μ − 0 − 0 − 0 = 0 

⟹ μ =
1

𝑝𝑞
∑ ∑ 𝑦𝑖𝑗𝑗𝑖  

⟹ μ̂ = �̅�.. 

Again  

𝜕(𝑆𝑆𝐸)

𝜕α𝑖
= 2∑ ∑ [y𝑖𝑗 − μ − α𝑖 − θ𝑗 − β(𝑗𝑖 x𝑖𝑗 −  �̅�. . )] = 0  

⟹ ∑ 𝑦𝑖𝑗𝑗 − ∑ μ𝑗 − ∑ α𝑖𝑗 − ∑ θ𝑗𝑗 − β∑ (x𝑖𝑗 −  �̅�. . )𝑗 = 0 

⟹ ∑ 𝑦𝑖𝑗𝑗 − 𝑞μ̂ − 𝑞α − 0 − 𝑞β(x𝑖. −  �̅�. . ) = 0 

 ⟹ 𝑦𝑖.̅ − μ̂ − β(𝑥𝑖.̅̅ ̅ −  �̅�. . ) = α 

 ⟹ αî = (𝑦𝑖.̅ − 𝑦..̅) − β̂(x𝑖. −  �̅�. . )  

Similarly  

θ�̂� = (𝑦.𝑗̅̅ ̅ − 𝑦..̅) − β̂(x.𝑗 −  �̅�. . )  

Again  

𝜕(𝑆𝑆𝐸)

𝜕β
= 2∑ ∑ [y𝑖𝑗 − μ̂ − αî − θ𝑗 − β̂(𝑗𝑖 x𝑖𝑗 −  �̅�. . )](x𝑖𝑗 −  �̅�. . ) = 0  

⟹   ∑ ∑ [(𝑦(𝑖𝑗) − �̅�. . ) − (𝑦𝑖.̅ − 𝑦..̅)𝑗𝑖 + β̂(x𝑖. −  �̅�. . ) − (𝑦.𝑗̅̅ ̅ − 𝑦..̅) + β̂(x.𝑗 −  �̅�. . ) −

β̂([(𝑥(𝑖𝑗) − �̅�. . )](x𝑖𝑗 −  �̅�. . ) = 0 

⟹  ∑ ∑ [(𝑦(𝑖𝑗) −𝑗𝑖  𝑦𝑖.̅  − 𝑦.𝑗̅̅ ̅ + �̅�. . )((𝑥(𝑖𝑗) − 𝑥𝑖.̅̅ ̅  − 𝑥.𝑗̅̅ ̅ + �̅�. . ) − β∑ ∑ (𝑥(𝑖𝑗) 𝑥𝑖.̅̅ ̅  − 𝑥.𝑗̅̅ ̅ +𝑗𝑖

�̅�. . )2 − ∑ ∑ [(𝑦(𝑖𝑗) −𝑗𝑖  𝑦𝑖.̅  − 𝑦.𝑗̅̅ ̅ + �̅�. . ){(x𝑖. −  �̅�. . )( x.𝑗 −  �̅�. . )} − β∑ ∑ (𝑥(𝑖𝑗) 𝑥𝑖.̅̅ ̅  −𝑗𝑖

𝑥.𝑗̅̅ ̅ + �̅�. . ){(x𝑖. −  �̅�. . )( x.𝑗 −  �̅�. . )}  = 0 



⟹  ∑ ∑ [(𝑦(𝑖𝑗) −𝑗𝑖  𝑦𝑖.̅  − 𝑦.𝑗̅̅ ̅ + �̅�. . )((𝑥(𝑖𝑗) − 𝑥𝑖.̅̅ ̅  − 𝑥.𝑗̅̅ ̅ + �̅�. . ) − β∑ ∑ (𝑥(𝑖𝑗) 𝑥𝑖.̅̅ ̅  − 𝑥.𝑗̅̅ ̅ +𝑗𝑖

�̅�. . )2 − ∑ ∑ [(𝑦(𝑖𝑗) −𝑗𝑖  𝑦𝑖.̅  − 𝑦.𝑗̅̅ ̅ + �̅�. . ){(x𝑖. −  �̅�. . ) + ∑ ∑ [(𝑦(𝑖𝑗) −𝑗𝑖  𝑦𝑖.̅  − 𝑦.𝑗̅̅ ̅ +

�̅�. . )( x.𝑗 −  �̅�. . )} − β∑ ∑ (𝑥(𝑖𝑗) 𝑥𝑖.̅̅ ̅  − 𝑥.𝑗̅̅ ̅ + �̅�. . ){(x𝑖. −  �̅�. . ) + β∑ ∑ (𝑥(𝑖𝑗) 𝑥𝑖.̅̅ ̅  − 𝑥.𝑗̅̅ ̅ +𝑗𝑖𝑗𝑖

�̅�. . )( x.𝑗 −  �̅�. . )  = 0 

⟹ ∑ ∑ [(𝑦(𝑖𝑗) −𝑗𝑖  𝑦𝑖.̅  − 𝑦.𝑗̅̅ ̅ + �̅�. . )((𝑥(𝑖𝑗) − 𝑥𝑖.̅̅ ̅  − 𝑥.𝑗̅̅ ̅ + �̅�. . ) − β∑ ∑ (𝑥(𝑖𝑗) − 𝑥𝑖.̅̅ ̅  − 𝑥.𝑗̅̅ ̅ +𝑗𝑖

�̅�. . )2 = 0  

Other term will be vanishing because the sum of deviation about mean is zero. 

β̂ =
∑ ∑ [(𝑦(𝑖𝑗)−𝑗𝑖  𝑦𝑖.̅̅̅̅  −𝑦.𝑗̅̅ ̅̅ +�̅�..)((𝑥(𝑖𝑗)− 𝑥𝑖.̅̅̅̅  −𝑥.𝑗̅̅ ̅̅ +�̅�..)

∑ ∑ (𝑥(𝑖𝑗)− 𝑥𝑖.̅̅̅̅  −𝑥.𝑗̅̅ ̅̅ +�̅�..)2𝑗𝑖
  

Let 

𝐸𝑥𝑥 = ∑∑(𝑥𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�..)
2
  

𝐸𝑦𝑦 = ∑∑(𝑦𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�.. )
2
  

𝐸𝑥𝑦 = ∑∑(𝑥𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�..)(𝑦𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�..)  

∑∑(𝑦𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�.. )(𝑥𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�..)  

𝑇𝑥𝑥 =  𝑝 ∑ (�̅�.𝑗 − �̅�..)
2
 = 𝑞 ∑ (�̅�𝑖. − �̅�..)

2
𝑖𝑗   

𝑇𝑦𝑦 = 𝑝∑ (�̅�.𝑗 − �̅�..)
2

𝑗   

𝑇𝑥𝑦 = 𝑝∑ (�̅�.𝑗 − �̅�..)(�̅�𝑖. − �̅�..)𝑗   

= 𝑝 ∑ (�̅�.𝑗 − �̅�..)(�̅�.𝑗 − �̅�..)𝑗   

𝐸𝑥𝑥
′ = ∑∑(𝑥𝑖𝑗 − �̅�.𝑗)

2
  

𝐸𝑦𝑦
′ = ∑∑(𝑦𝑖𝑗 − �̅�.𝑗)

2
  

𝐸𝑥𝑦
′ = ∑∑(𝑥𝑖𝑗 − �̅�.𝑗)(𝑦𝑖𝑗 − �̅�.𝑗)  

Therefore, 

�̂� =
𝐸𝑥𝑦

𝐸𝑥𝑥
  



Substituting the values of   �̂�, �̂�𝑖, 𝜃𝑗 and  𝛽 ̂ in equation (2) we get, 

𝑆𝑆𝐸 = ∑∑[𝑦𝑖𝑗 − �̅�.. − (�̅�𝑖. − �̅�..) + �̂�(�̅�𝑖. − �̅�..) − (�̅�.𝑗 − �̅�..) + �̂� (�̅�.𝑗 − �̅�..) − �̂�(𝑥𝑖𝑗 − �̅�..)]
2
  

= ∑∑[(𝑦𝑖𝑗 − �̅�𝑖. − 𝑦 ̅.𝑗 + �̅�..) − �̂�(𝑥𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�..)]
2
  

= ∑∑(𝑦𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�..)
2
+ �̂�(𝑥𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�..)

2
− 2�̂�(𝑦𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 −

𝑦 ̅..)(𝑥𝑖𝑗 − �̅�𝑖. − �̅�.𝑗 + �̅�..)  

= 𝐸𝑦𝑦 +
𝐸𝑥𝑦

2

𝐸𝑥𝑥
2 ∗ 𝐸𝑥𝑥 − 2

𝐸𝑥𝑦

𝐸𝑥𝑥
∗ 𝐸𝑥𝑦  

𝑆𝑆𝐸 = 𝐸𝑦𝑦 −
𝐸𝑥𝑦

2

𝐸𝑥𝑥
  

Degrees of freedom for SSE = d.f. for total - d.f. for treatment-d.f. for blocks- d.f. for 𝛽 

Degrees of freedom for SSE = (n-1) – (p-1) – (q-1) -1 = (p-1)(q-1) -1   

 

Under null hypothesis 𝐻0: All treatments effects are equal i.e., 𝛼𝑖 = 0 

∴ The model 1 becomes: 

𝑦𝑖𝑗 = 𝜇 + 𝜃𝑗 + 𝛽′(𝑥𝑖𝑗 − �̅�..) + 𝑒𝑖𝑗
∗  

Thus, the restricted error sum of square under 𝐻0 is given by: 

𝑆𝑆𝐸∗ = ∑ ∑ [𝑦𝑖𝑗 − 𝜇 − 𝜃𝑗 − 𝛽′(𝑥𝑖𝑗 − �̅�..)]
2

𝑗𝑖   

For finding the estimates of 𝜇, 𝜃𝑗   𝑎𝑛𝑑 𝛽′ we need. 

𝜕𝑆𝑆𝐸∗

𝜕𝜇
= 0,

𝜕𝑆𝑆𝐸∗

𝜕𝜃𝑗
= 0,     

𝜕𝑆𝑆𝐸∗

𝜕𝛽′
= 0    

 

Now 
𝜕𝑆𝑆𝐸∗

𝜕𝜇
= 0 from this we get: 

�̂� = �̅�.. 

Again  

𝜕𝑆𝑆𝐸∗

𝜕𝜃𝑗
= 2∑ [𝑦𝑖𝑗 − �̂� − 𝜃𝑗𝑗 − �̂�′(𝑥𝑖𝑗 − �̅�..)] = 0  

⇒ ∑ 𝑦𝑖𝑗 − ∑ �̅�..𝑖 − ∑ 𝜃𝑗 − �̂�′ ∑ (𝑥𝑖𝑗 − �̅�..) = 0𝑖𝑖𝑗   

 ⇒ 𝜃𝑗 = (�̅�.𝑗 − �̅�..) − 𝛽′(�̅�.𝑗 − �̅�..)  



⇒ 𝜃𝑗 = (�̅�.𝑗 − �̅�..) − 𝛽′(�̅�.𝑗 − �̅�..)  

Again, 

𝜕𝑆𝑆𝐸∗

𝜕𝛽′
= −2 ∑ ∑ [𝑦𝑖𝑗 − �̂� − 𝜃𝑗 − �̂�′(𝑥𝑖𝑗 − �̅�..](𝑥𝑖𝑗 − �̅�..) = 0𝑗𝑖   

⇒ ∑ ∑ [𝑦𝑖𝑗 − �̅�.. − (�̅�.𝑗 − �̅�..) + 𝛽′(𝑥.𝑗 − �̅�..) − 𝛽 ̂′(𝑥𝑖𝑗 − �̅�.𝑗)](𝑥𝑖𝑗 − �̅�..) = 0𝑗𝑖   

⇒ ∑ ∑ [(𝑦𝑖𝑗 − 𝑦.𝑗) − �̂�′(𝑥𝑖𝑗 − �̅�.𝑗)𝑗 ] (𝑥𝑖𝑗 − �̅�..) = 0𝑖   

⇒ ∑ ∑ [(𝑦𝑖𝑗 − �̅�.𝑗) − �̂�′(𝑥𝑖𝑗 − �̅�.𝑗)](𝑥𝑖𝑗 − �̅�.𝑗 + �̅�.𝑗 − �̅�..) = 0𝑗𝑖   

⇒ ∑ ∑ (𝑦𝑖𝑗 − �̅�.𝑗)(𝑥𝑖𝑗 − �̅�.𝑗) + ∑ ∑ (𝑦𝑖𝑗 − �̅�.𝑗)(�̅�.𝑗 − �̅�..) − �̂�′ ∑ ∑ (𝑥𝑖𝑗 − 𝑥.𝑗)
2
−𝑗𝑖𝑗𝑖𝑗𝑖

�̂�′ ∑ ∑ (𝑥𝑖𝑗 − �̅�.𝑗)(�̅�.𝑗 − �̅�..) = 0𝑗𝑖   

⇒ ∑ ∑ (𝑦𝑖𝑗 − �̅�.𝑗)(𝑥𝑖𝑗 − �̅�.𝑗) − �̂�′ ∑ ∑ (𝑥𝑖𝑗 − �̅�.𝑗)
2

= 0𝑗𝑖𝑗𝑖   

⇒ �̂�′ =
∑∑(𝑦𝑖𝑗−�̅�.𝑗)(𝑥𝑖𝑗−�̅�𝑗)

∑ ∑ (𝑥𝑖𝑗−�̅�.𝑗)
2
 𝑗𝑖

=
𝐸𝑥𝑦

′

𝐸𝑥𝑥
′   

Now substituting the values of μ̂̂, θ�̂�  𝑎𝑛𝑑 β̂ in the restricted 𝑆𝑆𝐸∗,we get  

𝑆𝑆𝐸∗ = ∑ ∑ [(𝑦(𝑖𝑗) −𝑗𝑖 𝑦..̅ − (𝑦.𝑗̅̅ ̅ − �̅�. . ) + β̂(𝑥.𝑗̅̅ ̅ − �̅�. . ) − β̂(𝑥(𝑖𝑗) − �̅�. . )]  2  

= ∑ ∑ [(𝑦(𝑖𝑗) −𝑗𝑖 𝑦.𝑗̅̅ ̅) − β̂(𝑥(𝑖𝑗) − �̅�. 𝑗)]  2  

= ∑ ∑ (𝑦(𝑖𝑗) −𝑗𝑖 𝑦.𝑗̅̅ ̅)2  + β̂2(𝑥(𝑖𝑗) − �̅�. 𝑗)  2 − 2β̂∑ ∑ [(𝑦(𝑖𝑗) −𝑗𝑖  𝑦.𝑗̅̅ ̅)(𝑥(𝑖𝑗) − �̅�. 𝑗)  

= 𝐸′𝑦𝑦 +
𝐸′2

𝑥𝑦

𝐸′2
𝑥𝑥

∗ 𝐸′𝑦𝑦 − 2
𝐸′𝑥𝑦

𝐸′
𝑥𝑥

∗ 𝐸′𝑥𝑦  

𝑆𝑆𝐸∗ = 𝐸′𝑦𝑦 −
𝐸′2

𝑥𝑦

𝐸𝑥𝑥
  

Degrees of freedom for 𝑆𝑆𝐸∗ = 𝑑. 𝑓 for total -d.f. for blocks-d.f. for β 

= (𝑝𝑞 − 1) − (𝑞 − 1) − 1 = 𝑝𝑞 −  𝑞 − 1 

∴  The Adjusted Sum of Square for Treatment is 𝑆𝑆𝑇 = 𝑆𝑆𝐸 ∗ −𝑆𝑆𝐸 

d.f. for SST = d.f. for 𝑆𝑆𝐸∗ − d.f. for SSE  

= 𝑝𝑞 − 𝑞 − 1 − (𝑝 − 1)(𝑞 − 1) + 1  

= 𝑝𝑞 − 𝑞 − 𝑝𝑞 + 𝑝 + 𝑞 − 1  



= 𝑝 − 1  

MST =
𝑆𝑆𝑇

𝑝−1
=

𝑆𝑆𝐸∗−𝑆𝑆𝐸

𝑝−1
 

And 𝑀𝑆𝐸 =
𝑆𝑆𝐸

(𝑝−1)(𝑞−1)−1
 

Now to test our null hypothesis 𝐻𝑜 ,we can make a test statistic given as: 

𝐹 =
𝑀𝑆𝑇

𝑀𝑆𝐸
~𝐹α{(𝑝 − 1), (𝑝 − 1)(𝑞 − 1) − 1)  

 If 𝐹 > 𝐹α{(𝑝 − 1), (𝑝 − 1)(𝑞 − 1) − 1),then our null hypothesis is rejected and we conclude 

that the treatments are effective(different), otherwise we accept the null and we conclude that 

there is no significant difference among the treatments.  

 

ANOVA Table for Two-Way Classification (RBD Layout) 

Sources of 

Variance 

Degree of 

freedom  

Sum of Square 

 

Estimate 

of 𝜷 

 

Adjusted  

𝑺𝑺(𝒚𝒚) 

Adjusted 

Degree of 

freedom  𝑺𝑺(𝒙𝒙) 𝑺𝑷(𝒙𝒚) 𝑺𝑺(𝒚𝒚) 

Blocks  q-1 𝐵(𝑥𝑥) 𝐵(𝑥𝑦) 𝐵(𝑦𝑦)    

Treatment  p-1 𝑇(𝑥𝑥) 𝑇(𝑥𝑦) 𝑇(𝑦𝑦)  SSE  

Error  (p-1)(q-1) 𝐸(𝑥𝑥) 𝐸(𝑥𝑦) 𝐸(𝑦𝑦) β̂ =
𝐸(𝑥𝑦)

𝐸(𝑥𝑥)
  SSE (p-1)(q-1)-1 

Treatment 

+ Error  

𝑞(𝑝 − 1) 𝐸′(𝑥𝑥) 𝐸′(𝑥𝑦) 𝐸′(𝑦𝑦) β̂ =
𝐸′(𝑥𝑦)

𝐸′(𝑥𝑥)
  SSE* 𝑞(𝑝 − 1)

− 1 

Difference       SSE*- 

SSE 

𝑝 − 1 

 

 

Example: In an experiment on cotton with 5 manurial treatments, it was observed that the 

number of plants per plot is varying from plot to plot. The yields of cotton along with number 

of plants per plot are given in the table below. Analyse the yield data removing the effect of 

variation in plant population on the yield by analysis of covariance technique and draw your 

conclusions. The design adopted was a RBD with four replications. 

Treatments: 5 Levels of Nitrogen: N0 = 0, N1 = 20, N2 = 40, N3 = 60, N4 = 80 kg/ha 

Yield of Cotton (Number of plants) per plot 



Replicate-I N1 

12.0 (24) 

N0 

10.5 (30) 

N4 

27.0 (30) 

N2 

16.5 (28) 

N3 

25.0 (35) 

Replicate-II N3 

26.0 (40) 

N2 

20.0 (25) 

N0 

12.0 (25) 

N4 

26.0 (22) 

N1 

15.5 (28) 

Replicate-III N2 

22.0 (32) 

N4 

30.0 (35) 

N3 

20.0 (24) 

N1 

20.0 (35) 

N0 

14.5 (30) 

Replicate 14 N1 

19.0 (26) 

N3 

18.5 (16) 

N0 

8.5 (24) 

N4 

29.0 (30) 

N2 

25.0 (35) 

 

Solution: We set up the following hypothesis: 

Null hypothesis: 

HoT: τ1 = τ2 = τ3 = τ4 = τ5, i.e., the treatments are homogenous 

HoR: b1 = b2 = b3 = b4, i.e., the blocks or replicates are homogenous 

Alternative hypothesis: 

H1T: At least two τi
’ are different 

H1R: At least two bj
’ are different 

We shall use the ANCOVA technique to test these hypotheses: 

y: Yield of cotton per plot 

x (Concomitant variable): Number of plants per plot 

Calculation of Various Sum of Squares 

Treatments Yield of cotton (in kg.) along with the number of plants per plot 

Replication- 

I 

Replication-

II 

Replication-

III 

Replication-

IV 

Total 

x y x y x y x y x y 

N0 30.0 10.5 25.0 12.0 30.0 14.5 24.0 8.5 109.0 45.5 

N1 24.0 12.0 28.0 15.5 35.0 20.0 26.0 19.0 113.0 66.5 

N2 28.0 16.5 25.0 20.0 32.0 22.0 35.0 25.0 120.0 83.5 



N3 35.0 25.0 40.0 26.0 24.0 20.0 16.0 18.5 115.0 89.5 

N4 30.0 27.0 22.0 26.0 35.0 30.0 30.0 29.0 117.0 112.0 

Total 147.0 91.0 140.0 99.5 156.0 106.5 131.0 100.0 574.0 397.0 

 

In usual notations, we have n = pq = 5*4 = 20; G = Grand total of all the observations. 

For x: 

G(x) = 574.0; n = 20 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶𝐹(𝑥)) =
[𝐺(𝑥)]2

𝑛
=

[574.0]2

20
= 16,473.80  

𝑅𝑆𝑆𝑥𝑥 = ∑ ∑ 𝑥𝑖𝑗
2 = 302 + 252+. . . . . . . . +352 + 302 = 17,086.00𝑗𝑖   

𝑇𝑜𝑡𝑎𝑙 𝑆𝑆 (𝑆𝑆𝑥𝑥) = 𝑅𝑆𝑆𝑥𝑥  −  𝐶𝐹(𝑥)  =  17086.00 −  16473.80 =  612.20  

Rxx = SS(Replications) =
1472+1402+1562+1312

5
− CF(x) = 16541.20 − 16473.80 = 67.40  

Txx = SS(Treatments) =
1092+1132+1202+1152+1172

4
− CF(x) = 16491 − 16473.80 = 17.20  

Exx =  SS(Error)  =  Sxx  −  Rxx − Txx = 612.20 −  67.40 −  17.20 =  527.60  

 

For y: 

G(y) = 397.0; n = 20 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶𝐹(𝑦)) =
[𝐺(𝑦)]2

𝑛
=

[397.0]2

20
= 7,880.45  

𝑅𝑆𝑆𝑦𝑦 = ∑ ∑ 𝑦𝑖𝑗
2 = 10.52 + 12.02+. . . . . . . . +302 + 292 = 8,652.50𝑗𝑖   

𝑇𝑜𝑡𝑎𝑙 𝑆𝑆 (𝑆𝑆𝑦𝑦) = 𝑅𝑆𝑆𝑦𝑦  −  𝐶𝐹(𝑦)  =  8,652.50 −  7,880.45 =  772.05  

Ryy = SS(Replications) =
912+99.52+106.52+1002

5
− CF(y) = 7904.70 − 7880.45 = 24.25  

Tyy = SS(Treatments) =
45.52+66.52+83.52+89.52+1122

4
− CF(y) = 8504.75 − 7880.45  

= 624.30 

Eyy =  SS(Error)  =  Syy  −  Ryy − Tyy = 772.05 −  24.25 −  624.30 =  123.50  

 



For product xy: 

G(x) = 574.0, G(y) = 397.0; n = 20 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝐶𝐹(𝑥𝑦)) =
𝐺(𝑥)𝐺(𝑦)

𝑛
=

574.0 𝑥 397.0

20
= 11,393.90  

𝑅𝑆𝑆 (𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠) = 𝑅𝑆𝑆𝑥𝑦 = ∑∑𝑥𝑦 = (30 𝑥 10.5) + (25 𝑥 12) + . . . . . + (30 𝑥 29)  

= 11,704.00 

𝑇𝑜𝑡𝑎𝑙 𝑆𝑆 (𝑆𝑃𝑥𝑦) = 𝑅𝑆𝑆𝑥𝑦  −  𝐶𝐹(𝑥𝑦)  =  11,704.00 −  11,393.90 =  310.10  

Rxy = SP𝑥𝑦(Replications) =
(147∗91)+(140∗99.5)+(156∗106.5)+(131∗100)

5
− CF(xy)  

= 11,404.20 −  11,393.90 = 10.30  

Txy = SP𝑥𝑦(Treatments) =
(109∗45.5)+(113∗66.5)+(120∗83.5)+(115∗89.5)+(117∗112)

4
− CF(xy)  

= 11,472.63 −  11,393.90 = 78.73  

Exy = SP𝑥𝑦(Error)  =  𝑇𝑜𝑡𝑎𝑙 𝑆𝑆 (𝑆𝑃𝑥𝑦)  −  Rxy − Txy = 310.10 −  10.30 −  78.73 =

 221.07  

Sum of Squares and Products 

Sources of 

Variance 

Degree 

of 

freedom  

Sum of Square 

 

𝑴𝑺(𝒚𝒚) 𝑭(𝒚𝒚) 

𝑺𝑺(𝒙𝒙) 𝑺𝑷(𝒙𝒚) 𝑺𝑺(𝒚𝒚) 

Replications 4 – 1 = 3 𝑅(𝑥𝑥) =

67.40  

𝑅(𝑥𝑦) =

10.30  

𝑅(𝑦𝑦) =

24.25  

24.25

3
=

8.08  

 

Treatments 5 – 1 = 4 𝑇(𝑥𝑥) =

17.20  

𝑇(𝑥𝑦) =

78.73  

𝑇(𝑦𝑦) =

624.30  

624.30

4
=

156.08  

156.08

10.29
=

15.17  

Error  3*4 = 12 𝐸(𝑥𝑥) =

527.60  

𝐸(𝑥𝑦) =

221.07  

𝐸(𝑦𝑦) =

123.50  

123.50

12
=

10.29  

 

Total  20 – 1 = 

19 

𝑆𝑆(𝑥𝑥) =

612.20  

𝑆𝑆(𝑥𝑦)

= 310.10 

𝑆𝑆(𝑦𝑦)

= 772.05 

  



 

 We now adjust for variation in yield (y) from plot to plot for the linear (regression) 

effect of the number of plants (x) per plot. An estimate of the coefficient of regression (β) of y 

on x is given by: 

�̂� =
𝐸𝑥𝑦

𝐸𝑥𝑥
=

221.07

527.60
= 0.42  

The adjusted (corrected) error sum of squares for y, adjusted for this linear effect is given by: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 𝑆𝑆 𝑓𝑜𝑟 𝑦 =  𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 (𝐸𝑦𝑦) = 𝐸𝑦𝑦  −  �̂�𝐸𝑥𝑦 = 𝐸𝑦𝑦  −  
𝐸𝑥𝑦

2

𝐸𝑥𝑥
  

= 123.50 − 
221.072

527.60
= 30.80  

(OR: β̂Exy =  0.4190 ∗  221.07 =  92.63) 

 The estimation of �̂� results in loss of 1 d.f. for error sum of squares, which now becomes 

12-1=11. 

 Next, the variation in treatments is also to be adjusted for variation in x. For this, we 

prepare the following table for (Treatments + Error) sum of squares. 

Sum of Squares and Sum of Products for (Treatments + Error) 

Source of Variation SS(x2) SP(xy) SS(y2) 

Treatments Txx = 17.20 Txy = 78.73 Tyy = 624.30 

Error Exx = 527.60 Exy = 221.07 Eyy = 123.50 

Treatments + Error E’xx = 544.80 E’xy = 299.80 E’yy = 747.80 

 

E′xx = Txx + Exx, E′xy = Txy + Exy, E′yy = Tyy + Eyy  

The Sum of Square for (Treatments + Error) for y is adjusted for linear (regression) effect of x 

on y exactly similarly as the error sum of square and is given by: 

SSE* = Adjusted S.S. for (Treatments + Error) for y = 𝐸′𝑦𝑦  − 
(𝐸′𝑥𝑦)2

𝐸′𝑥𝑥
 

= 747.80 −
(299.80)2

544.80
 = 582.82  

Finally, the Treatments S.S. for y adjusted for the linear effect of x on y is given by: 

Adjusted (Treatment S.S.) for y = SSE* - Adjusted (Eyy) 



= Adjusted (Treatment + Error) S.S. for y – Adjusted Error S.S. for y 

= 582.82 – 30.87 = 551.95 

Adjusted Analysis of Variance Table 

Source of Variation Degree of 

Freedom 

Sum of Squares Mean Sum of 

Squares 

Variance 

Ratio 

Treatments 4  551.95 137.99 FT = 49.11 

Error 12 – 1 = 11 30.87 2.81  

Treatment + Error 16 – 1 = 15 582.82   

 

Tabulated 𝐹(4,11)(0.05) = 3.36 

 

Conclusion: Since the calculated value of FT = 49.11 is much greater than the tabulated 

(critical) value. It is highly significant. Hence, we reject the null hypothesis of equality of 

treatment means and conclude that the treatments differ significantly as regards their effect on 

increase of yield of cotton. Moreover, from the sum of squares table, we conclude that the 

treatment N4 is the most effective, followed by N3, N2, N1 and N0 respectively. 

3.6 Self-Assessment Exercise 

1. An experiment was conducted to judge the effectiveness three drugs in reducing blood 

pressure for three different groups of people. The data of the amount of blood pressure 

reduction (in millimeters of mercury) is given as follows: 

Group Drug 

X Y Z 

A 14 

15 

10 

9 

11 

11 

B 12 

11 

7 

8 

10 

11 

C 10 

11 

11 

11 

8 

7 

 

Answer the following questions taking significant level of 5% 

a) Do the drugs act differently? 

b) Are the different groups of people affected differently? 

c) Is the interaction term significant? 



2. A manufacturer wishes to determine the effectiveness of four types of machines (A, B, C 

and D) in the production of bolts. To accumulate this, the numbers of defective bolts 

produced for each of two shifts in the results are shown in the following table: 

Machine First Shift Second Shift 

M T W Th F M T W Th F 

A 6 4 5 5 4 5 7 4 6 8 

B 10 8 7 7 9 7 9 12 8 8 

C 7 5 6 5 9 9 7 5 4 6 

D 8 4 6 5 5 5 7 9 7 10 

Perform an analysis of variance to determine at 5% level of significance, whether there is 

a difference between the machines and between the shifts. 

3. Explain the process of assessing whether there is a significant interaction effect between 

the two factors in a two-way layout with one observation per cell.  

4. What do you understand by “Analysis of Covariance”? Illustrate with suitable examples. 

5. Derive the Analysis of Covariance for a one-way layout (with one concomitant variable 

only). 

3.7 Summary 

This unit provides an overview of the analysis of variance in two-way classified data 

with m-observations per cell, how to perform Tukey’s Test for Non-Additivity for Two-way 

layout with one observation per cell and conduct Analysis of Covariance (ANCOVA) for one-

way and two-way classified data. 
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Blocks & Units Introduction 

 

The Block - 2 –Design of Experiment is the second block of said SLM with three units. 

 

In Unit – 4 – Basic Designs, is being introduced the Terminology and basic Principles 

of Design, CRD, RBD and LSD, analysis with missing observations. 

 

In Unit – 5 – Factorial Experiments is discussed with 23, 2n, 32 and 33 factorial 

experiments with its analysis.  

 

In Unit – 6 – Confounding has been introduced, Orthogonality, Complete and Partial 

confounding, construction of confounded factorial experiments. 

 

At the end of every block/unit the summary, self-assessment questions and further 

readings are given.  
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4.10 Summary 

4.11 References 
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4.1 Introduction 

In 1935 R.A. Fisher laid the foundation of the subject called Design of Experiments. 

Applications of this theory are found in laboratories and research in natural sciences, 

engineering and in almost all branches of social sciences. The subject matter of the design of 

experiment consists of: 

1) Planning of the experiment, 

2) Obtaining relevant information from it regarding the statistical hypothesis under study, and 

3) Making a statistical analysis of the data. 

 

Experiment: It is a device or means of getting an answer to the question that the experimenter 

has in mind. Experiment can be classified into two categories: (a) Absolute and (b) 

Comparative. 

(a) Absolute Experiments: This consists of determining the absolute value of some 

characteristics like finding the mean of a set of data or finding the correlation coefficients 

between two variables or finding the variability of a data etc. 

(b) Comparative experiments: These are designed to compare the effect of two or more objects 

on some population characteristic, e.g., comparison of different manures or fertilizers, different 

diets or medicines in a medical experiment or standards of teaching in different educational 

institutions etc. 

 

Treatments: Various objects of comparison in a comparative experiment are called as different 

treatments. For example, in field experiment different fertilizers or different varieties of crop 

etc; in an experiment regarding comparison of standards of teaching in different institutions, 

the different institutions will be the treatments, while in an experiment concerning effect of 

different drugs on patients suffering from certain disease, the treatment will be the different 

drugs used to cure them. 

 

Experimental Unit: The smallest division of the experimental material to which the treatment 

is applied and on which the observation of the variable under study is made is known as an 

experimental unit. For example, in field experiment, the plot or land is the experimental unit. 

In other experiments it may be a patient in a hospital, students of a particular class of an 

institution, a lump of dough or a batch of seeds etc. 

 



Blocks: In agricultural experiments most of the times we divide the whole experimental unit 

(field) into relatively homogeneous subgroups or strata. These strata which are more uniform 

amongst themselves than the field as a whole are known as blocks. 

 

Yield: The measurement of the variable under study on different experimental units are termed 

as yields. 

 

Experimental error: The chance or non-assignable cause of variation is termed as experimental 

error. 

 

Replication: It is the execution of an experiment more than once, i.e. repetition of treatments 

under investigation. 

 

Precision: The reciprocal of the variance of the mean is termed as the precision or the amount 

of information of a design. Thus, for an experiment replicated r times if  �̅� denotes the mean of 

the observed values of yield, then, 𝑉(�̅�) = 
𝜎2

𝑟
, where 𝜎2 is the variance of each individual 

observations or error variance per unit. Then, Precision = 
1

𝑉(�̅�)
 = 

𝑟

𝜎2. 

 

Efficiency of a Design: Consider two designs 𝐷1 and 𝐷2 with error variances 𝜎1
2 and 𝜎2

2 and 

replications 𝑟1 and 𝑟2 respectively. Then, the precision of 𝐷1 = 
𝑟1

𝜎1
2 and the precision of 𝐷2 = 

𝑟2

𝜎2
2. 

Efficiency of the design 𝐷1 with respect to the design 𝐷2 is defined as:  

E = 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑜𝑓 𝐷2
 = 

𝑟1/𝜎1
2

𝑟2/𝜎2
2. 

If E = 1, then both the designs 𝐷1 and 𝐷2 are equally efficient. 

If E > 1 (or E < 1) then 𝐷1 is said to be more (or less) efficient than 𝐷2. 

 

Uniformity trials: By uniformity trials we mean a trial in which the experimental material is 

divided into small units and the same treatment is applied on each of the units and their yields 

are recorded. By doing so we can have an idea about the uniformity of the experimental 

material, for example in case of field experiment, the variation of the fertility gradient of the 

land can be identified which will be helpful in the formation of the blocks. 

 

4.2 Objectives 



After going through this unit, you should be able to: 

• Understand the principles of design of experiments 

• Apply the Completely Randomized Design (CRD), Randomized Block Design (RBD), and 

Latin Square Design (LSD) 

• Estimate the missing value(s) in RBD and LSD. 

 

4.3 Principles of Design of Experiments 

According to Prof. R.A. Fisher, there are three basic principles of design of 

experiments. They are: 

Replication: As said earlier, replication is the repetition of the treatments under investigation. 

This is done to average out the influence of chance factors on different experimental units. 

Thus, repetition of treatments results in more reliable estimate than a single observation. 

 

Randomisation: It is a process of assigning treatments to various experimental units in a pure 

chance manner. This gives each treatment equal chance of showing its worth. The purpose of 

randomness is to assume that the sources of variation, not controlled by the experiment, i.e., 

chance variation operate randomly so that the average effect of it on any group or unit is zero. 

 

Local Control: The process of dividing a heterogeneous experimental material into 

homogeneous groups or blocks is known as local control. For example, in an agricultural field 

experiment, the whole experimental area (field) is divided into groups (blocks) row-wise or 

column-wise or both according to the fertility gradient of the soil such that the variation within 

each block is minimum and between blocks is maximum. The treatments are allocated within 

each block at random. 

 

4.4 Completely Randomized Design (CRD) 

 This design is based on the principle of randomisation and replication. In this design 

treatments are allocated at random to the experimental units over the entire experimental 

material. 

4.4.1 Layout  

 Suppose there are k treatments and each treatment is replicated 𝑟1, 𝑟2,⋯ , 𝑟𝑘 number of 

times, then the whole experimental material is divided into n = ∑ 𝑟𝑖
𝑘
𝑖=1  units and all the ∑ 𝑟𝑖

𝑘
𝑖=1  



treatments are allocated to these n units completely at random.  For example, suppose there are 

3 treatments 𝑡1, 𝑡2 and 𝑡3 which are replicated 2,3 and 5 times. Then the experimental material 

is divided into 2+3+5= 10 units and the treatments are allocated at random to these 10 units as 

follows: 

t3 t2 t1 t2 t2 

t3 t3 t1 t3 t3 

The analysis of variance of a CRD is exactly as that of a one-way layout. 

 

Assumptions 

The statistical analysis of this layout is based on the following assumptions: 

1) All the observations are mutually independent. 

2) Different effects are additive in nature. 

3) eij’s are i.i.d. random variables each following N(0, σe
2); j = 1,2,⋯ , ni, i =  1,2,⋯ , k. 

 

4.4.2 Analysis 

 Suppose there are k treatments and each treatment is replicated 𝑟1, 𝑟2,⋯ , 𝑟𝑘 number of 

times, then the whole experimental material is divided into n = ∑ 𝑟𝑖
𝑘
𝑖=1  units and all the ∑ 𝑟𝑖

𝑘
𝑖=1  

treatments are allocated to these n units completely at random. Let these n observations be 

denoted as 𝑦
𝑖𝑗

,(𝑖 = 1,2,⋯ , 𝑘; 𝑗 = 1,2,⋯ , 𝑟𝑖). Then the observation table is as follows: 

Treatments 

 

Observations Total Mean 

1 𝑦
11

    𝑦
12

      ⋯⋯⋯⋯⋯⋯                 

𝑦
1𝑟1

 𝑇1. = ∑𝑦
1𝑗

𝑟1

𝑗=1

 
�̅�

1.
= 

𝑇1.

𝑟1
 

2 𝑦
21

    𝑦
22

      ⋯⋯⋯⋯⋯⋯                𝑦
2𝑟2

 
𝑇2. = ∑𝑦

2𝑗

𝑟2

𝑗=1

 
�̅�

2.
= 

𝑇2.

𝑟2
 

 

⋮ 

 

⋮ 

 

⋮ 

 

⋮ 

 

i 𝑦
𝑖1

    𝑦
𝑖2

       ⋯⋯⋯⋯⋯⋯                  𝑦
𝑖𝑟𝑖

 
𝑇𝑖. = ∑𝑦

𝑖𝑗

𝑟𝑖

𝑗=1

 
�̅�

𝑖.
= 

𝑇𝑖.

𝑟𝑖
 

 

⋮ 

 

⋮ 

 

⋮ 

 

⋮ 

 



k 𝑦
𝑘1

    𝑦
𝑘2

      ⋯⋯⋯⋯⋯⋯                𝑦
𝑘𝑟𝑘

 
𝑇𝑘. = ∑𝑦

𝑘𝑗

𝑟𝑘

𝑗=1

 
�̅�

𝑘.
= 

𝑇𝑘.

𝑟𝑘
 

Total 𝑇.. =∑ ∑ 𝑦
𝑖𝑗

𝑟𝑖
𝑗=1

𝑘
𝑖=1  �̅�

..
 = 

𝑇..

𝑛
 

 

The mathematical model is given by 

𝑦
𝑖𝑗

 =  𝜇𝑖 + 𝑒𝑖𝑗; 𝑗 = 1,2,⋯ , 𝑟𝑖, 𝑖 =  1,2,⋯ , 𝑘, 

where 𝜇𝑖 is the average effect of the 𝑖𝑡ℎtreatment which can be split as: 

𝜇𝑖 = 𝜇 + 𝜇𝑖 − 𝜇 = 𝜇 + 𝛼𝑖 with 𝛼𝑖 = 𝜇𝑖 − 𝜇, 𝑖 =  1,2,⋯ , 𝑘 and 𝜇 = 
1

𝑛
∑ 𝑟𝑖𝜇𝑖

𝑘
𝑖=1 .  

Hence, 

𝑦
𝑖𝑗

 = 𝜇 + 𝛼𝑖 + 𝑒𝑖𝑗; 𝑗 = 1,2,⋯ , 𝑟𝑖, 𝑖 =  1,2,⋯ , 𝑘;      (1) 

Where, 

𝑦
𝑖𝑗

 is the 𝑗𝑡ℎ observation of 𝑖𝑡ℎ treatment; 𝑗 = 1,2,⋯ , 𝑟𝑖, 𝑖 =  1,2,⋯ , 𝑘, 

𝜇 is the general mean effect, 

𝛼𝑖 is the additive effect due to 𝑖𝑡ℎtreatment  

𝑒𝑖𝑗 is the error effect due to chance and these are assumed to be i.i.d. random variables each 

following 𝑁(0, 𝜎𝑒
2); 𝑗 = 1,2,⋯ , 𝑟𝑖, 𝑖 =  1,2,⋯ , 𝑘. 

The side condition is ∑ 𝑟𝑖𝛼𝑖
𝑘
𝑖=1   = ∑ 𝑟𝑖(𝜇𝑖 − 𝜇)𝑘

𝑖=1  = 𝑛𝜇 − 𝑛𝜇 = 0. 

 

The null hypothesis to be tested is: 

H0: The groups do not differ significantly or have no additive effect due to different groups. In 

other words, 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑘 = 0. 

Summing (1) over j and dividing by 𝑟𝑖, we get: 

�̅�
𝑖.
 = 

1

𝑟𝑖
∑ 𝑦

𝑖𝑗
𝑟𝑖
𝑗=1  = 𝜇 + 𝛼𝑖 + �̅�𝑖., ∀ 𝑖 =  1,2,⋯ , 𝑘,                 (2) 

where �̅�𝑖. = 
1

𝑟𝑖
∑ 𝑒𝑖𝑗

𝑟𝑖
𝑗=1  are i.i.d. random variables each distributed as 𝑁(0, 𝜎𝑒

2/𝑛𝑖). 

Summing (1) over i and j and dividing by 𝑛, we get 

�̅�
..
 = 

1

𝑛
∑ ∑ 𝑦

𝑖𝑗
𝑟𝑖
𝑗=1

𝑘
𝑖=1  = 𝜇 + �̅�.. = 𝜇 + �̅�..                           (3) 

where �̅�.. = 
1

𝑛
∑ ∑ 𝑒𝑖𝑗

𝑛𝑖
𝑗=1

𝑘
𝑖=1  are i.i.d. random variables each distributed as 𝑁(0, 𝜎𝑒

2/𝑛). 

Now the total variation in each observation is given by the total sum of squares as: 



T.S.S. = ∑ ∑ (𝑦
𝑖𝑗

− �̅�
..
)
2𝑟𝑖

𝑗=1
𝑘
𝑖=1  = ∑ ∑ (�̅�

𝑖.
− �̅�

..
+  𝑦

𝑖𝑗
− �̅�

𝑖.
 )

2𝑟𝑖
𝑗=1

𝑘
𝑖=1  

          = ∑ ∑ (�̅�𝑖.
− �̅�

..)
2𝑟𝑖

𝑗=1
𝑘
𝑖=1 + ∑ ∑ (𝑦

𝑖𝑗
− �̅�

𝑖.
 )

2𝑟𝑖
𝑗=1

𝑘
𝑖=1   

          = ∑ 𝑟𝑖(�̅�𝑖.
− �̅�

..)
2𝑘

𝑖=1 + ∑ ∑ (𝑦
𝑖𝑗

− �̅�
𝑖.
 )

2𝑟𝑖
𝑗=1

𝑘
𝑖=1 . 

Or T.S.S. = S.S.T. + S.S.E,  

Where, T.S.S = Total sum of squares = ∑ ∑ (𝑦
𝑖𝑗

− �̅�
..
)
2𝑟𝑖

𝑗=1
𝑘
𝑖=1 ;S.S.T = Sum of squares due to 

treatments = ∑ 𝑟𝑖(�̅�𝑖.
− �̅�

..)
2𝑘

𝑖=1 ; and S.S.E = Sum of squares due to error or residuals = 

∑ ∑ (𝑦
𝑖𝑗

− �̅�
𝑖.
 )

2𝑟𝑖
𝑗=1

𝑘
𝑖=1 . 

 

Degrees of Freedom 

T.S.S = Total sum of squares = ∑ ∑ (𝑦
𝑖𝑗

− �̅�
..
)
2𝑟𝑖

𝑗=1
𝑘
𝑖=1  is computed from n quantities of the form 

(𝑦
𝑖𝑗

− �̅�
..
) with one constraint ∑ ∑ (𝑦

𝑖𝑗
− �̅�

..
)

𝑟𝑖
𝑗=1

𝑘
𝑖=1  = 0. Hence, T.S.S will have n – 1 degrees 

of freedom. 

S.S.T = Sum of squares due to treatments = ∑ 𝑟𝑖(�̅�𝑖.
− �̅�

..)
2𝑘

𝑖=1  is computed from k quantities of 

the form (�̅�𝑖.
− �̅�

..) with one constraint  ∑ 𝑟𝑖(�̅�𝑖.
− �̅�

..)
𝑘
𝑖=1  = 0. Hence, S.S.G will have k – 1 

degrees of freedom. 

S.S.E = Sum of squares due to error or residuals = ∑ ∑ (𝑦
𝑖𝑗

− �̅�
𝑖.
 )

2𝑟𝑖
𝑗=1

𝑘
𝑖=1  is computed from n 

quantities of the form (𝑦
𝑖𝑗

− �̅�
𝑖.
) with k constraints ∑ ∑ (𝑦

𝑖𝑗
− �̅�

𝑖.
 )𝑟𝑖

𝑗=1
𝑘
𝑖=1  = 0. Hence, S.S.E will 

have n – k degrees of freedom. 

 

Mean Sum of Squares 

The sum of squares divided by its degrees of freedom gives the corresponding mean sum of 

squares. Thus, 

Mean Sum of Squares due to Treatments (M.S.T.) = 
𝑆.𝑆.𝑇.

𝑘−1
. 

Mean Sum of Squares due to Error (M.S.E.) = 
𝑆.𝑆.𝐸.

𝑛−𝑘
 

 

4.4.3 Least Square Estimates 



In the mathematical model (1), 𝜇 and  𝛼𝑖, 𝑖 =  1,2,⋯ , 𝑘 are the unknown parameters 

which have to be estimated by the principle of least squares. Hence, we consider the sum of 

squares due to errors, which is given by: 

S.S.E = ∑ ∑ 𝑒𝑖𝑗
2𝑟𝑖

𝑗=1
𝑘
𝑖=1  = ∑ ∑ (𝑦

𝑖𝑗
− 𝜇 − 𝛼𝑖)

2𝑟𝑖
𝑗=1

𝑘
𝑖=1 .       (4) 

Differentiating (4) with respect to 𝜇 and  𝛼𝑖 and equating to zero individually, we get 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 ⇒ −2∑ ∑ (𝑦𝑖𝑗 − 𝜇 − 𝛼𝑖)
𝑟𝑖
𝑗=1

𝑘
𝑖=1  = 0 

 ⇒ ∑ ∑ (𝑦
𝑖𝑗

− 𝜇 − 𝛼𝑖)
𝑟𝑖
𝑗=1

𝑘
𝑖=1  = 0  

 ⇒ ∑ ∑ 𝑦𝑖𝑗
𝑟𝑖
𝑗=1

𝑘
𝑖=1  = 𝑛𝜇 + ∑ 𝑟𝑖𝛼𝑖

𝑘
𝑖=1 = 𝑛𝜇            [∵ ∑ 𝑟𝑖𝛼𝑖

𝑘
𝑖=1  = 0 by side condition.] 

 

Hence, the estimate of 𝜇 is given by: 

�̂� = 
1

𝑛
∑ ∑ 𝑦

𝑖𝑗
𝑟𝑖
𝑗=1

𝑘
𝑖=1  = �̅�

..
 

𝑑𝑆.𝑆.𝐸

𝑑𝛼𝑖
 = 0 ⇒ −2∑ (𝑦𝑖𝑗 − 𝜇 − 𝛼𝑖)

𝑟𝑖
𝑗=1  = 0, 𝑖 =  1,2,⋯ , 𝑘 

    ⇒ ∑ (𝑦
𝑖𝑗

− 𝜇 − 𝛼𝑖)
𝑟𝑖
𝑗=1  = 0 

    ⇒ ∑ 𝑦
𝑖𝑗

𝑟𝑖
𝑗=1  = 𝑟𝑖𝜇 + 𝑟𝑖𝛼𝑖 

   ⇒ �̂�𝑖 = 
1

𝑟𝑖
∑ 𝑦

𝑖𝑗
𝑟𝑖
𝑗=1 − �̂� = �̅�

𝑖.
− �̅�

..
 

 

Variance of the estimates 

We have �̂� = �̅�
..
 and �̂�𝑖 = �̅�

𝑖.
− �̅�

..
 

𝑉(�̂� ) = 𝐸[�̅�.. −  𝐸(�̅�..)]
2= 𝐸[𝜇 + �̅�.. −  𝜇]2= 𝐸[�̅�..]

2= 𝐸(�̅�..
2) 

  =  𝑉(�̅�..)= 
𝜎𝑒

2

𝑛
 

Also, we have �̂�𝑖 −  𝐸(�̂�𝑖) = �̅�
𝑖.
− �̅�

..
−  𝐸(�̅�

𝑖.
− �̅�

..
) 

  = 𝜇 + 𝛼𝑖 + �̅�𝑖. −  𝜇 − �̅�.. −  𝐸(𝜇 + 𝛼𝑖 + �̅�𝑖. −  𝜇 − �̅�..) 

  =  𝛼𝑖 + �̅�𝑖. − �̅�.. − 𝛼𝑖 

  = �̅�𝑖. − �̅�.. 

Hence, 𝑉(�̂�𝑖 ) = 𝐸[�̅�𝑖. − �̅�..]
2= 𝐸[�̅�𝑖.

2 + �̅�..
2 − 2�̅�𝑖.�̅�..] 



  = 𝐸(�̅�𝑖.
2) +  𝐸(�̅�..

2) −  2𝐸(�̅�𝑖.�̅�..) 

Now, 𝐸(�̅�𝑖.�̅�..) =𝐸(
1

𝑟𝑖
∑ 𝑒𝑖𝑗

𝑟𝑖
𝑗=1

1

𝑘𝑟𝑖
∑ ∑ 𝑒𝑖𝑗

𝑟𝑖
𝑗=1 )𝑘

𝑖=1  

  = 
1

𝑘𝑟𝑖
2 𝐸[𝑒𝑖1

2 + 𝑒𝑖2
2 + ⋯+ 𝑒𝑖𝑟𝑖

2 ] +
1

𝑘𝑟𝑖
2 𝐸 [∑ 𝑒𝑖𝑗 ∑ (𝑒ℎ1 + ⋯+ 𝑒ℎ𝑟𝑖

)𝑘
ℎ≠𝑖=1

𝑛𝑖
𝑗=1 ] 

  = 
1

𝑘𝑟𝑖
2 𝐸[𝑒𝑖1

2 + 𝑒𝑖2
2 + ⋯+ 𝑒𝑖𝑟𝑖

2 ] since 𝐸(𝑒𝑖𝑗𝑒ℎ𝑗) = 0 for ℎ ≠ 𝑖; 

  = 
1

𝑘𝑟𝑖
2 ∑ 𝐸(𝑒𝑖𝑗

2 )
𝑟𝑖
𝑗=1  = 

1

𝑘𝑟𝑖
2 ∑ 𝑉(𝑒𝑖𝑗)

𝑟𝑖
𝑗=1  = 

1

𝑘𝑟𝑖
2 𝑟𝑖𝜎𝑒

2 = 
𝜎𝑒

2

𝑘𝑟𝑖
. 

Hence, 𝑉(�̂�𝑖 ) =  
𝜎𝑒

2

𝑟𝑖
+ 

𝜎𝑒
2

𝑛
−  2

𝜎𝑒
2

𝑘𝑛𝑖
 = 

𝜎𝑒
2

𝑟𝑖
(1 −

2

𝑘
) + 

𝜎𝑒
2

𝑛
 

In particular if all treatments are repeated the same number of times, say equal to r, i.e., if 

𝑟𝑖 = 𝑟,∀ 𝑖 =  1,2,⋯ , 𝑘, then n = rk and 

 𝑉(�̂�𝑖 ) = 
𝜎𝑒

2

𝑟
(1 −

2

𝑘
) + 

𝜎𝑒
2

𝑟𝑘
 =  

𝜎𝑒
2

𝑟
(1 −

2

𝑘
+ 

1

𝑘
) = 

(𝑘−1)𝜎𝑒
2

𝑟𝑘
 

 

Expectation of Sum of Squares 

We have 𝑦
𝑖𝑗

 = 𝜇 + 𝛼𝑖 + 𝑒𝑖𝑗; 𝑗 = 1,2,⋯ , 𝑟𝑖, 𝑖 =  1,2,⋯ , 𝑘; 

   �̅�
𝑖.
 = 

1

𝑟𝑖
∑ 𝑦

𝑖𝑗
𝑟𝑖
𝑗=1  = 𝜇 + 𝛼𝑖 + �̅�𝑖., ∀ 𝑖 =  1,2,⋯ , 𝑘, and 

               �̅�
..
 = 𝜇 + �̅�.., 

Then: 

𝐸(𝑦𝑖𝑗
2 ) = 𝐸(𝜇2 + 𝛼𝑖

2 + 𝑒𝑖𝑗
2 +  2𝜇𝛼𝑖 +  2𝜇𝑒𝑖𝑗 + 2𝛼𝑖𝑒𝑖𝑗) 

 = 𝐸(𝜇2) +  𝐸(𝛼𝑖
2) + 𝐸(𝑒𝑖𝑗

2 ) +  2𝜇𝐸(𝛼𝑖) +  2𝜇𝐸(𝑒𝑖𝑗) + 2𝐸(𝛼𝑖)𝐸(𝑒𝑖𝑗) 

 = 𝜇2 + 𝛼𝑖
2 + 𝜎𝑒

2 + 2𝜇𝛼𝑖  

𝐸(�̅�𝑖.
2) = 𝐸(𝜇2 + 𝛼𝑖

2 + �̅�𝑖.
2 +  2𝜇𝛼𝑖 +  2𝜇�̅�𝑖. + 2𝛼𝑖�̅�𝑖.) 

 = 𝐸(𝜇2) +  𝐸(𝛼𝑖
2) + 𝐸(�̅�𝑖.

2) +  2𝜇𝐸(𝛼𝑖) +  2𝜇𝐸(�̅�𝑖.) + 2𝐸(𝛼𝑖)𝐸(�̅�𝑖.) 

 = 𝜇2 + 𝛼𝑖
2 + 

𝜎𝑒
2

𝑟𝑖
 + 2𝜇𝛼𝑖 

𝐸(�̅�..
2) = 𝐸(𝜇2 + �̅�..

2 +  2𝜇�̅�..) 



 = 𝐸(𝜇2) +  𝐸(�̅�..
2) +  2𝜇𝐸(�̅�..) = 𝜇2 + 

𝜎𝑒
2

𝑛
 

E(S.S.G.) = 𝐸{∑ 𝑟𝑖(�̅�𝑖. − �̅�..)
2𝑘

𝑖=1 } 

                = 𝐸{∑ 𝑟𝑖�̅�𝑖.
2 − 𝑛�̅�..

2𝑘
𝑖=1 } 

                = ∑ 𝑟𝑖𝐸(�̅�
𝑖.
2) − 𝑛𝐸(�̅�

..
2𝑘

𝑖=1 ) 

                = ∑ 𝑟𝑖 (𝜇
2 + 𝛼𝑖

2 + 
𝜎𝑒

2

𝑟𝑖
 +  2𝜇𝛼𝑖) − 𝑛(𝜇2 + 

𝜎𝑒
2

𝑛
𝑘
𝑖=1 ) 

               = 𝑛𝜇2 + ∑ 𝑟𝑖
𝑘
𝑖=1 𝛼𝑖

2 +  𝑘 𝜎𝑒
2 +  2𝜇 ∑ 𝑟𝑖𝛼𝑖

𝑘
𝑖=1 −  𝑛𝜇2 − 𝜎𝑒

2 

               = ∑ 𝑟𝑖
𝑘
𝑖=1 𝛼𝑖

2 + (𝑘 − 1)𝜎𝑒
2 

Or E(M.S.G.) = 𝐸 (
𝑆.𝑆.𝐺

𝑘−1
) = 

1

(𝑘−1)
∑ 𝑟𝑖

𝑘
𝑖=1 𝛼𝑖

2 + 𝜎𝑒
2 

Now E(S.S.E.) = 𝐸{∑ ∑ (𝑦𝑖𝑗 − �̅�𝑖. )
2𝑟𝑖

𝑗=1
𝑘
𝑖=1 }  

                        =   𝐸{∑ ∑ 𝑦𝑖𝑗
2 − ∑ 𝑟𝑖�̅�𝑖.

2𝑘
𝑖=1

𝑟𝑖
𝑗=1

𝑘
𝑖=1 } 

                        = ∑ ∑ 𝐸(𝑦
𝑖𝑗
2𝑟𝑖

𝑗=1
𝑘
𝑖=1 ) − ∑ 𝑟𝑖𝐸(�̅�

𝑖.
2𝑘

𝑖=1 ) 

                        = ∑ ∑ (𝜇2 + 𝛼𝑖
2 + 𝜎𝑒

2  +  2𝜇𝛼𝑖 )
𝑟𝑖
𝑗=1

𝑘
𝑖=1 − ∑ 𝑟𝑖(

𝑘
𝑖=1 𝜇2 + 𝛼𝑖

2 + 
𝜎𝑒

2

𝑛𝑖
 + 2𝜇𝛼𝑖) 

                        = 𝑛𝜇2 + ∑ 𝑛𝑖
𝑘
𝑖=1 𝛼𝑖

2 + 𝑛𝜎𝑒
2 + 2𝜇∑ 𝑟𝑖𝛼𝑖

𝑘
𝑖=1 − 𝑛𝜇2 − ∑ 𝑟𝑖

𝑘
𝑖=1 𝛼𝑖

2 − 𝑘𝜎𝑒
2 −

2𝜇∑ 𝑟𝑖𝛼𝑖
𝑘
𝑖=1  

                       = (𝑛 − 𝑘)𝜎𝑒
2. 

Or E(M.S.E.) = 𝐸 (
𝑆.𝑆.𝐸

𝑛−𝑘
) = 𝜎𝑒

2. 

Thus, under H0, 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑘 = 0. Hence, E(M.S.T.) = 𝜎𝑒
2 = E(M.S.E.). 

Also, under H0, S.S.T. follows a 𝜒2 distribution with k – 1 degrees of freedom and S.S.E. follows 

a 𝜒2 distribution with n – k degrees of freedom. 

Hence, for testing H0, the test statistic is given by F = 
𝑆.𝑆.𝑇/(𝑘−1)

𝑆.𝑆.𝐸./(𝑛−𝑘)
 = 

𝑀.𝑆.𝑇

𝑀.𝑆.𝐸
 which will follow a 

central F distribution with k – 1 and n – k degrees of freedom. 

 

4.4.4 ANOVA Table 
 

 



Sources of 

Variation 

Degrees of 

freedom 

Sum of Squares Mean Sum of 

Squares 

Variance 

Ratio 

Treatments k – 1  S.S.T.= ∑ 𝑟𝑖(�̅�𝑖. − �̅�..)
2𝑘

𝑖=1  M.S.T = 
𝑆.𝑆.𝑇.

𝑘−1
 F = 

𝑀.𝑆.𝑇.

𝑀.𝑆.𝐸
 

Error n – k   
S.S.E.=∑ ∑ (𝑦

𝑖𝑗
− �̅�

𝑖.
 )

2𝑟𝑖
𝑗=1

𝑘
𝑖=1  M.S.E. = 

𝑆.𝑆.𝐸

𝑛 – 𝑘
  

Total n – 1  
T.S.S. =∑ ∑ (𝑦

𝑖𝑗
− �̅�

..
)
2𝑟𝑖

𝑗=1
𝑘
𝑖=1  

  

If 𝐹 > 𝐹(𝑘−1,𝑛−𝑘)(𝛼) then H0 is rejected at α% level of significance and we conclude 

that treatments differ significantly, H0 may be accepted. If the calculated value of F is greater 

than the tabulated value of F at k – 1 and n – k degrees of freedom, then reject the null 

hypothesis H0.  

If H0   is rejected in that case, we proceed further to find out which of the treatment 

means differ significantly. For this, we find out the “Critical Difference (CD)”, i.e., the least 

difference between any two means to be significant.  

S.E. of the difference between any two-treatment means is:  

𝐶. 𝐷. = √
2∗𝑀𝑆𝐸

𝑟
 x [𝑡0.025(𝑓𝑜𝑟 𝑒𝑟𝑟𝑜𝑟 𝑑. 𝑓. )] = √

2∗𝑀𝑆𝐸

𝑟
  x 𝑡𝑑.𝑓.(0.025) 

Where, r is the number of times a treatment is replicated.  

 If the critical difference is greater than the absolute mean difference between any two 

treatment means, then that pair of treatments differ significantly.  

 

4.4.5 Advantages and Disadvantages of CRD 

Advantages  

CRD has several advantages which are given below: 

1. It is easy to layout the design. 

2. This design is very useful to conduct small experiment. 

3. In certain type of laboratory experiments where the experimental units are homogeneous. 

4. In this design we have complete flexibility on diving number of treatment and their 

replications. This procedure simplifies the analysis of data when observations of such 

experimental units or an entire treatment are missing. 

5. The CRD provides the maximum degrees of freedom for the estimation of an experimental 

unit. 



 

Disadvantage 

1. In this design, the third principle of design of experiment i.e., principle of the local control 

is not used. 

2. The design is rarely used in the field experiment because practically the plots are 

homogeneous.  

 

Example: A set of data involving four “tropical feed stuffs A, B, C, D” tried on 20 chicks is 

given below. All the twenty chicks are treated alike in all respects except the feeding treatments 

and each feeding treatment is given to 5 chicks. Analyse the data. 

Feed Gain in Weight 

A 55 49 42 21 52 

B 61 112 30 89 63 

C 42 97 81 95 92 

D 169 137 169 85 154 

Solution: 

Feed Gain in Weight Total Ti 

A 55 49 42 21 52 219 

B 61 112 30 89 63 355 

C 42 97 81 95 92 407 

D 169 137 169 85 154 714 

 Grand Total G = 1,695 

The null hypothesis, H0: 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑘 i.e., the treatment effects are same. In other words, 

all the treatments (A, B, C, D) are alike as regards their effect on increase in weight.  

Alternative that all H1: At least two of 𝛼′𝑠 are different.  

Raw S.S. (R.S.S.) = ∑ ∑ 𝑦
𝑖𝑗

𝑟𝑖
𝑗=1

𝑘
𝑖=1 2 = 552+492 + ………. + 852 

+ 1542 = 1,81,445 

Correction factor (C.F.) = 
𝐺2

𝑁
  
(1695)2

𝑁
 = 1,43,651.25 

Total S.S. (T.S.S.) = R.S.S. – C.F. = 1,81,445 – 1,43,651.25 = 37,793.75 

Treatment S.S. (S.S.T.) = 
𝑇1

2+𝑇2
2+ 𝑇3

2+ 𝑇4
2  

5
 – C.F. 

= 
47,961+1,26,025+1,65,649

5
 – 1,43,641.25 = 26,234.95 

Error S.S. = TSS - SST= 37,793.75 - 26,234.95 = 11,558.80 

 

ANOVA Table 



Sources of 

Variation 

Degrees of 

freedom 

Sum of 

Squares 

Mean Sum 

of Squares 

Variance Ratio 

FCal. FTab. 

Treatments 3 26,234.95 8744.98 FT = 
8744.98

722.42
 = 

12.105* 

F0.05(3,16) = 

3.06 Error 16 11,558.80 722.42 

Total 19 37,793.75    

Here, FT > F0.05(3,16), hence FT is highly significant and we reject H0 at 5% level of 

significance and conclude that the treatments A, B, C, and D differ significantly. 

Since H0 is rejected in this case, we proceed further to find out which of the treatment 

means differ significantly. For this, we find out the “Critical Difference (CD)”, i.e., the least 

difference between any two means to be significant.  

S.E. of the difference between any two-treatment means is =  

𝐶. 𝐷.= √(2𝑠𝐸
2/𝑟) x [𝑡0.025(𝑓𝑜𝑟 𝑒𝑟𝑟𝑜𝑟 𝑑. 𝑓. )] = √

2 𝑥 722.42

5
 𝑥 2.12 = 16.99 𝑥 2.12 = 36.018 

The treatment mean effects, arranged in descending order of magnitude, are given as: 

Treatment Mean gain in weight Difference 

D 142.8 142.8-81.4 = 61.4 37.6* 

C 81.4 81.4-71.0 = 10.4 

B 71.0 71.0 – 43.8 = 24.2 

A 43.8  

 

Comparing these differences with the C.D., we find that:  

i. Treatment D differs significantly from each of the treatments A, B and C, 

ii. The treatments A and C also differ significantly, and 

iii. All the remaining differences are not significant. 

Conclusions - Treatments A, B, C and D are not alike. The highest treatment mean effect is 

142.8 due to the feedstuff D. Hence if a choice is to be made among the four treatments A, B, 

C and D, treatment D is the best and most effective. Moreover, if a choice is to be made between 

A and C (which differ significantly), the treatment C is to be preferred since the average gain 

in weight due to treatment C is more than due to the treatment A. all other possible combination 

of treatment pairs is alike. 

 

4.5 Randomized Block Design (RBD) 



In this design all the three principles of design of experiment are used. If the 

experimental units are heterogeneous, the CRD is not used. In that case the variation among 

units affects the test of the significance of the treatment effects. The design which enables us 

to take care of the variability among unit is the RBD. 

Suppose we wish to compare the effect of p treatment; each treatment being replicated 

an equal no. of finite say q. then we need n = pq experimental units. These units are not perhaps 

homogeneous. In RBD the first step is to divide units into q parts or more homogeneous group 

and each group or block we take as many units as here are treatments. Thus the no. of block is 

equal to the common replication number.  The same techniques should be used to the units of 

the block. The variation in technique should be made between the blocks.  Ex: In this field 

experiment if the fertility gradient is present, then it is advisable to place the blocks across the 

gradient in order to get homogeneous material for a block and to obtain the major difference 

among blocks. The second step is to assign the treatment at random to the unit of the block. 

This randomization has to be done for each block. However, in CRD randomization was 

restricted with in a homogeneous block. In this design each treatment will have same number 

of replications if we want to additional replication foe some treatment, then each of these may 

be applied to more than one unit in a block. 

4.5.1 Layout 

Suppose we have 5 treatments and each treatment are replicated 3 times, so we need 15 

units, which are to be grouped to 3 blocks of 5 plots each. We numbered the treatments the unit 

in a block and by following any method of drawing a random sample we get a random 

permutation of digits from 1 to 5 say 4,3,1,5,2. For block 1st then we apply treatment number 

1 to unit 4, treatment number 2 to unit 3 and so on and finally treatment number 5 to unit 2, 

similarly we find another random permutation for block 2nd and so on for other blocks. 

4.5.2 Analysis 

The analysis of this design is same as that of two-way classified data with one 

observation per cell. We use the following fixed effect model: 

𝑦
𝑖𝑗

= µ +𝛼𝑖 + 𝛽𝑗+𝑒𝑖𝑗      (1) 

Where 𝑦
𝑖𝑗 is the value of jth unit receiving the ith treatment, µ is the general mean effect, 

𝛼𝑖  is the additional effects due to ith treatment over general effects, 𝛽𝑗 is the additional effect 



due to the jth treatment over general effects and 𝑒𝑖𝑗be the experimental error corresponding ijth 

cell.  

The model is based on the following assumptions: 

i. All the observations are independently distributed. 

ii. Different effects are additive in the nature. 

iii. The error 𝑒𝑖𝑗 are independently and identically distributed with mean µ and variance σe
2 

i.e., 𝑒𝑖𝑗~𝑁(0, σe2).  

Here we are to test the equality or homogeneity of the different levels of factor A as well 

as different levels of factor B, thus our null hypothesis are: 

𝐻0𝐴= µ1.=  µ2.= ………= µ𝑝.=µ (=)𝛼1= 𝛼2 =……𝛼𝑝 = 0 

𝐻0𝐵= µ.1=  µ.2= ………= µ.𝑞=µ (=)𝛽1= 𝛽2 =……𝛽𝑞 = 0 

Against: 

𝐻1𝐴= Atleast two means are not equal. 

𝐻1𝐵= Atleast two means are not equal. 

 

4.5.3 Least Square Estimates 

To test the above hypothesis, we find the least square estimates by minimizing the 

residual sum of squares as:  

S= ∑𝑖 ∑ 𝑒𝑖𝑗2 = 𝑗  ∑𝑖 ∑ (𝑦𝑖𝑗 − 𝛼𝑖 − 𝛽𝑗)2 𝑗  

The normal equations are: 

𝜕𝑠

𝜕µ
= 0, 

𝜕𝑠

𝜕𝛼𝑖
= 0, 

𝜕𝑠

𝜕𝛽𝑗
= 0 

And we get the following estimates: 

µ̂= �̅�.. 

�̂�i= �̅�i.- �̅�.. 

�̂�j= �̅�.j - �̅�.. 

Now substituting these values of the estimates in linear model (1), we get: 

𝑦
𝑖𝑗

= �̅�
..
 + (𝑦

𝑖.
 − �̅�

..
) + (𝑦

.𝑗
 − �̅�

..
) + (𝑦

𝑖𝑗
 − 𝑦

𝑖.
− 𝑦

.𝑗
 + �̅�

..
) 

Now squaring both sides and summing over all observations, we get: 

∑ ∑ (𝑦𝑖𝑗  −  �̅�..)
2

𝑗𝑖 = ∑ ∑ (𝑦𝑖.  −  �̅�..)
2

𝑗𝑖 + ∑ ∑ (𝑦.𝑗  − �̅�..)
2 + ∑ ∑ (𝑦𝑖𝑗  −  𝑦𝑖.− 𝑦.𝑗  +  �̅�..)

2
𝑗𝑖𝑗𝑖   



Since the product term will be vanishes: 

∑ ∑ (𝑦𝑖𝑗  −  �̅�..)
2

𝑗𝑖 = 𝑞 ∑ (𝑦𝑖.  − �̅�..)
2

𝑖 + 𝑝∑ (𝑦.𝑗  −  �̅�..)
2

𝑗 + ∑ ∑ (𝑦𝑖𝑗  −  𝑦𝑖.− 𝑦.𝑗  + �̅�..)
2

𝑗𝑖   

TSS = SSA + SSB + SSE 

Total Sum of Square = Sum of Square due to Factor A (Treatment) + Sum of Square due to 

Factor B (Blocks) + Sum of Square due to Error 

 

Degrees of Freedom 

TSS has n-1 degree of freedom 

SSA has p-1 degrees of freedom 

SSB has q-1 degrees of freedom 

SSE has (p-1) (q-1) degrees of freedom. 

Thus d.f. is also additive in nature. 

 

Mean Sum of Square 

Dividing the sum of squares by its degrees of freedom, we get corresponding variance or mean 

squares, therefore,  

Mean Square due to factor A (MSA) = 
𝑆𝑆𝐴

𝑝−1
 

Mean Square due to factor B (MSB) = 
𝑆𝑆𝐵

𝑞−1
 

Mean Square due to error (MSE) = 
𝑆𝑆𝐸

(𝑝−1)(𝑞−1)
 

 

F-test Statistics 

The F-test statistics for factor A; FA = 
𝑀𝑆𝐴

𝑀𝑆𝐸
 

If FA < F(p-1), (p-1)(q-1), then our null hypothesis 𝐻0𝐴 is true and we conclude that, there is no 

difference among factor A, otherwise reject. 

The F-test statistics for factor B; FB = 
𝑀𝑆𝐵

𝑀𝑆𝐸
  ~F(q-1), (p-1)(q-1) 

If FB < F(q-1), (p-1)(q-1), then our null hypothesis 𝐻0𝐵 is true and we conclude that, there is no 

difference among factor B, otherwise reject. 

 



4.5.4 ANOVA Table 
 

 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 
Mean Sum of Squares 

Variance Ratio 

Fcal. Ftab. 

Factor A p-1 SSA MSA= SSA/p-1 FA = 
𝑀𝑆𝐴

𝑀𝑆𝐸
 F(p-1), (p-1)(q-1) 

Factor B q-1 SSB MSB= SSB/q-1 FB = 
𝑀𝑆𝐵

𝑀𝑆𝐸
   

F(q-1), (p-1) (q-1) 

 

Error (p-1)*(q-1) SSE MSE= SSE/(p-1) (q-1)   

Total n-1 TSS    

If FA < F(p-1), (p-1)(q-1), then our null hypothesis 𝐻0𝐴 is true and we conclude that, there is 

no difference among factor A, otherwise reject. 

If FB < F(q-1), (p-1)(q-1), then our null hypothesis 𝐻0𝐵 is true and we conclude that, there is 

no difference among factor B, otherwise reject.  

If FA is significant, to find which pairs of treatment means differ significantly, we 

arrange mean yields in descending order of magnitude and then test for the significance of the 

pairwise differences by comparing them with critical difference: 

C.D. =√
2∗𝑀𝑆𝐸

𝑟
 x [𝑡0.025(𝑓𝑜𝑟 𝑒𝑟𝑟𝑜𝑟 𝑑. 𝑓. )] 

Where standard error (S.E.) of the treatment mean is given by:  S.E. (𝑡�̅�) = 
𝑆𝐸

√𝑟
⁄ ; (i= 1, 2,….t)

  

4.5.5 Advantages and Disadvantages of RBD 

 

Advantages 

RBD has the several advantages which are given below: 

1. This design is very flexible. 

2. It is applicable to a moderate o. of treatments. 

3. If we need extra replication for some treatment, there may be applied to be more than unit 

per block. 

4. It also enables us to use different techniques to different block. 



5. If any or all of the observation for particular block or treatment is missing, then we can 

estimate the values of the missing observation and perform the test. 

 

Disadvantages 

1. The main disadvantage of this design is that if the blocks are internally homogeneous then 

a large error term will amount.  

2. If we increase the number of treatments, then block size is increase and in this case, we have 

lesser control over error. 

 

Example:  Three varieties A, B and C of a crop are tested in a randomized block design with 

four replications. The plot yields in pounds are as follows: 

A (6) C (5) A (8) B (9) 

C (8) A (4) B (6) C (9) 

B (7) B (6) C (10) A (6) 

Analyse the experimental yield and state your conclusion. 

Solution: Let us take the hypothesis that variation between varieties and between blocks do 

not differ significantly from the variance due to random error. 

Calculation of Sum of Squares 

Variety 1 2 3 4 Total 

A 6 4 8 6 V1 = 24 

B 7 6 6 9 V2 = 28 

C 8 5 10 9 V3 = 32 

Total B1 = 21 B2 = 15 B3 = 24 B4 = 24 G = 84 

 

Correction Factor =  
𝐺2

𝑁
=

(84)2

12
= 588  

Sum of Squares between Blocks (SSB)  =  
𝐵1

2+𝐵2
2+𝐵3

2+𝐵4
2

3
− 𝐶𝐹  

      =
(21)2+(15)2+(24)2+(24)2

3
− 588 =  18  

Sum of Squares between Varities (SSV)  =  
𝑉1

2+𝑉2
2+𝑉3

2

4
− 𝐶𝐹  

        =
(24)2+(28)2+(32)2

4
− 588 =  8  

Total Sum of Squares (TSS)  =  [62 + 42 + 82 + 62 + 72 + 62 + 62 + 92 + 82 + 52 +

102 + 92] − 588 =  36  



Error Sum of Square (SSE)  =  36 − (18 +  8)  =  10  

ANOVA Table 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 

Mean Sum of 

Squares 

Variance Ratio 

Fcal. Ftab. 

Between 

Varieties 
3-1 = 2 8 

8

2
= 4 

4

1.667
= 2.4 F2, 6,0.05=5.14 

Between 

Blocks 
4-1 = 3 18 

18

3
= 6 

6

1.667
= 3.6 F3, 6,0.05=4.76 

Error (3-1)*(4-1) = 6 10 
10

6
= 1.667   

Total 12-1 = 11 36    

In both the cases, i.e., for variation between varieties and variation between blocks, the 

calculated value of F is less than the tabulated value, hence, the variances between varieties 

and between blocks do not differ significantly from the variance due to random error.  

 

4.6 Latin Square Design (LSD) 

In RBD, the principal of local control used by grouping the unit in one way, i.e., 

according to the block. Grouping can be carried in two ways each way corresponding to a 

source of variation among the units and get LSD. This design is frequently used in the 

agricultural field experiment where the fertility contour is not always known. Then the LSD 

eliminate the initial variability among the units into orthogonal direction. So, the LSD is also 

used in industry and laboratory.  

In this design, the number of treatment equal to the common replication number per 

treatments as well as number of replications for each treatment. Then the total number of 

experimental units needed for this design will be m2. These units are arranged in m rows and 

m columns, then the m treatments are allocated to these m2 units at random subject to condition 

that each treatment occurs once and only once in each row and in each column. 

The LSD is actually an Incomplete Three-Way Layout, where all the three factors, row, 

column and treatment are at the same number of levels (m). For three-way (complete) layout 

with each factor at m-level, we need m3 experimental units, but in LSD, we use only m2 units 

out of m3 as following: 



Let us consider a 4x4 Latin square for comparing four varieties of a crop. This case, we 

need 16 plots arranged in 4 rows and 4 columns. Let us represent the variety denoted by A, B, 

C and D. The Latin square will be: 

Rows Column 

1 2 3 4 

1 A B C D 

2 B C D A 

3 C D A B 

4 D A B C 

 

4.6.1 Layout 

A n*n Latin square with n letters A, B, C, D, …….., in the natural order occurring in 

the first row and first column is called a standard square. For a standard n*n Latin square, we 

may obtain n!*(n-1)! Different LSD’s by permuting all the n-columns and (n-1) row, except 

first row. Hence, there are in all n!*(n-1)! Different LSD with the same standard square.  

 

4.6.2 Analysis 

Let yijk be the observation on the treatment combination, where the factor A is at the ith 

level, factor B is at the jth level and factor C is at the kth level.  

For LSD, the linear model is given by: 

𝑦
𝑖𝑗𝑘

= 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝜏𝑘 + 𝑒𝑖𝑗𝑘; i, j, k = 0, 1, 2, ………….m 

Where, ∑ 𝛼𝑖𝑖  = ∑ 𝛽𝑗𝑗  = ∑ 𝜏𝑘𝑘  =  0 and 𝑒𝑖𝑗𝑘 are assumed to be independently normal with mean 

0 and variance 𝜎𝑒
2. 

α, β, τ denote the effect due to factor A or row, factor B or column and factor C or treatment 

respectively.  

 

Here, the hypothesis of the interest is that all the treatment effects are zero; i.e.: 

HoA: There is no significant difference among rows. 

HoB: There is no significant difference among column. 

HoT: There is no significant difference among treatments. 

Against, 

H1A: There is a significant difference among rows. 

H1B: There is a significant difference among column. 



H1T: There is a significant difference among treatments. 

 

4.6.3 Least Square Estimates 

To test the above hypothesis, we find the least square estimates by minimizing the 

residual sum of squares as: 

𝑆 =  ∑∑ ∑ 𝑒𝑖𝑗𝑘
2 = ∑∑ ∑(𝑦

𝑖𝑗𝑘
 −  𝛼𝑖  −  𝛽

𝑗
 −  𝜏𝑘)

2

𝑚

𝑘=1

𝑚

𝑗=1

𝑚

𝑖=1

𝑚

𝑘=1

𝑚

𝑗=1

𝑚

𝑖=1

 

The normal equations are as follows: 

𝑑𝑆.𝑆.𝐸

𝑑µ
 = 0; 

𝑑𝑆.𝑆.𝐸

𝑑𝛼
 = 0; 

𝑑𝑆.𝑆.𝐸

𝑑𝛽
 = 0;  

𝑑𝑆.𝑆.𝐸

𝑑𝜏
 = 0 

We get the estimates as follows: 

µ̂ = �̅�
...
 

�̂� = �̅�
𝑖..

− �̅�
...
  

�̂� = �̅�
.𝑗.

− �̅�
...
 

�̂� = �̅�
..𝑘

− �̅�
...
 

Now, substituting all these estimates in linear model of LSD, we have: 

𝑦
𝑖𝑗𝑘

= �̅�
...
+ (�̅�

𝑖..
 − �̅�

...
) + (�̅�

.𝑗.
 − �̅�

...
) + (�̅�

..𝑘
 − �̅�

...
) + (�̅�

𝑖𝑗𝑘
− �̅�

𝑖..
− �̅�

.𝑗.
− �̅�

..𝑘
+ 2�̅�

...
) 

𝑦
𝑖𝑗𝑘

 − �̅�
...

= (�̅�
𝑖..
 − �̅�

...
) + (�̅�

.𝑗.
 − �̅�

...
) + (�̅�

..𝑘
 − �̅�

...
) + (�̅�

𝑖𝑗𝑘
− �̅�

𝑖..
− �̅�

.𝑗.
− �̅�

..𝑘
+ 2�̅�

...
) 

Now, squaring both sides and summing over all observations, we get: 

∑ ∑ ∑ (𝑦𝑖𝑗𝑘  − �̅�...)
2 = ∑ ∑ ∑ (�̅�𝑖..  −  �̅�...)

2
𝑘𝑗𝑖 + ∑ ∑ ∑ (�̅�.𝑗.  −  �̅�...)

2
𝑘𝑗𝑖 + ∑ ∑ ∑ (�̅�..𝑘  −  �̅�...)

2
𝑘𝑗𝑖 −𝑘𝑗𝑖

∑ ∑ ∑ (�̅�𝑖𝑗𝑘 − �̅�𝑖.. − �̅�.𝑗. − �̅�..𝑘 + 2�̅�...)
2

𝑘𝑗𝑖   

Since the product term will vanish, hence: 

∑ ∑ ∑ (𝑦𝑖𝑗𝑘 − �̅�...)
2

= 𝑚2 ∑ (�̅�𝑖.. − �̅�...)
2

𝑖 + 𝑚2 ∑ (�̅�.𝑘. − �̅�...)
2

𝑗 + 𝑚2 ∑ (�̅�..𝑘 − �̅�...)
2

𝑘 −𝑘𝑗𝑖

∑ ∑ ∑ (�̅�𝑖𝑗𝑘 − �̅�𝑖.. − �̅�.𝑗. − �̅�..𝑘 + 2�̅�...)
2

𝑘𝑗𝑖   

𝑇𝑆𝑆 =  𝑆𝑆𝑅 +  𝑆𝑆𝐶 +  𝑆𝑆𝑇 +  𝑆𝑆𝐸 

Where, 

Total Sum of Square (TSS)  = ∑ ∑ ∑ (𝑦𝑖𝑗𝑘  − �̅�...)
2

𝑘𝑗𝑖    

Sum of Square due to Factor A or Row (SSR)  = 𝑚2 ∑ (�̅�𝑖..  −  �̅�...)
2

𝑖    



Sum of Square due to Factor B or Column (SSC)  = 𝑚2 ∑ (�̅�.𝑗.  −  �̅�...)
2

𝑗   

Sum of Square due to Factor C or Treatment (SST)  = 𝑚2 ∑ (�̅�..𝑘  − �̅�...)
2

𝑘   

Sum of Square due to Error (SSE)  = ∑ ∑ ∑ (�̅�𝑖𝑗𝑘 − �̅�𝑖.. − �̅�.𝑗. − �̅�..𝑘 + 2�̅�...)
2

𝑘𝑗𝑖   

 

Degree of Freedom 

TSS has m2-1 degrees of freedom 

SSR has m-1 degrees of freedom 

SSC has m-1 degrees of freedom 

SST has m-1 degrees of freedom 

SSE has (m-1)*(m-2) degrees of freedom 

In this way, we see that the degree of freedom is additive in nature. 

 

Mean Sum of Squares 

Mean Sum of Square due to Factor A or Row (MSR) = 
𝑆𝑆𝑅

𝑚−1
 

Mean Sum of Square due to Factor B or Column (MSC) = 
𝑆𝑆𝐶

𝑚−1
 

Mean Sum of Square due to Factor C or Treatment (MST) = 
𝑆𝑆𝑇

𝑚−1
 

Mean Sum of Square due to Error (MSE) = 
𝑆𝑆𝐸

(m−1)∗(m−2)
 

 

F-test Statistics 

F-test statistic for Factor A or Row: 𝐹𝐴 =
𝑀𝑆𝑅

𝑀𝑆𝐸
 ~ 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼 

If 𝐹𝐴 > 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼, then our null hypothesis HoA is rejected. 

F-test statistic for Factor B or Column: 𝐹𝐵 =
𝑀𝑆𝐶

𝑀𝑆𝐸
 ~ 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼 

If 𝐹𝐵 > 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼, then our null hypothesis HoB is rejected. 

F-test statistic for Factor C or Treatment: 𝐹𝑇 =
𝑀𝑆𝑇

𝑀𝑆𝐸
 ~ 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼 

If 𝐹𝑇 > 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼, then our null hypothesis HoT is rejected. 

 

4.6.4 ANOVA Table 



 

 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Square 

Mean Sum 

of Square 

Variance Ratio 

Fcal. Ftab. 

Row m-1 SSR MSR FA 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼 

Column m-1 SSC MSC FB 

Treatment m-1 SST MST FT 

Error (m-1)*(m-2) SSE MSE  

Total m2 – 1 TSS  

 

If 𝐹𝐴 > 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼, then our null hypothesis HoA is rejected. 

If 𝐹𝐵 > 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼, then our null hypothesis HoB is rejected. 

If 𝐹𝑇 > 𝐹(𝑚−1),(𝑚−1)(𝑚−2),𝛼, then our null hypothesis HoT is rejected. 

 

Standard error (S.E.) of the difference between any two-treatment means is given by:  

S.E., (𝑡�̅� - 𝑡�̅�) = √(𝑠𝐸
2  (

1

𝑚
+

1

𝑚
)) = √(2𝑠𝐸

2/𝑚) 

And the critical difference (C.D.) for the significance of the difference between any two 

treatment means at level of significance (𝛼) is given by: 

C.D. (𝑡�̅� - 𝑡�̅�)= 𝑡(𝑒𝑟𝑟𝑜𝑟 𝑑.𝑓.) (
𝛼

2
)𝑥 S.E., (𝑡�̅� - 𝑡�̅�)  =   𝑡(𝑚−1)(𝑚−2)(0.025) 𝑥 √(2𝑠𝐸

2/𝑚)  

 

4.6.4 Advantages and Disadvantages of LSD 

Advantages 

If we don’t have direction of fertility gradient, LSD provides to eliminate from the error, 

two major sources of the variation that are not relevant to the comparison to y grouping the 

units in two phases. Thus, LSD is an improvement over RBD in controlling the error. Since 

LSD is an incomplete three-way layout, therefore we needed only m2 observations out of m3. 

Generally, in the field experiment, the plots are laid out in a square, but LSD maybe 

used with the plots in continuous. Example: the fertility gradient in all along the line. 

 

Disadvantages 

In LSD, the number of replications must be same as the number of treatment and hence, 

the square larger than 12x12 are seldom used, because the size of square becomes large, 



resulting square does not remain homogenous, on the other hand, a small square provide only 

a few degrees of freedom for error. Therefore, the standardized size for LSD, which are 

commonly used are 5x5 and 8x8. 

 

4.7 Estimation of Missing Values in Randomized Block Design (RBD) 

There are some following ways : 
 

4.7.1 One missing value in RBD 

Let the observation yij = x (say), in the jth block and receiving ith treatment be missing 

as shown in the following table: 

Treatment Blocks Total 

B1 B2 ………... Bj ………... Bq 

1 y11 y12 ………... y1j ………... y1q T1. 

2 y21 y22 ………... y2j ………... y2q T2. 

. 

. 

. 

      . 

. 

. 

i yi1 yi2 ………... Missing (x) ………... yiq T’i.+x 

. 

. 

. 

      . 

. 

. 

p yk1 yk2 ………... ypj ………... ypq Tp. 

Total T.1 T.2 ………... T’.j+x ………... T.q T..=T’..+x 

 

Where, 

T’i. – Total of known observation getting the ith treatment 

T’.j - Total of known observation getting the jth treatment 

T’.. - Total of all known observations 

 

Now, we have: 

RSS =  ∑ ∑ yij
2 + x2

ji   

CF =  
(T′..+x)2

n
=

(T′..+x)2

pq
  

TSS = RSS – CF 

TSS =  x2 + constant w. r. t. x −  
(T′..+x)2

n
   



SST =
1

q
[(T′i. + x)2 + constant w. r. t. x] –  CF  

SSB =
1

p
[(T′.j + x)2 + constant w. r. t. x]  −  CF  

SSE = TSS −  SST –  SSB  

SSE =  x2 + constant w. r. t. x −  CF − [
1

q
[(T′i. + x)2 + constant w. r. t. x] –  CF] −

 [
1

p
[(T′.j + x)2 + constant w. r. t. x] − CF]   

SSE =  x2  − 
1

q
[(T′i. + x)2]  − 

1

p
[(T′.j + x)2] + 

(T′..+x)2

n
+ constant w. r. t. x  

 

To estimate x, we minimize the error. Thus, minimize the value of SSE we have: 

𝑑𝑆.𝑆.𝐸

𝑑𝑥
 = 0 ⇒ 2𝑥 − 

2

𝑞
[(𝑇′𝑖. + 𝑥)]  − 

2

𝑝
[(𝑇′.𝑗 + 𝑥)] +

2

𝑛
[(𝑇′.. + 𝑥)] = 0 

pkx – pT’i. – qT’.j – px – qx + x + T’.. = 0 

x(pk – p – k + 1) = pT’i. + qT’.j – T’.. 

𝑥 =  
𝑝 ∗ 𝑇′𝑖.  +  𝑞 ∗ 𝑇′.𝑗  −  𝑇′.. 

(𝑝 − 1) ∗  (𝑞 − 1)
 

 

4.7.2 Two Missing values in RBD 

Let two missing observations be x and y as shown in the following table: 

Treatment Blocks Total 

B1 ……... Bj ……... Bq 

1 y11 ……... Missing (x) ……... y1q R1 + x 

. 

. 

. 

 ……...  ……...  . 

. 

. 

i yi1 ……... yij ……... yiq Ri 

. 

. 

. 

 ……...  ……...  . 

. 

. 

p yk1 ……... ypj ……... Missing (y) R2 + y 

Total T.1 ……... C1 + x ……... C2 + y T.. = T’..+x 

Let R1 and R2 be the total of known observations in the row containing x and y 

respectively and C1 and C2 be the total of known observations in the column containing x and 

y respectively. Let S be the total of known observations as shown in the above table.  



Now, we have: 

𝑅𝑆𝑆 =  ∑∑𝑦𝑖𝑗
2 + 𝑥2 + 𝑦2

𝑗𝑖

 

𝐶𝐹 =  
(𝑆+𝑥 + 𝑦)2

𝑛
=

(𝑆+𝑥 + 𝑦)2

𝑝𝑞
  

TSS = RSS – CF 

𝑇𝑆𝑆 =  𝑥2 + 𝑦2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 − 
(𝑆+𝑥 +𝑦)2

𝑛
   

𝑆𝑆𝑇 =
1

𝑞
[(𝑅1 + 𝑥)2 + (𝑅2 + 𝑥)2 ]  + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 −  

(𝑆+𝑥 +𝑦)2

𝑛
   

𝑆𝑆𝐵 =
1

𝑝
[(𝐶1 + 𝑥)2 + (𝐶2 + 𝑥)2 ]  + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 −  

(𝑆+𝑥 +𝑦)2

𝑛
   

𝑆𝑆𝐸 = 𝑇𝑆𝑆 −  𝑆𝑆𝑇 –  𝑆𝑆𝐵  

𝑆𝑆𝐸 =  𝑥2 + 𝑦2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 −  
(𝑆+𝑥 +𝑦)2

𝑛
 − 

1

𝑞
[(𝑅1 + 𝑥)2 + (𝑅2 + 𝑥)2 ]  −

 
1

𝑝
[(𝐶1 + 𝑥)2 + (𝐶2 + 𝑥)2 ]   

To estimate x and y we minimize the SSE. Thus, for minimizing the value of SSE, we have: 

𝑑𝑆.𝑆.𝐸

𝑑𝑥
 = 0  and   

𝑑𝑆.𝑆.𝐸

𝑑𝑦
 = 0 

Now, 

𝑑𝑆.𝑆.𝐸

𝑑𝑥
 = 0 ⇒ 2𝑥 − 

2

𝑞
[(𝑅1 + 𝑥)]  − 

2

𝑝
[(𝐶1 + 𝑥)] +

2

𝑝𝑞
[(𝑆 + 𝑥 + 𝑦)] = 0 

pqx – p(R1+x) – q(C1+x) + S+x+y = 0 

(pq – p – q + 1)x – pR1 – qC1 + S + y = 0 

(p-1)*(q-1)*x = pR1 +qC1 – S – y = 0 

𝑥 =  
𝑝 ∗ 𝑅1  +  𝑞 ∗ 𝐶1  −  𝑆 −  𝑦 

(𝑝 − 1) ∗  (𝑞 − 1)
 

𝑑𝑆.𝑆.𝐸

𝑑𝑦
 = 0 ⇒ 2𝑦 − 

2

𝑞
[(𝑅2 + 𝑦)]  − 

2

𝑝
[(𝐶2 + 𝑦)] +

2

𝑝𝑞
[(𝑆 + 𝑥 + 𝑦)] = 0 

pqy – p(R2+x) – q(C2+y) + S + x + y = 0 

(pq – p – q + 1)y – pR1 – qC1 + S + y = 0 

(p-1)(q-1)*y = pR2 +qC2 – S – y = 0 



�̂� =  
𝑝 ∗ 𝑅2  +  𝑞 ∗ 𝐶2  −  𝑆 −  𝑥 

(𝑝 − 1) ∗  (𝑞 − 1)
 

Solving these two equations, we get the estimations of x and y. 

 

Statistical Analysis 

Analysis of variance is performed in the usual way after substituting the estimated value of 

missing observations. For each missing observations, one degree of freedom is subtracted from 

total and also from error degree of freedom. The adjusted treatment sum of squares is obtained 

by subtracting the Adjustment Factor from the SST, where adjusted factor is given as: 

𝐴𝐹 =  
[𝑝𝑇′𝑖. + 𝑇′.𝑗  −  𝑇′..]

2
 

𝑝(𝑝 − 1)(𝑞 − 1)2
 

 

Example: The yields of 6 varieties in a 4-replicate experiment for which one value is missing 

are given below. Estimate the missing value and analyse the data. 

Blocks Treatments 

1 2 3 4 5 6 

1 18.5 15.7 16.2 14.1 13.0 13.6 

2 11.7 - 12.9 14.4 16.9 12.5 

3 15.4 16.6 15.5 20.3 18.4 21.5 

4 16.5 18.6 12.7 15.7 16.5 18.0 

 

Solution: For estimating one missing value in a RBD, the formula is  

𝑥 =  
𝑝 ∗ 𝑇′𝑖.  +  𝑞 ∗ 𝑇′.𝑗  −  𝑇′.. 

(𝑝 − 1) ∗  (𝑞 − 1)
 

Blocks Treatments Block 

Totals (Bj) 1 2 3 4 5 6 

1 18.5 15.7 16.2 14.1 13.0 13.6 91.1 

2 11.7 - 12.9 14.4 16.9 12.5 68.4 

3 15.4 16.6 15.5 20.3 18.4 21.5 107.8 

4 16.5 18.6 12.7 15.7 16.5 18.0 98.0 

Treatment 

Totals (Ti) 

62.1 50.9 57.3 64.5 64.8 65.7 365.3 



 

From the above data, we have: 

p = 6, T’i. = 50.9, q = 4, T’.j = 68.4, T’.. = 365.3 

𝑥 =  
(6 ∗ 50.9) + (4 ∗ 68.4) −  365.3

(6 −  1)  ∗  (4 −  1)
 =  

213.7

15
 

𝑥 =  14.25 

The null hypotheses for testing are: 

HoT: Treatments are homogenous; HoB: Blocks are homogenous 

Against, 

H1T: At least two treatments are different; H1B: At least two blocks are different 

Substituting the value of 𝑥 is the table, we have: 

Treatment Totals: T1 T2 T3 T4 T5 T6 

62.1 65.15 57.3 64.5 64.8 65.7 

Block Totals: B1 B2 B3 B4   

91.1 82.65 107.8 98.0   

G = 379.55, N = 4*6 = 24 

Correction Factor (CF)  =  
(379.55)2

24
= 6002.42  

Residual Sum of Square (RSS)  =  ∑ ∑ Tij
2 = 6151.944

j=1
6
i=1   

Total Sum of Square (TSS)  =  RSS −  CF =  6151.94 −  6002.42 =  149.52  

Sum of Square due to Treatments (SST)  =  
1

4
∑ Ti

2 =
24060.0025

4
− 6002.42 =  12.586

i=1   

Sum of Square due to Blocks (SSB)  =  
1

6
∑ Bj

2 =
36355.07

6
− 6002.42 =  56.764

j=1   

Sum of Square due to Error (SSE) = TSS − SST − SSB = 80.18   

The adjustment factor for treatment sum of square is given by: 

𝐴𝐹 =  
[𝑝𝑇′𝑖.+𝑇′.𝑗 − 𝑇′..]

2
 

𝑝(𝑝−1)(𝑞−1)2
=

[(6∗50.9)+68.4 − 365.3]2 

6(6−1)(4−1)2
= 0.267  

Therefore, adjusted value of Sum of Square due to Treatment = 12.580 – 0.267 = 12.313 

 



ANOVA Table 

 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Square 

Mean Sum of 

Square 

Variance Ratio 

FCal. FTab. 

Treatments 

(Adjusted) 

5 12.313 12.313

5
= 2.06 

2.06

5.72
= 2.33 

F0.05(5,14) = 

2.96 

Blocks 3 56.760 56.760

3
= 18.92 

18.92

5.72
= 3.30 

F0.05(3,14) = 

3.34 

Error 14* 80.45 80.45

14
= 5.72 

 

Total 22*  

* Here, one degree of freedom is lost for total sum of square and consequently for error sum 

of square due to the estimation of missing value from the given data. 

From the ANOVA table, we see that calculated F values of both treatments and blocks are 

insignificant, and consequently, Hob and HoT maybe retained, i.e., we may regard the treatments 

as well as blocks to be homogenous.  

 

4.8 Estimation of Missing Values in Latin Square Design (LSD) 

Let the observation yijk = x (say) be the missing value in the ith row and jth column and 

receiving kth treatment in m*m Latin square. Let: 

R – Total of known observations in the ith row 

C – Total of known observations in the jth column 

T – Total of known observations in the kth treatment 

S – Total of known observations  

 

Now, we have: 

𝑅𝑆𝑆 =  ∑ ∑ 𝑦𝑖𝑗
2 + 𝑥2

𝑗𝑖   

𝐶𝐹 =  
(𝑆+𝑥)2

𝑚2   

TSS = RSS – CF 

𝑇𝑆𝑆 =  𝑥2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 −  
(𝑆+𝑥)2

𝑚2    

𝑆𝑆𝑅 =
1

𝑚
[(𝑅 + 𝑥)2]  + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 −  

(𝑆+𝑥)2

𝑚2    



𝑆𝑆𝐶 =
1

𝑚
[(𝐶 + 𝑥)2]  + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 −  

(𝑆+𝑥)2

𝑚2
   

𝑆𝑆𝑇 =
1

𝑚
[(𝑇 + 𝑥)2]  + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 −  

(𝑆+𝑥)2

𝑚2
   

𝑆𝑆𝐸 = 𝑇𝑆𝑆 −  𝑆𝑆𝑅 –  𝑆𝑆𝐶 –  𝑆𝑆𝑇  

𝑆𝑆𝐸 = 𝑥2 − 
1

𝑚
[(𝑅 + 𝑥)2] − 

1

𝑚
[(𝐶 + 𝑥)2]  −  

1

𝑚
[(𝑇 + 𝑥)2] + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑥 +  

2(𝑆+𝑥)2

𝑚2
  

Now, to estimate x we minimize SSE. Thus, for minimum value of SSE: 

𝑑𝑆.𝑆.𝐸

𝑑𝑥
 = 0 ⇒ 2𝑥 − 

2

𝑚
[(𝑅 + 𝑥)]  − 

2

𝑚
[(𝐶 + 𝑥)] −

2

𝑚
[(𝑇 + 𝑥)] +

4

𝑚2
[(𝑆 + 𝑥)] = 0 

m2x – Rm – mx – Cm – mx – Tm – mx + 2S + 2x = 0 

(m2 – 3m + 2)*x – m*(R + C + T) + 2S = 0 

(m – 1)*(m – 2)*x = m*( R + C + T) - 2S 

𝑥 =  
𝑚(𝑅 + 𝐶 + 𝑇) − 2𝑆 

(𝑚 − 1) ∗  (𝑚 − 2)
 

Statistical Analysis 

Analysis of Variance is performed in the usual way after substituting the estimated value of 

missing observations. For each missing observations, one degree of freedom is subtracted from 

total and also from error degree of freedom. The adjusted treatment sum of squares is obtained 

by subtracting the Adjustment Factor from the SST, where adjusted factor is given as: 

𝐴𝐹 = 
[(𝑚 − 1)𝑇 +  𝑅 +  𝐶 −  𝑆]2 

[(𝑚 − 1)(𝑚 − 2)]2
 

 

Example: An experiment was carried out to determine the effect of claying the ground on the 

field of barley grains; amount of clay used were as follows: 

A: No clay     B: Clay at 100 per acre 

C: Clay at 200 per acre   D: Clay at 300 per acre. 

The yields were in plots of 8 metres and are given below: 

Rows Columns 

I II III IV 

I D 

29.1 

B 

18.9 

C 

29.4 

A 

5.7 

II C A D B 



16.4 10.2 21.2 19.1 

III A 

5.4 

D 

38.8 

B 

24.0 

C 

37.0 

IV B 

24.9 

C 

41.7 

A 

9.5 

D 

28.9 

 

a) Perform the ANOVA and calculate the critical difference for the treatment mean yields. 

b) Yield under ‘A’ in the first column was missing. Estimate the missing value and carry out 

the ANOVA. 

Solution-  

Rows Columns Row total 

(Ri) I II III IV 

I D 

29.1 

B 

18.9 

C 

29.4 

A 

5.7 

83.1 

II C 

16.4 

A 

10.2 

D 

21.2 

B 

19.1 

66.9 

III A 

5.4 

D 

38.8 

B 

24.0 

C 

37.0 

105.2 

IV B 

24.9 

C 

41.7 

A 

9.5 

D 

28.9 

105.0 

Column Total 

(Cj)  

75.8 109.6 84.1 90.7 360.2 

The four treatment totals are: A: 30.8, B: 86.9, C: 124.5, D: 118.0 

Grand total (G) = 360.2, N= 16 

Correction factor (C.F.) = 
𝐺2

𝑁
  
(360.2)2

16
 = 8109.0025 

Raw S.S. = ∑ ∑ 𝑦
𝑖𝑗

𝑟𝑖
𝑗=1

𝑘
𝑖=1 2 = (29.1)2+(18.9)2 + ……….+ (9.5)2 + (28.9)2 = 10,052.08 

Total S.S. = 10,052.08-8,09.0025 = 1,943.0775 

S.S.R. = 
1

4
 [(83.1)2

+(66.9)2 + (105.2)2 + (105.0)2] – 8,109.0025 

           = 
33,473.26

4
 – 8,109.0025 = 259.3125 

S.S.C. = 
1

4
 [(75.8)2+(109.6)2 + (84.1)2 + (90.7)2] – 8,109.0025 

= 
33057.10

4
 – 8,109.0025 = 155.2725 



S.S.T. = 
1

4
 [(30.8)2+(86.9)2 + (124.5)2 + (118.0)2] – 8,109.0025 

= 
37924.50

4
 – 8,109.0025 = 1372.1225 

Error S.S. = TSS-SSR-SSC-SST = 156.3700 

ANOVA Table for LSD 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Square 

Mean Sum of 

Square 

Variance Ratio 

(1) (2) (3) (4) = (3) / (2) FCal. FTab. 

Rows 3 259.5375 86.4375 3.32  F3,6 (0.05) = 

4.76 Columns 3 155.2725 51.7575 1.98  

Treatments 3 1,372.1225 457.3742 17.55   

Error 6 156.3700 26.0616   

Total 15 1,943.0775    

Hence, we conclude that the variation due to rows and columns is not significant but 

the treatments, i.e., different levels of clay, have significant effect on the yield. To determine 

which of the treatment pairs differ significantly, we have to calculate the critical difference 

(C.D.)  

S.E. of difference between any two treatment means= SE = √(
2

𝑚
) =  √(2 ∗

26.0616

4
)= 3.609 

Hence C.D. = 3.609 * t0.025 (for error d.f.) = 3.609 * 2.447= 8.83 

We now arrange treatment means in their decreasing order of magnitude as given as follows: 

Treatment  Mean Yield |∆ = 𝑫𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆| 

C 31.1250 1.625 

D 29.5000 7.775 

B 21.7260 14.025 

A 7.7000  

We, therefore, conclude that: 

i. The difference between mean yields of C and D is not significant and they may therefore be 

regarded alike as regards their effect on yield. Similarly, argument holds for the pair D and 

B. 



ii. The treatment C and B are significant from each other as regards their effect on yields, since 

the difference between their mean yields, viz., 9.4 exceeds the C.D. As such treatment C is 

to treatment B. Similar argument holds for any other pair left. 

 

(b) The formula for obtaining the missing value in LSD is: x̂ =  
m(R+C+T)−2S 

(m−1) ∗ (m−2)
 

�̂� = 
4 (99.8+70.4+25.4)−2∗354.8

3∗2
= 12.13 

As a result of replacing the missing figure by its estimate 12.13, Corrected or Adjusted 

S.S. are obtained as follows: 

Raw SS = 10,052.08- (5.4)2 + (12.13)2 = 10,170.06 

𝐺2 = (360.2 − 5.4 + 12.13)2  =  (366.93)2 =  134637.62 

C.F. = 
𝐺2

𝑁
  
134637.62

16
= 8414.85 

TSS = RSS-CF= 10170.06-8414.85= 1755.21 

∑𝑅𝑖
2 = 33473.26 − (105.2)2 + (105.2 − 5.4 + 12.13)2

 = 34,934.54 

SSR= 
34,934.54

4
− 8,414.85 = 318.79 

∑𝐶𝑗
2 = 33,057.10 − (75.8)2 + (75.8 − 5.4 + 12.13)2 = 34,122.66 

SSC= 
34122.66

4
− 8,414.85 = 115.81 

∑𝑇𝑘
2 = 37,924.50 − (30.8)2 + (30.8 − 5.4 + 12.13)2

 =38,384.36 

Adjusted factor for treatment SS is: 𝐴𝐹 = 
[(𝑚−1)𝑇 + 𝑅 + 𝐶 − 𝑆]2 

[(𝑚−1)(𝑚−2)]2
 

𝐴𝐹 =  
(3∗25.4+99.8+70.4−354.8)2

(3∗2)2
 = 326.40 

Adjusted SST = 
38,384.36

4
−8,414.85-326.40= 854.84 

Adjusted SSE = TSS-SSR-SSC-SST(Adjusted) 

          = 1,755.21-318.79-115.81-854.84 = 465.77 

 

Corrected ANOVA for LSD (Missing Observation) 



Source of Variation Degree of 

Freedom 

Sum of 

Square 

Mean Sum of 

Square 

Variance 

Ratio 

(1) (2) (3) (4) = (3)/ (2) 

Rows 3 318.79 106.26 1.14 

Columns 3 115.81 38.60 <1 

Treatments (adjusted) 3 854.84 284.95 3.06 

Error (adjusted) 14-9 = 5* 465.77 93.15  

Total 15-1 = 14* 1,455.21   

* 1 d.f. is reduced for the d.f. of total SS and consequently for Error SS because one missing 

observation has been estimated and its estimated value is used in computing the various SS. 

Tabulated F0.05(3,5) = 5.41 

Since the calculated values of FR, FC and FT are less than the tabulated value, more of them is 

significant. Hence, the treatments do not differ significantly. 

 

4.9 Self-Assessment Exercise 

Question-1: An experiment was carried out in a pharmaceutical firm to find out whether there 

were any differences in the disintegration time of five different types of caplets. The following 

data were obtained. Analyse the given data. 

Type of Caplet (i) Disintegration time for ni caplets (seconds) 

1 2,6,4,8,6,7 (n1 = 6) 

2 3,7,6,4,8 (n1 = 5) 

3 4,8,10,7,9,11 (n1 = 6) 

4 10,12,9,7,8 (n1 = 6) 

5 12,7,9,8,11,13,9 (n1 = 6) 

 

Question-2: Three different washing solutions are being compared to study their effectiveness 

in retarding bacteria growth in five-gallon milk containers. The analysis is done in a laboratory, 

and only three trails can be run on any day. Because days could represent a potential source of 

variability, the experimenter decides to use a randomized block design. Observations are taken 

for four days, and the data are shown here. Analyse the data and draw conclusions. 

Solution Days 

1 2 3 4 

1 13 22 18 39 



2 16 24 17 44 

3 5 4 1 22 

 

Question-3: A problem was posed to estimate the petrol consumption rates of the four different 

makes of cars for suitable average speed and compare them. The following experiment could 

be conducted for an inference about the problem. Five different cars of each of four Makes 

were chosen at random. The five cars of each Make were put on road on 5 different days. The 

cars of a make ran with different speeds on different days. The speeds were 25, 35, 50, 60 and 

70 mph. Which car was to be put on the road on which day and what speed it should have was 

determined through a chance mechanism subject to the above conditions of the experiment. 

The procedure was adopted for each of the 4 Makes of cars. For each car the number of miles 

covered per gallon of petrol was observed. The observations are presented below. Analyse the 

given randomised block design and interpret the results. 

Miles per Gallon of Petrol 

Makes of 

car 

Speeds of the cars in miles per hour (mph) 

25 35 50 60 70 

A 20.6 19.5 18.1 17.9 16.0 

B 19.5 19.0 15.6 16.7 14.1 

C 20.5 18.5 16.3 15.2 13.7 

D 16.2 16.5 15.7 14.8 12.7 

 

Question-4: To determine the petrol consumption rates of the four different makes of cars, five 

drivers were chosen and each driver was used on one of 5 days. On that day he drove five cars 

each of a different make and each car with a different speed. The arrangement of drivers, speeds 

and makes was in the given table. Analyse the given block design and interpret the results. 

Drivers and 

Days 

Speeds in miles per hour 

25 35 50 60 70 

D1 B (19.5) E (21.7) A (18.1) D (14.8) C (13.7) 

D2 D (16.2) B (19.0) C (16.3) A (17.9) E (17.5) 

D3 A (20.6) D (16.5) E (19.5) C (15.2) B (14.1) 

D4 E (22.5) C (18.5) D (15.7) B (16.7) A (16.0) 

D6 C (20.5) A (19.5) B (15.6) E (18.7) D (12.7) 



 

Question-5: To compare the effects of six treatments, an experiment with these treatments was 

conducted in four randomised blocks. One observation under treatment 1 in block 1 was lost 

accidentally. Available observations along with the layout are given below. Treatments are 

indicated by numbers within parentheses. Analyse the data and draw conclusions. 

Block Treatment and Yield (in certain units) 

1 2 3 4 5 6 

1 (1) 

- 

(3) 

27.7 

(2) 

20.6 

(4) 

16.2 

(5) 

16.2 

(6) 

24.9 

2 (3) 

22.7 

(2) 

28.8 

(1) 

27.3 

(4) 

15.0 

(6) 

22.5 

(5) 

17.0 

3 (6) 

26.3 

(4) 

19.6 

(1) 

38.5 

(3) 

39.5 

(2) 

39.5 

(5) 

15.4 

4 (5) 

17.7 

(2) 

31.0 

(1) 

28.5 

(4) 

14.1 

(3) 

34.9 

(6) 

22.6 

 

4.10 Summary 

This unit gives a complete knowledge about the terminology and basic principles of 

design of experiments, Complete Randomized Designs (CRD), Randomized Block Designs 

(RBD) and Latin Square Designs (LSD), analysis with missing observations for both RBD and 

LSD.  
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5.1 Introduction 

A factorial experiment involves simultaneously more than one factor each at two or 

more levels. If the number of levels of each factor in an experiment is the same, then the 

experiment is called Symmetric Experiment; otherwise, it is called Asymmetric Experiment or 

Mixed Factorial Experiment. 

These experiments provide an opportunity to study the individual effects of each factor 

and their interaction effect. When experiment is conducted factor by factor changing the level 

of a factor at time and keeping the other factors at constant levels, the interaction effects cannot 

be investigated. 

Example: In many biological and clinical trials, factors are likely to have interaction. 

Therefore, factorial experiments are more informative in such investigations. The other 

advantages of these experiment are that these are helpful in economizing on experimental 

resources. When an experiment is conducted factor by factor, then much more resources are 

required for the same precision than what they are required in factorial experiment. 

 



 

 

5.2 Objectives 

After going through this unit, you should be able to: 

• Know and understand benefits of using factorial experiments 

• Understand the concept of 2n factorial experiments, focusing on 22 and 23 factorial 

experiments. 

• Understand the concept of 3n factorial experiments, focusing on 32 and 33 factorial 

experiments. 

• Applying the Yate’s Method and analysis of variance test for 2n and 3n factorial experiments. 

 

5.3 Advantages of Factorial Experiments 

The factorial experiments have many advantages, few of them are: 

1. It increases the scope of the experiment and gives information not only on the main factors 

but also on their interaction.  

2. The various levels of one factor constitute replications of other factors and increase the 

information obtained on all factors.  

3. When there are no interactions, factorial gives the maximum efficiency in estimating the 

given effects.  

4. When interaction exists, their nature being unknown a factorial design to avoid misleading 

conclusions  

5.  In the factorial experiment the effects of a factor is estimated at several levels of other 

factors and conclusion hold over a wide range of conditions. 

 

5.4 2n Factorial Experiments 

2n factorial designs are the simplest class of factorial design involving factors at two 

levels, n being the no. of factors. The two levels can be denoted as lower level and higher level. 

The factors are usually divided by the capital letters and the two levels of the factor by, lower 

level with (1) and the corresponding small title letters. The treatment combinations can used 

two the individual of the symbols used for the individuals’ levels. Thus, with three factors, A, 

B, and C the treatment combinations with all the factors at the higher level are written as abc. 

With two factors A and B the four treatment combinations for 22 factorial experiments are: 



(1) → A and B at lower level 

a →  A at higher level and B at lower level 

b → A at lower level and B at higher level. 

ab →  Both A and B at higher level 

Standard order of Treatment Combinations 

The complete list of 2n treatment combinations can be conveniently written in standard 

order as follows: 

Factorial Design Factors Order 

21 A (1), a 

22 A and B (1), a, b, ab 

23 A, B and C (1), a, b, c, ab, ac, bc, abc 

24 A, B, C and D (1), a, b, c, d, ab, ac, ad, bc, bd, cd, abc, abd, acd, 

bcd, abcd 

 

Main effects and interaction effects 

 The capital letters A and B also serve to represent the main effects and interaction. The 

first order (two factors) interactions are denoted by AB, AC, BC, etc.; the 2nd order (three-

factor) interactions by ABC, ABD, BCD etc. 

In a 2n experiments, each main effect and interaction has one def. there are n main 

effects. nC1 first order interaction, nC2 2
nd order and so on -------. The effect of A at the first 

level of B is (a) – (1). Similarly, the effect of A at the 2nd level of B is (ab)-(b). 

These two effects are called simple effects of factor A. The average effect of A over the two 

levels of B.  

A =
1

2
[(𝑎𝑏) − (𝑏) + (𝑎) − (1)] =

1

2
[(𝑎 − 1)(𝑏 + 1)] 

Similarly, the effect of B at the first level of A is (b)-(1) and the second level of A is (ab)-(a) 

B =
1

2
[(𝑎𝑏) − (𝑎) + (𝑏) − (1)] =

1

2
[(𝑎 + 1)(𝑏 − 1)] 

The interaction effect AB is AB =
1

2
(𝑎 − 1)(𝑏 − 1) 

The main effects A, B and AB are contracts of treatment means for 

A =
1

2
[(𝑎𝑏) − (𝑏) + (𝑎) − (1)] = ∑ 𝑐𝑖𝑡𝑖

4
𝑖=1   

Where, 

𝐶1 =
1

2
,         𝐶2 =

1

2
,             𝐶3 =

1

2
  ,            𝐶4 =

1

2
     

𝑡1 = (𝑎𝑏),         𝑡2 = (𝑏),             𝑡3 = (𝑎)             𝑡4 = (1)  

∑ 𝐶𝑖 = 0𝑖   



5.4.1 22 Factorial Experiment  

Suppose we have two factors A and B each of two levels (a, b). The first level of factor 

A and B generally expressed by the absence of the corresponding letter in the treatment 

combination. the 4-treatment combination are as follows: 

1 → Factor A and B both are first level  

a → Factor A at second and factor B beat first level  

b → factor B at the second level and factor A at first level  

ab → Both factors A and b are at second level  

Notes: These 4 above treatments combination may be compare CRD, RBD and LSD. for a 22 

experiment with q randomized blocks, the analysis will be same as the number of treatment 

combination p=4 in RBD and the analysis of 22 experiment in LSD with m=4.  

Main Effect and Interaction Effect 

The symbols [a] and [b] will be used to denote 4 means respectively of all the 

observations receiving the treatment combination a. the letters A, B and AB are used to denote 

for main effect due to factor A and B and the interaction between A and B. Consider the effect 

of A, the effect of changing the A from its first level to a 2nd in the presence of first level of 

factor B is given by (a)-(1) and the effect of changing factor A from its first level to second 

level in the presence of second level of B is given by (ab)-(b). these two effects are known as 

the simple effects of factor A. if A and B are independent in their effects then we assume that 

above two simple effects are equal and the average of these two simple effects is called the 

main effect due to factors A. Thus, main effect of factor A is given by  

A =
1

2
(𝑎) − (1) + (ab) − (b) =

1

2
(𝑎 − 1)(𝑏 + 1)  

Similarly, the main effect of factor B is given by:  

B =
1

4
(𝑎 + 1)(𝑏 − 1)  

Note: Above two combinations are contrast and orthogonal too.  

The main effect A is a linear function of the four treatment means with sum of the 

coefficient of the linear function=0. 

Therefore, this is a contrast of treatment if the two factor are not independent then 

simple effect of A will not be the same and measure of independence and interaction of two 



factor A and B is defined as the ½ of the difference of the first simple effect i.e. {(a)-(1)} from 

the second simple effect i.e. {(ab)-(b)}. Thus, the interaction effect AB is given by: 

AB =
1

2
[(𝑎𝑏) − (𝑏) − (a) + (1)]  

AB =
1

2
(a − 1)(b − 1)  

This is also a contrast of treatment means if we take the contrast A and AB, then it can 

be easily seen that the sum of the product of coefficient of these contrast A and AB is zero. it 

means that these two contrasts are orthogonal contrast. If we take the contrast B and AB, then 

it can be easily seen that the sum of the product of the coefficient of these contrast B and Ab is 

zero. it means that these two contrasts are orthogonal contrast.  

Table for sign and divisors given general mean, main effect A, B and interaction Ab in 

terms of treatment mean is given as:  

Effect  Treatment means Divisors 

(1) (a) (b) (ab) 

M + + + + 4 

A - + - + 2 

B - - + + 2 

AB + - - + 2 

 

Analysis of Variance for a 22-factorial experiment in q randomized blocks  

The sum of squares due to the factorial effect can be obtained by multiplying the squares 

of the factorial totals by a suitable quantity. Here each sum of squares a single degree of 

freedom and sum of squares due to treatments have 3 degrees of freedom. Here it is to note that 

the factorial effect and their sum of squares from the treatment totals are easier to obtain rather 

than the treatment means. The effect totals can be written as  

[A] = [ab] + [a] - [b] - [ 1] 

[B] = [ab] + [b] - [a] - [1] 

[AB] = [ab] – [b] - [a] + [1] 

Since we use the replication number q, therefore, the sum of squares due to the main 

effect A is: 𝑆𝑆𝐴 =
[𝐴]2

4𝑞
 with degree of freedom 1  

Similarly, 𝑆𝑆𝐵 =
[𝐵]2

4𝑞
 with degree of freedom 1  



And, 𝑆𝑆𝐴𝐵 =
[𝐴𝐵]2

4𝑞
 with degree of freedom 1  

Mean sum of squares due to factor A, B and AB can be obtained by dividing the corresponding 

sum of squares by the degree of freedom  

𝑀𝑆𝐴 = 𝑆𝑆𝐴/1 =
[𝐴]2

4𝑞
  

𝑀𝑆𝐵 = 𝑆𝑆𝐵/1 =
[𝐵]2

4𝑞
  

𝑀𝑆𝐴𝐵 = 𝑆𝑆𝐴𝐵/1 =
[𝐴𝐵]2

4𝑞
  

Hence, the test for significance of any factorial may be obtained by using the test statistic  

𝐹 =
𝑀𝑒𝑎𝑛 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑓𝑓𝑒𝑐𝑡 𝐴

𝑀𝑆𝐸
  

Where MSE be the error mean sum of squares for the analysis of corresponding design and  

F~𝐹[(1,3𝑞−1)],𝛼  

The hypothesis of the presence of factorial effect is rejected at level of α if  F > 𝐹[(1,3𝑞−1)],𝛼 , 

otherwise null hypothesis is accepted.  

ANOVA table for 22 experiments with q randomized blocks 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Squares 

Mean Sum 

of Square 

Variance Ratio 

FCal. FTab. 

Blocks q – 1 SSC (Blocks) MS (Blocks)   

Main effect A  1 SSA MSA FA =
MSA

MSE
  F{1,3(q-1), α} 

Main effect B 1 SSB MSB F𝐵 =
MSB

MSE
  F{1,3(q-1), α} 

Interaction (AB) 1 SS(AB) MS(AB) FAB =
MS(AB)

MSE
  F{1,3(q-1), α} 

Error  3(q-1) SSE MSE  

Total  4q-1 TSS  

 

Yates Method of computing factorial effects total  

Yates give a systematic method of obtaining the various effect total for any  2𝑚
 

experiments without writing down the algebraic expression. The steps are: 

1. First write down the four treatments combinations systematically in the first column, starting 

with the treatment combination (1) and then introducing the letter A, B in terms after 

introducing a letter write down its combination with all the previous treatment combinations 

and then introduce a new letter. Repeat this until all the letters have been exhausted.  



2. Next, write down the treatment total from all the replicate, in the second column against the 

appropriate treatment combinations.  

3. The first two columns we get from the observed data. for obtaining column three we break 

the even number of values in the second columns into consecutive pairs. Then in the first 

half of the third column, we write down the sums of the values in these pair in order and in 

2nd half of the third column we write down in order the difference of the values in the pairs 

in the second column (the first member subtracted from the second member of the pair). 

4. We next break the values in the third column into consecutive pairs and put the sum and 

difference of the members of these pair in order of the fourth column. 

Yates Method of Computing Factorial Effect for a 22 experiment 

Treatment 

(1) 

Total 

(2) 

(3) (4) Effect 

(5) 

1 [1] [1] + [a] [1] + [a] + [b] + [ab] [1] 

a [a] [b] + [ab] [a] - [1] + [ab] - [b] [A] 

b [b] [a] - [1] [b] + [ab] - [1] - [a] [B] 

ab [ab] [ab] - [b] [ab] - [b] - [a] + [1] [AB] 

 

Example: An experiment was planned to study the effect of sulphate of potash and 

superphosphate on the yield of potatoes. All the combinations of 2 levels of superphosphate [0 

cent (p0) and 5 cent (p1)/acre] and two levels of sulphate of potash [0 cent (k0) and 5 cent 

(k1)/acre] were studied in a randomized block design with 4 replications for each. The (1/70) 

yields [lb. per plot = (1/70) acre] obtained are given below: 

Block Yields (lbs per plot) 

I 

 

II 

 

III 

 

IV 

 

(1) 

23 

p 

40 

(1) 

29 

kp 

34 

k 

25 

(1) 

26 

k 

20 

k 

31 

p 

22 

k 

36 

pk 

30 

p 

24 

kp 

38 

kp 

38 

p 

20 

(1) 

28 

 

Analyze the data and give your conclusion. 

 



Solution: Taking deviation from y =29, we re-arrange the data in the above table for 

computations of S.S. due to treatments and blocks: 

Treatment 

Combination 

Blocks Treatment 

Totals (𝑻𝒊) 
𝑻𝒊

𝟐
 

I II III IV 

(1) -6 -3 0 -1 -10 100 

k -4 7 -9 2 -4 16 

p -7 11 -9 -5 -10 100 

kp 9 9 1 5 24 576 

Block Totals (𝑩𝒋) -8 24 -17 1 G = 0 

𝑩𝒋
𝟐
 64 576 289 1 

H0: The data is homogeneous with respect to the blocks and the treatments.  

N = 4 × 4 = 16; 𝐺 = 0; 𝑅. 𝑆. 𝑆. = ∑ ∑ 𝑦𝑖𝑗
2 = 660𝑗𝑖  

C.F. = Correction Factor = 
𝐺2

𝑁
 =

(0)2

16
= 0 

Total S.S. = RSS-C.F. = 660-0 = 660 

Block S.S.= 
1

4
∑ 𝐵𝑗

2 − 𝐶.𝐹.=
64+576+289+1

4
=

930

4
= 232.50𝑖  

Treatment S.S. = 
1

4
∑ 𝑇𝑖

2 − 𝐶.𝐹.=
100+16+100+579

4
=

792

4
= 198 𝑖  

Error S.S.= 660 - (232.50+198.0) = 229.50 

We now compute the factorial effect totals by Yates Method. 

Yates’ Method for 22 Experiment 

Treatment 

Combination 

(1) 

Total Yield 

from all blocks 

(2) 

(3) Factorial 

effects totals (4) 

S.S. 

(5) = 
(𝟒)𝟐

𝟒𝒓
 

‘1’ 

k 

p 

kp 

-10 

-4 

-10 

24 

-14 

14 

6 

34 

0 = G 

40 = [K] 

28 = [P] 

28 = [KP] 

(0)2/16=0=C.F. 

(40)2/16 =100=𝑆𝐾
2

 

(28)2/16 = 49 = 𝑆𝑃
2
 

(28)2 /16 = 49 =𝑆𝐾𝑃
2

 

 

ANOVA Table for 22 Experiment 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Squares 

Mean Sum 

of Square 

Variance Ratio 

FCal. FTab. 

Blocks 

Treatments 

3 

3 

232.5 

198.0 

77.5 

66.0 

3.04 

2.59 

3.86 

3.86 



K 

P 

KP 

Error 

Totals 

1 

1 

1 

9 

15 

100 

49 

49 

229.5 

660 

100 

49 

49 

25.5 

- 

3.92 

1.92 

1.92 

- 

- 

5.12 

5.12 

5.12 

- 

- 

As in each of the cases, the computed value of F is less than the corresponding tabulated 

(critical) value, there are no significant main or interaction effects present in the experiment. 

The blocks as well as treatments do not differ significantly. 

Since the blocks do not differ significantly, we conclude that there is no special 

contribution from fluctuations in soil fertility. Thus, the division of the whole experimental 

area into blocks does not result in any gain in accuracy. 

Remark. It may be noted that 𝑆𝐾
2 + 𝑆𝑃

2 + 𝑆𝐾𝑃
2 = 100 + 49 + 49 = 198 = Treatment S. S., as 

it should be. 

 

5.4.2 23 Factorial Experiment  

Here we have three factors, A, B and C, each have two levels. So, the treatment 

combinations in this case will be 8 and can be written in the systematic order as: 1, a, b, ab, c, 

ac, bc, abc. These 8 treatment combinations can be compared by using any of design as CRD, 

RBD and LSD. In this experiment, there are three main effects, A, B and C and three first order 

interaction effects AB, AC and BC and one second order interaction effect ABC. 

Main effects and interaction effects 

Let us consider factor A, then the effect of factor A has four simple effects: 

i. The effect of changing factor A from its first level to second in presence of first level of 

factor B and C is (a) – (1). 

ii. The effect of changing factor A from its first level to second in presence of second level 

of factor B and first level of C is (ab) – (b). 

iii. The effect of changing factor A from its first level to second in presence of first level of 

factor B and second level of C is (ac) – (c). 

iv. The effect of changing factor A from its first level to second level in the presence of 

second level of B and C is (abc) – (bc). 

Similarly, the effects of factor B and C is: 

 For B For C 



(i) (b) – (1) (c) – (1) 

(ii) (bc) – (c) (ac) – (a) 

(iii) (ab) – (a) (bc) – (b) 

(iv) (abc) – (ac) (abc) – (ab) 

 

Now, the main effect of factor A is given by the average of simple effects 

A =
1

4
[(𝑎) − (1) + (𝑎𝑏) − (𝑏) + (𝑎𝑐) − (𝑐) + (𝑎𝑏𝑐) − (𝑎𝑏)]  

A =
1

4
(𝑎 − 1)(𝑏 + 1)(𝑐 + 1)  

Similarly for B and C: 

B =
1

4
[(𝑎𝑏𝑐) + (𝑏𝑐) − (𝑎𝑐) − (𝑐) + (𝑎𝑏) + (𝑏) − (𝑎) − (1)]  

B =
1

4
(𝑎 + 1)(𝑏 − 1)(𝑐 + 1)  

C =
1

4
[(𝑎𝑏𝑐) + (𝑏𝑐) + (𝑎𝑐) + (𝑐) − (𝑎𝑏) − (𝑏) − (𝑎) − (1)]  

C =
1

4
(𝑎 + 1)(𝑏 + 1)(𝑐 − 1)  

The interaction of A with B can be obtained as: 

AB (when C is first level) =
1

2
[(𝑎𝑏) − (𝑏) − (𝑎) + (1)] 

AB (when C is second level) =
1

2
[(𝑎𝑏𝑐) − (𝑏𝑐) − (𝑎𝑐) + (𝑐)] 

Finally, the average of these two gives the interaction effect AB. 

AB =
1

4
[(𝑎𝑏𝑐) − (𝑏𝑐) − (𝑎𝑐) + (𝑐) + (𝑎𝑏) − (𝑏) − (𝑎) + (1)]  

AB =
1

4
(𝑎 − 1)(𝑏 − 1)(𝑐 + 1)  

Similarly, we can obtain the other two effects AC and BC as: 

AC =
1

4
[(𝑎𝑏𝑐) − (𝑏𝑐) + (𝑎𝑐) − (𝑐) − (𝑎𝑏) + (𝑏) − (𝑎) + (1)]  

AC =
1

4
(𝑎 − 1)(𝑏 + 1)(𝑐 − 1)  

And  

BC =
1

4
[(𝑎𝑏𝑐) + (𝑏𝑐) − (𝑎𝑐) −  (𝑐) − (𝑎𝑏) − (𝑏) + (𝑎) + (1)]  



BC =
1

4
(𝑎 + 1)(𝑏 − 1)(𝑐 − 1)  

The second order interaction of three factors A, B, and C is given by the half of the difference 

AB (C at first level) and AB (C at second level). Thus: 

ABC =
1

4
[(𝑎𝑏𝑐) − (𝑏𝑐) − (𝑎𝑐) + (𝑐) − (𝑎𝑏) + (𝑏) + (𝑎) − (1)]  

ABC =
1

4
(𝑎 − 1)(𝑏 − 1)(𝑐 − 1)  

Table for signs and divisors given M, A, B, AB, C, AC, BC and ABC in terms of 

treatments means is given as follows: 

Effects Treatment Means Divisors 

(1) (a) (b) (ab) (c) (ac) (bc) (abc) 

M + + + + + + + + 8 

A - + - + - + - + 4 

B - - + + - - + + 4 

AB + - - + + - - + 4 

C - - - - + + + + 4 

AC + - + - - + - + 4 

BC + + - - - - + + 4 

ABC - + + - + - - + 4 

 

Analysis of Variance of 23 Factorial Experiment 

To obtain sum of square due to effects, we need treatment totals: 

[A] = [ABC] – [BC] + [AC] – [C] + [AB] – [B] + [A] – [1] 

[B] = [ABC] + [BC] - [AC] – [C] + [AB] + [B] - [A] – [1] 

[C] = [ABC] - [BC] - [AC] + [C] + [AB] - [B] - [A] + [1] 

[AC] = [ABC] - [BC] + [AC] - [C] - [AB] + [B] - [A] + [1] 

[BC] = [ABC] + [BC] - [AC] + [C] - [AB] - [B] + [A] + [1] 

[ABC] = [ABC] + [BC] - [AC] + [C] - [AB] + [B] + [A] - [1] 

Now, the sum of square due to factors A, B, AB, C, AC, BC and ABC are given by: 

SSA =  
[𝐴]2

8𝑞
  SSB =  

[𝐵]2

8𝑞
  SSC =  

[𝐶]2

8𝑞
  

SS(𝐴𝐶) =  
[𝐴𝐶]2

8𝑞
  SS(𝐵𝐶) =  

[𝐵𝐶]2

8𝑞
  SS(𝐴𝐵𝐶) =  

[𝐴𝐵𝐶]2

8𝑞
  



Where, q is the blocks size as replications numbers of each treatment.  

Now, the test for significance of any factorial effect i.e., main effect and interaction 

effect can be obtained by using the quantity. 

𝐹𝐴 
𝑀𝑒𝑎𝑛 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑓𝑓𝑒𝑐𝑡 𝐴

𝑀𝑆𝐸
~𝐹(1,7𝑞−1),𝛼  

And similarly, we can obtain test of significance of other factors.  

Hence, the null hypothesis of absence of factorial effect is reject at the level of 

significance α*100% if FA > F(1,7q-1), otherwise null hypothesis is accepted. 

 

ANOVA Table for 23 Experiment with q randomized blocks 

Source of 

Variation 

Degree of 

Freedom 

Sum of 

Squares 

Mean Sum 

of Square 

Variance Ratio 

FCal. FTab. 

Blocks q – 1 SSC (Blocks) MS (Blocks) FBlocks F{(q-1),7(q-1),α} 

A 1 SSA MSA FA F{1,7(q-1),α} 

B 1 SSB MSB FB F{1,7(q-1),α} 

AB 1 SS(AB) MS(AB) FAB F{1,7(q-1),α} 

C 1 SSC MSC FC F{1,7(q-1),α} 

AC 1 SS(AC) MS(AC) FAC F{1,7(q-1),α} 

BC 1 SS(BC) MS(BC) FBC F{1,7(q-1),α} 

ABC 1 SS(ABC) MS(ABC) FABC F{1,7(q-1),α} 

Error 7(q-1) SSE MSE   

Total 8q-1 TSS    

 

Yate’s Method for computing Factorial Effect Total for a 23 experiment 

We follow the instructions given in case of 23 experiment and obtain one more column 

as shown below: 

Treatment Yield (6) 

(1) (2) (3) (4) (5) 

1 (1) u1 = (1) + (a) v1 =u1 + u2 w1 = v1 + v2 [1] 

a (a) u2 = (b) + (ab) v2 = u3 + u4 w2 = v3 + v4 [ A] 

b (b) u3 = (c) + (ac) v3 = u5 + u6 w3 = v5 + v6 [B] 

ab (ab) u4 = (bc) + (abc) v4 = u7 + u8 w4 = v7 + v8 [ AB] 



c (c) u5 = (a) + (1) v5 = u2 + u7 w5 = v2 + v1 [C] 

ac (ac) u6 = (ab) + (b) v6 = u4 + u3 w6 = v4 + v3 [ AC] 

bc (bc) u7 = (ac) + (c) v7 = v6 + u5 w7 = v6 + v5 [BC] 

abc (abc) u8 = (abc) + (bc) v8 = u8 + u7 w8 = v8 + v7 [ ABC] 

 

Example: A 23 factorial design was used to develop a nitride etch process on a single-wafer 

plasma etching tool. The design factors are the gap between the electrodes, the gas flow (C2F6 

is used as the reactant gas), and the RF power applied to the cathode. Each factor is run at two 

levels, and the design is replicated twice. The response variable is the etch rate for silicon 

nitride (Å/m). The etch rate data are shown in table below: 

Replicate-1 

‘1’ 

550 

(abc) 

729 

(b) 

633 

(ac) 

749 

(c) 

1037 

(ab) 

642 

(bc) 

1075 

(a) 

669 
 

Replicate-2 

‘1’ 

604 

(c) 

1052 

(bc) 

1063 

(ab) 

635 

(a) 

650 

(ac) 

868 

(b) 

601 

(abc) 

860 
 

 

Solution: 

Coded Factors Etch Rate Total 

A B C Replicate-1 Replicate-2 

0 0 0 550 604 (1) = 1154 

1 0 0 669 650 a = 1319 

0 1 0 633 601 b = 1234 

1 1 0 642 635 ab = 1277 

0 0 1 1037 1052 c = 2089 

1 0 1 749 868 ac = 1617 

0 1 1 1075 1063 bc = 2138 

1 1 1 729 860 abc = 1589 

 

Using the totals under the treatment combinations as shown above, the estimate of factor effects 

can be obtained as follows: 

𝐴 =  
1

4𝑛
[𝑎 − (1) + 𝑎𝑏 − 𝑏 + 𝑎𝑐 − 𝑐 + 𝑎𝑏𝑐 − 𝑏𝑐]  

=
1

8
[1319 − 1154 + 1277 − 1234 + 1617 − 2089 + 1589 − 2138]  

𝐴 =  −101.625  



𝐵 =  
1

4𝑛
[𝑏 + 𝑎𝑏 + 𝑏𝑐 + 𝑎𝑏𝑐 − (1) − 𝑎 − 𝑐 − 𝑎𝑐]  

=
1

8
[1234 + 1277 + 2138 + 1589 − 1154 −  1319 −  2089 −  1617]  

𝐵 =  7.375  

𝐶 =  
1

4𝑛
[𝑐 + 𝑎𝑐 + 𝑏𝑐 + 𝑎𝑏𝑐 − (1)  −  𝑎 −  𝑏 −  𝑎𝑏]  

 =
1

8
[2089 + 1617 + 2138 + 1589 −  1154 −  1319 −  1234 −  1277]  

𝐵 =  306.125  

𝐴𝐵 =  
1

4𝑛
[𝑎𝑏 −  𝑎 −  𝑏 + (1) + 𝑎𝑏𝑐 −  𝑏𝑐 −  𝑎𝑐 +  𝑐]  

 =
1

8
[1277 −  1319 −  1234 + 1154 + 1589 −  2138 −  1617 + 2089]  

𝐴𝐵 = −24.875 

𝐴𝐶 =  
1

4𝑛
[(1)  −  𝑎 + 𝑏 −  𝑎𝑏 −  𝑐 +  𝑎𝑐 −  𝑏𝑐 +  𝑎𝑏𝑐]  

 =
1

8
[1154 −  1319 +  1234 −  1277 −  2089 +  1617 −  2138 +  1589]  

𝐴𝐶 = −153.625 

𝐵𝐶 =  
1

4𝑛
[(1) + 𝑎 −  𝑏 −  𝑎𝑏 −  𝑐 −  𝑎𝑐 +  𝑏𝑐 +  𝑎𝑏𝑐]  

 =
1

8
[1154 +  1319 −  1234 −  1277 −  2089 −  1617 +  2138 +  1589]  

𝐵𝐶 = −2.125 

𝐴𝐵𝐶 =  
1

4𝑛
[𝑎𝑏𝑐 −  𝑏𝑐 −  𝑎𝑐 +  𝑐 −  𝑎𝑏 +  𝑏 +  𝑎 − (1)]  

    =
1

8
[1589 −  2138 −  1617 +  2089 −  1277 +  1234 +  1319 −  1154]  

𝐴𝐵𝐶 = 5.625 

The largest effects are for power (C = 306.125), gap (A = -101.625) and the power-gap 

interaction (AC = -153.625). 

The sums of squares are calculated as follows: 𝑆𝑆 =  
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑠𝑡2

8𝑛
 

𝑆𝑆𝐴 =
(−813)2

16
 =  41,310.5625  𝑆𝑆𝐴𝐵 =

(−199)2

16
 =  2475.0625  

𝑆𝑆𝐵 =
(59)2

16
 =  217.5625  𝑆𝑆𝐴𝐶 =

(−1229)2

16
= 94,402.5625  



𝑆𝑆𝐶 =
(2449)2

16
 =  374,850.0625  𝑆𝑆𝐵𝐶 =

(−17)2

16
= 18.0625  

𝑆𝑆𝐴𝐵𝐶 =
(45)2

16
= 126.5625  

 

 

The total sum of square is TSS = 531,420.9375 and by subtraction, SSE = 18,020.50. The 

ANOVA table can now be used to confirm the magnitude of these effect.  

ANOVA Table 

Source of 

Variation 

Degree of 

Freedom 

Sum of Squares Mean Sum of 

Squares 

Variance Ratio 

FCal. FTab. 

Gap (A) 1 41,310.5625 41,310.5625 18.34 5.3177 

Gas Flow (B) 1 217.5625 217.5625 0.10 5.3177 

Power (C) 1 374,850.0625 374,850.0625 166.41 5.3177 

AB 1 2475.0625 2475.0625 1.10 5.3177 

AC 1 94,402.5625 94,402.5625 41.91 5.3177 

BC 1 18.0625 18.0625 0.01 5.3177 

ABC 1 126.5625 126.5625 0.06 5.3177 

Error 8 18,020.5000 2252.5625  

Total 15 531,420.9375  

From the above ANOVA table, it can be noted that the main effects of Gap and Power 

are highly significant (both have very large FTab. values). The AC interaction is also highly 

significant, thus, there is a strong interaction between Gap and Power. 

5.5 3n Factorial Experiments 

When factors are taken at 3 levels instead of 2, the experiment becomes more 

informative. Let the n-factor be denoted by A, B, C, ……. and so on, each having three levels. 

The levels of these factors are denoted by 0, 1 and 2. The possible combinations of these three 

levels of each factor will give rise to 3n treatment combination, each being n-tuple like (x1, x2, 

……., xn), where x1 be the level of first factor, x2 be the level of second factor and so on. 

Here, we use the number system reduce modulo 3; i.e.: 

0 = 3 = 6 = 9 = …………….     

1 = 4 = 7 = 10 = ……………. 

2 = 5 = 8 = 11 = ……………. 



In this system, we divide a number greater than or equal to 3 by 3 and take the remainder to be 

equal to the original number. 

Standard order of Treatment Combinations 

The complete list of 3n treatment combinations can be conveniently written in standard 

order as follows: 

Factorial Design Factors Order 

31 A (1), a1, a2 

32 A and B (1) a1, a2, b1, a1b1, a2b1, b2, a1b2, a2b2 

33 A, B and C (1), a1, a2, b1, a1b1, a2b1, a2b1, b2, a1b2, a2b2, c1, a2c1, 

b1c1, a1b1c1, a2b1c1, b2c1, a1b2c1, a2b2c1, c2, a1c2, 

a2c2, b1c2, a1b1c2, a1, b1c2, b2c2, a1b2c2, a2b2c2 

 

5.5.1 32 Factorial Experiment  

In this experiment there are two factors say A and B each having 3 levels 0 1 and 2. 

Therefore, these are 9 treatment combinations of type (𝑥1, 𝑥2) where 𝑥1 and 𝑥2 can take only 

of the values 0 1 and 2. Thus the 9-treatment combination are  

0 0,  0 1,  0 2,  1 0,  1 1, 1 2,  2 0,  2 1, 2 2 

Among these 9 treatment combinations there will be 8 comparisons (degree of freedom =8) 

can be partitioning as 2 degrees of freedom for each of main effects A and B and 4 degrees of 

freedom for interaction A × 𝐵. This combination (component) can be denoted by a 2-way table 

as follows: 

 Levels of A   

Levels  

of B  

 0 1 2 [B]0 

0 0 0  0 1 0 2 [B]1 

1 1 0 1 1 1 2 [B]2 

2 2 0  2 1 2 2  

  [𝐴]0 [𝐴]1 [𝐴]2  

Analysis 

The sum of squares can be obtained as  

SSA =
([𝐴]0

2+[𝐴]1
2+[𝐴]2

2)

3𝑞
−

𝐺2

9𝑞
  



SSB =
([𝐵]0

2+[𝐵]1
2+[𝑏]2

2)

3𝑞
−

𝐺2

9𝑞
  

SS(AB) =
(00)2+(01)2+.........(21)2+(22)2

𝑞
−

𝐺2

9𝑞
− 𝑆𝑆𝐴 − 𝑆𝑆𝐵  

Where q is block. 

Four degrees of freedom of AB can be further partition into 2 more orthogonal 

components are very useful in confounding in 32
 factorial experiment. Thus, the interaction 

𝐴 × 𝐵 carrying 4 degrees of freedom can be partitioned AB and AB2as 

AxB 

AB gives x1+x2 = 0, 1, 2 Modulo 3 

AB2 gives x1+2x2 = 0, 1, 2 Modulo 3 

 

Defining the equation, dividing the 9-treatment total intro 3 groups, A comparison 

between which gives the corresponding components. Thus  

𝑥1 + x2 = 0 gives  [00] + [12] + [21] = [AB]0 

𝑥1 + x2 = 1 gives  [01] + [10] + [22] = [AB]1 

𝑥1 + x2 = 2 gives  [02] + [20] + [11] = [AB]2 

Similarly,  

𝑥1 + 2x2 = 0 gives  [00] + [12] + [21] = [AB2
]
0
 

𝑥1 + 2x2 = 1 gives  [02] + [21] + [10] = [AB2
]
1
 

𝑥1 + 2x2 = 2 gives  [01] + [12] + [20] = [AB2
]
2
 

And hence sum of square due to component AB is  

SS(AB) =
([𝐴𝐵]0

2+[𝐴𝐵]1
2+[𝐴𝐵]2

2)

3𝑞
−

𝐺2

9𝑞
  

And for component AB2 is  

SS(AB2) =
([𝐴𝐵2]

0

2
+[𝐴𝐵2]

1

2
+[𝐴𝐵2]

2

2
)

3𝑞
−

𝐺2

9𝑞
  

The first two columns of ANOVA table are given as: 

Source of Variation Degree of Freedom 



Replication q-1 

A 2 

B 2 

AB AB 2 

AB2 2 

Error 8(q-1) 

Total 9q-1 

 

5.5.2 33 Factorial Experiment  

In this experiment, we have 27 treatment combinations of the form ( 𝑥1, 𝑥2  𝑥3 ) where  

 𝑥1 ,  𝑥2 and  𝑥3 are the levels of A, B and C respectively. All the treatment combination can 

systematically be written as:   

A  B C  A  B C  A  B C 

0  0  0  0  0  1  0  0  2 

1  0 0  1  0 1  1  0 2 

0 1 0  0 1 1  0 1 2 

1 1 0  1 1 1  1 1 2 

2 0 0  2 0 1  2 0 2 

2 1 0  2 1 1  2 1 2 

0 2 0  0 2 1  0 2 2 

1 2 0  1 2 1  1 2 2 

2 2 0  2 2 1  2 2 2 

The 27-treatment combination will have a sum of all squares carrying 26 degrees of 

freedom.  The treatment sum of squares can be calculated from 27 treatment totals taking over 

the q replicates. In these experiments the treatments can be sub divided into the main effect and 

intersection effects having degrees of freedom as follows:  

Source of Variation Degree of Freedom 

Replication q-1 

Treatment 26 

A 2 

B 2 



C 2 

A×B 4 

A×C 4 

B×C 4 

A×B×C 8 

Error 26(q-1) 

Total 27q-1 

 

The sum of squares due to main effects and two factor interactions are calculated from 

the three-two way in the usual manners. However, the three-factor interaction (A×B×C) sum 

of square is obtained by the subtractions of these components from treatment sum of square.  

Here each set of 4 or 8 degrees of freedom can also be partitioned into their orthogonal 

component carrying 2 degrees of freedom as follows: 

AxB 
AB gives x1+x2 = 0, 1, 2 Modulo 3 

AB2 gives x1+2x2 = 0, 1, 2 Modulo 3 

AxC 
AC gives x1+x3 = 0, 1, 2 Modulo 3 

AC2 gives x1+2x3 = 0, 1, 2 Modulo 3 

AxC 
BC gives x2+x3 = 0, 1, 2 Modulo 3 

BC2 gives x2+2x3 = 0, 1, 2 Modulo 3 

AxBxC 

ABC gives x1+x2+x3 = 0, 1, 2 Modulo 3 

AB2C gives x1+2x2+x3 = 0, 1, 2 Modulo 3 

ABC2 gives x1+x2+2x3 = 0, 1, 2 Modulo 3 

AB2C2 gives x1+x2+x3 = 0, 1, 2 Modulo 3 

 

Using each of the defining equations we divide the 27 treatment combinations intro 3 

groups and comparison among these groups total is the corresponding sum of square carrying 

2 degrees of freedom.  

Example: The sum of square due to the component  A𝐵2C can be obtained as follows: 

SS(AB2C) =  
[AB2C]0+[AB2C]1+[AB2C]2

3𝑞
 −  

𝐺2

27𝑞
  

Where,   

[𝐴𝐵2𝐶]
0
= [000] + [011] + [110] + [212] + [201] + [102] + [121] + [022] + [220]  

[𝐴𝐵2𝐶]
1
= [001] + [100] + [012] + [111] + [202] + [210] + [020] + [122] + [221]  



[𝐴𝐵2𝐶]
2
= [002] + [101] + [010] + [112] + [200] + [211] + [021] + [120] + [222]  

Similarly, the other sum of square can be obtained by using their defining equations.  

Each mean sum of squares can be obtained by dividing the corresponding sum of 

squares by its degree of freedom. The mean sum of square due to error can be obtained in the 

usual way. 

ANOVA Table for a 33  Factorial Experiment 

The first two column of the ANOVA table as follows:  

Source of Variation Degree of Freedom 

Replications q-1 

Treatment 26 

A 2 

B 2 

C 2 

A  × 𝐵 
AB 2 

AB2 2 

A  × 𝐶 
AC 2 

AC2 2 

B × 𝐶 
BC 2 

BC2 2 

A × 𝐵 × 𝐶 

ABC 2 

AB2 C 2 

ABC2 2 

AB2C2 2 

Error 26(q-1) 

Total 27q-1 

 

5.6 Self-Assessment Exercise  

Question-1: Analyze the following factorial design  

Replicate 1 

nk kd 1 nd d k n nkd  

291 398 101 373 312 245 106 450 



Replicate 2 

kd d n nk k nkd nd 1 

907 329 89 306 272 449 338 106 

Replicate 3 

d 1 nk nkd nd k n kd 

323 87 334 471 324 279 128 423 

Replicate 4 

nd nk k d n 1 nkd kd 

361 272 302 324 103 131 437 445 

 

Question-2: The following table gives the number of seeds germinated (out of 10 seeds) in 

each of 16 plots along with the treatments applied. Here, rows correspond to different levels of 

temperature and columns to different depths of sowing: 

Temperature Depth of sowing 

1 np 

(7) 

n 

(3) 

1 

(2) 

p 

(8) 

2 n 

(4) 

p 

(4) 

np 

(6) 

1 

(3) 

3 1 

(2) 

np 

(8) 

p 

(3) 

n 

(4) 

4 p 

(5) 

1 

(3) 

n 

(4) 

np 

(8) 

 

5.7 Summary 

This unit gives a complete overview of the factorial experiments, covering both 2n and 

3n factorial experiments, their various types such as 22, 23, 32 and 33 along with their analysis.  
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6.1 Introduction 

 The 22 and 23 factorial experiments should be conducted by using completely 

randomized, randomized block or Latin square designs. These experiments can also be 

analysed by breaking the treatment components into main effect and interaction components. 

The next factorial, 24 has 16 treatment combinations and it is not advisable to adopt a 

randomized block design for it, because blocks of 16 plots are too big to ensure homogeneity 

within them. A new device is, therefore, necessary for designing experiments with a large 

number of treatments. One such device is to take blocks of size less than the number of 

treatments and have more than one block per replication. The treatments are then divided into 

as many groups as the number of blocks per replication. The different groups of treatments are 

allotted to the blocks. 



 Example: We can take for 24 factorial two blocks each of eight units and divide the 16 

treatment combinations into two groups of each for allotment to the two blocks.  

 In general, the block size for 2n factorials is of form 2r. There are many ways of 

grouping the treatments into as many groups as the number of blocks per replication. For 

obtaining interaction contrast the treatment combinations are divided into two groups. Two 

such groups representing a suitable interaction, say P, can be taken to form the contents of two 

blocks, each containing half the total number of treatments.  

 In such cases the contrast of the interaction P and the contrast between the two blocks 

totals are given by the same function. They are, therefore, mixed up with block effects and 

cannot be separated. In other words, the interaction P, has been confounded with the blocks. 

Evidently, P has been lost but the other interactions and main effects can now be estimated 

with better precision because of reduced block size. This device of reducing the block size by 

making one or more interaction contrasts identical with block contrasts, is known as 

Confounding. Though we have introduced the concept of confounding by having only two 

blocks, the number of blocks can be any power of 2.  

 Preferably, only higher order interaction, that is, interactions with three or more factors 

are confounded, because their loss is immaterial. As an experimenter is more interested in main 

effects and two factor interactions, these should not be confounded as far as possible. 

 The designs for such confounded factorials can be called incomplete randomized block 

design. The treatment groups are first allotted at random to the different blocks. The treatments 

allotted to a block are then distributed at random to its different units. 

 

6.2 Objectives 

After going through this unit, you should be able to: 

• Know about the concept of orthogonality in the design of experiment 

• Understand the concept of confounding in factorial experiments 

• Understand the concept of partially confounded in factorial experiments 

 

6.3 Orthogonality 

Suppose that we have a random sample of n independent observation y1, y2 …… . yn 

from a normal population with variance σ2 .let us consider two orthogonal contrast A =

∑ μ𝑛
𝑖=1 × 𝑦𝑖 𝑎nd B = ∑ μ𝑖

𝑛
𝑖=1 × 𝑦𝑖 with ∑ λ𝑛

𝑖=1 𝑖
= 0 and ∑ μ𝑛

𝑖=1 𝑖
= 0. 



Therefore, A and B are independent and we can use A & B to estimate two different 

effects because the error in two estimates will not be related. These estimates are also said to 

be orthogonal. The orthogonality of a design ensures that the different effects will be capable 

of separate estimation in testing without any difficulties, hence if data arise from an orthogonal 

design, then there will be no difficulty of independent estimation and test effects.  

The designs CRD, RBD, and LSD give us orthogonal design. The 22
and 23

 etc. 

Factorial experiments are conducted by using CRD, RBD and LSD. However, the difficulty in 

conducting the factorial experiment in this design is that as the number of factors or the number 

of levels of the factor or both increases, the number of treatment combinations to be compared 

increases rapidly. This results in the use of large-size blocks or squares to accommodate all the 

treatment combinations. 

Example: In an 24
 factorial experiment, there are 16 treatment combinations and it is 

advisable to adopt RBD for it because blocks of 16 plots are too big, here to ensure 

homogeneity within them. Therefore, it is necessary to have a new device for designing 

experiments with a large number of treatments. Once such a device takes blocks of size less 

than the number of treatments and has more than one block, then the treatments are divided 

into blocks per replication.  

The different groups of treatments are allotted to the blocks in such a way that the only 

unimportant treatment combination gets mixed up with the block comparison. These treatment 

comparisons are said to be confounded or mixed up with block effects.  

These effects cannot be estimated for testing separately. However, the remaining 

treatment effects, which are not confounding by the block effect, are still capable of separate 

estimation in testing. In a confounding design, we lose information on some treatment 

comparisons (completely or partially) which are confounding. Therefore, there should be least 

important comparison and generally we choose highest order interaction in confounding. 

6.4 Confounding in Factorial Experiment 

Confounding in experiment designs is an arrangement of treatment combinations in 

blocks in which less important treatment effects are purposely confounded with the blocks. 

There are two types of confounding: - 

1.  Complete confounding  

2. Partial confounding  



When there are two or more replications, then the question arises whether we confounded 

the same interaction in each replication or different sets of interactions in different replications.  

 If the same set of interactions is confounded in all the replications, then confounding is called 

complete confounding. In complete confounding, all the information on confounded interaction 

is lost and we lose all the information from all the replications.  

If different interaction steps are confounded in different replications, then confounding 

is called partial confounding. In this confounding, the confounded interaction can be recovered 

from those replications in which they are not confounded.  

6.4.1 Confounding in 23 Factorial Experiment  

In this experiment, we have eight treatment combinations under comparison and 

suppose we decide to use two blocks to accommodate a treatment combination is replicated. 

Thus, we have four plots of each. We will divide the 8 treatment combinations each and allocate 

the two groups to the two blocks at random. Here it is to be notable that 2n
 factorial experiment 

conducted 2(k−1)
 treatment combinations in which 2(k) − 1 − k  treatment combination will be 

generalized. They are automatically confounded with the block effects. if k=1, then only one 

treatment combination will be confounded and if k>1, then more than one treatment 

combination will be confounded according to the above rule. Therefore, in this case k=1, only 

one treatment combination will be confounded and we decide highest order interaction ABC 

to be confounded.  

          The interaction ABC is depended on (𝑎𝑏𝑐) + (𝑎) + (𝑏) + (𝑐) − (𝑎𝑏) − (𝑎𝑐) − (𝑏𝑐) − 1. 

Let us apply the four treatment combinations with the (+) sign in one block and the 

remaining 4 with the (-) sign in the second block. Then, block 1st and 2nd contain the treatment 

combination as:  

Block I Block II 

(abc) (ab) 

(a) (ac) 

(b) (bc) 

(c) (1) 

 

Here, the contrast measuring the interaction ABC also contain block effect, i.e., the 

effect of block 1st - effect of block 2nd, and we say that the interaction ABC is mixed up or 

confounded with block effect and we loss information ABC. However, the other six contrasts 

of treatment combinations A, B, AB, C, AC, and BC still maintain their orthogonality to the 



block as each treatment combination from block 1st (block 2nd) with (+) sign and two treatment 

combinations with (-) sign of the remaining six treatment combinations therefore they will 

contain no block effect.  

Thus, in this allocation to two blocks, there is no difficulty in the estimation or testing 

of the remaining six treatment combinations.  

The first two columns of the ANOVA table for 23
 factorial experiment is given by: 

Source of Variation Degree of Freedom 

Blocks 2q-1 

A 1 

B 1 

AB 1 

C 1 

AC 1 

BC 1 

Error 6(q-1) 

Total 8q-1 

 

Example: Analyze the following 23
 completely confounded factorial design: 

Replicate-1 

Block 

I 

‘1’ 

101 

(nk) 

291 

(np) 

373 

(kp) 

391 

Block 

II 

(nkp) 

450 

(n) 

106 

(k) 

265 

(p) 

312 
 

Replicate-2 

Block 

III 

‘1’ 

106 

(nk) 

306 

(np) 

338 

(kp) 

407 

Block 

IV 

(nkp) 

449 

(n) 

89 

(k) 

272 

(p) 

324 
 

 

Replicate-3 

Block 

V 

‘1’ 

87 

(nk) 

334 

(np) 

324 

(kp) 

423 

Block 

VI 

(nkp) 

471 

(n) 

128 

(k) 

279 

(p) 

323 
 

 

Replicate-4 

Block 

VII 

‘1’ 

131 

(nk) 

272 

(np) 

361 

(kp) 

445 

Block 

VIII 

(nkp) 

437 

(n) 

103 

(k) 

302 

(p) 

324 
 

(N = Nitrogen; P= Phosphate; K = Potash) 

Solution: Since in the above 23
 factorial experiment the replicate has been divided into blocks 

of 4 plots each, it is a 23
 confounded design. A careful examination of the treatment 

combinations in different blocks reveals that the interaction NPK has been confounded in each 

replicate. [Note that in each replicate, the treatment combinations in the block containing T 



have no or an even number’ of treatments common with npk.]. Hence the above design is a 23
 

factorial with the interaction NPK completely confounded with blocks. 

The S.S. due to the six unconfounded factorial effects, viz., the main effects N, P and 

K and the first order interactions NP, KP and NK are obtained by Yates’ technique as usual. 

Yates’ Method for Factorial Effects and S.S. 

Treatment Totals 1 2 3 Effects S.S.= [Effect Totals)2/32 

𝐼 

n 

k 

nk 

p 

np 

kp 

nkp 

425 

426 

1,118 

1,203 

1,283 

1,396 

1,666 

1,807 

851 

2,321 

2,679 

3,473 

1 

85 

113 

141 

3,172 

6,152 

86 

254 

1,470 

794 

84 

28 

9,324 

340 

2,264 

112 

2,980 

168 

-676 

-56 

G 

[N] 

[K] 

[NK] 

[P] 

[NP] 

[KP] 

[NKP] 

C.F. = 27,16,780.5 

𝑆𝑁
2 = 3,612.5 

𝑆𝑘
2 = 1,60,178.0 

𝑆𝑁𝐾
2 = 392.0 

𝑆𝑃
2 = 2,77,512.5 

𝑆𝑁𝑃
2 = 882.0 

𝑆𝐾𝑃
2 = 14,280.5 

Not estimable 

∴ S.S. due to treatments = 𝑆𝑁
2 + 𝑆𝐾

2 + 𝑆𝑃
2 + 𝑆𝑁𝑃

2 + 𝑆𝑁𝐾
2 + 𝑆𝐾𝑃

2 = 456857.5 

(Since NPK is completely confounded with blocks, its effects enter into the error S.S.) 

𝑅. 𝑆. 𝑆. = 31,82,118.0   

𝐶. 𝐹.=
𝐺2

8×4
=

(9,324)2

32
= 27,16,780.5  

Total S.S. = R.S.S.-C.F. = 31,82,118.0-27,16,780.5 = 4,65,337.5 

𝐵𝑙𝑜𝑐𝑘 𝑆. 𝑆. =
1

4
[(1,156)2 + (1,133)2 + (1,157)2 + (1,134)2 + (1,168)2 + (1,201)2 + (1,209)2 +

(1,166)2] − 𝐶. 𝐹.  

=
1,08,72,492

4
− 27,16,780.5 = 1,342.5  

∴ Error S.S. = Total S.S. – S.S. due to Blocks – S.S. due to treatments 

          = 465337.5 – 1342.5 - 456857.5 = 7137.5 

ANOVA Table 

Source of 

Variation  

Degree of 

Freedom 
Sum of Squares 

Mean Sum of 

Squares 
Variance Ratio 

Block 7 1,342.5 191.8 <1 



Treatments 6 4,56,857.5 7,360.5 29.11 

N 

K 

P 

NK 

NP 

KP 

1 

1 

1 

1 

1 

1 

3,612.5 

1,60,178.0 

2,77,512.5 

392.0 

882.0 

14,280.5 

3,612.5 

1,60,178.0 

2,77.512.5 

392.0 

882.0 

14,280.5 

9.11 

40.90 

699.90 

0.98 

2.20 

36.01 

Error 18 7,137.5 396.5 
 

Total 31 4,65,337.5  

Since calculated value of F for blocks is less than 2.59, the tabulated value of F for (7,31) d.f. 

at 5% ‘level of significance’, we fail to reject the null hypothesis. 

Ho: Confounding is not effective 

Hence, we conclude that confounding is not effective. 

6.4.2 Confounding in 24 Factorial Experiment in 22 Blocks 

 In these 24 experiments we have 16 treatment combinations and these treatment 

combinations are allotted to the 4 blocks in a replicate. The total no. of confounding is 22-1 = 

3 in which 22-1-2 = 1 will be generalised interaction. Suppose we select ABC and ABD 

confounding. Then, 

ABCABD = A2 B2 CD = CD will also be confounded. 

The 16 treatment combinations in a systematic order as follows: 

(1), (a), (b), (ab), (c), (ac), (bc), (abc), (d), (ad), (bd), (cd), (abd), (acd), (bcd), (abcd). 

Block-I Block-II Block-III Block-IV 

(1) 

(ab) 

(acd) 

(bcd) 

(a) 

(d) 

(cd) 

(abcd) 

(b) 

(abc) 

(ad) 

(bd) 

(c) 

(abd) 

(ac) 

(bc) 

 

6.4.3 Confounding in 2n Factorial Experiment in 2k Blocks per replicate 

Let a 2n experiment conducted in 2k blocks (k=2,3….) or (2 ≤ 𝑘 ≤ 𝑛) of equal size per 

replicate. Then: 

1. The total no. of treatment combinations = 2n 



No. of combinations per block = 
2𝑛

2𝑘  
 = 2𝑛−𝑘

 

Thus, we have 2𝑛−𝑘
 treatment combinations in each block and these are assigned at random 

in each block. In each replicate there are 2𝑘
 blocks total, giving rise to 2𝑘 − 1 treatment 

contrast in the replicate. 

2. Generalized Interaction: The interaction obtained on multiplying the symbols in two effects 

(interaction) together and equating the square of any letter equal to unity is called the 

General Interaction of the given effect. 

      Example: For any two effects X and Y the generalized interaction is given as: 

X Y Generalized Interaction 

A 

AB 

ABC 

ABC 

BC 

CD 

ACD 

CD 

ABC 

ABCD 

ABC ACD = A2BC2D = BD 

ABC CD = ABC2D = ABD 

3. If a replicate is divided into 2𝑘
 blocks, then 2𝑘 − 1 effects are confounded, k of which are 

independent and remaining 2𝑘 − 1 − 𝑘 are their linear combinations or their Generalised 

interaction. 

4. If the size of the block is 2𝑝
, then apart from the control treatment, p of the treatment 

combinations is independent and the rest 2𝑝 − 1 − 𝑝 will be their generalization interaction 

or linear combinations. 

 

If 2𝑛
 experiment is conducted in 2𝑘

 blocks (of equal size) in a replicate then the block size 

in each replicate is 2𝑛−𝑘
. Hence a part from the control treatment, n-k treatments will be 

independent and the remaining (2𝑛−𝑘 − 1 − (𝑛 − 𝑘)) treatments will be their linear 

combinations. 

6.4.4 Confounding in more than two blocks 

For 24 factorial experiment two blocks per replications are reasonable in experiment 

with a larger no. of factors, we, however use more blocks (greater than two) per replicate. 

Confounding with two groups one interaction is confounded in such cases. The Key Blocks 

contents are obtained from the solution of more than one homogenous equation simultaneously.  

Example: The key block of size 23 in 25 can be obtained from the solutions of the equations.  



x1 + x2 + x3 = 0 

x1 + x4 + x5 = 0 

These equations indicate that the interaction ABC and ADE are confounded simultaneously in 

the same replications. Any solutions of the above two homogenous equations are also a solution 

of the equation, which is obtained from a linear combination of the equations. This shows that 

the same interaction is also confounded. By adding the above equations, we get: 

x2 + x3 + x4 + x5 = 0 

No other equation is possible from their linear combination. Therefore, interaction BCDE is 

also confounded, which is the generalized interaction of ABC and ADE. They block can be 

obtained by first obtaining three independent solutions of the homogenous equations and then 

taking all their linear combinations.  

Key Blocks 

0 0 0 0 0 

0 1 1 1 1 

1 0 1 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 0 0 1 

0 0 0 1 1 

0 1 1 0 0 

 

There are three more blocks in a replicate which are obtained from the solutions of the 

following three sets of the equations: 

Set of equations IInd Block IIIrd Block IVth Block 

x1 + x2 + x3 1 0 1 

x1 + x4 + x5 0 1 1 

 

6.4.5 
Comparison of Unconfounded and Completely Confounded 2n 

Factorial Experiment  

We know the information of effects contained in an experiment is the reciprocal of the 

variable of its estimate. In the case of unconfounded design, the replicate is itself a block, and, 

in this case, we denote the error variance by σ2. In a completely confounded design, the 

replicate contains two blocks i.e., a block is a half replicate. Therefore, in this case we denote 



the error variance by σ𝑦2

2  and it is expected that σ𝑦2

2 < σ2,since the smaller block will have 

greater control over errors as compare to the large block.  

The variance of estimators of an effect (main or interactions) in a 2n experiment in q 

replicated without confounding is σ2/q ∗ 2(𝑛−2)
, whereas the variance of the estimator of each 

unconfounded effect in a 2n experiment is completely confounded is σ𝑦2

2 /q ∗ 2(𝑛−2)
 .  

Thus, the information about each effect in an unconfounded design is q ∗ 2(𝑛−2)/σ2. 

Where as the information about each confounded effect in a completely con-founded design is  

𝑞 ∗ 2(𝑛−2)/σ(𝑌2)
2  and since σ𝑦2

2 <σ2,therefore the confounded design provides more information 

on unconfounded effect design but the confounded design provides no information or zero 

information has been completely confounded.  

Note: When we are unsure which interactions are unimportant, we cannot sacrifice the 

entire interaction on that treatment combination. In such cases, we distribute the loss of 

information among more than one treatment combination and we shall get some information 

on each. This can be achieved by partial confounding. 

6.5 Partial Confounding in Factorial Experiment 

We have 4 interactions AB, AC, BC and ABC. We take 4 replications and two blocks 

of size 4 in each replication. The 8 treatment combinations are allotted to blocks of a replicate 

in such a way that the interaction AB is confounded in replicate I, AC in replicate II, BC in 

replicate III and ABC in replicate IV. The layout before randomization will be given as: - 

 

Replicate-1 (AB confounded) Replicate-2 (AC confounded) 

Block-1 Block-2 

(1) (a) 

(ab) (b) 

(c) (ac) 

(abc) (bc) 
 

Block-3 Block-4 

(1) (a) 

(b) (ab) 

(ac) (c) 

(abc) (bc) 
 

 

Replicate-3 (BC confounded) Replicate-4 (ABC confounded) 

Block-5 Block-6 

(1) (b) 

(a) (ab) 

(bc) (c) 

(abc) (ac) 
 

Block-7 Block-8 

(1) (abc) 

(ab) (a) 

(ac) (b) 

(bc) (c) 
 

 



The block sum of squares is computed from the 8 blocks and grand totals. the sum of 

squares due to the main effect A, B and C (unconfounded effects) are computed using data 

from all 4 replications whereas the sum of squares due to any confounded interaction is 

obtained from those replicates where that particular interaction is not confounded.  

The first two columns of ANOVA table in this case are given as below: 

Source of Variation Degree of Freedom 

Blocks 7 

A 1 

B 1 

C 1 

AB 1 

AC 1 

BC 1 

ABC 1 

Error 17 

Total 31 

   

Example: Analyze the following 23 − Factorial experiment in blocks of 4 plots, involving 

three fertilizers N, P and K, each at two levels. 

Replicate-I Replicate-II Replicate-III 

Block 

1 

np 

101 

npk 

111 

(1) 

75 

k 

55 

Block 

3 

(1) 

125 

npk 

95 

nk 

80 

p 

100 

Block 

5 

pk 

75 

nk 

100 

(1) 

55 

np 

92 

Block 

2 

p 

88 

n 

90 

pk 

115 

nk 

75 

Block 

4 

n 

80 

k 

95 

np 

115 

pk 

90 

Block 

6 

n 

53 

p 

65 

k 

82 

npk 

76 

 

Solution: Since each replicate has been divided into 2 blocks, one effect has been confounded 

in each replicate. Replicate 1 confounds NP, replicate 𝐼𝐼 confounds NK and NPK has been 

confounded in replicate 𝐼𝐼𝐼. 

Ho: The data is homogenous with respect to blocks and treatments. 

Taking deviations from 87, we prepare the following Table to compute the total S.S. and S.S. 

for Blocks. 

Calculations For Various S.S. 



Treatment 

Combination 

Replicate 𝑰 Replicate 𝑰𝑰 Replicate 𝑰𝑰𝑰 Treatment 

Totals Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 

(1) 

n 

p 

np 

k 

nk 

pk 

npk 

-12 

- 

- 

14 

-32 

- 

- 

24 

- 

3 

1 

- 

- 

-12 

28 

- 

38 

- 

13 

- 

- 

-7 

- 

8 

- 

-7 

- 

28 

8 

- 

3 

- 

-32 

- 

- 

5- 

- 

13 

-12 

- 

- 

-34 

-22 

- 

-5 

- 

- 

-11 

-6 

-38 

-8 

47 

-29 

-6 

19 

21 

Block totals 

(𝑩𝒊) 
-6 20 52 32 -26 -72 G = 0 

𝑩𝒊
𝟐
 36 400 2,704 1,024 676 5,184 

∑𝐵𝑖
2

= 10,024 

Correction Factor = 
𝐺2

3×8
= 0 

𝑅. 𝑆. 𝑆. = (−12)2 + (38)2 + ⋯+ 82 + (−11)2 = 8,658 

Total S.S. = R.S.S. - C.F. = 8,658 

S.S. due to Blocks = ∑
𝐵𝑖

2

4
− 𝐶.𝐹.=

10,024

4
= 2,506𝑖  

The S.S. due to interactions NP, NK and NPK are not estimable directly from the table of 

Yates’ method, but they will be estimated indirectly. 

Yates’ Method for 23 Partially Confounded Experiment 

Treatment 

Combination 

Total 

Yield 

Yates’ Operations 

S.S. = 
[ ]𝟐

𝟖×𝟑
 

I II 
Factorial Effects 

III 

‘1’ 

n 

p 

np 

k 

-6 

-38 

-8 

47 

-29 

-44 

39 

-35 

40 

-32 

-5 

5 

23 

25 

83 

0 = G 

48 = [N] 

158 = [P] 

66 = [NP] 

10 = [K] 

 

𝑆𝑁
2 = 96.00 

𝑆𝑃
2 = 1,040.17 

Not estimable 

𝑆𝑘
2 = 4.17 



nk 

pk 

npk 

-6 

19 

21 

55 

232 

2 

75 

87 

-21 

2 = [NK] 

-8 = [PK] 

-108 = [NPK] 

Not estimable 

𝑆𝑃𝐾
2 = 2.67 

Not estimable 

 

Interaction, which is confounded in replicate 1, is estimated by: 

𝑁𝑃 =
1

4
[(𝑛 − 1)(𝑝 − 1)(𝑘 + 1)]  

Here the sign of ‘1’ is positive. Hence, the adjusting factor (A.F.) for NP which is to be obtained 

from replicate 1 is given by: 

A.F. for NP = (101+111+75+55) - (88+90+115+75) = 342-368 = -26 

∴ Adjusted effect total for NP becomes: [𝑁𝑃∗] = [𝑁𝑃] − (−26) = 66 + 26 = 92 

Similarly, A.F. for NK = 400-380 = 20 

and, A.F. for NPK = 276-322 = -46        [Note that the sign of 1 in the estimate of NPK is -1.] 

Hence, adjusted effect totals for NK and NPK are: 

[𝑁𝐾]∗ = 2 − 20 = −18      𝑎𝑛𝑑 [𝑁𝑃𝐾]∗ = −108 − (−46) = −62  

𝑆𝑁𝑃
2 = 𝑆. 𝑆. 𝑑𝑢𝑒 𝑡𝑜 𝑁𝑃 =

1

2×8
[𝑁𝑃∗

]
2
=

(92)2

16
= 529  

𝑆𝑁𝐾
2 = 𝑆. 𝑆. 𝑑𝑢𝑒 𝑡𝑜 𝑁𝐾 =

1

2×8
[𝑁𝐾∗ ]

2
=

(−18)2

16
= 20.25  

𝑆𝑁𝑃𝐾
2 = 𝑆. 𝑆. 𝑑𝑢𝑒 𝑡𝑜 𝑁𝑃𝐾 =

1

2×8
 [𝑁𝑃𝐾∗

]
2
=

(−62)2

16
= 240.25  

𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑆. 𝑆. = 𝑆𝑁
2 = 𝑆𝑃

2 + 𝑆𝐾
2 + 𝑆𝑁𝑃

2 + 𝑆𝑁𝐾
2 + 𝑆𝑃𝐾

2 + 𝑆𝑁𝑃𝐾
2 = 1932.51 

∴ Error S.S. = T.S.S. – S.S. Blocks -S.S. Treatments  

         = 8,658.00-2,506-1,932.75 = 4,219.25 

ANOVA Table for Partially Confounded 𝟐𝟑 Experiment 

Source of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 

Mean Sum 

of Squares 

Variance Ratio F 

FCal. FTab. 

Blocks 

Treatments 

5 

7 

2,506.00 

1,932.51 

501.2 

276.07 

1.31 

<1 

 

𝐹0.05(5,11) = 3.2 



N 

P 

NP 

K 

NK 

PK 

NPK 

1 

1 

1 

1 

1 

1 

1 

96.00 

1,040.12 

529.00 

4.17 

20.25 

2.67 

240.25 

96.00 

1,040.12 

529.00 

4.17 

20.25 

2.67 

240.25 

<1 

2.71 

0.38 

<1 

<1 

<1 

<1 

𝐹0.01(5,11) = 5.32 

𝐹0.05(1,11) = 4.84 

𝐹0.01(1,11) = 6.08 

Error 11 4,219.25 383.57 

Total 23 8,658  

 

From the above table, it can be concluded that the effect due to blocks, main effects due 

to factor N, P, and K or interactions are not significant. 

6.5.1 
Comparison of information about Unconfounded Effects and 

Confounded Effects in Partially Confounding Design  

In partially confounding design the main effects A, B and C are not confounded in any 

replicates, so they are estimated from all 4 replicates and the experiment contains 8/σ(𝑦2)
2  

information about each of the main effect but each interaction is confounded in one replicate 

and let unconfounded in three others. Thus, we can estimate the interaction from those 

replicates where it is not confounded.  

Example: The interaction AB is confounded from replicate 1st; therefore, AB can be 

estimated using replicate 2,3, and 4 .so only three replicates control the information about the 

interaction AB and the amount of information is σ/σ(𝑦2)
2 ,thus the relative information of each 

partially confounded interaction with respect to unconfounded main effect is (6/σ(𝑦2)
2 ) /

(8/σ(𝑦2)
2 ) = 3/4 and this is the same as proportion of replicates given information about the 

confounded interaction. 

Table for amount of information in different 23 experiments 

 Effects  

 

Amount of the information 

Unconfounded 

Design  

ABC completely 

confounded  

AB, AC, BC & ABC 

partially confounded  

A 8/σ2 8/σ(𝑦2)
2  8/σ(𝑦2)

2  



B 8/σ2 8/σ(𝑦2)
2  8/σ(𝑦2)

2  

C 8/σ2 8/σ(𝑦2)
2  8/σ(𝑦2)

2  

AB 8/σ2 8/σ(𝑦2)
2  8/σ(𝑦2)

2  

AC 8/σ2 8/σ(𝑦2)
2  6/σ(𝑦2)

2  

BC 8/σ2 8/σ(𝑦2)
2  6/σ(𝑦2)

2  

ABC 8/σ2 0 6/σ(𝑦2)
2  

 

6.6 Self-Assessment Exercise 

Question-1: Analyze the following 23
 factorial design by determining the confounded 

treatment: 

Replicate – 1 

Block 1  1 nk np kp 

99 201 312 379 

Block 2  npk n k p 

408 98 260 306 
 

Replicate – 2 

Block 1 nk np 1 kp 

308 352 100 412 

Block 2  k n npk p 

251 87 452 378 
 

Replicate – 3 

Block 1 np nk 1 kp 

324 378 84 435 

Block 2  n npk p k 

135 456 378 272 
 

Replicate – 4 

Block 1 1 kp nk np 

99 201 312 379 

Block 2  npk p k n 

408 98 260 306 
 

 

Question-2: A 23 experiment with factors 𝑎, 𝑏, 𝑐 is to be conducted in 4 replicates consisting 

of two 4 plots blocks. Two experimenters conducted such 4- replicate experiments in two 

different farms – in one experiment ABC is totally confounded and in the other AB, AC, BC, 

and ABC are partially confounded. How will you make a combined analysis of this 

experiments? 

6.7 Summary 

This unit provides a brief overview of the confounding and partial confounding in the 

factorial experiments, focusing on the 23 and 24 factorial experiments and the concept of 

orthogonality.  
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Block & Units Introduction 

 

The Block - 3 – Advanced Theory of Design of Experiment is the last block of the said 

SLM, and it has three units.   

 

Unit – 7 – BIBD and PBIBD dealt with Balanced Incomplete Block Design (BIBD), 

Partially Balanced Incomplete Block Design (PBIBD), construction of BIBD and PBIBD, 

association schemes and construction, resolvable and affine resolvable design. 

 

Unit – 8 – Split and Strip Plot Design, comprises the Intra block and inter block 

analysis, Split Plot Design, Strip Plot Design.  

 

In Unit – 9 – Other Advanced Design, we have discussed the Dual and linked block 

design, Lattice Designs, Cross-over designs, optimal designs- optimal criteria, robust 

parameter design, response surface design – orthogonality, rotatability and blocking, weighing 

designs, mixture experiments  

 

At the end of every unit the summary, self-assessment questions and further readings 

are given.  

 

  



UNIT:7  BIBD & PBIBD 

Structure 

7.1 Introduction 

7.2 Objectives 

7.3 Balanced Incomplete Block Design (BIBD) 

 7.3.1     Parameter of BIBD 

7.3.2     Relationships among the Parameters of BIBD 

7.4 Balanced Design 

7.5 Analysis of BIBD 

 7.5.1       Intra Block Analysis of BIBD 

           7.5.1.1      Efficiency of BIBD relative of Randomized Block Design (RBD) 

           7.5.1.2     C-Matrix of a BIBD 

 7.5.2       Inter-Block Analysis of BIBD 

7.6 Resolvable BIBD 

7.7 Affine Resolvable BIBD 

7.8 Partially Balanced Incomplete Block Design (PBIBD) 

 7.8.1       Relationship among the Parameter of PBIBD 

7.9 Compounding BIBD 

7.10 Complementary PBIBD 

7.11 Self-Assessment Exercise 

7.12 Summary 

7.13 References 

7.14 Further Reading 

 

7.1 Introduction 

In certain experiments using randomized block designs, we may not be able to run all 

the treatment combinations in each block. Situations like this usually occur because of 

shortages of experimental apparatus or facilities or the physical size of the block. For this type 

of problem, it is possible to use randomized block designs in which every treatment is not 

present in every block. These designs are known as randomized incomplete block designs. 

When all treatment comparisons are equally important, the treatment combinations used in 

each block should be selected in a balanced manner, so that any pair of treatments occur 



together the same number of times as any other pair. Thus, a Balanced Incomplete Block 

Design (BIBD) is an incomplete block design in which any two treatments appear together an 

equal number of times. Suppose that there are a treatment and that each block can hold exactly 

k (k <a) treatments. A balanced incomplete block design may be constructed by taking 

(
𝑎
𝑘

) blocks and assigning a different combination of treatments to each block. Frequently, 

however, balance can be obtained with fewer than (
𝑎
𝑘

) blocks.  

Complete Block Design 

When the block size is equal to the number of treatments used in the design or in other 

words when all the treatments appear in each block only once, the block design is said to be a 

complete block design. 

Incomplete Block Design 

When the block size is less than the number of treatments, i.e., the block size is not 

equal to (but less than) the number of treatments, then we have an in complete block design. In 

other words, an incomplete block design is one in which the block size k is less than the number 

of treatments v, i.e., k <v. 

Equi-Replicate Design 

An incomplete block design is said to be equi-replicate if all the treatments are 

replicated the same number of times. 

Proper Design 

An incomplete block design is said to be proper if the block size k is same for all the 

blocks. 

Incidence Matrix 

Suppose v treatments are applied in b blocks each of size k, where k < v, then we have 

an incomplete block design. Now consider a matrix N with b rows and v columns with elements 

as the number of observations receiving the different treatments in different blocks, i.e. 

N = [

𝑛11 𝑛12 ⋯
𝑛21 𝑛22 ⋯
⋮ ⋮ ⋱

     
𝑛1𝑣

𝑛2𝑣

⋮
𝑛𝑏1 𝑛𝑏2    ⋯ 𝑛𝑏𝑣

], where nij is the number of observations receiving ith treatment in 

the jth block. Obviously nij = 1 or 0 according to the ith treatment is occurring in the jth block or 

not. 



Binary Design 

An incomplete block design is said to be a binary design, if the elements of the 

incidence matrix of the design takes only two values namely 0 or 1. 

 Now let the number of times the ith and lh treatments occurring together in all the blocks 

be denoted by λil, i.e., λil = the number of times the treatments i and l are appearing together in 

all the blocks. Then the parameters of an incomplete block design are b, k, v, r and λil, where r 

is the number of times each treatment is replicated or repeated. 

7.2 Objectives 

After going through this unit, you should be able to: 

• Understand the principles of Balanced Incomplete Block Design (BIBD) and Partially 

Balanced Incomplete Block Design (PBIBD), 

• Construct both BIBD and PBIBD, 

• Know about resolvable design and affine resolvable design. 

 

7.3 Balanced Incomplete Block Design (BIBD) 

In a confounded design, we sacrifice some or total information on any of the treatment 

combination to maintain the homogeneity. Sometimes, we come across the situation where all 

the treatment (combination) has equal importance. Then, we cannot afford to sacrifice 

information on any of them by confounding. In that type of situations, we use Balanced 

Incomplete Block Designs (BIBD). This design was first proposed by Yates in 1936. 

Here, incomplete blocks mean, a block which do not contain complete set of treatment. 

The use of incomplete blocks becomes necessary because as the no. of the treatments increases, 

the blocks size increases which results an increase the heterogeneity as well as the experimental 

error in a block. When the number of replications of all pairs of treatment in an incomplete 

block is the same than an important series of design known as Balanced Incomplete Block 

Design (BIBD). In this design all the treatment effects are estimated with equal precision. 

A BIBD is an arrangement of ‘v’ treatments in ‘b’ blocks of size ‘k’ each such that each 

treatment is repeated ‘r’ times and the no. of times any pairs of treatments accrue together in 

all the blocks is ‘λ’. (v, b, k, r and λ are known) as the parameter of the BIBD. 



7.3.1      Parameters of BIBD 

BIBD has five parameters as given below: 

v – Number of treatments in a replicate 

r – Number of replicates for each treatment 

b – Number of blocks (in r replicates) 

k – Block size or number of plots in each block 

λ – Number of blocks in which any pairs of treatments occur together or number of replications 

of each treatment pair. 

7.3.2  Relationships among the Parameters of BIBD  

The following are the relationship among the parameters of the BIBD: 

(i) bk = rv 

(ii) r(k-1) = λ (v-1) 

(iii) b ≥  v 

(iv) b ≥  r + v − k 

Proof: 

(i) The L.H.S. of bk = rv i.e., bk is the total no. of blocks in design and the R.H.S i.e., r.v gives 

the total no. of treatments which are to be used for the total no. of plots in the design 

consequently. L.H.S. = R.H.S. 

 

(ii) L.H.S. of the equation r(k-1) = λ(v-1) is r (k-1). Since the block size is k, therefore any 

treatment Ti accruing in a block will form (k-1) pair with other treatments. Also since each 

treatment is repeated r times, therefore the treatment Ti will be occurring in r blocks and 

consequently Ti will be forming r (k-1) pairs with other treatments i.e., we have r (k-1) total 

no. of pairs a treatment ti can form with other treatments. 

The R.H.S. is equal to λ (v-1). Since the total no. of treatments is V, therefore any 

treatment Ti, can form (v-1) pairs with other treatments. But since any treatment Ti can form 

only λ pairs with any other treatment, hence the total no. of pairs which any particular treatment 

Ti can forms with the rest of the treatment λ (v-1) i.e., λ (v-1) is equal to the no. of pairs which 

any treatment ti can form with the rest of the treatments. Hence r (k-1) = λ (v-1). 

 

(iii) For proving the 𝑏 > 𝑣 consider the incidence matrix 𝑁 of BIBD.  



𝑁 = 

(

  
 

𝑛11 𝑛12 𝑛𝑖𝑗 − − − 𝑛𝑖𝑝

𝑛21 𝑛22    𝑛2𝑗   − − −𝑛2𝑏

: : ∶    − − −−    ∶
𝑛𝑖1             𝑛𝑖2       𝑛𝑖𝑗 − − − 𝑛𝑖𝑏

:               ∶            ∶ − − −− ∶
𝑛𝑣1             𝑛𝑣2       𝑛𝑣𝑗 − − − 𝑛𝑣𝑏)

  
 

 

 

𝑁′ = 

(

  
 

𝑛11 𝑛12 𝑛𝑖𝑗 − − − 𝑛𝑖𝑝

𝑛21 𝑛22    𝑛2𝑗   − − −𝑛2𝑏

: : ∶    − − −−    ∶
𝑛𝑖1             𝑛𝑖2       𝑛𝑖𝑗 − − − 𝑛𝑖𝑏

:               ∶            ∶ − − −− ∶
𝑛𝑣1             𝑛𝑣2       𝑛𝑣𝑗 − − − 𝑛𝑣𝑏)

  
 

 

 

𝑁 𝑁′ = 

(

 
 

∑ 𝑛2
1𝑗

𝑏
𝑗=1 ∑ 𝑛𝑖𝑗𝑛2𝑗

𝑏
𝑗=1 …        ∑ 𝑛𝑖𝑗𝑛𝑣𝑗

𝑏
𝑗=1

∑ 𝑛2𝑗𝑛𝑖𝑗
𝑏
𝑗=1 ∑ 𝑛2

2𝑗
𝑏
𝑗=1 …        ∑ 𝑛2𝑗𝑛𝑣𝑗

𝑏
𝑗=1   

⋮                 ⋮          …              ⋮              
∑ 𝑛𝑣𝑗𝑛𝑖𝑗

𝑏
𝑗=1 ∑ 𝑛𝑣𝑗𝑛2𝑗

𝑏
𝑗=1 …          ∑ 𝑛𝑣𝑗

2𝑏
𝑗=1     )

 
 

  

 

∵ 𝑛𝑖𝑗
2 = 𝑛𝑖𝑗   𝑡ℎ𝑒𝑛 

 

𝑁 𝑁′ = 

(

 
 

∑ 𝑛𝑖𝑗
𝑏
𝑗=1 ∑ 𝑛𝑖𝑗𝑛2𝑗𝑗 …        ∑ 𝑛𝑖𝑗𝑛𝑣𝑗𝑗

∑ 𝑛2𝑗𝑛𝑖𝑗
𝑏
𝑗=1 ∑ 𝑛2𝑗𝑗 …        ∑ 𝑛2𝑗𝑛𝑣𝑗

𝑏
𝑗=1   

⋮                 ⋮          …              ⋮              
∑𝑛𝑣𝑗𝑛𝑖𝑗 ∑𝑛𝑣𝑗𝑛2𝑗 …          ∑𝑛𝑣𝑗    )

 
 

𝑣×𝑣

  

 

= (

𝑟 𝜆 …         𝜆
𝜆    𝑟 …         𝜆  

⋮     ⋮        …     ⋮   
𝜆 𝜆 …           𝑟    

) ; [
∵ ∑ 𝑛𝑖𝑗

𝑏
𝑗=1 = 𝑟 

∑ 𝑛𝑖𝑗
𝑏
𝑗=1 𝑛𝑖𝑙 = 𝜆

]  

 

= (

𝑟 − 𝜆 0 …        0
0    𝑟 − 𝜆 …         0  

⋮           ⋮        …            ⋮   
0               0     …           𝑟 − 𝜆    

) + (   

𝜆 𝜆 …         𝜆
𝜆    𝑟 …         𝜆  
⋮     ⋮     …     ⋮   

𝜆       𝜆 …           𝜆    

) 

 

= 𝐼𝑣(𝑟 − 𝜆) + 𝐽𝑣𝑣𝜆 

 

𝑤ℎ𝑒𝑟𝑒   𝐼𝑣 = ( 

1 0 …         0
0    1 …         0  
⋮     ⋮     …     ⋮   

0       0 …          1    

)

𝑣×𝑣

 𝑎𝑛𝑑 𝐽𝑣𝑣 = (   

1 1 …         1
1    1 …         1 
⋮     ⋮     …     ⋮  

1       1 …         1   

)  



 

𝐽𝑣𝑣 be square matrix of order 𝑣 × 𝑣 now consider the determinant of 𝑁 𝑁′
 

|𝑁 𝑁′
| = |

𝑟 𝜆 …         𝜆
𝜆    𝑟 …         𝜆  

⋮     ⋮        …     ⋮   
𝜆 𝜆 …           𝑟    

| 

Now adding (𝑣 − 1)𝜆 with the first row 

|𝑁 𝑁′
| = |

𝑟 + (𝑣 − 1)𝜆 𝑟 + (𝑣 − 1)𝜆 …         𝑟 + (𝑣 − 1)𝜆
𝜆    𝑟 …               𝜆  

⋮                    ⋮                         …                   ⋮   
𝜆              𝜆                               …                  𝑟    

| 

 

|𝑁 𝑁′
| = 𝑟 + (𝑣 − 1) |

1 1 …         1
𝜆    𝑟 …         𝜆 
⋮     ⋮     …     ⋮  
𝜆    𝜆 …         𝑟   

| 

 

Now multiplying first row by and subtracting it for the remaining rows. 

|𝑁 𝑁′
| = 𝑟 + (𝑣 − 1) |

|

1 1 1    − − −      1
0 𝑟 − 𝜆    0 − − − − − −0
0 0 𝑟 − 𝜆 − − − −0
:        :      ∶                        ∶ 
0      0      0 − − − −𝑟 − 𝜆

|
| 

 

= {𝑟 − (𝑣 − 𝑟)𝜆}(𝑟 − 𝜆)𝑣−1 

But from relation (ii) (𝑣 − 𝑟)𝜆 = 𝑟(𝑘 − 1) 

∴  |𝑁 𝑁′|{𝑟 + 𝑟(𝑘 − 1)}(𝑟 − 𝜆)𝑣−1 

= 𝑟 𝑘 (𝑟 − 𝜆)𝑣−1 ≠ 0 

𝑆𝑖𝑛𝑐𝑒|𝑁 𝑁′| ≠ 0, ∴ 𝑟𝑎𝑛𝑘 (𝑁 𝑁′) = 𝑣 = 𝑟(𝑁).  

 

(𝑖𝑣) 𝑇𝑜 𝑝𝑟𝑜𝑣𝑒 𝑏 ≥ 𝑟 + 𝑣 − 𝑘.  

Since we have 𝑏 ≥ 𝑟 and bk = rv  

∴ 𝑘 ≥ 𝑟𝑜𝑟𝑟 ≥ 𝑘 ⟹ 𝑟 − 𝑘 ≥ 0         (1) 

Also, since a BIBD is an incomplete block design, hence v>k⟹ v-k > 0    (2) 

From (i) & (ii) we have: 



(𝑟 − 𝑘) (𝑣 − 𝑘) ≥ 0. 

𝑜𝑟 (
𝑟

𝑘
− 1) (

𝑣

𝑘
− 1) ≥ 0   

 𝑜𝑟 
𝑟. 𝑣

𝑘2
−

𝑟

𝑘
−

𝑣

𝑘
+ 1 ≥ 0 

𝑜𝑟 
𝑏. 𝑘

𝑘2
−

𝑟

𝑘
−

𝑣

𝑘
+ 1 ≥ 0; (𝑠𝑖𝑛𝑐𝑒 𝑏𝑘 = 𝑟𝑣) 

𝑜𝑟 𝑏 − 𝑟 − 𝑣 + 𝑘 ≥ 0 

⟹ 𝑏 ≥ 𝑟 + 𝑣 − 𝑘 

Proved. 

Note: In case of BIBD if b-v the BIBD is known as the Symmetric BIBD 

 

Cor: - In a symmetric BIBD (i.e., b=v) and if v is even then (r-v) must be a perfect square. 

Proof: - Consider the incidence matrix  

𝑁 = (

𝑛11 … 𝑛𝑖𝑣

⋮ ⋮ ⋮
𝑛𝑣1 … 𝑛𝑣𝑣

) ; 𝑠𝑖𝑛𝑐𝑒 𝑏 = 𝑣 

 

𝑁 𝑁′ = (

𝑟 𝜆 …         𝜆
𝜆    𝑟 …         𝜆  
⋮     ⋮      …     ⋮   
𝜆 𝜆 …           𝑟    

) 

 

|𝑁 𝑁′
| = {𝑟 + (𝑣 − 1)𝜆}(𝑟 − 𝜆)𝑣−1 

  = {𝑟 + 𝑟(𝑘 − 1)}(𝑟 − 𝜆)𝑣−1 

= 𝑟𝑘 (𝑟 − 𝜆)𝑣−1 = 𝑟2(𝑟 − 𝜆)𝑣−1 

(𝑆𝑖𝑛𝑐𝑒 𝑏𝑘 = 𝑟. 𝑣 𝑜𝑟 𝑣𝑘 = 𝑟𝑣 ⟹ 𝑘 = 𝑟)  

𝑜𝑟 |𝑁 𝑁′| = |𝑁 | | 𝑁′|  

| 𝑁′
| = +𝑟(𝑟 − 𝜆)(𝑣−1)/2          (1) 

Since 𝑁  is a matrix of 0 and 1, hence determinent 𝑁  will be an integer from eqn (I) 

But if v is even then determinant 𝑁 will be an integer only when (𝑣 − 𝜆) is a perfect. 

Proved. 



7.4 Balanced Design 

A balanced design is a design in which all the elementary contrast are estimated with 

the same precision i.e. The var. of each elementary contrast is the same.  

 

Note:- In the case of BIBD we have seen that 𝑣(𝛼�̂� − 𝛼�̂�) =
2𝑘

𝜆𝑣
𝜎2; 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑖𝑛𝑑𝑒𝑒𝑝 𝑜𝑓 𝑖 & 𝑗, 

which means that 𝑣(𝛼�̂� − 𝛼�̂�) is same for all i and j it is in this sence we say that this is a 

Balanced Incomplete Block design.  

 

Theorem: In symmetrical BIBD the no of treatments common between any two block is λ. 

OR 

In symmetrical BIBD every block different from the first 2 block has exactly λ treatments 

common with the first block. 

Proof: Let ai be the no of treatments common to the first and ith block, then since each of the 

k treatment of first block occurs (r-1) times in the other blocks and hence 

∑ 𝑎𝑖𝑏
𝑖=2 = 𝑘(𝑟 − 1)      (1) 

Again, since each of the kC2 pairs of the treatments of the first block occurs (λ-1) times in the 

remaining blocks. 

∑ ai𝑐2
𝑏
𝑖=2  = (λ-1) (kc2) 

∑
𝑎𝑖(𝑎𝑖−1)

2
𝑏
𝑖=2  = 

(λ−1)𝑘(𝑘−1)

2
 

∑ 𝑎𝑖2𝑏
𝑖=2 − ∑ 𝑎𝑖𝑏

𝑖=2  = (λ − 1)𝑘(𝑘 − 1) 

∑ 𝑎𝑖2𝑏
𝑖=2  = (λ − 1)𝑘(𝑘 − 1)+ ∑ 𝑎𝑖𝑏

𝑖=2        (2) 

Let us consider: 

∑ (𝑎𝑖 − 𝜆)2𝑏
𝑖=2  = ∑ 𝑎𝑖2𝑏

𝑖=2 -2λ ∑ 𝑎𝑖𝑏
𝑖=2 + λ2 ∑ 1𝑏

𝑖=2  

= k(λ-1)(k-1)+ ∑ 𝑎𝑖𝑖 - 2λ ∑ 𝑎𝑖𝑖 + (b-1) λ2    using (1) 

= k(λ-1)(k-1)- (2λ-1) ∑ 𝑎𝑖𝑖 + (b-1) λ2    

= k(λ-1)(k-1)- (2λ-1). K(r-1) + (b-1) λ2   

= k(k-1) {λ-1- 2λ+1} + (b-1)λ2 



= -λk(k-1) + (b-1)λ2 

= -k(k-1) λ+ (t-1) λ2    {b=t for symmetric BIBD} 

= -k(k-1) λ + r(k-1) λ   {λ (t-1) = r(k-1)} 

= -k(k-1) λ + k(k-1) λ    {k=r for symmetric BIBD} 

= 0 

∑ (𝑎𝑖 − 𝜆)2𝑏
𝑖=2  = 0 

ai= λ 

Therefore, for symmetrical BIBD the no of treatment common between any two blocks is equal 

to no of pairs i.e., λ. 

7.5 Analysis of BIBD  

There are two types of analysis as follows: 

7.5.1 Intra-Block Analysis of BIBD  

 

Observation Table 

Treatments Blocks 

1 2 ------ j ---- b 

1 n11y11 n12y12 …… n1jy1j  n1by1b 

2 n21y21 n22y22 …… n2jy2j  n2by2b 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

i ni1yi1 ni2yi2 …… nijyij  nibyib 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

: 

v nv1yv1 nv2yv2 …… nvjyvj  nvbyvb 



Total 
∑𝑛𝑖𝑗𝑦𝑖𝑗

𝑣

𝑖=1

= 𝑇𝑜1 

∑𝑛𝑖2𝑦𝑖2

𝑣

𝑖=1

= 𝑇𝑜2 

…… 
∑𝑛𝑖𝑗𝑦𝑖𝑗

= 𝑇𝑜𝑗

𝑣

𝑖=1

 
 

∑𝑛𝑖𝑏𝑦𝑖𝑏

𝑣

𝑖=1

= 𝑇𝑜𝑏 

 

Totals = ∑ nijyij = T1o,
b
j=1  ∑ n2jy2j = T2o

b
j=1 . − − −Tio − − − Tvo  

Agreegate Total =  ∑ Tio =v
i=1 ∑ Toj =v

i=1 T00 = ∑ ∑ nijyijji   

Mathematical Model: 

𝑛𝑖𝑗𝑦𝑖𝑗
= 𝑛𝑖𝑗 (𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗) ;  𝑗 = 1,− − −𝑏; 𝑖 = 1; − − 𝑣 

Assumption: 

𝑒𝑖𝑗
′ 𝑠 𝑎𝑟𝑒 𝑖𝑖𝑑 ~𝑁(0, 𝜎2) 

Side condition =  ∑ 𝛼𝑖 =𝑖 ∑ 𝛽𝑗 = 0𝑗   

Unrestricted Residual Sum of Squares (RSS): 

𝑆𝑆𝐸 = ∑ ∑ 𝑒𝑖𝑗
2 =𝑗𝑖  𝑆𝑆𝐸 = ∑ ∑ 𝑛𝑖𝑗

2
𝑗𝑖 (𝑦𝑖𝑗 − 𝜇 − 𝛼𝑖 − 𝛽𝑗)

2
                          (𝑠𝑖𝑛𝑐𝑒 𝑛𝑖𝑗

2 = 𝑛𝑖𝑗) 

 

Differentiating this with respect to 𝜇 − 𝛼𝑖 − 𝛽𝑗 and equating them individually to zero.  

𝛾𝑆𝑆𝐸

𝜕𝜇
= 0 ⇒ ∑ ∑ 𝑛𝑖𝑗𝑗𝑖 (𝑦

𝑖𝑗
− 𝜇 − 𝛼𝑖 − 𝛽𝑗) = 0  

= ∑ ∑ 𝑛𝑖𝑗𝑗𝑖 𝑦𝑖𝑗 = ∑ ∑ 𝑛𝑖𝑗𝑗𝑖 𝜇 + 𝑟 ∑ 𝛼𝑖𝑖 + 𝑘 ∑ 𝛽𝑗𝑗   

(𝑆𝑖𝑛𝑐𝑒 ∑ 𝑛𝑖𝑗 = 𝑟 𝑎𝑛𝑑 ∑ 𝑛𝑖𝑗 = 𝑘𝑖𝑗 )  

𝑜𝑟 𝑇.. = 𝑏𝑘𝜇 = �̂� =
𝑇..

𝑏𝑘
= �̅�..        (i) 

𝛾𝑆𝑆𝐸

𝜕𝜇
= 0 = ∑ 𝑛𝑖𝑗

𝑏
𝑗=1 (𝑦

𝑖𝑗
− 𝜇 − 𝛼𝑖 − 𝛽𝑗)  

∑ 𝑛𝑖𝑗𝑗 𝑦
𝑖𝑗

= ∑ 𝑛𝑖𝑗𝑗  𝜇 + ∑ 𝛼𝑖𝑗 + ∑ 𝛽𝑗𝑗 𝑛𝑖𝑗  

𝑇𝑖𝑜 = 𝑟𝜇 + 𝑟𝛼𝑖 + ∑ 𝑛𝑖𝑗𝑗 𝛽𝑗          (ii) 

𝛾𝑆𝑆𝐸

𝜕𝛽𝑗
= 0 = ∑ 𝑛𝑖𝑗

𝑏
𝑗 (𝑦

𝑖𝑗
− 𝜇 − 𝛼𝑖 − 𝛽𝑗)  

∑ 𝑛𝑖𝑗𝑖 𝑦
𝑖𝑗

= ∑ 𝑛𝑖𝑗𝑖  𝜇 + ∑ 𝛼𝑖𝑖 𝑛𝑖𝑗 + ∑ 𝑛𝑖𝑗𝑖 𝛽𝑗  



𝑇𝑖𝑗 = 𝑘𝜇 + ∑ 𝑛𝑖𝑗𝑗 𝛼𝑖 + 𝑘𝛽𝑗         (iii) 

From (iii) the estimate of  𝛽𝑗 is 𝛽𝑗
˄ =

1

𝑘
(𝑇𝑜𝑗 − 𝑘𝜇 − ∑ 𝑛𝑖𝑗𝛼𝑖

𝑣
𝑖=1 ) substituting this equation (ii) we 

get: 

𝑇𝑖𝑜 = 𝑟𝜇 + 𝑟𝛼𝑖 + ∑ 𝑛𝑖𝑗𝑗  
1

𝑘
(𝑇𝑜𝑗 − 𝑘𝜇 − ∑ 𝑛𝑖𝑗𝛼𝑖

𝑣
ℎ=1 )  

=  𝑟𝜇 + 𝑟𝛼𝑖 +
1

𝑘
∑ 𝑛𝑖𝑗𝑇𝑜𝑗𝑗 − ∑ 𝑛𝑖𝑗𝑗 𝜇 −

1

𝑘
∑ 𝑛𝑖𝑗𝑗  ∑ 𝑛𝑖𝑗𝛼ℎ

𝑣
𝑙=1   

= 𝑟𝜇 + 𝑟𝜇 +
1

𝑘
∑ 𝑛𝑖𝑗

𝑏
𝑗=1 𝑇𝑜𝑗 − 𝑟𝜇 −

1

𝑘
{∑ 𝑛𝑖𝑗

2  𝛼𝑖 +𝑏
𝑗=1 ∑ ∑ 𝑛𝑖𝑗ℎ𝛼𝜆

𝑣
ℎ(≠𝑙)=1

𝑏
𝑗=1 }  

= 𝑟𝛼𝑖 +
1

𝑘
∑ 𝑛𝑖𝑗

𝑏
𝑗=1 𝑇𝑜𝑗 −

1

𝑘
{{∑ 𝑛𝑖𝑗

2𝑏
𝑗=1 𝛼𝑖 + ∑ ∑ 𝑛𝑖𝑗𝑛ℎ𝑗𝛼ℎ𝑣

ℎ(≠𝑙)=1
𝑏
𝑗=1 }  

𝑜𝑟 (𝑇𝑖𝑜 −
1

𝑘
∑ 𝑛𝑖𝑗

𝑏
𝑗=1  𝑇𝑜𝑗) 𝑜𝑟 (𝑇𝑖𝑜 −

1

𝑘
∑ 𝑛𝑖𝑗

𝑏
𝑗=1  𝑇𝑜𝑗) = 𝑟𝛼𝑖 −

1

𝑘
∑ 𝜆𝑖𝑗

𝑏
𝑗=1 𝛼𝑖 −

1

𝑘
∑ ∑ 𝑛𝑖𝑗

𝑣
ℎ≠𝑖=1 𝑛ℎ𝑗

𝑏
𝑗=1 𝛼ℎ   

𝑜𝑟 𝑄𝑖 − 𝑟𝛼𝑖 +
1

𝑘
∑ 𝑛𝑖𝑗

𝑏
𝑗=1 𝛼𝑖 +

1

𝑘
∑ {∑ 𝑛𝑖𝑗

𝑏
𝑗=1 𝑛ℎ𝑗} = 0𝑣

ℎ≠𝑖=1   

Where,  

𝑄𝑖 = 𝑇𝑖𝑜 −
1

𝑘
∑ 𝑛𝑖𝑗𝑛𝑔𝑗 =𝑏

𝑗=1 𝜆  

∴ 𝑄𝑖 − 𝑟𝛼𝑖 +
1

𝑘
𝑟𝛼𝑖 +

1

𝑘
𝜆 ∑ 𝛼ℎ = 0𝑣

ℎ(≠𝑖)=1    

𝑜𝑟 𝑄𝑖 − 𝑟 (1 −
1

𝑘
) 𝛼𝑖 +

𝜆

𝑘
[∑ 𝛼ℎ − 𝛼𝑖

𝑣
ℎ=1 ] = 0   

𝑜𝑟 𝑄𝑖 −
𝑟(𝑘−1)

𝑘
𝛼𝑖 +

𝜆

𝑘
[0 − 𝛼𝑖] = 0 (𝑠𝑖𝑛𝑐𝑒 ∑ 𝛼ℎ = 0𝑣

ℎ=1 )   

𝑜𝑟 𝑄𝑖 −
𝑟(𝑘−1)+𝜆

𝑘
 𝛼𝑖 = 0   

 𝑜𝑟 𝑄𝑖 −
𝜆(𝑣−1)

𝑘
𝛼𝑖 = 0 (𝑆𝑖𝑛𝑐𝑒 𝑟(𝑘 − 1) = 𝜆(𝑣 − 1))  

𝑜𝑟 𝑄𝑖 −
𝜆𝑣

𝑘
𝛼𝑖 = 0   

𝑜𝑟 𝑎�̂� =
𝑘

𝜆𝑣
 𝑄𝑖  

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑆𝑆𝐸 = ∑ ∑ 𝑛𝑖𝑗
𝑏
𝑗=1 (𝒴𝑖𝑗 − �̂� − 𝛼�̂� − 𝛽�̂�)

2𝑣
𝑖=1   

= ∑ ∑ 𝑛𝑖𝑗
𝑏
𝑗=1 𝑦𝑖𝑗(𝒴𝑖𝑗 − �̂� − 𝛼�̂� − 𝛽�̂�)

𝑣
𝑖=1   



(𝑠𝑖𝑛𝑐𝑒 𝑜𝑡ℎ𝑒𝑟 𝑡𝑒𝑟𝑚𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑧𝑒𝑟𝑜 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 𝑜𝑓 𝑛𝑜𝑟𝑚𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛) 

= ∑ ∑ 𝑛𝑖𝑗
𝑏
𝑗=1 𝑦𝑖𝑗

2 − �̂�  ∑ ∑ 𝑛𝑖𝑗𝑦𝑖𝑗 − ∑ ∑ 𝑛𝑖𝑗𝑦𝑖𝑗
𝑏
𝑗=1 − 𝛼�̂� −𝑣

𝑖−1
𝑏
𝑗=1

𝑣
𝑖=1

𝑣
𝑖=1

∑ ∑ 𝑛𝑖𝑗𝑦𝑖𝑗
𝑏
𝑗=1 − 𝛽�̂�

𝑣
𝑖−1   

= ∑ ∑ 𝑛𝑖𝑗𝑦𝑖𝑗
2 − �̂� 𝑇𝑜𝑜 − ∑ 𝑇𝑖𝑜𝑗 𝛼�̂� − ∑ ∑ 𝑛𝑖𝑗𝑦𝑖𝑗

𝑏
𝑗=1

𝑣
𝑖−1𝑗𝑖

1

𝑘
(𝑇𝑜𝑗 − 𝑘 �̂� −

∑ 𝑛𝑛𝑗𝛼ℎ
𝑣
ℎ=1 )  

= ∑ ∑ 𝑛𝑖𝑗𝑦𝑖𝑗
2 − �̂� 𝑇𝑜𝑜 − ∑ 𝑇𝑖𝑜

𝑣
𝑖=1 𝛼�̂� −

1

𝑘
∑ 𝑇𝑜𝑗

2 +𝑏
𝑗=1 �̂�𝑗 𝑇𝑜𝑜 +𝑖

1

𝑘
∑ 𝑇𝑜𝑗𝑗  ∑ 𝑛𝑖𝑗

𝑣
𝑖=1 𝛼𝑖 +

1

𝑘
  

= ∑ ∑ 𝑛𝑖𝑗𝑗  𝒴𝑖𝑗
2

𝑣 −
1

𝑘
∑ 𝑇𝑜𝑗

2
𝑗 − ∑ (𝑇𝑖𝑜 −

1

𝑘
∑ 𝑛𝑖𝑗𝑇𝑜𝑗𝑖 ) 𝛼�̂�𝑖   

𝑇ℎ𝑖𝑠 𝑤𝑖𝑙𝑙 ℎ𝑎𝑣𝑒 𝑏𝑘 − 𝑏 − (𝑣 − 1) = 𝑏𝑘 − 𝑏 − 𝑣 + 1 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚.  

𝑆𝑆𝐸∗ = ∑ ∑ 𝑛𝑖𝑗𝑗 (𝑦
𝑖𝑗

− 𝜇 − 𝛽𝑗)
2

𝑖   

= ∑ ∑ 𝑛𝑖𝑗𝑗 (𝑦𝑖𝑗 − 𝜇 − 𝛽𝑗)
2

𝑖   

#(𝑠𝑖𝑛𝑐𝑒 𝑤𝑜 𝑚𝑎𝑘𝑒 𝑎 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∑𝛼𝑖 = 0)  

Differentiating this with respect to 𝜇 and 𝛽𝑗 and equating them individually to zero. 

𝜕𝑆𝑆𝐸∗

𝜕𝜇
= 0 = ∑ ∑ 𝑛𝑖𝑗𝑗 (𝑦

𝑖𝑗
− 𝜇 − 𝛽𝑗)𝑖 = 0        (iv) 

𝜕𝑆𝑆𝐸∗

𝜕𝜇
= 0 = ∑ 𝑛𝑖𝑗 (𝑦𝑖𝑗

− 𝜇 − 𝛽𝑗)𝑖 = 0        (v) 

From equation (iv)we can write �̂� =
𝑇𝑜𝑜

𝑏𝑘
 and from (v) we have 𝑇𝑜𝑗 = 𝑘(𝜇 + 𝛽𝑗) 𝑜𝑟 �̂� +

𝛽𝑗 =
𝑇𝑜𝑗

𝑘
 

∴ 𝑆𝑆𝐸∗ = ∑ ∑ 𝑛𝑖𝑗𝑗 (𝑦𝑖𝑗 − �̂� − 𝛽𝑗)
2

𝑖   

= ∑ ∑ 𝑛𝑖𝑗𝒴𝑖𝑗𝑗 (𝑦𝑖𝑗 − �̂� − 𝛽𝑗)𝑖   

(Other terms being zero of normal equation (iv) & (v)) 

= ∑ ∑ 𝑛𝑖𝑗𝑗  𝒴𝑖𝑗
2

𝑖 − ∑ ∑ 𝑛𝑖𝑗𝒴𝑖𝑗𝑗
𝑇𝑜𝑗

𝑘𝑖   



= ∑ ∑ 𝑛𝑖𝑗𝑗  𝒴𝑖𝑗
2 −𝑖 ∑

𝑇𝑜𝑗
2

𝑘
 ;   𝑡ℎ𝑖𝑠 𝑤𝑖𝑙𝑙 ℎ𝑎𝑣𝑒 𝑏𝑘 − 𝑏 𝑑. 𝑓.𝑗   

∴ 𝑆𝑢𝑚 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 𝑑𝑢𝑒 𝑡𝑜 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 (𝑎𝑑𝑗) = 𝑆𝑆𝐸∗ − 𝑆𝑆𝐸 (𝑎𝑑𝑗𝑒𝑠𝑡𝑒𝑑)  

= ∑ ∑ 𝑛𝑖𝑗𝑗  𝒴𝑖𝑗
2 −𝑖 ∑

𝑇𝑜𝑗
2

𝑘𝑗 −= ∑ ∑ 𝑛𝑖𝑗𝑗  𝒴𝑖𝑗
2 −𝑖

1

𝑘
∑ 𝑇𝑜𝑗

2
𝑗 + ∑ 𝑄𝑖𝑗 𝛼�̂�  

= ∑ 𝑄𝑖𝛼𝑖𝑗   

It will have (v-1) d.f. 

 

ANOVA Table for Intra Block Analysis of BIBD 

 

Sources of 

Variation 

Degrees of 

Freedom 

Sum of Squares Mean Sum 

of Squares 

Variance 

Ratio 

Blocks 

(unadjusted) 

b-1 
𝑆𝑆𝐵 =

1

𝑘
∑𝑇𝑜𝑗

2 − 𝐶𝐹

𝑗

 
MSB  

Treatments 

(adj) 

v-1 𝑆𝑆𝑇 = ∑𝑄𝑖𝛼𝑖

𝑗

 𝑀𝑆𝑇 (adj) 
𝐹 =

𝑀𝑆𝑇

𝑀𝑆𝐸
 

Error bk-b-v+1 
𝑆𝑆𝐸 = ∑∑𝑛𝑖𝑗

𝑗

𝑦𝑖𝑗
2

𝑖

−
1

𝑘
∑𝑇𝑜𝑗

2

𝑗

− ∑𝑄𝑖𝛼𝑖

𝑗

 

MSE  

Total bk-j 𝑇𝑆𝑆 =  ∑∑𝑛𝑖𝑗

𝑗

 𝒴𝑖𝑗
2 −

𝑖

𝐶𝐹 
 

Note: - If b = v then 𝑁 𝑁′ = 𝑁′ 𝑁 and λ will be equal to the no. of treatments between any two 

blocks.  

𝑆𝑆𝑇(𝑎𝑑𝑗) = ∑ 𝑄𝑖𝛼𝑖𝑗    𝑤ℎ𝑒𝑟𝑒 𝑄𝑖 = 𝑇𝑖𝑜 −
1

𝑘
∑ 𝑛𝑖𝑗𝑗 𝑇𝑜𝑗   𝑎𝑛𝑑 𝛼�̂� =

𝑘

𝜆𝑣
 𝑄𝑖  

# 𝑉 = (𝑇𝑖𝑜)𝑣(∑ ∑ 𝑛𝑖𝑗𝒴𝑖𝑗𝑗𝑖 ) = 𝑣(∑ 𝑛𝑖𝑗𝑖 𝑒𝑖𝑗)  

= ∑ 𝑛𝑖𝑗𝑗  𝑣(𝑒𝑖𝑗) = ∑ 𝑛𝑖𝑗𝑗 𝜎2 = 𝑟 𝜎2  

𝑣(𝑇𝑜𝑗) = 𝑣(∑ 𝑛𝑖𝑗𝑗 𝑦𝑖𝑗) = ∑ 𝑛𝑖𝑗𝑗   𝑣(𝐶𝑖𝑗)  

Variance of the Difference Between Two Treatment Effects: 



If 𝛼𝑖 and 𝛼𝑗 are the ith and jth treatment effects then:  

𝛼𝑖 =
𝑘

𝜆𝑣
 𝑄𝑖, 𝛼𝑗 =

𝑘

𝜆𝑣
  𝑄𝑗  

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒:  

𝑣 (𝛼𝑖 − 𝛼𝑗) = 𝑣 (
𝑘

𝜆𝑣
 𝑄𝑖 −

𝑘

𝜆𝑣
 𝑄𝑗)  

= 
𝑘2

𝜆2𝑣2  𝑣𝑎𝑟 (𝑄𝑖 − 𝑄𝑗)  

= 
𝑘2

𝜆2𝑣2  𝑣𝑎𝑟 [𝑣( 𝑄𝑖) − 𝑣(𝑄𝑗) − 2 (𝑣(𝑄𝑖 − 𝑄𝑗))]   

𝑁𝑜𝑤 𝑄𝑖 = 𝑇𝑖𝑜 −
1

𝑘
 ∑ 𝑛𝑖𝑗𝑗  𝑇𝑜𝑗    

𝑜𝑟 𝑘 𝑄𝑖 = 𝑘 𝑇𝑖𝑜 − ∑ 𝑛𝑖𝑗𝑗  𝑇𝑜𝑗  

= (𝑘 − 1) 𝑇𝑖𝑜 − (∑ 𝑛𝑖𝑗𝑗  𝑇𝑜𝑗 − 𝑇𝑖𝑜)   

The expression ∑ 𝑛𝑖𝑗𝑗  𝑇𝑜𝑗 − 𝑇𝑖𝑜 is now the sum of rk-r = r(k-1) observations or treatments other 

than the ith treatment. Therefore,  

𝑣(𝑘𝑄𝑖) = 𝑘2𝑣(𝑄𝑖) =  (𝑘 − 1)2 𝑣 (𝑇𝑖𝑜) + 𝑣(∑ 𝑛𝑖𝑗𝑗  𝑇𝑜𝑗 − 𝑇𝑖𝑜)   

Since covariance terms will be zero. 

= (𝑘 − 1)2  𝑟𝜎2 + 𝑟 (𝑘 − 1) 𝜎2 

= 𝑟(𝑘 − 1)[𝑘 − 1 + 1] 𝜎2 

= 𝑟𝑘 (𝑘 − 1)𝜎2 

Therefore 𝑣(𝑄𝑖) =
𝑟𝑘 (𝑘−1)

𝑘2
 𝜎2  

=
𝑟 (𝑘−1)

𝑘
 𝜎2;  ∀𝑖  

To obtain covariance between Qi and Qj we have ∑ Qi
v
i=1 = 0, therfore we should 

have V(∑ Qi
v
i=1 ) = 0. 

𝑜𝑟 𝑤𝑒 ℎ𝑎𝑣𝑒 ∑𝑣(𝑄𝑖)

𝑣

𝑖=1

+ ∑ 𝑐𝑜𝑣

𝑖≠𝑗

(𝑄𝑖 − 𝑄𝑗) = 0 



 ∑
𝑟(𝑘 − 1)

𝑘
𝜎2 + 𝑉

𝑣

𝑖=1

(𝑣 − 1) 𝑐𝑜𝑣 (𝑄𝑖 − 𝑄𝑗) = 0  

𝑜𝑟 𝑐𝑜𝑣 (𝑄𝑖 − 𝑄𝑗) = −
𝑟 𝑣(𝑘 − 1)

𝑘 𝑣(𝑣 − 1)
 𝜎2 

 = −
𝑟 (𝑘−1)

𝑘 (𝑣−1)
 𝜎2 

 = −
𝜆 (𝑘−1)

𝑘 (𝑣−1)
 𝜎2 

  =  −
𝜆 

𝑘 
 𝜎2 

𝑤ℎ𝑒𝑟𝑒 𝜆 =  
𝑟 (𝑘 − 1)

 (𝑣 − 1)
 

∴ 𝑉(𝛼�̂� − 𝛼�̂�) =  
𝑘2

𝜆2𝑣2
[
𝑟(𝑘 − 1)

𝑘
𝜎2 +

𝑟(𝑘 − 1)

𝑘
𝜎2 +

2𝜆

𝑘
 𝜎2] 

= 
𝑘

𝜆2𝑣2
𝜎2 [2𝑟 (𝑘 − 1)𝜎2 + 2𝜆 𝜎2] 

= 
2𝑘

𝜆2𝑣2
𝜎2 [𝑟 (𝑘 − 1) + 𝜆] 

(𝑢𝑠𝑒 𝑟(𝑘 − 1) = 𝜆(𝑣 − 1)) 

=
2𝑘

𝜆2𝑣2
 [𝜆(𝑣 − 1) + 𝜆]𝜎2 

=
2𝑘

𝜆𝑣
𝜎2; 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 𝑜𝑓 𝑖 𝑎𝑛𝑑 𝑗. 

(This property is known as Balancing Property) 

7.5.1.1         Efficiency of BIBD Relative of Randomized Block Design (RBD)  

The efficiency of a design is defined as a ratio E= Vr/v (Vr/v) Where V is the Variance 

of the estimated intra block treatment elementary contrast for design using the same no. of 

experimental units, V and Vr be incomplete on the assumption that the intra block error variance 

is same in both cases.  

# 𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗, �̅�𝑖𝑜 = 𝜇 + 𝛼𝑖 + 𝑐𝑖𝑜 

�̅�
𝑜𝑜

= 𝜇 + �̅�00 



�̂�𝑖 = �̅�
𝑖𝑜

− �̅�
𝑜𝑜

 

𝑣(𝛼𝑖) = 𝑉(�̅�𝑖𝑜 − �̅�𝑜𝑜)  

= 𝑣(𝛼𝑖 �̅�𝑖𝑜 − �̅�𝑜𝑜)  

= 𝑣(�̅�𝑖𝑜) + 𝑣(�̅�𝑜𝑜) − 2(�̅�𝑖𝑜 − �̅�𝑜𝑜)  

In R.B.D. 𝑣(𝛼�̂� − 𝛼�̂�) = 𝑣(�̅�𝑖𝑜 − �̅�𝑜𝑜 − �̅�𝑗𝑜 − �̅�𝑜𝑜) 

= 𝑣(𝜇 + 𝛼𝑖 + �̅�𝑖𝑜 − 𝜇 − 𝛼𝑗 − �̅�𝑗𝑜) 

= 𝑣(�̅�𝑖𝑜) + 𝑣(�̅�𝑗𝑜) 

(The covariance term will be zero) 

= 
𝜎2

𝑟
+

𝜎2

𝑟
=

2𝜎2

𝑟
  

Hence 𝑣 = 𝑣𝑎𝑟(𝛼�̂� − 𝛼�̂�) =
2𝑘

𝜆𝑣
𝜎2 𝑎𝑛𝑑 𝑉𝑘 =  𝑣(𝛼�̂� − 𝛼�̂�) =

2𝜎2

𝑟
 

Then: 

𝐸 =  
𝑉𝑘

𝑉
=

2𝜎2

𝑟
×

𝜆𝑣

2𝑘𝜎2 =  
𝜆𝑣

𝑟𝑘
  

Also we have 𝑟(𝑘 − 1) − 𝜆(𝑣 − 1) 

∴  
𝜆

𝑟
=

(𝑘−1)

(𝑣−1)
   

∴ 𝐸 =
(𝑘−1)𝑣

𝑘(𝑣−1)
=

1

𝑘
(𝑘−1)

1

𝑣
(𝑣−1)

=
1−

1

𝑘

1−
1

𝑣

  

In a BIBD since v >k, 

1

𝑣
<

1

𝑘
  

∴ 1 −
1

𝑣
> 1 −

1

𝑘
  

Therefore, 𝐸 =
1−

1

𝑘

1−
1

𝑣

< 1  

Hence BIBD is less efficient than RBD. 

7.5.1.2 C-Matrix of a BIBD 



C matrix of an incomplete block design is given by: 𝑐 = ((𝑐𝑖𝑗)) ; 𝑖, 𝑗, = 1,− − − − 𝑣  

𝑊ℎ𝑒𝑟𝑒 𝐶𝑖𝑖 = 𝑛𝑖𝑖 −
∑ 𝑛𝑖𝑗

2
𝑗

𝑛𝑒𝑗
  𝑟 −

𝑟

𝑘
𝑎𝑛𝑑   

𝐂𝐢𝐥
𝒊≠𝒍

= ∑
𝒏𝒊𝒋

𝒏𝒐𝒋
𝒋 =  

−𝝀𝒊𝒍

𝒌
   

For a BIBD, 𝐶𝑖𝑖 = 𝑛𝑖𝑜 − ∑
𝒏𝒊𝒋

𝒏𝒐𝒋
𝒋   

= 𝑟 − ∑
𝒏𝒊𝒋

k
= r −

r

k𝒋   

= 𝑟 (1 −
1

𝑘
)  

𝑎𝑛𝑑 =  ∑
𝑛𝑖𝑗 𝑛𝑖𝑗

k𝑗 = 
−𝜆

𝑘
  

Hence the C- matrix is given by: 

𝐶 =

(

  
 

𝑟(𝑘−1)

𝑘

−𝜆

𝑘

−𝜆

𝑘
− − − −

−𝜆

𝑘
−𝜆

𝑘

𝑟(𝑘−1)

𝑘

−𝜆

𝑘
− − − −

−𝜆

𝑘
: : :                      ∶

−𝜆

𝑘
− − − − − − − − − − −

𝑟(𝑘−1)

𝑘 )

  
 

  

= (

𝑟 0 − − − − 0
0 𝑟 − − − − −0
: : − − − − −:
0   0                         𝑟

) −

(

  
 

𝑟

𝑘

𝜆

𝑘
− − − −

𝜆

𝑘
𝜆

𝑘

𝑟

𝑘
− − − −

𝜆

𝑘
: : :                      ∶
𝜆

𝑘
−

𝜆

𝑘
− − − − − −

𝑟

𝑘)

  
 

  

= 𝑟 (

1 0 − − − 0
0 1 − − − 0
: ; − − − :
0  0 − − − −1

) −
1

𝑘
 (

𝑟 𝜆 − − − − 𝜆
𝜆 𝑟 − − − − −𝜆
: : − − − − −:
𝜆   𝜆                         𝑟

)  

= 𝑟𝐼𝑣 −
1

𝑘
 𝑁 𝑁′  

 

7.5.2 Inter-Block Analysis of BIBD 

Inter block Analysis of BIBD is an analysis with recovery of inter block information. 

In this case mathematical model is: 

𝑦
𝑖𝑗

= 𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝐶𝑖𝑗;   𝑖 = 1 − − − 𝑣, 𝑗 = 1 − − − 𝑏 

Where,  



𝜇 be the general mean 𝛼𝑖 is additive effect due is ith treatment, eij are independent normal 

vitiates with mean zero and variance 𝜎𝑒
2, 𝑖. 𝑒. 𝑒𝑖𝑗  ~𝑁(0, 𝜎𝑒

2) 

𝛽𝑗 be the additive effect due to jth block and it is normally independently distributed with mean 

zero and variance 𝜎𝑏
2  𝑖. 𝑒. 𝛽𝑗

′𝑠 ~ 𝑁(0, 𝜎𝑏
2) 

Also 𝛽𝑗
′𝑠  are independent of 𝑒𝑖𝑗

′ 𝑠.  

 

Now equation (i) can be written as: 

𝑛𝑖𝑗 𝑦𝑖𝑗
= 𝑛𝑖𝑗  (𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗)        (ii) 

Summing (ii)over i, 

∑ 𝑛𝑖𝑗 𝑗 𝑦
𝑖𝑗

= ∑ 𝑛𝑖𝑗𝑖 𝜇 + ∑ 𝛼𝑖𝑛𝑖𝑗𝑖 + ∑ 𝛽𝑗𝑛𝑖𝑗𝑖 + ∑ 𝑛𝑖𝑗𝑗 𝑒𝑖𝑗  

Or, 

𝑇𝑜𝑗 = 𝑘𝜇 + ∑ 𝑛𝑖𝑗𝑗 𝛼�̂� + 𝑓
𝑗
, 𝑤ℎ𝑒𝑟𝑒 𝑓

𝑗
= 𝑘𝛽𝑗

̂ + ∑ 𝑛𝑖𝑗𝑖 𝑒𝑖𝑗  𝑎𝑛𝑑  

𝑓
𝑖
~𝑁(0, 𝜎𝑝

2) 𝑤ℎ𝑒𝑟𝑒 𝜎𝑓
2 − 𝑣 (𝑓

𝑗
) = 𝑘2𝑣 (𝛽𝑗) + ∑ 𝑛𝑖𝑗

2𝑣
𝑖=1 𝑣(𝑐𝑖𝑗)  

= 𝑘2 𝜎𝑝
2 + ∑ 𝑛𝑖𝑗

2𝑣
𝑖=1 𝜎𝑒

2  

= 𝑘2𝜎𝑏
2 + 𝜎𝑒

2  ∑ 𝑛𝑖𝑗𝑖 ;  (𝑆𝑖𝑛𝑐𝑒 𝑛𝑖𝑗
2 = 𝑛𝑖𝑗 = 1 𝑜𝑟 0)  

= 𝑘2𝜎𝑏
2 + 𝑘 𝜎𝑒

2  

= 𝑘(𝜎𝑒
2 + 𝑘 𝜎𝑏

2)  

Hence the Residual Sum of Square (RSS) is: 

∑ 𝑓
𝑗
2 =𝑏

𝑗 ∑ (𝑇𝑜𝑗 − 𝑘𝜇 − ∑ ℎ𝑖𝑗𝑖=1 𝛼�̂�)
2𝑏

𝑗=1   

Differentiating this w.r.t   𝜇 and𝛼𝑖 and equating to zero. 

∑ (𝑇𝑜𝑗 − 𝑘𝜇 − ∑ 𝑛𝑖𝑗𝛼𝑖
𝑣
𝑖=1 ) = 0𝑗          (iii) 

∑ 𝑛𝑖𝑗  𝑗 (𝑇𝑜𝑗 − 𝑘𝜇 − ∑ 𝑛𝑖𝑗𝑖 𝛼�̂�) = 0         (iv) 

From equation (iii): 

𝑇𝑜𝑜 = 𝑛𝑘𝜇 + 𝑟∑ 𝛼𝑖
𝑣
𝑖=1          (v) 

From equation (iv) we get: 



∑ 𝑛𝑖𝑗𝑇𝑜𝑗𝑗 = 𝑟𝑘𝜇 + ∑ 𝑛𝑖𝑗𝑗 ∑ 𝑛𝑗
𝑗ℎ 𝛼ℎ̂  

= 𝑟𝑘𝜇 + ∑ 𝑛𝑖𝑗
2

𝑗  𝛼�̂� + ∑ (∑ 𝑛𝑖𝑗  𝑛ℎ𝑗𝑗 )𝛼ℎ̂
𝑣
ℎ≠𝑖=1   

= 𝑟𝑘𝜇 + 𝑟𝛼�̂� + ∑ 𝜆𝛼ℎ̂
𝑣
ℎ≠𝑖=1     

𝑜𝑟 ∑ 𝑛𝑖𝑗𝑗 𝑇𝑜𝑗 = 𝑟𝑘�̂� + 𝑟𝛼𝑖 + 𝜆(∑ 𝛼ℎ̂
𝑣
ℎ=𝑖 − 𝛼𝑖)  

Using the restrichtion ∑ 𝛼𝑖 = 0𝑣
𝑖=1 , we have from above equation:  

�̂� =
𝑇𝑜𝑜

𝑏𝑘
 𝑎𝑛𝑑 𝑇𝑖

′ − 𝑟𝑘�̂� = (𝑟 − 𝜆)𝛼�̂� 𝑤ℎ𝑒𝑟𝑒 𝑇𝑖 = ∑ 𝑛𝑖𝑗 𝑇𝑜𝑗𝑗    

𝑜𝑟 𝛼�̂� =
𝑇𝑖

′−𝑟𝑘�̂�

(𝑟−𝜆)
=

𝑇𝑖
′−𝑟𝑘

𝑇𝑜𝑜
𝑏𝑘

𝑟−𝜆
=

𝑇𝑖
′−𝑟𝑘

𝑇𝑜𝑜
𝑏

𝑟−𝜆
  

Then 𝛼�̂� is known as Inter-Block estimate. 

ANOVA Table for Inter Block analysis of BIBD 

Sources of 

Variation 

Degrees 

of 

Freedom 

Sum of Squares Mean Sum of 

Squares 

Variance 

Ratio 

Blocks 

(adjusted) 

b-1 
∑

𝑇𝑜𝑗
2

𝑘
+ ∑𝑄𝑖𝛼𝑖

𝑖𝑗

− ∑
𝑇𝑜𝑗

2

𝑟
𝑖

 

𝑀𝑆𝐵 =
𝑆𝑆𝐵

𝑏 − 1
 𝐹1 =

𝑀𝑆𝐵

𝑀𝑆𝐸
 

Treatment 

(unadjusted) 

v-1 
∑

𝑇𝑖𝑜
2

𝑟
− 𝐶. 𝐹.

𝑣

𝑖=1

 𝑀𝑆𝑇 =
𝑆𝑆𝑇

𝑣 − 1
 𝐹2 =

𝑀𝑆𝑇

𝑀𝑆𝐸
 

Error bk-b-v+1 
∑∑ℎ𝑖𝑗 𝑦𝑖𝑗

2 −
1

𝑘
∑𝑇𝑜𝑗

2

𝑗

− ∑𝑄𝑖𝛼𝑖 

𝑀𝑆𝑇

=
𝑆𝑆𝐸

𝑏𝑘 − 𝑏 − 𝑣 + 1
 

 

Total bk-1 ∑ℎ𝑖𝑗𝑦𝑖𝑗
2 − 𝐶𝐹  

 

SSB (adj) + SST (un adj) = SSB (un adj) + SST (adj) 

For finding an estimate of 𝜎𝑏
2 

𝐸[𝑆𝑆𝐵(𝑎𝑑𝑗)] = 𝐸[𝑆𝑆𝐵 (𝑎𝑑𝑗)] = 𝐸 [∑
𝑇𝑜𝑗

2

𝑘
+

𝑘

𝜆𝑣
∑ 𝑄𝑖

2 − ∑
𝑇𝑜𝑜

2

𝑟𝑖𝑖𝑗 ] , (𝑤ℎ𝑒𝑟𝑒 𝛼�̂� =
𝑘

𝜆𝑣
𝑄𝑖)  



Since terms on R.H.S do not involve 𝜇 and 𝛼𝑖 hence for sampling we can assume that they are 

zero.  

∴ 𝐸(𝑆𝑆𝐵) =
1

𝑘
𝐸(∑ 𝑇𝑜𝑗

2
𝑗 ) +

𝑘

𝜆𝑣
𝐸(∑ 𝑄𝑖

2
𝑖 ) −

1

𝑟
𝐸(∑ 𝑇𝑜𝑜

2
𝑖 )  

=
1

𝑘
∑ 𝐸(𝑇𝑜𝑗

2)𝑗 +
𝑘

𝜆𝑣
∑ 𝐸(𝑄𝑖

2)𝑖 −
1

𝑟
∑ 𝐸𝑖 (𝑇𝑜𝑜

2)  

=
1

𝑘
∑ 𝑉(𝑇𝑜𝑗)𝑗 +

𝑘

𝜆𝑣
∑ 𝑣𝑖 (𝑄𝑖) −

1

𝑟
∑ 𝑣𝑖 (𝑇𝑖𝑜)  

=
1

𝑘
∑ (𝑘2𝜎𝑏

2 + 𝑘𝜎𝑒
2)𝑗 +

𝑘

𝜆𝑣
∑ 𝑟𝑖

(𝑘−1)

𝑘
 𝜎𝑒

2 −
1

𝑟
∑ (𝑟𝜎𝑏

2 + 𝑟 𝜎𝑒
2)𝑖   

= ∑ (𝜎𝑏
2 + 𝜎𝑒

2)𝑗 + 𝑟
(𝑘−1)

𝑘
∑ 𝜎𝑒

2
𝑖 = ∑ (𝜎𝑏

2 + 𝜎𝑒
2)𝑖   

# 𝑉(𝑇𝑖𝑜) = 𝑉(∑ 𝑛𝑖𝑗𝛽𝑗𝑗 + ∑ 𝑛𝑖𝑗𝑒𝑖𝑗𝑖 ) = ∑ 𝑛𝑖𝑗𝑗 𝑣(𝛽𝑗) + ∑ 𝑛𝑖𝑗𝑗 𝑣(𝑒𝑖𝑗)  

= 𝑟𝜎𝑏
2 + 𝑟𝜎𝑒

2 

# 𝐸(𝑇𝑜𝑗) = 𝐸(𝑘𝛽𝑗 + ∑𝑛𝑖𝑗 𝑒𝑖𝑗) = 0 

(ii)  we have 𝑄𝑖 = 0 = 𝐸(𝑄𝑖) = 0 

(iii) we have 𝑛𝑖𝑗 𝑦𝑖𝑗
= 𝑛𝑖𝑗𝛽𝑗 + 𝑛𝑖𝑗𝑐𝑖𝑗 = 𝑇𝑖𝑜 = ∑ 𝑛𝑖𝑗𝑗 𝑦

𝑖𝑗
= ∑ 𝑛𝑖𝑗𝛽𝑗 + ∑ ℎ𝑖𝑗𝑐𝑖𝑗𝑗𝑗  𝐸(𝑇𝑖𝑜) = 0 

 𝑊𝑒 𝑎𝑠𝑠𝑢𝑚𝑒 ∑𝛼𝑖

𝑖

=  ∑𝛽𝑗 = 0

𝑗

 𝑡ℎ𝑒𝑛 𝑣(𝑇𝑖𝑜) = 𝑉(𝑓𝑖) 

 

Now,  

= 𝑏𝑘 𝜎𝑏
2 + 𝑏𝜎𝑒

2 +
1

𝜆𝑣
 𝑣𝑟(𝑘 + 1)𝜎𝑒

2 − (𝑣𝜎𝑏
2 + 𝑣𝜎𝑒

2)  

= (𝑏𝑘 − 𝑣)𝜎𝑒
2 + {(𝑏 − 𝑣) +

1

𝜆
 𝜆(𝑣 − 1)} 𝜎𝑒

2  

= (𝑏𝑘 − 𝑣)𝜎𝑏
2 + (𝑏 − 1)𝜎𝑒

2   

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 

𝐸 (
𝑆𝑆𝐵(𝑎𝑑𝑗)

𝑏−1
) = 𝐸(𝑀𝑆𝐵(𝑎𝑑𝑗))  

= 
𝑏𝑘−𝑣

𝑏−1
 𝜎𝑏

2 + 𝜎𝑒
2  

𝐸(𝑀𝑆𝐵 − 𝑀𝑆𝐸) =
𝑏𝑘−𝑣

𝑏−1
 𝜎𝑏

2 + 𝜎𝑒
2 − 𝜎𝑒

2 = 
𝑏𝑘−𝑣

𝑏−1
 𝜎𝑏

2   



𝑜𝑟 

= 𝐸 [
𝑏−1

𝑏𝑘−𝑣
{𝑀𝑆𝐵 − 𝑀𝑆𝐸}] = 𝜎𝑏

2   

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝜎𝑏
2 = 𝜎�̂�

2 =
𝑏−1

𝑏𝑘−𝑣
{𝑀𝑆𝐵 − 𝑀𝑆𝐸}  

= 
𝑏−1

𝑛−𝑣
(𝑀𝑆𝐵 − 𝑀𝑆𝐸)  

𝑤ℎ𝑒𝑟𝑒 𝑁 = 𝑏𝑘 

7.6 Resolvable BIBD 

A BIBD with parameters v, r, b, k, and λ is said to be resolvable if the b blocks can be 

divided into r groups of b/r blocks each, b/r blocks forming any of these groups give a complete 

replication of all the v treatments. 

# (e.g., if b=8, r=4, b/r=2, i.e., 2 blocks occurring at least one) 

Evidently in the case of resolvable design b is a multiple of r.  

 

Theorem: - In a resolvable BIBD with parameters v, r, b, k, and λ  

b ≥ v + r − 1 

Proof: - Consider the incidence matrix N of this groups of columns each where any group of 

columns is such that; one occurs once and only once in each row of the group. By adding 1st, 

2nd ------(b/r-1)th column to the b/rth column of a group we obtain a column consisting of one 

only, as there are groups and for each of these groups and column add it to the same vector. 

We have: 

𝑣 = 𝑟𝑘 𝑜𝑓 (𝑁) = 𝑟(𝑁) 𝑎𝑛𝑑 𝑣 ≤ 𝑏 − (𝑟 − 1) = 𝑏 − 𝑟 + 1 

# 𝑜𝑓 𝑣 = 𝑐 𝑡ℎ𝑖𝑛  𝑁 =  

(

  
 

1 0 1 0 10
1 0 0 1 0 1
1 0 0 0 1 0
0 1 0 1 1 0
0 1 1 0 1 0
0 1 0 10 1)

  
 

  

Another Point: - Since the design is resolvable b/r must be an integer, say equal to n. i.e., b/r = 

n, (say) 

⟹𝑏 = 𝑟. 𝑛           (i) 

But for a BIBD, vr = bk 



⟹𝑣𝑟 = 𝑟𝑛𝑘 ⟹ 𝑣 = 𝑛𝑘         (ii) 

Also, for a BIBD 

𝑟 (𝑘 − 1) = 𝜆(𝑣 − 1) = 𝜆 (𝑛𝑘 − 1)  

⟹ 𝑟 =
𝜆(𝑛𝑘−1)

𝑘−1
=

𝜆 𝑛𝑘−1

𝑘−1
  

=
𝜆𝑛𝑘−𝜆−𝜆𝑛+𝜆𝑛

𝑘−1
=

𝜆𝑛(𝑘−1)+𝜆(𝑛−1)

𝑘−1
  

= 𝜆𝑛 +
𝜆(𝑛−1)

(𝑘−1)
  

𝜆𝑛 =
𝜆(𝑛−1)

𝑘−1
            (iii) 

Since r, 𝜆 and n are all integers, r- 𝜆𝑛 must be an integer and hence from equation (iii) must be 

an integer. 

Now, if possible, let 𝑏 < 𝑣 + 𝑟 − 1  

𝑖. 𝑒. 𝑏 − 𝑟 < 𝑣 − 1          (iv) 

⟹ 𝑟𝑛 − 𝑟 = 𝑟(𝑛 − 1) < 𝑣 − 1;  (from (i)) 

⟹ 𝑟(𝑛 − 1) <
𝑟(𝑛−1)

𝜆
;  [𝑆𝑖𝑛𝑐𝑒 𝑟(𝑘 − 1) = 𝜆(𝑣 − 1)]  

⟹ 𝑛 − 1 <
𝑘−1

𝜆
⟹

𝜆(𝑛−1)

𝑘−1
< 1  

Which is a contradiction to the fact that 
𝜆(𝑛−1)

𝑘−1
 is natural number (+ve integer). Hence the 

assumption is wrong. 

∴ 𝑏 ≥ 𝑣 + 𝑟 − 1 

7.7 Affine Resolvable BIBD 

A resolvable design is said to be affine resolvable if b=r+v-1 and any two blocks from 

deferent sets have k2/v treatments common where k2/v is an integer.   

Example: Consider the following data for the catalyst experiment and analyse it. 

Treatment 

(Catalyst) 

Block (Batch of Raw Material) 

1 2 3 4 yi. 



1 73 74 __ 71 218 

2 __ 75 67 72 214 

3 73 75 68 __ 216 

4 75 __ 72 75 222 

y.j 221 224 207 218 y.. = 870 

 

Solution: This is a BIBD with a = 4, b = 4, k = 3, r = 3, λ = 2 and N = 12.  

Total Sum of Square (TSS) =  ∑ ∑ 𝑦
𝑖𝑗
2   −  

𝑦..
2

12𝑗𝑖   = 63156  −  
8702

12
  =  81 

Block Sum of Square (SSB) = 
1

3
∑ 𝑦

.𝑗
24

𝑗=1   −   
𝑦..
2

12
 = 

=
1

3
[2212 + 2072 + 2242 + 2182] −

8702

12
= 55  

To compute the treatment sum of squares adjusted for blocks, we first determine the adjusted 

treatment totals as: 

𝑄1 = (218)  −  
1

3
(221 + 224 + 218)  =  

−9

3
  

𝑄2 = (214)  −  
1

3
(207 + 224 + 218)  =  

−7

3
  

𝑄3 = (216)  −  
1

3
(221 + 207 + 224)  =  

−4

3
  

𝑄4 = (222)  −  
1

3
(221 + 207 + 218)  =  

20

3
  

The adjusted sum of square for treatments is computed as:  

SSTr (Adjusted) = 
𝑘∑ 𝑄𝑖

24
𝑖=1

𝜆𝑎
  =  

3[(−9/3)2+(−7/3)2+(−4/3)2+(20/3)2]

2∗4
= 22.75 

Sum of Square due to Error (SSE) = TSS – SSTr (Adjusted) – SSB 

        = 81 – 22.75 – 55 = 3.25 

The analysis of variance (ANOVA) is shown in table below: 

Sources of 

Variation 

Degrees of 

Freedom 

Sum of 

Squares 

Mean Sum of 

Squares 

Variance 

Ratio 

Treatments (adjusted 

for blocks) 

3 22.75 7.58 11.66 



Blocks 3 55.00 _  

Error 5 3.25 0.65  

Total 11 81   

Because the FTab. = 5.4095 < FCal. = 11.66, we conclude that the catalyst employed has 

a significant effect on the time of reaction. 

7.8 Partially Balanced Incomplete Block Design (PBIBD) 

Balanced incomplete block design which was studied earlier are the most efficient 

among all connected incomplete block design in which each block has the same which each 

block has treatment is number of plots and each treatment is replicated the same no. of time. 

However, BIBD do not always exists and for certain only with an extremely large no. of 

replicates. 

Corrected Design 

An incomplete block design in which all the treatment contracts are estimable is known 

as a connected design. 

Partially balanced incomplete design (PBIBD) we used to overcome these difficulties. 

In this the number of replicates for each treatment can be made much smaller as compared. 

BIBD, However the design though connected is no longer balanced. i.e., All treatment contrasts 

of the type ti-tj are not estimate is the same variance. 

Association Schemes 

The concept of an association scheme is needed for the definition of PBIBD Given & 

symbols 1,2,------𝑣. We have an association scheme with m classes is the following conditions 

ae satisfy.  

(i) Any two symbols are either 1st, 2nd ----------- soon or mth association being symmetrical 

i.e. if the symbol 𝛼 has ni no. of ith associate, then 𝛽 is the ith associate of 𝛼 .  

(ii) Each symbol 𝛼  has ni no. of ith associates the no. ni being independent of 

𝛼(𝑖 = 1,− − − − −−,𝑚) 

(iii) If 𝛼 and 𝛽 are the ith associates, the no. of symbols that are jth associates of c and kth 

associates of 𝛽, is 𝑝𝑗𝑘
𝑖  and is independent of the pair of ith associates 𝛼 and 𝛽 .  

Ex. Consider the following arrangement of six symbols i.e., i-----6. 

   1   2   3 



   4   5   6 

With respect to each symbol the other symbols in the same row the first associates the one 

other symbol in the 2nd associate and the remaining two symbols are the IIIrd associate, 4th 

2nd associate and 5, 6 are the 3rd associate of the 1(one). 

Treatment   Ist associate  IInd associate  IIIrd associate 

1    2,3   4   4,6 

2    1,3   5   4,6 

3    1,2   6   4,5 

4    5,6   1   2,3 

5    4,6   2   1,3 

6    4,5   3   1,2 

𝑝23
′ = 1    𝑝13

′ = 2   𝛼 = 1    𝛽 = 4 

 

The result is a 3-class association scheme with n1= 2, n2= 1, n3 = 2. The method can be used 

to generate 3 class associate schemes for m×n symbols by arranging in m rows and n columns 

such schemes are called rectangular association scheme. 

Another example of a two-class association scheme is the triangular association scheme 

obtain by arranging Ѵ =
𝑛(𝑛−1)

2 
 symbols in n rows and columns are as follows:  

(i) The positions in the principal diagonal are left back. 

(ii) N(n-1)/2 above the principal diagonal are filled by the numbers 1---- 𝑣 corresponding to 

the symbols.  

(iii) The position below the principal diagonal is filled so as to maintain symmetry above the 

principal diagonal. 

The symbols entering in some row or columns with i are the first associate of i and rest are 2nd 

associate. Thus Ѵ = 6 =
𝑛(𝑛−1)

2 
⟹ 𝑛 = 4 

      ×                 1  2  3 

1  ×  4  5 

2  4  ×  6 

3  5  6   × 

 



The Ist and 2nd associates are as follows: 

Treatment   Ist associate   IInd associate 

1    2,3,4,5    6 

2    1,3,4,6    5 

3    1,2,2,6    4 

4    1,5,2,6    3 

5    1,3,4,6    2 

6    2,3,4,5    1 

 

PBIBD- Suppose the v treatments follow an m- association scheme, then we get a PBIBD 

with m association class if these v treatments are arrange into b blocks of size k(< Ѵ) such 

that: 

(i) Every treatment occurs at most once in a block. 

(ii) Every treatment occurs exactly r blocks 

(iii) If two treatments 𝛼 and 𝛽 are the ith associates, then they occure together   in 𝜆𝑖 

blocks, the no being independent of the particular pair of ith associates  𝛼 and 𝛽. 

The numbers Ѵ, b,r, 𝜆𝑖 , ni (i=1, ----,m) are known as the parameter of first kind and 

𝑝𝑗𝑘
𝑖 (𝑖, 𝑗, 𝑘 = 1,− − −−,𝑚) are known as the parameter of 2nd kind. 

7.8.1  Relationship among the Parameters of PBIBD  

(i) vr = bk 

Proof: - The R.H.S. given the total no. of plots in the design and the L.H.S. given the total 

no. of treatment which are to be used for the total no. of plots in the design consequently 

Ѵr = bk. 

(ii) ∑ 𝒏𝒊 = 𝒗 − 𝟏𝒎
𝒊=𝟏  

Proof: - Let us consider any particular treatment 𝛼 out of the v treatments and then we will 

be left this other v-1 treatments other than the one which was considered for m association 

scheme any treat will be either 1st associate or 2nd associate or so on up to nth associate of treat 



𝛼. Also, there are ni no of ith associate of treatment 𝛼, therefore v-1 will be equal to n1+n2+----

-+nm. 

(iii) ∑ 𝒏𝒊𝝀𝒊 = 𝒓(𝒌 − 𝟏)𝒎
𝒊=𝟏  

Where 𝜆𝑖 is the no. of times the ith associate of treatment 𝛼 occur together.  

Proof: - Let us consider r blocks in which a particular treat 𝛼 occurs from this block we 

can found r (k-1) pairs of treatments 𝛼 keeping as one of the treatments. Among these pairs, 

the ith associate of 𝛼 must occur 𝜆𝑖 times and there are ni numbers of ith associates of 

𝛼(𝑖 = 1,− − − − 𝑛𝑛). Hence ∑ 𝑛𝑖𝜆𝑖 = 𝑟(𝑘 − 1)𝑚
𝑖=1 . 

 

(iv) ∑ 𝒑𝒋𝒌
𝒊 = 𝒏𝒋 − 𝝏𝒊𝒋;𝒘𝒉𝒆𝒓𝒆 𝒎

𝒌=𝟏 𝝏𝒊𝒋 = {
𝟏;    𝒊𝒇  𝒊 = 𝟏
𝟎;    𝒊𝒇    𝒊 ≠ 𝒋

 

Proof: - Let 𝛼 and 𝛽 be the ith associate. In this case, the kth associates of 𝛼(𝑘 = 1 − − − −𝑛) 

should cover all the nj no. of jth associate of 𝛽. (𝑗 ≠ 𝑖). Thus: 

∑ 𝑝𝑗𝑘
𝑖 = 𝑛𝑗(𝑥 ≠ 𝑗)𝑚

𝑘=1  𝑖. 𝑒. 𝑝𝑗1
𝑖 + 𝑝𝑗2

𝑖 ± − − −𝑝𝑗𝑚
𝑖 = 𝑛𝑗  

In the previous example: j=1,  𝛼 =1,  𝛽 = 2  

𝑝11
2 = 4, 𝑝12

2 = 0, 𝑛1 = 4, 𝑖 ≠ 𝑗 

When i=j, 𝛼 itself will be one of the jth associates of 𝛽. Hence the kth associate of 𝛼 (k=1----

m), should cover all the nj-1 associates of 𝛽. Thus  

∑ 𝑝𝑗𝑘
𝑖 = 𝑛𝑗 − 1 𝑖𝑓 𝑖 = 𝑗 𝑚

𝑘=1   

Combining these we have the result: ∑ 𝑝𝑗𝑘
𝑖 = 𝑛𝑗 = 𝜕𝑖𝑗 

𝑚
𝑘=1  

(v) 𝒏𝒊 𝒑𝒋𝒌
𝒊 = 𝒏𝒋𝒑𝒊𝒌

𝒋   

Proof: - Consider a treat 𝛼, let Gi denote the set of ith associate of 𝛼. Each treatment in Gi 

has exactly 𝑝𝑗𝑘
𝑖  kth associates in Gj.  



#

[
 
 
 
 
𝛼 = 1, 𝛽 = 2   𝐺𝑖 = {2,3,4,5},     𝐺2 = {𝑏}

                    𝑗   𝐺𝑖 = {1,3,4,6},        𝐺2 = {5}

𝑘 = 1,2

𝑝𝑗𝑘
𝑖     𝑝21

1 = 0,   𝑝11
1 = 2

 

 

Similarly, each treatment in Gj has exactly 𝑝
𝑖𝑘
𝑗

 kth associates in Gi. Thus the no. of pairs of 

kth associates that can be obtained by taking one treatment from Gi and another from Gj is 𝑛𝑖 

𝑝𝑗𝑘
𝑖  on the one hand and on the other hand 𝑛𝑗𝑝𝑖𝑘

𝑗
 . Hence 𝑛𝑖 𝑝𝑗𝑘

𝑖 = 𝑛
𝑗
𝑝

𝑖𝑘
𝑗

. 

(vi) The number of independent parameters of the 2nd kind 𝒑𝒋𝒌
𝒊  𝒊, 𝒋, 𝒌 = 𝟏 − − − −𝒎 in 

the case of a PBIBD with m class (i.e., PBIBD(m)) is m(m2-1)/6 

Proof: - Let  

𝑃1 =

(

 
 

𝑝11
′ 𝑝1𝑚

′

𝑝21
′ 𝑝2𝑚

′

:         ∶
:          ∶

𝑝𝑚1
1    𝑝𝑚𝑚

′
)

 
 

,− − − − 𝑃𝑖 =

(

 
 

𝑝11
𝑖 𝑝1𝑚

𝑖

𝑝21
𝑖 𝑝2𝑚

𝑖

:         ∶
:          ∶

𝑝𝑚1
𝑖    𝑝𝑚𝑚

𝑖 )

 
 

,𝑃𝑚 =

(

 
 

𝑝11
𝑚 𝑝1𝑚

𝑚

𝑝21
𝑚 𝑝2𝑚

𝑚

:         ∶
:          ∶

𝑝𝑚1
𝑚    𝑝𝑚𝑚

𝑚
)

 
 

  

We know that:  

∑ 𝑝𝑗𝑘
𝑖 = 𝑛𝑗 = 𝜕𝑖𝑗 

𝑚
𝑘=1          (i) 

i.e., row tables of matrix Pi, i-1-----m are fixed (i.e., 𝑛𝑗 − 𝜕𝑖𝑗) Also we have  

𝑛𝑗𝑝𝑗𝑘
𝑖 = 𝑛𝑖𝑝𝑗𝑘

𝑖          (ii) 

on taking i=1, j=2 we have 𝑛1𝑝2𝑘
1 = 𝑛2𝑝1𝑘

2  

i.e. Once being determined the elements of the 2nd row of matrix P1, then the elements of 

1st row of P2 is known similarly if we know the 3rd row of P2, then the 2nd row of P3 is known 

i.e. for i=3, j=2 we have 𝑛2𝑝3𝑘
2 = 𝑛3𝑝2𝑘

3  and soon further, we observe that matrix Pi, i=1,---m 

are symmetric matrixes (i.e. 𝑝𝑗𝑘
𝑖 = 𝑝𝑗𝑘

𝑖 ), Let us consider the matrix P1. Since P1 is a symmetric 

matrix therefore the no. of independent parameters in the first row of P1 is m, in the 2nd row is 

(m-1), in the 3rd row is (m-2) and so on and in the mth row is 1(one). But we know from relation, 

we know that the row totals of Pi matrices are fixed. 

Therefore, instead of m independent parameters in the Ist row of P1, there will be only (m-

1) independent parameters. Similarly in the 2nd row of P1 there will be (m-2) instead of (m-1) 

independent parameter and in the 3rd row m=3 instead of m-2 independent parameter and so on 



and in the mth row zero independent parameters. Hence the no. of independent parameters in 

P1 = (m-1) + (m-2) + ------+1+0 =
𝑚(𝑚−1)

2
= 𝑚𝐶2

. 

Now consider the matrix P2 and observing from (ii) we know that the elements of 1st row 

can be determine form these of elements of 2nd row of P1. Hence there is no independent 

parameter in the first row of P2. Agreeing P1 we see that the no. of independent parameter in 

the 2nd row of P2 in m-2, the no. of independent parameter in 3rd row P2 is m-3 and no 

independent parameter in the mth row for P2 = (m-2) + ------+1+0 =
(𝑚−1)(𝑚−2)

2
= 𝑚 − 1𝐶2

. 

Similarly considering P3, we observe that the elements of the 1st row of P3 can be 

determined from the elements of 3rd row of P, and the elements of 2nd row of P3 from third row 

of P2, which means that there is no independent parameter either in the first row or in the 2nd 

row of P3. Arguing as about we see that the total no. of independent parameters in the 3rd row 

of P3 is m-3, in the 4th row m-4 and so on and in the mth row no independent parameter in the 

row. Hence the no. of independent parameter in P3 = (m-3) + ------+1+0 =
(𝑚−2)(𝑚−3)

2
=

𝑚 − 2𝐶2
. 

Arguing is the similarly manner the total no. of independent parameter in. 

𝑃𝑖 = 𝑚 − (𝑖 − 1)𝐶2
= 𝑚 − (𝑖 + 1)𝐶2

 

and  

𝑃𝑚−1 = 𝑚 − (𝑚 − 2)𝐶2
= 2𝐶2

= 1, 𝑃𝑚 = 0 

i.e., there are no independent parameters in Pm. Hence the total no. of independent 

parameters in P1, P2, -----Pm is:  

𝑚𝐶2
+ 𝑚 − 1𝐶2

+ 𝑚 − 2𝐶2
+ 3𝐶2

+ 2𝐶2
= ∑ 𝑚 − 𝑖𝐶2

=

𝑚−2

𝑖=0

𝑚(𝑚2 − 1)

6
     

Proved. 

7.9  Compounding BIBD 

Let S1, S2, ………Sb be the block of a BIBD with parameters u,  b, k, r and 𝜆 then if 𝑆𝑖
′
 

is said to be the complementary block of Si which contains elements i.e.  

𝑆𝑖
′ = {1, 2,− − −−,𝑣} − 𝑆𝑖 

Then the design form with the blocks  𝑆1
′ , 𝑆2

′ − − − −𝑆𝑏
′
 will form another BIBD known as the 

complementary of the original design with parameters V1 = V and b1=b , but r1, = b-r,   k1 = v-

k and 𝜆 1= b-2r + 𝜆. 



7.10   Complementary PBIBD 

For every arithmetically possible design with parameter of the first kind (i.e. b, r, v, k, 

𝜆, 𝜆2 − − − 𝜆𝑚, 𝑛1, 𝑛2, − − −𝑛𝑚) and the associated parameters of the 2nd kind 𝑝𝑗𝑘
𝑖  there is a 

complementary design with  the same no. of blocks and of treatment as before but having (v-

k) plots per block and b-r replications of each treatment the  𝜆𝑖
𝑠 of the design will be (b-2r) more 

than the 𝜆𝑖‘s of the first design. 

The ni’s and the 𝑝𝑗𝑘
𝑖  will be the same for both the designs.   

 

7.11 Self-Assessment Exercise 

1. Define a Balanced Incomplete Block Design (BIBD) and state the important relations 

among its parameters.  

2. Describe the analysis of Balanced Incomplete Block Design (BIBD) without recovery of 

inter-block information. 

3. Seven different hardwood concentrations are being studied to determine their effect on the 

strength of the paper produced. However, the pilot plant can only produce three runs each 

day. As days may differ, the analyst uses the balanced incomplete block design that follows. 

Analyze the data from this experiment (use α=0.05) and draw conclusions. 

Hardwood 

Concentration (%)  

      Days        

1  2  3  4  5  6  7  

2  114        120    117  

4  126  120        119    

6    137  117        134  

8  141    129  149        

10    145    150  143      

12      120    118  123    

14     136   130  127  

 

7.12 Summary 

This unit provides an overview of the concepts of Balanced Incomplete Block Design 

(BIBD) and Partially Balanced Incomplete Block Design (PBIBD), their construction and 

analysis as well as some different types of block designs such as resolvable design and affine 

resolvable design. 
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8.1 Introduction 

 The complete block designs, like completely randomised designs, randomized block 

designs and latin square designs are unsuitable if the number of varieties in varietal trials is 

large, say, exceeding ten. In factorial experiments, when the number of treatment combinations 

is large, the device of confounding is used to reduce the block size. The process ensures more 

precise estimation of lower order interactions at the cost of some of the less important higher 

order interactions which are confounded with the (incomplete) blocks. In varietal trials with no 

factorial structure of treatments comparison of all possible pairs of treatments are required to 

be estimated desirably with the same precision. Therefore, no contrast can be completely 

confounded with blocks as in factorial trials. It can be seen that precision of estimate of the 

difference between two treatments, more precisely effects of two treatments depends on the 

number of times these treatments occur in blocks, i.e., number of replications of two treatments. 

This fact has been used to construct designs for varietal or similar trials with large number of 

treatments so as to reduce the block size and hence obtain incomplete block designs. It is an 



experimental design, used to compare several treatments while dealing with constraints on 

resources, time, or space. This plan doesn't include every possible combination of treatments 

in every block and works well when it's not possible to run the whole set of treatments in each 

block, or when researchers want to lower the chance of mistakes and account for certain factors 

without completely randomizing the treatments. For example, consider a plant breeding 

experiment where different varieties of a crop need to be tested for yield. But because of room 

issues, it's not possible to grow all of them in the same place. With an incomplete block plan, 

varieties that need similar conditions for soil or climate could be put into blocks. Each block 

would have a subset of all the varieties. This design lets researchers test each variety while 

taking into account factors that are unique to each place. 

 Split-Plot Design and Strip-Plot Design are also two experimental design techniques 

used in scientific research, particularly in agriculture and industrial experiments. These designs 

are variants of the more common completely randomized design or randomized complete block 

design. A split-plot design is a type of experimental design that looks at the effects of more 

than one factor or treatment. It is especially useful when it's not possible to use all treatments 

on all experimental units because of time, space, or cost issues. This is often used in scientific 

study, like in agriculture, engineering, and industrial testing. Whereas, a strip-plot design is 

used to look into how different causes or treatments affect a population. This design is like a 

split-plot design, but it has some differences and can be used in different situations. For 

example, it can be used when it's not possible or cost-effective to apply all treatments to all 

experimental units and researchers want to control for certain factors or changes in the 

experimental area. 

 

8.2 Objectives 

After going through this unit, you should be able to: 

• Perform the Inter-Block and Intra-Block analysis of Incomplete Block Designs, 

• Construction and analysis of Split Plot Design, 

• Understand the concept of Strip Plot Design. 

 

8.3 Incomplete Block Design 



Let 𝑦
𝑖𝑗

 denote the observation receiving ith treatment in the jth block and let 𝑛𝑖𝑗 be the 

number of such treatments. Then the observation table in case of an incomplete block design 

is given by: 

Treatments Blocks 

1 2 ⋯ j ⋯ b 

1 𝑛11𝑦11
 𝑛12𝑦12

 ⋯ 𝑛1𝑗𝑦1𝑗
 ⋯ 𝑛1𝑏𝑦1𝑏

 

2 𝑛21𝑦21
 𝑛22𝑦22

 ⋯ 𝑛2𝑗𝑦2𝑗
 ⋯ 𝑛2𝑏𝑦2𝑏

 

⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ 

i 𝑛𝑖1𝑦𝑖1
 𝑛𝑖2𝑦𝑖2

 ⋯ 𝑛𝑖𝑗𝑦𝑖𝑗
 ⋯ 𝑛𝑖𝑏𝑦𝑖𝑏

 

⋮ ⋮ ⋮ ⋯ ⋮ ⋯ ⋮ 

v 𝑛𝑣1𝑦𝑣1
 𝑛𝑣2𝑦𝑣2

 ⋯ 𝑛𝑣𝑗𝑦𝑣𝑗
 ⋯ 𝑛𝑣𝑏𝑦𝑣𝑏

 

 

 Note that only k plots of each block is non-zero, while the rest of (v – k) plots are zero. 

The mathematical model is then given by: 

𝑛𝑖𝑗𝑦𝑖𝑗
 = 𝑛𝑖𝑗 (𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗), 

where 

𝜇 is the general mean, 𝛼𝑖 is the additive effect due to ith treatment, 𝛽𝑗 is the additive effect due 

to jth block, 𝑒𝑖𝑗
′ 𝑠 are the random effects which are assumed to be iid random variables distributed 

according to 𝑁(0, 𝜎2).  

 The mathematical model in case of an incomplete block design is a particular case of 

the model for a two-way classification with unequal number of observations per cell with no 

interaction between rows and columns and 𝑛𝑖𝑗 = 1 or 0. Here in the case of an incomplete block 

design, the additive effect 𝛽𝑗  may be a fixed effect or a random effect having certain 

distribution. In case  𝛽𝑗
′𝑠 are fixed effects, then we have Intra-Block Analysis (Analysis without 

recovery of inter-block information). If 𝛽𝑗
′𝑠 are random effects having certain distribution, then 

we have Inter-Block Analysis (Analysis with recovery of inter-block information). 

 

8.3.1 Intra-Block Analysis of an Incomplete Block Design  

 Intra block analysis is a special case of analysis of a two-way classification with 

unequal number of observations per cell. If 𝑛𝑖𝑗 denotes the number of observations in the (i, j)th 



cell of a two way classification, then the same analysis will hold for an incomplete block design 

with 𝑛𝑖𝑗 = 1 or 0 . The mathematical model is: 

𝑛𝑖𝑗𝑦𝑖𝑗
 = 𝑛𝑖𝑗 (𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗), 

where 

𝜇 is the general mean, 𝛼𝑖 is the additive effect due to ith treatment, 𝛽𝑗 is the additive effect due 

to jth block which is assumed to be fixed effect, 𝑒𝑖𝑗
′ 𝑠 are the random effects which are assumed 

to be iid random variables distributed according to 𝑁(0, 𝜎2). 

In a two-way classification with p rows and q columns and unequal number of 

observations per cell, we have:  

SSRows (adjusted) = ∑ 𝑄𝑖𝛼𝑖
𝑝
𝑖=1 , 

where  

𝑄𝑖 = 𝑇𝑖.. − ∑
𝑛𝑖𝑗𝑇.𝑗.

𝑛.𝑗

𝑞
𝑗=1   and 

𝑐𝑖1𝛼1 + 𝑐𝑖2𝛼2 + ⋯+ 𝑐𝑖𝑝𝛼𝑝 = 𝑄𝑖 with 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑝 =0. 

Here we have p = v, q = b, 

𝑛𝑖1 + 𝑛𝑖2 + ⋯+ 𝑛𝑖𝑏 = ∑ 𝑛𝑖𝑗
𝑏
𝑗=1  = r 

𝑛1𝑗 + 𝑛2𝑗 + ⋯+ 𝑛𝑣𝑗 = ∑ 𝑛𝑖𝑗
𝑣
𝑖=1  = k. 

Also, since 𝑛𝑖𝑗
2  = 𝑛𝑖𝑗 = 1 or 0, 

𝑐𝑖𝑖 = 𝑛𝑖. − ∑
𝑛𝑖𝑗

2

𝑛.𝑗

𝑏
𝑗=1  = 𝑛𝑖. − ∑

𝑛𝑖𝑗

𝑘
𝑏
𝑗=1  = 𝑛𝑖. −

𝑛𝑖.

𝑘
 = 𝑟 −

𝑟

𝑘
 = 𝑟 (1 −

1

𝑘
) = 

𝑟(𝑘−1)

𝑘
 and 

𝑐𝑖𝑙(𝑖 ≠ 𝑙) = −∑
𝑛𝑖𝑗𝑛𝑙𝑗

𝑛.𝑗

𝑏
𝑗=1  = −

1

𝑘
∑ 𝑛𝑖𝑗𝑛𝑙𝑗

𝑏
𝑗=1  = −

1

𝑘
𝜆𝑖𝑙, where 𝜆𝑖𝑙 is the number of times the ith and 

the lth treatments occur together in all the blocks.  

Thus, we have, 

𝑟(𝑘−1)

𝑘
𝛼𝑖 − ∑

𝜆𝑖𝑙

𝑘
𝛼𝑙

𝑣
𝑙(≠𝑖)=1  = 𝑄𝑖 and 𝛼1 + 𝛼2 + ⋯+ 𝛼𝑣 =0.     (A) 

Now 𝑇𝑖. = ∑ 𝑛𝑖𝑗𝑦𝑖𝑗
𝑏
𝑗=1  is the total yield for the ith treatment, 

          𝑇.𝑗 = ∑ 𝑛𝑖𝑗𝑦𝑖𝑗
𝑣
𝑖=1  is the total yield for the jth block and 

        𝑄𝑖 = 𝑇𝑖. − ∑
𝑛𝑖𝑗𝑇.𝑗

𝑛.𝑗

𝑞
𝑗=1  is the adjusted yield for the ith treatment.  



The adjustment being that we subtract the block average for those blocks where in the ith 

treatment occurs from the total yield of the ith treatment. Hence the Sum of Squares due to 

Treatments (adjusted) is equal to ∑ 𝑄𝑖𝛼𝑖
𝑣
𝑖=1  and 𝛼𝑖 is to be determined from the set of equations 

given in (A). 

ANOVA Table for Intra block analysis of an Incomplete Block Design 

Sources of 

Variation 

Degrees of 

freedom 

Sum of Squares Mean Sum of 

Squares 

Variance 

Ratio 

Treatment 

(adjusted) 

v – 1 S.S.T.= ∑ 𝑄𝑖𝛼𝑖
𝑣
𝑖=1  M.S.T.= 

𝑆.𝑆.𝑇.

𝑣−1
 F = 

𝑀.𝑆.𝑇

𝑀.𝑆.𝐸
 

Blocks 

(unadjusted) 

b – 1 S.S.B. = 
1

𝑘
∑ 𝑇.𝑗

2𝑏
𝑗=1 −  𝐶.𝐹. M.S.B.= 

𝑆.𝑆.𝐵.

𝑏−1
  

Error bk – v – 

b+1 

S.S.E.= ∑ ∑ 𝑛𝑖𝑗𝑦𝑖𝑗
2𝑏

𝑗=1
𝑣
𝑖=1 −

1

𝑘
∑ 𝑇.𝑗

2𝑏
𝑗=1 − ∑ 𝑄𝑖𝛼𝑖

𝑣
𝑖=1  

M.S.E.= 

𝑆.𝑆.𝐸

𝑏𝑘 – 𝑣 – 𝑏+1
 

 

Total bk – 1 T.S.S. =∑ ∑ 𝑛𝑖𝑗𝑦𝑖𝑗
2𝑏

𝑗=1
𝑣
𝑖=1 −  C.F.   

 

8.3.2 Inter-Block Analysis of an Incomplete Block Design  

The mathematical model is then given by:  

𝑛𝑖𝑗𝑦𝑖𝑗
 = 𝑛𝑖𝑗 (𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗)    (1) 

where 𝜇 is the general mean, 𝛼𝑖 is the additive effect due to ith treatment, 𝛽𝑗
′𝑠 are the 

additive effect due to jth block which are assumed to be iid random variables distributed 

according to 𝑁(0, 𝜎𝑏
2), 𝑒𝑖𝑗

′ 𝑠 are the random effects which are assumed to be iid random variables 

distributed according to 𝑁(0, 𝜎𝑒
2). Also 𝛽𝑗

′𝑠 are independent if 𝑒𝑖𝑗
′ 𝑠. 

Summing (1) over i, we get: 

∑ 𝑛𝑖𝑗𝑦𝑖𝑗
𝑣
𝑖=1  = ∑ 𝑛𝑖𝑗 (𝜇 + 𝛼𝑖 + 𝛽𝑗 + 𝑒𝑖𝑗)

𝑣
𝑖=1 . 

Or 𝑇.𝑗 = ∑ 𝑛𝑖𝑗𝜇 + ∑ 𝑛𝑖𝑗 𝛼𝑖
𝑣
𝑖=1

𝑣
𝑖=1 + ∑ 𝑛𝑖𝑗 𝛽𝑗 + ∑ 𝑛𝑖𝑗 𝑒𝑖𝑗

𝑣
𝑖=1  𝑣

𝑖=1               [since ∑ 𝑛𝑖𝑗
𝑣
𝑖=1  = k] 

= 𝑘𝜇 + ∑ 𝑛𝑖𝑗  𝛼𝑖
𝑣
𝑖=1 +  𝑘𝛽𝑗 + ∑ 𝑛𝑖𝑗 𝑒𝑖𝑗

𝑣
𝑖=1  

= 𝑘𝜇 + ∑ 𝑛𝑖𝑗  𝛼𝑖
𝑣
𝑖=1 + 𝑓𝑗 , 



where 𝑓
𝑗
 = 𝑘𝛽𝑗 + ∑ 𝑛𝑖𝑗 𝑒𝑖𝑗

𝑣
𝑖=1  are residuals, which are assumed to be iid variables each 

distributed as 𝑁(0, 𝜎𝑓
2), and 

𝜎𝑓
2 = 𝑉(𝑓𝑗) = 𝑉(𝑘𝛽𝑗 + ∑ 𝑛𝑖𝑗 𝑒𝑖𝑗

𝑣
𝑖=1 )  

= 𝑘2𝑉 (𝛽𝑗) + ∑ 𝑛𝑖𝑗
2𝑉( 𝑒𝑖𝑗

𝑣
𝑖=1 )   

= 𝑘2𝜎𝑏
2 + ∑ 𝑛𝑖𝑗𝜎𝑒

2𝑣
𝑖=1  = 𝑘2𝜎𝑏

2 + 𝑘𝜎𝑒
2. 

For estimating 𝜇 and 𝛼𝑖, we differentiate the sum of squares due to residuals 

 ∑ 𝑓
𝑗
2𝑏

𝑗=1  = ∑ (𝑇.𝑗 − 𝑘𝜇 − ∑ 𝑛𝑖𝑗 𝛼𝑖
𝑣
𝑖=1  )

2𝑏
𝑗=1  

with respect to 𝜇 and 𝛼𝑖 and equate to zero individually.  

Thus, 

𝛿(∑ 𝑓𝑗
2𝑏

𝑗=1 )

𝛿𝜇
 = −2𝑘 ∑ (𝑇.𝑗 − 𝑘𝜇 − ∑ 𝑛𝑖𝑗  𝛼𝑖

𝑣
𝑖=1  )𝑏

𝑗=1  = 0. 

Or ∑ (𝑇.𝑗 − 𝑘𝜇 − ∑ 𝑛𝑖𝑗 𝛼𝑖
𝑣
𝑖=1  )𝑏

𝑗=1  = 0 

⇒  𝑇.. − 𝑏𝑘𝜇 − ∑ (∑ 𝑛𝑖𝑗
𝑏
𝑗=1 )𝛼𝑖

𝑣
𝑖=1  = 0. 

Or  𝑇.. = 𝑏𝑘𝜇 + 𝑟 ∑ 𝛼𝑖
𝑣
𝑖=1    [since ∑ 𝑛𝑖𝑗

𝑏
𝑗=1  = r]. 

Now since ∑ 𝛼𝑖
𝑣
𝑖=1  = 0, we get an estimate of 𝜇 as �̂� = 

𝑇..

𝑏𝑘
  = �̅�

..
. 

Similarly, 
𝛿(∑ 𝑓𝑗

2𝑏
𝑗=1 )

𝛿𝛼𝑖
 = 0 gives: 

∑ 𝑛𝑖𝑗(𝑇.𝑗 − 𝑘𝜇 − ∑ 𝑛𝑖𝑗 𝛼𝑖
𝑣
𝑖=1  )𝑏

𝑗=1  = 0. 

Or ∑ 𝑛𝑖𝑗𝑇.𝑗
𝑏
𝑗=1  = 𝑘 ∑ 𝑛𝑖𝑗𝜇

𝑏
𝑗=1 + ∑ 𝑛𝑖𝑗 ∑ 𝑛ℎ𝑗𝛼ℎ

𝑣
ℎ=1

𝑏
𝑗=1  

                       = 𝑘 ∑ 𝑛𝑖𝑗𝜇
𝑏
𝑗=1 + ∑ 𝑛𝑖𝑗

2𝑏
𝑗=1 𝛼𝑖 + ∑ (∑ 𝑛𝑖𝑗𝑛ℎ𝑗)𝛼ℎ

𝑏
𝑗=1

𝑣
ℎ(≠𝑖)=1  

                        = 𝑘 ∑ 𝑛𝑖𝑗𝜇
𝑏
𝑗=1 + ∑ 𝑛𝑖𝑗

𝑏
𝑗=1 𝛼𝑖 + ∑ 𝜆𝑖ℎ

𝑣
ℎ(≠𝑖)=1 𝛼ℎ 

                        = 𝑘 ∑ 𝑛𝑖𝑗�̅�..
𝑏
𝑗=1 + 𝑟𝛼𝑖 + ∑ 𝜆𝑖ℎ

𝑣
ℎ(≠𝑖)=1 𝛼ℎ. 

This equation has to be solved for 𝛼𝑖 for obtaining an estimate of 𝛼𝑖, which is simpler if all the 

𝜆𝑖ℎ
′ 𝑠 are same. That will be the case of a Balanced Incomplete block design. 

 



8.4 Spilt Plot Design 

In field experiment, sometimes a factor has to be applied to a large experimental unit. 

This is true when different types of ploughing or irrigation have to be compared. In such cases, 

it is possible to introduce a second factor which does not require large plots, with a small 

number of levels into the same experiment, at a little extra cost. This is done by splitting the 

plots (called whole plots) of the first factor into as many subplots as there are levels of the 

second factor. 

 A split-plot design with an RBD for the first set of treatments (called whole-plot 

treatments) is done by applying the whole-plot treatments to the plots of each block and then 

randomizing. The second set of treatments (called the sub-plot treatments) is then applied to 

each of the whole-plots of the blocks. 

 The difference between the split-plot design and an ordinary two-factor experiment is 

that, while in the former case the randomization is done separately for the whole-plot treatments 

(of a block) and the sub-plot treatments (of a whole-plot), while in the latter all the treatment 

combinations of the factors are allotted at random to the plots of a block. 

 This enables us to test for the main effects of sub-plot treatments and the interaction of 

the whole-plot treatment and the sub-plot treatments more efficiently than the main effects of 

the whole-plot treatments in a split-plot design. On the other hand, the main effects and the 

interaction are all tested equally efficiently in the two-factor experiment in an RBD. 

 There is another interpretation of the split-plot design which brings out its similarity 

with a confounded design. If the sub-plots are considered as plots and the whole plots as blocks, 

we find that the differences among the whole plots are same as the differences among the levels 

of whole-plot treatments. So, this design may be said to have confounded the main effects of 

the whole-plot treatments. In this respect this design violates the earlier recommendation in 

that confounding in factorial experiments should preferably restricted to higher-order 

interactions. 

8.4.1 Layout 

 The p levels of the factor A are randomized according to the plan used in an RBD or an 

LSD. The q levels of the factor B are then randomized inside each whole-plot of factor A by 

dividing each whole plot into q sub plots. The randomization is carried out separately for each 

whole-plot of a block. 

 



8.4.2 Analysis 

 Suppose we have a factor A at p levels, which are arranged in an RBD using r blocks, 

and a second factor B at q levels are applied to each plot of a block after subdividing each plot 

into q subplots. So, there are p whole-plots in a block, q subplots in a whole-plot and there are 

r replications. 

The mathematical model used is: 

yijk = μ + αi + βj + eij + γk + δjk + eijk;     1) 

i = 1, 2, . . ., r; j = 1, 2, . . ., p; k = 1, 2, . . ., q, 

where μ is the general mean, αi is the additive effect due to ith replication, βj is the additive 

effect due to jth whole-plot, γk is the additive effect due to kth sub-plot of jth whole-plot, δjk is 

the additive effect due to interaction between to jth whole-plot and kth sub-plot, eij is the error 

for the RBD with only whole plot treatments and eijk is the error for the entire design, which 

are assumed to be iid variates each distributed as N (0, σ2). The side conditions are: 

i

i

  = j

j

 = k

k

 = 
jk

j
k





 = 
jk

k
j





  = 
ij

i
j

e



  = 
ij

j
i

e



  = 0. 

Then unrestricted residual sum of squares is given by: 

SSE = ∑ ∑ ∑ 𝑒𝑖𝑗𝑘
2

𝑘𝑗𝑖 = ∑ ∑ ∑ (𝑦
𝑖𝑗𝑘

− 𝜇 − 𝛼𝑖 − 𝛽𝑗 − 𝑒𝑖𝑗 − 𝛾𝑘 − 𝛿𝑗𝑘)
2

𝑘𝑗𝑖 . 

To estimate the parameters, we differentiate this with respect to 𝜇, 𝛼𝑖 , 𝛽𝑗, 𝑒𝑖𝑗, 𝛾𝑘  and 𝛿𝑗𝑘 and 

equate to zero individually. Thus, differentiation with respect to μ gives: 

∑ ∑ ∑ (𝑦
𝑖𝑗𝑘

− 𝜇 − 𝛼𝑖 − 𝛽𝑗 − 𝑒𝑖𝑗 − 𝛾𝑘 − 𝛿𝑗𝑘)𝑘𝑗𝑖 = 0 

⇒ 𝑇… −  𝑝𝑞𝑟𝜇 = 0   ⇒ �̂� =  
𝑇…

𝑝𝑞𝑟
= �̅�…. 

Differentiating with respect to 𝛼𝑖 gives: 

∑ ∑ (𝑦
𝑖𝑗𝑘

− 𝜇 − 𝛼𝑖 − 𝛽𝑗 − 𝑒𝑖𝑗 − 𝛾𝑘 − 𝛿𝑗𝑘)𝑘𝑗  = 0, ∀ 𝑖 =  1, 2, . . . , 𝑟 . 

⇒ 𝑇𝑖.. − 𝑝𝑞𝜇 − 𝑝𝑞𝛼𝑖 = 0 ⇒ �̂�𝑖 =   
𝑇𝑖..

𝑝𝑞
 – �̂�  = �̅�

𝑖..
− �̅�

…
. 

Differentiating with respect to 𝛽𝑗 gives: 

∑ ∑ (𝑦
𝑖𝑗𝑘

− 𝜇 − 𝛼𝑖 − 𝛽𝑗 − 𝑒𝑖𝑗 − 𝛾𝑘 − 𝛿𝑗𝑘)𝑘𝑖  = 0, ∀ 𝑗 =  1, 2, . . . , 𝑝 . 

⇒ 𝑇.𝑗. −  𝑞𝑟𝜇 − 𝑞𝑟𝛽𝑗 = 0 ⇒ �̂�𝑗 = 
𝑇.𝑗.

𝑞𝑟
 – �̂� = �̅�

.𝑗.
− �̅�

…
 . 



Differentiating with respect to 𝑒𝑖𝑗 gives: 

∑ (𝑦
𝑖𝑗𝑘

− 𝜇 − 𝛼𝑖 − 𝛽𝑗 − 𝑒𝑖𝑗 − 𝛾𝑘 − 𝛿𝑗𝑘)𝑘  = 0,  ∀ 𝑖 =  1, 2, . . . , 𝑟; 𝑗 =  1, 2, . . . , 𝑝 . 

⇒ 𝑇𝑖𝑗. −  𝑞𝜇 − 𝑞𝛼𝑖 − 𝑞𝛽𝑗 −  𝑞𝑒𝑖𝑗 = 0 ⇒ �̂�𝑖𝑗 = 
𝑇𝑖𝑗.

𝑞
  − �̂� − �̂�𝑖 − �̂�𝑗 

 =  �̅�
𝑖𝑗.

− �̅�
…

− �̅�
𝑖..

+ �̅�
…

− �̅�
.𝑗.

+ �̅�
…

  = �̅�
𝑖𝑗.

− �̅�
𝑖..

− �̅�
.𝑗.

+ �̅�
…

 . 

Differentiating with respect to 𝛾𝑘 gives: 

∑ ∑ (𝑦
𝑖𝑗𝑘

− 𝜇 − 𝛼𝑖 − 𝛽𝑗 − 𝑒𝑖𝑗 − 𝛾𝑘 − 𝛿𝑗𝑘)𝑗𝑖  = 0, ∀ 𝑘 =  1, 2, . . . , 𝑞. 

⇒ 𝑇..𝑘 −  𝑝𝑟𝜇 − 𝑝𝑟 𝛾𝑘 = 0 ⇒ �̂�𝑘 = 
𝑇..𝑘

𝑝𝑟
  − �̂� = �̅�

..𝑘
− �̅�

…
 . 

Differentiating with respect to 𝛿𝑗𝑘 gives: 

∑ (𝑦
𝑖𝑗𝑘

− 𝜇 − 𝛼𝑖 − 𝛽𝑗 − 𝑒𝑖𝑗 − 𝛾𝑘 − 𝛿𝑗𝑘)𝑖  = 0. 

⇒ 𝑇.𝑗𝑘 −  𝑟𝜇 − 𝑟𝛽𝑗 −  𝑟𝛾𝑘 −  𝑟𝛿𝑗𝑘 = 0 ⇒ �̂�𝑗𝑘 = 
𝑇.𝑗𝑘

𝑟
 – �̂� −  �̂�𝑗 − 𝛾𝑘 

= �̅�
.𝑗𝑘

− �̅�
…

− �̅�
.𝑗.

+ �̅�
…

− �̅�
..𝑘

+ �̅�
…

 = �̅�
.𝑗𝑘

− �̅�
.𝑗.

− �̅�
..𝑘

+ �̅�
…

. 

Hence, on substituting these estimates in (1), we get: 

𝑦
𝑖𝑗𝑘    = �̅�… + (�̅�𝑖..

− �̅�
…) + (�̅�

.𝑗.
− �̅�

…
) + (�̅�

𝑖𝑗.
− �̅�

𝑖..
− �̅�

.𝑗.
+ �̅�

…
) + (�̅�..𝑘

− �̅�
…)  

+ (�̅�
.𝑗𝑘

− �̅�
.𝑗.

− �̅�
..𝑘

+ �̅�
…
) + 𝑒𝑖𝑗𝑘. 

⇒ �̂�𝑖𝑗𝑘 = 𝑦
𝑖𝑗𝑘

   − �̅�𝑖𝑗.  − �̅�.𝑗𝑘 + �̅�
.𝑗.

. 

Let us call the sum of squares of this error (which is due to chance cause) as SSE2. Then: 

SSE2 = ∑ ∑ ∑ 𝑒𝑖𝑗𝑘
2

𝑘𝑗𝑖  = ∑ ∑ ∑ (𝑦
𝑖𝑗𝑘

   − �̅�
𝑖𝑗.

  − �̅�
.𝑗𝑘

 + �̅�
.𝑗.
)
2

𝑘𝑗𝑖 . 

This will have pqr – pr – pq + p = p(q – 1)(r – 1) degrees of freedom. 

Now consider: 

𝑦
𝑖𝑗𝑘

 − �̅�… = (�̅�
𝑖𝑗.

− �̅�
…
) + (𝑦

𝑖𝑗𝑘
 − �̅�

𝑖𝑗.
). 

Squaring both sides and summing over i, j and k, we have 

∑ ∑ ∑ (𝑦
𝑖𝑗𝑘

 − �̅�
…
)
2

𝑘𝑗𝑖  = ∑ ∑ ∑ (�̅�
𝑖𝑗.

− �̅�
…
)
2

𝑘𝑗𝑖  + ∑ ∑ ∑ (𝑦
𝑖𝑗𝑘

 − �̅�
𝑖𝑗.

)
2

𝑘𝑗𝑖  



Or  

Grand Total Sum of Squares (GTSS) = TSS (between whole plots) + TSS ( between sub-plots 

within whole plots) 

Also  �̅�
𝑖𝑗.

− �̅�
…

 = (�̅�𝑖..
− �̅�

…) + (�̅�
.𝑗.

− �̅�
…
) + (�̅�

𝑖𝑗.
− �̅�

𝑖..
− �̅�

.𝑗.
+ �̅�

…
) 

Squaring both sides and summing over i, j and k, we get: 

∑ ∑ ∑ (�̅�
𝑖𝑗.

− �̅�
…
)
2

𝑘𝑗𝑖 = ∑ ∑ ∑ (�̅�𝑖..
− �̅�

…)
2

𝑘𝑗𝑖 + ∑ ∑ ∑ (�̅�
.𝑗.

− �̅�
…
)
2

𝑘𝑗𝑖 +∑ ∑ ∑ (�̅�
𝑖𝑗.

− �̅�
𝑖..

− �̅�
.𝑗.

+𝑘𝑗𝑖

�̅�
…
)
2
 

TSS (between whole plots) = S.S.Replicate + S.S. Whole plot + SSE1, 

where SSE1 = ∑ ∑ ∑ �̂�𝑖𝑗
2

𝑘𝑗𝑖 ,  represents the sum of squares due to error (or chance cause) in case 

of an ordinary RBD without splitting the plots. 

This will have rp – 1 = (r – 1) + (p – 1) + (rp – r – p + 1) degrees of freedom. 

Again: 

𝑦
𝑖𝑗𝑘

 − �̅�
𝑖𝑗.
 = (�̅�..𝑘

− �̅�
…) + (�̅�

.𝑗𝑘
− �̅�

.𝑗.
− �̅�

..𝑘
+ �̅�

…
) + (𝑦

𝑖𝑗𝑘
   − �̅�

𝑖𝑗.
  − �̅�

.𝑗𝑘
 + �̅�

.𝑗.
). 

Squaring both sides and summing over i, j and k, we get 

∑ ∑ ∑ (𝑦
𝑖𝑗𝑘

 − �̅�
𝑖𝑗.

)
2

𝑘𝑗𝑖 = ∑ ∑ ∑ (�̅�..𝑘
− �̅�

…)
2

𝑘𝑗𝑖  + ∑ ∑ ∑ (�̅�
.𝑗𝑘

− �̅�
.𝑗.

− �̅�
..𝑘

+ �̅�
…
)
2

𝑘𝑗𝑖  +  

             ∑ ∑ ∑ (𝑦
𝑖𝑗𝑘

   − �̅�
𝑖𝑗.

  − �̅�
.𝑗𝑘

 + �̅�
.𝑗.
)
2

𝑘𝑗𝑖  

TSS (between sub-plots within whole plots) = S.S. Sub-plot + S.S. Interaction (Whole-plot × 

Sub-plot) + SSE2. 

This will have rp(q – 1) = (q – 1) + (pq – p – q + 1) + (pqr – rp – pq + p) 

      = (q – 1) + (p – 1)(q – 1) + p(q – 1)(r – 1) degrees of freedom. 

Hence the analysis of variance table is given by: 

8.4.3 ANOVA Table 
 



Sources of 

Variation 

Degrees of 

freedom 

Sum of Squares Mean Sum of 

Squares 

Variance 

Ratio 

Replication 

 

 

Whole-plot 

 

 

 

E1 

r – 1  

 

 

p – 1  

 

 

 

(r – 1)(p – 1) 

SSR 

= pq∑ (�̅�𝑖..
− �̅�

…)
2𝑟

𝑖=1  

 

SSWp 

= qr∑ (�̅�
.𝑗.

− �̅�
…
)
2𝑝

𝑗=1  

 

SS E1 

=∑ ∑ ∑ (�̅�
𝑖𝑗.

− �̅�
𝑖..

− �̅�
.𝑗.

+𝑘𝑗𝑖

 �̅�
…
)
2
 

MSR= 
𝑆𝑆𝑅

𝑟−1
 

 

MSWp =
𝑆𝑆𝑊𝑝

𝑝−1
 

 

MS E1 = 

𝑆𝑆𝐸1

(𝑟 − 1)(𝑝 − 1)
 

 

 

F1 =
MSWp 

MS 𝐸1
 

Total 

between 

whole-

plots 

 

rp – 1  

TSS (between whole plots) = 

∑ ∑ ∑ (�̅�
𝑖𝑗.

− �̅�
…
)
2

𝑘𝑗𝑖  

  

Sub-plots 

 

 

 

Interaction 

(Whole-

plot × Sub-

plot) 

 

 

E2 

q – 1  

 

 

 

 

(p – 1)(q – 1) 

 

 

 

 

S.S. Sp =  

rp∑ (�̅�..𝑘
− �̅�

…)
2𝑞

𝑘=1  

 

 

SSI = 

r∑ ∑ (�̅�
.𝑗𝑘

− �̅�
.𝑗.

− �̅�
..𝑘

+𝑘𝑗

 �̅�
…
)
2
 

 

 

SSE2 = 

M.S. Sp =  

𝑆. 𝑆. 𝑆𝑝

𝑞 − 1
 

 

MSI = 

𝑆𝑆𝐼

(𝑝 − 1)(𝑞 − 1)
 

 

 

MSE2 = 

𝑆𝑆𝐸2

𝑝(𝑞 − 1)(𝑟 − 1)
 

F2 =
M.S.Sp 

MS𝐸2
 

 

 

F2 = 
MSI

MS𝐸2
 



p(q – 1)(r – 

1) 

∑ ∑ ∑ (𝑦
𝑖𝑗𝑘

 − �̅�
𝑖𝑗.

− �̅�
.𝑗𝑘

 +𝑘𝑗𝑖

�̅�
.𝑗.
)
2
  

 

Total 

between 

sub-plots 

within 

whole-

plots 

 

pr(q – 1) 

TSS (between sub-plots within 

whole plots)  

= ∑ ∑ ∑ (𝑦
𝑖𝑗𝑘

 − �̅�
𝑖𝑗.

)
2

𝑘𝑗𝑖  

  

Grand 

total 

pqr – 1  
GTSS = ∑ ∑ ∑ (𝑦

𝑖𝑗𝑘
 − �̅�

…
)
2

𝑘𝑗𝑖  
  

 

Example: Consider a paper manufacturer who is interested in three different pulp preparation 

methods (the methods differ in the amount of hardwood in the pulp mixture) and four different 

cooking temperatures for the pulp and who wishes to study the effect of these two factors on 

the tensile strength of the paper. Each replicate of a factorial experiment requires 12 

observations, and the experimenter has decided to run three replicates. This will require a total 

of 36 runs. The experimenter decides to conduct the experiment as follows. A batch of pulp is 

produced by one of the three methods under study. Then this batch is divided into four samples, 

and each sample is cooked at one of the four temperatures. Then a second batch of pulp is made 

up using another of the three methods. This second batch is also divided into four samples that 

are tested at the four temperatures. The process is then repeated, until all three replicates (36 

runs) of the experiment are obtained. The data are shown in table below: 

Pulp Preparation  

Method 

Replicate-1 Replicate-2 Replicate-3 

1 2 3 1 2 3 1 2 3 
Temperature (°F) 

200 30 34 29 28 31 31 31 35 32 

225 35 41 26 32 36 30 37 40 34 

250 37 38 33 40 42 32 41 39 39 

275 36 42 36 41 40 40 40 44 45 



 

Solution: In this split-plot design we have 9 whole plots, and the preparation methods are 

called the whole plot or main treatments. Each whole plot is divided into four parts called 

subplots (or split-plots), and one temperature is assigned to each. Temperature is called the 

subplot treatment. 

yijk = μ + αi + βj + (αβ)ij + γk + (αγ)ik + (βγ)jk + (αβγ)ijk + eijk    

i = 1, 2, . . ., r; j = 1, 2, . . ., p; k = 1, 2, . . ., q 

where αi, βj and (αβ)ij represent the whole plot and correspond, respectively, to replicates, 

main treatments (factor A), and whole-plot error (replicates x A), and γk, (αγ)ik, (βγ)jk, and 

(αβγ)ijk represent the subplot and correspond, respectively, to the subplot treatment (factor B), 

the replicates x B and AB interactions, and the subplot error (replicates x AB). Note that the 

whole-plot error is the replicates x A interaction and the subplot error is the three-factor 

interaction replicates x AB. The sums of squares for these factors are computed as in the three-

way analysis of variance without replication. 

 

Sources of 

Variation 

Degrees of 

freedom 

Sum of 

Squares 

Mean Sum 

of Squares 

Variance Ratio 

FCal. FTab. 

Replicates 2 77.55 38.78    

Preparation 

method (A) 
2 128.39 64.2 7.08 

6.94 

Whole plot error 

(replicates A) 
4 36.28 9.07   

 

Temperature (B) 3 434.08 144.69 41.94 3.49 

Replicates B 6 20.67 3.45   

AB 6 75.17 12.53 2.96 3.00 

Subplot error 

(replicates AB) 
12 50.83 4.24  

 

Total 35 822.97      

 

8.5 Strip Plot Design 

In split plot design some factor requires smaller unit as compare to other and we can 

increase the precision on the factor B and factor AB such sacrifices some precision of A. in 

that design the factor A is lesser importance. However, sometimes we may have factors A and 

B each requiring larger units  



Example: If we compare different agricultural experiments and different spacing. 

Therefore, to accommodate both the factors in large units we use strip-plot design  

In this design we divide each replicate (Block) into a number of rows (same as number 

of levels of one factor i.e. A) and a number of columns (same as number of levels of other 

factors i.e., B). The rows and columns are called strips  

Let p levels of A are randomized in p rows and q levels of b in q columns of a replicate. 

Here a single entire column receives a single level of B. The allocation of A and B to the rows 

and columns will be a fresh for each of their replicates. Here since both factors are applied to 

the strips i.e., larger plots so the main effect of A and B will have lower precision as compared 

to interaction AB.  

In this design there are three errors for different effects. 

The ANOVA will be based on the following model: 

𝑦(𝑖𝑗𝑘) = 𝜇 + π𝑖 + α𝑗 + (πα)(𝑖𝑗) + β𝑘 + (𝜋𝛽)(𝑖𝑘) + (αβ)(𝑗𝑘) + (παβ)(𝑖𝑗𝑘) 

Where, 

 𝑦(𝑖𝑗𝑘) be the yield of plot receiving 𝑗(𝑡ℎ)
 level of A and k

(th)
 level of b in the 𝑖(𝑡ℎ)

 replicates 

(𝜋𝛼)(𝑖𝑗), (𝜋𝛽)(𝑖𝑘), (𝜋𝛼𝛽)(𝑖𝑗𝑘) are error which are independently normally distributed with mean 

zero and variance σ1
2 ,  𝜎2

2 and  𝜎3
2 respectively.  

𝛼𝑗, 𝛽𝑘, (𝛼𝛽)(𝑗𝑘) are fixed effect. 

 

8.5.1 ANOVA Table 
 

 

 

Sources of 

Variation 

Degrees of 

freedom 

Sum of 

Squares 

Mean Sum 

of Squares 

E(MS) 

Replication r – 1  SSR  

 

MSR 

 

 

Treatment  p – 1  SSA 

 

MSA  

 

σ𝑒′′
2 + 𝑞σ𝑒

2 + (𝑟𝑞/𝑝 − 1)∑τ𝑗
2 

Error I  

(𝑅 × 𝐴) 

(𝑟– 1)(𝑝– 1) SSE1 𝑀𝑆𝐸1 σ𝑒′′
2 + 𝑞σ𝑒

2 

Treatment (B) (q– 1) SSB 𝑀𝑆𝐵 σ𝑒′′
2 + 𝑝σ𝑒′

2 + (𝑟𝑝/𝑞

− 1)∑𝛾𝑘
2 

Error II (𝑟– 1)(q– 1) 𝑆𝑆𝐸2 𝑀𝑆𝐸2 σ𝑒′′
2 + 𝑝σ𝑒′

2  



(𝑅 × 𝐵) 

Interaction 

(𝐴 × 𝐵) 

(p– 1)(q– 1) SS(AB) 𝑀𝑆(𝐴𝐵) 𝜎𝑒′′
2 + 𝑟/(𝑝 − 1)(𝑞 − 1)

+ ∑∑𝛿(𝑗𝑘)
2  

 

Error II(𝑅 ×

𝐴 × 𝐵) 

(𝑟– 1)(𝑝– 1)(𝑞

− 1) 

𝑆𝑆𝐸3 

 

𝑀𝑆𝐸3 𝜎𝑒′′
2  

Total  (𝑟𝑝𝑞 − 1)  

 

8.6 Self-Assessment Exercise 

1. Define Incomplete Block Design (IBD). 

2. What is the need of Split Plot in a block design? 

3. What do you mean by Split Plot Design? How will you do the analysis of Split Plot Design? 

4. A process engineer is testing the yield of a product manufactured on three machines. Each 

machine can be operated at two power settings. Furthermore, a machine has three stations 

on which the product is formed. An experiment is conducted in which each machine is tested 

at both power settings, and three observations on yield are taken from each station. The runs 

are made in random order, and the results are shown in below table. Analyze this 

experiment, assuming that all three factors are fixed. 

Station Machine-1 Machine-2 Machine-3 

1 2 3 1 2 3 1 2 3 

Power 

Setting 1 

34.1 33.7 36.2 31.1 33.1 32.8 32.9 33.8 33.6 

30.3 34.9 36.8 33.5 34.7 35.1 33.0 33.4 32.8 

31.6 35.0 37.1 34.0 33.9 34.3 33.1 32.8 31.7 

Power 

Setting 2 

24.3 28.1 25.7 24.1 24.1 26.0 24.2 23.2 24.7 

26.3 29.3 26.1 25.0 25.1 27.1 26.1 27.4 22.0 

27.1 28.6 24.9 26.3 27.9 23.9 25.3 28.0 24.8 

 

8.7 Summary 

This unit provides an overview of the Inter-Block and Intra-Block analysis of 

Incomplete Block Designs (IBD), detailed analysis of Split Plot Designs and a brief 

introduction to Strip Plot Design. 
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9.1 Introduction 

 Advanced experimental designs such as such as Dual Block Design, Lattice Design, 

Cross-Over Design, Response Surface Design, Mixture Experiments etc. are sophisticated and 

specialized techniques used in scientific research to efficiently investigate the effects of 

multiple factors or treatments while controlling for various sources of variation. 

 In dual block designs, two different randomised full block designs are used together in 

one experiment which helps when there are two important factors, and each has its own set of 

control factors. Whereas, a linked block design is employed when the experimental units are 



organized into blocks with a specific structure or pattern. In clinical studies, cross-over designs 

are often used to see how different treatments affect the same group of people, often over more 

than one time period. Each person in the study gets each medicine at a different time. 

 Lattice designs are a way to make some types of resolvable incomplete block designs. 

These can be Balanced Incomplete Block (BIB) designs or Partially Balanced Incomplete 

Block (PBIB) designs, but some are not. Incomplete block designs are good and helpful when 

there are a lot of treatments and/or full blocks are not available or are not the right shape. Lattice 

designs were first used in large-scale agricultural studies (Yates, 1936) to compare a lot of 

different types of plants. Lattice designs are particularly valuable when resources are limited. 

 Response surface experiments are usually used in latter stages of experimentations, or 

after the important factors have been found, i.e., when a small group (usually between two and 

eight) of continuous factors that have been found as active are involved. It's used to show how 

the relationship between the factors and the outcome is curved. It lets us determine how to set 

our factors so that they have the least or most impact on a response or so that they optimize a 

specific objective. The design needs at least three levels for the factors in order to predict the 

curve. Because of this, reaction surface designs can get very big if the number of factors isn't 

limited. The goal is to make processes work better by making a model that can predict how the 

factors will affect the answer. 

 Mixture experiments are a type of response surface experiment. The goal of these 

experiments is to find more optimal response by combining ingredients in a certain way, either 

to maximize or minimize some property. For example, in construction of stainless steel, which 

is made up of Fe, Cu, Cr, and Ni, the qualities of the steel depend on the amounts of each 

component. The value of a factor is how much of the blend it makes up. Its value is between 0 

and 1. There are at least three factors in a mixture experiment, and the sum of their amounts is 

one (100%). Because of this, its experimental space is usually triangle and the shape of a 

simplex.  

9.2 Objectives 

After going through this unit, you should be able to: 

• Understand the basic concepts of Dual and Linked block designs, lattice design and cross-

over design, 

• Get an overview of optimal criteria for an optimal design, robust parameter design, 

• Know the concept of Response Surface Design, Weighing Design and Mixture Experiments.  



 

9.3 Dual Block Design 

A design obtained by interchanging the columns of the design by row, if the design is 

D, then dual would be 𝐷′
 

Let d be a connected GD design  

• A connected design is one which allows estimability of every treatment contrast. if you can 

reach from one treatment to other through links or chain of alternate links and track. 

𝜗 → 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑠, 𝑏 → 𝑏𝑙𝑜𝑐𝑘𝑠, 𝑟1, 𝑟2 … . 𝑟𝑣(𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠) 𝑘1, 𝑘2 ……𝑘𝑏(Block size) and 

incidence matrix N. 

𝑅 = 𝑑𝑖𝑎𝑔(𝑟1, 𝑟2 ……𝑟𝑣) 

𝑘 = 𝑑𝑖𝑎𝑔(𝑘1, 𝑘2 … . 𝑘𝑏) 

c = R − NK(−1)N′ 

A design is connected iff  

Rank (𝑐) = 𝜗 − 1 

𝑐𝑧 = 𝑄 

CI = C*(1 1 ….1)’ = 0 

𝑅𝑎𝑛𝑘(𝑐) < 𝜗 − 1  

Let d be a connected G.D. design and let 𝑁𝑑 be the incident matrix of d, then the eigen values 

of 𝑁𝑑𝑁𝑑
′
 and their multiplicities are: 

𝜃0 = 𝑟𝑘,𝛼0 = 1  

𝜃1 = 𝑟 − λ1, 𝛼1 = 𝑚(𝑚 − 1)  

𝜃𝑛 = 𝑟𝑘 − 𝜗λ2, 𝛼1 = 𝑚(𝑚 − 1)  

αi
′s are multiplicities and are integers (here we observe that  𝑁𝑑𝑁𝑑

′
 is real symmetric and 

hence 𝑁𝑑𝑁𝑑
′
 is positive definite and hence 𝜃1’𝑠 should be positive) 

For the GD designs, these can be classified into 3 groups  

i. Singular if 𝑟 = λ1 

ii. Semi-Singular if 𝑟 > λ1𝑎𝑛𝑑 𝑟𝑘 − 𝜗λ2 = 0 



iii. Regular if 𝑟 > λ1 and 𝑟𝑘 > 𝜗λ2 

9.4 Linked Block Design 

An incomplete block design is called a linked block design (LBD) if every pair of 

blocks intersects in a constant number of treatments.  

A square matrix A of order 𝑛 ∗ 𝑛 is called completely symmetric if 𝐴 = (α − β)𝐼𝑛 +

𝑏𝐽𝑛 for some scalars α 𝑎𝑛𝑑 β .𝐼𝑛 is an identity matrix of order n and 𝑗
𝑛
 is an 𝑛 ∗ 𝑛 

 Matrix of all ones. 

α β β ……. β 

β α β ……. β 

. 

. 

. 

. 

. 

. 

……. . 

. 

β β β ……. α 

     

If 𝐴(𝑛∗𝑛) is complete symmetric, then the eigne values of A are (𝛼 − 𝛽) with multiplicity 

(𝑛 − 1) and 𝛼 + (𝑛 − 1) ∗ 𝛽 with multiplicity 1.  

𝐴 = (α − β)𝐼𝑛 + β𝐽𝑛 

𝐴𝐼𝑛 = α + (n − p)β𝐼𝑛 

Hence 𝑑𝑒𝑡(𝐴) = (α − β)(𝑛−1)α + (𝑛 − 1)β 

If A is complete symmetric and invertible then 𝐴(−1)
 is also complete symmetric and is given 

by 𝐴(−1) = (𝑐 − 𝑑)𝐼𝑛 + 𝑑𝐽𝑛 

𝑤ℎ𝑒𝑟𝑒   𝑐 =  
(α+(𝑛−2)∗β)

(α−β){(α+(n−1)β))
 and  𝑑 =

(β)

(α−β){(α+(n−1)β))
 

Also 𝐴𝐴(−1) = 𝐼𝑛 

Lemma: A symmetric matrix A of order n is c.s. iff, A has only two distinct eigen values, one 

of these with multiplicity (n-1) and 𝐼𝑛 is an eigenvector corresponding to other eigen value. 

Proof: Let A be a symmetric matrix of order n and let A have only two distinct eigen values 

𝜃1 𝑎𝑛𝑑 𝜃2. Where 𝜃2 has multiplicity n-1 and 1𝑛 is an eigen vector corresponding to 𝜃1, then 

their exist an orthogonal matrix 

𝑢 = (𝑛−
1

2   1𝑛
′ ) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   

𝑢𝐴𝑢′ = (
𝜃1 0′

0 𝜃2𝐼𝑛−1
)  



∴ 𝐴 = 𝑢′𝑢𝐴𝑢′𝑢 = 𝜃1𝑛
−1𝐽𝑛 + 𝜃2𝑃

′𝑃  

= (𝜃1 − 𝜃2)𝑛
−1𝐽𝑛 + 𝜃2𝐼𝑛                   𝑆𝑖𝑛𝑐𝑒 {𝑃′𝑃 = 𝐼𝑛 − 𝑛−1𝐽𝑛} 

The converse is also true because of the previous result. 

For any matrix A the non-zero eigen values of AA’ and A’A are the same including the 

multiplicities. 

Result: Let d be a PBIBD with 𝑚(≥ 2) associates classes and parameters 

𝑣, 𝑏, 𝑟, 𝑘, 𝜆𝑖, 𝑛𝑖 , 𝑝𝑗𝑗
𝑖  (𝑖, 𝑗, 𝑠 = 1,2, ………𝑚). Then d is linked block design iff 𝑁𝑑𝑁𝑑

′
 has only 

two non-zero eigen values 𝜃0 = 𝑟𝑘 and 𝜃1, with respective multiplicities 𝛼0 = 1 𝑎𝑛𝑑 𝛼1 = 𝑏 −

1 (𝑁𝑑 is incidence matrix of d). 

Proof: Let d be a linked block design with intersection number u,  

then N’d*Nd =  

k µ µ ……. µ 

µ k µ ……. µ 

. 

. 

. 

. 

. 

. 

……. . 

. 

µ µ µ ……. k 

 

(𝑘 − 𝑢)𝐼𝑛 + 𝑢𝐽𝑛 

Therefore, the eigen values of 𝑁𝑑
′ 𝑁𝑑 are 𝜃1 = 𝑘 − 𝑢 with multiplicity b-1 and 𝜃0 = 𝐾 +

(𝑏 − 1)𝑢 with multiplicity 1. 

k = (b-1)*u is obtained by taking row sum. 

Now 

𝑁𝑑
′ 𝑁𝑑  1𝑑  = 𝑘 + (𝑏 − 1)𝑢 

∴ {𝑘 + (𝑏 − 1)𝑢 }1𝑛 = 𝑁𝑑
′𝑁𝑑1𝑣 

= 𝑟𝑁𝑑
′1𝑣 

   = 𝑟𝑘 1𝑛 

𝑘 + (𝑏 − 1)𝑢 = 𝑟𝑘 

Conversely; let d be a PBIBD with block size K and replication r such that 𝑁𝑑𝑁𝑑
′
 has only two 

non-zero eigen values 𝜃0 = 𝑟𝐾 with multiplicity 1 and 𝜃1with multiplicity b-1. 



Then 𝑁𝑑𝑁𝑑
′
 has only two non-zero eigen values 𝜃0  𝑎𝑛𝑑 𝜃1, the multiplicity of 𝜃1being b-1 

(since 𝑁𝑑
′ 𝑁𝑑 is a 𝑏 × 𝑏 matrix). Also, since 𝑁𝑑

′ 𝑁𝑑
′  1𝑏 = 𝑟𝐾 1𝑏; 1𝑏 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 

corresponding to 𝜃0. 

Thus, improving the lemma, we see that 𝑁𝑑
′ 𝑁𝑑 is c.s. and is given by: 

𝑁𝑑
′ 𝑁𝑑 = (𝐾 − 𝜃1)𝐼𝑏 + 𝜃1𝐼𝑏 

This shows that all the non-diagonal elements of 𝑁𝑑 are 𝜃1 hence ‘d’ is a linked block design. 

9.5 Lattice Design 

Consider a BIBD with k2 (i.e., v=k2) treatments (k is block size) arranging    b = k (k+1) 

blocks with k runs per block and r= k+1 replicates. Such a design is called a balanced Lattice. 

An example is shown in the following table for k2 = 9 treatments in 12 blocks of three runs 

each.  

Notice that the blocks can be grouped into sets such that each set contains a complete 

replicate. The analysis of variance for the balance Lattice design proceeds like that go BIBD, 

except that the S.S. for replicates is computed and removed from the S.S, for blocks replicate 

will have k d.f. and blocks will have k2-1 d.f. 

Table: - A 3 × 3 balanced Lattice design. 

Block Replicate-I Block Replicate-II 

1 1   2   3 4 1   4   7 

2 4   5   8 5 2   5   8 

3 7   8   9 6 3   8   9 

Block Replicate-III Block Replicate-IV 

7 1   5   9 10 1   8   6 

8 7   2   6 11 4   2   9 

9 4   8   3 12 7   5   3 

 

Lattice Designs are frequently used in situations where there is a large number of 

treatment combinations. In order to reduce the size of the design, the experimenter may resort 

to partially balanced Lattices we briefly described some of these designs here. Two replicates 

of a design for k2 treatments in 2k blocks, (i.e., v=k2, b= 2k) of k runs each is called a simple 

Lattice, e.g., consider the first two replicates of the above design. The partial balance is easily 

seen, as for example treatment 2 appears in the same block with treatment 1, 3, 5, & 8, but does 



not appear at all with treatment 4, 6, 7 and 9. A Lattice design with k2 treatment in 3k blocks 

(i.e., b = 3k) grouped into three replicates is called a triple Lattice. An example would be the 

Ist three replicates in the above table.  

A Lattice arranged in 4 replicates is called a quadruple Lattice. 

There are a number of other types of Lattice design that occasionally true useful for 

example the cubic Lattice design can be used for v=k3 treatments in k2 blocks (i.e., b = k2) of 

k runs each. A Lattice design for v=k (k+1) treatments in (k+1) blocks (i.e., b= (k+1)) of size 

k is called a rectangular Lattice.  

9.6 Cross-Over Design 

 In some cases, it is desirable to apply two or more treatments consecutively to the same 

experimental unit. In dairy animal husbandry, for example, two or more feeds maybe given one 

after the other to the same animal. Experiments which involve the sequential application of 

several treatments to the same experimental unit are called change-over-trials. 

Suppose we want to compare the effect of two treatments a and b, over time periods 1 

and 2, viz, the intake of a at 1 followed by that of b at 2 (i.e., the sequence a-b) with the intake 

of b at 1 followed by that of a at 2 (the sequence b-a), on a number of experimental units. When 

two or more treatments are applied in sequence to the same experimental unit it is reasonable 

to assume that the response to the second and subsequent treatments maybe affected by the 

preceding treatments in the sequence. Such conditioning effects are called carry-over or 

residual effects. The carry-over effect can be minimized or eliminated by allowing a long 

enough rest period between administration of two treatments. Thus, carry-over effects may or 

may not exist depending on the nature of experiment. When they exist, we assume that the 

carry-over effects in any period are entirely due to the immediately preceding treatment. Thus, 

if the treatments are applied in the sequence a-b-c, then at period 2 there is a carry-over effect 

ra of a and at period 3 there is a carry-over effect rb of b only. Our problem is to estimate and 

test the direct (𝜏𝑎, 𝜏𝑏, . . . . ) and carry-over effects (ra, rb, …). The sum of direct effect and carry-

over effect is called permanent effect or equilibrium effect of the treatment.  

Consider the simplest case of two treatments a and b used in a trial over two periods. 

Each unit receives the treatments either in the sequence a-b or b-a. We divide the n 

experimental units randomly into two groups of sizes n1, n2 (n1+n2=n) and apply the sequence 

a-b to the members of the first group and b-a to the remaining units. 

 The periods should be of equal length. Note that since the same unit is given both the 

treatments the individual differences are eliminated in this design. 



 For n = 6, n1 = n2 = 3, the design may be as follows: 

Period Units 

1 2 3 4 5 6 

1 a b b a b a 

2 b a a b a b 

Ordinarily, the same number of units is assigned to each group since it minimizes the 

mean square due to error. 

Let yijk = value of y on the jth unit in the ith sequence group at period k (k=1,2,.., 

j=1,2,…ni, i=1,2). The data are shown in the following table: 

Period Treatment Data in Group-1 Sum 

1 a y111 y121 …….. y(1n11) G11 

2 b y112 y122 …….. y(1n12) G12 

Period Treatment Data in Group-2 Sum 

1 b y111 y121 …….. y(2n21) G11 

2 a y212 y222 …….. y(2n12) G22 

Let G1 = G11 – G12 = G21 – G22 

D1j = y1j1 – y1j2, j = 1,2,… n1 

D2j = y2j1 – y2j2, j = 1,2,… n2 

Sum of Square due to Treatments (SSTr) = 
(𝑛2𝐺1−𝑛1𝐺2)

2

2𝑛𝑛1𝑛2
, n = n1+n2 

Sum of Square due to Error (SSE) = 
1

2
∑ ∑ 𝐷𝑖𝑗

2
𝑗𝑖 −

1

2𝑛1
𝐺1

2 −
1

2𝑛2
𝐺2

2
 

The treatment means are: �̅�
𝑎
= �̅̅� + 𝑑 𝑎𝑛𝑑 �̅�

𝑏
= �̅̅� −  𝑑   

Where, 

�̅̅� =
∑ ∑ 𝐺𝑖𝑘𝑘𝑖

2𝑛
,       𝑑 =

𝑛2𝐺1−𝑛1𝐺2

4𝑛1𝑛2
 

𝑉(�̅�𝑎) = 𝑉(�̅�𝑏) =
𝑛∗𝜎2

4𝑛1𝑛2
     𝑉(�̅�𝑎  −  �̅�𝑏) =

𝑛∗𝜎2

2𝑛1𝑛2
 



 A modification of cross-over design is a switch-back or double-reversal design. Here, 

each experimental unit receives either the treatment sequence a-b-a or the treatment sequence 

b-a-b over three periods 1,2,3. Periods should be of equal length. The n units are divided at 

random into two groups n1, n2 and the members of the first group receive the sequence a-b-a 

and the remaining the other sequence. 

Let as before yijk denote the value of y on the jth unit in the ith sequence group at period 

k (i=1,2; j=1,2,…ni, k=1,2,3). 

Let 

𝐺𝑖𝑘 = ∑ 𝑦
𝑖𝑗𝑘

𝑛𝑖
𝑗=1 ; 

𝐺𝑖 = 𝐺𝑖1 − 2𝐺𝑖2 + 𝐺𝑖3, i=1,2; k=1,2,3 

𝐷𝑖𝑗 = 𝑦
𝑖𝑗1

− 2𝑦
𝑖𝑗2

+ 𝑦
𝑖𝑗3

 

Here, 

Sum of Square due to Treatments (SSTr) = 
(𝑛2𝐺1−𝑛1𝐺2)

2

6𝑛𝑛1𝑛2
 

Sum of Square due to Error (SSE) = 
1

6
∑ ∑ 𝐷𝑖𝑗

2
𝑗𝑖 −

1

6𝑛1
𝐺1

2 −
1

6𝑛2
𝐺2

2
 

The treatment means are: 

�̅̅� =
1

2𝑛
[∑ ∑ 𝐺𝑖𝑘  − 

(𝑛1− 𝑛2)(𝑛2𝐺1−𝑛1𝐺2)

8𝑛1𝑛2

3
𝑗=1

2
𝑖=1 ]  

�̅�
𝑎
= �̅̅� + 𝑑 𝑎𝑛𝑑 �̅�

𝑏
= �̅̅� −  𝑑   

Where, 

𝑑 =
𝑛2𝐺1−𝑛1𝐺2

8𝑛1𝑛2
 ,      𝑉(�̅�𝑎) = 𝑉(�̅�𝑏) =

3𝑛∗𝜎2

16𝑛1𝑛2
,          𝑉(�̅�𝑎  −  �̅�𝑏) =

3𝑛∗𝜎2

8𝑛1𝑛2
 

9.7 Optimal Designs for Response Surfaces 

A lot of people use the basic response surface designs because they are pretty general 

and adaptable. A standard response surface design will usually work for a case where the 

experimental area is either a cube or a sphere. However, there are times when an experimenter 

may not think that a normal response surface design is the best option. In these situations, you 

could also think about optimal structures. There are several situations where some type of 

computer-generated design may be appropriate, such as: 



a. Irregular Experimental Region - As long as the area of interest isn't a cube or a sphere, 

normal designs might not be the best choice. It's pretty common for areas of interest to be 

not straight. For instance, a researcher is looking into how a certain adhesive works. The 

glue is put on two pieces, and then it cures at a high temperature. The amount of glue used 

and the temperature at which it cures are the two things that matter. On a normal coded 

variable scale, these two factors run from -1 to +1. The experimenter knows that if too little 

glue is used and the cure temperature is too low, the parts will not stick together properly. 

In terms of the coded variables, this leads to a constraint on the design variables, say: 

−1.5 ≤ 𝑥1 + 𝑥2, where x1 represents the application amount of adhesive and x2 represents 

the temperature. Furthermore, if the temperature is too high and too much adhesive is 

applied, the parts will be either damaged by heat stress or an inadequate bond will result. 

Thus, there is another constraint on the factor levels: 𝑥1 + 𝑥2 ≤ 1. 

 

b. Nonstandard Model - Experimenters usually choose a first- or second-order response 

surface model, knowing that this model is only close to the real process at work. But 

sometimes the person doing the experiment may know something unique about the process 

being studied that makes them think of a model that isn't the usual one. For example, the 

model: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽12𝑥1𝑥2 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽112𝑥1
2𝑥2 + 𝛽1112𝑥1

3𝑥2 + 𝜀 

 

c. Unusual Sample Size Requirements - In some cases, an experimenter may need to cut down 

on the number of runs that a standard response surface plan calls for. Let's say we want to 

fit a second-order model with four factors. Depending on how many center points are 

chosen, the central composite plan in this case needs between 28 and 30 runs. The model, 

on the other hand, only has 15 words. The experimenter will want a plan with fewer trials if 

the runs cost a lot of money or take a long time. Computer-made images can be used for 

this, but there are other ways to do it as well. For instance, a small composite design can be 

made for four factors with 20 runs and four center points, and a hybrid design can be made 

with as few as 16 runs. These options might be better than using a computer-made design 

to cut down on the number of tries. 

9.7.1 Design Optimality Criteria  

1. D-Optimal Criterion  



It is the most widely used optimality criterion, and a design is said to be D-optimal if: 

|(𝑋′𝑋)
−1

| is minimized. A D-optimal design minimizes the volume of the joint confidence 

region on the vector of regression coefficients. A measure of the relative efficiency of design 

1 to design 2 according to the D-criterion is given by 𝐷𝑒 = (
|(𝑋2

′ 𝑋2)
−1

|

|(𝑋1
′ 𝑋1)

−1
|

)

1/𝑝

, where X1 and X2 

are the X matrices for the two designs and p is the number of model parameters.  

 

2. A-Optimality Criterion  

It deals with only the variances of the regression coefficients. A design is A-optimal if 

it minimizes the sum of the main diagonal elements of (X’X)-1. (This is called the trace of 

(X’X)-1, usually denoted tr((X’X)-1). Thus, an A-optimal design minimizes the sum of the 

variances of the regression coefficients. 

 

3. G-Optimality Criterion  

Because many response surface experiments are concerned with the prediction of the 

response, prediction variance criteria are of considerable practical interest. The most popular 

of these is the G-optimality criterion. A design is said to be G-optimal if it minimizes the 

maximum scaled prediction variance over the design region; that is, if the maximum value of 

𝑁𝑉[�̂�(𝑥)]

𝜎2  over the design region is a minimum, where N is the number of points in the design. If 

the model has p parameters, the G-efficiency of a design is just 𝐺𝑒 =
𝑝

𝑚𝑎𝑥
𝑁𝑉[�̂�(𝑥)]

𝜎2

. 

 

4. V-Optimality Criterion  

The V-criterion considers the prediction variance at a set of points of interest in the 

design region, say x1, x2, . . ., xm. The set of points could be the candidate set from which the 

design was selected, or it could be some other collection of points that have specific meaning 

to the experimenter. A design that minimizes the average prediction variance over this set of 

m points is a V-optimal design. 

 The D criteria are usually thought to be the best for first-order designs because they 

deal with parameter estimates, which is very important for screening, which is where the first-

order model is most often used. Since the G and I criteria are prediction-based, they would 

most likely be used for second-order models. This is because second-order models are often 



used for optimisation, and good prediction qualities are necessary for optimisation. The I 

criteria is easier to use than the G criteria, and it can be found in a number of software 

programmes. 

 

9.8 Response Surface Design 

Suppose that we are interested in improving the yield of a chemical process we know 

that from a result of a characterization experiment the two most important process variables 

that influence the yield are operating temperature and reaction time. Suppose a process 

currently runs at 145℉ and 2.1 hours of reaction time producing the yield about 80%. 

 

Contour Plot 

A contour plot is a series of lines or curves that identify values of the factors for which 

the response is constant. Curves for several (usually equal spaced) values of the response are 

plotted. These contours are projection on the time-temperature region of cross section of the 

yield surface. This surface is called “Response Surface”.  

“A Response surface is a geometrical representation obtained when a response 

variable is plotted as a function of one or more quantitative data (factors).” 

The response surface is unknown to process personnel, so experimental method will be 

required to optimize the yield with respect to time and temperature. For this, we perform a 

experiment that varies in time and temperature together i.e., a factorial experiment. One we 

found the region of optimum, second experimental would typically be performed. The 

objective this experiment is to develop an empirical model of the process and to obtain a more 

precise estimate of the optimum operating condition for time and temperature. This approach 

to process optimization is called Response Surface Methodology. 

 

9.8.1 Response Surface Methodology  

The Response Surface Methodology (RSM) is a collection of mathematical and 

statistical techniques useful for developing, improving and optimizing processes. 

OR 

The RSM is a collection of mathematical and statistical techniques that are useful for 

the modeling and analysis of problems in which a response of interest is influenced by several 

variable and the objective is to optimize this response.  



The RSM was developed by Box and Willson (1951). It also has important application 

in design development and formulating new product as well as in the improvement of existing 

product design. The most extensive applications of RSM are in the industrial world, 

particularly, in situations when several input variables potentially influence some performance 

measure or quality characteristic of the product or process. It is typically measured on a 

continuous scale. Another application of RSM; it involves more than one response. The input 

variables are called Independent Variables. 

In most of RSM problems, the relationship between response variable and independent 

variable is unknown. So, the first step in RSM, is to find a suitable approximation for the true 

relationship between response variable and independent variables. In many cases either a first 

order as second order model is used. 

A fixed order model is:  

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ ⋯⋯⋯+ 𝛽𝑘𝑥𝑘 + 𝜖 

Where,  

y = Response variable 

𝑥𝑖
′𝑠 independent variable, 

𝜖 is a random error distributed as normally with mean 0 and variance 𝜎2, 

𝛽0, 𝛽1, …… . . 𝛽𝑘 are the parameters. 

 

E(y) = 𝜂 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑖  

And if there is a curvature (i.e., interaction relationship) in the system, then we use the second 

order model which as 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜖𝑖≤𝑗≤𝑘
𝑘
𝑖=1   

    = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑖𝑥𝑖
2 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + 𝜖𝑖≤𝑗≤𝑘

𝑘
𝑖=1

𝑘
𝑖=1  

Almost all RSM problems use one or both of these models. 

To find the estimate of parameters 𝛽𝑖  and 𝛽𝑖𝑗 method of least square is used. The 

response surface analysis is then performed using fitted surface. If the fitted surface is an 

adequate approximation of the true response function; then the analysis of yield surface will be 

approximately equivalent to analysis of actual system. The model parameters can be estimated 

most effectively if proper experimental designs are used to collect the data. The design for 

fitted response surface are called Response Surface Design. 

 



Some Features of a desirable Designs  

1. It provides a responsible distribution of data points (and hence information) throughout the 

region of interest. 

2. Allows model adequacy, including lack of fit. 

3. Allows experiments to be performed in blocks. 

4. Allows designs of higher order to be built up sequentially. 

5. Provides on interval estimate of error. 

6. Provides precise estimates of the model coefficients. 

7. Provides a good profile of the prediction variance throughout the experimental region. 

8. Provides responsible robustness against outliers or missing value. 

9. Does not require a large number of runs. 

10. Does not require too many levels of the independent variables. 

11. Ensure the simplicity of calculation of model parameters. 

 

9.8.2 Fitting of First Order Model  

Let 𝑋1, 𝑋2, ………… ,𝑋𝜈 denotes the 𝜈 independent factors. Let 𝑥𝑖𝑢 denotes the 𝑖𝑡ℎ factor 

level in 𝑢𝑡ℎ combination (i=1,2,…….,ν) and u = 1,2, … . , N,where N =

total treatment combinations) and let 𝑦
𝑢
 denotes the response obtained from the 𝑢𝑡ℎ 

combination of factors. The first order model is  

𝑦
𝑢
= 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑢 + 𝜖𝑢     ; 𝑢 = 1,2,…… .𝑁𝜈

𝑖=1    (1) 

Where 𝜖𝑢  is error and distributed or normal with mean 0 and variance 𝜎2, i.e., 

𝜖𝑢~ 𝑖. 𝑖. 𝑑.𝑁(0, 𝜎2) . 

𝛽𝑖
′𝑠 are the parameter and they are to be estimated by method of least squares. Let 𝑏0, 𝑏𝑖

′𝑠 

denotes the estimates of parameter, then 

Error sum of squares = ∑ (𝑦
𝑢
− 𝑏0 − ∑ 𝑏𝑖𝑥𝑖)

𝜈
𝑖=1𝑢

2
                                (2)  

Differentiating equation (2) with respect to 𝑏0, 𝑏1, 𝑏2, ……………𝑏𝜈 partially and equating to 

zero, we get the following normal equations. 

∑ 𝑦
𝑢
= 𝑁 𝑏0 + 𝑏1 ∑  𝑥1𝑢 + 𝑏2

𝑁
𝑢=1 ∑ 𝑥2𝑢

𝑁
𝑢=1

𝑁
𝑢=1 + ⋯+ 𝑏𝜈 ∑  𝑥2𝑢

𝑁
𝑢=1   

∑ 𝑥1𝑢𝑦𝑢
𝑁
𝑢=1 = 𝑏0 ∑ 𝑥1𝑢𝑢 + 𝑏1  ∑  𝑥1𝑢

2  𝑢 + 𝑏2   ∑ 𝑥1𝑢𝑢 𝑥2𝑢 + ⋯+ 𝑏𝜈  ∑ 𝑥1𝑢𝑥𝜈𝑢𝑢    

. 

. 

. (3) 



∑ 𝑥𝑖𝑢 𝑦𝑢
  = 𝑁

𝑢=1  𝑏0  ∑ 𝑥𝑖𝑢𝑢  + 𝑏1   ∑ 𝑥1𝑢𝑥𝑖𝑢  𝑢 + ⋯+ 𝑏𝜈   ∑ 𝑥𝑖𝑢𝑥𝜈𝑢𝑢   

. 

. 

. 
∑ 𝑥𝜈𝑢𝑦𝑢

= 𝑏0 ∑ 𝑥𝜈𝑢𝑥1𝑢 + 𝑏1 ∑ 𝑥𝜈𝑢𝑥1𝑢 + ⋯𝑏𝜈 ∑ 𝑥𝜈𝑢
2

𝑢𝑢𝑢𝑢   

 

Now use of simplification condition 

∑ 𝑥𝑖𝑢  = 0    ∀ 𝑖 =  1,2,…… , 𝜈𝑁
𝑢=1   

∑ 𝑥𝑖𝑢
2𝑁

𝑢=1 = 𝑁    ∀ 𝑖 =  1,2,…… . , 𝜈  

∑ 𝑥𝑖𝑢𝑥𝑗𝑢
𝑁
𝑢=1  = 0    ∀ 𝑖 ≠ 𝑗 ; 𝑗 , 𝑖 =  1,2,…… , 𝜈  

 

Now from (3) and using simplification conditions we get, 

∑ 𝑦
𝑢
= 𝑁𝑏0𝑢   

𝑏0 =
1

𝑁
∑ 𝑦

𝑢
𝑁
𝑢=1   

And,  

∑ 𝑥𝑖𝑢𝑦𝑢
= 𝑏𝑖 ∑ 𝑥𝑖𝑢

2
𝑢𝑢   

𝑏𝑖 =
∑ 𝑥𝑖𝑢𝑦𝑢𝑢

∑ 𝑥𝑖𝑢
2

𝑢
  =  

∑ 𝑥𝑖𝑢𝑦𝑢
2
𝑢=1

𝑁
  

Now the variance of these estimators are: 

𝑉𝑎𝑟(𝑏0)  = 𝑉𝑎𝑟 (
1

𝑁
∑ 𝑦𝑢)𝑢   

     =
1

𝑁2  ∑ 𝑉𝑎𝑟(𝑦𝑢)𝑢  

     =
1

𝑁2
 ∑ 𝜎2

𝑢  

𝑉𝑎𝑟(𝑏0) =
𝜎2

𝑁
  = Coefficient of ∑ 𝑦

𝑢𝑢  in the expression of 𝑏0𝜎
2 

 And  

𝑉𝑎𝑟 (𝑏𝑖) = 𝑉𝑎𝑟 (
1

𝑁
∑ 𝑥𝑖𝑢𝑦𝑢)

𝑢

 

    =
1

𝑁2
 ∑ 𝑥𝑖𝑢

2 𝑉𝑎𝑟(𝑦𝑢)𝑢  

   =
1

𝑁2
. 𝑁 . 𝜎2 



𝑉𝑎𝑟(𝑏𝑖) =
𝜎2

𝑁
  = Coefficient of ∑ 𝑦

𝑢
𝑥𝑖𝑢𝑢  in the expression of 𝑏𝑖𝜎

2 

Note:  

1. Covariance terms are zero as error terms are uncorrelated. 

2. Plackett Busman (1946) Design can be used to fit this model along with its simplifying 

conditions. 

 

9.8.3 Rotatability  

As the number of factors increases the 3k factorial become inefficient and impractical. 

These experiments need a large number of observations. For example: 35
=243 and 310

=59049. 

Further these designs do not give equal precession of fitted response at points (factor 

level combination). Further these designs do not give equal precision for fitted response at 

points (factor level combination) that are at equal distance from the center of factor space. A 

design that has this property is termed as a rotatable design.  

When fitting a specified response surface model, A design is rotatable if fitted model 

estimates the response with equal precision at all points in the factor space that are equidistance 

from the center of the design.  

All 2𝑘
 completely factorials are rotatable but 3𝑘

 factorials are not.  

 

9.8.4 Blocking  

When using the response surface designs, it is often necessary to consider blocking to 

eliminate nuisance variables. Such problem may occur when a higher order, say second-order 

design is assembled sequentially from lower order, say. Such necessity arises due to various 

reasons. For example, considerable time may elapse between the running of the first-order 

design and the running of the supplemental experiments which are required to build up a 

second-order design, and during this time, the test conditions may change which makes 

necessary to use blocking. 

  

9.8.5 Orthogonality  

A response surface design is said to be block orthogonally if it is divided into blocks such 

that block effects do not affect the parameter estimates of the response surface model. If a 2k 



or 2k-p design is used as a first-order response surface design, the center points in these designs 

should be allocated among the blocks.  

For a second-order design to block orthogonally, two conditions must be satisfied. If there 

are nb observations in the bth block, then these conditions are: 

1. Each block must be a first-order orthogonal design; that is, 

∑ 𝑥𝑖𝑢𝑥𝑗𝑢 = 0;  𝑖 ≠ 𝑗 = 0,1, . . . 𝑘 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏𝑛𝑏
𝑢=1   

Where xiu and xju are the levels of ith and jth variable in the uth run of the experiment with 

x0u = 1 for all u. 

2. The fraction of the total sum of squares for each variable contributed by every block must 

be equal to the fraction of the total observations that occur in the block, that is: 

∑ 𝑥𝑖𝑢
2𝑛𝑏

𝑢=1

∑ 𝑥𝑖𝑢
2𝑁

𝑢=1
=

𝑛𝑏

𝑁
;  𝑖 = 1,2, . . . . , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑏  

Where, N is the number of runs in the design. 

9.9 Weighing Design 

A weighing design can be formally defined as, given p objects to be weighted in groups 

in N weights a weighing design consists of N grouping of the p objects such that in each 

grouping the p objects are made into three sets of sizes 𝑛1, 𝑛2 𝑎𝑛𝑑 𝑛0 and while weighing, the 

set of size 𝑛1 is placed on one pan, say the left one that of size 𝑛2 on the other pan and the third 

of size 𝑛0 is admitted from the weighing .there will thus be one weighing for each of the 𝑁 

groupings.  

Suppose, a chemical engineer wants to find out the weights of 5 objects:  

Objects 𝑂1 𝑂2 𝑂3 𝑂4 𝑂5 

True Object 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 

We want to weigh the chemical balance (2 pans). Suppose each record weight has variance 

σ2. Thus, we use the standard technique to weight.  

Suppose we take the 6 weighing and weight of object = weight of object including weight of 

pan -weight of pan 

Let 𝑌𝑖 denotes the reading in the 𝑖(𝑡ℎ)
 object and 𝑦

0
 reading without any objects. Then 

estimate weight of the 𝑖(𝑡ℎ)
 object  

𝑤�̂� = 𝑦
𝑖
− 𝑦

0
 

𝑉(𝑤�̂�) = 𝑉(𝑦𝑖 − 𝑦0) = 2σ2  

And Standard Error (𝑆. 𝐸. ) = √2. σ2 



Now a question arise, can we reduce this standard error? 

Yates (1935), observe that when measurement are made on the sets of objects rather 

than weighing them individually. The accuracy of the measurement of weights increases. In 

the above example, we can weigh them in sets of n objects rather than weighing them 

individually with 5 objects we have (5
4)  ,such set viz.  

𝑤1 𝑤2 𝑤3 𝑤4 

𝑤1 𝑤2 𝑤3 𝑤5 

𝑤1 𝑤2 𝑤4 𝑤5 

𝑤1 𝑤3 𝑤4 𝑤5 

𝑤2 𝑤3 𝑤4 𝑤5 

𝑤0(Weight of the pan)= 𝑦0          (1) 

With the above setting we have the following equation  

𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 𝑦
1
         (2)  

𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤5 = 𝑦
2
         (3) 

𝑤0 + 𝑤1 + 𝑤2 + 𝑤4 + 𝑤5 = 𝑦
3
         (4) 

𝑤0 + 𝑤1 + 𝑤3 + 𝑤4 + 𝑤5 = 𝑦
4
         (5) 

𝑤0 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 = 𝑦
5
         (6)  

 

We solve this equation to get the estimate of true weights: 

For 𝑤𝑖, add equation 2) 3) 4) and 5), we get  

4𝑤0 + 4𝑤1 + 3(𝑤2 + 𝑤3 + 𝑤4 + 𝑤5) = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4  

4𝑤0 + 4𝑤1 + 3(𝑤0 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5) − 3𝑤0 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4  

𝑤0 + 4𝑤1 + 3𝑦
5
= 𝑦

1
+ 𝑦

2
+ 𝑦

3
+ 𝑦

5
  

�̂� = ((𝑦1
+ 𝑦

2
+ 𝑦

3
+ 𝑦

4) − 3𝑦
5
− 𝑦

0
) /4  

 

For 𝑤2, add equations 2), 3), 4), and 6), we get  

4𝑤0 + 4𝑤2 + 3(𝑤1 + 𝑤3 + 𝑤4 + 𝑤5) = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦5  

4𝑤0 + 4𝑤1 + 3(𝑤2 + 𝑤3 + 𝑤4 + 𝑤5) − 3𝑤0 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦5  

𝑤0 + 4𝑤2 + 3𝑦
4
= 𝑦

1
+ 𝑦

2
+ 𝑦

3
+ 𝑦

5
  

𝑤2̂ = ((𝑦1
+ 𝑦

2
+ 𝑦

3
+ 𝑦

5) − 3𝑦
4
− 𝑦

0
) /4  

Similarly, we get:  

𝑤3̂ = ((𝑦1
+ 𝑦

2
+ 𝑦

4
+ 𝑦

5) − 3𝑦
3
− 𝑦

0
) /4  



𝑤4̂ = ((𝑦1
+ 𝑦

2
+ 𝑦

3
+ 𝑦

5) − 3𝑦
2
− 𝑦

0
) /4  

& 𝑤5̂ = ((𝑦1
+ 𝑦

2
+ 𝑦

3
+ 𝑦

4) − 3𝑦
1
− 𝑦

0
) /4 

& 𝑣𝑎𝑟(𝑤𝑖) = (1 + 1 + 1 + 9 + 1)σ2/16 = 14σ2/16 = 7σ2/8 

 

Hoteling (1994) suggested that one can improve the weighing of the Yates techniques:  

Equation will become  

𝑤0 − 𝑤1 − 𝑤2 − 𝑤3 − 𝑤4 − 𝑤5 = 𝑦
0
       (1)  

𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 − 𝑤5 = 𝑦
1
       (2)  

𝑤0 + 𝑤1 + 𝑤2 + 𝑤3 − 𝑤4 + 𝑤5 = 𝑦
2
       (3)  

𝑤0 + 𝑤1 + 𝑤2 − 𝑤3 + 𝑤4 + 𝑤5 = 𝑦
3
       (4)  

𝑤0 + 𝑤1 − 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 = 𝑦
4
       (5)  

𝑤0 − 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5 = 𝑦
5
       (6)  

 

To get the estimates of 𝑤1,we add all those equation in which 𝑤 occurs with positive sign we 

get  

4𝑤0 + 4𝑤1 + 3(𝑤2 + 𝑤3 + 𝑤4 + 𝑤5) − (𝑤2 + 𝑤3 + 𝑤4 + 𝑤5) = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4  

4𝑤0 + 4𝑤1 + 3(𝑤0 − 𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 + 𝑤5) − 3𝑤0 + 3𝑤1 + (𝑤0 − 𝑤1 − 𝑤2 − 𝑤3 −

𝑤4 − 𝑤5) − 𝑤0 + 𝑤1) = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4  

8𝑤1 + 3𝑦5 + 𝑦0 = 𝑦1 + 𝑦2 + 𝑦3 + 𝑦4  

𝑤1̂ = (𝑦1
+ 𝑦

2
+ 𝑦

3
+ 𝑦

4
− 𝑦

0
− 3𝑦

5)/8  

Similarly, we can obtain other 𝑤𝑖,then  

𝑣(𝑤�̂�) = (1 + 1 + 1 + 1 + 1 + 9)σ2/164 = 14/64σ2  

And S.E . (wî) = σ√7/32 < σ ∗ √7/8 

 

9.10 Mixture Experiments 

In this experiment, the response depends only on the proportion of the ingredients 

present the mixture and is not a function of the amount of the mixture.  

Or In mixture experiments, the factors are the components or ingredients of a mixture and 

consequently, their levels are not independent. 

Let 𝑥𝑖 represent the proportion of 𝑖𝑡ℎ component thus 𝑥𝑖 being the proportion, we have 

the constraints: 



0 ≤ 𝑥𝑖 ≤ 1; 𝑖 = 1,2…. 

                                                         & ∑ 𝑥𝑖 = 1𝑞
𝑖=1  

As a result, the factor space of 𝑞 components reduce to a 𝑞 − 1 - dimensional simplex    

𝑠𝑞−1 = {𝑥 = (𝑥1, 𝑥2𝑥3 … . 𝑥𝑞 /𝑥𝑖 ≥ 0  𝑎𝑛𝑑 ∑ 𝑥𝑖 = 1}𝑞
𝑖=1 ……….1)  

Another reason for blending different ingredients is to see if there exist some blends 

which gives more desirable   product properties equation. In making different brands of 

detergents are available one may try blending 20 more brands for well effect on cloths.  

Let 𝑞 = 2 

𝑠1 = {𝑥 = (𝑥1, 𝑥2𝑥3 … . 𝑥𝑞 /𝑥𝑖 ≥ 0  𝑎𝑛𝑑 ∑ 𝑥𝑖 = 1}𝑞
𝑖=1   

 

Graphically this can be represented as:   

 

 

 

 

 

All the points lying on 𝑥1 + 𝑥2 = 1 are the points of the factor space (or experimental 

region) 

For 𝑞 = 2; the factors space is straight line. 

 

For 𝑞 = 3;  

 

  

 

It is an equilateral triangle (thus due to the constraint ∑𝑥𝑖 = 1,the dimension of factors 

space reduces by 1). We have (𝑞 − 1) dimensional simplex, hence all the sides of the simplex 

will be equal. 

 

For   𝑞 = 4;  

 

 

 

(0,1) 

(0,0) (1,0) 

x1+x2=1 

(1,0,0) 

(0,0,1) 

(0,1,0) 

(0,0,0,1) 

(0,0,1,0) 

(0,1,0,0) (1,0,0,0) 



This is a tetrahedral. All the points lying on faces and inside, the tetrahedral constitute 

the points of experimental region. Scheff (1958,1963) introduced designs and models for 

mixture experiments. In 1958, he gave simplex lattice design and associate canonical 

polynomials. in 1963, he gave simplex centroid design and associated polynomials. 

9.11     Simplex Lattice Design 

Simplex lattice designs are characterized by symmetrical arrangement of points with in 

experimental region and a well-chosen polynomial equation to represent the response over the 

entire simplex region.  

The polynomial has exactly, same number of points as there are points in the simplex 

lattice design. These designs consist of (𝑞+𝑚−1
𝑚 ) points, where each component proportions 

(i.e., 𝑥𝑖) can take (m+1) equally spaced value such as 𝑥𝑖 = 0,1/𝑚, 2/𝑚, 3/𝑚… .1; 𝑖 = 1,2… . 𝑞 

remaining between 0 𝑎𝑛𝑑 1 and all possible mixture with these component proportions is used. 

This design is called {𝑞,𝑚}simplex lattice designs. 

Example-1.: {3,3} simplex lattice design  

Here 𝑚 = 3 & 𝑞 = 3 

Therefore, the number of points =(3+3−1
3 ) = (5

3) = 10  

𝑥𝑖 = 0,1/3,2/3,1 𝑎𝑛𝑑 𝑖 = 1,2,3 

The design pts will be: (1,0,0), (0,1,0), (0,0,1), (1/3,2/3,0), (0,1/3,2/3), (1/3,0,2/3), (0,2/

3,1/3), (2/3,1/3,0), (2/3,0,1/3), (1/3,1/3,1/3) 

 

  

 

. 

 

 

Example-2.: {3,2} simplex lattice design  

𝑞 = 3,𝑚 = 2 

Here, number of design points (2+3−1
2 ) = (4

2) = 6 

𝑥𝑖 = 0,1/2,1 𝑎𝑛𝑑 𝑖 = 1,2,3 

(2/3,0,1/3) 

(1/3,0,2/3) 

(0,0,1) 

(0,2/3,1/3) (0,1/3,2/3) (0,1,0) 

(1/2,2/3,0) 

(2/3,1/3,0) 

(1,0,0) 

(1/3,1/3,1/3) 



The design points are  

(1,0,0), (0,1,0), (0,0,1), (0,1/2,1/2), (1/2,1/2,0), (1/2,0,1/2) 

 

 

 

 

 

The arrangement of points is symmetrical.  

Canonical Polynomial 

Scheffe also defined the canonical polynomials to be used with these simplex lattice 

design, also known as Scheffe form of polynomials. These are obtained by modifying the usual 

polynomial model in 𝑥𝑖 by using the restriction.  

The equation of an 𝑚(𝑡ℎ) degree polynomial in general is: 

𝜂 = β0 + ∑ 𝛽𝑖𝑥𝑖 +𝑞
𝑖=1 ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗 + ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘 +𝑞

𝑖<𝑗<𝑘
𝑞
𝑖<𝑗 … .∑ 𝛽𝑖𝑗....𝑘𝑥𝑖1𝑥𝑖2.....𝑥𝑖𝑛

𝑞
𝑖1<𝑖2<𝑖3….  (1) 

The number of terms (parameters) in this (last) equation is (𝑞+𝑚
𝑚 )  .but for mixture 

experiments the terms in this polynomial have meaning for us only subject to restriction 𝑥1 +

𝑥2 + 𝑥3 … . .+𝑥𝑞 = 1. 

We know that the parameters β𝑖, β𝑖𝑗, β𝑖𝑗𝑘 …… ., associated with the terms are not unique. 

However, we may make the substitution; 𝑥𝑞 = 1 − ∑ 𝑥𝑖
𝑞−1
𝑖=1   

For a q component mixture, an 𝑚(𝑡ℎ) degree polynomial is known as {q, m} polynomial 

or canonical polynomial or canonical form of the polynomial .it has (𝑞+𝑚−1
𝑚 )  terms , this 

number is equal to the number of design points associated in {q, m} simplex lattice design. 

A general equation for a 1st degree polynomial  

𝜂 = β0 + ∑ 𝛽𝑖𝑥𝑖
𝑞
𝑖=1      (2) 

This equation can be rewritten as   

𝜂 = β0 ∑ 𝑥𝑖
𝑞
𝑖=1 + ∑ 𝛽𝑖𝑥𝑖

𝑞
𝑖=1   

= ∑ (β0 + 𝛽𝑖 )𝑥𝑖
𝑞
𝑖=1  Since  ∑ 𝑥𝑖

𝑞
𝑖=1 = 1 

= ∑ 𝛽𝑖
∗𝑥𝑖

𝑞
𝑖=1            (3)  

{ 𝛽𝑖
∗ = (β

0
+ 𝛽

𝑖
 ) 

The number of points in this model are polynomial is q which is same as the number of 

design points in {q,1} simple lattice design  

(1,0,0) 

(1/2,0,1/2) (1/2,1/2,0) 

(0,1,0) (0,0,1) 
(0,1/2,1/2) 



A general equation for a 2nd degree polynomial is: 

𝜂 = β0 + ∑ 𝛽𝑖𝑥𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖
𝑞
𝑖=1 𝑥𝑗 .

𝑞
𝑖=1     (4) 

𝜂 = β0 + ∑ 𝛽𝑖𝑥𝑖
𝑞
𝑖=1 + ∑ 𝛽𝑖𝑥𝑖

𝑞
𝑖=1 ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞
𝑖<𝑗   

Since ∑ 𝑥𝑖
𝑞
𝑖=1 = 1, 𝑥𝑖

2 = 𝑥𝑖𝑥𝑗 = 𝑥𝑖(1 − ∑ 𝑥𝑗
𝑞
𝑗≠𝑖 ) 

𝜂 = β0 ∑𝑥𝑖 + ∑ β𝑖𝑥𝑖 + ∑ β𝑖𝑗𝑥𝑖(1 − ∑ 𝑥𝑖𝑗≠𝑖 ) + ∑ β𝑖𝑥𝑖𝑥𝑗𝑖<𝑗𝑗𝑖   

= ∑ (β0 + 𝛽𝑖 + 𝛽𝑖𝑗 )𝑥𝑖 − ∑ 𝛽𝑖𝑖𝑥𝑖
𝑞
𝑖=1

𝑞
𝑖=1 ∑ 𝑥𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞
𝑖<𝑗

𝑞
𝑗≠1   

𝜂 = ∑ 𝛽𝑖
∗𝑥𝑖 + ∑ 𝛽𝑖𝐽

∗ 𝑥𝑖
𝑞
𝑖<𝑗 𝑥𝑗 .

𝑞
𝑖=1          (5) 

Where  

𝛽𝑖
∗ = (β

0
+ 𝛽

𝑖
+ β𝑖𝑗) And 𝛽𝑖𝑗

∗ = (β
𝑖𝑗

− 𝛽
𝑖𝑖
+ β𝑗𝑗) 

This is called {q,2} canonical polynomial or s- polynomial. 

The number of terms in this model is: 𝑞 +
𝑞(𝑞−1)

2
=

𝑞(𝑞+1)

2
 which are equal to the number of 

design points in {q,2} simplex lattice design.  

The equation (5) can be written in the homogenous form we have  

𝜂 = ∑ 𝛽𝑖
∗𝑥𝑖 ∑ 𝑥𝑖

𝑞−1
𝑖=1 + ∑ 𝛽𝑖𝐽

∗ 𝑥𝑖
𝑞
𝑖<𝑗 𝑥𝑗

𝑞
𝑖=1   

 = ∑  𝜕𝑖𝑖𝑥𝑖
2 +𝑖 ∑ 𝜕𝑗𝑥𝑖𝑥𝑗𝑖<𝑗   

 = ∑𝛿𝑖𝑗𝑥𝑖𝑥𝑗    

This is a quadratic k model. 

 

Now, a 3rd degree polynomial is: 

𝜂 = β0 + ∑ 𝛽𝑖𝑥𝑖
𝑞
𝑖 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞
𝑖<𝑗 + ∑ 𝛽𝑖𝑗𝑥𝑥𝑖𝑥𝑗

𝑞
𝑖≤𝑗≤𝑘 𝑥𝑘    (7)  

This can be rewritten as {q,3} canonical polynomial:  

𝜂 = ∑ 𝛽𝑖 ∗ 𝑥𝑖
𝑞
𝑖 + ∑ 𝛽𝑖𝐽

∗ 𝑥𝑖𝑥𝑗
𝑞
𝑖<𝑗 + ∑ 𝛽𝑖𝑗𝑥𝑥𝑖𝑥𝑗

𝑞
𝑖<𝑗<𝑘 𝑥𝑘   (8)  

This has 𝑞(𝑞 + 1)(𝑞 + 2)/6 points, same as the number of designs in {𝑞, 3} simplex lattice 

design. 

This can be rewritten as a special cubic model as: 

𝜂 = ∑ 𝛽𝑖
∗𝑥𝑖 + ∑ 𝛽𝑖𝐽

∗ 𝑥𝑖
𝑞
𝑖<𝑗 𝑥𝑗 .

𝑞
𝑖=1 + ∑ 𝛽𝑖𝐽𝑘

∗ 𝑥𝑖
𝑞
𝑖<𝑗<𝑘 𝑥𝑗𝑥𝑘   (9) 

This has 𝑞(𝑞2 + 5)/6, number of points (𝑞+1
1

) + (𝑞
3
) = 𝑞(𝑞2 + 5)/6 



German and Hinman (1962) extended this work of canonical polynomial to quartic model while 

dealing with mixtures, we directly get β∗
. Thus: 

For {3,1} → 𝜂 = β1𝑥1 + β2𝑥2 + β2𝑥3(linear) 

For {3,2} → 𝜂 = β1𝑥1 + β2𝑥2 + β2𝑥3 + β12𝑥1𝑥2 + β13𝑥1𝑥3 + β23𝑥2𝑥3(quadratic) 

For {3,3} → 𝜂 = β1𝑥1 + β2𝑥2 + β2𝑥3 + β12𝑥1𝑥2 + β13𝑥1𝑥3 + β23𝑥2𝑥3 + 𝜕12𝑥1𝑥2(𝑥1 −

𝑥2) + 𝜕13𝑥1𝑥3(𝑥1 − 𝑥3) + 𝜕23𝑥2𝑥3(𝑥2 − 𝑥3) + β123𝑥1𝑥2𝑥3 (full cubic) 

And special cubic model is 𝜂 = β1𝑥1 + β2𝑥2 + β2𝑥3 + β12𝑥1𝑥2 + β13𝑥1𝑥3 + β23𝑥2𝑥3 +

β123𝑥1𝑥2𝑥3 

Any design with 7 or more design can be used to fit this model. Hence {3,3} can be 

used to fit these models.  

There is 1-1 error between the number of design points of a {q, m} canonical 

polynomial. As a result, the points in the polynomial can be expressed as simple function of 

expected response at the points {q,m} simplex lattice design. 

 

9.12 Self-Assessment Exercise 

1. The following are the results of an experiment with cross-over design. Write the model, 

analyze and interpret the data. 

Drug Person 

1 3 5 7 9 

A 20.8 30.4 20.7 29.8 13.4 

B 32.4 40.8 25.9 30.6 22.0 

 

Drug Person 

2 4 6 8 10 

B 50.2 40.4 60.8 75.2 30.2 

A 56.2 48.3 59.8 70.4 50.4 

 

2. What is a Response Surface Design? List any six desirable properties of a response surface 

design. 

3. Discuss the fitting of first order response surface model in detail. 

4. Explain the concept of blocking and orthogonality in response surface designs. 

9.13 Summary 



This unit provides an overview of various advance block designs such as Dual and 

linked block design, Lattice Designs, Cross-over designs, optimal designs, response surface 

design, weighing designs and mixture experiments. 
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