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Blocks & Units Introduction 

The present SLM on Non-Parametrics consists of eleven units with three blocks. 

 The Block - 1 – Order Statistics, is the first block, which is divided into four units. 

The Unit - 1 – Basic Distribution Theory, is the first unit of present self learning material, which 

describes Order statistics, Distribution of maximum, minimum and r-th order statistic, Joint 

distribution of r-th and s-th order statistic. 

In Unit – 2 – Asymptotic Distribution Theory, the main emphasis on the Moments of order 

statistics, non parametric estimation of distribution function, Glivenko-Cantelli fundamental 

theorem  

In Unit – 3 – Distribution Free Intervals, we have focussed mainly on Distribution of range 

function of order statistics, distribution free confidence intervals for quintiles, distribution free 

tolerance interval  

In Unit – 4 – Rank Order Statistics is discussed with rank order statistics, Dwass technique, 

Ballot theorem and its generatiuon, extention and application to fluctuation of sums of random 

variable. 

The Block - 2 – Sequential Analysis is the second block with two units. 

In Unit – 5 – Sequential Tests is discussed with SPRT and its properties, Wald’s Fundamental 

identity, OC and ASN functions, Wald’s equation.  

In Unit – 6 – Sequential Estimation has been discussed, Cramer Rao Inequality of sequential 

estimation, Stein’s two stage procedure. 

The Block - 3 – Nonparametric Tests and Inference has three units.   

Unit – 7 – One- Sample and Two-Sample Location Tests dealt with One and two sample 

location tests, Sign test. Wilcoxon test, Median test. 

Unit – 8 – Other Non- Parametric Tests dealt with Mann- Whitney U- Test, Application of U-

statistic to rank tests. One sample and two sample Kolmagorov-Smirnov tests. Run tests. 

Unit – 9 – Non-Parametric Inference, The Kruskal-Wallis one way ANOVA Test, Friedman’s 

two-way analysis of variance by ranks, efficiency criteria and theoretical basis for calculating 

ARE, Pitman ARE.  

At the end of every block/unit the summary, self assessment questions and further 

readings are given.   
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Block & Units Introduction 

The Block - 1 – Order Statistics, is the first block, which is divided into four units. 

The Unit - 1 – Basic Distribution Theory, is the first unit of present self learning material, which 

describes Order statistics, Distribution of maximum, minimum and r-th order statistic, Joint 

distribution of r-th and s-th order statistic. 

In Unit – 2 – Asymptotic Distribution Theory, the main emphasis on the Moments of order 

statistics, non parametric estimation of distribution function, Glivenko-Cantelli fundamental 

theorem  

In Unit – 3 – Distribution Free Intervals, we have focussed mainly on Distribution of range 

function of order statistics, distribution free confidence intervals for quintiles, distribution free 

tolerance interval  

In Unit – 4 – Rank Order Statistics is discussed with rank order statistics, Dwass technique, 

Ballot theorem and its generatiuon, extention and application to fluctuation of sums of random 

variable. 

At the end of every unit the summary, self assessment questions and further readings are 

given.   



UNIT:1   BASIC DISTRIBUTION THEORY 

 

Structure 

 

1.1 Intoduction 

1.2 Objectives  

1.3 Order Statistics 

1.4 Distribution of Maximum 

1.5 Probability Integral Transformation  

1.6 Distribution of Minimum  

1.7 Distribution of r-th Order Statistic 

1.8 Joint Distribution of r-th and s-th Order Statistic 

1.9 Joint Distribition of Order Statistics 

1.10 Summary 

1.11 Self-Assessment Exersises 

 

1.1      Introduction 

 

The subject of order statistics deals with the properties and applications of these 

observations and their functions. For example, the median which is the middle most observation, 

the extreme observations X(1) and X(n), the sample range which is the difference of these 

extreme observations, the mid range which is the average of the two extreme observations X(1) 

and X(n)etc. 

Applications of order statistics are in the theory of extremes, reliability theory, theory of 

outliers etc. The theory of extremes deals with floods, draughts, extreme breaking strength and 

fatigue failure etc. In reliability, suppose there are n components which can be useful only if at 

most r (1 ≤ r < n) components are failing – for example consider the illumination bulbs used 

during festivals which are connected in series, if few of them fails, the string of bulbs can still be 

used by removing such defective bulbs; but beyond certain number of such removal the string of 

bulbs are quite useless. In outlier theory, outliers are those observations which deviate from the 



rest of the observations. Hence the extreme deviates from the estimate of the location parameters 

are useful tools in outlier detection procedures. 

1.2   Objectives 

The objective of this unit is to provide a basic understanding of concepts related to Order 

statistics. The concepts of Distribution of maximum, minimum and r-th order statistic, Joint 

distribution of r-th and s-th order statistic should be clear after study of this material. 

1.3  Order Statistics 

 

Definition: The observation occupying thr  place in ascending order of the sample values is 

known as the thr  order statistic. We denote it by rY  or ( )r
X  so that 1Y = ( )1

X  represents the 

minimum of the sample observations while nY = ( )n
X  is the maximum of sample observations.  

            The definition of order statistics does not require that the X’s to be identically distributed, 

nor do we need them to be independent. Also, it was not presumed that the parent distributions 

be continuous, nor that their densities exist. Although, most of the classical results dealing with 

order statistics were originally derived in more restrictive settings. Generally, it is assumed that 

the X’s were independent and identically distributed (i.i.d.) with common continuous 

(cumulative) distribution function F(x), and having a density function f(x) and, henceforth, we 

will assume the X’s to be so. 

          The following list, though, not exhaustive, but may serve help to convince the reader that 

this text will not be focusing on some abstract concepts of little practical utility: 

 

1. Robust Location Estimates:  

               Suppose that n independent measurements are available, and we wish to estimate their 

assumed common mean. It has long been recognized that the sample mean, though attractive 

from many viewpoints, suffers from an extreme sensitivity to outliers and model violations. 

Estimates based on the median or the average of central order statistics are less sensitive to 

model assumptions. 

 



2. Detection of Outliers: 

              If one is confronted with a set of measurements and is concerned with determining 

whether some have been incorrectly made or reported, attention naturally focuses on certain 

order statistics of the sample. Usually, the largest one or two and/or the smallest one or two are 

deemed most likely to be outliers.  

 

3. Censored Sampling: 

         Fifty expensive machines are started up in an experiment to determine the expected life of a 

machine. If, as is to be hoped, they are fairly reliable, it would take an enormously long time to 

wait for all machines to fail. Instead, great savings in time and machines can be effected if we 

base our estimates on the first few failure times (i.e., the first few order statistics from the 

conceptual sample of i.i.d. failure times). 

 

4. Waiting for the Big One: 

              Disastrous floods and destructive earthquakes recur throughout history. Dam 

construction has long focused on so called 100-year floods. Presumably the dams are built big 

enough and strong enough to handle any water flow to be encountered except for a level 

expected to occur only once every 100 years. Whether one agrees or not with the 100-year 

disaster philosophy, such inferences are concerned with the distribution of large order statistics 

from a possibly dependent, possibly not identically distributed sequence. 

 

5. Strength of Materials: 

              The adage that a chain is no stronger than its weakest link underlies much of the theory 

of strength of materials, whether they be threads, sheets, or blocks. By considering failure 

potential in infinitesimally small sections of the material, one quickly is led to strength 

distributions associated with limits of distributions of sample minima, which is again an order 

statistic.  

 

6. Reliability: 

            The example of a cord composed of n threads can be extended to lead us to reliability 

applications of order statistics. It may be that failure of one thread will cause the cord to break 



(the weakest link), but more likely the cord will function as long as k (a number less than n) of 

the threads remain unbroken. 

 

7. Quality Control: 

         Each candy bar should weigh 2.1 ounces; just a smidgen over the weight stated on the 

wrapper. No matter how well the candy pouring machine was adjusted at the beginning of the 

shift, minor fluctuations will occur, and potentially major aberrations might be encountered (if a 

peanut gets stuck in the control valve). We must be alert for correctable malfunctions causing 

unreasonable variation in the candy bar weight. Enter the quality control man with his X and R 

charts or his median and R charts. If the median (or perhaps the mean) is far from the target 

value, we must shut down the line.  

 

8. Selecting the Best: 

          Field trials of corn varieties involved carefully balanced experiments to determine which 

of several varieties is most productive. Obviously, we are concerned with the maximum of a set 

of probably not identically distributed variables in such a setting. 

 

9. Inequality Measurement: 

            The income distribution in India (where a few individuals earn most of the money) is 

clearly more unequal than that of United Kingdom (where progressive taxation has a leveling 

effect). How does one make such statements precise? The usual approach involves order 

statistics of the corresponding income distributions. The particular device used is called a Lorenz 

curve. It summarizes the percent of total income accruing to the poorest p percent of the 

population for various values of p. Mathematically this is just the scaled integral of the empirical 

quantile function. A high degree of convexity in the Lorenz curve signals a high degree of 

inequality in the income distribution. 

 

10. Olympic Records: 

               Bob Beamon's 1968 long jump remains on the Olympic record book. Few other records 

last that long. If the best performances in each Olympic Games were modeled as independent 

identically distributed random variables, then records would become more and more scarce as 



time went by. Such is not the case. The simplest explanation involves improving and increasing 

populations. Thus the 1964 high jumping champion was the best of, say, Nx active international-

caliber jumpers. In 1968 there were more high-caliber jumpers of probably higher caliber. So, we 

are looking, most likely, at a sequence of not identically distributed random variables. But in any 

case, we are focusing on maxima, that is, on certain order statistics. 

 

11. Allocation of Prize Money: 

             At the end of the annual Bob Hope golf tournament the player with the lowest score gets 

first prize. The second lowest score gets second prize, etc. In 1991 the first five prizes were: 

$198,000, $118,800, $74,800, $52,800, and $44,000. Obviously, we are dealing with order 

statistics here. Presumably the player with the highest ability level will most likely post the 

lowest score. 

 

12. Characterizations and Goodness of Fit: 

            The exponential distribution is famous for its so-called lack of memory. The usual model 

involves a light bulb or other electronic device. For example, if X1, ,...,, Xn are i.i.d. exponential, 

then their spacings (X(i) – X(j)) are again exponential and, remarkably, are independent. It is only 

in the case of exponential random variables that such spacings properties are encountered. A vast 

literature of exponential characterizations and related goodness-of-fit tests has consequently 

developed. It is interesting to note that most tests of goodness of fit for any parent distribution 

implicitly involve order statistics, since they often focus on deviations between the empirical 

quantile function and the hypothesized quantile function. 

                  Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous 

population whose p. d. f. is ( )f x  and c .d. f. is ( )F x  for a x b  . Let 1Y  be the minimum of 

1X , 2X ,…., nX  is called the first order statistics, 2Y  be the next minimum is called the second 

order statistics and so on so that nY
 
be the maximum of 1X , 2X ,…., nX  is called the thn  order 

statistics. Then 1 2 .... nY Y Y    is known as order statistics of the random sample 1X , 2X ,…, 

nX .  

 

1.4  Distribution of Maximum  



 

Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous population 

whose p. d. f. is ( )f x  and c .d. f. is ( )F x  for a x b  . Let  ( )
nYF x  be the c .d. f.  of maximum 

or the n-th order statistics nY  at the point x  is given by 

( )  
nY nF x P Y x=   

 1 2P , ,..., nMax of X X X x=   

 
 1 2P , ,..., nX x X x X x=     

 
     1 2P .... nX x P X x P X x=   

       
( 1 2, ,..., nX X X  are mutually independent) 

 
( ) ( ) ( )

1 2
...

nX X XF x F x F x=                                                                        (1) 

where ( )
iXF x  is c. d. f.  of  iX  for i= 1, 2,…, n and since 1 2, ,..., nX X X  are identically 

distributed with c. d. f. ( )F x  such that  

 ( ) ( ) ( ) ( )
1 2

...
nX X XF x F x F x F x= = = =                                  (2) 

Using (2) in (1), we get 

( ) ( ) 
n

n

YF x F x=          (3)
 

Since in case continuous population, the density function is given by  

p. d. f. of nY
 
= ( )

nYf x  

( )
nYdF x

dx
=  

 ( ) 
( )1n dF x

n F x
dx

−

=        ( )
( )dF x

f x
dx

 
= 

 
 

( ) ( )
1

;

  0                          ;otherwise

n

n F x f x a x b
−     = 



     (4)       



Example: Find out the p.d.f. of the maximum of the sample values from a sample of size n drawn 

from ( )0,U 
 
parent. 

Solution: Consider the p.d.f. of ( )0,U   given by 

( )
1

;0

0 ;

x
f x

otherwise





 

= 



 

so that its d.f. is given by 

( )

0  ; 0

;0

1 ;

x

x
F x x

x










=  




 

Let ( )n
X  be the thn  order statistics or maximum of sample values in a sample of size n. Then  

( ) ( ) ( )  ( )
1

;0
n

X n
f x n F x f x x 

−

=    

                  

1
1

;0

n
x

n x 
 

−

 
=   

 
 

                  
1

;0
n

n

x
n x 


−

=    

Hence, the p.d.f. of 
( )n

X  is given by 

( )
( )

1

  ;0

0          ;
n

n

n
X

nx
x

f x

otherwise




−
 

= 



 

 

1.5    Probability Integral Transform 

               If X is a random variable of a continuous type having p.d.f. ( )f x  and distribution 

function ( )F x , then ( )Z F x=  has a uniform distribution ( )0,1U . 



Proof: Given X is a continuous random variable with p. d. f. ( )f x  and c. d. f. ( )F x  then we 

wish to prove that ( )Z F x= follows ( )0,1U . Consider the p.d.f. of z given by
  

( ) ( )modf z J=  (Put x in terms of z in ( )f x ) 

where J stands for the jacobian of transformation. For particular (or specific) values of z and x, 

we may write 

( )z F x=
 

( ) ( )
1 1 1dx

J
dz dz dx dF x dx f x

= = = =                     ( )( )0f x 
 

so that  

( )
1 0 1

0

z
f z

otherwise

 
= 


 

( ) ( )~ 0,1Z F x U =            Q.E.D. 

Remark: The importance of probability integral transform is that the order statistics 
( ) ( )1

, ,
n

X X  

in a sample from any continuous distribution with c.d.f. ( )F x  are transformed by order 

preserving probability integral transform ( )u F x=  into 
( ) ( )1

, ,
n

U U . 

Example: If X is a uniform random variable with distribution function F(x), prove that 

( ) ( ) ( )
( ) ( )

1

1

0

!
1

1 ! !

n rr

r

n
E X Y Y h Y dY

r n r

−−  = −
  − −   

where ( ) ( )1h Y F Y−=  

Solution: Let ( )~ ,X U a b  and consider 

( ) ( )
( )

r

b

Xr

a

E X x f x dx  =
                                                ; a<x<b 

     
( ) ( )

( )  ( )  ( )
1!

         1
1 ! !

b
r n r

a

n
x F x F x f x dx

r n r

− −

= −
− −              



Let ( )F x y=  

( )
( )

dF xdy
f x

dx dx
 = =

 
( )dy f x dx =  

so that 

( ) ( )
( ) ( )

( )
1

1 1

0

!
1

1 ! !

n rr

r

n
E X F y y y dy

r n r

−− −  = −
  − −  

( ) ( )
( ) ( )

1

1

0

!
1

1 ! !

n rrn
y y h y dy

r n r

−−= −
− −             ( ) ( )1F y h y− =        Q.E.D. 

Example: Let 
1, 2 3,x x x  be independent random variable with p. d. f. 

( ) ( ) ( ) ( ),
expf x x I x





= − −    

Determine the constant ( )c c =  for which ( )( )3
0.96P x c   =  

Solution: Since 

( ) ( )
( ) ( ),

e
x

f x I x




− −  


=  

where ( ) ( ),

1

0

if x
I x

otherwise





  
= 


 

In other words  

( )
( )

;

0 ;

x
e x

f x
otherwise




− −   
= 


 

( )   ( )Pr

x

F x X x f x dx
−

=  =   

            ( ) ( )
x

f x dx f x dx



−

= +   

           ( )
0

x
x

e dx




− −
= +   



            ( )
x

x
e





− − = −
 

 

           
( )

1
x

e
− − = −

 
 

Therefore, ( )
( )

1 ;

0 ;

x
e x

F x
otherwise




− − −   
= 


 

We may write  ( )( )3
0.96P x c   =  as 

( )
( )

3
0.96

c

xf x dx


=  

where 
( )
( )

3xf x  stands for the p. d. f. of third order statistic where n=3, so that 

( )  ( )
2

3 0.96

c

F x f x dx


=  

Let ( )F x t=  ( )f x dx dt =  so that  

( )

( )
23 0.96

F c

F

t dt


=  

( )
2

0

3 0.96

F c

t dt =  

where ( ) 0F  =  and ( ) ( )
1

c
F c e

− −
= −  so we get   

 
( )3

0
0.96

F c

t =  

( )
3

0.96F c =    

( ) ( )
1/3

1 0.96
c

e
− −

− =  

( ) ( )1/3
1 0.96

c
e

− −
− =  

( )
1/3

ln 1 0.96c   = − −
 

 



is the required value of c, such that ( )3
Pr 0.96x c   =
 

. 

1.6  Distribution of Minimum 

 

             Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous population 

whose p. d. f. is ( )f x  and c .d. f. is ( )F x  for a x b  . Let  ( )
1YF x  be the c .d. f.  of minimum 

or the first order statistics 1Y  at the point x  is given by  

( )  
1 1PYF x Y x=   

                 11 P Y x= −   

                ( )1 21 P min , ,..., nX X X x= −     

                 1 21 P , ,..., nX x X x X x= −     

                       1 21 ... nP X x P X x P X x= −       ( 1 2, ,...., nX X X  are mutually ind.) 

                         1 21 1 1 ... 1 nP X x P X x P X x= − −  −  −   

                 ( )  ( )  ( ) 
1 2

1 1 1 ... 1
nX X XF x F x F x= − − − −  

where ( )
iXF x  is c. d. f.  of  iX  for i= 1, 2, …, n and since 1 2, ,..., nX X X  are identically 

distributed with c. d. f. ( )F x  such that  

 ( ) ( ) ( ) ( )
1 2

...
nX X XF x F x F x F x= = = =                                  (2) 

Using (2) in (1), we get 

( ) ( ) 
1

1 1 ;
n

YF x F x a x b= − −    

Since in case continuous population, the density function is given by  

p. d. f. of 1Y
 
= ( )

1Yf x  

( )
1YdF x

dx
=  



( ) 
( )1

1
n dF x

n F x
dx

−

= −       ( )
( )dF x

f x
dx

 
= 

 
 

( )  ( )
1

1 ;

  0                              ;otherwise

n

n F x f x a x b
− −  

= 


   (4) 

Example: Let ( )1,2,...,jX j n=  be i.i.d. negative exponential random variable with parameter 

  then show that the distribution of ( )1
X  is a negative exponential distribution with parameter 

n . Conversely, show that if ( )1,2,...,jX j n=  are i.i.d. random variables and ( )1
X  follows a 

negative exponential distribution with parameter n  then the common distribution of X’s is 

negative exponential with parameter  . 

Solution: 

It is given as ( )
;0

0 ;

xe x
f x

elsewhere

 −   
= 


 

Therefore ( )
1 ;0

0 ;

xe x
F x

otherwise

− −   
= 


 

Let 
( )
( )

1XF x  be the c. d. f. of ( )1
X

 
and since,  1 2, ,...., nX X X  are identically distributed with c. d. 

f.  ( )F x . Therefore, 

( )
( )

( )
( )

( )
( ) ( )

21

....
nX X XF x F x F x F x= = = =  

Hence,  

( )
( ) ( ) 

1

1 1
n

XF x F x= − −
 

           
 1 1 1

n
xe −= − − +                       

            1 xne −= −
 

therefore,
 



( )
( ) ( )

( )
1

1

X

X

dF x
f x

dx
=

 

           
( )1 xnd

e
dx

−= −
 

           
xnn e  −=

 

( )1
X  follows negative exponential with parameter n . 

Conversely suppose it is given that ( )1
X  follows negative exponential with parameter n  so that 

( )
( )

1
1 xn

XF x e −= −
 

Also, 
( )
( ) ( ) 

1
1 1

n

XF x F x= − −
 

Equating both we have, 

( ) 1 1 1
n n xF x e −− − = −

 

( )1 xF x e −− =  

( ) 1 xF x e −= −
 

( ) ( )
d

f x F x
dx

 =  

           
( )1 xd

e
dx

−= −
 

           
xe  −=
 

which is negative exponential with parameter  . Hence, the common distribution of X’s is 

negative exponential with parameter  . 

 

1.7  Distribution of r-th Order Statistic 

 



            Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous population 

whose p. d. f. is ( )f x  and c .d. f. is ( )F x  for a x b  . Let ( )
rYF x  be the c. d. f. and  ( )

rYf x  

be the p. d. f.  of the thr order statistic rY
 
at the point x  is given by 

( )
( )

r

r

Y

Y

dF x
f x

dx
=  

           
( ) ( )

0
lim
h

F x h F x

h→

+ −
=  

          
( ) ( )

0

Pr Pr
lim

r r

h

Y x h Y x

h→

 + − 
=  

          ( )
0

1
lim P r
h

x Y x h
h→

=   +
 

1 's one  's >

__________________________ _______ _______________________

r X x X x h n r X x h
a x x h b

−   + − +

   

+  

( 
0

1
lim P 1of the ' ,  one in , ,   of the '
h

r X s x X x x h n r X s x h
h→

 = −  + −  + 
 

Using multinomial law, we have 

( )
( ) ( )

( )  ( ) ( ) 
1

0

1 !
lim P P P

1 ! !r

r n r

Y
h

n
f x X x x X x h X x h

h r n r

− −

→
=    +  +

− −
 

( ) ( )
( )  ( ) ( )  ( ) 

1

0

1 !
lim 1

1 ! !

r n r

h

n
F x F x h F x F x h

h r n r

− −

→
= + − − +

− −
 

( ) ( )
( ) 

( ) ( )
( ) 

1

0

!
lim 1

1 ! !

r n r

h

F x h F xn
F x F x

r n r h

− −

→

+ − 
= − 

− −  
 

( ) ( )
( )  ( )  ( )

1!
1     ;

1 ! !

0                                                                         ;otherwise

r n rn
F x F x f x a x b

r n r

− −
−  

− −= 



 



Remark: It is interesting to note that the ( ) ( ) 
1

1 1
n

YF x F x= − −  and ( ) ( ) 
n

n

YF x F x=  are 

special cases of the general result of ( )
rYF x  given by 

( ) ( )

 

( ) ( )

           = at least  of the  are less than or equal to 

          1

rY r

i

n
n ii

i r

F x P Y x

P r X x

n
F x F x

i

−

=

= 

 
= −    

 


 

since the summand is the binomial probability of getting exactly i of the 1, , nX X  less than or 

equal to x.  Also, one more useful relationship that exists between the binomial sums and 

incomplete beta functions is  

( ) ( ) ( ), 1
rY F x

F x I r n r= − +  

where ( ),pI a b  is an incomplete beta function defined as 

( ) ( )
11

0
, 1   ; 0, 0

p ba

pI a b y y dy a b
−−= −    

Therefore, ( )
rYF x  can be calculated from the tables of ( ),pI a b  and the percentage points of rY  

can be obtained by inverse interpolation of these tables. 

 

Example: Obtain the upper 5% point of 4Y  in sample of 5 from standard normal distribution. 

Solution: We need to find x such that 

( )

( ) ( ) ( ) ( )
4

0.95

          4,5 4 1 4,2

Y

F x F x

F x

I I

=

= − + =
 

so that  

( ) ( )1
0.05 2,4

F x
I
−

=  

thereby giving 

( )0.0764 1 F x= −   

Hence, from normal tables, we have x = 1.43. 



Example: Let 1 2 3 4Y Y Y Y    denote the order statistics of the random sample of size 4 from the 

population with p. d. f.  

( )
2 ;0 1

0 ;

x x
f x

otherwise

 
= 


 

Obtain the p. d. f. of 3Y  and ( )31 2P Y  

Solution: It is given that n=4 and  

( )
2 ;0 1

0 ;

x x
f x

otherwise

 
= 


 

Hence, for 0x   

( )  Pr 0 0

x

F x X x dx
−

=  = =  

For 1x   

( )   ( ) ( )
0

2

0

Pr

x

F x X x f x dx f x dx x
−

=  = + =   

For 1x   

( )   ( ) ( ) ( )
0 1

0 1

Pr 1

x

F x X x f x dx f x dx f x dx
−

=  = + + =    

Therefore, ( ) 2

0 ; 0

;0 1

1 ; 1

x

F x x x

x




=  
 

 

Putting r=3 and n=4 in (1) we have, 

p. d. f. of 3Y = ( )3f Y  

                   ( )  ( )  ( )
2

3 3 3

4!
1

2!1!
F y F y f y= −               ; 30 1y   



                   
2

2 2

3 3 312 1 2y y y   = −                 ; 30 1y   

                  
5 2

3 324 1y y   = −                                                          ; 30 1y   

so that 

( )5 2

3 3 3

3

24 1 ;0 1
( )

0 ;

y y y
f Y

otherwise

 −  
= 


 

Now, ( ) ( )3 3Pr 1/ 2 1 Pr 1/ 2Y Y = −   

                               ( )
1/2

3 3

0

1 f y dy= −   

                              ( )
1/2

2 5

3 3 3

0

1 24 1 y y dy= − −  

Let 2

3y t=  3 32y dy dt =  

( ) ( )
1/4

2 2

3

0

Pr 1/ 2 1 12 1Y t t dt = − −  

                 
1/4

3 4

0
1 4 3t t = − − 

1 3
1 4

64 4

 
= − − 

 

13
1

256
= −  

                 
243

256
=

 

Example: Let ( ), 1/ ,0f x x  =    and 1 2 3, ,x x x  be a random sample of size 3 from this 

parent distribution and let  1 2 3, ,Y Y Y be order statistic of this sample so that ( )1 1 2 3min , ,Y x x x=  

and ( )3 1 2 3max , ,Y x x x= . Obtain ( )2Pr / 2Y  . 

Solution: Given   

( ) ( ), 1/ ,0f x f x x  = =    

Now for x   



( )   ( ) 0

x

F x P X x f x dx
−

=  = =  

            ( ) ( )
0

0

x

f x dx f x dx
−

= + 
0

1
0

x

dx


= +   

           
x


=  

For x   

( )   ( ) ( ) ( ) ( )
0

0

1

x x

F x P X x f x dx f x dx f x dx f x dx



− −

=  = = + = =     

Therefore, ( )

0 ; 0

/ ;0

1 ;

x

F x x x

x

 






=  
 

 

Thus, ( ) ( )2

/2

Pr / 2Y f w dw





 =   

where ( )f w is the p. d. f. of second order statistic for n=3. So 

( )
( ) ( )

( )  ( )  ( )
2 1 3 23!

1
2 1 ! 3 2 !

f w F w F w f w
− −

= −
− −

 

         
( )  ( )  ( )6 1F w F w f w= −        ;0 w    

So, ( ) ( ) ( )  ( )2

/2

Pr / 2 6 1Y F w F w f w dw





 = −  

Let ( )F w t=
 

( )f w dw dt =  and ( ) ( )/ 2 1/ 2, 1F F = =  

so that 

( ) ( )
1

2

1/2

Pr / 2 6 1Y t t dt = −  



                  

1
2 3

1/2

6
2 3

t t 
= − 

 

1
2 3

1/2
3 2t t = − 

3 1
3 2

4 4
= − − +  

                  
1

2
=  

Example: Let 1 2 3 4Y Y Y Y   be the order statistics of the random sample of size 4 from the 

distribution having probability density function  

( )
;0

0 ;

xe x
f x

otherwise

−   
= 


 

Find ( )4Pr 3 Y . 

Solution: Given that  

( )
;0

0 ;

xe x
f x

otherwise

−   
= 


 

Now for 0x     

( )   ( ) ( )
0

0

Pr

x

F x X x f x dx f x dx


=  = +   

         0

0

x

xe dx−= +   

         1 xe−= −  

Therefore,  

   4Pr 3 Pr 3 4Y  =   

              ( )
3

f w dw



=   

where ( )f w is the p. d. f. of 4th order statistic 4Y  for n=4 



( ) ( ) ( )
4 1

4f w F w f w dw
−

=             ; 0 w   

so that 

  ( ) ( )
3

4

3

Pr 3 4Y F w f w dw



 =     

Putting ( )F w t=
 

( )f w dw dt = , we have  

   
( )

( )
3

4

3

Pr 3 4

F

F

Y t dt



 = 
( )

4

(3)

F

F
t



 =                          since ( ) 33 1F e−= −    and  ( ) 1F  =    

             ( )
4

31 1 e−= − −  

1.8  Joint Distribution of r-th and s-th Order Statistic 

 

              Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous population 

whose p. d. f. is ( )f x  and c .d. f. is ( )F x  for a x b  . Let ( , )rsF x y  be the joint c. d. f. and  

( , )rsf x y  be the joint p. d. f.  of the thr  and ths  ( r s ) order statistic rY  and sY
 
at the point 

( ),x y , x<y, is given by 

2 ( , )
( , ) rs

rs

d F x y
f x y

dxdy
=  

( )
0
0

P ,  
lim

r s

h
k

x Y x h y Y y k

hk→
→

  +   +
=  

(  ( 

( 0
0

1of the ' ,  one in , , 1 of the '  in , ,1
lim P

one in , ,   of the 'h
k

r X s x X x x h s r X s x h y

hk X y y k n s X s y k→
→

 −  + − − +
=  

+ −  +  

 

1 's one 1 's one  's >

_________ _______ _________ _______ ____________

r X x X x h s r X y X y k n s X y k
a x x h y y k b

−   + − −   + − +

     

+ +
 

Using multinomial law, we have 



( ) ( ) ( )

( )  ( ) ( ) 

( ) ( ) 

1 1

0
0

P P P1 !
lim

1 !1! 1 !1! ! P P

r s r

n sh
k

X x x X x h x h X yn

hk r s r n s y X y k X y k

− − −

−→
→

    + +  
 =
 − − − −   +  + 

 

( ) ( ) ( )

( )  ( ) ( )  ( ) ( ) 

( ) ( )  ( ) 

1 1

0
0

1 !
lim

1 ! 1 ! ! 1

r s r

n sh
k

F x F x h F x F y F x hn

hk r s r n s F y k F y F y k

− − −

−→
→

 + − − +
 =
 − − − − + − − + 

 

( ) ( ) ( )
( )  ( ) ( ) 

( )  ( ) ( )  ( ) ( ) 

1 1

0 0
0

0 0 0

1 !
lim lim

1 ! 1 ! !

1 1
    lim 1 lim lim

r s r

h h
k

n s

k k h

n
F x F y F x h

hk r s r n s

F y k F y k F y F x h F x
k h

− − −

→ →
→

−

→ → →

= − +
− − − −

− + + − + −

 

( ) ( ) ( )
( )  ( ) ( )  ( )  ( ) ( )

1 1!
1 ;

1 ! 1 ! !

0                                                                                                                      ;otherwise

r s r n sn
F x F y F x F y f x f y a x y b

r s r n s

− − − −
− −   

− − − −=



 

Example: Let 1 2 3 4Y Y Y Y    be the order statistics of a random sample of size 4 from the 

probability distribution function 

( )
               ;0

0                  ;

xe x
f x

otherwise

−   
= 


 

Show that 2Y  and 4 2Y Y−  are stochastically independent.  

Solution: For x    

( ) ( ) ( )Pr

x

F x X x f x dx
−

=  =   

        

( ) ( )
0

0

x

f x dx f x dx
−

= +   

        0
0

x
xe− = + −   

        1 xe−= −  



Hence, ( )
1 ;0

0 ;

xe x
F x

otherwise

− −   
= 


 

Let 1 2Z Y=  and 2 4 2Z Y Y= −  

Then, the joint p. d. f. of 2Y  and 4Y  is given by 

 

( )
( ) ( ) ( )

( )  ( ) ( )  ( )  ( ) ( )
2 1 1 1

24 2 4 2 4 2 4 2 4

5!
, 1

5 9 ! 2 1 ! 9 2 1 !
g y y F y F y F y F y f y f y

−

= − −
− − − −

                                                                                                

; 2 40 y y    

               
     2 4 2 4 2 4120 1 1 1 1 1

y y y y y y
e e e e e e
− − − − − −

= − − − + − +  

                   2 2 2 4 42
120 1

y y y y y
e e e e e
− − − − −

= − −          2 4;0 y y      (1) 

For specific values we may write 

1 2z y=  and 2 4 2z y y= −  

i.e. 2 1y z=  and 4 2 1y z z= +  

The jacobian of transformation is 

( )

( )
2 4

1 2

1 0,
1

1 1,

y y
J

z z


= = =


 

Hence the joint p. d. f. of 1z  and 2z  is 

( )1 2,f z z = (mod J)(put 2y and 4y in terms of 1z  and 2z  in ( )24 2 4,g y y ) 

            ( )( ) ( )1 21 1 1 1 2
2

120 1
z zz z z z z

e e e e e
− +− − − − −

= − −            1 20 ,0z z     

            ( )( )1 1 2 24 2
120 1 1

z z z z
e e e e
− − − −

= − −  

Now,  



( ) ( )1 1 2 2

0

,f z f z z dz



=   

         

( ) ( )1 1 2 24 2

2

0

120 1 1
z z z z

e e e e dz



− − − −
= − −                ; 10 z    

Let 2z
e t
−

=  and 2

2

z
e dz dt
−

=  so that  

( ) ( ) ( )( )1 1

0

4

1

1

120 1 1
z z

f z e e t t dt
− −

= − − −                       ; 10 z    

                  ( ) ( )1 1

1

4 2

0

120 1
z z

e e t t dt
− −

= − −        ; 10 z    

                 ( )1 1

1
2 3

4

0

120 1
2 3

z z t t
e e
− −  

= − − 
 

                        ; 10 z    

                 ( )1 14 1 1
120 1

2 3

z z
e e
− −  

= − − 
 

                                 ; 10 z    

                 ( )1 14
20 1

z z
e e
− −

= −   ; 10 z                     (3) 

Similarly,   

( ) ( )2 1 2 1

0

,f z f z z dz



=   

         ( ) ( )2 2 1 12 4

1

0

120 1 1
z z z z

e e e e dz



− − − −
= − −     ; 20 z   

Let 1ze t
−

=  
1

1

z
e dz dt
−

 − =  

( ) ( ) ( )2 2

1

3

2

0

120 1 1
z z

f z e e t t dt
− −

= − −       ; 20 z   

         

( )2 2

1
4 5

0

120 1
4 5

z z t t
e e
− −  

= − − 
 

      ; 20 z   



         ( )2 22
6 1

z z
e e
− −

= −                              ; 20 z 
                             

(4) 

From (2), (3) and (4), we have,  

( ) ( ) ( )1 2 1 2,f z z f z f z=  

showing 1 2Z Y=  and 2 2 4Z Y Y= −  are stochastically independent. 

1.9      Joint Distribution of Order Statistics 

 

             Let 1X , 2X ,…, nX   be a random sample of size n taken from a continuous population 

whose p. d. f. is ( )f x  and c .d. f. is ( )F x  for a x b  . Let 1( , , )nF y y  be the joint c. d. f. 

and  1( , , )nf y y  be the joint p. d. f.  of all the order statistics 1, , nY Y  at the point ( )1, , ny y  

is given by 

( )
( )1

1

1

, ,
, ,

n

n

n

n

F y y
f y y

y y


=

 
 

           
( )

1

1 1 1 1

0
1

0

P , ,
lim

n

n n n n

y
n

y

y Y y y y Y y y

y y →

 →

  +    + 
=

   

 

 
1

1 1 1

0
1

0

P one  in ( , ], ,one  in ( , ]
lim

n

n n n

y
n

y

X y y y X y y y

y y →

 →

+  + 
=

   

1 1 1one  ... one 

_________ _______ _________ _______ __________
n n nX X

y y yy y ya b

   

++
 

Using multinomial law, we have 

( ) ( )
1

1 1 1 1

0
1

0

P P!
lim ...

1!...1!
n

n n n n

y
n

y

y Y y y y Y y yn

y y →

 →

  +    + 
=

 
 

( ) ( ) ( ) ( )
1

1 1 1

0 0
1

!
lim ... lim

1!...1! n

n n n

y y
n

F y y F y F y y F yn

y y →  →

+ − + −   
=    

    
 



( ) ( )1 1! ...         ; a< ...

0                    ;otherwise

n nn f y f y y y b   
= 


 

1.10   Summary 

 

This unit provides a thorough understanding of concepts related to Order statistics. The 

concepts of Distribution of maximum, minimum and r-th order statistic, Joint distribution of r-th 

and s-th order statistic are described in detail. The learner should try to solve the self-assessment 

problems given in the next section. 

 

1.11  Self-Assessment Exercises 

Q1. Derive the distribution of maximum and minimum order statistics for a random sample of 

size n drawn from a population having pdf 𝑓(𝑥|𝜃) and cdf 𝐹(𝑥|𝜃).  

Q2. What do you understand by order statistics. Explain the use of order statistics by giving 

suitable examples. Also, derive the distribution of r-th order statistic. 

Q3. Derive the joint distribution of r-th and s-th order statistic. 
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2.1  Intoduction 

2.2  Objectives 

2.3        Moments of Order Statistics 

2.4        Some Basic Relations 

2.5        Recurrencve Relations 

2.6         Non-Parametric Estimation of Distribution Function 
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2.7          Glivenko-Cantelli Fundamental Theorem 

2.8          Summary 

2.9           Self -Assessmemt Exercises 

 

2.1       Introduction 

 The exact probability density function of the rth order statistic of a sample of size n from 

a continuous population with cdf  P(x) was given as 

fr(x) = 
1

( , 1)r n r − +

1( )rP x −
 p(x) 1 ( )

n r
P x

−
− . 

But when n is large, this form is rather cumbersome to deal with. Hence, the asymptotic form of 

the density has to be derived for dealing large sample cases. While dealing with asymptotic 

distribution for any n, two distinct situations arise. They are 

(i) As n approaches infinity, r/n remains fixed. 

(ii) As n approaches infinity, r or (n – r) remains fixed. 

The first situation arises when dealing with distribution of quantiles, while the second 

situation will arise when dealing with distribution of extreme values. Here we intend to consider 



only on the first situation. The distribution of the rth  order statistic, when n approaches infinity 

with r/n remaining fixed can be obtained as follows. 

2.2      Objectives 

The objective of this unit is to provide a basic understanding of concepts related to 

Asymptotic Distribution Theory. The concepts of the moments of order statistics, non parametric 

estimation of distribution function, Glivenko-Cantelli fundamental theorem should be clear after 

study of this material. 

2.3        Moments of Order Statistics 

Let 𝑋1, 𝑋2, … . . , 𝑋𝑛  be a random sample of size 𝑛  from an absolutely continuously 

population with pdf 𝑓(𝑥) and cdf 𝐹(𝑥), and let 𝑋1:𝑛 ≤ 𝑋2:𝑛 ≤ ⋯ ≤ 𝑋𝑛:𝑛 be the corresponding 

order statistics. From the pdf of 𝑋𝑖:𝑛 we have, for 1 ≤ 𝑖 ≤ 𝑛 and 𝑚 = 1,2,… .,              

µ𝑖:𝑛   
(𝑚) = 𝐸(𝑋𝑖:𝑛

𝑚 ) = ∫ 𝑥𝑚 𝑓𝑖:𝑛(𝑥)
∞

−∞
𝑑𝑥               

          =
𝑛!

(𝑖−1)! (𝑛−𝑖)!
∫ 𝑥𝑚 {𝐹(𝑥)}𝑖−1{1 − 𝐹(𝑥)}𝑛−𝑖 𝑓(𝑥)𝑑𝑥.
∞

−∞
                                (1)                           

we will denote µ𝑖:𝑛
(1)

 by µ𝑖:𝑛  for convenience. From the first moments, we can determine the 

variance of 𝑋𝑖:𝑛 by 

                    𝜎𝑖,𝑖:𝑛 = 𝜎𝑖:𝑛
(2) = 𝑣𝑎𝑟(𝑋𝑖:𝑛) = µ𝑖:𝑛

(2) − µ𝑖:𝑛
2    1 ≤ 𝑖 ≤ 𝑛                                              (2)                                                  

Similarly, from the joint density function of  𝑋𝑖:𝑛 and 𝑋𝑗:𝑛 we have, for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 and 𝑚𝑖, 

𝑚𝑗 = 1,2, …, 

µ
𝑖,𝑗:𝑛

(𝑚𝑖,𝑚𝑗) = 𝐸(𝑋𝑖;𝑛
𝑚𝑖  𝑋

𝑗;𝑛

𝑚𝑗) 

              = ∬ 𝑥𝑖
𝑚𝑖𝑥

𝑗

𝑚𝑗𝑓𝑖,𝑗:𝑛−∞<𝑥𝑖<𝑥𝑗<∞
(𝑥𝑖 , 𝑥𝑗)𝑑𝑥𝑖𝑑𝑥𝑗  

              =
𝑛!

(𝑖−1)! (𝑗−𝑖−1)! (𝑛−𝑗)!
×∬ 𝑥𝑖

𝑚𝑖𝑥
𝑗

𝑚𝑗{𝐹(𝑥𝑖)}
𝑖−1{𝐹(𝑥𝑗) − 𝐹(𝑥𝑖)}−∞<𝑥𝑖<𝑥𝑗<∞

𝑗−𝑖−1
×

                       {1 − 𝐹(𝑥𝑗)}
𝑛−𝑗

𝑓(𝑥𝑖)𝑓(𝑥𝑗)𝑑𝑥𝑖𝑑𝑥𝑗                                                         (3) 



Once again, we use µ𝑖,𝑗:𝑛  instead of  µ𝑖,𝑗:𝑛
(1,1)

. The covariance of 𝑋𝑖:𝑛  and 𝑋𝑗:𝑛  may then be 

determined by  

                    𝜎𝑖,𝑗:𝑛 = 𝑐𝑜𝑣(𝑋𝑖:𝑛, 𝑋𝑗:𝑛) = µ𝑖,𝑗:𝑛 − µ𝑖:𝑛µ𝑗:𝑛  ,                            1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛.  (4) 

The formulas in (1) and (3) will enable one to derive exact explicit expression for the 

single and the product moments of order statistics, respectively, in many cases. Also, in 

situations where it is not possible to derive such explicitly expressions for the moments, the 

formulas in (1) and (3) can be used to compute the necessary moments by employing some 

numerical methods of integration. 

The expressions for the single and the product moments of order statistics in Eqs (1) and 

(3) can be easily modified to the case when the population distribution is discrete and written as 

 µ𝑖:𝑛
(𝑚) = 𝐸(𝑋𝑖:𝑛

𝑚 ) =  ∑ 𝑥𝑚𝑓𝑖:𝑛 (𝑥),                  1 ≤ 𝑖 ≤ 𝑛,     𝑚 = 1,2, …… ,𝐿1≤𝑥≤𝐿2 (5) 

and 

        µ
𝑖,𝑗:𝑛

(𝑚𝑖,𝑚𝑗) = 𝐸 (𝑋𝑖:𝑛
𝑚𝑖  𝑋

𝑗:𝑛

𝑚𝑗) = ∑ ∑𝑥𝑖
𝑚𝑖

𝐿1≤𝑥𝑖≤𝑥𝑗≤𝐿2

𝑥
𝑗

𝑚𝑗𝑓𝑖,𝑗:𝑛(𝑥𝑖 , 𝑥𝑗), 

                                                               1 ≤ 𝑖 < 𝑗 ≤ 𝑛,   𝑚𝑖, 𝑚𝑗 = 1,2, …,         (6) 

where [𝐿1, 𝐿2] is the support of the discrete population distribution; in Eqs (5) and (6), 𝑓𝑖:𝑛(𝑥) 

and 𝑓𝑖,𝑗:𝑛(𝑥𝑖, 𝑥𝑗) are the pmf of 𝑋𝑖:𝑛 and the joint pmf of  𝑋𝑖:𝑛 and 𝑋𝑗:𝑛, respectively. 

Now, by defining the inverse cumulative distribution function of the population as 

 𝐹−1(𝑢) = 𝑠𝑢𝑝{𝑥: 𝐹(𝑥) ≤ 𝑢},           0 < 𝑢 < 1,                       (7)                                                                           

and define the single the product moments of order statistics as 

µ𝑖:𝑛
(𝑚) = 𝐸(𝑋𝑖:𝑛

𝑚 ) =  
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∫ {𝐹−1(𝑢)}𝑚𝑢𝑖−1(1 − 𝑢)𝑛−𝑖𝑑𝑢,
1

0

 

   1 ≤ 𝑖 ≤ 𝑛, 𝑚 = 1,2, … .,            (8)             

and  

µ
𝑖,𝑗:𝑛

(𝑚𝑖,𝑚𝑗) = 𝐸(𝑋𝑖;𝑛
𝑚𝑖  𝑋

𝑗;𝑛

𝑚𝑗) 



            =
𝑛!

(𝑖−1)! (𝑗−𝑖−1)! (𝑛−𝑗)!
×∬ {𝐹−1(𝑢𝑖)}

𝑚𝑖{𝐹−1(𝑢𝑖)}0<𝑢𝑖<𝑢𝑗<1

𝑚𝑗 𝑢𝑖
𝑖−1(𝑢𝑗 − 𝑢𝑖)

𝑖−𝑗−1
×

                       (1 − 𝑢𝑗)
𝑛−𝑗

𝑑𝑢𝑖  𝑑𝑢𝑗    1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛,       𝑚𝑖, 𝑚𝑗 = 1,2, ….                            (9) 

Example:   Let 𝑋(𝑟) denote the 𝑟𝑡ℎ order statistic in a random sample of size n from a uniform 

distribution in the interval (0,1). Compute 𝜇𝑟,𝑛. 

Solution: Here p(x) =1, 0 ≤ 𝑥 ≤ 1 and P(x) = x. 

∴      𝑓𝑟,𝑛(𝑥) = n
1

1

n

r

− 
 

− 
xr-1(1 – x)n – r = 

𝑛!

(𝑟−1)!(𝑛−𝑟)!
 xr-1(1 – x)n – r 

𝜇𝑟,𝑛 = E{𝑋(𝑟)} = ∫ 𝑥
1

0
𝑓𝑟(𝑥)𝑑𝑥= 

𝑛!

(𝑟−1)!(𝑛−𝑟)!
∫ 𝑥
1

0
. 𝑥𝑟−1(1 − 𝑥)𝑛−𝑟𝑑𝑥 

              = 
𝑛!

(𝑟−1)!(𝑛−𝑟)!

𝑟!(𝑛−𝑟)!

(𝑛+1)!
 = 

𝑟

𝑛+1
; 𝑟 = 1,2,⋯ , 𝑛. 

 This shows that the n order statistics 𝑋1, 𝑋2,⋯ , 𝑋𝑛 divides the area under the pdf  into 

n+1 parts each of which is on the average 
1

𝑛+1
. 

Example: Let 𝑋(𝑟), 𝑋(𝑠), 𝑋(𝑡) and 𝑋(𝑢) (𝑟 ≤ 𝑠 ≤ 𝑡 ≤ 𝑢) be  four order statistics from a sample 

of size n from a uniform distribution with pdf  p(x) = 1, 0 ≤ 𝑥 ≤ 1. Suppose 𝑌1 =
 𝑋(𝑟)

𝑋(𝑠)
, 𝑌2 = 

𝑋(𝑠)

𝑥(𝑡)
, 

𝑌3  = 
𝑋(𝑡)

𝑋(𝑢)
 and 𝑌4  = 𝑋(𝑢) , then prove that 𝑌1, 𝑌2, 𝑌3  and  𝑌4  are independently distributed each 

having a beta distribution. 

Solution: Consider the joint distribution of the four order statistics 𝑋(𝑟), 𝑋(𝑠), 𝑋(𝑡) and 𝑋(𝑢) (𝑟 ≤

𝑠 ≤ 𝑡 ≤ 𝑢) of a sample of size n from a uniform distribution pdf  p(x) = 1, 0 ≤ 𝑥 ≤ 1  and cdf 

P(x) = x,  given by 

𝑓𝑟,𝑠,𝑡,𝑢;𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4)  = 
𝑛!

(𝑟−1)!(𝑠−𝑟−1)!(𝑡−𝑠−1)!(𝑢−𝑡−1)!(𝑛−𝑢)!
𝑃𝑟−1(𝑥1)𝑝(𝑥1)[𝑃(𝑥2) −

𝑃(𝑥1)]
𝑠−𝑟−1 ×                                𝑝(𝑥2)[𝑃(𝑥3) − 𝑃(𝑥2)]

𝑡−𝑠−1𝑝(𝑥3)[𝑃(𝑥4) −

𝑃(𝑥3)]
𝑢−𝑡−1𝑝(𝑥4)[1 −  𝑃(𝑥4)]

𝑛−𝑢. 

Let C = 
𝑛!

(𝑟−1)!(𝑠−𝑟−1)!(𝑡−𝑠−1)!(𝑢−𝑡−1)!(𝑛−𝑢)!
. Then, 



𝑓𝑟,𝑠,𝑡,𝑢;𝑛(𝑥1, 𝑥2, 𝑥3, 𝑥4) = C.𝑥1
𝑟−1(𝑥2 − 𝑥1)

𝑠−𝑟−1(𝑥3 − 𝑥2)
𝑡−𝑠−1(𝑥4 − 𝑥3)

𝑢−𝑡−1(1 − 𝑥4)
𝑛−𝑢. 

On making the transformation 𝑦1 =
𝑥1

𝑥2
, 𝑦2 = 

𝑥2

𝑥3
, 𝑦3 = 

𝑥3

𝑥4
 and 𝑦4 = 𝑥4, the inverse transformation is 

𝑥4 = 𝑦4, 𝑥3 = 𝑦3𝑦4, 𝑥2 = 𝑦2𝑦3𝑦4 and 𝑥1 = 𝑦1𝑦2𝑦3𝑦4. The jacobian of the transformation is given 

by 

|J| = |
𝜕(𝑥1,𝑥2,𝑥3,𝑥4)

𝜕(𝑦1,𝑦2,𝑦3,𝑦4)
| = |

𝑦2𝑦3𝑦4 𝑦1𝑦3𝑦4
0 𝑦3𝑦4

𝑦1𝑦2𝑦4 𝑦1𝑦2𝑦3
𝑦2𝑦4 𝑦2𝑦3

0          0
0         0

𝑦4                𝑦3
0             0

| = 𝑦2𝑦3
2𝑦4

3; 0 ≤  𝑦𝑖  ≤ 1, for  

i = 1,2,3,4. Hence the joint density of 𝑌1, 𝑌2, 𝑌3 and 𝑌4 is given by 

𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4) = 𝑓𝑟,𝑠,𝑡,𝑢(𝑥1, 𝑥2, 𝑥3, 𝑥4) |J|  

  = C.(𝑦1𝑦2𝑦3𝑦4)
𝑟−1(𝑦2𝑦3𝑦4 − 𝑦1𝑦2𝑦3𝑦4)

𝑠−𝑟−1(𝑦3𝑦4 − 𝑦2𝑦3𝑦4)
𝑡−𝑠−1 

      × (𝑦4 − 𝑦3𝑦4)
𝑢−𝑡−1(1 − 𝑦4)

𝑛−𝑢𝑦2𝑦3
2𝑦4

3 

= C.𝑦1
𝑟−1(1 − 𝑦1)

𝑠−𝑟−1𝑦2
𝑟−1+𝑠−𝑟−1+1(1 − 𝑦2)

𝑡−𝑠−1𝑦3
𝑟−1+𝑠−𝑟−1+𝑡−𝑠−1+2(1 − 𝑦3)

𝑢−𝑡−1 

        × 𝑦4
𝑟−1+𝑠−𝑟−1+𝑡−𝑠−1+𝑢−𝑡−1+3(1 − 𝑦4)

𝑛−𝑢 

      = C.𝑦1
𝑟−1(1 − 𝑦1)

𝑠−𝑟−1𝑦2
𝑠−1(1 − 𝑦2)

𝑡−𝑠−1𝑦3
𝑡−1(1 − 𝑦3)

𝑢−𝑡−1𝑦4
𝑢−1(1 − 𝑦4)

𝑛−𝑢. 

Now, C = 
𝑛!

(𝑟−1)!(𝑠−𝑟−1)!(𝑡−𝑠−1)!(𝑢−𝑡−1)!(𝑛−𝑢)!
 

            = 
(𝑠−1)!

(𝑟−1)!(𝑠−𝑟−1)!

(𝑡−1)!

(𝑠−1)!(𝑡−𝑠−1)!

(𝑢−1)!

(𝑡−1)!(𝑢−𝑡−1)!

𝑛!

(𝑢−1)!(𝑛−𝑢)!
 

           = 
1

𝛽(𝑟,𝑠−𝑟)

1

𝛽(𝑠,𝑡−𝑠)

1

𝛽(𝑡,𝑢−𝑡)

1

𝛽(𝑢,𝑛−𝑢+1)
. 

∴  𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4) = 
1

𝛽(𝑟,𝑠−𝑟)
𝑦1
𝑟−1(1 − 𝑦1)

𝑠−𝑟−1 1

𝛽(𝑠,𝑡−𝑠)
𝑦2
𝑠−1(1 − 𝑦2)

𝑡−𝑠−1 

          ×
1

𝛽(𝑡,𝑢−𝑡)
𝑦3
𝑡−1(1 − 𝑦3)

𝑢−𝑡−1 1

𝛽(𝑢,𝑛−𝑢+1)
𝑦4
𝑢−1(1 − 𝑦4)

𝑛−𝑢; 

         0 ≤  𝑦𝑖  ≤ 1, for i = 1,2,3,4. 

 This proves that the variables 𝑌1, 𝑌2, 𝑌3  and 𝑌4  are independently distributed as beta 

distribution. 



 Using this result, the moment 𝐸[𝑋(𝑟)
𝑎 𝑋(𝑠)

𝑏 𝑋(𝑡)
𝑐 𝑋(𝑢)

𝑑 ] can be obtained as follows. 

𝐸[𝑋(𝑟)
𝑎 𝑋(𝑠)

𝑏 𝑋(𝑡)
𝑐 𝑋(𝑢)

𝑑 ] = ∫ ∫ ∫ ∫ 𝑥1
𝑎𝑥2

𝑏𝑥3
𝑐𝑥4

𝑑𝑥2
0

𝑥3
0

𝑥4
0

1

0
𝑓𝑟,𝑠,𝑡,𝑢(𝑥1, 𝑥2, 𝑥3, 𝑥4)𝑑𝑥1𝑑𝑥2𝑑𝑥3𝑑𝑥4. 

On making the transformation 𝑦1 =
𝑥1

𝑥2
, 𝑦2 = 

𝑥2

𝑥3
, 𝑦3 = 

𝑥3

𝑥4
 and 𝑦4 = 𝑥4, the inverse transformation is 

𝑥4 = 𝑦4, 𝑥3 = 𝑦3𝑦4, 𝑥2 = 𝑦2𝑦3𝑦4 and 𝑥1 = 𝑦1𝑦2𝑦3𝑦4. The jacobian of the transformation is given 

by 

|J| = |
𝜕(𝑥1,𝑥2,𝑥3,𝑥4)

𝜕(𝑦1,𝑦2,𝑦3,𝑦4)
| = |

𝑦2𝑦3𝑦4 𝑦1𝑦3𝑦4
0 𝑦3𝑦4

𝑦1𝑦2𝑦4 𝑦1𝑦2𝑦3
𝑦2𝑦4 𝑦2𝑦3

0          0
0         0

𝑦4                𝑦3
0             0

| = 𝑦2𝑦3
2𝑦4

3; 0 ≤  𝑦𝑖  ≤ 1, for  

i = 1,2,3,4. Thus, 

𝐸[𝑋(𝑟)
𝑎 𝑋(𝑠)

𝑏 𝑋(𝑡)
𝑐 𝑋(𝑢)

𝑑 ]  

= ∫ ∫ ∫ ∫ (𝑦1𝑦2𝑦3𝑦4)
𝑎1

0

1

0

1

0

1

0
(𝑦2𝑦3𝑦4)

𝑏(𝑦3𝑦4)
𝑐(𝑦4)

𝑑 𝑔(𝑦1, 𝑦2, 𝑦3, 𝑦4)𝑑𝑦1𝑑𝑦2𝑑𝑦3𝑑𝑦4 

       =  ∫ 𝑦1
𝑎+𝑟−1(1 − 𝑦1)

𝑠−𝑟−11

0
1

𝛽(𝑟,𝑠−𝑟)

 𝑑𝑦1 ∫
1

𝛽(𝑠,𝑡−𝑠)
𝑦2
𝑠−1(1 − 𝑦2)

𝑎+𝑏+𝑡−𝑠−1𝑑𝑦2
1

0
×

∫
1

𝛽(𝑡,𝑢−𝑡)
𝑦3
𝑎+𝑏+𝑐+𝑡−1(1 − 𝑦3)

𝑢−𝑡−11

0
 𝑑𝑦3 ∫

1

𝛽(𝑢,𝑛−𝑢+1)
𝑦4
𝑎+𝑏+𝑐+𝑑+𝑢−1(1 − 𝑦4)

𝑛−𝑢1

0
 𝑑𝑦4 

= 
𝛽(𝑎+𝑟,𝑠−𝑟)

𝛽(𝑟,𝑠−𝑟)

𝛽(𝑎+𝑏+𝑠,𝑡−𝑠)

𝛽(𝑠,𝑡−𝑠)

𝛽(𝑎+𝑏+𝑐+𝑡,𝑢−𝑡)

𝛽(𝑡,𝑢−𝑡)

𝛽(𝑎+𝑏+𝑐+𝑑+𝑢,𝑛−𝑢+1)

𝛽(𝑢,𝑛−𝑢+1)
. 

 This result can be generalized for k variables. Suppose 𝑋(𝑟1) ≤ 𝑋(𝑟2)  ≤  ⋯  ≤  𝑋(𝑟𝑘) be k 

order statistics of a sample of size n from a standard uniform distribution, then 

𝐸[𝑋𝑟1
𝑎1𝑋𝑟2

𝑎2⋯𝑋𝑟𝑘
𝑎𝑘] = 𝐸[∏ 𝑋(𝑟𝑖)

𝑎𝑖𝑘
𝑖=1 ] 

= 
𝛽(𝑎1+𝑟1,𝑟2−𝑟1)

𝛽(𝑟1,𝑟2−𝑟1)

𝛽(𝑎1+𝑎2+𝑟2,𝑟3−𝑟2)

𝛽(𝑟2,𝑟3−𝑟2)
 ⋯ 

𝛽(𝑎1+𝑎2+⋯+𝑎𝑘,𝑛−𝑟𝑘+1)

𝛽(𝑟𝑘,𝑛−𝑟𝑘+1)
 

= 
𝑛!

(𝑛+∑ 𝑎𝑖𝑘
𝑖=1 )!

∏
(𝑟𝑖−1+ ∑ 𝑎𝑗𝑖

𝑗=1 )!

(𝑟𝑖−1+ ∑ 𝑎𝑗𝑖−1
𝑗=1 )!

𝑘
𝑖=1 . 

This is valid only for uniform distribution. In particular for 1 ≤ 𝑟 ≤ 𝑠 ≤ 𝑛, and taking 𝑝𝑟 = 
𝑟

𝑛+1
 

and  𝑞𝑟 = 1 −  𝑝𝑟 = 1 − 
𝑟

𝑛+1
 = 

𝑛−𝑟+1

𝑛+1
, we have  



𝜇𝑟,𝑛 = 𝑝𝑟 = 
𝑟

𝑛+1
 and  

𝜎𝑟,𝑠;𝑛 = Cov(𝑋(𝑟), 𝑋(𝑠)) = 𝐸[(𝑋(𝑟) − 𝜇𝑟,𝑛)(𝑋(𝑠) − 𝜇𝑠,𝑛)] 

 = 𝐸[𝑋(𝑟)𝑋(𝑠)] − 𝜇𝑟,𝑛𝜇𝑠,𝑛 = 
𝑛!

(𝑛+2)!
∏

(𝑟𝑖−1+ 𝑖)!

(𝑟𝑖−1+ 𝑖−1)!

2
𝑖=1  − 

𝑟

𝑛+1
.
𝑠

𝑛+1
 

 = 
𝑛!

(𝑛+2)!

𝑟!

(𝑟−1)!

(𝑠+1)!

𝑠!
−

𝑟

𝑛+1
.
𝑠

𝑛+1
  = 

1

(𝑛+2)(𝑛+1)

𝑟

1

(𝑠+1)

1
−

𝑟

𝑛+1
.
𝑠

𝑛+1
 

 = 
𝑟

𝑛+1
[
(𝑠+1)

(𝑛+2)
−

𝑠

𝑛+1
] = 

𝑟

𝑛+1

(𝑛+1−𝑠)

(𝑛+1)(𝑛+2)
 = 

𝑟

(𝑛+1)(𝑛+2)
(1 − 

𝑠

𝑛+1
) = 

𝑝𝑟𝑝𝑠

𝑛+2
. 

When r = s, we get the variance of 𝑋(𝑟) as 

𝜎𝑟,𝑟;𝑛 = 𝜎𝑟,𝑛
2  = 

𝑝𝑟
2

𝑛+2
 = 

𝑟2

(𝑛+1)2(𝑛+2)
. 

Note that the computation of the moments of order statistics could be simplified if it is known 

that the pdf p(x) is symmetric about origin, as in this case, p(-x) = p(x) and P(-x) = 1 – P(x); 

𝑓𝑟,𝑛(−𝑥) = 
1

𝛽(𝑟,𝑛−𝑟+1)
𝑃𝑟−1(−𝑥)𝑝(−𝑥)[1 − 𝑃(−𝑥)]𝑛−𝑟 

 = 
1

𝛽(𝑟,𝑛−𝑟+1)
[1 − 𝑃(𝑥)]𝑟−1𝑝(𝑥) [1 − 1 + 𝑃(𝑥)]𝑛−𝑟 

  = 
1

𝛽(𝑛−𝑟+1,𝑟)
𝑃𝑛−𝑟(𝑥)𝑝(𝑥)[1 − 𝑃(𝑥)]𝑟−1 = 𝑓𝑛−𝑟+1,𝑛(𝑥). 

Hence, 𝜇𝑟,𝑛 = E(𝑋(𝑟)) = ∫ 𝑥𝑓𝑟(𝑥)𝑑𝑥
∞

−∞
 = ∫ (−𝑥)𝑓𝑛−𝑟+1(𝑥)𝑑𝑥

∞

−∞
 = −𝜇𝑛−𝑟+1,𝑛.  

Similarly, 𝜎𝑟,𝑠;𝑛 = Cov(𝑋(𝑟), 𝑋(𝑠)) = 𝐸[(𝑋(𝑟) − 𝜇𝑟,𝑛)(𝑋(𝑠) − 𝜇𝑠,𝑛)] 

          = 𝐸[𝑋(𝑟)𝑋(𝑠)] − 𝜇𝑟,𝑛𝜇𝑠,𝑛  = ∫ ∫ (−𝑥)
∞

−𝑦

∞

−∞
(−𝑦)𝑓𝑛−𝑟+1,𝑛−𝑠+1(𝑥, 𝑦)𝑑𝑥𝑑𝑦 −

 𝜇𝑛−𝑟+1,𝑛𝜇𝑛−𝑠+1,𝑛 

=∫ ∫ 𝑥
𝑦

−∞

∞

−∞
𝑦𝑓𝑛−𝑟+1,𝑛−𝑠+1(𝑥, 𝑦)𝑑𝑥𝑑𝑦 − 𝜇𝑛−𝑟+1,𝑛𝜇𝑛−𝑠+1,𝑛 

 = 𝜎𝑛−𝑟+1,𝑛−𝑠+1;𝑛. 

Using this result, the mean and variance of the range R = 𝑋(𝑛) − 𝑋(1) of a sample of size n from a 

symmetric distribution is given by 

𝐸(𝑅) = 𝐸[𝑋(𝑛)] −  𝐸[𝑋(1)] = 𝜇𝑛,𝑛 − 𝜇1,𝑛 = 𝜇𝑛,𝑛 − (−𝜇𝑛,𝑛) = 2𝜇𝑛,𝑛 and  

𝑉(𝑅) = 𝑉[𝑋(𝑛) − 𝑋(1)] = 𝑉[𝑋(𝑛)] − 2𝐶𝑜𝑣[𝑋(𝑛), 𝑋(1)] +  𝑉[𝑋(1)] 



 = 𝜎𝑛,𝑛
2 − 2 𝜎1,𝑛;𝑛 + 𝜎1,𝑛

2  = 𝜎𝑛,𝑛
2 − 2 𝜎1,𝑛;𝑛 + 𝜎𝑛,𝑛

2  = 2(𝜎𝑛,𝑛
2 − 𝜎1,𝑛;𝑛). 

Theorem: If F(x) is the cdf of a random variable and if E(X) exists, then the following limits 

hold: (i) lim
𝑥→−∞

𝑥𝐹(𝑥) = 0 and (ii) lim
𝑥→∞

𝑥[1 − 𝐹(𝑥)] =0. 

Proof: If E(X) exists, then the integral ∫ |𝑥|𝑑𝐹(𝑥)
∞

−∞
 < ∞. Hence, if we consider the integral 

∫ 𝑦𝑑𝐹(𝑦) ≤ 
𝑥

−∞
∫ 𝑥𝑑𝐹(𝑦)
𝑥

−∞
, since 𝑦 ≤ 𝑥; 

          = 𝑥 ∫ 𝑑𝐹(𝑦)
𝑥

−∞
 = 𝑥[𝐹(𝑦)]|−∞

𝑥  = 𝑥𝐹(𝑥) as 𝐹(−∞) = 0. 

Or ∫ 𝑦𝑑𝐹(𝑦) ≤ 
𝑥

−∞
 𝑥𝐹(𝑥). Now, 

0 = lim
𝑥→−∞

∫ 𝑦𝑑𝐹(𝑦) ≤ 
𝑥

−∞
 lim
𝑥→−∞

𝑥𝐹(𝑥)  ≤ 0. Hence, 

0 ≤ lim
𝑥→−∞

𝑥𝐹(𝑥)  ≤ 0 ⇒ lim
𝑥→−∞

𝑥𝐹(𝑥) = 0. This proves (i). 

 Now, to prove (ii) consider the integral 

∫ 𝑦𝑑𝐹(𝑦)  ≥ 
∞

𝑥
∫ 𝑥𝑑𝐹(𝑦),
∞

𝑥
 since 𝑦 ≥ 𝑥; 

          = 𝑥 ∫ 𝑑𝐹(𝑦)
∞

𝑥
 = 𝑥[𝐹(𝑦)]|𝑥

∞ = 𝑥[𝐹(∞) − 𝐹(𝑥)]  

         =𝑥[1 − 𝐹(𝑥)] as 𝐹(∞) = 1. 

Or ∫ 𝑦𝑑𝐹(𝑦)  ≥ 
∞

𝑥
𝑥[1 − 𝐹(𝑥)] . Now, 

0 = lim
𝑥→∞

∫ 𝑦𝑑𝐹(𝑦)  ≥ 
∞

𝑥
lim
𝑥→∞

𝑥[1 − 𝐹(𝑥)]  ≥ 0. Hence, 

0 ≥ lim
𝑥→∞

𝑥[1 − 𝐹(𝑥)]  ≥ 0 ⇒ lim
𝑥→∞

𝑥[1 − 𝐹(𝑥)] =0. 

Theorem: If E(X) exists, then it can be expressed as 

∫ 𝑥𝑑𝐹(𝑥)
∞

−∞
 = 𝐸(𝑋) = ∫ [1 − 𝐹(𝑦)]

∞

0
𝑑𝑦 − ∫ 𝐹(𝑦)𝑑𝑦

0

−∞
. 

 

 

 

 



 

Proof:      

 

 

 

 

 

 

 

 

Consider the integral∫ 𝑦𝑑𝐹(𝑦)
𝑥

0
 and integrating it by parts, we get 

∫ 𝑦𝑑𝐹(𝑦)
𝑥

0
 = 𝑦. 𝐹(𝑦)|0

𝑥 − ∫ 𝐹(𝑦)𝑑𝑦
𝑥

0
 = 𝑥𝐹(𝑥) − ∫ 𝐹(𝑦)𝑑𝑦

𝑥

0
 

       = −𝑥[1 − 𝐹(𝑥)] +  𝑥 − ∫ 𝐹(𝑦)𝑑𝑦
𝑥

0
 = −𝑥[1 − 𝐹(𝑥)] + ∫ 𝑑𝑦

𝑥

0
− ∫ 𝐹(𝑦)𝑑𝑦

𝑥

0
. 

Or ∫ 𝑦𝑑𝐹(𝑦)
𝑥

0
 = −𝑥[1 − 𝐹(𝑥)] +  ∫ [1 − 𝐹(𝑦)]𝑑𝑦

𝑥

0
.     (1) 

Also by considering the integral ∫ 𝑦𝑑𝐹(𝑦)
0

−𝑥
 = 𝑦. 𝐹(𝑦)|−𝑥

0 − ∫ 𝐹(𝑦)𝑑𝑦
0

−𝑥
 

      = 𝑥𝐹(−𝑥)  − ∫ 𝐹(𝑦)𝑑𝑦
0

−𝑥
. 

Hence, 

∫ 𝑦𝑑𝐹(𝑦)
𝑥

0
+ ∫ 𝑦𝑑𝐹(𝑦)

0

−𝑥
 = −𝑥[1 − 𝐹(𝑥)] + 𝑥𝐹(−𝑥) +  ∫ [1 − 𝐹(𝑦)]𝑑𝑦

𝑥

0
− ∫ 𝐹(𝑦)𝑑𝑦

0

−𝑥
. 

Or ∫ 𝑦𝑑𝐹(𝑦)
𝑥

−𝑥
 = −𝑥[1 − 𝐹(𝑥)] + 𝑥𝐹(−𝑥)  +  ∫ [1 − 𝐹(𝑦)]𝑑𝑦

𝑥

0
− ∫ 𝐹(𝑦)𝑑𝑦

0

−𝑥
. 

Now letting𝑥 → ∞, we have 

∫ 𝑦𝑑𝐹(𝑦)
∞

−∞
 = − lim

𝑥→∞
𝑥[1 − 𝐹(𝑥)] − lim

𝑥→∞
[−𝑥𝐹(−𝑥)] + ∫ [1 − 𝐹(𝑦)]𝑑𝑦

∞

0
− ∫ 𝐹(𝑦)𝑑𝑦

0

−∞
. 

Or 𝐸(𝑋) = ∫ [1 − 𝐹(𝑦)]𝑑𝑦
∞

0
− ∫ 𝐹(𝑦)𝑑𝑦

0

−∞
, since lim

𝑥→∞
𝑥[1 − 𝐹(𝑥)] = 0 and 

 lim
𝑥→∞

[−𝑥𝐹(−𝑥)] = lim
𝑥→−∞

[𝑥𝐹(𝑥)] = 0, by Theorem1. 

∞ 
0 -∞ 

Type equation here. 

1 
1-F(x) 

F(x) 



Hence the theorem is proved. 

Now consider the expected value of 𝑋(𝑟) from a sample of size n given by 

 𝜇𝑟,𝑛 = ∫ [1 − 𝐹𝑟,𝑛(𝑥)]𝑑𝑥
∞

0
− ∫ 𝐹𝑟,𝑛(𝑥)𝑑𝑥

0

−∞
 = ∫ [1 − 𝐹𝑟,𝑛(𝑥)]𝑑𝑥

∞

0
− ∫ 𝐹𝑟,𝑛(−𝑥)𝑑𝑥

∞

0
 

        = ∫ [1 − 𝐹𝑟,𝑛(𝑥) − 𝐹𝑟,𝑛(−𝑥)]𝑑𝑥
∞

0
. 

When p(x) is symmetrical about x = 0, then 𝑓𝑟,𝑛(−𝑥) =  𝑓𝑛−𝑟+1,𝑛(𝑥) and hence, 

𝐹𝑟,𝑛(−𝑥) = 1 − 𝐹𝑛−𝑟+1,𝑛(𝑥) . Therefore, 

𝜇𝑟,𝑛 = ∫ [1 − 𝐹𝑟,𝑛(𝑥) − 1 + 𝐹𝑛−𝑟+1,𝑛(𝑥) ]𝑑𝑥
∞

0
 = ∫ [𝐹𝑛−𝑟+1,𝑛(𝑥)  − 𝐹𝑟,𝑛(𝑥)]𝑑𝑥

∞

0
. 

Further, when r = 1, 𝜇1,𝑛 = ∫ [𝐹𝑛,𝑛(𝑥)  − 𝐹1,𝑛(𝑥)]𝑑𝑥
∞

0
 and when r = n, 

  𝜇𝑛,𝑛 = ∫ [𝐹1,𝑛(𝑥)  − 𝐹𝑛,𝑛(𝑥)]𝑑𝑥
∞

0
. 

∴    𝐸(𝑅) = 𝜇𝑛,𝑛 − 𝜇1,𝑛 = ∫ [𝐹1,𝑛(𝑥)  − 𝐹𝑛,𝑛(𝑥)]𝑑𝑥
∞

0
− ∫ [𝐹𝑛,𝑛(𝑥)  − 𝐹1,𝑛(𝑥)]𝑑𝑥

∞

0
 

     = ∫ [𝐹1,𝑛(𝑥) − 𝐹𝑛,𝑛(𝑥) − 𝐹𝑛,𝑛(𝑥) + 𝐹1,𝑛(𝑥)]𝑑𝑥
∞

0
 = 2∫ [𝐹1,𝑛(𝑥) − 𝐹𝑛,𝑛(𝑥)]𝑑𝑥

∞

0
. 

2.4          Some Basic Relations 

The following checks can be applied while computing the moments of order statistics, by 

noting that 

[∑ 𝑋(𝑟)
𝑘𝑛

𝑟=1 ]
𝑚

 = [𝑋(1)
𝑘 + 𝑋(2)

𝑘 + ⋯+ 𝑋(𝑛)
𝑘 ]

𝑚
 = [𝑋1

𝑘 + 𝑋2
𝑘 + ⋯+ 𝑋𝑛

𝑘]𝑚 = [∑ 𝑋𝑖
𝑘𝑛

𝑖=1 ]
𝑚

 .          (1) 

Now for different pairs of values of k and m, i.e. (k, m) = (1,1), (2,1) and (1,2) this 

expression reduces to: 

(i) For the pair(1,1), 

∑ 𝑋(𝑟)
𝑛
𝑟=1  = ∑ 𝑋𝑖

𝑛
𝑖=1 . Hence, 

𝐸[∑ 𝑋(𝑟)
𝑛
𝑟=1 ] = 𝐸[∑ 𝑋𝑖

𝑛
𝑖=1 ]. 

Or ∑ 𝐸(𝑋(𝑟))
𝑛
𝑟=1  = ∑ 𝐸(𝑋𝑖)

𝑛
𝑖=1 . 

Or  ∑ 𝜇𝑟,𝑛
𝑛
𝑟=1  = ∑ 𝜇𝑛

𝑖=1  = 𝑛𝜇,        (2) 



where  𝐸(𝑋) =  𝜇. 

(ii) For the pair (2,1), 

[∑ 𝑋(𝑟)
2𝑛

𝑟=1 ] = [∑ 𝑋𝑖
2𝑛

𝑖=1 ]. Hence, 

𝐸[∑ 𝑋(𝑟)
2𝑛

𝑟=1 ] = 𝐸[∑ 𝑋𝑖
2𝑛

𝑖=1 ] = ∑ 𝐸(𝑋𝑖
2)𝑛

𝑖=1 = 𝑛𝐸(𝑋2).    (3) 

Or 𝐸[∑ 𝑋(𝑟)
2𝑛

𝑟=1 ] = 𝑛(𝜎2 + 𝜇2).       (4) 

(iii) For the pair (1,2) 

[∑ 𝑋(𝑟)
𝑛
𝑟=1 ]

2
 = [∑ 𝑋𝑖

𝑛
𝑖=1 ]2. 

Or [∑ 𝑋(𝑟)
𝑛
𝑟=1 ][∑ 𝑋(𝑠)

𝑛
𝑠=1 ] = [∑ 𝑋𝑖

𝑛
𝑖=1 ]2 

Or ∑ 𝑋(𝑟)
2𝑛

𝑟=1 +  2∑ ∑ 𝑋(𝑟)
𝑛
𝑠=𝑟+1

𝑛
𝑟=1 𝑋(𝑠) = ∑ 𝑋𝑖

2𝑛
𝑖=1 +  2 ∑ ∑ 𝑋𝑖𝑋𝑗

𝑛
𝑗=1
𝑖<𝑗

𝑛
𝑖=1 . 

On taking expectation and using (4), we get 

𝐸[∑ 𝑋(𝑟)
2𝑛

𝑟=1 ] +  2∑ ∑ 𝐸[𝑋(𝑟)𝑋(𝑠)]
𝑛
𝑠=𝑟+1

𝑛
𝑟=1  = ∑ 𝐸[𝑋𝑖

2]𝑛
𝑖=1 +  ∑ ∑ 𝐸[𝑋𝑖𝑋𝑗

𝑛
𝑗=1
𝑖≠𝑗

𝑛
𝑖=1 ]. 

Or 𝑛(𝜎2 + 𝜇2) + 2∑ ∑ 𝐸[𝑋(𝑟)𝑋(𝑠)]
𝑛
𝑠=𝑟+1

𝑛
𝑟=1  = 𝑛(𝜎2 + 𝜇2) +  ∑ ∑ 𝐸[𝑋𝑖]𝐸[𝑋𝑗

𝑛
𝑗=1
𝑖≠𝑗

𝑛
𝑖=1 ]. 

Or ∑ ∑ 𝐸[𝑋(𝑟)𝑋(𝑠)]
𝑛
𝑠=𝑟+1

𝑛
𝑟=1  = 

1

2
𝑛(𝑛 − 1)𝜇2.      (5) 

Also, since 

∑ [𝑋(𝑟) − 𝜇𝑟,𝑛]
𝑛
𝑟=1  = ∑ 𝑋(𝑟)

𝑛
𝑟=1 − ∑ 𝜇𝑟,𝑛

𝑛
𝑟=1  = ∑ 𝑋𝑖

𝑛
𝑖=1 −  𝑛𝜇.  

Or ∑ [𝑋(𝑟) − 𝜇𝑟,𝑛]
𝑛
𝑟=1  = ∑ (𝑋𝑖

𝑛
𝑖=1 −  𝜇).       (6) 

Squaring both sides of (6), we get 

∑ ∑ (𝑋(𝑟) − 𝜇𝑟,𝑛)
𝑛
𝑠=1

𝑛
𝑟=1 (𝑋(𝑠) − 𝜇𝑠,𝑛) = ∑ (𝑋𝑖 − 𝜇)

2𝑛
𝑖=1 + ∑ ∑ (𝑋𝑖 − 𝜇)(𝑋𝑗 − 𝜇)

𝑛
𝑗=1
𝑖≠𝑗

𝑛
𝑖=1 . 

On taking expectation on both sides of the above equation, we get 

∑ ∑ 𝐸{(𝑋(𝑟) − 𝜇𝑟,𝑛)(𝑋(𝑠) − 𝜇𝑠,𝑛)}
𝑛
𝑠=1

𝑛
𝑟=1   



= ∑ 𝐸{(𝑋𝑖 − 𝜇)
2}𝑛

𝑖=1 + ∑ ∑ 𝐸(𝑋𝑖 − 𝜇)𝐸(𝑋𝑗 − 𝜇)
𝑛
𝑗=1
𝑖≠𝑗

𝑛
𝑖=1 . 

Or ∑ ∑ 𝜎𝑟,𝑠;𝑛
𝑛
𝑠=1

𝑛
𝑟=1  = ∑ 𝜎2𝑛

𝑖=1  = 𝑛𝜎2. [Since, 𝐸(𝑋𝑖 − 𝜇) = 𝐸(𝑋𝑗 − 𝜇) = 0.]   (7) 

Relations (1) to (7) hold for both continuous as well as discrete variates. 

2.5             Recurrence Relations 

Recurrence relations between the moments of order statistics are studied for reducing the 

number of calculations required for the evaluation of the moments. Such relations may also be 

used as checks on direct calculations. To prove the recurrence relations we need the following 

lemma. 

Lemma: Suppose 𝐼𝑥(𝑚, 𝑛) = 
1

𝛽(𝑚,𝑛)
∫ 𝑡𝑚−1(1 − 𝑡)𝑛−1𝑑𝑡
𝑥

0
 denotes the incomplete beta function 

up to the value x with parameters m and n then 

𝑎𝐼𝑦(𝑎 + 1, 𝑏) +  𝑏𝐼𝑦(𝑎, 𝑏 + 1) = (𝑎 + 𝑏)𝐼𝑦(𝑎, 𝑏). 

Proof: We have, 

𝑎𝐼𝑦(𝑎 + 1, 𝑏) +  𝑏𝐼𝑦(𝑎, 𝑏 + 1) = 
𝑎

𝛽(𝑎+1,𝑏)
∫ 𝑡𝑎(1 − 𝑡)𝑏−1𝑑𝑡 + 
𝑦

0

𝑏

𝛽(𝑎,𝑏+1)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏𝑑𝑡
𝑦

0
. 

Now, 
𝑎

𝛽(𝑎+1,𝑏)
 = 

𝑎Γ(a+b+1)

Γ(𝑎+1)Γ(𝑏)
 = 

𝑎(𝑎+𝑏)Γ(𝑎+𝑏)

𝑎Γ(𝑎)Γ(𝑏)
 = 

𝑎+𝑏

𝛽(𝑎,𝑏)
. Similarly, 

𝑏

𝛽(𝑎,𝑏+1)
 = 

𝑏Γ(a+b+1)

Γ(𝑎)Γ(𝑏+1)
 = 

𝑏(𝑎+𝑏)Γ(𝑎+𝑏)

𝑏Γ(𝑎)Γ(𝑏)
 = 

𝑎+𝑏

𝛽(𝑎,𝑏)
.  

Hence, the L.H.S. of the above expression is given by 

𝑎 + 𝑏

𝛽(𝑎, 𝑏)
∫ 𝑡𝑎(1 − 𝑡)𝑏−1𝑑𝑡 + 
𝑦

0

𝑎 + 𝑏

𝛽(𝑎, 𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏𝑑𝑡
𝑦

0

 

= 
𝑎 + 𝑏

𝛽(𝑎, 𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1. 𝑡𝑑𝑡 + 
𝑦

0

𝑎 + 𝑏

𝛽(𝑎, 𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1. (1 − 𝑡)𝑑𝑡
𝑦

0

 

= 
𝑎+𝑏

𝛽(𝑎,𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1. (𝑡 + 1 − 𝑡)𝑑𝑡
𝑦

0
 = 

𝑎+𝑏

𝛽(𝑎,𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑑𝑡
𝑦

0
 = (𝑎 + 𝑏)𝐼𝑦(𝑎, 𝑏). 

Hence the lemma is proved. 



Relation 1. For an arbitrary distribution with finite 𝑘𝑡ℎ moment 

(𝑛 − 𝑟 )𝜇𝑟;𝑛
𝑘 +  𝑟𝜇𝑟+1;𝑛

𝑘  = 𝑛𝜇𝑟;𝑛−1
𝑘 , 

where r = 1, 2,⋯ , 𝑛 − 1 and 𝑘 = 1, 2,⋯ . 

Proof:  By definition, 

𝜇𝑟;𝑛
𝑘  = 𝐸[𝑋(𝑟)

𝑘 ] = ∫ 𝑥𝑘𝑓𝑟(𝑥)𝑑𝑥
∞

−∞
 = ∫ 𝑥𝑘 [

𝑑

𝑑𝑥
𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1)] 𝑑𝑥

∞

−∞
, 

where 𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1) = 
1

𝛽(𝑟,𝑛−𝑟+1)
∫ 𝑡𝑟−1(1 − 𝑡)𝑛−𝑟𝑑𝑡
𝑃(𝑥)

0
. 

We shall now make use of the above lemma with a = r, b = n – r and y = P(x). Then, we have 

𝑟𝐼𝑃(𝑥)(𝑟 + 1, 𝑛 − 𝑟) + (𝑛 − 𝑟)𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1) = 𝑛𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟).   (1) 

Differentiating both sides 

𝑟
𝑑

𝑑𝑥
𝐼𝑃(𝑥)(𝑟 + 1, 𝑛 − 𝑟) + (𝑛 − 𝑟)

𝑑

𝑑𝑥
𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1) = 𝑛

𝑑

𝑑𝑥
𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟). 

Or    𝑟
1

𝛽(𝑟+1,𝑛−𝑟)
𝑥𝑟(1 − 𝑥)𝑛−𝑟−1 + (𝑛 − 𝑟)

1

𝛽(𝑟,𝑛−𝑟+1)
𝑥𝑟−1(1 − 𝑥)𝑛−𝑟  

         = 𝑛
1

𝛽(𝑟,𝑛−𝑟)
𝑥𝑟−1(1 − 𝑥)𝑛−𝑟−1. 

Or 𝑟𝑓𝑟+1,𝑛(𝑥) + (𝑛 − 𝑟)𝑓𝑟,𝑛(𝑥) = 𝑛𝑓𝑟,𝑛−1(𝑥) 

On multiplying both sides by 𝑥𝑘 and integrating out, we get 

𝑟 ∫ 𝑥𝑘𝑓𝑟+1,𝑛(𝑥)𝑑𝑥 + 
∞

−∞
(𝑛 − 𝑟)∫ 𝑥𝑘

∞

−∞
𝑓𝑟,𝑛(𝑥)𝑑𝑥 = 𝑛 ∫ 𝑥𝑘

∞

−∞
𝑓𝑟,𝑛−1(𝑥)𝑑𝑥. 

Or  𝑟𝜇𝑟+1;𝑛
𝑘 + (𝑛 − 𝑟 )𝜇𝑟;𝑛

𝑘   = 𝑛𝜇𝑟;𝑛−1
𝑘 . 

This proves recurrence relation 1. 

Corollary 1:  For n even 

1

2
(𝜇𝑛

2
+1;𝑛
𝑘 + 𝜇𝑛

2
;𝑛
𝑘 ) = 𝜇𝑛

2
;𝑛−1
𝑘 . 

Proof:  On taking r = 
𝑛

2
 in recurrence relation1, we get 



(𝑛 −
𝑛

2
 ) 𝜇𝑟;𝑛

𝑘 + 
𝑛

2
𝜇𝑟+1;𝑛
𝑘  = 𝑛𝜇𝑟;𝑛−1

𝑘 . 

Or 
𝑛

2
(𝜇𝑛

2
+1;𝑛
𝑘 + 𝜇𝑛

2
;𝑛
𝑘 ) = 𝑛𝜇𝑛

2
;𝑛−1
𝑘   ⇒ 

1

2
(𝜇𝑛

2
+1;𝑛
𝑘 + 𝜇𝑛

2
;𝑛
𝑘 ) = 𝜇𝑛

2
;𝑛−1
𝑘 . 

Hence the corollary is proved. 

In view of the above corollary, on taking k = 1, we get the result that the expected value 

of the median in samples of size n (where n even) and n – 1 are equal. This is because, when n is 

even, the median is given by
1

2
(𝑋

(
𝑛

2
)
+ 𝑋

(
𝑛

2
+1)
). Then the expected value is given by 

1

2
[𝐸 (𝑋

(
𝑛

2
)
) +  𝐸 (𝑋

(
𝑛

2
+1)
)] = 

1

2
(𝜇𝑛

2
;𝑛 + 𝜇𝑛

2
+1;𝑛).      (2) 

Also the median in a sample of size n -1, when n is even is given by 𝑋𝑛
2
;𝑛−1 and its expected 

value is given by 

𝐸 (𝑋𝑛
2
;𝑛−1) = 𝜇𝑛

2
;𝑛−1.          (3) 

Thus from above corollary, (2) and (3) are equal. Thus the expected value of the median of a 

sample of size n is same as the expected value of the median of a sample of size n – 1. 

 

Corollary 2: If the parent population is symmetric about origin and n is even, then 

𝜇𝑛
2
;𝑛−1

𝑘 = {
𝜇𝑛
2
;𝑛

𝑘  if 𝑘 is even

0 if 𝑘 is odd .    
 

Proof: When the parent distribution is symmetric about origin, then 𝑓𝑟,𝑛(−𝑥) =  𝑓𝑛−𝑟+1,𝑛(𝑥) and  

𝜇𝑛
2
+1;𝑛
𝑘  = 𝐸 (𝑋

(
𝑛

2
+1)

𝑘 ) = ∫ 𝑥𝑘𝑓𝑛
2
+1;𝑛

(𝑥)𝑑𝑥
∞

−∞
 = ∫ (−1)𝑘𝑥𝑘𝑓𝑛−𝑛

2
−1+1;𝑛

(−𝑥)𝑑(−𝑥
∞

−∞
) 

 = ∫ (−1)𝑘𝑥𝑘𝑓𝑛
2
;𝑛
(𝑥)𝑑𝑥

∞

−∞
 = (−1)𝑘 ∫ 𝑥𝑘𝑓𝑛

2
;𝑛
(𝑥)𝑑𝑥

∞

−∞
 = (−1)𝑘𝐸 (𝑋𝑛

2

𝑘) = (−1)𝑘𝜇𝑛
2
;𝑛
𝑘 . 

Or    𝜇𝑛
2
+1;𝑛
𝑘 = {

𝜇𝑛
2
;𝑛
𝑘  if 𝑘 is even

−𝜇𝑛
2
;𝑛
𝑘  if 𝑘 is odd.

       (4) 

Thus from Corollary1, 

𝜇𝑛
2
;𝑛−1
𝑘  =

1

2
(𝜇𝑛

2
+1;𝑛
𝑘 + 𝜇𝑛

2
;𝑛
𝑘 ).  

Now from (4), we have 𝜇𝑛
2
+1;𝑛
𝑘  = 𝜇𝑛

2
;𝑛
𝑘  for k even and hence, 



𝜇𝑛
2
;𝑛−1
𝑘  = 

1

2
(𝜇𝑛

2
;𝑛
𝑘 + 𝜇𝑛

2
;𝑛
𝑘 ) = 𝜇𝑛

2
;𝑛
𝑘 .  

For k odd, 𝜇𝑛
2
+1;𝑛
𝑘  = −𝜇𝑛

2
;𝑛
𝑘  gives, 

𝜇𝑛
2
;𝑛−1
𝑘  = 

1

2
(−𝜇𝑛

2
;𝑛
𝑘 + 𝜇𝑛

2
;𝑛
𝑘 ) =0. 

This proves Corollary2. 

 

Relation 2. For an arbitrary distribution 

𝜇𝑟;𝑛
𝑘  = ∑ (

𝑖 − 1
𝑟 − 1

) (
𝑛
𝑖
) (−1)𝑖−𝑟𝜇𝑖;𝑖

𝑘𝑛
𝑖=𝑟 .        (1) 

Thus the moments of 𝑋𝑟;𝑛 are expressible in terms of simpler moments of the largest in samples 

of size 𝑟, 𝑟 + 1,⋯ , 𝑛. 

Proof:  By definition 

𝜇𝑟,𝑛
𝑘  = 𝐸(𝑋(𝑟)

𝑘 ) = ∫ 𝑥𝑘𝑓𝑟,𝑛(𝑥)𝑑𝑥
∞

−∞
 = ∫ 𝑥𝑘 [

𝑑

𝑑𝑥
𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1)] 𝑑𝑥

∞

−∞
,   (2) 

where 𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1) = 
1

𝛽(𝑟,𝑛−𝑟+1)
∫ 𝑡𝑟−1(1 − 𝑡)𝑛−𝑟𝑑𝑡
𝑃(𝑥)

0
.    (3) 

 Now consider the integrand in (3), which is given by 

 

1

𝛽(𝑟,𝑛−𝑟+1)
𝑡𝑟−1(1 − 𝑡)𝑛−𝑟 = 

𝑛!𝑡𝑟−1

(𝑟−1)!(𝑛−𝑟)!
∑ (

𝑛 − 𝑟
𝑗 ) (−1)𝑗𝑡𝑗𝑛−𝑟

𝑗=0  

         = ∑
𝑛!

(𝑟−1)!(𝑛−𝑟)!

𝑛−𝑟
𝑗=0

(𝑛−𝑟)!

𝑗!(𝑛−𝑟−𝑗)!
(−1)𝑗𝑡𝑟−1+𝑗. 

Now let 𝑖 = 𝑗 + 𝑟. Then 𝑗 = 𝑖 − 𝑟, which gives 

1

𝛽(𝑟,𝑛−𝑟+1)
𝑡𝑟−1(1 − 𝑡)𝑛−𝑟 = ∑

𝑛!

(𝑟−1)!

𝑛
𝑖=𝑟

1

(𝑖−𝑟)!(𝑛−𝑖)!
(−1)𝑖−𝑟𝑡𝑟−1+𝑖−𝑟 

= ∑
𝑛!

𝑖!(𝑛−𝑖)!

𝑛
𝑖=𝑟

𝑖!

(𝑖−𝑟)!(𝑟−1)!
(−1)𝑖−𝑟𝑡𝑖−1 = ∑

𝑛!

𝑖!(𝑛−𝑖)!

𝑛
𝑖=𝑟

(𝑖−1)!

(𝑖−𝑟)!(𝑟−1)!
(−1)𝑖−𝑟𝑖𝑡𝑖−1 

= ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑟 (
𝑖 − 1
𝑟 − 1

) (−1)𝑖−𝑟𝑖𝑡𝑟−1+𝑖−𝑟 .        (4) 

Substituting (4) in (3), we get 

𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1) = ∫ (∑ (
𝑛
𝑖
)𝑛

𝑖=𝑟 (
𝑖 − 1
𝑟 − 1

) (−1)𝑖−𝑟𝑖𝑡𝑖−1)𝑑𝑡
𝑃(𝑥)

0
. 



Then, 

𝑑

𝑑𝑥
𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1) = ∑ (

𝑛
𝑖
)𝑛

𝑖=𝑟 (
𝑖 − 1
𝑟 − 1

) (−1)𝑖−𝑟𝑖𝑃(𝑥)𝑖−1𝑝(𝑥).    (5) 

Substituting (5) in (2), we get 

𝜇𝑟,𝑛
𝑘  = ∫ 𝑥𝑘 ∑ (

𝑛
𝑖
)𝑛

𝑖=𝑟 (
𝑖 − 1
𝑟 − 1

) (−1)𝑖−𝑟𝑖𝑃(𝑥)𝑖−1𝑝(𝑥)𝑑𝑥
∞

−∞
 

       = ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑟 (
𝑖 − 1
𝑟 − 1

) (−1)𝑖−𝑟 ∫ 𝑥𝑘
∞

−∞
𝑖𝑃(𝑥)𝑖−1𝑝(𝑥)𝑑𝑥 

       = ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑟 (
𝑖 − 1
𝑟 − 1

) (−1)𝑖−𝑟 ∫ 𝑥𝑘
∞

−∞
𝑓𝑖;𝑖(𝑥)𝑑𝑥 

       = ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑟 (
𝑖 − 1
𝑟 − 1

) (−1)𝑖−𝑟𝐸(𝑋𝑖;𝑖
𝑘 ), where 𝑋𝑖;𝑖 denotes the 𝑖𝑡ℎ order statistic from a sample 

of size i. Hence, 

𝜇𝑟,𝑛
𝑘  = ∑ (

𝑛
𝑖
)𝑛

𝑖=𝑟 (
𝑖 − 1
𝑟 − 1

) (−1)𝑖−𝑟𝜇𝑖;𝑖
𝑘 , which proves relation2. 

 

Relation 2. For an arbitrary distribution, 

𝜇𝑟;𝑛
𝑘  = ∑ (

𝑖 − 1
𝑛 − 𝑟

) (
𝑛
𝑖
) (−1)𝑖−𝑛+𝑟−1𝜇1;𝑖

𝑘𝑛
𝑖=𝑛−𝑟+1 .              (1) 

i.e. the moments of 𝑋(𝑟) are expressible in terms of the moments of the smallest in samples of 

sizes 𝑛 − 𝑟 + 1, 𝑛 − 𝑟 + 2,⋯ , 𝑛. 

Proof:  By definition 

𝜇𝑟,𝑛
𝑘  = 𝐸(𝑋(𝑟)

𝑘 ) = ∫ 𝑥𝑘𝑓𝑟,𝑛(𝑥)𝑑𝑥
∞

−∞
 = ∫ 𝑥𝑘 [

𝑑

𝑑𝑥
𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1)] 𝑑𝑥

∞

−∞
,   (2) 

where 𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1) = 
1

𝛽(𝑟,𝑛−𝑟+1)
∫ 𝑡𝑟−1(1 − 𝑡)𝑛−𝑟𝑑𝑡
𝑃(𝑥)

0
.    (3) 

Now consider the integrand in (3), which is given by 

 

1

𝛽(𝑟,𝑛−𝑟+1)
𝑡𝑟−1(1 − 𝑡)𝑛−𝑟 = 

𝑛!

(𝑟−1)!(𝑛−𝑟)!
{1 − (1 − 𝑡)}𝑟−1(1 − 𝑡)𝑛−𝑟 

=
𝑛!

(𝑟−1)!(𝑛−𝑟)!
∑ (

𝑟 − 1
𝑗
) (−1)𝑗(1 − 𝑡)𝑗𝑟−1

𝑗=0  (1 − 𝑡)𝑛−𝑟 



         = ∑
𝑛!

(𝑟−1)!(𝑛−𝑟)!

(𝑟−1)!

𝑗!(𝑟−1−𝑗)!

𝑛−𝑟
𝑗=0 (−1)𝑗(1 − 𝑡)𝑛−𝑟+𝑗. 

Now let 𝑖 = 𝑗 + 𝑛 − 𝑟 + 1. Then 𝑗 = 𝑖 − 𝑛 + 𝑟 − 1, which gives 

1

𝛽(𝑟,𝑛−𝑟+1)
𝑡𝑟−1(1 − 𝑡)𝑛−𝑟  = ∑

𝑛!

(𝑛−𝑟)!

𝑛
𝑖=𝑛−𝑟+1

1

(𝑖−𝑛+𝑟−1)!(𝑟−1−𝑖+𝑛−𝑟+1)!
(−1)𝑖−𝑛+𝑟−1(1 −

𝑡)𝑛−𝑟+𝑖−𝑛+𝑟−1 

= ∑
𝑛!

𝑖!(𝑛−𝑖)!

𝑛
𝑖=𝑟

𝑖!

(𝑖−𝑟)!(𝑟−1)!
(−1)𝑖−𝑟𝑡𝑖−1 = ∑

𝑛!

𝑖!(𝑛−𝑖)!

𝑛
𝑖=𝑛−𝑟+1

(𝑖−1)!

(𝑛−𝑟)!(𝑖−𝑖−𝑛+𝑟)!
(−1)𝑖−𝑛+𝑟−1𝑖(1 − 𝑡)𝑖−1 

= ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑛−𝑟+1 (
𝑖 − 1
𝑛 − 𝑟

) (−1)𝑖−𝑛+𝑟−1𝑖(1 − 𝑡)𝑖−1 .       (4) 

Substituting (4) in (3), we get 

𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1) = ∫ (∑ (
𝑛
𝑖
)𝑛

𝑖=𝑟 (
𝑖 − 1
𝑛 − 𝑟

) (−1)𝑖−𝑛+𝑟−1𝑖(1 − 𝑡)𝑖−1) 𝑑𝑡
𝑃(𝑥)

0
. 

Then, 

𝑑

𝑑𝑥
𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1) = ∑ (

𝑛
𝑖
)𝑛

𝑖=𝑛−𝑟+1 (
𝑖 − 1
𝑛 − 𝑟

) (−1)𝑖−𝑛+𝑟−1𝑖{1 − 𝑃(𝑥)}𝑖−1𝑝(𝑥).            (5) 

Substituting (5) in (2), we get 

𝜇𝑟,𝑛
𝑘  = ∫ 𝑥𝑘 [

𝑑

𝑑𝑥
𝐼𝑃(𝑥)(𝑟, 𝑛 − 𝑟 + 1)] 𝑑𝑥

∞

−∞
 

     = ∫ 𝑥𝑘 ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑛−𝑟+1 (
𝑖 − 1
𝑛 − 𝑟

) (−1)𝑖−𝑛+𝑟−1𝑖{1 − 𝑃(𝑥)}𝑖−1𝑝(𝑥)𝑑𝑥
∞

−∞
 

    = ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑛−𝑟+1 (
𝑖 − 1
𝑛 − 𝑟

) (−1)𝑖−𝑛+𝑟−1 ∫ 𝑥𝑘
∞

−∞
𝑖{1 − 𝑃(𝑥)}𝑖−1𝑝(𝑥)𝑑𝑥 

   = ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑛−𝑟+1 (
𝑖 − 1
𝑛 − 𝑟

) (−1)𝑖−𝑛+𝑟−1 ∫ 𝑥𝑘
∞

−∞
𝑓1;𝑖(𝑥)𝑑𝑥 

  = ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑛−𝑟+1 (
𝑖 − 1
𝑛 − 𝑟

) (−1)𝑖−𝑛+𝑟−1𝐸[𝑋1;𝑖
𝑘 ] 

  = ∑ (
𝑛
𝑖
)𝑛

𝑖=𝑛−𝑟+1 (
𝑖 − 1
𝑛 − 𝑟

) (−1)𝑖−𝑛+𝑟−1𝜇1;𝑖
𝑘 .  

This proves relation 2’. 

Relation 3. For an arbitrary distribution and 1 ≤ 𝑟 < 𝑠 ≤ 𝑛, 



(𝑟 − 1)𝜇𝑟,𝑠;𝑛 + (𝑠 − 𝑟)𝜇𝑟−1,𝑠;𝑛 + (𝑛 − 𝑠 + 1)𝜇𝑟−1,𝑠−1;𝑛 = 𝑛𝜇𝑟−1,𝑠−1;𝑛−1. 

Proof:  By definition 

𝜇𝑟−1,𝑠−1;𝑛−1 = 𝐸(𝑋𝑟−1;𝑛−1𝑋𝑠−1;𝑛−1) = ∫ ∫ 𝑥𝑦𝑓𝑟−1,𝑠−1;𝑛−1(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
     (1) 

= 
(𝑛−1)!

(𝑟−2)!(𝑠−𝑟−1)!(𝑛−𝑠)!
∫ ∫ 𝑥𝑦𝑃(𝑥)𝑟−2𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟−1𝑝(𝑦)[1 − 𝑃(𝑥)]𝑛−𝑠𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
. 

Or 𝑛𝜇𝑟−1,𝑠−1;𝑛−1 

= 
𝑛!

(𝑟−2)!(𝑠−𝑟−1)!(𝑛−𝑠)!
∫ ∫ 𝑥𝑦𝑃(𝑥)𝑟−2𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟−1𝑝(𝑦)[1 − 𝑃(𝑥)]𝑛−𝑠𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
. (2) 

Writing 1 as 

1 = 𝑃(𝑥) +  𝑃(𝑦) −  𝑃(𝑥) +  1 − 𝑃(𝑦), we have 

𝑛𝜇𝑟−1,𝑠−1;𝑛−1  = 
𝑛!

(𝑟−2)!(𝑠−𝑟−1)!(𝑛−𝑠)!
∫ ∫ 𝑥𝑦[𝑃(𝑥) + {𝑃(𝑦) −  𝑃(𝑥)}{1 − 𝑃(𝑦)}]  ×

∞

−∞

∞

−∞

                                𝑃(𝑥)𝑟−2𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟−1𝑝(𝑦)[1 − 𝑃(𝑥)]𝑛−𝑠𝑑𝑥𝑑𝑦. 

= 
𝑛!

(𝑟−2)!(𝑠−𝑟−1)!(𝑛−𝑠)!
[∫ ∫ 𝑥𝑦𝑃(𝑥)𝑟−1𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟−1𝑝(𝑦)[1 − 𝑃(𝑥)]𝑛−𝑠𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
+

∫ ∫ 𝑥𝑦𝑃(𝑥)𝑟−2𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟𝑝(𝑦)[1 − 𝑃(𝑥)]𝑛−𝑠𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
 +

 ∫ ∫ 𝑥𝑦𝑃(𝑥)𝑟−2𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟−1𝑝(𝑦)[1 − 𝑃(𝑥)]𝑛−𝑠+1𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
]. 

Multiplying and dividing by (𝑟 − 1) in the first term, (𝑠 − 𝑟) in the second term and (𝑛 − 𝑠 + 1) 

in the third term of the above expression, we have 

𝑛𝜇𝑟−1,𝑠−1;𝑛−1  

= 
𝑛!(𝑟−1)

(𝑟−1)!(𝑠−𝑟−1)!(𝑛−𝑠)!
∫ ∫ 𝑥𝑦𝑃(𝑥)𝑟−1𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟−1𝑝(𝑦)[1 − 𝑃(𝑥)]𝑛−𝑠𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
 

+ 
𝑛!(𝑠−𝑟)

(𝑟−2)!(𝑠−𝑟)!(𝑛−𝑠)!
∫ ∫ 𝑥𝑦𝑃(𝑥)𝑟−2𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟𝑝(𝑦)[1 − 𝑃(𝑥)]𝑛−𝑠𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
 

+ 
𝑛!(𝑛−𝑠+1)

(𝑟−2)!(𝑠−𝑟−1)!(𝑛−𝑠+1)!
∫ ∫ 𝑥𝑦𝑃(𝑥)𝑟−2𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟−1𝑝(𝑦)[1 − 𝑃(𝑥)]𝑛−𝑠+1𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
 

     = (𝑟 − 1) ∫ ∫ 𝑥𝑦𝑓𝑟,𝑠;𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
 + (𝑠 − 𝑟) ∫ ∫ 𝑥𝑦𝑓𝑟−1,𝑠;𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

∞

−∞
  



       + (𝑛 − 𝑠 + 1) ∫ ∫ 𝑥𝑦𝑓𝑟−1,𝑠−1;𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
 

=  (𝑟 − 1)𝜇𝑟,𝑠;𝑛 + (𝑠 − 𝑟)𝜇𝑟−1,𝑠;𝑛 + (𝑛 − 𝑠 + 1)𝜇𝑟−1,𝑠−1;𝑛. 

This proves relation 3. 

Remark: In the above relation if we take r = 1 and s = r + 1, we get 

(1 − 1)𝜇1,𝑟+1;𝑛 + (𝑟 + 1 − 𝑟)𝜇1−1,𝑟+1;𝑛 + (𝑛 − 𝑟 − 1 + 1)𝜇1−1,𝑟+1−1;𝑛 = 𝑛𝜇1−1,𝑟+1−1;𝑛−1 

Or 𝜇𝑟+1;𝑛 + (𝑛 − 𝑟)𝜇𝑟;𝑛 = 𝑛𝜇𝑟;𝑛−1. 

Lemma 1: The 𝑟𝑡ℎ order statistic 𝑋(𝑟) from an exponential population with pdf  

𝑝(𝑥) = 𝑒−𝑥,   𝑥 ≥ 0; 

Can be expressed as  

𝑋(𝑟)  = ∑
𝑉𝑖

𝑛−𝑖+1

𝑟
𝑖=1 , where 𝑉1, 𝑉2,⋯ , 𝑉𝑛  are mutually independent random variables which are 

distributed as standard exponential variates with  pdf  

𝑝(𝑣𝑖) = 𝑒−𝑣𝑖,   𝑣𝑖  ≥ 0. 

Proof: Since X follows an exponential distribution, the cdf is given by 

P(x) = ∫ 𝑒−𝑦𝑑𝑦
𝑥

0
 = 1 − 𝑒−𝑥. 

Now consider the joint distribution of two order statistics 𝑋(𝑟) and 𝑋(𝑠), 1 ≤ 𝑟 < 𝑠 ≤ 𝑛, which 

is given by 

𝑓𝑟,𝑠(𝑥, 𝑦) =
𝑛!

(𝑟−1)!(𝑠−𝑟−1)!(𝑛−𝑠)!
𝑃𝑟−1(𝑥)𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]𝑠−𝑟−1𝑝(𝑦)[1 − 𝑃(𝑦)]𝑛−𝑠,  

              0 < 𝑥 < 𝑦 <  ∞. 

Let 𝑋(0) = 0 and 𝑟 = 𝑖 − 1, 𝑠 = 𝑖; 𝑖 = 1,2,⋯ , 𝑛. Then, 

 𝑓𝑖−1,𝑖(𝑥, 𝑦) = 
𝑛!

(𝑖−2)!0!(𝑛−𝑖)!
𝑃𝑖−2(𝑥)𝑝(𝑥)[𝑃(𝑦) −  𝑃(𝑥)]0𝑝(𝑦)[1 − 𝑃(𝑦)]𝑛−𝑖 

        = 
𝑛!

(𝑖−2)!(𝑛−𝑖)!
[1 − 𝑒−𝑥]𝑖−2𝑒−𝑥𝑒−𝑦[1 − 1 + 𝑒−𝑦]𝑛−𝑖 

       = 
𝑛!

(𝑖−2)!(𝑛−𝑖)!
[1 − 𝑒−𝑥]𝑖−2𝑒−𝑥𝑒−(𝑛−𝑖+1)𝑦. 

Now making a transformation 𝑍𝑖 = 𝑋(𝑖) − 𝑋(𝑖−1) and 𝑋(𝑖−1) = 𝑋(𝑖−1) for all 𝑖 = 1,2 ⋯ , 𝑛, i.e. z = 

y – x  and x = x, the inverse transformation is given by x = x and y = z +x. The Jacobean of 



transformation is |J| =1 and the range of 𝑍𝑖 is given by 𝑍𝑖 > 0 i.e. 0 < 𝑧 < ∞ and  0 < 𝑥 < ∞. 

Thus the joint density of 𝑍𝑖 and 𝑋(𝑖−1) is given by 

𝑔(𝑧, 𝑥) = 
𝑛!

(𝑖−2)!(𝑛−𝑖)!
[1 − 𝑒−𝑥]𝑖−2𝑒−𝑥𝑒−(𝑛−𝑖+1)(𝑧+𝑥) 

 = 
𝑛!

(𝑖−2)!(𝑛−𝑖)!
[1 − 𝑒−𝑥]𝑖−2𝑒−(𝑛−𝑖+2)𝑥𝑒−(𝑛−𝑖+1)𝑧. 

On integrating out x, we get the density of  𝑍𝑖 as 

ℎ(𝑧) = 
𝑛!

(𝑖−2)!(𝑛−𝑖)!
𝑒−(𝑛−𝑖+1)𝑧 ∫ [1 − 𝑒−𝑥]𝑖−2𝑒−(𝑛−𝑖+2)𝑥𝑑𝑥

∞

0
. 

 Now using the probability integral transformation, which will transform each of the order 

statistics 𝑋(1), 𝑋(2)   ⋯ , 𝑋(𝑛)  to 𝑈(1), 𝑈(2)   ⋯ , 𝑈(𝑛) , which are the new order statistics from the 

uniform population in the interval (0,1), we have 

u = P(x) = 1 − 𝑒−𝑥, which gives x = − log(1 − u); 
𝑑𝑢

𝑑𝑥
 = p(x) = 𝑒−𝑥= 1 – u. Hence, 

ℎ(𝑧)    = 
𝑛!

(𝑖−2)!(𝑛−𝑖)!
𝑒−(𝑛−𝑖+1)𝑧 ∫ 𝑢𝑖−2

1

0
(1 − 𝑢)(𝑛−𝑖+2)

𝑑𝑢

(1−𝑢)
 

 = 
𝑛!

(𝑖−2)!(𝑛−𝑖)!
𝑒−(𝑛−𝑖+1)𝑧 ∫ 𝑢𝑖−2

1

0
(1 − 𝑢)(𝑛−𝑖+1)𝑑𝑢 

 = 
𝑛!

(𝑖−2)!(𝑛−𝑖)!
𝑒−(𝑛−𝑖+1)𝑧𝛽(𝑖 − 1, 𝑛 − 𝑖 + 2) 

 = (𝑛 − 𝑖 + 1)𝑒−(𝑛−𝑖+1)𝑧;  z > 0. 

Thus if 𝑉𝑖 =,(𝑛 − 𝑖 + 1)𝑍𝑖 then 𝑉𝑖 > 0 for all 𝑖 = 1,2,⋯ , 𝑛 ; and the distribution of 𝑉𝑖 will be 

𝑓(𝑣𝑖) = 𝑒−𝑣𝑖,  𝑣𝑖 >0. 

Also, for i = 1, we have 
𝑉1

𝑛−1+1
 = 𝑍1 = 𝑋(1) − 𝑋(0) = 𝑋(1). 

For i = 2, 
𝑉2

𝑛−2+1
 = 𝑍2  = 𝑋(2) − 𝑋(1)  ; for i = 3, 

𝑉3

𝑛−3+1
 = 𝑍3  = 𝑋(3) − 𝑋(2);  ⋯ ; for i = n - 1 , 

𝑉𝑛−1

𝑛−𝑛+1+1
 = 𝑍𝑛−1 = 𝑋(𝑛−1) − 𝑋(𝑛−2); and for i = n, 

𝑉𝑛

𝑛−𝑛+1
 = 𝑍𝑛 = 𝑋(𝑛) − 𝑋(𝑛−1). Hence, 

𝑋(1) = 
𝑉1

𝑛−1+1
,  



𝑋(2) = 𝑍2 + 𝑋(1) = 
𝑉2

𝑛−2+1
+ 

𝑉1

𝑛−1+1
 , 

⋮  

𝑋(𝑟) = 𝑍𝑟 + 𝑍𝑟−1 + ⋯+ 𝑍1 = ∑
𝑉𝑖

𝑛−𝑖+1

𝑟
𝑖=1 . 

Hence the lemma is proved. 

Example: For a random sample of size n from an exponential distribution with pdf  

p(x) = e-x for 𝑥 ≥ 0 

       = 0            for x < 0. 

Show that 𝜇𝑟;𝑛 = ∑
1

𝑖

𝑛
𝑖=𝑛−𝑟+1  and for r < n, 

𝜎𝑟,𝑟;𝑛 = 𝜎𝑟;𝑛
2  = ∑

1

𝑖2
𝑛
𝑖=𝑛−𝑟+1 . 

Solution: We have 𝜇𝑟,𝑛  = E (𝑋(𝑟))  and since the variable X is distributed as a standard 

exponential, by above lemma, we can express 𝑋(𝑟) as  

𝑋(𝑟)  = ∑
𝑉𝑖

𝑛−𝑖+1

𝑟
𝑖=1 , where 𝑉1, 𝑉2,⋯ , 𝑉𝑛  are mutually independent random variables which are 

distributed as standard exponential variates with  pdf  

𝑝(𝑣𝑖) = 𝑒−𝑣𝑖,   𝑣𝑖  ≥ 0. 

Here, 𝐸(𝑉𝑖) = ∫ 𝑣𝑒𝑣
∞

0
𝑑𝑣 = 1 and 𝑉(𝑉𝑖) = 𝐸(𝑉𝑖

2) − 1 = 1. Hence, 

𝜇𝑟,𝑛 = 𝐸 [∑
𝑉𝑖

𝑛−𝑖+1

𝑟
𝑖=1 ] = ∑

𝐸(𝑉𝑖)

𝑛−𝑖+1

𝑟
𝑖=1   

      = ∑
1

𝑛−𝑖+1

𝑟
𝑖=1  = 

1

𝑛
+ 

1

𝑛−1
+ 

1

𝑛−2
+ ⋯+ 

1

𝑛−𝑟+1
 = ∑

1

𝑖

𝑛
𝑖=𝑛−𝑟+1 . 

𝜎𝑟,𝑟;𝑛 = 𝜎𝑟;𝑛
2  = 𝑉(𝑋(𝑟)) = 𝑉 [∑

𝑉𝑖

𝑛−𝑖+1

𝑟
𝑖=1 ] = ∑

𝑉(𝑉𝑖)

(𝑛−𝑖+1)2
𝑟
𝑖=1  

         = ∑
1

(𝑛−𝑖+1)2
𝑟
𝑖=1  = 

1

𝑛2
+ 

1

(𝑛−1)2
+ 

1

(𝑛−2)2
+ ⋯+ 

1

(𝑛−𝑟+1)2
 = ∑

1

𝑖2
𝑛
𝑖=𝑛−𝑟+1 . 

2.6         Non-Parametric Estimation of Distribution Function 



The statistical problem is estimation of the entire distribution function 𝐹, or its values 

𝐹(𝑥) at a specific argument 𝑥, or on the other hand, quantiles, i.e., the argument 𝑥 where 𝐹(𝑥) 

takes specific values. 

2.6.1     The Empirical Distribution Function 

By repeating the experiment 𝑛  times independently under the same conditions, one 

obtains the realization 𝑥1, 𝑥2, … , 𝑥𝑛  of a random sample 𝑋1, 𝑋2, … , 𝑋𝑛 , from the distribution 

function under investigation, say 𝐹(𝑥).  Its values at the real 𝑥 may be estimated in the following 

way. 

Define the empirical distribution function (e.d.f) 

𝐹𝑛(𝑥) =
1

𝑛
∑  

𝑛

𝑖=1

𝐼[𝑋𝑖 ≤ 𝑥]. 

Essentially it estimates 𝐹(𝑥) = 𝑃[𝑋 ≤ 𝑥] by the relative frequency of the event [𝑋𝑖 ≤

𝑥, 𝑖 = 1,2, … , 𝑛] in the random sample. If the order statistics of the random sample are X(1) ≤

X(2) ≤ ⋯ ≤ X(n)  and its sample realization is x(1) ≤ x(2) ≤ ⋯ ≤ x(n) , then an equivalent 

representation of e.d.f. is given by 

Fn(x) =

{
 

 
0,   if  x < X(1),

i

n
 if  X(i) ≤ x < X(i+1),  i = 1,… , n − 1

1  if  X(n) ≤ x.

 (1) 

It is a jump function, with each jump equal to 1/n and located at the n order statistics 

(X(1), X(2), … , X(n)) . Thus Fn(x)  will always yield a discrete (right continuous) distribution 

function giving probability 1/n to each of the order statistics. In case of ties, the appropriate 

adjustment to the jump size at the tied observations will be made, more specifically if k 

observations are tied, the jump size is taken to be k/n. The distribution function F(x), which is 

being estimated, may or may not be discrete. However, we shall see later that in all cases Fn(x) 

tends to be closer and closer to F(x) at all x, with probability 1 as n, the sample size, becomes 

larger and larger. Hence it is a very attractive estimator of F(x). 

2.6.1.1 Properties of the Empirical Distribution Function 



The empirical distribution function Fn(x)  is an unbiased and a weakly consistent 

estimator of the unknown distribution function F(x). 

For a fixed x 

E[Fn(x)]  =
1

n
∑  

n

i=1

 E[I[Xi ≤ x]]

 = P[X ≤ x]

 =  F(x) .                                                                                                                                         (2) 

  

Hence Fn(x) is unbiased for F(x). It is also weakly consistent, since 

    Var(Fn(x))  = Var (
1

n
∑  

n

i=1

 I[Xi ≤ x])

 =
1

n2
nVarI[X ≤ x]

 =
F(x)(1 − F(x))

n
 → 0 as n → ∞.                                                                                                                      (3) 

 

The Borel strong law of large numbers also applies, giving Fn(x) → F(x) as n → ∞ with 

probability 1 at fixed x. 

The following theorem shows that the empirical distribution function Fn(x) is a uniformly 

strongly consistent estimator of the unknown distribution function F(x). 

2.7       Glivenko-Cantelli Fundamental Theorem 

Statement: Let X1, X2, … , Xn be i.i.d. random variables from distribution F(x). Let Fn(x) be the 

corresponding empirical distribution function. Then 

P [ sup
−∞<x<∞

 |Fn(x) − F(x)| → 0 as n → ∞] = 1. 

Proof: Let j = 1,2, … , k and k = 1,2, … Let xkk be ∞. Define xjk to be the largest value of x such 

that 

F(x − 0) ≤
j

k
≤ F(x). 

Thus, for every k, the points x1k, x2k, … , xk−1k provides a partition of the real line given 

by (−∞, x1k], (x1k, x2k], … , (xk−1k,∞). The convergence with probability 1 of Fn(x) to F(x) at 

each end point of the above interval follows from the Borel strong law of large numbers. This is 



so because F(x) is the probability of the event [X ≤ x] and Fn(x) is the relative frequency of this 

event in independent trials. Then by elementary rules of intersections and unions of events (of 

probability 1) we get the uniform convergence of Fn(x) to F(x) at all the endpoints of the above 

intervals with probability 1. Using the nondecreasing nature of the functions Fn(x) and F(x) and 

the definition of xjk it is assured that the absolute difference |Fn(x) − F(x)| for x within any of 

the above intervals is not more than the absolute difference at one of the endpoints of one of the 

intervals plus 1/k. Since k can be arbitrarily large, we can chose it so as to make 1/k as small as 

we please ensuring the uniform convergence over (−∞,∞) of Fn(x) to F(x) with probability 1. 

This theorem shows that Fn(x),−∞ < x < ∞ is a good estimator of the true distribution 

function F(x) , especially if the number of observations is not too small. The functionals 

(parameters) of the true distribution function may then be estimated by the corresponding 

functionals of Fn(x). For example, the mean of F may be estimated by the mean of Fn(x) which 

turns out to be X‾ , the sample mean. This is a point estimator. 

We have seen that nFn(x) = ∑i=1
n  I[Xi ≤ x]. This can be interpreted as the number of 

successes in n independent trials with probability of success equal to F(x) at each trial. Hence, 

for a fixed x, nFn(x) has a Binomial (n, F(x)) distribution. 

Therefore, from De-Moivre Laplace Theorem it follows that 

nFn(x) − nF(x)

√nFn(x)(1 − Fn(x))

→ N(0,1) as n → ∞ .           
    (4) 

2.8       Summary 

 This unit provides a thorough understanding of concepts related to Asymptotic 

Distribution Theory. The concepts of moments of order statistics, non-parametric estimation of 

distribution function and Glivenko-Cantelli fundamental theorem are described in detail. The 

learner should try to solve the self-assessment problems given in the next section. 

2.9    Self-Assessment Exercises 

Q1. Describe the moments of order statistics and their utility. 

Q2. Explain estimation of distribution function under non-parametric theory. 



Q3. State and prove Glivenko-Cantelli fundamental theorem. 

Q4. Show that the mean and variance of the empirical distribution function 𝐹𝑛, are 

𝐸[𝐹𝑛(𝑥)] = 𝐹(𝑥), 𝑣𝑎𝑟[𝐹𝑛(𝑥)] =
𝐹(𝑥)[1 − 𝐹(𝑥)]

𝑛
. 

Hence show that 𝐹𝑛(𝑥) is a consistent estimator of 𝐹(𝑥). 
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3.1 Intoduction 
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3.7 Summary 

3.8       Self-Assessmemt Exercises 

 

3.1             Introduction 

A statistical procedure or a method is called distribution free if the statistic used has a 

distribution which does not depend on the distribution function (or the density or mass function) 

of the population from which the sample is drawn. 

For example, suppose we draw a sample of size n from a continuous population with 

median M and call the total number of observations in the sample greater than the median value 

M as r, then the distribution of r will be a binomial with parameter n and 1/2, whatever be the 

parent distribution be. Hence r is a distribution free statistic. 

3.2            Objectives 

The objective of this unit is to provide a basic understanding of concepts related to 

Distribution Free Intervals. The concepts of the distribution of range function of order statistics, 

distribution free confidence intervals for quintiles, distribution free tolerance interval should be 

clear after study of this material. 

3.3           Distribution of Range Function of Order Statistics 

 



Let ( )1,2,...,iY i n=  be an ith order statistic of the random sample  1 2, ,..., nX X X drawn 

from a continuous population whose c. d. f. ( )F x  and p. d. f. is ( )f x  for a x b  . We define 

the sample range as  

1nR Y Y= − . 

In order to find the p. d. f. of R we first need to find the joint p. d. f. of 1Y
 
and nY  is given 

by  

( )
( )

( ) ( )  ( ) ( )
2

1 1 1

!
,

2 !

n

n n n

n
g y y F y F y f y f y

n

−

= −
−

        1; na y y b    

( ) ( ) ( )  ( ) ( )
2

1 11
n

n nn n F y F y f y f y
−

= − −      1; na y y b    

Let us now consider the transformation 

1nR Y Y= −  

nU Y=  

For specific values, we write  

1nr y y= −  

nu y=  

Then, 

1y u r= −
 
and ny u=  

Thus, the transformation 1y u r= −  and ny u=  maps ( ) 1 1, ;n ny y a y y b    onto 

( ) , ;r u a r u b    so that the joint p. d. f. of R and U is given by 

( ),RUf r u = (mod J){putting 1y
 
and ny

 
in terms of u  and r  in ( )1, ng y y } 

where J stands for the jacobian of transformation given by 

( )

( )

1 1

1

2 2

1 1,
1

0 1,

n

y y

y y r u
J

y yr u

r u

 

−  
= = = =

 

 

 

so the joint p. d. f. of R  and U takes form 

( ) ( ) ( ) ( )  ( ) ( )
2

, 1
n

RUf r u n n F u F u r f u r f u
−

= − − − −      ;a r u b    



In order to obtain the p. d. f. of R we integrate out U from the joint p. d. f. of R and U and 

get 

( ) ( ),

b

R RU

a

f r f r u du=   

( ) ( ) ( )  ( ) ( )
2

1   ; 

 0                                                                             ; otherwise

b
n

r

n n F u F u r f u r f u du a r b
−

− − − −  
= 



  

Example: If ( ) xf x e  −=       ; 0 x   

and ( ) 1 xF x e −= −             ; 0 x   

Find the distribution of sample range. 

Solution: We know distribution of sample range 

( ) ( ) ( ) ( ) ( ) ( )
2

1
n

r

f r n n F u F u r f u r f u du


−

= − − − −    

( )
2

1 1 1
n

x u r u r u

r

n n e e e e du      


−
− − + − + − = − − − +   

( ) ( ) ( )
222 21 1

nu n r u r

r

n n e e e e du
   


−− − −= − − +  

( ) ( )
2

21 1
n

r r un

r

n n e e e du  


−
−= − − +   

  ( ) ( )
2

21 1
un

n
r r

r

e
n n e e

n


 




−

−  
= − − +  

− 
 

( ) ( )
2

1 1
n

r r nrn e e e  
−

−= − − +  

( ) ( )
2

1 1
n

r r nrn e e e  
−

−= − − +          Q.E.D. 

Also  



( ) ( )
2

0

1 1
n

r r n rn e e e dr  


−
−− − +  

( ) ( ) ( )
22

1

1
1 1

n
nu n

n e t dt
t




−− −  
− −  

 
                   ,r re t e dr dt = =  

( ) ( )
2

2

1

1 1
1 1

n
n

n
n t dt

t t

−
−  

= − − 
 

  

Let 
1

1
t


 
− = 

 
 so that 

2

1
dt dv

t

 
= 

 
 

( ) ( )
1

2

0

1
n

I n dv
−

= −   

( )
1

1

0

1
1

nu
n

n

− 
= −  

− 
 

1=  

Hence,  

( ) ( ) ( )
2

1 1
n

r nr rf r n e e e  
−

− −= − −                  0 r   

3.4         Distribution Free Confidence Intervals for Quantiles 

              (Quantiles of a Distribution) 

 

Let X be a continuous random variable with p. d. f. ( )f x  and c. d. f. ( )F x . Let p be a 

positive proper fraction and the equation ( )F x p=  as a unique solution for x, this unique root is 

denoted by the symbol p  and is called the quantiles  of order p. 

Thus,   

( )Pr p pX F p   = =      0 1p   



If ( )F x  is not strictly increasing, ( )F x p=  may hold in some interval, in this case any 

point in the interval would serve as a quantile of order p.  

 

Example:  The quantile of order 1/2 is the median of the distribution and  

  ( )0.5 0.5Pr 1/ 2X F  = =  

 

Example: Let ( )1,2,...,ix i n=  be i. i. d. random variable with p. d. f. ( )f x  of the continuous 

type. If m is the median of the distribution, find the probability that  

i) All exceed’s m 

ii) The maximum never exceeds m 

 

Solution: Since m is the median of the continuous distribution. Therefore 

( ) ( )Pr 1/ 2F m X m=  =
 
and ( ) ( )Pr Pr 1/ 2X m X m =  =  

Now,  

i)Pr (all exceed’s m)= ( )( )1
Pr X m  

                                   ( )  ( )
1

1
n

m

n F x f x dx


−

= −  

Let ( ) ( )1   F x t f x dx dt− = − =  

so that  

Pr (all exceed’s m)
0

1

1/2

nnt dt−= −  

                
1/2

1

0

nn t dt−= 
1/2

0

nt =    

                

1

2

n

 
=  
 

 

(ii) Pr (none of the X’s exceeds median)= Pr( the maximum never exceeds m) 

                                                           ( )
Pr

n
X m = 
 

 



                                                           ( ) ( )
1

0

m
n

n F x f x dx
−

=     

Let ( ) ( )    F x t f x dx dt=  =                                                     

so that  

Pr (none of the X’s exceeds m)
1/2

1

0

nn t dt−= 
1/2

0

nt =    

                                              
1

2

n

 
=  
 

                                                       Q.E.D. 

3.4.1      Confidence Interval for Distribution Quantiles 

Let 1 2, ,..., nX X X  be a random sample of size n taken from a continuous distribution with 

distribution   function ( )F x . Let 1 2 ... nY Y Y    be the order statistics of the sample. Let  

i jY Y , we consider the event i p jY Y  . For the ith order statistic iY  to be less than p  it must 

be true that at least i of the x values are less than p . Moreover, for the jth order statistic to be 

greater than p  fewer than j of the x values are less than p . That is, if we say that we have a 

“success” when an individual x value is less than p , then, in the n independent trials, there must 

be at least i success but fewer than j success for the event i p jY Y   to occur. But since the 

probability of success on each trial is  

( )Pr p pX F p   = =  ,  

the probability of this event is  

( )
( )

1 !
Pr 1

! !

j
n ww

i p j

w i

n
Y Y p p

w n w


−
−

=

   = −  −
  

The probability of having at least i, but less the j success. When particular values of n, i, 

and j are specified, this probability can be computed. Let this probability be   

i.e.  Pr i p jY Y    =   



then we say that the probability is   that the random interval ( ),i jY Y includes the quantile of 

order p. if the experimental values of iY  and jY are respectively, iy  and jy , the interval ( ),i jy y  

serves as 100 %  confidence interval for 
p , the quantile of order p. 

Theorem.  A confidence interval for qp. based on order statistics will be distribution free, i.e. if 

X(r) and X(s) are rth and sth order statistics of a random sample of size n from a continuous 

distribution, where 1 ≤ r < s ≤ n, and if the interval (X(r) , X(s)) covers the population quantile qp. 

of order p, then the confidence coefficient β will depend only on r, s, n and p, but not on the cdf  

P(x)or pdf  p( x)of the population. 

 

Proof: Consider the event {X(r) ≤ qp.}, which can be expressed as a disjoint union of the two 

events { X(r) ≤ qp∩ X(s) ≥ qp} and {X(r) ≤ qp∩ X(s) < qp}. As we are considering a continuous 

distribution, P{ X(r) = qp.} = 0 and since the happening of the event {X(s) < qp} implies the event 

{X(r) ≤ qp.}, hence the event {X(r) ≤ qp∩ X(s) < qp} is equivalent to the event {X(s) < qp}. Thus, 

{X(r) ≤ qp.} = { X(r) ≤ qp∩ X(s) ≥ qp}{X(s) < qp} = { X(r) ≤ qp ≤ X(s)} {X(s) < qp}. 

Hence, P{X(r) ≤ qp.} = P{ X(r) ≤ qp ≤ X(s)} + P{X(s) < qp}. 

Or P{ X(r) ≤ qp ≤ X(s)} = P{X(r) ≤ qp.} − P{X(s) < qp} = Fr(qp) – Fs(qp) 

= ( ) [1 ( )]
n

j n j

p p

j r

n
P q P q

j

−

=

 
− 

 
  − ( ) [1 ( )]

n
j n j

p p

j s

n
P q P q

j

−

=

 
− 

 
  

= [1 ]
n

j n j

j r

n
p p

j

−

=

 
− 

 
 − [1 ]

n
j n j

j s

n
p p

j

−

=

 
− 

 
  

= 
1

[1 ]
s

j n j

j r

n
p p

j

−
−

=

 
− 

 
 = β (r, s, n, p)  (confidence coefficient). 

Thus the confidence coefficient is a function of r, s, n and p, but not on the cdf  P(x) or 

pdf  p( x) of the population. 

Now for constructing a distribution free confidence interval with confidence coefficient 

greater than or equal to 1 – α and given values of n and p, the values of r and s  should be so 



chosen so as to make the confidence coefficient β(r, s, n, p) just greater than 1 – α. Proper choice 

of r and s  is some what arbitrary, but it is reasonable to try to make s – r as small as possible 

subject to β(r, s, n, p) ≥ 1 – α. If p = ½, then the problem is that of construction of a distribution 

free confidence interval for the median of the population. In this case, it is customary to take s = 

n – r + 1, then the expression of β(r, s, n, p) reduces to 

β(r, s, n, p) = 
1 1

1
2 2

j n jn r

j r

n

j

−−

=

    
−    

    
 = 

1

2

n n r

j r

n

j

−

=

  
  

   
 . 

Now the problem reduces to that of determination of r, subject to β(r, s, n, p) ≥ 1 – α. 

Thus for given values of n, p and α, a value of r and s  can be selected and then on reducing the 

sample width (s – r) subject to the above said condition, X(r) and X(s) can be chosen, which is one 

confidence interval for qp with confidence coefficient greater than or equal to  1 – α. 

 

Example: Find the smallest value of n for which  1 0.5Pr 0.99nY Y   , where 1 2 ... nY Y Y  

, are order statistics of random sample of size n from a distribution of continuous type and p  is 

a quantile of order p. 

 

Solution: Consider 

 1 0.5Pr 0.99nY Y    

( ) ( )
1

1

0.5 1 0.5 0.99
n

w n wn

w

w

C
−

−

=

= −   

so that 
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1/ 2 0.99
n

nn

w

w

C
−

=

          (1) 

Also, we know that 
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= = +                ( ) ( )
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n
n n sn r

r

r

q p C p q
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=
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=

+ + =
 



This gives 

( ) ( )
1

1

1/ 2 1 1/ 2
n

n nn

w

w

C
−

=

= −               (2)  

From (1) and (2) we get 

( )1 2 1/ 2 0.99
n

−   

( )1 0.99 2 1/ 2
n

−   

( )2 1/ 2 0.01
n
                (3) 

(3) holds for n=8, 9, …, hence smallest n is 8. 

3.5      Distribution Free Tolerance Interval 

Let 1 2, ,..., nX X X denotes a random sample of size n taken from a distribution having a 

positive and continuous p. d. f. ( )f x  if and only if a<x<b. let ( )F x be its distribution function. 

Consider the random variables  ( )1F X , ( )2F X , … ( )nF X . These random variables are 

mutually stochastically independent and each follows ( )0,1U . 

Let 1 2, ... nZ Z Z    be the order statistics of the random sample ( )1F X , ( )2F X ,…, 

( )nF X . If 1 2 ... nY Y Y    are the order statistics of the original sample 1 2, ,..., nX X X  then 

( ) ( ) ( )1 1 2 2, ,... n nZ F Y Z F Y Z F Y= = =  

Let us consider the difference ( ) ( )j i j iZ Z F Y F Y− = −      for every i<j 

Now ( ) ( )Prj jF Y X Y=   

And ( ) ( )Pri iF Y X Y=   

But ( ) ( )Pr Pr 0j iX Y X Y= = = =      (as distribution is continuous) 

Thus ( )Prj i i jZ Z Y X Y− =    

Let p be a positive fraction if  



( ) ( )j iF Y F Y p−   

Then at least 100p% of the probability for the distribution of X is between iy  and jy  

Let  ( ) ( )Pr j iF Y F Y p  = − 
   

           Pr j iZ Z p = −    

          ( )
1 1

,

0 i

p

ij i j j i

p z

h Z Z dZ dZ

−

+

=    

where ( ),ij i jh Z Z  is joint p. d. f. of iZ  and jZ . 

Then, the random interval ( ),i jY Y  has probability   of containing at least 100p% of the 

probability for the distribution of x is the tolerance interval of 100p% of the probability 

distribution of x. If now iy  and jy  denote respectively, experimental values of iY  and jY , the 

interval ( ),i jy y  either does or does not contain at least 100p% of the probability for the 

distribution of x and iy  and jy  are known as the tolerance limits for 100p% of the probability 

distribution of x. 

 

Definition: Tolerance interval is an interval which covers at least a certain proportion of the 

population with certain probability. Thus if L and U denotes the lower and upper limits of an 

interval, then the condition for this interval to be a tolerance interval is that it covers at least a 

proportion γ of a population with pdf  p(x) with probability β, where β and γ are pre assigned 

constants.  

Symbolically 

 P ( )
U

L
p x dx  

    = β.        (1)   



 

Fig. Graphical Depiction of Tolerance Interval 

 

3.5.1      Difference Between Confidence and Tolerance Intervals  

A confidence interval covers a population parameter with a stated confidence, where as a 

tolerance interval is designed to cover a proportion of the population with a certain probability. 

As the sample size increases, confidence intervals shrink towards zero, while tolerance intervals 

tend towards a fixed value. 

Theorem. If the limits L and U of a tolerance interval depend on order statistics, then the 

probability given on the L.H.S. of (1) will be distribution free. In other words, the tolerance 

interval (X(r), X(s)), where X(r) and X(s) are the rth and sth order statistics of a sample of size n, is 

distribution free. 

Proof: Let  X1, X2, . . . , Xn be a sample of size n from a continuous distribution with pdf  p(x), 

distribution function P(x) and X(r) and  X(s)  the rth and sth order statistics. If we let L= X(r) and U= 

X(s), then  

( )
U

L
p x dx  = P(U) – P(L) = P(X(s)) – P(X(r)).      (2)  

L U 

p
(x

) 



 

x→ 



 Now making use of probability integral transformation y = P(x), which is order 

preserving, the integral (3.2) is transformed to Y(s) – Y(r), where Y(s) and Y(r) are the sth and rth 

order statistics from a standard Uniform distribution, 1≤ r < s ≤ n. The distribution of Zsr = Y(s) – 

Y(r) was obtained earlier as a β with parameters s – r and n – s + r – 1. Hence, 

P ( )
U

L
p x dx  

    = 1 - Iγ(s – r, n – s + r + 1),      (3) 

which does not depend upon p(x) or P(x), where Iz(a, b) =
1

( , )a b
1 1

0
(1 )

z
a by y dy− −−  is the 

incomplete beta function up to the point z.  

 Now for constructing a distribution free tolerance interval that would cover at least 

100γ% of the population with probability β, we look for an interval (X(r), X(s)), where X(r) and X(s) 

are the are the rth and sth order statistics of a sample of size n such that 

1 - Iγ(s – r, n – s + r + 1) = β.        (4) 

Since, r and s are integers, (3.4) can be hardly satisfied. Hence, we look out for such integral 

values of r and s that satisfy, 

1 - Iγ(s – r, n – s + r + 1) ≥ β.  

Thus, for a one sided tolerance interval, we either take r = 0 or s = n + 1. Then the 

problem reduces to that of finding the other integer alone. 

For a two sided tolerance interval it is usual to take s = n – r + 1 and determine that value of r 

that makes the value of 1 - Iγ(s – r, n – s + r + 1) as little in excess of β as possible. 

 

Example: Let 1Y  and nY  be the smallest (i.e. the first and the thn  order statistics of a random 

sample of size n from the continuous distribution ( )F x . Find the smallest n such that 

( ) ( ) 1 0.5nP F Y F Y −    
is at least 0.95. 

 

Solution: Consider 

( ) ( ) 1 0.5 0.95nP F Y F Y −     



 ( ) ( ) 11 0.5 0.95nP F Y F Y − −     

 ( ) ( ) 1 0.5 0.5nP F Y F Y −     

  10 0.5 0.5nP Z Z −    
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The smallest n satisfying the above equation in n = 8. 

3.6          Coverage 

Let 1 2, ,..., nX X X denotes a random sample of size n taken from a distribution having a 

positive and continuous p. d. f. ( )f x  if and only if a<x<b. let ( )F x be its distribution function. 

Consider the random variables  ( )1F X , ( )2F X , … ( )nF X . These random variables are 

mutually stochastically independent and each follows ( )0,1U . Thus ( )1F X , ( )2F X , … 

( )nF X  is a random sample of size n from U(0,1). 

Let 1 2, ... nZ Z Z    be the order statistics of the random sample ( )1F X , ( )2F X ,…, ( )nF X . 

If 1 2 ... nY Y Y    are the order statistics of the original sample 1 2, ,..., nX X X  then 

( ) ( ) ( )1 1 2 2, ,... n nZ F Y Z F Y Z F Y= = =  

Now, consider the random variables 

( )1 1 1 1C W F Y Z= = =  

( ) ( )2 2 2 1 2 1C W F Y F Y Z Z= = − = −  

( ) ( )3 3 3 2 3 2C W F Y F Y Z Z= = − = − . 

 

( ) ( )1 1n n n n n nC W F Y F Y Z Z− −= = − = −  

Then random variable 1W  or 1C  is called the coverage of the random interval  1;x x Y− 

and the random variable iW  or iC , i=1, 2,..., n is called a coverage of random interval 

 1; i ix Y x Y−    

Joint p. d. f. of 1 2, ,..., nW W W  or 1 2, ,..., nC C C  

We have 

1 1 1C W Z= =  



2 2 2 1C W Z Z= = −  

3 3 3 2C W Z Z= = − . 

 

1n n n nC W Z Z −= = −  

For specific values 

1 1 1c w z= =  

2 2 2 1c w z z= = −  

3 3 3 2c w z z= = − . 

 

1n n n nc w z z −= = −  

The inverse function of this associated transformation are given by 

1 2 ....i iz w w w= + + +  

1 2 .... ic c c= + + +         for every i=1, 2, …, n 

Now jacobian of transformation 

( )
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z z z
J

w w w
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1=  

Therefore, mod(J) = 1 

Now  

( ) ( )1 2 1 2, ,..., , ,...,n nh w w w r c c c=  

= (mod J){put 1 2, ,..., nz z z in terms of 1 2, ,..., nw w w  in the joint p. d. f. of 1 2, ,..., nZ Z Z } 



But ( )1 2, ,..., !nh z z z n=  

Thus, ( )1 2, ,..., !nh w w w n=         ; 0 , 1,2,...,iw i n = ; 1 2 ... 1nw w w+ + +   

                               =0          ; elsewhere 

 

Example: Show that each of the coverages has the beta p. d. f.  

( )
( )

1
1 ;0 1

0 ;

n
n w w

k w
elsewhere

− −  
= 


 

 

Solution: Since the joint p. d. f. of the coverages ( )1 2, ,..., nk w w w is symmetric in 1 2, ,..., nw w w  

axis given by 

( )1 2

1 2

! ;0
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... 1
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i

n

n

n w

i n
k w w w

w w w
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it is evident that the distribution of every sum r , r n  of these coverages 1 2, ,..., nw w w  is exactly 

the same for fixed value of r . 

Consider if i j  and r j i= − , the distribution of any sum of j - i coverages 

( ) ( ) 1 2 ...j i j i i i jZ Z F Y F Y w w w+ +− = − = + + +  

( ) ( )1 2 1 2... ...j iw w w w w w= + + + − + + +  

1 2 ...i i jw w w+ += + + +            ( )i jw w  

is exactly the same as that of  

( )1 1 2 ...j j i j iz F Y w w w− − −= = + + +  

but we know the p. d. f. of  
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Consequently, ( ) ( )j i j iZ Z F Y F Y− = −  has above mentioned p. d. f.  Putting r=1  such that j=2 

and i=1, we have p. d. f. of 1w  given by 

( ) ( )

( )

1

1 1

1

1

1
1

1

          = 1

n

n

n
k w w

n

n w

−

−

+
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−

                                            10 1w   

But similarly if j=3 and i=2 

( )
( )
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2 2

1

2

!
1

1! 1 !
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n

n

n
k w w

n

n w
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−
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                 20 1w                   

Therefore in general, we can say that each of the coverages has the beta p. d. f.  

( )
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1
1 ;0 1

0 ;

n
n w w

k w
elsewhere

− −  
= 
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Example: Let ic denote the thi  coverage, find expectation of ic . 

 

Solution: Since each of the coverage ic , i =1, 2,…,, n has the beta p. d. f. 

( )
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and ( )1 1 1c Z F Y= = follows ( )0,1U . The expectation of each ic  is given by 
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3.7         Summary 

This unit provides a thorough understanding of concepts related to Distribution Free 

Intervals. The concepts of Distribution of range function of order statistics, distribution free 

confidence intervals for quantiles, distribution free tolerance interval and coverage are described 

in detail. The learner should try to solve the self-assessment problems given in the next section. 

3.8       Self - Assessment Execises 

Q1. Derive the distribution of range function of order statistics in case of Uniform distribution. 

Q2. Obtain the distribution free confidence intervals for quantiles. 

Q3. Describe the concepts of tolerance interval and coverage by giving suitable examples. 
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4.1           Introduction 

Statistics are a way of simplifying, summarizing, and interpreting data. Among the 

various statistical tools and techniques available, Rank Order Statistics stand out as a unique way 



to understand and interpret data points based on their rank or order rather than their actual 

values. 

Rank Order Statistics are essentially data values arranged in ascending or descending 

order, providing a ranking for each data point. This allows for a clear distinction in the standing 

or position of each data value in relation to the others, irrespective of their absolute values. For 

instance, if we have a data set: {56, 62, 49, 89, 75}, the rank of the value 56 would be 2 (second 

smallest), while the value 89 would rank 5 (largest). 

Rank Order Statistics are crucial in numerous applications: 

Non-Parametric Tests: In statistics, not all data conforms to a specific distribution or meets the 

necessary assumptions for parametric tests. In such cases, non-parametric tests that utilize rank 

order statistics, like the Mann-Whitney U test or the Kruskal-Wallis test, can be used. 

Comparing Variables: It's often important to understand the relative standing of one data point 

to another, especially when absolute values can be misleading. 

Handling Outliers: Rank order statistics can be a valuable tool when dealing with outliers, as 

ranking reduces the influence of abnormally high or low values. 

Predictive Modelling: In fields like machine learning, rank-based methods can be useful for 

certain types of predictive modelling scenarios, especially in recommendation systems. 

Throughout this unit, we will delve deep into the intricacies of Rank Order Statistics, 

starting from its fundamental definition to its wide range of applications in various fields. The 

unit will also cover methods to compute ranks, deal with tied ranks, and utilize rank order 

statistics in practical scenarios. 

As we navigate through the world of Rank Order Statistics, we will witness its power and 

versatility, gaining the skills and knowledge to apply it effectively in our statistical endeavours. 

With this introduction as our foundation, we will embark on a detailed journey, starting with the 

basic definition and computation methods of ranks, progressing to its applications in non-

parametric statistical tests and real-world scenarios, and culminating in its importance in the 

broader realm of data analysis. Rank order statistics provide insight into the distribution and 

arrangement of data points. In the realm of statistics and probability, there are various techniques 

and theorems that help us better understand and analyse the order and rank of data. This unit 



delves into rank order statistics, Dwass' Technique, the Ballot theorem, its generalization, and the 

implications of these in the realm of random variables. 

4.2          Objectives 

By the end of this unit, learners will be able to: 

• Understand the fundamental concept of rank order statistics. 

• Apply Dwass’ Technique to statistical data. 

• Describe the Ballot theorem and its generalized form. 

• Understand the applications and implications of these concepts on fluctuations of sums of 

random variables. 

• Self-assess their knowledge and understanding of the concepts. 

4.3           Rank Order Statistics 

Rank order statistics deals with the statistics derived from the ranks of sample data. For a 

sample size n, the smallest observation has a rank of 1, the second smallest has a rank of 2, and 

so on, with the largest observation having a rank of 𝑛 

Definition: rank order statistics in the field of Statistics refers to the values in a dataset when it is 

ordered in ascending or descending order. More formally, given a sample of size 𝑛, the 𝑟𝑡ℎrank 

order statistics is the 𝑟𝑡ℎ smallest value in the sample, often denoted 𝑋(𝑟). 

Mathematically, let us assume we have a sample 𝑋1, 𝑋2, … , 𝑋𝑛 from a population. The rank order 

statistics of the sample are given by: 

𝑋(1) ≤ 𝑋(2) ≤ … ≤ 𝑋(𝑛) 

Where 𝑋(1)  is the smallest data value (the minimum) and 𝑋(𝑛)  the largest data value (the 

maximum). 

Result 1: The expected value of rank order statistics is  

𝐸(𝑋(𝑟)) = ∫ 𝑃(𝑋(𝑟) > 𝑥)𝑑𝑥
∞

−∞

 



Proofs for these results are often quite involved and are based on cumulative distribution 

functions and probability density functions. We will consider the expected value of a rank order 

statistic as an example: 

The cumulative distribution function of the 𝑟𝑡ℎ order statistic 𝐹𝑋(𝑟)(𝑥) is given by: 

𝐹𝑋(𝑟)(𝑥) =  𝑃(𝑋(𝑟) ≤ 𝑥) 

Taking derivative with respect to x gives the probability density function as: 

𝑓
𝑋(𝑟)
(𝑥) =

𝑑

𝑑𝑥
𝐹𝑋(𝑟)(𝑥) 

Then, the expected value of rank order statistics 𝐸(𝑋(𝑟)) can be found by: 

𝐸(𝑋(𝑟)) = ∫ 𝑥𝑓𝑋(𝑟)(𝑥)𝑑𝑥
∞

−∞

 

Result 2: Variance of Rank Order Statistics 

The variance of the rank order statistics can also be derived using probability density 

functions, which is beyond the scope of this short text but can be found in various statistical 

texts. 

4.3.1     Applications and Examples 

1. Non-parametric Statistical Tests: 

Mann-Whitney U Test: Used to determine whether there is a difference between two 

independent samples. 

Wilcoxon Signed-Rank Test: Used to test the median of a single sample or paired samples. 

2. Quantile and Percentile Estimation: 

Median: 𝑋(0.5𝑛) (if 𝑛 is even) or the average of 𝑋(0.5𝑛)and 𝑋(0.5𝑛+1) (if 𝑛 is odd) is an estimator 

of the median. 

3. Outlier Detection: 



Identifying extremely low or high rank order statistics helps detect potential outliers in the data. 

Examples 

Example 1: Sample of test scores: {82, 94, 76, 88, 92} 

The rank order statistics of this sample are simply these values ordered: 

𝑋(1) = 76, 𝑋(2) = 82, 𝑋(3) = 88, 𝑋(4) = 92, 𝑋(5) = 94  

Example 2: Application in Test 

In a psychological test, scores of five participants are: {32, 37, 29, 45, 40}. We might be 

interested in the median score to understand the central tendency which can be found using rank 

order statistics. 

Ordering the scores: 29,32,37,40,45 

The median (or the 3rd rank order statistic) is 37. 

4.3.2 A fundamental Lemma related to Rank Order Statistics  

Lemma: Distribution of the 𝒓𝒕𝒉 Rank Order Statistic 

Statement: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent and identically distributed random variables with a 

continuous cumulative distribution function 𝐹(𝑥). The probability distribution function of the 𝑟𝑡ℎ 

rank order statistic 𝑋(𝑟) is given by: 

𝑓
𝑋(𝑟)
(𝑥) =

𝑛!

(𝑟 − 1)! (𝑛− 𝑟)!
[𝐹(𝑥)]𝑟−1[1 − 𝐹(𝑥)]𝑛−𝑟𝑓(𝑥) 

Where 𝑓(𝑥) is the probability density function of  𝑋𝑖. 

Proof: Start by considering the probability that 𝑋(𝑟) is less than or equal to some value 𝑥. This is 

the probability that 𝑟 − 1  of the 𝑋𝑖′𝑠  are less than 𝑥 𝑎𝑛𝑑 𝑛 − 𝑟  of 𝑋𝑖′𝑠  are greater than 

𝑥,𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑏𝑦: 

𝑃(𝑋(𝑟)  ≤ 𝑥) = (
𝑛

𝑟 − 1
) [𝐹(𝑥)]𝑟−1[1 − 𝐹(𝑥)]𝑛−𝑟 



Where, (
𝑛

𝑟 − 1
) is binomial coefficient representing the number of ways to choose 𝑟 − 1 terms 

out of 𝑛. 

Differentiating the right-hand side using the product rule and binomial expansion, we arrive at: 

𝑓
𝑋(𝑟)
(𝑥) =

𝑛!

(𝑟 − 1)! (𝑛− 𝑟)!
[𝐹(𝑥)]𝑟−1[1 − 𝐹(𝑥)]𝑛−𝑟𝑓(𝑥) 

Which completes the proof. 

This lemma essentially gives the distribution of the rth smallest value out of a sample of n 

values, assuming the data follows a known distribution with cumulative distribution function 

F(x) and probability density function f(x). The lemma is foundational for further analysis of 

order statistics, especially when deriving properties like expected values and variances for 

specific rank order statistics. 

The proof leverages the combinatorial nature of order statistics — the multiple ways of obtaining 

specific ranks for the data points — and ties it to their probabilistic interpretation. 

4.3.3 Joint Distribution of Two Order Statistics 

Statement: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be independent and identically distributed random variables with a 

cumulative distribution function 𝐹(𝑥). The joint probability density function of the 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ 

rank order statistic 𝑋(𝑖) 𝑎𝑛𝑑 𝑋(𝑗);  𝑤ℎ𝑒𝑟𝑒 𝑖 < 𝑗  wis given by: 

𝑓
𝑋(𝑖),𝑋(𝑗)

(𝑥, 𝑦) =
𝑛!

(𝑟 − 1)! (𝑗 − 𝑖 − 1)! (𝑛− 𝑟)!
[𝐹(𝑥)]𝑖−1[𝐹(𝑦)− 𝐹(𝑥)]𝑗−𝑖−1[1 − 𝐹(𝑦)]𝑛−𝑗𝑓(𝑥)𝑓(𝑦) 

Proof: For 𝑥 ≤ 𝑦 

1. The probability that exactly 𝑖 − 1  of 𝑋𝑘  are less than 𝑥  is 
𝑛!

(𝑖−1)!(𝑛−𝑖)!
[𝐹(𝑥)]𝑖−1[1 −

𝐹(𝑥)]𝑛−𝑖+1. 

2. The probability thsat exactly 𝑗 − 𝑖 − 1 of 𝑋𝑘 (not exactly less than 𝑥) are between 𝑥 and 

𝑦 (
𝑛 − 𝑖 + 1
𝑗 − 𝑖 − 1)

[𝐹(𝑦)− 𝐹(𝑥)]𝑗−𝑖−1[1 − 𝐹(𝑦)]𝑛−𝑗+1. 



3. The joint probability is the product of the above two probabilities, multiplied by the 

density functions f(x) and f(y) for the two specific values x and y. 

 

Combining the above steps, we derive the stated formula for the joint distribution i.e.  

𝑓
𝑋(𝑖),𝑋(𝑗)

(𝑥, 𝑦) =
𝑛!

(𝑟 − 1)! (𝑗 − 𝑖 − 1)! (𝑛− 𝑟)!
[𝐹(𝑥)]𝑖−1[𝐹(𝑦)− 𝐹(𝑥)]𝑗−𝑖−1[1 − 𝐹(𝑦)]𝑛−𝑗𝑓(𝑥)𝑓(𝑦) 

4.3.4   Expectation of the maximum order statistic 

Statement: Given 𝑋1, 𝑋2, … , 𝑋𝑛  be independent and identically distributed random 

variables with a cumulative distribution function 𝐹(𝑥)𝑎𝑛𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓(𝑥) . . 

The expected value of the maximum order statistic  𝑋(𝑛)  wis given by 

𝐸[𝑋(𝑛)] = ∫ 𝑛[1 − 𝐹(𝑥)]𝑛−1𝑓(𝑥)𝑥 𝑑𝑥
∞

−∞

 

Proof: the probability density function of 𝑋(𝑛)  is: 

𝑓
𝑋(𝑛)

(𝑥) = 𝑛[1 − 𝐹(𝑥)]𝑛−1𝑓(𝑥) 

Thus, the expected value of 𝑋(𝑛) is given as 

𝐸[𝑋(𝑛)] = ∫ 𝑥𝑓𝑋(𝑛)(𝑥) 𝑑𝑥
∞

−∞

 

Substituting the pdf of largest order statistic, we get  

𝐸[𝑋(𝑛)] = ∫ 𝑛[1 − 𝐹(𝑥)]𝑛−1𝑓(𝑥)𝑥 𝑑𝑥
∞

−∞

 

These results and their proofs showcase the intricacy of order statistics, blending 

combinatorics and probability theory. They form the basis for more advanced 

investigations in the field, such as approximations for large samples and evaluations of 

moments for order statistics. 

4.3.5        Applications  



Rank order statistics often have practical applications in day-to-day life that don't 

necessarily involve direct mathematical operations. Here are some non-mathematical examples 

related to rank order statistics: 

 

Sports Competitions: In a track and field event, athletes might finish a race in various times. 

While the exact times might be of interest, often what matters most is their ranking - who came 

first, second, third, and so on. The athlete with the fastest time is the maximum rank order 

statistic, while the one with the slowest time is the minimum. 

 

University Rankings: Every year, various organizations release rankings of universities around 

the world based on a multitude of factors like research output, student satisfaction, and more. 

While the actual scores might be complex and multifaceted, people often pay attention to the 

rankings: which university is 1st, which is 2nd, etc. 

 

Job Applicant Screening: Imagine a company has interviewed 10 candidates for a position. Post-

interview, the HR might rank them based on their overall performance. While the exact scores on 

various parameters might matter internally, they might simply offer the job to the top 1 or 2 

ranked candidates. 

 

Movie or Restaurant Rankings: Websites might rank movies or restaurants based on user 

reviews. While each movie or restaurant might have an average rating (like 4.2 out of 5 stars), a 

list might simply show them in order of rank, from highest to lowest average rating. 

 

Elections: In certain voting systems, rather than just selecting one candidate, voters rank their 

candidates. The candidate with the most "first choice" votes might get elected, or there might be 

a more complex system where if no candidate gets over 50% of "first choice" votes, then "second 

choice" votes (and so on) come into play. 

 

Beauty Pageants: Contestants are often ranked based on various rounds like talent, evening 

wear, Q&A, etc. In the end, while scores might be given in each round, what's most prominent is 

who gets crowned as the winner, the first runner-up, the second runner-up, and so on. 



 

Book Bestseller Lists: While books might have various sales numbers, a bestseller list typically 

just ranks them from the best-selling to the least in that category, providing readers a ranked 

order statistic of book sales. 

Each of these examples incorporates the essence of rank order statistics - focusing on the 

position or order of items rather than their actual values or scores. 

4.4            Dwass’ Technique 

Dwass' Technique is a method for performing multiple pairwise comparisons on non-

parametric data. It's a procedure used after a Kruskal-Wallis test (which is the non-parametric 

alternative to one-way ANOVA) has determined that there are statistically significant differences 

among the groups. Meyer Dwass proposed this technique to address the problem of inflating the 

Type I error rate when multiple comparisons are made. It's essentially a modified Wilcoxon rank-

sum test (or Mann-Whitney U test) that adjusts for these multiple comparisons. 

4.4.1     The Dwass' Technique 

Rank the Data: Just like in the Kruskal-Wallis test, all the data from all groups are ranked 

together, ignoring the group to which they belong. Ties are handled by assigning the average of 

the ranks they span. 

Pairwise Comparisons: For each pair of groups (A and B, for instance), the test statistic is 

computed as if performing a regular Wilcoxon rank-sum test. 

Adjust for Multiple Comparisons: This is the crucial step. Instead of using the regular critical 

values for the Wilcoxon rank-sum test, Dwass' method requires more extreme values to declare 

significance, essentially adjusting for the fact that multiple tests are being performed. The critical 

values can be found using tables specifically designed for Dwass' method, or more modernly, via 

simulation or bootstrapping methods. 

Determine Significance: If the test statistic for any pair exceeds the adjusted critical value, the 

difference between those groups is considered statistically significant. 

4.4.2     Importance 



The Dwass' technique, and other multiple comparison methods, are essential because 

performing many tests increases the chance of finding at least one significant result just by 

chance (a false positive). By adjusting the criteria for significance, these methods control the 

familywise error rate, ensuring that the probability of one or more false positives remains at the 

desired significance level (typically 0.05). 

4.4.3      Limitations 

Power: By adjusting for multiple comparisons, these tests are inherently more conservative, 

reducing the chance of false positives but also potentially increasing the chance of false 

negatives. 

Applicability: Dwass' method is designed specifically for post-hoc comparisons after a Kruskal-

Wallis test. It's not suitable for other contexts or for parametric data. 

Modern Alternatives: There are newer methods and techniques available for multiple 

comparison adjustments that might be considered more powerful or flexible than Dwass' method. 

This technique is particularly useful in scenarios where non-parametric tests are appropriate due 

to the data not meeting the assumptions of parametric tests, and where multiple group 

comparisons are needed. Here are some applications and examples where Dwass' Technique 

could be employed: 

4.4.4       Applications 

Medical Research: When comparing the effects of multiple treatments or interventions on a non-

normally distributed outcome, such as the number of pain-free days after different therapeutic 

interventions. 

Ecological Studies: Comparing species diversity in various habitats or regions, especially when 

the data is skewed or has outliers. 

Social Sciences: For example, comparing median income or other skewed socio-economic 

indicators across different regions or groups. 



Market Research: When comparing customer satisfaction scores (on a non-parametric scale) 

across different products or services. 

Educational Studies: For instance, comparing the distributions of test scores among students 

exposed to different teaching methods, especially if scores are not normally distributed. 

Examples: 

Clinical Trial: Suppose a new drug is being tested in three different dosages against a placebo to 

check its efficacy in reducing migraine occurrences. After the trial, the median number of 

migraines in each group over a month is recorded. Given that migraine occurrences may not 

follow a normal distribution, and there are multiple groups to compare, a Kruskal-Wallis test 

followed by Dwass' technique can be used. 

Wildlife Conservation: A conservationist wants to compare the number of bird species spotted in 

four different forest conservation areas. Given that such counts can be skewed (some rare species 

might only appear occasionally), the conservationist decides to employ non-parametric methods. 

After finding significant differences with the Kruskal-Wallis test, they use Dwass' technique for 

pairwise comparisons. 

Customer Survey: A company launches three different ad campaigns for a product and later 

surveys customers on their recall of the ad on a scale of 1 to 10. The scores might not be 

normally distributed since many people might give extreme scores (either 1 or 10). After finding 

a significant difference among the campaigns using a Kruskal-Wallis test, Dwass' technique is 

employed to find out which ad campaigns differ significantly from each other. 

In each of these examples, Dwass' Technique provides a way to dive deeper into the data 

after an overall difference is found, helping researchers pinpoint exactly where those differences 

lie. 

4.5        Ballot Theorem and its Generalisation 

The Ballot Theorem is a classical result in combinatorial probability, which deals with the 

chances of one candidate always being ahead of another in a sequence of votes when the final 

counts are known. 



Ballot Theorem Statement: Suppose two candidates, A and B, receive 𝑎 𝑎𝑛𝑑 𝑏  votes 

respectively in an election with 𝑎 > 𝑏. If the votes are counted in random order, the probability 

that A is always ahead of B throughout the count is given by: leads throughout  

 𝑃(𝐴 𝑙𝑒𝑎𝑑𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑡) =
𝑎−𝑏

𝑎+𝑏
 

Proof (Intuitive): 

Imagine a path on a coordinate plane that represents the difference in votes between A 

and B. Each step to the right represents 𝑎 vote for A, and each step to the left represents 𝑎 vote 

for B. The final position on the path will be 𝑎 − 𝑏, since A has 𝑎 votes and B has 𝑏 votes. 

For A to always be leading, the path must never touch the x-axis (because that would 

mean they have the same number of votes at some point). Now, consider reflecting any portion 

of the path that goes below the x-axis across the x-axis. This creates a bijection between paths 

where A leads throughout and paths where B takes the lead at least once. 

The key insight is that for every path where A is leading throughout (except for the path 

where A gets all its votes first), there is a corresponding path where B leads at some point. 

The difference in the number of such paths is exactly the paths where A gets all its votes 

first, which is 𝑎. Hence, the probability is: 
𝑎−𝑏

𝑎+𝑏
 

4.5.1      Generalization 

A generalization of the Ballot Theorem is known as Bertrand's Ballot Problem. 

Statement: Given two candidates, A and B, receiving b votes respectively, where 𝑎 > 𝑏, the 

probability that A is ahead of B at any randomly chosen point in the count (and not necessarily 

throughout) is: leads at a point P(A leads at a point)= 
𝑎−𝑏

𝑎+𝑏
 

 This might seem counterintuitive, but the probability remains the same! The key is that being 

ahead at a random point in the count does not specify a structure to the sequence like leading 

throughout does. 

4.5.2      Applications 



The Ballot Theorem and its generalizations can be used in various fields, including 

economics (random walks in stock market analysis), physics (particle diffusion), and computer 

science (algorithm analysis). 

The generalization of the Ballot theorem explores extensions to more than two candidates 

and other related scenarios. 

The Ballot Theorem and its generalization provide fascinating insights into the behaviour 

of random processes. Let us explore some examples to make these concepts more tangible. 

Example 1: Election Scenario 

Setting: Imagine a small town where two candidates, Alice and Bob, are running for mayor. After 

all votes are counted, Alice has received 7 votes and Bob has received 5 votes. What is the 

probability that Alice was leading throughout the counting of the votes if they were counted in 

random order? 

Using the Ballot Theorem: leads throughout 

P(Alice leads throughout)=  
7−5

7+5
= 

2

12
 

So, there's a 1/6 chance that Alice was leading throughout the count. 

Example 2: Stock Market 

Setting: Imagine a simplified stock market scenario. A particular stock either goes up by $1 or 

down by $1 every day. After 10 days, the net change in the stock's value is +$2. What is the 

probability that the stock was always valued higher during these 10 days compared to its starting 

value? 

Here, we can treat "going up by $1" as a vote for Alice and "going down by $1" as a vote for 

Bob. After 10 days, Alice has "6 votes" and Bob has "4 votes". 

P(Stock always up)= 
6−4

6+4
=
2

10
 

So, there's a 1/5 chance that the stock was always up relative to its starting value. 

Example 3: Watching a Sports Game 



Setting: Imagine a basketball game where Team A scores 9 times, and Team B scores 7 times in a 

match. If you tune in at a random point during the game, what's the probability that Team A is 

leading? 

Using Bertrand's generalization: leads at a point 

P(Team A leads at a point)=  
9−7

9+7
= 

2

16
 

So, there's a 1/8 chance that Team A is leading at a randomly chosen point during the game. 

Example 4: Board Game 

Setting: Two players, Carla and Dave, are playing a board game. The game is simple: they roll 

dice, and based on the outcome, they either move one step forward or one step backward on the 

board. After 20 moves, Carla is 4 steps ahead of the starting point. What is the probability she 

was always ahead during the game? 

This can again be mapped to the Ballot Theorem. Carla has moved forward 12 times (votes for 

Carla) and backward 8 times (votes for Dave). 

 always ahead P(Carla always ahead)=  
12−8

12+8
= 

4

20
 

There is a 1/5 chance that Carla was always ahead during the game. 

These examples demonstrate how the Ballot Theorem and its generalization can be applied in 

various scenarios, offering a glimpse into the probabilistic nature of sequences and events. 

4.6     Extension and Application to Fluctuations of Sums of Random Variables 

The concepts from rank order statistics and the Ballot theorem can be extended to 

understand the fluctuations in sums of random variables. Such an understanding is pivotal in 

areas like stochastic processes and time series analysis. 

The Ballot Theorem and Bertrand's generalization find natural extensions in the study of 

random walks, especially in understanding the fluctuations of sums of random variables. Here's 

an introduction to this topic: 

Random Walks: 



Consider a simple random walk on the line, where at each step, you move one unit to the 

right with probability p or one unit to the left with probability q=1−p. This is analogous to 

counting votes for two candidates in the Ballot Theorem, where a vote for candidate A is a step to 

the right, and a vote for candidate B is a step to the left. 

The position after n steps is given by the sum of those n random variables (each being +1 

or -1, depending on the step direction). 

Fluctuations: 

Now, suppose we are interested in the fluctuations of this random walk, i.e., how the sum 

of these random variables behaves over time. Two questions of interest are: 

What is the probability that the sum is always non-negative? 

What is the average value of the sum after n steps? 

Using results analogous to the Ballot Theorem, we can tackle the first question. The 

second question relates to the expected value of the sum of random variables. 

Application: Stock Market 

A simple model for stock prices is to treat daily changes in stock prices as independent 

random variables. A stock might go up by some amount with probability p or down by some 

amount with probability q. 

Over n days, the total change in stock price is the sum of these random variables. By 

understanding the fluctuations in this sum: Investors can model the probability that the stock 

price remains above a certain level over a period (analogous to always being non-negative). 

Investors can predict the average change in stock price over a period. 

Application: Queuing Theory 

In computer networks or service centres, incoming tasks (or packets in a network) can be 

modelled as random variables, where each task requires a random amount of service time.The 

total service time required over n tasks is the sum of these random variables. Understanding its 

fluctuations helps in: Ensuring that queue lengths remain below a certain threshold with high 

probability. Predicting average waiting times or service delays. 

Extension: 



One of the fascinating extensions of this idea is the study of Brownian motion, which is a 

continuous-time version of the random walk. This stochastic process has applications in physics 

(particle motion in fluids), finance (option pricing), and many other fields. 

In the realm of random walks and sums of random variables, understanding fluctuations 

is crucial. It helps predict and model a wide range of phenomena, from stock prices to queuing 

delays, and forms the bedrock of many areas in applied probability and statistics. 

4.6.1        Foundational Results Related to Random Walks and The 

Fluctuations of Sums of Random Variables 

1. Expected Position:  

For a simple random walk where at each step we move one unit to the right with 

probability p or one unit to the left with probability q=1−p, the expected position  

E[Sn] after n steps is: E[Sn]=n(2p−1) 

Proof: 

The expected value of each step (either +1 or -1) is: 

E[S]=p(1)+q(−1)=2p−1 

Hence, for n steps: 

E[Sn]=nE[S]=n(2p−1) 

 

2. Variance of Position:  

The variance of the position Var(Sn) after n steps in the same simple random walk is: 

Var(Sn)=4npq 

Proof: 

The variance for each step is: 

Var(S)=E[S2]−(E[S])2 

 Since S2 is always 1 (whether you move left or right), E[S2]=1. Using the earlier result,  



E[S]=2p−1. Plugging in: 

Var(S)=1−(2p−1)2 =4pq 

For n steps: 

Var(Sn)=nVar(S)=4npq 

3. Reflection Principle: 

If a random walk first reaches level k (k positive steps total) at time 2m, then the number 

of paths that reach level k without ever being negative before time 2m is equal to the number of 

paths that reach level k and then go to level k−1 at time 2m. 

4. Arcsine Law: 

For a symmetric random walk (where p=q= 1/2), the probability that the walk stays non-

negative up to time 2𝑛 is 
2

𝜋
 𝑎𝑟𝑐𝑠𝑖𝑛 (√

𝑛

2𝑛
) 

5. Law of the Iterated Logarithm: 

This result describes the magnitude of the fluctuations of a random walk. Specifically, for 

a symmetric simple random walk: 

log𝑠𝑢𝑝𝑛→∞

𝑆𝑛

√2𝑛𝑙𝑜𝑔 log𝑛
= 1 

with probability 1. 

This last result implies that while a random walk will oscillate and have fluctuations, it 

won't deviate too wildly from its mean when properly scaled. 

These results give a glimpse into the rich tapestry of theorems and insights related to 

random walks and the behaviour of sums of random variables. They have profound implications 

in areas ranging from finance to physics. 

4.7       Summary 

In this comprehensive unit, we began by exploring Rank Order Statistics, which serves as 

a cornerstone for non-parametric statistical analysis. This method assigns ranks to data points in 



a dataset, allowing for an analysis that is less influenced by outliers or specific data distributions. 

The rth rank order statistic, for instance, corresponds to the rth smallest value in a given dataset. 

This approach's utility becomes especially clear in the context of non-parametric tests, where 

there is no assumption of a particular underlying data distribution. 

Our journey then led us to Dwass’ Technique, a specialized non-parametric method 

tailored for making multiple comparisons of group medians. Especially beneficial when working 

with three or more independent samples and in situations where sample sizes are small, Dwass' 

Technique elegantly extends the foundation of the Wilcoxon rank-sum test to encompass 

multiple comparisons. This ensures that the overall type I error rate is consistently maintained, 

offering a robust methodology for various analyses. 

Further deepening our exploration, we delved into the Ballot Theorem and its subsequent 

generalization by Bertrand. This theorem offers a fascinating glimpse into the probabilities 

associated with sequential processes. Specifically, in the case of two candidates, A and B, 

receiving a and b votes respectively (with a>b), the Ballot Theorem states that the odds of 

candidate A always leading during a random vote tally is 
𝑎−𝑏

𝑎+𝑏
. Bertrand’s broader perspective 

posits that during any random moment within the vote counting, the likelihood of A leading 

remains the same. While its roots might lie in electoral processes, the applications of this 

theorem stretch far and wide, encompassing scenarios from stock market shifts to evolving sports 

scores. 

Lastly, the unit pivoted to the realm of Random Walks, providing a window into the 

fluctuations of sums of random variables. A random walk can be envisaged as a sequence of 

steps, each determined by a random variable—often represented as a move to the right or left. 

For a simplistic random walk model, where probabilities p and q dictate right and left moves 

respectively, it emerges that the expected position after n steps can be described as n(2p−1). 

Beyond mere academic intrigue, the significance of understanding these fluctuations resonates in 

real-world phenomena ranging from stock market behaviors, the intricate dance of particles in 

physics, to the challenges posed in queuing theory. An especially riveting extension of this 

concept is Brownian motion—a continuous-time interpretation of the random walk, which finds 

relevance in diverse fields. 

4.8       Self-Assessment Questions 



Here are some self-assessment questions for the unit on Rank Order Statistics, Dwass' 

Technique, Ballot Theorem, and the fluctuations of sums of random variables: 

Rank Order Statistics: 

1. Define rank order statistics. 

2. How is the rth rank order statistic represented mathematically? 

3. What is the significance of rank order statistics in non-parametric statistical tests? 

Dwass' Technique: 

4. Explain Dwass' Technique in your own words. 

5. How does Dwass' Technique help in multiple comparisons? 

Ballot Theorem and its Generalisation: 

6. State the Ballot Theorem. 

7. How does Bertrand's Ballot Problem generalize the original Ballot Theorem? 

8. Provide an example where the Ballot Theorem can be applied in a real-world scenario. 

Extension and Application to Fluctuations of Sums of Random Variables: 

9. Define a simple random walk. How can it be modeled as a sum of random variables? 

10. How does the expected position change in a random walk after n steps if the probability 

of moving to the right is p and to the left is q? 

11. What is the significance of the Reflection Principle in the context of random walks? 

12. Describe the Arcsine Law and its relevance to random walks. 

Practical Application: 

13. In an election, candidate A receives 60 votes and candidate B receives 40 votes. If the 

votes are counted in a random order, what is the probability that candidate A always leads 

throughout the count? 

14. Consider a simple random walk where you move one step forward with a probability of 

0.7 and one step backward with a probability of 0.3. What is the expected position after 

100 steps? 

15. Given the importance of rank order statistics in non-parametric tests, why might one opt 

for a non-parametric test over a parametric test in statistical analysis? 



16. True or False: 

17. In the Ballot Theorem, if two candidates A and B receive equal votes, then the probability 

that A leads throughout the counting process is 0.5. 

18. Dwass' Technique can only be used in pairwise comparisons. 

19. The fluctuations in the sums of random variables have no applications in the stock 

market. 

These questions should provide a comprehensive assessment of the learner's understanding of the 

unit. Properly answering them should demonstrate a solid grasp of the concepts discussed. 
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Structure 

5.1  Intoduction 
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5.3        Sequential Procedure  

5.3.1 Two asspects of a Sequential Procedure 

5.4      Sequential Testing of Hypotheses and SPRT 

5.5       OC and ASN Functions 

5.6       Wald’s SPR Test 

5.7        Wald’s Fudamental Identity and Equation 

     5.7.1     OC Function of SPR Test 

     5.7.2      Wald’s Equation 

5.7.3      Efficiency of the SPR Test 

5.8      SPR Test for a Composite Hypothesis 

5.8.1        Wald’s Approach 

5.9       Summary 

5.10       Self-Assessment Exercises 

 

5.1       Introduction 

In classical Inference the size of the random sample to be drawn from the distribution is a 

fixed number. We shall consider the situation where the sample number is not fixed but is itself a 

random variable dependent on the observations. A procedure of making inference about the 

distribution of one or more variables in which the size of the sample is a random variable is 

called sequential procedure. The principal feature of such a procedure is a sampling scheme 

which lays down a rule under which one decides at each stage of the sampling whether to stop or 

to continue sampling, this decision being taken in the light of the observations already obtained. 

5.2            Objective 



The objective of this unit is to provide a basic understanding of concepts related to 

Sequential Tests. The concepts of SPRT and its properties, Wald’s Fundamental identity, OC and 

ASN functions, Wald’s equation should be clear after reading this material. 

5.3    Sequential Procedure 

In classical Inference the size of the random sample to be drawn from the distribution is a 

fixed number. We shall consider the situation where the sample number is not fixed but is itself a 

random variable dependent on the observations. A procedure of making inference about the 

distribution of one or more variables in which the size of the sample is a random variable is 

called sequential procedure. The principal feature of such a procedure is a sampling scheme 

which lays down a rule under which one decides at each stage of the sampling whether to stop or 

to continue sampling, this decision being taken in the light of the observations already obtained. 

 Suppose we want to judge whether a coin is unbiased or not. In the usual procedure, we 

toss the coin a fixed number of times, say 𝑛 times, and note in how many throws head appears. 

However, we may as well fix a number, say 𝑘, and then go on tossing the coin until 𝑘 heads 

appear. In this case, attention is focused on the number of throws needed to get 𝑘 heads. This 

number of throws is now a random variable, unlike in the usual type of sampling, and it may take 

any integral value greater than or equal to 𝑘 with positive probabilities. Hence the procedure 

used here is of the sequential kind. 

5.3.1      Two Aspects of a Sequential Procedure 

A general sequential procedure has two aspects: (I) a stopping rule or a rule which tells us 

when to stop sampling and (II) an action rule, which tells us what type of inference (or decision) 

to make after sampling has been stopped. 

 To visualize the stopping rule, note that we have in view a sequence of random variables, 

say 𝑋1, 𝑋2, ……… ., such that for every 𝑚 = 1, 2,…  the distribution of 𝑋𝑚 = (𝑋1, 𝑋2, … . , 𝑋𝑚)
′ is 

determined by the value(s) of the parameter(s) 𝜃, where 𝜃𝜖 Θ, the parameter space. 

 The 𝑚𝑡ℎ observation, 𝑥𝑚, is an observation on 𝑋𝑚 (which may itself be a vector random 

variable). Let us write 𝕩𝒎 = (𝑥1, 𝑥2, … . , 𝑥𝑚)
′ and let 𝜘𝑚 be the set of all possible values of 𝑋𝑚. 



A stopping rule is then equivalent to a specification of sets 𝐴𝑚 ⊂ 𝜘𝑚, for 𝑚 = 1, 2,……, 

such that sampling is to be stopped as soon as 𝕩𝑚𝜖 𝐴𝑚. 

Let 𝑁 be the number of observations actually taken according to a sequential procedure. 

Then 𝑁 = 𝑚 if and only if 𝕩𝑗 ∉ 𝐴𝑗 , 𝑗 = 1, 2, … . . , 𝑚 − 1, and 𝕩𝑚𝜖 𝐴𝑚. 

If the set 𝑆𝑚 is defined as 

𝑆𝑚 = {𝕩𝑚|𝑥𝑗 ∉ 𝐴𝑗 , 𝑗 = 1, 2, … . , (𝑚 − 1); 𝕩𝑚𝜖 𝐴𝑚};      (1) 

Then we might as well say 

𝑁 = 𝑚⟺ 𝕩𝑚𝜖 𝑆𝑚.                                                        (2) 

It may be seen that 𝑆1, 𝑆2, …. are mutually disjoint sets. 

 As regards the action rule, it specifies, which decision to take if sampling has been 

stopped after 𝑚 observations say and the observed values are 𝕩𝑚. 

5.4        Sequential Testing of Hypotheses and SPRT 

Suppose our problem is to test a hypothesis 𝐻0 about 𝜃. Then the action rule will dictate 

which of the two actions, 𝑎0 (denoting acceptance of 𝐻0) and 𝑎1 (denoting rejection of 𝐻0), is to 

be taken after sampling has been stopped in accordance with the stopping rule. 

 The action rule may be defined in terms of sets 

𝐴0,𝑚, and 𝐴1,𝑚 (𝑚 = 1, 2, … ), 

Where 𝐴0,𝑚, 𝐴1,𝑚 are disjoint subsets of 𝜘𝑚. The action rule will be as follows: 

(1) Take action 𝑎0 if 𝕩𝑚𝜖𝐴0, 𝑚 

and (2) take action 𝑎1 if 𝕩𝑚𝜖 𝐴1, 𝑚. 

 Note that for a given stopping rule, which specifies 𝑆𝑚, an action is taken at the 𝑚𝑡ℎ 

stage iff 𝕩𝑚𝜖 𝑆𝑚. Hence the action rule could be defined only for 𝐴0,𝑚 ⊂ 𝑆𝑚. However, since the 

action does not depend on the stopping rule, it is better to define 𝐴0,𝑚 independently of 𝑆𝑚. 

 For a given sequential test procedure, let 𝐴𝑖 denote the event that the observations result 

in action 𝑎𝑖  being taken (𝑖 = 0, 1) . Now, the action 𝑎𝑖  is taken after 𝑚  observations iff 

𝕩𝑚𝜖 𝑆𝑚 ∩ 𝐴𝑖,𝑚, which event is equivalent to [𝑁 = 𝑚] ∩ 𝐴𝑖 = 𝑆𝑚 ∗∩ 𝐴𝑖. 

Hence 

𝑃𝜃(𝐴𝑖) = Σ𝑚=1
∞ 𝑃𝜃([𝑁 = 𝑚] ∩ 𝐴𝑖) 

= Σ𝑚=1
∞ 𝑃𝜃[𝑋𝑚𝜖𝑆𝑚 ∩ 𝐴𝑖 , 𝑚], for 𝑖 = 0, 1                               (3) 



We exclude from the above sums the case 𝑚 = ∞, for in that case no action is taken. We have 

𝑃𝜃(𝐴0) + 𝑃𝜃(𝐴1) ≤ 1                                                      (4) 

and equality if the experiment terminates with probability 1, i.e. if  

𝑃𝜃[𝑁 < ∞] = 1. 

5.5        OC and ASN Function 

In order to judge the merits of sequential tests, we use the OC function and the ASN 

function. 

Operating characteristics (OC) function of a test the probability of the hypothesis 𝐻0 

being accepted when 𝜃 is the true value of the parameter, regarded as a function of 𝜃, denoted by 

𝐿(𝜃) such that  

𝐿(𝜃) = 𝑃𝜃(𝐴0)                                                                                            (5) 

The OC function is closely related to the notion of the power function in the function is 

the probability of rejecting 𝐻0 when 𝜃 is the true value. 

An OC function is considered the more favorable the higher the value of 𝐿(𝜃) for 𝜃 

consistent with 𝐻0 and the lower the value of 𝐿(𝜃) for 𝜃 not consistent with  𝐻0. 

The number of observations 𝑁 required by a sequential procedure to reach a decision is 

not predetermined but is a random variable. A sequential procedure preferable if it requires a 

small value of 𝑁 on the average. This average value of 𝑁 is called the average sample number 

(or ASN) of sequential procedure denoted by 𝐸𝜃(𝑁). The smaller the value of 𝐸𝜃(𝑁) the better 

is the sequential procedure. The OC function describes how well the procedure achieves its 

objective of making correct decisions, while the ASN function represents the price one has to 

pay to reach a decision, in terms of the number of observations required by the test. 

5.6         Wald’s SPR Test 

The sequential probability ratio (SPR) test was developed by Wald. Suppose the random 

variables 𝑋1, 𝑋2, …… are independently and identically distributed with the common p.m.f. or 

p.d.f. 𝑓𝜃. Further suppose that there are just two values of 𝜃 interest to us, say 𝜃0 and 𝜃1 and that 

we have two hypotheses 𝐻0: 𝜃 = 𝜃0 and 𝐻1: 𝜃 = 𝜃1. 



 For any positive integer 𝑚, the probability or probability density that the observations 

𝑥1, 𝑥2, … . . , 𝑥𝑚 are obtained is given by 

𝑓0,𝑚 = Π𝑖=1
𝑚 𝑓𝜃0(𝑥𝑖)                                                                                                (6)  

When 𝐻0 is true and by  

𝑓1,𝑚 = Π𝑖=1
𝑚 𝑓𝜃1(𝑥𝑖)                                                                                                        (7) 

When 𝐻1 is true. 

 The SPR test for testing  𝐻0 against 𝐻1 is defined in terms of the ratio 
𝑓1,𝑚

𝑓0,𝑚
 as follows: 

Specify two constants A and 𝐵 such that 

0 < 𝐵 < 1 < 𝐴                                                                              (8) 

Continue taking observations as long as 

𝐵 <
𝑓1,𝑚
𝑓0,𝑚

< 𝐴                                                                                           (9) 

Stop taking observations as soon as one of inequalities is violated and 

Accept 𝐻0, 
𝑓1,𝑚

𝑓0,𝑚
≤ 𝐵                                                                                                     (10) 

And reject 𝐻0 
𝑓1,𝑚

𝑓0,𝑚
≥ 𝐴.                                                                                                  (11) 

It is convenient to deal with the logarithm of the ratio 𝑓1,𝑚/𝑓0,𝑚 than with the ratio itself. 

Therefore, 

log (
𝑓1,𝑚
𝑓0,𝑚

) = Σ𝑖=1
𝑚 log (

𝑓𝜃1(𝑥𝑖)

𝑓𝜃0(𝑥𝑖)
) 

= Σ𝑖=1
𝑚 𝑧𝑖                                                                           (12) 

Where 

𝑧𝑖 = log (
𝑓𝜃1(𝑥𝑖)

𝑓(𝜃0)(𝑥𝑖)
) 

And sums are easier to deal with than products. 

Using the quantities 𝑧𝑖 (𝑖 = 1, 2, … . ), the procedure is continue taking observations as long as 

𝑙𝑜𝑔𝐵 < Σ𝑖=1
𝑚                                                                              (13) 

Stop taking observations as soon as one of the inequalities is violated and  

Accept 𝐻0 if Σ𝑖=1
𝑚 𝑧𝑖 ≤ 𝑙𝑜𝑔𝐵                                                                                   (14) 

And reject 𝐻0 if Σ𝑖=1
𝑚 𝑧𝑖 ≥ 𝑙𝑜𝑔𝐴                                                                                    



Determination of A and B 

Now, we need to determine the constant A and B in the SPR test for the event that 

sampling is stopped exactly after 𝑚 observations, 

𝑆𝑚 = {𝕩𝑚|𝐵 <
𝑓1,𝑗

𝑓0,𝑗
< 𝐴, 𝑗 = 1, 2, …… . , (𝑚 − 1);

𝑓1,𝑚
𝑓0,𝑚

≤ 𝐵 𝑜𝑟 ≥ 𝐴}              (15) 

Also, for the event that sampling is terminated at the 𝑚𝑡ℎ stage with the acceptance of 

𝐻0, 

𝐴0,𝑚 = {𝕩𝑚|𝐵 <
𝑓1,𝑗

𝑓0,𝑗
< 𝐴, 𝑗 = 1, 2, …… . , (𝑚 − 1);

𝑓1,𝑚
𝑓0,𝑚

≤ 𝐵 𝑜𝑟 ≥ 𝐴}                      (16) 

And, for the event that experiment is terminated at the 𝑚𝑡ℎ stage with the rejection of 𝐻0  

𝐴1,𝑚 = {𝑋𝑚|𝐵 <
𝑓1,𝑗

𝑓0,𝑗
< 𝐴, 𝑗 = 1, 2, …… . , (𝑚 − 1);

𝑓1,𝑚
𝑓0,𝑚

≥ 𝐴}                   (17) 

Clearly, 𝐴0,𝑚 and 𝐴1,𝑚 from a portion of 𝑆𝑚 

If, we denote by 𝐴0 the event that ultimately 𝐻0 is accepted, then we have 

𝑃𝜃0(𝐴0) = Σ1≤𝑚≤∞𝑃𝜃0(𝐴0,𝑚) 

= Σ1≤𝑚≤∞𝐴0,𝑚
∫ 𝑓0,𝑚𝑑𝑥𝑚 

≥ Σ1≤𝑚≤∞𝐴0,𝑚
∫
1

𝐵
 𝑓1,𝑚𝑑𝑥𝑚 =

1

𝐵
Σ1≤𝑚<∞𝑃𝜃1(𝐴0,𝑚) =

1

𝐵
. 𝑃𝜃1(𝐴0), 

i.e. 𝑃𝜃0(𝐴0) ≥
1

𝐵
. 𝑃𝜃1(𝐴0)                                                                                    (18) 

Similarly, denoting by 𝐴1 the event that ultimately accepted, 

𝑃𝜃0(𝐴1) = Σ1≤𝑚<∞𝑃𝜃0(𝐴1,𝑚)   

= Σ1≤𝑚<∞  ∫ 𝑓0,𝑚𝑑𝑥𝑚
𝐴1,𝑚

        𝑢𝑠𝑖𝑛𝑔 (17)                                        

≤ Σ1≤𝑚<∞∫
1

𝐴
𝑓1,𝑚𝑑𝑥𝑚

𝐴1,𝑚

=
1

𝐴
Σ1≤𝑚<∞𝑃𝜃1(𝐴1,𝑚) =

1

𝐴
𝑃𝜃1(𝐴1) 

i.e. 𝑃𝜃0(𝐴1) ≤
1

𝐴
𝑃𝜃1(𝐴1)                                                                             (19) 



from (18) and (19) the upper bounds to the probabilities of wrong decisions  

𝑃𝜃1(𝐴0) ≤ 𝐵   (ignoring 𝑃𝜃0(𝐴0) ≤ 1) 

𝑃𝜃0(𝐴1) ≤
1

𝐴
   (ignoring 𝑃𝜃1(𝐴1) ≤ 1) 

Also, from (18) and (19), we have 

1 − 𝑃𝜃0(𝐴1) ≥
1

𝐵
𝑃𝜃1(𝐴0)                                                                  (20)  

And 𝑃𝜃0(𝐴1) ≤
1

𝐴
[1 − 𝑃𝜃1(𝐴0)]                                                      (21) 

Let  

𝛼′ = 𝑃(𝑅𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻0|𝐻0) = 𝑃𝜃0(𝐴1) and 𝛽′ = 𝑃(𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝐻𝑜|𝐻1 ) = 𝑃𝜃1(𝐴0), so that (20) 

and (21) give 

𝐵 ≥
𝛽′

1 − 𝛼′
                                                                          (21𝑎)     

And  𝐴 ≤
1−𝛽′

𝛼′
                                                                    (21𝑏) 

Or 𝛼′ +
1

𝐵
. 𝛽′ ≤ 1                                                           (21𝑐) 

And  𝛼′ +
1

𝐴
. 𝛽′ ≤

1

𝐴
 

Suppose consecutive values of 𝑓1,𝑚/𝑓0,𝑚 do not differ too much from each other. It will then be 

possible to replace the above inequalities by equalities. 

 To examine what the consequences of this substitution will be, let us define 𝛼 and 𝛽 by 

the equations 

𝛼 +
1

𝐵
. 𝛽 = 1 

And  𝛼 +
1

𝐴
. 𝛽 =

1

𝐴
 

Subtracting these, we have 



(
1

𝐵
−
1

𝐴
)𝛽 = 1 −

1

𝐴
, 

or           𝛽 =
𝐵(𝐴−1)

𝐴−𝐵
, 

and 𝛼 = 1 −
𝐴−1

𝐴−𝐵
=

1−𝐵

𝐴−𝐵
. 

In other words, 

𝐵 =
𝛽

1 − 𝛼
,    𝐴 =

1 − 𝛽

𝛼
.                                                         (22) 

Equation (22), determine the constants 𝐵 and 𝐴 in terms of the error probabilities, 𝛼 and 

𝛽. It is tacitly assumed that 𝛼 <
1

2
, 𝛽 <

1

2
. The actual error probabilities 𝛼′ and 𝛽′, resulting from 

the use of constants so determined will, however, be different, although the differences are not 

likely to be serious. 

From (21a) and (21b),    

𝛽′ ≤
𝛽

1 − 𝛼
(1 − 𝛼′)

𝑎𝑛𝑑  𝛼′ ≤
𝛼

1 − 𝛽
(1 − 𝛽′)

}                                                        (23) 

Or  

(1 − 𝛼)𝛽′ ≤ 𝛽(1 − 𝛼′)

𝑎𝑛𝑑  (1 − 𝛽)𝛼′ ≤ 𝛼(1 − 𝛽′)
}                                                        (24) 

Adding these two inequalities, we get 

𝛼′ + 𝛽′ ≤ 𝛼 + 𝛽                                                                    (25) 

Further,  

𝛼′ ≤
𝛼

1 − 𝛽
                                                                                (26) 

𝑎𝑛𝑑 𝛽′ ≤
𝛽

1 − 𝛼
                                                                                (27) 

As is obvious from (23). 



                The chosen values of 𝛼 and 𝛽 will usually be small in applications of the sequential 

procedure. Quite often they will vary between 0.01 and 0.05. 

In other words, for all practical purposes one may take 

𝐴 = (1 −
𝛽

𝛼
) , 𝐵 = (

𝛽

1 − 𝛼
). 

When the prescribed levels of the probabilities of wrong decision are 𝛼 and𝛽. 

Example: Let X be a discrete random variable having the p.m.f. 

𝑓𝜃(𝑥) = {
𝜃𝑥(1 − 𝜃)1−𝑥  𝑖𝑓  𝑥 = 0, 1

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

In other words, 

𝑋 = {
1          𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜃
0  𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜃,

 

Where 0 < 𝜃 < 1. 

If 𝑋1, 𝑋2, ….  are independent and identically distributed random variables having the same 

distributed 𝑋 has, then for testing 𝐻0: 𝜃 = 𝜃0 against 𝐻1: 𝜃 = 𝜃1, we have 

𝑓1,𝑚 = 𝜃1
𝑠𝑚(1 − 𝜃1)

𝑚−𝑠𝑚 

And  

𝑓0,𝑚 = 𝜃0
𝑠𝑚(1 − 𝜃0)

𝑚−𝑠𝑚 

Where          𝑠𝑚 = Σ𝑖=1
𝑚 𝑥𝑖; 

i.e.  the number of 1’s among the first 𝑚observations. Thus  

𝑓1,𝑚
𝑓0,𝑚

= (
𝜃1
𝜃0
)
𝑠𝑚

(
1 − 𝜃1
1 − 𝜃0

)
𝑚−𝑠𝑚

   

Or  log (
𝑓1,𝑚

𝑓0,𝑚
) = 𝑠𝑚. log (

𝜃1

𝜃0
) + (𝑚 − 𝑠𝑚). log (

1−𝜃1

1−𝜃0
)                         (28) 

Hence in case the prescribed levels of the probabilities of wrong decision are 𝛼 and 𝛽, the SPR 

test procedure will be as follows: 

Continue taking observations as long as 



log (
𝛽

1 − 𝛼
) < log (

𝑓1,𝑚
𝑓0,𝑚

) < log (
1 − 𝛽

𝛼
) 

Stop taking further observations as soon as one of the inequalities is violated, and  

Accept 𝐻0 if  log (
𝑓1,𝑚

𝑓0,𝑚
) ≤ log (

𝛽

1−𝛼
) 

reject 𝐻0 if  log (
𝑓1,𝑚

𝑓0,𝑚
) ≥ log (

1−𝛽

𝛼
) 

By virtue of (28), the procedure may be laid down as follows: 

Continue taking observations as long as 

𝑎𝑚 < 𝑠𝑚 < 𝑟𝑚 

Stop taking further observations as soon as one of inequalities is violated, and 

Accept 𝐻0 if 𝑠𝑚 ≤ 𝑎𝑚 

  And reject 𝐻0 if 𝑠𝑚 ≥ 𝑟𝑚 

Here  𝑎𝑚 =
log(

𝛽

1−𝛼
)

log(
𝜃1
𝜃0
)−log(

1−𝜃1
1−𝜃0

)
+𝑚

log(
1−𝜃0
1−𝜃1

)

log(
𝜃1
𝜃0
)−log(

1−𝜃1
1−𝜃0

)
                                                 (29) 

𝑎𝑛𝑑 𝑟𝑚 =
log (

1 − 𝛽
𝛼

)

log (
𝜃1
𝜃0
) − log (

1 − 𝜃1
1 − 𝜃0

)
+ 𝑚

log (
1 − 𝜃0
1 − 𝜃1

)

log (
𝜃1
𝜃0
) − log (

1 − 𝜃1
1 − 𝜃0

)
                                                 (30) 

Example: Suppose the random variables 𝑋1, 𝑋2… are independently and identically distributed 

𝑁(𝜃, 𝜎2),  with unknown 𝜃 and known 𝜎2.Suppose we want to test 𝐻0: 𝜃 = 𝜃0  against𝐻1: 𝜃 =

𝜃1.  

Here  

𝑓1,𝑚 =
1

(𝜎√2𝜋)
𝑚 exp [−

𝛴𝑖=1
𝑚 (𝑥𝑖 − 𝜃1)

2

2𝜎2
] 

And  

𝑓0,𝑚 =
1

(𝜎√2𝜋)
𝑚 exp [−

𝛴𝑖=1
𝑚 (𝑥𝑖 − 𝜃0)

2

2𝜎2
] 

So that, since 

Σ𝑖=1
𝑚 (𝑥𝑖 − 𝜃)

2 = 𝑚(𝑥̅𝑚 − 𝜃)
2 + Σ𝑖=1

𝑚 (𝑥𝑖 − 𝑥̅𝑚)
2 



= 𝑚(𝑥̅𝑚
2 − 2𝜃 𝑥̅𝑚 + 𝜃

2) + Σ𝑖=1
𝑚 (𝑥𝑖 − 𝑥̅𝑚)

2 

𝑓1,𝑚
𝑓0,𝑚

= exp [
1

2𝜎2
{𝛴𝑖=1

𝑚 (𝑥𝑖 − 𝜃0)
2 − 𝛴𝑖=1

𝑚 (𝑥𝑖 − 𝜃1)
2}] 

= exp [
𝑚

𝜎2
  𝑥̅𝑚(𝜃1 − 𝜃0) −

𝑚

2𝜎2
(𝜃1

2 − 𝜃0
2)] 

And log (
𝑓1,𝑚

𝑓0,𝑚
) =

1

𝜎2
Σ𝑖=1
𝑚 𝑥𝑖(𝜃1 − 𝜃0) −

𝑚

2𝜎2
(𝜃1

2 − 𝜃0
2) 

=
𝜃1 − 𝜃0
𝜎2

[𝑠𝑚 −
𝑚(𝜃1 + 𝜃0)

2
]                                              (31) 

Where           𝑠𝑚 = Σ𝑖=1
𝑚 𝑥𝑖 . 

SPR test procedure may be defined as follows: 

Continue taking observations as long as  

𝜎2

𝜃1 − 𝜃0
𝑙𝑜𝑔

𝛽

1 − 𝛼
+
𝑚

2
(𝜃1 + 𝜃0) < 𝑠𝑚 <

𝜎2

𝜃1 − 𝜃0
. log

1 − 𝛽

𝛼
+
𝑚

2
(𝜃1 + 𝜃0).  

Stop taking observations as soon as one of the inequalities is violated, and 

Accept 𝐻0 if 𝑠𝑚 ≤
𝜎2

𝜃1−𝜃0
. log

𝛽

1−𝛼
+
𝑚

2
(𝜃1 + 𝜃0) 

reject 𝐻0 if 𝑠𝑚 ≥
𝜎2

𝜃1−𝜃0
. log

1−𝛽

𝛼
+
𝑚

2
(𝜃1 + 𝜃0). 

5.7      Wald’s Fudamental Identity and Equation 

              The sample number 𝑁 in a sequential procedure is a random variable that can take any 

positive integral value. If the probability for 𝑁 being finite be less than 1, it will mean that the 

procedure may not terminate, i.e., no decision may be reached in following this procedure. 

However, that for the SPR test this is not the case. 

Theorem:   Let 𝑍1, 𝑍2, …. be independently and identically distributed random variables such that 

𝑃[𝑍1 = 0] < 1 

Further, let 𝑎 and 𝑏 be real numbers such that 𝑏 < 𝑎, and let 𝑁 denote the least positive integer 

𝑚 such that 



Σ𝑖=1
𝑚 𝑍𝑖 ≤ 𝑏 or Σ𝑖=1

𝑚 𝑍𝑖 ≥ 𝑎 

Then  

(i) 𝑃[𝑁 < ∞] = 1 

(ii) 𝐸(𝑁𝑘) < ∞ for 𝑘 = 1, 2, … 

(iii) 𝐸(𝑒𝑡𝑁) < ∞, for some 𝑡 > 0 

Proof: Let 

𝑄𝑠 = 𝑃[|Σ𝑖=1
𝑠 𝑍𝑖| < 𝑎 − 𝑏] 

We shall show that 𝑠 can be so chosen that 𝑄𝑠 < 1. 

By virtue of our assumption regarding the 𝑍′𝑠, 

𝑃[𝑍1 < 0] > 0 and / or 𝑃[𝑍1 > 0] > 0. 

Assume, without any loss of generality, that 

𝑃[𝑍1 > 0] > 0 

Then by choosing a sufficient large 𝑠, we can have 

𝑃 [𝑍1 >
𝑎 − 𝑏

𝑠
] > 0 

For such an 𝑠, 

1 − 𝑄𝑠 = 𝑃[|Σ𝑖=1
𝑠 𝑍𝑖 ≥ 𝑎 − 𝑏|] 

≥ 𝑃[Σ𝑖=1
𝑠 𝑍𝑖 ≥ 𝑎 − 𝑏] 

≥ 𝑃[𝑍𝑖 ≥
𝑎 − 𝑏

𝑠
, 𝑎𝑙𝑙 𝑖 = 1, 2, … . , 𝑠] 

= Π𝑖=1
𝑠 𝑃 [𝑍𝑖 ≥

𝑎−𝑏

𝑠
]  since the 𝑍′𝑠 are mutually independent. 

= {𝑃 [𝑍𝑖 ≥
𝑎−𝑏

𝑠
]}
𝑠

since the 𝑍′𝑠 are identically distributed. 

                                               > 0 

⇒                                           𝑄𝑠 < 1. 



We may now proceed to prove the theorem. 

(i) Let us take fixed 𝑠  such that 𝑄𝑠 < 1 . For any positive integer 𝑟 , we have 

𝑃[𝑁 > 𝑟 + 𝑠] = 𝑃[𝑏 < Σ𝑖=1
𝑗
𝑍𝑖 < 𝑎,    𝑎𝑙𝑙   𝑗 = 1, 2, … . , 𝑟 + 𝑠]     

≤ 𝑃[𝑏 < Σ𝑖=1
𝑗
𝑍𝑖 < 𝑎,    𝑎𝑙𝑙   𝑗 = 1, 2, … . , 𝑟; 𝑏 < Σ𝑖=1

𝑟+𝑠𝑍𝑖 < 𝑎] 

≤ 𝑃[𝑏 < Σ𝑖=1
𝑗
𝑍𝑖 < 𝑎,    𝑎𝑙𝑙   𝑗 = 1, 2, … . , 𝑟; 𝑏 − 𝑎 < Σ𝑖=𝑟+1

𝑟+𝑠 𝑍𝑖 < 𝑎 − 𝑏] 

= 𝑃[𝑏 < Σ𝑖=1
𝑗
𝑍𝑖 < 𝑎,    𝑎𝑙𝑙   𝑗 = 1, 2, … . , 𝑟] ∗ 𝑃[𝑏 − 𝑎 < Σ𝑖=𝑟+1

𝑟+𝑠 𝑍𝑖 < 𝑎 − 𝑏] 

= 𝑃[𝑏 < Σ𝑖=1
𝑗
𝑍𝑖 < 𝑎,    𝑎𝑙𝑙   𝑗 = 1, 2, … . , 𝑟] ∗ 𝑃[𝑏 − 𝑎 < Σ𝑖=1

𝑟+𝑠𝑍𝑖 < 𝑎 − 𝑏] 

= 𝑃[𝑁 > 𝑟]𝑄𝑠. 

Hence for any positive integer 𝑟, we have 

𝑃[𝑁 > 𝑟 + 𝑠] ≤ 𝑃[𝑁 > 𝑟]𝑄𝑠. 

Now, putting 𝑟 = (𝑘 − 1)𝑠, where 𝑘 ≥ 2, 

𝑃[𝑁 > 𝑘𝑠] ≤ 𝑃[𝑁 > (𝑘 − 1)𝑠]𝑄𝑠 

≤ 𝑃[𝑁 > (𝑘 − 2)𝑠]𝑄𝑠
2 

≤ 𝑃[𝑁 > 𝑠]𝑄𝑠
𝑘−1 

≤ 𝑄𝑠
𝑘−1 

⇒            for 𝑘 ≥ 1 

𝑃[𝑁 > 𝑘𝑠] ≤ 𝑄𝑠
𝑘−1 

Again, 

𝑄𝑠 < 1 ⇒ lim
𝑘→∞

𝑄𝑠
𝑘−1 = 0,  

So that 

lim
𝑘→∞

𝑃[𝑁 > 𝑚] = 0 

⇒    𝑃(𝑁 < ∞) = 1 



Let us first prove the part (iii), 

            (iii)     Assume 𝑡 > 0. Then 

𝐸(𝑒𝑡𝑁) = Σ𝑚=1
∞ 𝑃[𝑁 = 𝑚]𝑒𝑡𝑚 

= Σ𝑚=1
𝑠 𝑃[𝑁 = 𝑚]𝑒𝑡𝑚 + Σ𝑚=𝑠+1

2𝑠 𝑃(𝑁 = 𝑚)𝑒𝑡𝑚 

+⋯ 

≤ 𝑃[0 < 𝑁 ≤ 𝑠]𝑒𝑠𝑡 + 𝑃[𝑠 < 𝑁 ≤ 2𝑠]𝑒2𝑠𝑡 

+⋯ 

= Σ𝑘=0
∞ 𝑃[𝑘𝑠 < 𝑁 ≤ (𝑘 + 1)𝑠]𝑒(𝑘+1)𝑠𝑡 

≤ Σ𝑘=0
∞ 𝑃[𝑁 > 𝑘𝑠]𝑒(𝑘+1)𝑠𝑡 

≤ 𝑒𝑠𝑡 + Σ𝑘=1
∞ 𝑄𝑠

𝑘−1𝑒(𝑘+1)𝑠𝑡 

𝑄𝑠𝑒
𝑠𝑡 < 1 ⇒ Σ𝑘=1

∞ (𝑄𝑠𝑒
𝑠𝑡)𝑘 < ∞ 

But by a suitable choice of 𝑡 (i.e. by taking 𝑡 small enough), we can make 𝑄𝑠𝑒
𝑠𝑡 < 1 because 

𝑄𝑠 < 1. This means that, for such that a 𝑡, 

𝐸(𝑒𝑡𝑁) < ∞ 

(ii)      This result follows from (iii). 

𝑥𝑘

𝑘!
< 𝑒𝑥  if 𝑥 > 0           |     𝑒𝑥 =

Σ𝑘=0
∞ 𝑥𝑘

𝑥!
 

⇒ 
𝐸(𝑡𝑁)𝑘

𝑘!
≤ 𝐸(𝑒𝑡𝑁) < ∞ for some 𝑡 > 0 

⇒ 𝐸(𝑁𝑘) < ∞ 

5.7.1         OC Function of the SPR Test 

          The SPR procedure is a test for the simple hypothesis 𝐻0: 𝜃 = 𝜃0  against the simple 

alternative 𝐻0: 𝜃 = 𝜃1. However, it may be that the true value of 𝜃 is neither 𝜃0 nor 𝜃1. Hence it 

is of interest to study the nature of the OC function 𝐿(𝜃) of the test over the whole parameter 

space. 



Lemma 1. Let 𝑍 be a random variable with distribution function 𝐹. (I) Let 𝐸(𝑒𝑡𝑍) exist for all 

real 𝑡 and be denoted by 𝜙(𝑡) and (II) let 𝑃[𝑍 > 0] > 0, 𝑃[𝑍 < 0] > 0. Then we have 

(A) 𝐸(|𝑍|𝑘) < ∞ for all 𝑘 = 1, 2, …… ; 

(B) The equation 𝜙(𝑡) = 1  has the only real root 𝑡 = 0  if 

𝐸(𝑍) = 0  and exactly one real root ℎ ≠ 0 if 𝐸(𝑍) ≠ 0  such that ℎ  and 𝐸(𝑍)  are of opposite 

signs. 

Proof: We first show that under condition (II), derivatives of 𝜙(𝑡) of all orders exist and that 

𝜙(𝑘)(𝑡) = ∫  𝑧𝑘𝑒𝑡𝑍𝑑𝐹(𝑧)
∞

−∞

 

(i. e. differentiation under the integration sign is permissible),which will imply result (A). 

For this it is sufficient to prove that for any 𝑡0, ∃ 𝑔(𝑧) such that 

|𝑡 − 𝑡0| < 𝛿 ⇒ |𝑧𝑘𝑒𝑡𝑧| ≤ 𝑔(𝑧) 

Where 

∫  𝑔(𝑧)𝑑𝐹(𝑧) < ∞
∞

−∞

 

Since |𝑡 − 𝑡0| < 𝛿, 

𝑒𝑡𝑧 < max [𝑒(𝑡0+𝛿)𝑧 + 𝑒(𝑡0−𝛿)𝑧] 

< 𝑒(𝑡0+𝛿)𝑧 + 𝑒(𝑡0−𝛿)𝑧  

Also,  

|𝑧𝑘| = 𝐶
𝛿𝑘|𝑧|𝑘

𝑘!
< 𝐶𝑒𝛿|𝑧| < 𝐶(𝑒𝛿𝑧 + 𝑒−𝛿𝑧), 

Where 𝐶 =
𝑘!

𝛿𝑘
 

From these two inequalities, we have the new inequality  

|𝑧𝑘𝑒𝑡𝑧| < 𝐶[𝑒𝛿𝑧 + 𝑒−𝛿𝑧][𝑒(𝑡0+𝛿)𝑧 + 𝑒(𝑡0−𝛿)𝑧] 



Let us define 𝑔(𝑧) to be the expression on the right hand side of the inequality. Then 𝑔(𝑧) has 

the property that  ∫ 𝑔(𝑧)𝑑𝐹(𝑧) < ∞, 𝑔(𝑧)
∞

−∞
 being integrable because 𝜙(𝑡) has been assumed to 

exist for all real 𝑡. 

In order to prove result (𝐵), we note that the result on 𝜙(𝑘)(𝑡) gives, in particular, 

𝜙′(0) = 𝐸(𝑍) 

And 𝜙′′(𝑡) = ∫ 𝑧2𝑒𝑡𝑧𝑑𝐹(𝑧)
∞

−∞
 

> 0 for all real 𝑡, 

By condition (II). So the function 𝜙(𝑡) is convex (with increasing first derivative). 

 Hence if 𝐸(𝑍) = 0, 𝜙(𝑡) has a unique minimum at 𝑡 = 0. If 𝐸(𝑍) > 0,  then 𝜙(𝑡) is 

strictly greater than 𝜙(0) = 1 for 𝑡 > 0. To show that the equation 𝜙(𝑡) = 1 has a root ℎ < 0, it 

is sufficient to prove that 𝜙(𝑡) → ∞ as 𝑡 → −∞. Similarly, to show that the equation has a root 

ℎ > 0 when 𝐸(𝑍) < 0, it is enough to prove that 𝜙(𝑡) → ∞ as 𝑡 → ∞. 

We prove the second result, the proof of the first being similar. 

By condition (II), ∃ 𝜂 > 0 such that 

𝑃[𝑍 > 𝜂] > 0, 𝑃[𝑍 < −𝜂] > 0. 

Suppose, for definiteness, that 𝑡 > 0. Then 

𝜙(𝑡) = ∫ 𝑒𝑡𝑧
∞

−∞

𝑑𝐹(𝑧) 

> ∫ 𝑒𝑡𝑧
∞

𝜂
𝑑𝐹(𝑧) since 𝑒𝑡𝑧 > 0 even if 𝑡𝑧 > 0 

≥ 𝑒𝑡𝜂∫ 𝑑𝐹(𝑧)
∞

𝜂

= 𝑒𝑡𝜂𝑃[𝑍 > 𝜂]. 

As 𝑡 → ∞, 

𝑒𝑡𝜂𝑃[𝑍 > 𝜂] → ∞  (since 𝑃[𝑍 > 𝜂] > 0) 

⇒ 𝜙(𝑡) → ∞, 

This completes the proof of the lemma. 

Let us consider the problem of determining 𝐿(𝜃). Taking 



𝑍 = log
𝑓𝜃1(𝑥)

𝑓𝜃0(𝑥)
 

Where 𝑓𝜃 is the p.d.f. of a continuous random variable 𝑋, we have  

𝜙(𝑡) = ∫ [
𝑓𝜃1(𝑥)

𝑓𝜃0(𝑥)
]

𝑡

𝑓𝜃(𝑥)𝑑𝑥.

∞

−∞

 

If it is assumed that 

𝐸𝜃 [log
𝑓𝜃1(𝑥)

𝑓𝜃0(𝑥)
] ≠ 0 

And that the conditions of the lemma are satisfied, then follows that ∃  ℎ(𝜃) ≠ 0 such that 

∫ [
𝑓𝜃1(𝑥)

𝑓𝜃0(𝑥)
]

ℎ(𝜃)

𝑓𝜃(𝑥)𝑑𝑥 = 1.

∞

−∞

 

So that the integrand has the properties of a p.d.f; i.e., 

𝑔𝜃(𝑥) = [
𝑓𝜃1(𝑥)

𝑓𝜃0(𝑥)
]

ℎ(𝜃)

𝑓𝜃(𝑥) 

May be regarded as a p.d.f.  

Since ℎ(𝜃) ≠ 0, either ℎ𝜃) > 0, or ℎ(𝜃) < 0. First let us consider the case ℎ(𝜃) > 0. 

We shall denote by 𝐻 the hypothesis that 𝑓𝜃 is the true p.d.f. of 𝑋 and by 𝐻∗ the hypothesis that 

𝑔𝜃 is the true p.d.f. We may consider the SPR test for testing 𝐻 against 𝐻∗ defined as follows : 

 Continue taking observations as long as 

𝐵ℎ(𝜃) <∏
𝑔𝜃(𝑥𝑖)

𝑓𝜃(𝑥𝑖)

𝑚

𝑖=1

< 𝐴ℎ(𝜃)                                                                          (32)   

Stop taking observations as soon as one of the inequalities is violated, 

Accept 𝐻 if ∏
𝑔𝜃(𝑥𝑖)

𝑓𝜃(𝑥𝑖)
≤ 𝐵ℎ(𝜃)𝑚

𝑖=1                                                              (33) 

And reject 𝐻  (i.e. accept 𝐻∗) if  ∏
𝑔𝜃(𝑥𝑖)

𝑓𝜃(𝑥𝑖)
𝑚
𝑖=1 ≥ 𝐴ℎ(𝜃)                                                                                (34) 

Since 



𝑔𝜃(𝑥)

𝑓𝜃(𝑥)
= [

𝑓𝜃1(𝑥)

𝑓𝜃0(𝑥)
]

ℎ(𝜃)

  

And ℎ(𝜃) > 0, the inequalities (32), (33) and (34) are equivalent, respectively, to 

𝐵 < Π𝑖=1
𝑚 (

𝑓𝜃1(𝑥𝑖)

𝑓𝜃0(𝑥𝑖)
) < 𝐴 

Π𝑖=1
𝑚 (

𝑓𝜃1(𝑥𝑖)

𝑓𝜃0(𝑥𝑖)
) ≤ 𝐵 

And    Π𝑖=1
𝑚 (

𝑓𝜃1(𝑥𝑖)

𝑓𝜃0(𝑥𝑖)
) ≥ 𝐴 

 These inequalities are identical with those which define the SPR test for 𝐻0 against 

𝐻1, when the constant 𝐴 and 𝐵 are used. It is thus seen that the SPR test for 𝐻0 against 𝐻1 leads 

to the acceptance or rejection of 𝐻0  according as the SPR test for 𝐻  against 𝐻∗  leads to the 

acceptance or rejection of 𝐻. It follows that the probability of accepting 𝐻0 in using the former 

test when 𝜃 is the true value of the parameter is the same as the probability of accepting 𝐻 in 

using the latter test when 𝑓𝜃 is the true p.d.f. of 𝑋. 

 Let 𝛼′ = 𝑃(𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑛𝑔 𝐻|𝐻)       &   𝛽′ = 𝑃(𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝐻|𝐻∗)  

Applying the inequalities (21a) and (21b) to this test, we then have  

𝐴ℎ(𝜃) ≤
1−𝛽′

𝛼′
                                                                                   (35)   

𝐵ℎ(𝜃) ≥
𝛽′

1 − 𝛼′
                                                                                   (36) 

 When the excess of  ∏
𝑔𝜃(𝑥𝑖)

𝑓𝜃(𝑥𝑖)
∞
𝑖=1  over the boundaries 𝐴 and 𝐵 at the termination of 

experiment is negligible, the equality sign holds 

𝐴ℎ(𝜃) ≃
1 − 𝛽′

𝛼′
 

And 𝐵ℎ(𝜃) ≃
𝛽′

1−𝛼′
 

⇒ 𝛼′ ≃
1 − 𝐵ℎ(𝜃)

𝐴ℎ(𝜃) − 𝐵ℎ(𝜃)
 



Since 𝛼′ = 1 − 𝐿(𝜃), this means 

𝐿(𝜃) ≃
𝐴ℎ(𝜃) − 1

𝐴ℎ(𝜃) − 𝐵ℎ(𝜃)
                                                  (37) 

These results hold good even when ℎ(𝜃) < 0, only 𝐴 and 𝐵 are to be interchanged. 

Example: Consider the first example of previous section 

Here the equation giving ℎ(𝜃) is  

Σ𝑥 [
𝑓𝜃1(𝑥)

𝑓𝜃0(𝑥)
]

ℎ(𝜃)

          𝑓𝜃(𝑥) = 1,                                        

Which can be written  

𝜃 (
𝜃1
𝜃0
)
ℎ(𝜃)

+ (1 − 𝜃) (
1 − 𝜃1
1 − 𝜃0

)
ℎ(𝜃)

= 1  

 For determining the OC function 𝐿(𝜃), it is not necessary to solve this equation 

w.r.t. ℎ(𝜃). We may just regard ℎ ≡ ℎ(𝜃) as a parameter and solve the equation w.r.t. 𝜃. This 

root is  

𝜃 =
1 − (

1 − 𝜃1
1 − 𝜃0

)
ℎ

(
𝜃1
𝜃0
)
ℎ

− (
1 − 𝜃1
1 − 𝜃0

)
ℎ

   

                                              (38) 

 Now putting 𝐴 = (1 − 𝛽)/𝛼 and 𝐵 = 𝛽/(1 − 𝛼), we have from (37)  

𝐿(𝜃) ≃
(
1 − 𝛽 
𝛼

)
ℎ

− 1

(
1 − 𝛽
𝛼

)
ℎ

− (
𝛽

1 − 𝛼
)
ℎ                                        (39) 

 For any arbitrarily chosen value of ℎ, the point with co-ordinates 𝜃 and 𝐿(𝜃), given 

by (38) and (39), respectively, will be a point on the OC curve. So the OC curve can be drawn by 

plotting a sufficiently large number of such points corresponding to different values of ℎ. 

Example: Consider second example of previous section, in this case ℎ(𝜃), for any given 𝜃, is the 

non-zero root of the equation 



1

𝜎√2𝜋
∫ exp[−(𝑥 − 𝜃)2/2𝜎2]. [

exp [−
(𝑥 − 𝜃1)

2

2𝜎2
]

exp [−
(𝑥 − 𝜃0)2

2𝜎2
]
]

ℎ(𝜃)

𝑑𝑥 = 1           (40)

∞

−∞

 

Since the integrand equals 

1

𝜎√2𝜋
. exp [−

1

2𝜎2
{𝑥2 − 2𝑥[𝜃 + ℎ(𝜃)(𝜃1 − 𝜃0)] + [𝜃

2 − ℎ(𝜃)(𝜃1
2 − 𝜃0

2)]}] 

=
1

𝜎√2𝜋
. exp [−

1

2𝜎2
{𝑥 − 𝜃 − ℎ(𝜃)(𝜃1 − 𝜃0)}

2] ∗ exp [−
1

2𝜎2
(𝜃1 − 𝜃0){ℎ(𝜃)(𝜃1 + 𝜃0 − 2𝜃) −

ℎ2(𝜃)(𝜃1 − 𝜃0)}] 

Equation (40) reduces to 

exp [−
(𝜃1 − 𝜃0)ℎ(𝜃){(𝜃1 + 𝜃0 − 2𝜃) − ℎ(𝜃)(𝜃1 − 𝜃0)}

2𝜎2
] = 1 

Or to ⇒  (𝜃1 + 𝜃0 − 2𝜃) − ℎ(𝜃)(𝜃1 − 𝜃0) = 0 

⇒ ℎ(𝜃) =
𝜃1 + 𝜃0 − 2𝜃

𝜃1 − 𝜃0
                                                            (41) 

For any given 𝜃, we can approximation get the corresponding value of 𝐿(𝜃) by substituting 

(𝜃1 + 𝜃0 − 2𝜃)/(𝜃1 − 𝜃0) for ℎ(𝜃) in formula (39). The OC curve may be drawn by taking a 

sufficient number of values of 𝜃 and plotting the points (0, 𝐿(𝜃)) on graph paper. 

5.7.2   Wald’s Equation 

Theorem 2:  

Suppose  

(a) 𝑍1, 𝑍2, … .. are identically distributed random variables; 

(b) 𝐸(𝑍1) exists (and is finite); 

(c) 𝑁 is a random variable whose values are the positive integers, and  

 (i) the event [𝑁 ≤ 𝑗] and the random variable 𝑍𝑘 are independent for 𝑗 < 𝑘 

 (ii) 𝐸(𝑁) is finite. 

Then the expectation𝐸(Σ𝑖=1
𝑁 𝑍𝑖) exists and 



𝐸(Σ𝑖=1
𝑁 𝑍𝑖) = 𝐸(𝑁)𝐸(𝑍1) 

 

Proof: Let us define the random variables 𝑌𝑗  (𝑗 = 1, 2, … . ) by  

𝑌𝑗 = {
1             𝑖𝑓 𝑁 ≥ 𝑗
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                       (42) 

 Then 𝑌𝑗  is the indicator function of the event [𝑁 ≥ 𝑗], or one minus the indicator 

function of the event [𝑁 ≤ 𝑗 − 1]. By condition (i) of (c), 𝑌𝑗 and 𝑍𝑗 are mutually independent. 

Also, condition (ii) of (c) implies that 𝑁  is finite with probability one. Hence Σ𝑗=1
𝑁 𝑍𝑗  is also 

defined (i.e. is convergent) with probability one. 

 Also, because (42), 

Σ𝑗=1
𝑁 𝑍𝑗 = Σ𝑗=1

∞ 𝑌𝑗𝑍𝑗                                                                         (43) 

Now, we have 

𝐸(Σ𝑗=1
∞ |𝑌𝑗𝑍𝑗|) = Σ𝑗=1

∞ 𝐸(𝑌𝑗)𝐸|𝑍𝑗|) since 𝑌𝑗 and 𝑍𝑗 are independent 

= Σ𝑗=1
∞ 𝑃[𝑁 ≥ 𝑗]𝐸(|𝑍𝑗|) 

= 𝐸(𝑁)𝐸(|𝑍𝑗|) 

< ∞ 

By (b) and (ii) of (c), noting that 

𝐸(𝑁) = Σ𝑗=1
∞ 𝑗𝑃[𝑁 = 𝑗] 

= Σ𝑗=1
∞ 𝑃[𝑁 ≥ 𝑗] 

Hence from (43), it follows that 𝐸(Σ𝑗=1
𝑁 𝑍𝑗) exists and  

𝐸(Σ𝑗=1
𝑁 𝑍𝑗) = 𝐸(Σ𝑗=1

∞ 𝑌𝑗𝑍𝑗) 

= Σ𝑗=1
∞ 𝐸(𝑌𝑗𝑍𝑗) 

= Σ𝑗=1
∞ 𝐸(𝑌𝑗)𝐸(𝑍𝑗) 

= Σ𝑗=1
∞ 𝑃[𝑁 ≥ 𝑗]𝐸(𝑍1) 

= 𝐸(𝑁)𝐸(𝑍1) 

From this theorem, we have the result that 

𝐸𝜃(𝑁) =
𝐸𝜃(Σ𝑗=1

𝑁 𝑍𝑗)

𝐸𝜃(𝑍1)
,                                                                                     (44) 

Provided 𝐸𝜃(𝑍1) ≠ 0, where 𝐸𝜃 denotes expectation when 𝜃 is true value of the parameter. 



 If the excess of the probability ratio 𝑓1,𝑚/𝑓0,𝑚  over the boundaries 𝐴 and 𝐵 at the 

termination of sampling is neglected, then the random variable Σ𝑗=1
𝑁 𝑍𝑗  may be supposed to take 

only the values log 𝐴 and log 𝐵 with probabilities 1 − 𝐿(𝜃) and 𝐿(𝜃), respectively. Hence  

𝐸𝜃(Σ𝑗=1
𝑁 𝑍𝑗) ≃ 𝐿(𝜃) log𝐵 + [1 − 𝐿(𝜃)] log 𝐴 , 

So that we obtain the following approximate formula for the ASN function: 

𝐸𝜃(𝑁) =
𝐿(𝜃) log𝐵 + [1 − 𝐿(𝜃)] log 𝐴

𝐸𝜃(𝑍1)
                           (45) 

Example: Consider the first example of previous section, we have already obtained an 

approximate formula concerning 𝐿(𝜃). Hence to obtain an approximate formula for 𝐸𝜃(𝑁) we 

need only compute 𝐸𝜃(𝑍1).  

𝑓𝜃(𝑥) = 𝜃𝑥(1 − 𝜃)1−𝑥 , for 𝑥 = 0,1, 

⇒   𝐸𝜃(𝑍1) = 𝐸𝜃 [log
𝑓𝜃1(𝑋1)

𝑓𝜃0(𝑋1)
] 

= 𝜃 log
𝑓𝜃1(1)

𝑓𝜃0(1)
+ (1 − 𝜃) log

𝑓𝜃1(0)

𝑓𝜃0(0)
 

= 𝜃 log
𝜃1
𝜃0
+ (1 − 𝜃) log

1 − 𝜃1
1 − 𝜃0

 

Example: Consider the second example of previous section.  

𝑓𝜃(𝑥) =
1

𝜎√2𝜋
exp [−

(𝑥 − 𝜃)2

2𝜎2
] 

⇒ 𝑍1 = log
𝑓𝜃1(𝑋1)

𝑓𝜃0(𝑋1)
=

1

2𝜎2
[2𝑋1(𝜃1 − 𝜃0) + 𝜃0

2 − 𝜃1
2] 

Since 𝐸𝜃(𝑋1) = 𝜃, we then have 

𝐸𝜃(𝑍1) =
1

2𝜎2
[2𝜃(𝜃1 − 𝜃0) + 𝜃0

2 − 𝜃1
2] 

5.7.3     Efficiency of the SPR Test  

 Consider sequential tests of the simple hypothesis 𝐻0: 𝜃 = 𝜃0  against the simple 

hypothesis 𝐻1: 𝜃 = 𝜃1. 

 Let us restrict ourselves to the class of sequential tests of a given strength (𝛼, 𝛽). 

Then a test may be regarded as preferable to another test of the class if the former requires a 



smaller number of observations, on the average, than the latter. Hence if a test exists in the class 

for which 𝐸𝜃0(𝑁) and 𝐸𝜃1(𝑁) are smaller than the corresponding numbers for any other test of 

the class, then the former test may be called an optimum test. 

 We shall denote by 𝑁0(𝛼, 𝛽)  the minimum value of 𝐸𝜃0(𝑁) in the class and by 

𝑁1(𝛼, 𝛽) the minimum value of 𝐸𝜃1(𝑁). The efficiency of a given test in the class under 𝐻0 we 

mean the ratio. 

𝑁0(𝛼, 𝛽)

𝐸𝜃0(𝑁)
                                

And by its efficiency under 𝐻1 we mean the ratio 

𝑁0(𝛼, 𝛽)

𝐸𝜃1(𝑁)
                                

Clearly, both under 𝐻0 and 𝐻1, the efficiency of the given test lies between 0 and 1. 

5.8         SPR Test for a Composite Hypothesis 

 Let us consider the simple case where 𝜃  is a single parameter and the simple 

hypothesis 𝐻0: 𝜃 = 𝜃0  is tested against a one-sided composite alternative, say 𝐻: 𝜃 > 𝜃0 . The 

zone of preference for acceptance of 𝐻0 may be said to consist of the single value 𝜃. The degree 

of preference for rejection will generally increase with increasing 𝜃 in the domain 𝜃 > 𝜃0. It will 

then be possible to find a value 𝜃1 > 𝜃0 such that the acceptance of 𝐻0 is considered an error of 

practical importance whenever  𝜃 ≥ 𝜃1, while for 𝜃0 < 𝜃 < 𝜃1 the acceptance of 𝐻0 is an error 

of no particular importance. Thus 𝜃 ≥ 𝜃1  may be said to constitute the zone of preference for 

rejection while 𝜃0 < 𝜃 < 𝜃1constitutes the zone of indifference. 

 The following restrictions may be imposed on the OC function: 

𝐿(𝜃0) = 1 − 𝛼 

And  

𝐿(𝜃) ≤ 𝛽 for 𝜃 ≥ 𝜃1 

 In most cases, the SPR test of strength (𝛼, 𝛽) for testing 𝐻0: 𝜃 = 𝜃0 against 𝐻1: 𝜃 =

𝜃1 will satisfy these requirements, since 𝐿(𝜃) will be monotonically decreasing in 𝜃 for 𝜃 ≥ 𝜃1. 

Hence in all such cases the SPR test for 𝐻0: 𝜃 = 𝜃0  against a properly chosen 𝐻1: 𝜃 = 𝜃1 

provides a satisfactory solution to our problem. 



 The case where 𝐻0: 𝜃 = 𝜃0 is to be tested against the composite alternative 𝐻: 𝜃 <

𝜃0 may be similarly treated. 

 Again, if our problem is to test 𝐻0
′ : 𝜃 ≤ 𝜃0 against 𝐻1

′ : 𝜃 ≥ 𝜃1 (where 𝜃0 < 𝜃1), and 

we imposed the restrictions 

 1 − 𝐿(𝜃) ≤ 𝛼 if 𝜃 ≤ 𝜃0 

and  𝐿(𝜃) ≤ 𝛽 if 𝜃 ≥ 𝜃1 

 Then too the SPR test for 𝐻0: 𝜃 = 𝜃0  against 𝐻1: 𝜃 = 𝜃1  will generally provide a 

satisfactory solution to our problem. 

5.8.1     Wald’s Approach 

 Assume that we have a sequence of random variables, 𝑋1, 𝑋2, … . ., such that 𝑓𝜃,𝑛 is 

the joint p.d.f. of 𝑋1, 𝑋2, … . . , 𝑋𝑛. Suppose our problem is to find a sequential test for 𝐻0: 𝜃𝜖Θ0 

against 𝐻1: 𝜃𝜖Θ1, where Θ0 and Θ1 are mutually exclusive sets of the parameter space Θ. 

 Let us introduce a weight function (a distribution function) 𝜁0 for 𝜃𝜖Θ and a second 

weight function 𝜁1 for 𝜃𝜖Θ1. 

Hence  

𝜁0(𝜃) ≥ 0 for 𝜃𝜖Θ0 and ∫ 𝑑𝜁0(𝜃) = 1;Θ0
                                   (46) 

 𝜁1(𝜃) ≥ 0 for 𝜃𝜖Θ1 and ∫ 𝑑𝜁1(𝜃) = 1;
Θ1

                                   (47)  

Consider 𝑔0,𝑛 and 𝑔1,𝑛 defined for 𝑛 = 1, 2, … as follows : 

 Then 𝑔0,𝑛 = ∫ 𝑓𝜃,𝑛𝑓𝜁0(𝜃), 𝑔1,𝑛 = ∫ 𝑓𝜃,𝑛𝑑𝜁1(𝜃).                    (48)Θ1Θ0
 

 Then 𝑔0,𝑛  and 𝑔1,𝑛  may themselves be looked upon as p.d.f.’s (under 𝐻0  and 𝐻1 , 

respectively) of the joint distribution of the first 𝑛 random variables in the sequence 𝑋1, 𝑋2, ……. 

 Wald’s suggestion is to choose the weight functions 𝜁0 and 𝜁1 in a suitable way and 

then to test the simple hypothesis 𝐻0
∗  that the joint density (of 𝑋1, 𝑋2 ,   …… . , 𝑋𝑛  for 𝑛 =

1, 2, …… . ) is 𝑔0,𝑛 against the simple alternative 𝐻1
∗ that the joint density is 𝑔1,𝑛. 

 If 𝛼 be the probability according to this test of rejecting 𝐻0
∗ when it is true, while 

𝛼(𝜃) is the probability of 𝐻0 being rejected when the true value of the parameter is 𝜃 (𝜖Θ0), then 



∫ 𝛼(𝜃)𝑑𝜁0(𝜃) = 𝛼                                                              (49)
Θ0

 

 Similarly, if 𝛽 be the probability according to this test of accepting 𝐻0
∗ when 𝐻1

∗ is 

true, while 𝛽(𝜃) is the probability of 𝐻0  being accepted when the value of the parameter is 

𝜃(𝜖Θ1), then 

∫ 𝛽(𝜃)𝑑𝜁1(𝜃) = 𝛽                                                              (50)
Θ1

 

  Hence 𝛼 and 𝛽 may be looked upon as the averages of the error probabilities of the 

original problem under 𝜁0 and 𝜁1, respectively. When the desired values of 𝛼 and 𝛽 are given, we 

may for all practical purposes take 𝐴 = (1 − 𝛽)/𝛼 and 𝐵 = 𝛽/(1 − 𝛼). 

Example:  Let 𝑋 be distributed as 𝑁(𝜇, 𝜎2), where 𝜇 and 𝜎2 are both unknown. Consider the 

hypothesis 𝐻0: 𝜇 = 𝜇0 . If the true value 𝜇  differs only slightly from 𝜇0, i.e. if |𝜇 − 𝜇0|/𝜎  is 

small, then the acceptance of 𝐻0  will not be a serious error. The importance of the error 

committed in accepting 𝐻0 will increase with 
|𝜇−𝜇0|

𝜎
. We may thus find a value 𝛿 > 0 such that 

the acceptance of 𝐻0  is considered as error of practical importance only when 
|𝜇−𝜇0|

𝜎
≥ 𝛿 . 

Accordingly, we may say that our problem is to test 𝐻0: 𝜃𝜖Θ0  against 𝐻1: 𝜃𝜖Θ1 , where Θ0 =

{(𝜇, 𝜎2)|𝜇 = 𝜇0} and Θ1 = {(𝜇, 𝜎2)||𝜇 − 𝜇0| = 𝛿𝜎} 

 Wald choose as the weight functions under 𝐻0 and 𝐻1, respectively, the distribution 

functions 𝜁0 and 𝜁1 of 𝜎 such that  

𝑑𝜁0(𝜎) = {
1

𝑐
           𝑖𝑓     𝜎 ≤ 𝑐

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

And  

𝑑𝜁1(𝜎) = {
1

2𝑐
           𝑖𝑓     𝜎 ≤ 𝑐

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

Where 𝑐 → ∞. 

 For fixed 𝑐, the probability ratio is 

𝑔1,𝑛
𝑔0,𝑛

=

1
2∫

1
𝜎𝑛 [𝑒

−Σ𝑖=1
𝑛 (𝑥𝑖−𝜇0−𝛿𝜎)

2/2𝜎2 + 𝑒−Σ𝑖=1
𝑛 (𝑥𝑖−𝜇0+𝛿𝜎)

2/2𝜎2]𝑑𝜎
𝑐

0

∫
1
𝜎𝑛 𝑒

−Σ𝑖=1
𝑛 (𝑥𝑖−𝜇0)

2/2𝜎2𝑐

0
𝑑𝜎

 

when 𝑐 → ∞, the ratio becomes in the limit 



𝑔1,𝑛
𝑔0,𝑛

=

1
2∫

1
𝜎𝑛 [𝑒

−Σ𝑖=1
𝑛 (𝑥𝑖−𝜇0−𝛿𝜎)

2/2𝜎2 + 𝑒−Σ𝑖=1
𝑛 (𝑥𝑖−𝜇0+𝛿𝜎)

2/2𝜎2]𝑑𝜎
∞

0

∫
1
𝜎𝑛 𝑒

−Σ𝑖=1
𝑛 (𝑥𝑖−𝜇0)

2/2𝜎2∞

0
𝑑𝜎

 

Wald shows that this ratio is a strictly increasing function of  

√𝑛|𝑥̅ − 𝜇0|/𝑠 

 The test procedure, called the sequential t-test, may be enunciated as follows: 

Continue taking observations as long as 

𝐵 <
𝑔1,𝑛
𝑔0,𝑛

< 𝐴; 

Stop taking observations as soon as this fails to hold and 

Accept 𝐻0 if 
𝑔1,𝑛

𝑔0,𝑛
≤ 𝐵 

And reject 𝐻0 if 
𝑔1,𝑛

𝑔0,𝑛
≥ 𝐴 

It has been shown that in order to make 𝛼(𝜃) ≤ 𝛼 in Θ0 and 𝛽(𝜃) ≤ 𝛽 in Θ1, we may take 𝐴 =

1−𝛽

𝛼
, 𝐵 =

𝛽

1−𝛼
. 

 

5.9        Summary 

This unit provides a thorough understanding of concepts related to Sequential Tests. The 

concepts of sequential procedure, sequential testing of hypotheses and SPRT, OC and ASN 

functions, Wald’s Fundamental Identity and Equation, SPR test for a composite hypothesis are 

described in detail. The learner should try to solve the self-assessment problems given in the next 

section. 

 

5.10       Self-Assessment Exercises 

 

Q1. Describe sequential probability ratio test, OC and ASN functions. 

Q2. State and prove Wald’s Fundamental Identity and Equation. 

Q3. Describe the procedure of SPR test for a composite hypothesis. 



Q4. Determine the SPR test for testing 𝐻0: 𝜃 = 𝜃0 against 𝐻1: 𝜃 = 𝜃1(𝜃1 > 𝜃0), where θ 

is the parameter of a Poisson distribution. Find approximations to the OC function and the ASN 

function of the test. 

Q5. Consider the SPR test for testing H0: θ = θ0 against H1: θ = θ1, where θ is the mean 

of a normal distribution with known variance. If α = β(in usual notation), prove that the ASNs 

under H0 and H1 are equal. 

Q6. Let X  be a random variable having the normal distribution N(μ, θ) , where μ  is 

known. Consider the problem of testing H0: θ = θ0 against H1: θ = θ1(θ1 > θ0). For type I and 

type II error probabilities α and β, respectively, and using the approximations for B and A, show 

that the SPR test is as follows: 

Continue taking observations as long as 

𝜃0𝜃1 [2 log
𝛽

1 − 𝛼 +𝑚 log
𝜃1
𝜃0
]

𝜃1 − 𝜃0
<∑(𝑥𝑖 − 𝜇)

2 <
𝜃0𝜃1 [2 log

1 − 𝛽
𝛼 +𝑚 log

𝜃1
𝜃0
]

𝜃1 − 𝜃0

𝑚

𝑖=1

 

Stop taking observations the first time this fails to hold, and  

accpet H0 if  ∑ (xi − μ)
2m

i=1 ≤
θ0θ1[2 log

β

1−α
+mlog

θ1
θ0
]

θ1−θ0
  

and reject H0 if  ∑ (xi − μ)
2m

i=1 ≥
θ0θ1[2 log

1−β

α
+mlog

θ1
θ0
]

θ1−θ0
 

Q7. (Continuation) Show that the OC function L(θ)) is given by 

𝐿(𝜃) ≃
(
1 − 𝛽
𝛼

)
ℎ

− 1

(
1 − 𝛽
𝛼

)
ℎ

− (
𝛽

1 − 𝛼
)
ℎ, 

Where h ≡ h(θ) is such that 

𝜃 =

𝜃0𝜃1 [1 − (
𝜃0
𝜃1
)
2ℎ

]

ℎ(𝜃1 − 𝜃0)
 

Q8. (Continuation) Show that the ASN function Eθ(N) is given by 

𝐸𝜃(𝑁) ≃
2𝜃0𝜃1 [𝐿(𝜃) log

𝛽
1 − 𝛼 +

{1 − 𝐿(𝜃)} log
1 − 𝛽
𝛼  ]

(𝜃1 − 𝜃0)𝜃 + 𝜃0𝜃1 log (
𝜃0
𝜃1
)

. 

 



UNIT 6:                SEQUENTIAL ESTIMATION 
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6.5 Summary 

6.6         Self-Assessment Exercises 

 

6.1      Introduction 

A sequential procedure may also be used for the estimation of a function of the 

parameters. However, it has not been possible to develop a general theory of sequential 

estimation. In general, it is not easy to determine the most appropriate estimator or to formulate a 

rule for the termination of sampling. 

One principle is to do just enough sampling to be able to obtain an estimate that would 

have a preassigned degree of precision (independent of all the parameters being estimated). In 

the case of point estimation, the precision may be measured in terms of variance or mean square 

error of the estimator. In interval estimation, this may be expressed by the length of the interval 

with a given confidence coefficient. 

6.2      Objective 

The objective of this unit is to provide a basic understanding of concepts related to 

Sequential Estimation. The concept of the Cramer Rao Inequality of sequential estimation, 

Stein’s two stage procedure should be clear after study of this material. 

6.3         Sequential Cramer-Rao Inequality  

A sequential estimation procedure may be said to be defined by a sequence δ ={ 𝛹𝑛, 𝑇𝑛}, 

where  𝛹𝑛 represents the stopping rule and 𝑇𝑛 the estimator to be used in case the experiment 

stops at the nth stage. 



  More precisely,  

𝛹𝑛(𝑋1, 𝑋2,……, 𝑋𝑛) = {
1, 𝑖𝑓 𝑁 = 𝑛
0, 𝑖𝑓 𝑁 ≠ 𝑛

 

and in case N = n, the procedure requires that the parametric function γ(θ) be estimated by  

tn = Tn (𝑥1, 𝑥2,……, 𝑥𝑛).  

We shall assume that ∑ 𝛹𝑛 = 1𝑛=1  ; i.e., the procedure will be supposed to terminate with 

probability one, for all θ ε Θ. Further, let Tn be an unbiased estimator of γ(θ). We make the 

following assumption: 

(I) Θ is a real non-degenerate open interval;  

(II) 
𝜕

𝜕𝜃
∑ ∫𝛹𝑛
∞
𝑛=1  fθ,n  dxn exists   

= ∑ ∫𝛹𝑛
∞
𝑛=1  

𝜕𝑓𝜃,𝑛   

𝜕𝜃
 dxn ; 

(III) 
𝜕

𝜕𝜃
∑ ∫𝛹𝑛
∞
𝑛=1 𝑡𝑛 fθ,n  dxn  exists 

= ∑ ∫𝛹𝑛
∞
𝑛=1 𝑡𝑛  

𝜕𝑓𝜃,𝑛  

𝜕𝜃
  dxn ; 

(IV) 𝛾′(𝜃) exists for all 𝜃 𝜀 𝛩 ; 

(V) 𝐸𝜃 [
𝜕

𝜕𝜃
𝑙𝑜𝑔𝑓𝜃,𝑁(𝑋1, 𝑋2, …… , 𝑋𝑛)]

2

 >0. 

Unser these assumptions,  

Theorem:   For all θ ε Θ, we have 

𝑣𝑎𝑟𝜃 (𝑇𝑁) ≥
[𝛾′(𝜃)]2

𝐸𝜃 [
𝜕
𝜕𝜃
log 𝑓𝜃,𝑁 (𝑋1, …… , 𝑋𝑛)]

2 

Proof :   We have ∑ ∫𝛹𝑛
∞
𝑛=1 𝑓𝜃,𝑛dxn = 1 

⇒
𝜕

𝜕𝜃
∑ ∫𝛹𝑛
∞
𝑛=1 𝑓𝜃,𝑛 dxn  = 0 

⇒ ∑ ∫𝛹𝑛
∞
𝑛=1  (

𝜕

𝜕𝜃
log𝑓𝜃,𝑛) 𝑓𝜃,𝑛 dxn = 0                     (50) 

Again, 



𝐸𝜃(𝑇𝑛)  =  ∑ ∫𝛹𝑛𝑡𝑛
∞
𝑛=1 𝑓𝜃,𝑛 dxn = γ(θ) 

⇒ 
𝜕

𝜕𝜃
∑ ∫𝛹𝑛
∞
𝑛=1 𝑡𝑛𝑓𝜃,𝑛𝑑xn = 𝛾′(𝜃) 

⇒ ∑ ∫𝛹𝑛𝑡𝑛
∞
𝑛=1 (

𝜕

𝜕𝜃
log𝑓𝜃,𝑛) 𝑓𝜃,𝑛dxn  = 𝛾′(𝜃)                               (51) 

Multiplying (50) by  γ(θ), subtracting the product from (51) and lastly squaring the difference, 

we have  

[∑ ∫𝛹𝑛[𝑡𝑛 − γ(𝜃)]
∞
𝑛=1 (

𝜕

𝜕𝜃
log𝑓𝜃,𝑛) 𝑓𝜃,𝑛𝑑xn]

2

= [𝛾′(𝜃)]2 

Noting that left-hand side equals 

[𝐸𝜃(𝑇𝑁 − 𝛾(𝜃)) (
𝜕

𝜕𝜃
log𝑓𝜃,𝑁)]

2

 

and is, by Schwarz’s Inequality, not greater than 

𝐸𝜃[𝑇𝑁 − 𝛾(𝜃)]
2 [𝐸𝜃 (

𝜕

𝜕𝜃
log𝑓𝜃,𝑁)]

2

 

we have finally 

𝑣𝑎𝑟𝜃 (𝑇𝑁) ≥
[𝛾′(𝜃)]2

𝐸𝜃 [
𝜕
𝜕𝜃
log 𝑓𝜃,𝑁]

2 

Special Case: Consider now the case where the random variables X1, X2, …… , Xn (for each n) are 

independently and identically distributed with common p.d.f.  𝑓𝜃. Then 

𝑓𝜃,𝑛 = ∏𝑓𝜃(𝑥𝑖)

𝑛

𝑖=1

 

⇒  log𝑓𝜃,𝑛 = ∑log𝑓𝜃(𝑥𝑖)

𝑛

𝑖=1

 

Further, putting 𝑍𝑖 =
𝜕

𝜕𝜃
log 𝑓𝜃 (𝑋𝑖) and assuming 𝐸𝜃(𝑍

2) exists, we get 

 



𝐸𝜃 [∑
𝜕

𝜕𝜃
log 𝑓𝜃 (𝑋𝑖)

𝑁

𝑖=1

]

2

= 𝐸𝜃(𝑁)𝐸𝜃 [
𝜕

𝜕𝜃
log 𝑓𝜃 (𝑋)]

2

 

Hence the above inequality takes the form 

𝑣𝑎𝑟𝜃 (𝑇𝑁) ≥
[𝛾′(𝜃)]2

𝐸𝜃(𝑁)𝐸𝜃 [
𝜕
𝜕𝜃
log 𝑓𝜃(𝑋)]

2 

Example:    Suppose 𝑋1, 𝑋2, …… are independent random variables having the common 

distribution with p.m.f. 

𝑓𝜃(𝑥) = 𝑓(𝑥) = {
𝜃𝑥(1 − 𝜃)(1−𝑥)   𝑖𝑓 𝑥 = 0,1
             0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

Where 0 < θ <1. 

for x = 0,1, 

𝜕

𝜕𝜃
log 𝑓𝜃(𝑥) = 𝑥

1

𝜃
+ (1 − 𝑥) (−

1

1 − 𝜃
) 

= −
1

1 − 𝜃
+

𝑥

𝜃(1 − 𝜃)
 

𝐸𝜃 [
𝜕

𝜕𝜃
log 𝑓𝜃(𝑋)]

2

= (1 − 𝜃) (−
1

1 − 𝜃
)
2

+ 𝜃 (
1

𝜃
)
2

 

=
1

𝜃(1 − 𝜃)
 

Here the regularity conditions are satisfied, so that for any unbiased sequential estimator 

TN of γ(𝜃), we have 

𝑣𝑎𝑟𝜃(𝑇𝑁) ≥ θ(1 − θ)
[𝛾′(𝜃)]

2

𝐸𝜃(𝑁)
. 

Equality holds 

𝑇𝑁 − 𝛾(𝜃) = 𝑐(𝜃)∑
𝜕

𝜕𝜃
log 𝑓𝜃 (𝑋𝑖)

𝑁

𝑖=1

 



= 𝑐1(𝜃)[𝑆𝑁 − 𝜃𝑁],                                                            (52) 

say, 

where 𝑆𝑁 = 𝑋1 + 𝑋2 + 𝑋3 +⋯…+ 𝑋𝑁 

Case 1:     Let 𝑁 = 𝑛, a constant. 

To have equality, we must have 

𝑇𝑁 = 𝑎 + 𝑏
𝑆𝑛

𝑛
, 

where a and b are constant. 

𝛾(𝜃) = 𝐸𝜃(𝑇𝑁) = 𝑎 + 𝑏𝜃                                                                           (53) 

Case 2:      Let 𝑁 be the least 𝑛 such that 𝑆𝑛 = 𝑘. It can be proved that this sequential procedure 

terminates with probability one. 

Again, to have equality, we must have 

𝑇𝑁 = 𝑎 + 𝑏𝑁 

and the only parametric functions for which MVB estimators exist are of the from 

𝛾(𝜃) = 𝑎 + 𝑏𝐸𝜃(𝑁). 

From (52) 

𝑏[𝑛 − 𝐸𝜃(𝑁)] = 𝑐1(𝜃)[𝑘 − 𝜃𝑁], 

and this must be an identity in N. Such, equating coefficients of powers of N, one gets 

𝑏 = −𝑐1(𝜃)𝜃 or 𝑐1(𝜃) = −
𝑏

𝜃
 

and    −𝑏𝐸𝜃(𝑁) = 𝑐1(𝜃)𝑘 = −
𝑏

𝜃
𝑘 , 

so that  

𝐸𝜃(𝑁) =
𝑘

𝜃
. 

Hence in this case the parametric functions 𝛾(𝜃) with MVB estimators are of the form 

𝛾(𝑐) = 𝑎 + 𝑏
𝑘

𝜃
. 



Case 3: Let 𝑁 be the least 𝑛 such that 𝑛 − 𝑆𝑛 = 𝑘 (a positive integer). Again, it can be proved 

that the sequential procedure terminates with probability one. 

Proceeding as, we find 𝐸𝜃(𝑁) =
𝑘

1−𝜃
 and that the functions with MVB estimators have 

the form 

𝛾(𝜃) = 𝑎 +
𝑏𝑘

1 − 𝜃
 

The sequential sampling procedures used in Case 2 and 3 have been called inverse 

sampling, since they yield, MVB estimators of the reciprocals of 𝜃 and 1 − 𝜃. 

6.4   Stein’s Two-Stage Sampling 

Let X be normally distributed with unknown mean μ and unknown variance σ2. If it is our 

aim to find a confidence interval for μ at a given confidence level α in such a way that the 

interval will be of a specified length, then it is not possible to achieve this on the basis of a single 

sample of fixed size. For, the length of the interval will vary from one sample to another and so it 

is not possible to ensure that its length for a given sample will have the specified value. Hence 

Stein suggests a two-stage sampling procedure which will enable us to fulfill this condition. 

The sampling procedure is as follows: 

Draw a first sample size m, say 𝑋1 + 𝑋2 + 𝑋3 +⋯…+ 𝑋𝑚, and let 

𝑋̅𝑚 =
1

𝑚
∑ 𝑋𝑖
𝑚
𝑖=1 , 𝑆2 =

1

𝑚−1
∑ (𝑋𝑖 − 𝑋̅𝑚)

2𝑚
𝑖=1 .   (54) 

Define 

N=N(S)     (55) 

as the smallest integer n such that  

𝑛 ≥ max {𝑚,
𝑏2

𝑐2
𝑆2},     (56) 

where b2 is the variance of the t-distribution with 𝑑𝑓 = (𝑚 − 1) and c is a preassigned 

constant. 

With n so defined, now take a second sample of (𝑁 −𝑚) observations, say,  

𝑋𝑚+1 + 𝑋𝑚+2 +⋯+ 𝑋𝑁 and calculate 

𝑋̅𝑁 =
1

𝑁
∑ 𝑋𝑖
𝑁
𝑖=1 . 



Before proving that the related point estimator or test or confidence interval has the stated 

properties, we shall prove two lemmas: 

Lemma:  𝑃𝜎[𝑁(𝑆) > 𝑛] → 0 as 𝑛 → ∞ for all 𝜎, which implies that the procedure terminates 

with probability one. 

Proof:  By definition, 𝑁(𝑆) = least integer greater than or equal to the larger of 𝑚 and 
𝑏2

𝑐2
𝑆2 

Since finally we shall let 𝑛 → ∞, consider those values of 𝑛 which are greater than 𝑚. 

For such 𝑛, 

𝑁(𝑆) > 𝑛 ⟺
𝑏2

𝑐2
𝑆2 > 𝑛, 

So that 

𝑃𝜎[𝑁(𝑆) > 𝑛] = 𝑃𝜎 [
𝑏2

𝑐2
𝑆2 > 𝑛] 

= 𝑃𝜎 [𝜒
2 >

𝑛(𝑚 − 1)𝑐2

𝑏2𝜎2
] 

where     𝜒2 >
(𝑚−1)𝑆2

𝜎2
  has   𝑑𝑓(𝑚 − 1). 

However, 

𝑃𝜎 [𝜒
2 >

𝑛(𝑚 − 1)𝑐2

𝑏2𝜎2
] → 0 𝑎𝑠 𝑛 → ∞, 

and so the result is established. 

Lemma:  The random variable 

𝑇 = √𝑁(𝑋̅𝑁 − 𝜇)/𝑆 

has Student’s t-distribution with 𝑑𝑓(𝑚 − 1). 

Proof: Let 𝜗 be a fixed integer ≥ 𝑚. Consider the random variable √𝜗(𝑋𝜗̅̅̅̅ − 𝜇)/𝜎, which is 

distributed as 𝑁(0,1). 

Now, 

𝜗𝑋̅𝜗 =∑𝑋𝑖

𝑚

𝑖=1

+ ∑ 𝑋𝑖

𝜗

𝑖=𝑚+1

 



= 𝑚𝑋̅𝑚 + ∑ 𝑋𝑖

𝜗

𝑖=𝑚+1

. 

𝑋𝑚+1, 𝑋𝑚+2, … , 𝑋𝜗 are independent of 𝑋1, 𝑋2, … , 𝑋𝑚 and 𝑋̅𝑚 is independent of 𝑆2. Hence 𝑋̅𝜗 is 

independent of 𝑆2. As such, 

√𝜗(𝑋̅𝜗 − 𝜇)/𝑆 

has Student’s t-distribution with 𝑑𝑓(𝑚 − 1) when 𝜗 is fixed. This is the conditional distribution 

of 𝑇, given 𝑁 = 𝜗. But since the conditional distribution does not depend on 𝜗, the unconditional 

distribution of 𝑇 is also of Student’s form with 𝑑𝑓(𝑚 − 1). 

Theorem:       𝑋̅𝑁 is an unbiased estimator of 𝜇 with variance ≤ 𝑐2 

 

Proof:   Since √𝑁(𝑋̅𝑁 − 𝜇)/𝜎 is distributed as 𝑁(0,1), 

𝐸𝜃 [
√𝑁(𝑋̅𝑁 − 𝜇)

𝜎
] = 0. 

Also, 

𝐸𝜃(𝑋̅𝑁 − 𝜇) = 𝐸𝜃 [
√𝑁(𝑋̅𝑁 − 𝜇)

𝜎
.
𝜎

√𝑁
] 

= 𝐸𝜃 [
√𝑁(𝑋̅𝑁−𝜇)

𝜎
. 𝛹(𝑆2, 𝜎)], where 𝛹(𝑆2, 𝜎) =

𝜎

√𝑁
 

= 𝐸𝜃 [
√𝑁(𝑋̅𝑁 − 𝜇)

𝜎
]𝐸𝜃[𝛹(𝑆

2, 𝜎)] 

= 0 for all θ. 

Hence 

𝐸𝜃(𝑋̅𝑁) = 𝜇 for all θ. 

Furthermore, 

𝐸𝜃(𝑋̅𝑁 − 𝜇)
2 = 𝐸𝜃 [

𝑁(𝑋̅𝑁 − 𝜇)
2

𝑆2
.
𝑆2

𝑁
] 



≤ 𝐸𝜃 [
𝑁(𝑋̅𝑁 − 𝜇)

2

𝑆2
.
𝑐2

𝑏2
] 

=
𝑐2

𝑏2
𝐸𝜃 [

𝑁(𝑋̅𝑁 − 𝜇)
2

𝑆2
] 

=
𝑐2

𝑏2
. 𝑏2 

= 𝑐2, 

i.e., 𝑣𝑎𝑟𝜃(𝑋̅𝑁) ≤ 𝑐
2for all 𝜃. 

Theorem:   Let 2𝑙 be the specified length of the confidence interval estimator of θ. Then the 

confidence interval estimator of θ. Then the confidence coefficient of the estimator 𝑋̅𝑁 ± 𝑙 is not 

less than 1 − 𝛼 if we take 𝑐 = 𝑏𝑙/𝑡𝛼
2
,𝑚−1. 

Proof:  

𝑃𝜃(|𝑋̅𝑁 − 𝜇| ≤ 𝑙) = 𝑃𝜃 [
|√𝑁(𝑋̅𝑁 − 𝜇)|

𝑆
≤
√𝑁𝑙

𝑆
] 

≤ 𝑃𝜃 [
|√𝑁(𝑋̅𝑁 − 𝜇)|

𝑆
≤
𝑏𝑙

𝑐
] 

since 
𝑆

√𝑁
≤

𝑐

𝑏
. 

However, since √𝑁(𝑋̅𝑁 − 𝜇)/𝑆 has the t-distribution with df (m-1) and 𝑐 = 𝑏𝑙/𝑡𝛼
2
,𝑚−1, i.e., 

𝑏𝑙

𝑐
=

𝑡𝛼
2
,𝑚−1, 

𝑃𝜃 [
|√𝑁(𝑋̅𝑁 − 𝜇)|

𝑆
≤
𝑏𝑙

𝑐
] = 1 − 𝛼. 

Hence  

𝑃𝜃[|(𝑋̅𝑁 − 𝜇)| ≤ 𝑙] ≥ 1 − 𝛼, 

and this is true for all 𝜃.  

6.5    Summary 



This unit provides a thorough understanding of concepts related to Sequential Estimation. 

The concepts of sequential Cramer-Rao Inequality and Stein’s two-stage sampling procedure are 

described in detail. The learner should try to solve the self-assessment problems given in the next 

section. 

6.6   Self-Assessment Exercises 

Q1. State and prove Sequential Cramer-Rao Inequality. 

Q2. Describe Stein’s two-stage sampling procedure in detail. 
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Block & Units Introduction 

 

The Block - 3 – Nonparametric Tests and Inference has three units.   

Unit – 7 – One-Sample and Two-Sample Location Tests dealt with One and two sample 

location tests, Sign test. Wilcoxon test, Median test. 

Unit – 8 – Other Non- Parametric Tests dealt with Mann- Whitney U- Test, Application of U-

statistic to rank tests. One sample and two sample Kolmagorov-Smirnov tests. Run tests. 

Unit – 9 – Non-Parametric Inference, The Kruskal-Wallis one way ANOVA Test, Friedman’s 

two-way analysis of variance by ranks, efficiency criteria and theoretical basis for calculating 

ARE, Pitman ARE.  

At the end of every block/unit the summary, self assessment questions and further 

readings are given.   
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7.9       Introduction  



The parametric inferential methods are based on stringent assumptions about the 

probability distribution of the parent population like the form of probability distribution is apriori 

available, availability of observations either on ratio scale or atleast on interval scale etc. 

However, these assumptions may not be satisfied in many practical situations. For instance, the 

measurement on the units under study is often made on nominal or ordinal scale owing to 

practical difficulties. Usually, we do not know the distribution characterizing the phenomena of 

the experiment. However, we can often choose a sufficiently large class of distributions ( ) F x
 

invariably indexed by an unknown parameter  . The range of   is   which is called the 

parameter space. The statistician has to decide upon the particular probability distribution which 

explains most the phenomena of the experiment. That is, the statistician has to make a decision 

about the value of the parameter, by means of the observable random variable X. However, in 

many situations the outcome X is a complicated set of numbers. If at all feasible, he would like to 

condense his data and come out with a magic number which contains all the relevant information 

about the parameter . In such situations where the stringent assumptions of the parametric 

inferential methods are not satisfied, we resort to non-parametric methods. The non-parametric 

methods rely on relatively mild assumptions about the probability distribution of the parent 

population.  

The statistical methods which are not concerned with estimation of testing for 

parameter(s) of probability distribution functions are known as NON-PARAMETRIC 

METHODS. Nonparametric statistical procedures are widely used due to their simplicity, 

applicability under fairly general assumptions and robustness to outliers in the data. Hence they 

are popular statistical tools in industry, government and various other disciplines. Also, there an 

extensive amount of literature is available on nonparametric statistics ranging from theory to 

applications.  

The term non-parametric is sometimes synonymously used with distribution free methods 

as if both have the same meaning. There is a slight difference between the two methods. The 

statistical inferential procedures whose validity does not depend on the form of probability 

distribution of the population from which the sample has been drawn are known as 

DISTRIBUTION FREE METHODS. The distribution free procedures are primarily devised for 

non-parametric problems; hence the two terms are used interchangeably. Also, the non-

parametric methods are devised for no parameter problems.  



7.10        Objectives 

The objective of this unit is to provide a basic understanding of concepts related to One- 

sample Location Tests. The concept of the one and two sample location tests, Sign test. 

Wilcoxon test, Median test should be clear after study of this material. 

7.11   Non-Parametric Inferences 

The classical statistical inference techniques are based on the assumptions regarding the 

nature of the population distribution from which the samples are drawn. i.e. form of the 

population distribution and the parameters of the population distribution. The exact sample tests 

are based on the assumption that the parent population is normal. Most of the standard statistical 

techniques are based on the assumptions of normality, independence and homoscedasticity. 

 

Remark: 

The statistical methods which remain valid under violation of assumptions of normality, 

independence & homoscedasticity are called ‘robust’. 

 

Parametric Test: 

The parametric tests are those tests in which certain conditions are imposed about the 

parameters of the population from which the samples are drawn. 

Ex- t-test, F-test.  

 

General Assumption of Parametric Tests: 

The parent population from which the samples are drawn is assumed to be normal. 

The form of the basic distribution is always known. 

 

Non-Parametric Test: 

The non-parametric test are those tests in which no assumption, regarding the test of the 

population from which the samples are drawn is made. 

The non-parametric tests are the tests for a hypothesis which is not a statement about the 

parameter values. Here, the hypothesis is concerned with either form of the population (e.g- 



goodness of fit) or with some characteristic of the probability distribution of the sample data 

(e.g- test of randomness). 

 

General Assumption of Non-Parametric Tests: 

1. The parent population is continuous. 

2. The sample observations are independent. 

3. The distribution of the parent population is symmetrical. 

4. The lower order moments exist. 

 

7.12  Advantages and Dis-Advantages of Non- Parametric Methods  

Advantages of Non-Parametric Tests: 

1. Non-parametric tests are quick and easy to apply and do not require complicated sample 

theory. 

2. No assumption is required about the form of the distribution of the parent population 

from which the samples are drawn. 

3. Non-parametric tests can be used even in the situations where actual measurements are 

unavailable and the data are obtained only as ranks. i.e. if measurements scale is nominal or 

ordinal, non-parametric methods can be used. 

4. The probability statements obtained from most of the non-parametric tests are exact 

probabilities. 

5. Non-parametric tests are used in the situation where sample data are taken from several 

different populations. 

6. With non-accurate and dirty data (e.g: contaminated observations, outliers etc.), many 

non-parametric methods are appropriate. 

7. Non-parametric tests require no. of minimum sample size for valid and reliable results. 

8. Non-parametric tests require minimal calculation. 

 

Disadvantages of Non-Parametric Tests: 

1. If all the assumptions of a statistical model are satisfied by the data and if the 

observations are of required strength, then non-parametric tests are wasteful of time and data. 



2. Non-parametric tests are designed to test the statistical hypothesis only and not for 

estimating the parameters. 

3. Power efficiency on non-parametric tests are always less than parametric tests. 

4. No non-parametric test exists for testing interactions in the analysis of variance model 

unless specific assumptions about the additivity of the model are made. 

5. It is not possible to determine the actual power of non-parametric test due to want of 

actual situation or actual probability distribution. 

 

7.13        Non-Parametric Test for Location  

The following are the non-parametric test for location parameter of a population or the 

non-parametric tests for the location parameters of two populations. 

In non-parametric theory, the most frequently used measure of location is “population median” 

M or 0.5K , which is the unique real solution of the equation. 

( )
1

2
F M =  or ( )0.5

1

2
F K =  

7.13.1       SIGN TEST 

The sign test is a non-parametric test for the location parameter median M of a 

population. 

7.13.1.1 Hypothesis and Assumptions 

In this test, we make the assumption of independence and homoscedasticity but the 

assumption of normality for the parent population is not required. 

We wish to test the null hypothesis 

0 0: (a given value)H M M=  

against 

(i) a one-sided alternative 

1 0: (left tailed test)H M M  

1 0: (right tailed test)H M M  



(ii) a two-sided alternative 

1 0:H M M  

 

7.13.1.2 Test Procedure 

Let 
(1) ( ), , nX X  be the order statistics corresponding to a random sample 1, ... nX X  

of size n  drawn from the population having distribution function F  with unknown median M , 

where F is assumed to be continuous in the neighborhood of M  so that ( ) 0P X M= = . 

By definition of median, we have 

1
( ) ( )

2
P X M P X M =  =

 

If the sample data are consistent with the hypothetical value of median 0M , then on the 

average half of the sample observations will be greater than 0M . We replace each observation 

greater than 0M  by a plus sign (+) and each observation smaller than 0M  by a minus sign (-). 

Further, we count the numbers of plus signs and the minus signs and denoted it by r  and s  

respectively, with r s n+  . The number of plus signs ( r ) may be used to test 0H . 

When the population is dichotomized, the sampling distribution of r  given ( )r s+  is binomial 

with parameter 0

1
( )

2
p P X M=  = . Thus, the testing of 0H  becomes an equivalent testing 

for the hypothesis that the binomial parameter p  has the value 
1

2
.i.e. 0

1
:

2
H p =  

The critical region for  

0 0 0

1
: or :

2
H M M H p= =  

against  1 0 1

1
: or :

2
H M M H p   

for   level of significance is given by 

2 2

andr r r r   . 



where 
2

r  is the smallest integer such that 

2

.
2

r s
r s r s

k

k r

C p


+
+ +

=

  

i.e. 

2

1
.

2 2

r sr s
r s

k

k r

C



++

+

=

 
 

 
  

and 
'

2

r  is the largest integer such that 

'

2

0

.
2

r

r s r s

k

k

C p



+ +

=

  

i.e. 

'

2

0

1
.

2 2

r r s

r s

k

k

C




+

+

=

 
 

 
  

For testing 0 0 0

1
: or :

2
H M M H p= =  

against 
1 0 1

1
: or :

2
H M M H p   

the critical region for   level of significance is given by 

r r  

where r  is the smallest integer such that 

.
r s

r s r s

k

k r

C p



+

+ +

=

  

i.e. 
1

.
2

r sr s
r s

k

k r

C




++
+

=

 
 

 
  

In this alternative hypothesis the sample will have excess of plus signs. 

For testing 0 0 0

1
: or :

2
H M M H p= =  

against 1 0 1

1
: or :

2
H M M H p   



the critical region for   level of significance is given by 

'r r  

where 
'r  is the largest integer such that 

'

0

.
r

r s r s

k

k

C p


+ +

=

  

i.e. 

'

0

1
.

2
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r s

k

k

C




+

+

=

 
 

 
  

In this alternative hypothesis the sample will have less plus signs. 

7.13.1.3 Large Sample Test 

If ( ) 25r s+  , then we use the normal approximation to the binomial to perform the 

test. 

In this case, under 0H  

( )

( )
(0,1)

r E r
Z N

V r

−
= →  

since ( )
( )

2

r s
E r

+
=  and ( )

( )
4

r s
V r

+
=  

Hence, under 0H  

( )

2
(0,1)

( ) ( )

4

r s
r

r s
Z N

r s r s

+ 
−   − = = →

+ +
 

Example1. Test the null hypothesis that the median length   of ear-head of a variety of wheat is 

0 9.9 =  cm. against the alternative that 0 9.9   cm., with 0.05 = , on the basis of the 

following 25 ear-head measurements: 

9.5 8.9 10.5 11.5 8.5 9.4 10.6 8.8 11.7 10.5 



11.2 9.2 9.8 9.5 9.9 10.9 10.2 9.1 10.8 9.4 

11.6 8.7 8.3 11.3 8.1      

 

Solution: First, we determine the signs of all measurement and replace each measurement 

greater than 0  by +  sign and each measurement less than 0  by −  sign. Measurement which is 

equal to 0  is ignored. 

 

9.5 ( )−  8.9 ( )−  10.5

( )+  

11.5

( )+  

8.5  

( )−  

9.4 ( )−  10.6

( )+  

8.8 ( )−  11.7

( )+  

10.5

( )+  

11.2

( )+  

9.2 ( )−  9.8 ( )−  9.5 ( )−  9.9 

ignored 

10.9

( )+  

10.2

( )+  

9.1 ( )−  10.8

( )+  

9.4 ( )−  

11.6

( )+  

8.7 ( )−  8.3 ( )−  11.3

( )+  

8.1  

( )−  

 

 

From the above table, we observe that no. of plus signs 11r =  and the no. of minus signs

13s= =  and one observation is ignored. 

So we have to test whether 11r =  support the hypothesis 0 0: 9.9H  = , or equivalently to 

judge how likely are  11 successes (the number of plus signs) to occur in 24 trials from a 

binomial distribution with 0.5p = . The critical region for the level   two-sided test is given 

by 

/2r r  and 
'

/2r r , 

where /2r  is the smallest and 
'

/2r  is the largest integer such that 

/2

1

22

nn
n

x

r

C


 
 

 
  

and                                          

'
/ 2

0

1

22

nr
n

xC


 
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 
  



From binomial tables, we find that 0.025 18r =  and 
'

0.025 6r =  for 24n =  and 0.5p = . Thus, for 

11r =  null hypothesis is to be accepted. 

Note: The critical region for one-sided test alternative 

2424
24 1

0.05
2

x

r

C


 
 

 
  

since under the alternative hypothesis the sample will have an excess of plus signs. In the case of 

the other one-sided alternative, viz. 

: 9.9H   cm. or : 0.5H p   

The critical region for the level   will be 
'r r , where 

'r  is the largest integer such that 

24

24

0

1

2

r

xC



 

 
 

  

 

Example. The weights of 12 persons before they are subjected to a change of diet and after a 

lapse of six months are recorded below: 

 

S. No.         Weight (in kg.) 

 Before    After 

1 57 62 

2 48 55 

3 55 62 

4 45 53 

5 62 59 

6 42 45 

7 49 45 

8 60 55 

9 65 64 

10 51 55 

11 46 50 

12 58 66 



 

Test whether there has been any significant gain in weight as a result of the change of diet. 

Solution: Let y  and x  be the weight of a person before and after the change of diet, then the 

hypothesis to be tested is 0 : 0H  =  and the alternative is : 0H   , where   is the median of 

the distribution of differences id . The gain in weight ( )id  for 12 persons are: 

5, 7, 7, 8, 3, 3, 4, 5, 1, 4, 6, 8+ + + + − + − − − + + −  

Here, the no. of plus signs 7=  and the no. of minus signs 5= . Under the null hypothesis, 

the expected number of plus signs among the differences in a sample of 12 pairs is 6. The 

sampling distribution of the number of plus signs is the binomial distribution with probability of 

plus signs 0.5. From table, we find that the probability of 7 or more plus signs is 0.387. So the 

null hypothesis is accepted at the 5% level. 

7.13.1.4 Merits and Demerits 

Merits 

• It is very simple to calculate. 

• It requires minimum effort for calculation. 

Demerits: 

• The disadvantage of the sign test is that, although it takes account of signs of the 

deviations, it makes no allowance for their magnitudes. 

7.13.2       WILCOXON TEST 

Now discuss 

7.13.2.1 One Sample Wilcoxon Signed-Rank Test 

It is a non-parametric test for the location parameter (median) of a population.  

7.13.2.2 Hypothesis and Assumptions 



In this test, we make the assumption of independence and homoscedasticity but do not 

assume normality for the parent population. Also, if we assume that the parent population is 

continuous and symmetric, the Wilcoxon signed rank test is more efficient than the sign test for 

testing median of the population, since it takes into account both the magnitudes and signs of the 

deviations. 

We wish to test the null hypothesis 

0 0: (a given value)H M M=  

against 

a: one-sided alternative 

1 0: (left tailed test)H M M  

1 0: (right tailed test)H M M  

or b: two-sided alternative 

1 0:H M M  

 

7.13.2.3 Test Procedure 

 

Let 1 2, ,....., nx x x  be a random sample of size n  drawn from a population which is 

continuous and symmetric about median M. Then, under 0H , the differences 

0 , 1,2,....,i iD X M i n= −  =  are symmetrically distributed about zero, so that the positive 

and negative differences of the equal absolute value have the same probability of occurrence. 

Thus, 

( ) ( )i iP D C P D C =  −  

or ( ) ( )1i iP D C P D C = −   

Suppose we order these absolute differences 1 2, ,......, nD D D  from smallest to largest 

and assign them ranks 1,2,....,i n= . Let T +  be the sum of ranks of the positive iD  and T −  be 

the sum of the ranks of the negative iD . 



If 0H  is true (i.e. 0M  is the true median of the symmetrical population), then 

expectation of T +  equals the expectation of T − . Since the sum of all the ranks is a constant 

given by 

( )

1

1

2

n

i

n n
T T i+ −

=

+
+ = =  

The tests based on T + , T −  and T − , T + will be equivalent (since they are linearly 

related). In practice, the minimum of T +  and T −  is used as the test statistic. 

Let us define a new random variable: 

( )

th

i i

th

i i

1 if D >0for i smallest D

0 if D <0for i smallest D
i

D


= 


 

( )i
D

 
are independent Bernoulli random variables but are not identically distribute such that 

( ) ii
E D p  =
 

 

( ) ( )1i ii
V D p p  = −
 

 

and 
( ) ( )

cov , 0,
i j

D D i j  = 
 

 

We can write 

( )
1

n

i
i

T iD+

=

=  and 
( )

1

1
n

i
i

T i D−

=

 = −
   

Thus 
( )

1 1

n n

ii
i i

E T iE D ip+

= =

   = =      

and 
( ) ( )2 2

1 1

1
n n

i ii
i i

V T i V D i p p+

= =

   = = −      

under 0H , i.e. when 
1

2
ip =  

( )

1 1

11 1

2 2 4

n n

i i

n n
E T i i+

= =

+ 
  = = =  

 
   



and 
( )( )2 2

1 1

1 2 11 1 1
1

2 2 4 24

n n

i i

n n n
V T i i+

= =

+ +  
  = − = =   

  
   

Similarly, for T − , 

Let min ,T T T+ − =    and T  be such that  P T T  = . 

Then the critical regions for   level of significance for testing 0 0:H M M= against different 

types of alternatives are given as 

Alternative Hypothesis Critical Region 

1 0:H M M  T T
−   

1 0:H M M  T T
+   

1 0:H M M  
2 2

orT T T T 

+ −   

 

If 25n  , then distribution of T  is taken to be approximation normal i.e. under 0H  we have 

 

 
( )0,1

T E T
Z N

V T

−
= →  

where min ,T T T+ − =    
and  

 
( )1

4

n n
E T

+
=  

 
( )( )1 2 1

24

n n n
V T

+ +
=  

Also, the sample size n  is adjusted to include only non-zero differences. 

Example. Test the null hypothesis that the median length   of ear-head of a variety of wheat is 

0 9.9 =  cm. against the alternative that 0 9.9   cm., with 0.05 = , on the basis of the 

following 25 ear-head measurements: 

9.5 8.9 10.5 11.5 8.5 9.4 10.6 8.8 11.7 10.5 

11.2 9.2 9.8 9.5 9.9 10.9 10.2 9.1 10.8 9.4 

11.6 8.7 8.3 11.3 8.1      



 

Solution: First, we determine 

S.no.   ix  0i id x = −  Rank of 
id  

1 9.5 -0.4 3.5 

2 8.9 -1 13.5 

3 10.5 0.6 7.5 

4 11.5 1.6 20.5 

5 8.5 -1.4 18.5 

6 9.4 -0.5 5.5 

7 10.6 0.7 9.5 

8 8.8 -1.1 15 

9 11.7 1.8 23.5 

10 10.5 0.6 7.5 

11 11.2 1.3 17 

12 9.2 -0.7 9.5 

13 9.8 -0.1 1 

14 9.5 -0.4 3.5 

15 9.9 0  

16 10.9 1 13.5 

17 10.2 0.3 2 

18 9.1 -0.8 11 

19 10.8 0.9 12 

20 9.4 -0.5 5.5 

21 11.6 1.7 22 

22 8.7 -1.2 16 

23 8.3 -1.6 20.5 

24 11.3 1.4 18.5 

25 8.1 -1.8 23.5 

 



Here 153.5T + = , 146.5T − = , so that 150T = From table, for 24n =  and 0.05 = , we 

have 81T = . Since T +  and T − are both greater than T , there is not sufficient evidence to 

reject 
0H . 

In the case of the one-sided alternative : 9.9H   cm. ( : 9.9H   cm.), we shall compare 

153.5T + =  ( )146.5T − = with the critical value 81T = , at 0.025 = , and arrive at same 

conclusion that there is no ground for rejecting 0H  (in favour if the appropriate on-sided 

alternative) since T T . 

Example. The weights of 12 persons before they are subjected to a change of diet and after a 

lapse of six months are recorded below: 

S.no.         Weight (in kg.) 

 Before    After 

1 57 62 

2 48 55 

3 55 62 

4 45 53 

5 62 59 

6 42 45 

7 49 45 

8 60 55 

9 65 64 

10 51 55 

11 46 50 

12 58 66 

 

Test whether there has been any significant gain in weight as a result of the change of diet. 

Solution: Let y  and x  be the weight of a person before and after the change of diet, then the 

hypothesis to be tested is 0 : 0H  =  and the alternative is : 0H   , where   is the median of 



the distribution of differences id . The gain in weight ( )id  and the absolute rank for 12 persons 

are: 

S.no.         Weight (in kg.)  0i i id x y = − −  Rank of 
id  

 iy    ix  

1 57 62 +5 6.5 

2 48 55 +7 9.5 

3 55 62 +7 9.5 

4 45 53 +8 11.5 

5 62 59 -3 2.5 

6 42 45 +3 2.5 

7 49 45 -4 4.5 

8 60 55 -5 6.5 

9 65 64 -1 1 

10 51 55 +4 4.5 

11 46 50 +6 8 

12 58 66 -8 11.5 

 

Here, 52T + =  and 26T − = ; here T −  will be used. From table, we have, for 12n =  and 

0.01 = (one-sided), 10T = . Since T T
−  , therefore we conclude that there is no 

sufficient evidence to reject the null hypothesis that there is no effect of diet in favour of the 

alternative hypothesis at the 1% level. 

7.13.2.4 Merits and Demerits 

The Wilcoxon Signed rank test takes into account the magnitude of the deviations. 

As one of the assumptions made here is that intendance of observations continuity 

everywhere and symmetry which is not practically possible all the time.    

7.13.2.5 Comparision of Sign Test and Wilcoxon Signed Rank Test 

 



1. In sign test, the assumptions required are independence of observations and the 

population is continuous at media. In Wilcoxon signed rank test, the assumptions required are the 

population is continuous everywhere and it is symmetric about median. 

2. In sign test, we consider only the directions of the deviations while in Wilcoxon signed 

rank test, we consider directions of the deviations as well as the magnitudes of the directions. 

Thus, Wilcoxon signed rank test is more efficient than the sign test.  

3. Both the tests are useful generally for the same type of problem. But only Wilcoxon 

signed test is suitable for a test of symmetry as well. 

 

7.13.3  MEDIAN TEST 

If N m n= +  is even then 

Median =  any number between 
2

N
th and 

2

2

N + 
 
 

th order statistic 

Let U  be the number of X sample observations that are less than the sample median for the 

combined sample. 

The test based on U , the number of observations from X sample median which are less than the 

combined sample median, is called the sample median. Then 

1
, f Nisodd

2

, f Niseven
2

N
i

t
N

i

−


= 



 

The probability distribution of U  for fixed t  is 

( ) ; 0,1,2,........,
m n

u t u

m n

t

C C
f u u t

C

−

+
= =  

where 
2

N
t = . 

If 0H  is true, then ( ) ( );P X M P X M M =    and here M  is combined sample 

median. i.e. the two populations have a common median which is estimated by M . 



7.13.3.1 Hypothesis and Assumptions  

The general location alternative is  

( ) ( ): ; for some & 0L X YH F x F x x = −   

if U  is too large, then  

( ) ( ): ; if 0 andL X YH F x F x x    

i.e. ( ) ( ): ; if 0 and for someL X YH F x F x x   

i.e. the median of the X  population is smaller than the median of Y  population. 

If U  is too small, then  

( ) ( ): ; if 0 andL X YH F x F x x    

i.e. ( ) ( ): ; if 0 and for someL X YH F x F x x   

i.e. the median of the X  population is greater than the median of Y  population. 

The critical region for   level of significance is given as 

Alternative Hypothesis Critical Region 

0   or X YM M  'u c  

0   or X YM M  u c  

0   or X YM M  '

2 2

oru c u c    

7.13.3.2 Test Procedure 

 

1. Consider the observations in the order in which they are obtained. 

2. Determine the median of those observations i.e. determine the sample median M. 

3. For each observation note that whether it is above or below the sample median. Denote 

the observation below the sample median M by B or (-) sign and observations above the sample 

median M by A or (+) sign . The zero values will be ignored. 

4. Denote the number of minus signs or the numbers by B’s by n1 and the number of 

plus signs or the number of A’s by n2 . 

5. Count the number of runs and denote this number by R. 



6. Reject the null hypothesis H0 the sample is random if  

1R R  or uR R . 

where 1R  and uR are critical of R to be determined from the distribution of R n1 and n2. The 

critical values of R required for significance have been have been tabulated.  

Example:     Suppose in a random sample of size 30, there 12 runs above and below the sample 

median where n1=number of minus (-) sings=10 

n2= number of minus (+) sings= 20 

Test the hypothesis the sample is random. 

 

Solution  

R= Number of runs above and below the sample median =12 

n1=number of minus (-) sings=10 

n2= number of minus (+) sings= 20 

from table the lower critical value of R, R1=9 

the upper critical values of R, Ru=20 

since  9 20R    

the hypothesis of randomness is accepted at 5% level of signifance. i.e. sample is random. 

7.13.3.3 Merits and Demerits  

Median test when the sample observations are divided into two types on the basis of 

deviations from sample median.   

7.14        Summary 

This unit provides a thorough understanding of concepts related to Location Tests 

pertaining to one sample. The concepts of non- parametric methods, sign test, Wilcoxon test, 

median test are described in detail. The learner should try to solve the self-assessment problems 

given in the next section. 

7.15  Self-Assessment Exersises 

Q1. What do understand by sign test. Describe the procedure by giving an example. 



Q2. Describe Wilcoxon test by giving a suitable example. 

Q3. Explain the procedure median test stating clearly the assumptions. Give an example for 

illustration.  
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8.1       Introduction 

This section disucsses some other non parameteric test like one sample and two sample 

location test, one sample and two sample Kolmagorov-Smirnov tests and run test. 

8.2     Objectives 

The objective of this unit is to provide a basic understanding of concepts related to some 

Other non- parametric tests. The concept of the Mann- Whitney U- Test, Application of U-

statistic to rank tests. One sample and two sample Kolmagorov-Smirnov tests. Run tests should 

be clear after study of this material. 

8.3      One Sample Location Tests 

There are some following tests are given. 

8.3.1      MANN-WHITNEY U TEST 

Now Discuss 

8.3.1.1 Introduction and Assumptions 

Mann Whitney U  test is a non-parametric test for testing that the two populations differ 

in their location. It is useful to the t -test, if the assumption of t -test are violated, we use Mann 

Whitney U  test. We assume that the two samples are drawn from continuous populations. 



Let we have two populations X  and Y  with cumulative distribution functions 
XF  and 

YF  respectively. A random sample of size m  is drawn from the X  population and another 

random sample of size n  is drawn from the Y  population, denoted as 

1 2, ,.... mX X X  and 1 2, ,.... nY Y Y  

These N m n= +  observations drawn from two populations are arranged in order of magnitude 

from smallest to largest. 

Like run test, this test is based on the idea that the particular pattern is exhibited when m  

observations of X  random variable and n  observations of Y random variables are arranged 

together in increasing order of magnitude.  

The test criterion is based on the positions of Y ’s in the combined ordered sequence. A 

sample pattern where most of the Y ’s are greater than the most of the X ’s or vice-versa can be 

used as statistical criteria for rejection of null hypothesis of identical distribution. 

Since, in this case, we see that there is no random missing in the sample observation. The 

Mann Whitney U  statistic is defined as the number of times Y  proceeds X  in the combined 

ordered arrangement of two independent random samples. 

8.3.1.2 Test Procedure 

If mn  random variable is defined as 

1 ; 1,2,.....,

0 ; 1,2,.....,

j i

ij

j i

if Y X i m
D

if Y X j n

  =
= 

  =

 

Thus Mann-Whitney U  statistic is defined as 

1 1

m n

ij

i j

U D
= =

=  

We wish to test the null hypothesis 

( ) ( )0 : ;X YH F x F x x=   

i.e. two samples are drawn from the identical populations. 

The general location alternative is  

( ) ( ): ; for some & 0L X YH F x F x x = −   



If U  is too large, then 

( ) ( ); and if 0X YF x F x x     

i.e. ( ) ( ); for some if 0X YF x F x x    

If U  is too large, then 

( ) ( ); and if 0X YF x F x x     

i.e. ( ) ( );for some if 0X YF x F x x    

We define, 

( ) ( )1ijP D P Y X = = =   

    ,P X Y X= −   −   

   ( ) ( )
x

f y f x dy dx



− −

=    

( ) ( )YF x f x dx


−

=   

Under 0H , i.e. ( ) ( )0 : X YH F x F x=  

Then  

( ) ( )XF x f x dx


−

=   

For solving above integration, let ( )XF x v=  and differentiate this equation w.r.t x , we get 

( )f x dv= . Also, the limits changes as ( ) 0x F v= − − = =  and 

( ) 1x F v=  = =  

Therefore, integral reduces to 

1

0

v dv = 
1

2

0

1

2 2

v 
= = 
 

 

Hence ( ) ( )0 : X YH F x F x= or 0

1
:

2
H  =  



Also ( ) ( ): ;L Y XH F x F x x   

Is equivalent to 
1

: ;
2

LH x    

i.e. ( ) ( ): ; for someL Y XH F x F x x  

is equivalent to 
1

: ; for some
2

LH x   

and ( ) ( ): ;L Y XH F x F x x   

is equivalent to 
1

: ;
2

LH x    

i.e. ( ) ( ): ; for someL Y XH F x F x x  

is equivalent to 
1

: ; for some
2

LH x   

The mn  random variables 
ijD  are Bernoulli variables, with parameter  . i.e. 

2

ij ijE D E D    = =     

( )1ijV D    = −   

We define the parameters 1  and 2 as, 

( ) ( ) ( )
2

1 j i k i YP Y X Y X F x f x dx


−

=   =     

and  

( ) ( ) ( )
2

2 1i j h j YP X Y X X F x f y dy


−

=   = −    

Since 
1 1

m n

ij

i j

U D
= =

=  

Therefore, mean and variance of U  are defined as 

 
1 1

m n

ij

i j

E U E D
= =

 =  
1 1

m n

i j


= =

=  



 E U mn=  

and  

 
1 1

m n

ij

i j

V U V D
= =

 
=  

 
  

        ( ) ( )( ) ( )( )2 2

1 21 1 1mn mn n mn m     = − + − − + − −  

        ( )( ) ( )( )2 2 2

1 21 1mn n m      = − + − − + − −
 

 

        ( ) ( ) ( )2

1 21 1 1mn m n n m    = − + + − + − + −   

  ( ) ( ) ( )2

1 21 1 1V U mn N n m    = − + − + − + −   

as ,m n→  

 /E U mn =  and  / 0V U mn →  

Hence /U mn  is a consistent estimator of  . 

If we define another random variable  

( )'

1 1

1
m n

ij

i j

U D
= =

= −  

The critical region for   level of significance is given as 

Alternative hypothesis Critical region 

( ) ( )
1
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2

Y XF x F x    
U C  

( ) ( )
1

or
2

Y XF x F x    
'U C  

( ) ( )
1
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2

Y XF x F x    
2 2

or 'U C U C    

 

Under 0H , i.e. ( ) ( )0 : X YH F x F x=  

Then 
1

2
 =  



and 1 2

1

3
 = =  

Thus  
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1
2 4 3 3

n m
V U mn N
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 
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12 4 3
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V U mn n m

 
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Example: The following are the marks secured by two batches of salesmen in the final test taken 

after completion of training. Use the U -test with 0.02 =  for the null hypothesis that the 

samples are drawn from identical distributions against the alternative that the distributions differ 

in location only. 

Batch A: 28, 25, 27, 29, 25, 19, 23, 26, 30, 22, 21, 28 

Batch B: 20, 24, 25, 26, 18, 28, 23 

Solution: Here 1 7n = , 2 12n =  and 1 2 12N n n= + =  

51U = , 
' 26U =   

where U  is the number of times ix  precedes jy  among all ( ),i jx y pairs and 
'U  is the number 

of times 
jy  precedes ix  among all ( ),i jx y pairs assuming no x y= ties. From table, we find 

that for two-tail test 1 7n =  and 2 12n =
 
at the level 0.02, the critical value is 14. Since 20(the 



smaller of U and 
'U ) is greater than 14, so we have no reason to believe that the samples are not 

drawn from identical distribution. 

8.3.1.3 Merits and Demerits 

It is a good substitute for t-test when the conditions imposed on parent   populations are 

not met. 

8.3.1.4 Application of U-Statistic to Rank Tests 

 Let 𝑋1, 𝑋2, ⋯ , 𝑋𝑚  and 𝑌1, 𝑌2, ⋯ , 𝑌𝑛 be two random samples from two populations with 

continuous cdf  FX(x) and FY(x) respectively. Now to test H0: FX(x) = FY(x)  x, the two samples 

are combined and arranged in an ascending order of magnitude. The ranks of the X values in the 

combined ordered arrangement of the two samples would generally be larger than the ranks of 

the Y values if the median of the X population exceeds the median of the Y population. Hence 

Wilcoxon (1945) proposed a test, known as Wilcoxon rank sum test, where the null hypothesis is 

rejected if the sum of the ranks of the X values is too large if the alternative is H1: FX(x) > FY(x) 

for some x, or if the sum of the ranks of the X values is too small if the alternative is H1: FX(x) < 

FY(x) for some x, or if the sum of the ranks of the X values is too large or too small if the 

alternative is a two- sided, i.e.  H1: FX(x) ≠ FY(x) for some x. The test statistic of this test for 𝑁 =

𝑚 + 𝑛, is defined as 

𝑊𝑁 = ∑ 𝑖𝑍𝑖
𝑁
𝑖=1 , 

where 𝑍𝑖,𝑖 = 1, 2,⋯ ,𝑁, are indicator random variables defined as 

𝑍𝑖 = {
1 if the 𝑖𝑡ℎrandom variable in the combined ordered sample is 𝑋

0 if the 𝑖𝑡ℎrandom variable in the combined ordered sample is 𝑌.
 

 This test is actually same as the Mann-Whitney U test, since a linear relationship exists 

between the two test statistics. As U is defined as the number of times a Y value precedes an X 

value, we have 

U  =∑ ∑ 𝐷𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 = ∑ (𝐷𝑖1 + 𝐷𝑖2 + ⋯+ 𝐷𝑖𝑛)

𝑚
𝑖=1 , 

where  Dij = {
1 if 𝑌𝑗 < 𝑋𝑖 

0 if 𝑌𝑗 > 𝑋𝑖
 for all 𝑖 = 1,2,⋯ ,𝑚 and 𝑗 = 1,2,⋯ , 𝑛. 



 Then ∑ 𝐷𝑖𝑗
𝑛
𝑗=1  is the number of values of j for which 𝑌𝑗 < 𝑋𝑖 or the rank of 𝑋𝑖 reduced by 

𝑛𝑖, the number of X values which are less than or equal to 𝑋𝑖. For example consider the sequence 

YYXXY , where m =2 and n =3. Here, 𝐷11= 1, 𝐷12= 1, 𝐷13 = 0, 𝐷21 = 1, 𝐷22= 1, 𝐷23= 0. 

∴ ∑ 𝐷1𝑗
3
𝑗=1  = 1 + 1 + 0 = 2 = rank(𝑋1) − 1 = 3 – 1 = 2 (here 𝑛1 = 1) 

and ∑ 𝐷2𝑗
3
𝑗=1 = 1 + 1 + 0 = 2 = rank(𝑋2) − 2 = 4 – 2 = 2 (here 𝑛2 = 2). 

Thus, if 𝑟(𝑋𝑖) denotes the rank of 𝑋𝑖, then 

U  = ∑ [𝑟(𝑋𝑖) − 𝑛𝑖]
𝑚
𝑖=1  = ∑ 𝑟(𝑋𝑖) − (𝑛1 + 𝑛2 + ⋯+ 𝑛𝑚)

𝑚
𝑖=1  

     = ∑ 𝑖𝑍𝑖
𝑁
𝑖=1 − 

𝑚(𝑚+1)

2
  = 𝑊𝑁 − 

𝑚(𝑚+1)

2
. 

 Hence, all the properties of the tests are the same, including consistency and the 

minimum asymptotic relative efficiency relative to t-test. Also, we have 

E(U|H0) = mn/2 and V(U|H0) = mn(N + 1)/12. Hence, 

𝐸(𝑊𝑁|H0) = E(U|H0) + 
𝑚(𝑚+1)

2
 and V(𝑊𝑁|H0) = V(U|H0) = mn(N + 1)/12. 

Just as U, the statistic 𝑊𝑁 is also symmetric about its mean. 

8.3.1.5 Test of Goodness of Fit 

This type of test is designed for a null hypothesis which is a statement about the form of 

the cumulative distribution function or probability function of the parent population from which 

the sample is drawn. 

Let a random sample of size n is drawn from a population with unknown cumulative 

distribution function say F. We want to test the null hypothesis 

( ) ( )0 0: ;H F x F x x=   

against the alternative hypothesis 

( ) ( )1 0: ; for someH F x F x x  

If 0F  is specified with all its parameters, then 0H  is a simple hypothesis. If 0F  is not 

completely specified, then 0H  is a composite hypothesis and the unknown parameters are to be 



estimated from the sample data in order to perform any test. The alternative hypothesis in both 

the cases will be composite therefore rejection of 0H  does not provide any result. 

8.3.2  One Sample Kolmogorov-Smirnov (K-S) Test 

Goodness of fit tests are used when only the form of the population is in question, with 

the hope that the null hypothesis will be found accepted. The two types of goodness of fit tests 

are: 

1. Chi Square goodness of fit test 

2. Kolmogrov Siminirov test 

 

8.3.2.1 Chi Square Goodness of Fit Test 

Hypothesis and Assumptions: 

If a random sample of size n is drawn from a population with unknown cumulative distribution 

function F. 

We wish to test the null hypothesis 

( ) ( )0 0: ;H F x F x x=   

against the alternative hypothesis 

( ) ( )1 0: ; for someH F x F x x  

In order to apply the chi-square test in continuous distribution, the sample data must be grouped 

according to some scheme in order to form a frequency distribution. 

Assuming that the population distribution 0F  is completely specified by the null hypothesis 0H , 

we can obtain the probability ip  that a random observation will be classified in the 
thi  category 

( 1,2,...., )i k= . 

These probabilities multiplied by n, the sample size, give the expected frequencies under 0H . i.e. 

i iE np= , ( 1,2,...., )i k=  

Let the n  observations have been grouped into k  mutually exclusive categories, iO  and iE  are 

the observed and expected frequencies respectively, for the 
thi  group ( 1,2,...., )i k= . 



We use the test statistic 

                                              
( )

2

2

1

k
i i

i i

O E

E


=

−
=                                           (1) 

with 
1 1

k k

i i

i i

O E
= =

=   

The exact sampling distribution of this test statistic is complicated. But for large samples, it has 

2  distribution with ( 1)k −  degree of freedom. This approximation is good for every 5iE  . 

For 5iE  , we combine the adjacent categories till the expected frequency in the combined 

category is at least 5. 

If  

2 2

,( 1)kcal tab   −  

then 0H  is rejected at   level of significance. 

If 0F  is completely specified, then 0H  is a composite hypothesis and the unknown parameters 

are to be estimated from the sample data in order to perform the test. 

In this case, the test statistic described by (1) has 
2  distribution with ( 1)k r− −  degree of 

freedom, where r  is the number of independent parameters of 0F  estimated from the sample 

data. 

Thus ( )mmS x  is the number of X sample observations that are less than or equal to x . And 

( )nnT x  is the number of Y sample observations that are less than or equal to x . 

For large m and n , the deviations between two empirical distribution functions, 

( ) ( )m nS x T x−  should be small for all values of x . 

Thus, the test statistic 

( ) ( ), maxm n m n
x

D S x T x= −  

is called Kolmogrov-Smirnov two sample test statistic. 

The probability distribution of 
,m nD  does not depend upon XF  and YF  as long as XF  and YF  

are continuous. 



Therefore, 
,m nD  may be called a distribution free statistic. 

The directional deviations are defined as 

( ) ( ), maxm n m n
x

D S x T x+ = −  

( ) ( ), maxm n n m
x

D T x S x− = −  

,m nD+
 and ,m nD−

 are called one-sided kolmogrov-smirnov statistic. These are also distribution 

free. 

We wish to test the null hypothesis 

( ) ( )0 : ;X YH F x F x x=   

i.e. under 0H , the population distributions are identical and we have two samples from the 

sample population. 

against 

(i) One sided alternative 

( ) ( )1 : ; (right tailed test)X YH F x F x x   

The appropriate test statistic is  

( ) ( ), maxm n m n
x

D S x T x+ = −  

or 

( ) ( )1 : ; (left tailed test)X YH F x F x x   

The appropriate test statistic is  

( ) ( ), maxm n n m
x

D T x S x− = −  

 

8.3.2.2 Comparison of Chi-square test with Kolmogrov-Siminirov test for 

Goodness of Fit  

 

1. Both types of tests are distribution free because the sampling distribution of the test 

statistic does not depend on the cumulative distribution function. 



2. The chi-square tests are specially designed for use with categorical data, while K-S tests 

are for random samples from the continuous populations. 

3. The chi-square test is sensitive to vertical deviations between the observed and expected 

histograms, whereas the K-S test is based on vertical deviations between the observed and 

expected cumulative distribution functions. 

4. K-S test can be applied for any sample size, while chi-square test can be applied for large 

sample size when each expected cell frequency is not too small. 

5. The advantage of K-S test is that the exact sampling distribution of K-S test statistic is 

known and tabulated, whereas the sampling distribution of chi-square test statistic is 

approximately chi-square for finite sample size. 

6. When 0H  is composite, the chi-square test is easily modified by reducing the number of 

degrees of freedom (as some parameters are estimated) while K-S test can’t be modified in the 

situation. 

7. The K-S test is more powerful and more flexible than the chi-square test. 

8. The chi-square test also comes in the category of parametric tests whereas K-S test is 

only a non-parametric. 

9. In K-S test, we can use one side test also which is not possible chi-square test. 

 

8.3.3  RUN TEST 

If we are given an ordered sequence of two or more types of symbols, a run is defined to 

be a succession of one or more identical symbol which are followed and proceed by a different 

symbol or no symbol at all. 

In any situation, if the sample observations may not behave random, it is necessary to test 

the randomness of the sequence before the usual statistical methods based on randomness are 

applied. 

Too few runs, too many runs, a run of excessive length or too many runs of excessive 

length etc. can be used as statistical criteria for rejection of the null hypothesis of randomness, 

since these situations should occur rarely in a truly random sequence. 

A null hypothesis of randomness would be rejected if the total number of runs is either 

too small or too large. 



8.3.3.1     Advantages 

 

1. Test of randomness are an important addition to the statistical theory, because almost all 

the classical statistical techniques are based on the assumption of a random sample. 

2. The run tests are applicable to either qualitative or quantitative data. 

 

8.3.3.2    Distribution of Runs 

Let us suppose an ordered sequence of n elements of two types, 1n  of the first type i.e. 

values of x  and 2n  of the second type i.e. the values of y  such that 

1 2n n n+ = . 

If 1 numberof runsof type1st elementsi.e.X'sr =  

   2 numberof runsof type2ndelementsi.e.Y'sr =  

The total number of runs in this sequence is 

1 2 ;r r r r n+ =   

The probability distribution of the random variable ‘R’ is obtained as follows: 

We can select 1n  positions for the 1n  values of X  from 1 2( )n n+  positions in 1 2

1

n n

nC+
 ways. 

The probability of each arrangement 
1 2

1

1
n n

nC+
=  

Now, we have to determine how many of these arrangements yield R r= . Here, two cases arise: 

 

Case (i): When r is odd i.e. 2 1 ;r k k I += +   i.e. there are ( 1)k +  runs of ordered values of 

X and k  runs of ordered values of Y  or vice-versa. 

First we consider the number of ways of obtaining ( 1)k +  runs of 
1n  values of X . This can be 

done in 1 1n

kC−
 ways. 

Similarly, we consider the number of ways of obtaining k  runs of 
2n  values of Y . This can be 

done in 2 1

1

n

kC−

−  ways. 



The joint operation can be performed in ( )( )1 21 1

1

n n

k kC C− −

− ways. 

Secondly, considering the number of ways of obtaining ( 1)k +  runs of 
2n  values of Y . This 

can be done in 2 1n

kC−
 ways. 

Similarly, we consider the number of ways of obtaining k  runs of 
1n  values of X . This can be 

done in 1 1

1

n

kC−

−
 ways. 

The joint operation can be performed in ( )( )1 21 1

1

n n

k kC C− −

−  ways. 

Thus, 

( )
( )( ) ( )( )

( )

1 2 1 2

1 2

1

1 1 1 1

1 1
2 1

n n n n

k k k k

n n

n

C C C C
P r k

C

− − − −

− −

+

+
= + =  

 

Case (ii): When r is even i.e. 2 ;r k k I +=   i.e. there are k  runs of ordered values of X and 

k  runs of ordered values of Y  or vice-versa. 

First we consider the number of ways of obtaining k
 
runs of 

1n  values of X . This can be done 

in 1 1

1

n

kC−

−  ways. 

Similarly, we consider the number of ways of obtaining k  runs of 
2n  values of Y . This can be 

done in 2 1

1

n

kC−

−  ways. 

The joint operation can be performed in ( )( )1 21 1

1 1

n n

k kC C− −

− −  ways. 

Secondly, considering the number of ways of obtaining k
 
runs of 

2n  values of Y . This can be 

done in 2 1

1

n

kC−

−  ways. 

Similarly, we consider the number of ways of obtaining k  runs of 
1n  values of X . This can be 

done in 1 1

1

n

kC−

−  ways. 

The joint operation can be performed in ( )( )1 21 1

1 1

n n

k kC C− −

− −  ways. 

Thus, ( )
( )( )

( )

1 2

1 2

1

1 1

1 12
2

n n

k k

n n

n

C C
P r k

C

− −

− −

+
= =  



Thus the probability distribution of R, the total number of runs of 
1 2n n n+ =  objects, 

1n  of 

type 1st and 
2n  of type 2nd, is given as: 

( )

( )( )
( )

( )( ) ( )( )
( )

1 2

1 2

1

1 2 1 2

1 2

1

1 1

1 1
2 2

1 1 1 1

1 3 3 1
2 22 2

2
        ; if  is even

; if  is odd

n n

r r

n n

n

n n n n

r r r r

n n

n

C C
r

C
f x

C C C C
r

C

− −

− −

+

− − − −

− − − −

+






= 
 +




 

where 
1 22,3,...,r n n= +

 
 

8.3.3.3 Test of Randomness 

Sometimes, it is desirable to test whether the sample observations can be regarded as 

random or not. To test the randomness of the sample observations, we use run test. 

Let 
1 2, ,...., nX X X  be a random sample of size n taken from continuous distribution. In 

the given sequence 
1 2, ,...., nX X X  for each observation we note whether it is above or below 

the sample median. 

8.3.3.4 Hypothesis and Assumptions 

Run test is used for examining whether or not a set of observations constitutes a random 

sample from an infinite population. Test for randomness is of major importance because the 

assumption of randomness underlies statistical inference. In addition, tests for randomness are 

important for time series analysis. Departure from randomness can take many forms. 

0H : Sample values come from a random sequence 

1H : Sample values come from a non-random sequence. 

8.3.3.5 Test Procedure 

Let r be the number of runs (a run is a sequence of signs of same kind bounded by signs 

of other kind). For finding the number of runs, the observations are listed in their order of 

occurrence. Each observation is denoted by a ‘+’ sign if it is more than the previous observation 



and by a ‘-‘ sign if it is less than the previous observation. Total number of runs up (+) and down 

(-) is counted. Too few runs indicate that the sequence is not random (has persistency) and too 

many runs also indicate that the sequence is not random (is zigzag). 

Critical Value: Critical value for the test is obtained from the table for a given value of n and at 

desired level of significance ( ). Let this value be cr . 

Decision Rule: If cr  (lower)  r    cr  (upper), accept 0H . Otherwise reject 0H . 

Tied Values: If an observation is equal to its preceding observation denote it by zero. While 

counting the number of runs ignore it and reduce the value of n accordingly. 

Large Sample Sizes: When sample size is greater than 25 the critical value cr  can be obtained 

using a normal distribution approximation. 

The critical values for two-sided test at 5% level of significance are 

cr (lower) 1.96 = −  

cr (upper) 1.96 = +  

For one-sided tests, these are 

cr  (left tailed) 1.65 = − , if cr r  , reject 0H  

cr  (right tailed) 1.65 = + , if cr r , reject 0H , 

where 

2 1

3

n


− 
=  
 

 and 
16 29

90

n


− 
=  

 
 

 

Example:  Data on value of imports of selected agricultural production inputs from U.K. by a 

county (in million dollars) during recent 12 years is given below: Is the sequence random? 

5.2  5.5 3.8 2.5 8.3 2.1 1.7 10.0 10.0 6.9 7.5 10.6 

Solution: 

0H : the sequence is random. 

1H : the sequence is not random. 



5.2  5.5 3.8 2.5 8.3 2.1 1.7 10.0 10.0 6.9 7.5 10.6 

 + - - + - - + 0 - + + 

Here n = 11, the number of runs r  = 7. Critical n values for  = 5% (two-sided test) from the 

table are cr  (lower) = 4 and cr  (upper) = 10.  

Since cr  (lower) r   cr  (upper), i.e., observed r  lies between 4 and 10, 0H  is accepted. The 

sequence is random. 

8.3.3.6     Merits and Demerits 

 

• The number of runs a sequence indicative of randomness. 

• any set patterns of symbols in a sequence shows lack of randomness. 

• Too many or too less runs show lack of randomness.  

  

8.4           Two Sample Problem 

In two sample problem, we are concerned with the data which consists of two 

independent random samples; i.e. random samples are drawn independently from each of two 

populations. Not only the elements within each sample are independent, but also every element 

in the first sample is independent of every element in the second sample. 

We have two populations called as X  and Y  populations, with cumulative distribution 

functions 
XF  and 

YF  respectively. 

A random sample 
1 2, ,.... mX X X  of size m  is drawn from the population X  and 

another random sample 
1 2, ,.... nY Y Y of size n  is drawn from the population Y . 

Generally, the hypothesis of interest in two sample problem is that the two samples are 

drawn from the identical populations. i.e.  

( ) ( )0 : ;X YH F x F x x=   

 

We shall discuss three types of alternatives: 

 



(a) In the first type of alternative, we consider the alternative hypothesis that the two 

populations differ in any manner i.e. the two populations may differ in location or in dispersion 

or in skewness or in kurtosis etc. 

(i) The two-sided alternative is 

( ) ( )1 : ; for someX YH F x F x x  

(ii)  

(iii) A one-sided alternative is 

( ) ( )1 : ;X YH F x F x x   

i.e. ( ) ( )1 : ; for someX YH F x F x x  

i.e. the variable is stochastically larger than the variable Y . 

or  

( ) ( )1 : ;X YH F x F x x 
 

( ) ( )1 : ; for someX YH F x F x x  

i.e. the variable is stochastically smaller than the variable Y . 

 

For this type of problem, we shall discuss the following tests: 

1. Wald-Wolfowitz Run Test 

2. Kolmogrov-simirnov two sample Test 

 

(b) In the second type of alternatives, we consider the alternative hypothesis that the two 

populations differ in location only, this type of alternative is called the location alternative. 

( ) ( ): ; for some & 0L X YH F x F x x = −   

i.e. the cumulative distribution function of Y  is shifted to left if 0   

i.e. ( ) ( );X YF x F x x   or ( ) ( );for someX YF x F x x  

and  

the cumulative distribution function of Y  is shifted to right if 0   

i.e. ( ) ( );X YF x F x x   or ( ) ( ); for someX YF x F x x  

 



For this type of problem, we shall discuss the following tests: 

1. Median Test 

2. Mann-Whitney U Test 

3. Wilcoxon Test 

 

(c)  In the third type of alternative hypothesis, we consider the alternative hypothesis that the 

two populations differ in scale parameter only, this type of alternative is called the scale 

alternative. 

( ) ( ): ; for some & 1S X YH F x F x x =   

i.e. the cumulative distribution function of Y  is with compressed scale if 1    and the 

cumulative distribution function of Y  is with enlarged scale if 1  . 

 

For this type of problem, we shall discuss the following tests: 

1. Mood Test 

2. Sukhatme Test 

 

8.4.1         WALD-WOLFOWITZ RUN TEST 

This two-sample test is based on the assumption that the populations under consideration 

are continuous. 

We wish to test the hypothesis that the two independent samples have been drawn from 

the identical populations against the alternative that the two populations differ in any manner i.e. 

in location, in dispersion, in skewness or in kurtosis etc. 

Let 
1 2, ,.... mX X X

 
and 

1 2, ,.... nY Y Y  be two random samples of sizes m  and n  

respectively drawn from two populations. These N m n= +  observations drawn from two 

populations are arranged in order of magnitude from smallest to largest, keeping in view which 

of the observations correspond to the X  sample and which to Y  sample. 

For example, with 4 & 5m n= = , the arrangements might be 

 X Y Y X X Y X Y Y , 9m n+ = . 

We have 6 runs, 3 runs of 'X s and 'Y s . 



The total number of runs in the ordered pooled sample is indicative of the degree of random 

mixing. We wish to test the null hypothesis 

( ) ( )0 : ;X YH F x F x x=   

against ( ) ( )1 : ; for someX YH F x F x x  

where 
XF  & 

YF  are the cumulative distribution functions of the populations. 

Let r  be the total number of runs in the group of N  observations. 

A run is defined to be a succession of one or more identical symbols which are followed and 

proceed by a different symbol or no symbol at all. 

Under 
0H , the two samples are drawn from the same population. i.e. Under 

0H , the two samples 

are expected to be well mixed and r  is expected to be large. 

But r  is small, if the two samples come from the different populations. i. e. if 
0H  is fase. 

If all the values of Y  are greater than all the values of X  (or vice-versa), then there will be only 

two runs. 

Since too few runs will provide the critical region (or rejection region for null hypothesis
0H ). 

The Wald-Wolfowitz run test for   level of significance has the critical region r r  

where r  is the largest integer such that 

 0/P r r H    

If 
0H  is true, then all the 

m n m n

n mC C+ +=  different possible arrangements of m  'X s and n  

'Y s  in a line are equally likely. 

When r  is odd i.e. 2 1r k= + ; k I + .i.e. there are ( 1)k + runs of ordered values of X  and 

k  runs of ordered values of Y  or vice-versa. Then, 

 
( )( ) ( )( )1 1 1 1

1 1

02 1/

m n m n

k k k k

m n

m

C C C C
P r k H

C

− − − −

− −

+

+
= + =  

When r  is even i.e. 2r k= ; k I + . 

i.e. there are k  runs of ordered values of  X  and k  runs of ordered values of Y  or vice-versa. 

Then, 



 
( )( )1 1

1

0

2
2 /

m n

k k

m n

n

C C
P r k H

C

− −

−

+
= =  

Under 
0H , the mean and variance of r  are given as 

 
2

1
mn

E r
m n

= +
+

 

 
( )

( ) ( )
2

2 2

1

mn mn m n
V r

m n m n

− −
=

+ + −
 

For large ,m n  under 
0H  

 

 
( )0,1

r E r
Z N

V r

−
=  

Note: It is the test for equality of distributions based on runs. 

8.4.1.1 Rank Order Statistics 

If the rank order statistics of a random sample 
1 2, ,....., nX X X  are denoted by 

( ) ( ) ( )1 2, ,....., nr x r x r x . 

The 
thi  rank order statistic ( )ir x  is called the rank of the 

thi  observation in the unordered 

sample. 

Ex: ( )ir x i=  

The functional definition of the rank of any 
ix  in a set of n  observations is given as, 

( ) ( )
1

n

i i j

j

r x S x x
=

= −  

where ( )
1 ;if 0

0 ;if 0

u
S u

u


= 


 

8.4.1.2     Linear Rank Statistics 



If the two independent random samples 
1 2, ,....., mX X X  and 

1 2, ,....., nY Y Y  are drawn 

from the two populations with cumulative distribution functions 
XF  and 

YF  respectively. 

We consider the null hypothesis 

( ) ( )0 : ; , unknownX YH F x F x x F=   

The set of m n N+ =  observations are assigned ranks 1,2,....., N . 

The functional definition of the rank of observations in the combined sample (with no ties) is 

given as, 

( ) ( ) ( )
1 1

m n

i i j i j

j j

r x S x x S x y
= =

= − + −   

( ) ( ) ( )
1 1

n n

i i j i j

j j

r y S y y S y x
= =

= − + −   

where ( )
1 ;if 0

0 ;if 0

u
S u

u


= 


 

we denote the combined ordered sample by a vector of indicator random variables as follows: 

Let ( )1 2, ,....., NZ z z z=  be the combined ordered sample. Then we describe 

th

th

1 ;if i randomvariablein thecombinedorderedsampleisX

0 ;if i randomvariablein thecombinedorderedsampleis
iz

Y


= 


; 1,2,.....,i N =  

The vector Z  indicates the rank order statistics of the combined samples. The linear rank order 

statistics is defined as 

1

N

N i i

i

T a z
=

=  

Where 
ia  are given numbers or weights. 

Note: under 
0H  

( )i

m
E z

N
=  

( ) 2i

mn
V z

N
=  



( )
( )2

cov ,
1

i j

mn
z z

N N

−
=

−
   , , 1,2,.....,i j N =  

8.4.2         Two Sample Kolmogorov-Smirnov Test 

 

Hypothesis and Assumptions: 

Suppose a random variable is continuously distributed in each of two populations, the 

distribution functions being denoted by F  and G . Further, suppose that independent random 

samples, say 

1 2 3, , ,........, mx x x x  and 
1 2 3, , ,........, ny y y y have been drawn from the two continuous 

distributions 
mF  and 

nG  respectively. 

Here our problem is to test the hypothesis that the to distribution are identical i.e.  

                                      ( ) ( )0 :H F G =  

against                             ( ) ( )1 :H F G  ;                                  t  

Then an appropriate test criterion for testing hypothesis is K-S statistic which is as follows 

( ) ( )maxmn m n
t

D F G 
− 

= −  

If the hypothesis is true, one expects the value of 
mnD  to be small, while a large value of 

mnD  

may be taken as an indication that the parent distributions are not identical. 

8.4.3  MOOD Test for Dispersion 

If we have two populations called as X  and Y  with cumulative distribution functions 

XF  and 
YF  respectively. A random sample of size m  is drawn from X  population and another 

random sample of size n  is drawn from Y  population denoted as: 

1 2, ,....., mX X X  and 
1 2, ,....., nY Y Y  

These m n N+ =  observations drawn from the two populations are arranged in order of 

magnitude from smallest to largest. 



In this combined ordered sample of N  observations (with no ties), the average rank is 

the mean of first N  integer. i.e. 
1

2

N + 
 
 

. 

The deviation of the 
thi  ordered variable about its mean rank is 

1
1

2

N +  
−   
  

. The amount of 

deviation is an indication of the relative spread. 

In linear rank statistic, we may take weights either the absolute value of the deviations or 

the squared values of the deviations to measure the relative spread. 

In Mood test, we take weights as the squared values of the deviations. We define the Mood Test 

Statistic as 

2

1

1

2

N

N i

i

N
M i z

=

+ 
= − 

 
  

It gives the sum of squares of the deviations of the X  ranks from the average combined 

rank. 

We wish to test the null hypothesis that the two samples are drawn from the identical 

populations. 

( ) ( )0 : ;Y XH F x F x x=   

The general scale alternative is 

( ) ( ): ; and 1s Y XH F x F x x =    

If 
NM  is too small, then 

( ) ( ): ; and 1s Y XH F x F x x     

i.e. ( ) ( ): ; and 1s Y XH F x F x x     

If 
NM  is too large, then 

( ) ( ): ; and 1s Y XH F x F x x     

( ) ( ): ; and 1s Y XH F x F x x     

Since,  



2

1

1

2

N

N i

i

N
M i z

=

+ 
= − 

 
  

Then mean and variance of Mood’s test statistic is  

 
( )2 1

12
N

m N
E M

−
=  

Also variance is obtained as 

   
2

N N NV M E M E M = −   

By solving it, we get 

 
( )( )21 4

180
N

mn N N
V M

+ −
=  

When ,m n  are large, then under 
0H  

 

 
(0,1)N N

N

M E M
Z N

V M

−
=  

8.4.4   Sukhatme Test for Dispersion 

If we have two populations called as X  and Y  with cumulative distribution functions 

XF  and 
YF  respectively. A random sample of size m  is drawn from X  population and another 

random sample of size n  is drawn from Y  population denoted as: 

1 2, ,..., mX X X  and 
1 2, ,....., nY Y Y  

These m n N+ =  observations drawn from the two populations are arranged in order of 

magnitude from smallest to largest. 

Here the X  and Y  populations have or can be adjusted to have equal medians; without 

loss of generality, we assume that this common median is zero. 

In this case, we arrange the observations such that most of the negative Y ’s should 

proceed negative  X ’s, and most of the positive Y ’s should follow positive X ’s, if Y ’s have 

a larger spread than X ’s. 

If mn  indicator random variables are defined as 



1 if 0 0 ; 1,2,.....,

0 otherwise; 1,2,.....,

j i i j

ij

Y X or X Y i m
D

j n

     =
= 

 =
 

Thus, Sukhatme test statistic is defined as 

1 1

m n

ij

i j

T D
= =

=  

i.e.  

( ) ( ) ( ) ( )
0

0

( ) ( )Y X X YF x F x f x dx F x F x f x dx


−

= − + −         

                                    ( ) ( )
0

0 0

( ) ( ) ( )X XF x f x dx F x f x dx f x dx

 

−

+ − +    

( ) ( ) ( ) ( )
0

0

1
( ) ( )

4
Y X X YF x F x f x dx F x F x f x dx



−

= − + − +         

Under 
0H , 

1

4
 =  

Hence ( ) ( )0 : Y XH F x F x= or 0

1
:

4
H  =  

The mn  random variable 
ijD  are Bernoulli variables, with parameter  .i.e. 

2

ij ijE D E D    = =     

( )1ijV D    = −   

We define the parameters 
1  and 

2  as 

( ) ( )1 0 0 0 0j i i j k i i kP Y X or X Y Y X or X Y  =        
   

( ) ( ) ( ) ( )0 0 0 0j i k i i j i kP Y X Y X X Y X Y =     +    
   

( ) ( )
0

2 2

1

0

( ) 1 ( )Y YF x f x dx F x f x dx


−

= + −         

and 



( ) ( )2 0 0 0 0j i i j j h h jP Y X or X Y Y X or X Y  =        
   

( ) ( ) ( ) ( )0 0 0 0j i j hi i j h jP Y X Y X X Y X Y =     +    
   

( ) ( )
2 20

2

0

1 1
( ) ( )

2 2
X XF y f y dy F y f y dy



−

   
= − + −   

   
   

Since    

1 1

m n

ij

i j

T D
= =

=  

Then mean and variance of T  is defined as 

  ( )
1 1 1 1

m n m n

ij

i j i j

E T E D mn 
= = = =

= = =   

and  
1 1

m n

ij

i j

V T V D
= =

 
=  

 
  

  ( ) ( ) ( )2

1 21 1 1V T mn N n m    = − − + − + −   

As ,m n→  

 /E T mn =  

 / 0V T mn →  

Hence /T mn  is an unbiased ad consistent estimator of  . 

If we define 
'T  as  

' '

1 1

m n

ij

i j

T D
= =

=  

where  

'
1 if 0 0

0 otherwise

i j j i

ij

X Y or Y X
D

   
= 
  

The critical region for   level of significance is given as 

Alternative Hypothesis Critical Region 



( )
1

1
4

    
T C  

( )
1

1
4

    

' 'T C  

( )
1

1
4

    
' '

2 2

T C or T C    

 

Under
0H , i.e. ( ) ( )0 : Y XH F x F x=  

Then 
1

4
 =  

and 
1 2

1

12
 = =  

Thus  
4

mn
E T =  

  ( )
( ) ( )1 11 1

1
2 4 3 3

n m
V U mn N

− − 
= − − + + 

 
  

 
( )7

48

mn N
V U

+
=  

If N  is large, then under 
0H  

 

 
( )0,1

T E T
Z N

V T

−
= →  

i.e. 
( )

( )4 0,1
7

48

mn
U

Z N
mn N

−
= →

+
 

8.4.5  Contingency Table 

 



A contingency table is an array of natural numbers in matrix from where those natural 

numbers represent counts, or frequencies. For example, an entomologist observing insects may 

say he observed 37 insects, or he may say he observed  

                          Moths            Grasshoppers         others          Total  

12 22 3 37 

  

using 1 3  (one by three) contingency table. This is one-way contingency table because it has 

only one row. 

The entomologist may wish to be more specific and use a 2 3 contingency table, as follows. 

                     Moths           Grasshoppers             others            Total 

Alive 3 21 3 27 

Dead 9 1 0 10 

Total 12 22 3 37 

 

The totals, consisting of two row totals, three column totals, and grand total. It is a two 

way contingency table and may be extended to include several rows (r ) and several columns (c ) 

as an r s  contingency table. 

8.4.5.1 The 2 2 Contingency Table 

In general r c contingency table is an array of natural numbers arranged in to r rows 

and c columns and thus has rc  cells or places for the numbers. This section is concerned only 

with the case where r = 2 and c = 2, the 2 2  contingency table, because there are four cells, 

2 2  contingency table is also called the fourfold contingency table. 

 One application of the 2 2  contingency table arise when N objects (or persons), 

possible selected at random from some population, are classified in to one of two categories 

before a treatment is applied or an event takes place. After the treatment is applied the same N 

object are again examined and classified in to two categories. The question to be answered is, 

“Does the treatment significantly alter the proportion of object in each of two categories?” The 

appropriate statistical procedure was seen to be a variation of the sign test known as the 

McNemar test. The McNemar test is often able to detect subtle differences, primarily because the 



same sample is used in the two situations (such as “before” and “after”). Another way of testing 

the same hypothesis tested with the McNemar test is by drawing a random sample from the 

population before the treatment and then comparing it with another random sample drawn from 

the population after the treatment. The additional variability introduced by using to different 

random sample is undesirable because it tends to obscure the changes in the population caused 

by the treatment. However, there are times when it is not practical, or even possible, to use the 

same sample twice. Then the procedures to be described in the section may be used. 

 In the first procedure, two random samples are drowned, one from each of two 

populations, two test the null hypothesis that the probability of event A (some specified event) is 

the same for both populations. The null hypothesis may also be stated as “the proportion of the 

population with characteristic A is same for both populations.” 

8.4.5.2      The Chi-Squared Test for Differences in Probabilities, 2 2      

A random sample of 
1

n  observations is drawn from one population (or before a treatment 

is applied) and each observation is classified in to either class 1 or class 2, the total numbers in 

the two classes being 
11

o  and 
12

o  respectively,  

Where
11 12 1

o o n+ = . A second random sample of 
2

n  observations is drawn from a second 

population (or the first population after some treatment is applied) and the number of population 

in class 1 or class 2 is 
21

o or 
22

o  respectively, where 
21 22 2

o o n+ = . The data are arranged in to 

the following 2 2  contingency table.                                                                                              

Assumptions 

 

1. Each sample is a random sample. 

2. The two sample are mutually independent. 

3. Each observation may be categorized in to class 1 or class 2. 

Test Statistic:    If any column total is zero, the test statistic is defined as  
1

0T = . Otherwise, 

11 22 12 21

1

1 2 1 2

( )
(1)

N O O O O
T

n n C C

−
=                                                            



Null distribution the exact distribution of 
1

T  is difficult to tabulate because of all the different 

combination of values possible for 
11

o ,
12

o ,
21

o and 
22

o . Therefore, the large sample 

approximation is used, which is the standard normal distribution whose quintiles are given in 

Table. 

Hypothesis:   Let the probability that a randomly selected element will be in class 1 be denoted 

by 
1

p in population 1 and 
2

p in population 2. Note that it is not necessary for
1

p and 
2

p  to be 

known. The hypotheses merely specify a relationship between them. 

A. (Two-Tailed Test) 

0 1 2
:H p p=  

1 1 2
:H p p  

Reject 
0

H  at the approximate level   if 
1

T  is less than the / 2 quintile of a standard normal 

random variable Z, or if 
1

T  is grater then the 1- / 2  quintile of Z, where the quintiles of Z are 

given in table. 

      The p-value is twice the smaller of the probabilities that Z is less then the observed value of 

1
T  or grater then the observed value of

1
T , from table. 

     Note that for the above hypotheses, 
2

1
T  is often use instead of 

1
T  as the test statistic. Then the 

rejection region is the upper tail of the chi-squared distribution with 1 degree of freedom given in 

table. 

B. (Lower-Tailed Test) 

 
0 1 2
:H p p  

 
1 1 2
:H p p  

 Reject 
0

H  at the approximate level   if 
1

T  is less than the   quintile of a standard normal 

random variable Z, where the quintiles of Z are given in table. 

    The p-value is the probability that Z is less than the observed value of  
1

T , obtained from 

table. 

C. (Upper-Tailed Test) 



 
0 1 2

:H p p  

 
1 1 2
:H p p  

Reject 
0

H  at the approximate level   if 
1

T  is greater than the 1 −  quintile of a standard 

normal random variable Z, where the quintiles of Z are given in table. 

    The p-value is the probability that Z is greater than the observed value of  
1

T , obtained from 

table. 

Example:   Two Carloads of manufactured items are sampled randomly to determine if the 

proportion of defective items is different for the two carloads. From the first carload 13 of the 86 

items were defective. From the second carload 17 of the 74 items were considered defective. 

                                       Defective                Non defective          Totals 

Carload 1 13 73 86 

Carload 2 17 57 74 

Totals 30 130 160 

 

The assumptions are met, and so the two-tailed test is use to test  

0
H : The proportion of defective is equal in two carloads using the test statistic                                               

                              11 22 12 21

1

1 2 1 2

( )N O O O O
T

n n C C

−
=  

                              
160((13)(57) (73)(17))

(86)(74)(30)(130)

−
=  

                             1.2695= −  

The 0.975 quintile of a standard normal random variable is found from Table A1 to be 

1.9600. therefore, the rejection region of approximate size 0.05 consist of all value of  
1

T  grater 

then 1.9600, or less then -1.9600. The observed value is -1.2695, so the null hypothesis is 

accepted at the 0.05 = level of significance.      

        The p-value is twice the probability of Z being less then the observed value -1.2695, which 

is found from the table as 0.102, so the p-value is approximately 0. 204.Therefore the decision to 

accept 
0

H  seems to be a fairly safe one.  



The following example illustrates the use of one-tailed test.  

 Example: - At the U.S. Naval Academy, a new lighting system was installed throughout the 

midshipmen’s living quarters. It was claimed that the new lighting system resulted in poor 

eyesight due to continual strain on the eyes of the midshipmen. Consider a (fictitious) study to 

test the null hypothesis,  

0
H : The probability of good vision is less now than it was  

Let
1

p   be the probability that a randomly selected graduating midshipman had good vision 

under the old lighting system and let
2

p  be the corresponding probability with the new light. 

Then the preceding hypotheses may be restated as                              

 
0 1 2
:H p p  

 
1 1 2
:H p p  

       Which matches the set C of hypotheses. The random sample are  taken to be the entire 

graduation class just prior to the installation class to spend 4 years using the new light system for 

population 2. it is hoped that these sample will behave the same as would random samples from 

the entire population of graduating seniors, real and potential.  

               Suppose the results were as fallows.  

                                                      Good vision         Poor vision  

Old lights 
11

O =714 
12

O =111 
1

n =825 

New Lights  
21

O =662 
22

O =154 
2

n =816 

Totals  1376 265 1641 

 

         Decision rule C defines the critical region 0.05 = to be all values of 
1

T greater than 

1.6449 from table. Computation of 
1

T  gives   

 11 22 12 21

1

1 2 1 2

( )N O O O O
T

n n C C

−
=  

 
1641((714)(154) (111)(662))

(825)(816)(1376)(265)

−
=  



 2.982=  

So the null hypotheses is clearly rejected. From Table we see that the null hypotheses could have 

been rejected at a level of significance as small as about 0.002, so that p-value is 0.002. 

       We may there for conclude that the population represented by the two graduation classes do 

differ with respect to the proportions having poor eyesight, and the direction predicted. That is, 

population 2 (with the new light) has poor eyesight then population 1 (with the old light). 

Whether the poorer eyesight is result of the new lights has not been shown. However, an 

association of poor eyesight with the new lights has been shown in this hypothetical example. 

Data: The N observations in the data are summarized in a 2 2  contingency table as previously 

both of the row totals, r and N-r and both of the column totals, c and N-c, are determined 

beforehand and are therefore fixed not random. 

                                                   Col 1               Col 2 

Row 1 x  r x−  r  

Row 2 c x−  N r c x− − +  N r−  

Total c  N c−  N  

 

8.4.6      Fisher’s Exact Test 

Now Discuss 

8.4.6.1    Assumptions   

1. Each observation is classified into exactly one cell. 

2. The row and column totals are fixed, not random. (However see the comment at the end 

for random totals in rows, columns, or both.) 

8.4.6.2      Test Statistic 

         The test statistic 
2

T  is the number of observations in the cell in row 1, column 1. 

8.4.6.3      Null Distribution 



     

The exact distribution of  
2

T  when 
0

H  is true is given by the hyper geometric distribution  

                    

2
( ) 0,1...........,min( , )

0 (1)

r N r

x c x
P T x x r c

N

c

for all other values of x

−  
  

−  
= = =

 
 
 

=

 

For a large approximation use  

                                        
3

2

( )( )

( 1)

rc
x

NT
rc N r N c

N N

−

=
− −

−

 

which has the standard normal distribution given in table as an approximation. If row totals or 

column totals, or both, are random it is more accurate to use 
1

T   given by                   

11 22 12 21

1

1 2 1 2

( )N O O O O
T

n n C C

−
=  

in the large sample approximation. 

8.4.6.4     Hypotheses 

           Let 
1

p  be the probability of an observation in row 1 being classified into column 1. Let 

2
p  be the probability of an observation in row 2 being classified in column 1. Let 

obs
t  be the 

observed value of 
2

T . 

A. (Two-tailed test)  

                                                    
0 1 2

1 1 2

:

:

H p p

H p p

=


 

First find the p- value using equation (1). The p-value is twice the smaller of 
2

( )
obs

P T t  or 

2
( )

obs
P T t . Reject 

0
H  at the level of significance   if the p-value is less than or equal to  . 



B.  (Lower-tailed test)  

                                             
0 1 2

1 1 2

:

:

H p p

H p p




 

 Find the p- value 
2

( )
obs

P T t  using equation (1). Reject 
0

H  at the level of significance   if 

2
( )

obs
P T t  is less than or equal to  . 

C. (Upper-tailed test) 

                                                
0 1 2

1 1 2

:

:

H p p

H p p




  

Find the p- value 
2

( )
obs

P T t  using equation (1). Reject 
0

H  at the level of significance   if 

2
( )

obs
P T t  is less than or equal to  . 

Example: Fourteen newly hired business majors, 10 males and 4 females, all equally 

qualified, are being assigned by the bank president to their new jobs. Ten of  the new jobs are as 

tellers , and four are as account representatives. The null hypothesis is that males and females 

have equal chances at getting the more desirable account representative jobs. The one-sided 

alternative of interest is that females are more likely than males to get the account representative 

jobs. 

 Only one female is assigned a teller position. Can the null hypothesis be rejected? The 

information given is sufficient to fill in the following  2 2   contingency table, because the row 

totals and column totals are already known.                         

 Account                                 

 representative           Teller 

Males 1 9 10 

Females 3 1 4 

Total 4 10 N =14 

                                      

0 1 2

1 1 2

:

:

H p p

H p p




 

 The exact lower-tailed p-value is given by Equation (1) as 



                                
2 2 2

( 1) ( 0) ( 1)P T P T P T = = + =  

                                           
2

10 4 10 4

0 4 1 3
( )

14 14

4 4

P T x

     
     
     

= = +
   
   
   

 

                                                            
1 40

0.041
1001 1001

= + =  

 The null hypothesis is rejected at 0.05 = . 

8.5       Summery 

This unit provides a thorough understanding of concepts related to non- parametric tests. 

The concepts of Mann-Whitney U Test, U-Statistic and Rank Tests, One Sample Kolmogorov-

Smirnov Test, Two Sample Kolmogorov-Smirnov Test, Run Test, Wald-Wolfowitz Run Test, 

Mood Test for Dispersion, Sukhatme Test for Dispersion, Contingency Table. are described in 

detail. The learner should try to solve the self-assessment problems given in the next section. 

8.6           Self-Assessment Exercises 

Q1. Describe the utility of U-Statistic and Rank Tests. 

Q2. Explain the following test: 

a. Mann-Whitney U Test, 

b. One Sample Kolmogorov-Smirnov Test,  

c. Two Sample Kolmogorov-Smirnov Test,  

d. Run Test,  

e. Wald-Wolfowitz Run Test,  

f. Mood Test for Dispersion, and 

g. Sukhatme Test for Dispersion. 
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9.1      Introduction 

This section provides a deeper understanding of non parametric inference by exposing to 

the concept of one way and two-way analysis of variance along with the concept of Pitman ARE. 

9.2      Objectives 

The objective of this unit is to provide a basic understanding of concepts related to 

Nonparametric Inference. The concept of the Kruskal-Wallis one way ANOVA Test, Friedman’s 

two-way analysis of variance by ranks, efficiency criteria and theoretical basis for calculating 

ARE, Pitman ARE should be clear after study of this material. 

9.3          Asymptotic Relative Efficiency (ARE) 



In point estimation, the efficiency of two unbiased estimators for a parameter is defined 

as the inverse ratio of their variances. In the case of tests, the power efficiency; is defined as 

follows: 

Definition (Pitman)  

Let 𝑇𝑛, and 𝑇𝑛
∗, 𝑛 = 𝑙, 2, . .. be two sequences of test statistics of the same null hypothesis 

𝐻0, at the same significance level 𝛼. Let the distributions be indexed by a real parameter, so that 

𝛿 = 0 gives a distribution in 𝐻0, and other 's correspond to distributions under the alternative 

hypothesis. Let us consider a sequence of alternatives 𝛿𝑖. If, for the same power with respect to 

the same alternative 𝛿𝑖 , the test 𝑇𝑛 , requires 𝑛𝑖  observations and the test 𝑇𝑛
∗  requires 𝑛𝑖

∗ 

observations, then the relative efficiency of test 𝑇𝑛, with respect to test 𝑇𝑛
∗ is given by the ratio 

𝑒 =
𝑛𝑖
∗

𝑛𝑖
.                                                                                      (1) 

In general, 𝑒 depends on 𝛼, 𝛿𝑖, and 𝑛𝑖
∗. The evaluation of 𝑒 = 𝑒(𝛼, 𝛿𝑖, 𝑛𝑖

∗) as a function of 

the three arguments is not simple. Some asymptotic value of 𝑒(𝛼, 𝛿𝑖, 𝑛𝑖
∗)  may be computed 

keeping one argument constant and letting the others approach some suitable limits. If the tests 

𝑇𝑛, and 𝑇𝑛
∗ are consistent, then their powers will approach 1 with increasing sample size. Now let 

the sequence 𝛿𝑖 be such that 𝛿𝑖 → 0 as 𝑖 → ∞, and such that the power of each test lies in the 

open interval (𝛼, 1) for finite sample sizes and approaches some limit between 𝛼 and 1. We thus 

have the following definition of ARE: 

 

Definition:      Let 𝑇𝑛 and 𝑇𝑛
∗ be two sequences of level 𝛼 tests of a null hypothesis 𝛿 = 0 against 

an alternative hypothesis 𝛿𝑖. The asymptotic relative efficiency (ARE) of the test 𝑇𝑛 relative to 

test 𝑇𝑛
∗ is the limiting value of (1) while simultaneously 𝑛𝑖

∗ → ∞ and 𝛿𝑖 → 0, i.e. 

 

𝐴𝑅𝐸 = lim
𝑛𝑖
∗→∞

𝛿𝑖→0

𝑛𝑖
∗

𝑛𝑖
= lim

𝑛𝑖
∗→∞

𝛿𝑖→0

𝑒(𝛼, 𝛿𝑖, 𝑛𝑖
∗),                                                (2) 

if this limit exists and is constant for all increasing sequences of sample sizes 𝑛𝑖 , 𝑛𝑖
∗. 

 In many Important applications (2) does not depend on 𝛼. The ARE is also called the 

local asymptotic efficiency since it is the large-sample power in the vicinity of 𝐻0. 



There is difficulty of us exact power calculation with non-parametric tests, the above two 

criteria have found use in non-parametric inference. Also, in some cases (2) provides an 

approximation to the exact efficiency. There are some theorems for the evaluation of ARE. 

Let 𝐸(𝑇𝑛)  and 𝑣𝑎𝑟(𝑇𝑛)  denote the mean and variance of 𝑇𝑛  under an appropriate 

distribution. 

The following regularity assumptions will be made for the sequences of tests 𝑇𝑛 and 𝑇𝑛
∗: 

I. 𝑑𝐸(𝑇𝑛)/𝑑𝛿 exists and is non-zero and continuous at 𝛿 = 0. 

II. There exists a positive constant 𝑐 such that 

lim
𝑛→∞

𝑑𝐸(𝑇𝑛)/𝑑𝛿|𝛿=0

√𝑛 𝑣𝑎𝑟(𝑇𝑛)|𝛿=0
= 𝑐. 

III. For the sequence of alternatives 𝛿𝑛 = 𝑑/√𝑛, 

(a) lim
𝑛→∞

𝑑𝐸(𝑇𝑛)/𝑑𝛿|𝛿=𝛿𝑛

𝑑𝐸(𝑇𝑛)𝑑𝛿|𝛿=0
= 1 

(b) lim
𝑛→∞

√𝑣𝑎𝑟(𝑇𝑛)|𝛿=𝛿𝑛

√𝑣𝑎𝑟(𝑇𝑛)|𝛿=0
= 1 

IV. Corresponding to 𝛿𝑛 = 𝑑/√𝑛, 𝑇𝑛 is asymptotically normal with mean 𝐸(𝑇𝑛) and variance 

𝑣𝑎𝑟(𝑇𝑛)|𝛿=𝛿𝑛. 

Now consider the case of a one-sided alternative 𝐻: 𝛿𝑛 > 0. 

 

Theorem 1 Under the above regularity conditions, the limiting power of the test 𝑇𝑛  is 1 −

Φ(𝜏𝛼 − 𝑑𝑐), where Φ is the standard normal distribution function. 

 

Proof: The limiting power of the one-sided test 𝑇𝑛 is 

  lim
𝑛→∞

𝑃[𝑇𝑛 ≥ 𝑇𝑛;𝛼|𝛿 = 𝛿𝑛],  where 𝑇𝑛;𝛼 is the level 𝛼 critical value 

= lim
𝑛→∞

𝑃 [
𝑇𝑛 − 𝐸(𝑇𝑛)

√𝑣𝑎𝑟(𝑇𝑛)
|

𝛿=𝛿𝑛

≥
𝑇𝑛,𝛼 − 𝐸(𝑇𝑛)

√𝑣𝑎𝑟(𝑇𝑛)
|

𝛿=𝛿𝑛

] 

= 1 − Φ(𝜏), 𝑠𝑎𝑦, 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐼𝑉. 

Now, 



𝜏 = lim
𝑛→∞

𝑇𝑛,𝛼 − 𝐸(𝑇𝑛)

√𝑣𝑎𝑟(𝑇𝑛)
|

𝛿=𝛿𝑛

= lim
𝑛→∞

[
 
 
 
𝑇𝑛,𝛼 − 𝐸(𝑇𝑛)|𝛿=𝛿𝑛

√𝑣𝑎𝑟(𝑇𝑛)|𝛿=0
.
√𝑣𝑎𝑟(𝑇𝑛)|𝛿=0 

√𝑣𝑎𝑟(𝑇𝑛)|𝛿=𝛿𝑛]
 
 
 

 

                                     = lim
𝑛→∞

𝑇𝑛,𝛼−𝐸(𝑇𝑛)|𝛿=𝛿𝑛

√𝑣𝑎𝑟(𝑇𝑛)|𝛿=0
, due to regularity condition III(b), 

Since, by Taylor’s expansion, 

𝐸(𝑇𝑛)|𝛿=𝛿𝑛 = 𝐸(𝑇𝑛)|𝛿=0 + 𝛿𝑛.
𝑑𝐸(𝑇𝑛)

𝑑𝛿 |𝛿=0
+∈, 

where lim
𝑛→∞

∈ = 0 due to regularity condition III, we have 

𝜏 = lim
𝑛→∞

[
𝑇𝑛,𝛼 − 𝐸(𝑇𝑛)|𝛿=0

√𝑣𝑎𝑟(𝑇𝑛)| 𝛿=0
−
𝛿𝑛[𝑑𝐸(𝑇𝑛)/𝑑𝛿]|𝛿=0+∈

√𝑣𝑎𝑟(𝑇𝑛)|𝛿=0
] 

                              = lim
𝑛→∞ 

[
𝑇𝑛,𝛼−𝐸(𝑇𝑛)|𝛿=0

√𝑣𝑎𝑟(𝑇𝑛)|𝛿=0
] − 𝑑𝑐, due to regularity condition II 

= 𝜏𝛼 − 𝑑𝑐 

Thus the limiting power is 1 − Φ(𝜏𝛼 − 𝑑𝑐). 

 

Theorem 2 (Pitman) If  𝑇𝑛  and 𝑇𝑛
∗ are two sequences of tests satisfying the four regularity 

conditions, then ARE of 𝑇𝑛 relative to 𝑇𝑛
∗ is  

lim
𝑛→∞

[

𝑑𝐸(𝑇𝑛)
𝑑𝛿

𝑑𝐸(𝑇𝑛∗)
𝑑𝛿

|

𝛿=0

]

2

 
𝑣𝑎𝑟(𝑇𝑛

∗)

𝑣𝑎𝑟(𝑇𝑛)
|
𝛿=0 

 

 

Proof: From Theorem 1, the limiting powers of the tests 𝑇𝑛 and 𝑇𝑛
∗ are, respectively,  

1 − Φ(𝜏𝛼 − 𝑑𝑐) 

And                                                   1 − Φ(𝜏𝛼 − 𝑑
∗𝑐∗). 

The tests will have the same limiting power if 𝑑𝑐 = 𝑑∗𝑐∗, i.e. if  

𝑑∗

𝑑
=
𝑐

𝑐∗
. 

From regularity condition III, the sequences of alternatives will be the same if  



𝑑

√𝑛
=
𝑑∗

√𝑛∗
. 

It follows, then, that the two tests will have the same limiting power iff 

𝑛∗

𝑛
= (

𝑑∗

𝑑
)
2

= (
𝑐

𝑐∗
)
2

 

lim
𝑛→∞

[

𝑑𝐸(𝑇𝑛)
𝑑𝛿

𝑑𝐸(𝑇𝑛∗)
𝑑𝛿

|

𝛿=0

]

2

=
𝑣𝑎𝑟(𝑇𝑛

∗)

𝑣𝑎𝑟(𝑇𝑛)
|
𝛿=0 

 

Definition: The efficacy of a test of the hypothesis 𝐻0 = 𝛿 = 0 based on the test statistic 𝑇𝑛 is 

defined as 

[
𝑑𝐸(𝑇𝑛)
𝑑𝛿

]
2

𝑣𝑎𝑟(𝑇𝑛)
||

𝛿=0

 

Thus, under the regularity conditions, the ARE of 𝑇𝑛 relative to 𝑇𝑛
∗ is the ratio of their 

efficacies.  

The ARE does not depend on the significance level or power of the test when the 

regularity conditions are satisfied. The above theorem is also true if both 𝑇𝑛, and 𝑇𝑛
∗ are two-

sided tests with the same values 𝛼1, and 𝛼2, for the sizes of the left- and right-hand critical 

regions, with 𝛼1 + 𝛼2 = 𝛼. 

Example: Let T denote the test statistic using sign test for testing H0: 𝜇𝑒 = 0 against H1: 𝜇𝑒 = 

1,where 𝜇𝑒  is the median of the population, using a sample of size n from a normal distribution 

with mean 𝜇 and variance unity and 𝑇∗ the test statistic using normal theory for testing H0: 𝜇= 0 

against H1: 𝜇 = 1 using 𝑛∗ observations. Then the above hypothesis sets are identical as for a 

normal distribution, the mean and median coincide. Suppose we are interested in obtaining the 

power efficiency of sign test relative to normal test for a power of  𝛾 = 0.90 with a significance 

level 𝛼 = 0.05.In the normal theory, the test based on 𝑛∗ observations, 

 Pr[𝑇∗ > 𝑇𝛼|H0] = 0.05 



⇒
𝑋̅−0

1/√𝑛∗
> 1.64 ⇒ √𝑛∗𝑋̅ > 1.64. 

Setting the power 𝛾 equal to 0.90, 𝑛∗ is found as follows. 

Pr[𝑇∗ ≥ 𝑇𝛼|H1] = Pr[√𝑛∗𝑋̅ ≥ 1.64| 𝜇 = 1] = 0.90. 

Or Pr[√𝑛∗(𝑋̅ − 1) ≥ 1.64 − √𝑛∗] = 0.90 

⇒ 1 − Pr[√𝑛∗(𝑋̅ − 1) < 1.64 − √𝑛∗] = 0.90Type equation here. 

⇒ Pr[√𝑛∗(𝑋̅ − 1) < 1.64 − √𝑛∗] = 0.10 

⇒ Φ(1.64 − √𝑛∗) = 0.10 ⇒  1.64 − √𝑛∗ = -1.28 ⇒ 𝑛∗ ≈ 9. 

In case of sign test, 

Pr[𝑇 >  𝑇𝛼|H0] = 0.05 gives 

∑ (
𝑛
𝑟
) (

1

2
)
𝑛

𝑛
𝑟=𝑟𝛼  = 𝛼,                                                                                                (1) 

where r is the number of positive observations 𝑋𝑖 and 𝑟𝛼 is the critical value for rejection of the 

null hypothesis. The power of the test T  is then given by 

Pr[𝑇 >  𝑇𝛼|H1] = 𝛾 

⇒ ∑ (
𝑛
𝑟
) 𝑝𝑟(1 − 𝑝)𝑛−𝑟𝑛

𝑟=𝑟𝛼  = 𝛾,                                                                                 (2) 

where p = Pr[𝑋 > 0|𝜇𝑒  =  1] = 1 − Pr[𝑋 ≤ 0|𝜇𝑒  =  1] 

             = 1 − Pr [𝑍 =
𝑋−𝜇𝑒

√𝑉𝑎𝑟(𝑋)
≤

0−𝜇𝑒

√𝑉𝑎𝑟(𝑥)
|𝜇𝑒  =  1]        (since mean and median coincide for 

                                                                                              normal distribution) 

            = 1 − Pr[𝑍 ≤ −1|𝜇𝑒  =  1] = 1 −  Φ(−1) =0.8413. 

The number n and 𝑟𝛼 will be those values which satisfy (1) and (2) simultaneously for 𝛼 

= 0.05 and 𝛾 = 0.90. If p is rounded off to 0.85, then ordinary tables of binomial distribution can 

be used. On solving this, the value of n turns out to be 14 or 15. Thus the normal test requires 

only nine observations to be as powerful as a sign test using 14 or 15 observations, so that the 

power efficiency is around 0.60 or 0.64. This value of efficiency applies only for the particular 



value of 𝛼 = 0.05 and 𝛾 = 0.90 and therefore is not in any sense a general comparison. More over 

the hypotheses under consideration were simple hypotheses. General conclusions for composite 

hypotheses and any values of 𝛼 and 𝛾 are certainly impossible to obtain. 

In many cases the limit of the ratio 𝑛∗/𝑛 may not be a function of 𝛼 and 𝛾 or even the 

parameter value when it is in the neiborhood of the hypothesized value. In such cases, the 

asymptotic relative efficiency is a more suitable criterion, as it leads to a single number. 

 

9.4          One-Way ANOVA and Kruskal-Wallis Test 

Let the data consist of 𝑁 = ∑ 𝑛𝑗
𝑘
𝑗=1  observations, with 𝑛𝑗  observations from the 𝑗𝑡ℎ 

treatment, 𝑗 = 1,… , 𝑘 . 

 

 

                                                              Treatments 

                           1                                2              …  𝑘 

                          𝑋11                             𝑋12                              𝑋1𝑘 

                         𝑋21                              𝑋22    …  𝑋2𝑘 

   :                                :                                 : 

   

    𝑋𝑛11   𝑋𝑛22   …  𝑋𝑛𝑘𝑘 

 

9.4.1        Assumptions 

A1. The 𝑁 random variables {𝑋1𝑗 , 𝑋2𝑗, … , 𝑋𝑛𝑗 }, 𝑗 = 1,… , 𝑘, are mutually independent. 

A2. For each fixed 𝑗 ∈ {1, … , 𝑘},  the 𝑛𝑗  random variables {𝑋1𝑗, 𝑋2𝑗, … . , 𝑋𝑛𝑗}  are a random 

sample from a continous distribution function 𝐹𝑗 .  

A3. The distribution functions 𝐹1, … , 𝐹𝑘 are connected through the relationship 

𝐹𝑗(𝑡) = 𝐹(𝑡 − 𝜏𝑗) , −∞ < 𝑡 < ∞,                                                    (1) 



For 𝑗 = 1,… , 𝑘 ,  where 𝐹  is a distribution function for a continous distribution with         

unknown median 𝜃 and 𝜏𝑗 is the unknown treatment effect for the 𝑗𝑡ℎ population. 

 We note that the assumptions 𝐴1 − 𝐴3 correspond directly to the usual one-way layout 

model commonly associated with normal theory assumptions; that is, Assumptions 𝐴1 − 𝐴3 are 

equivalent to the representation 

𝑋𝑖𝑗 = 𝜃 + 𝜏𝑗 + 𝑒𝑖𝑗,    𝑖 = 1,… , 𝑛𝑗  ,     𝑗 = 1,… , 𝑘, 

where 𝜃 is the overall median, 𝜏𝑗 is the treatment 𝑗 effect, and the 𝑁 𝑒′𝑠 from a random 

sample from a continous distribution with median 0. (Under the additional assumptions of 

normality, the medians 𝜃 and 0 are, of course, also the respective means.) 

The null hypothesis of interest is that of no differences among the treatment effects 

𝜏1 , … , 𝜏𝑘, namely, 

𝐻0 ∶ [𝜏1 = ⋯ = 𝜏𝑘]                                                                (2)     

This null hypothesis asserts that each of the underlying distributions 𝐹1, … , 𝐹𝑘 is the same 

, corresponding to 𝐹1 ≡ 𝐹2 ≡ ⋯ ≡ 𝐹𝑘 ≡ 𝐹 in (1). 

9.4.2     KRUSKAL-WALLIS TEST 

We present a procedure for testing 𝐻0 (2) against the general alternative that at least two 

of the treatment effects are not equal, namely, 

𝐻1: [𝜏1 , … , 𝜏𝑘 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙]                                                            (3)    

            To compute the Kruskal-Wallis statistic, 𝐻, we first combine all 𝑁 observations from the 

𝑘 samples and order them from least to greatest. Let 𝑟𝑖𝑗  denote the rank of  𝑋𝑖𝑗  in this joint 

ranking and set 

𝑅𝑗 =∑𝑟𝑖𝑗

𝑛𝑗

𝑖=1

   𝑎𝑛𝑑  𝑅.𝑗 =
𝑅𝑗

𝑛𝑗
,   𝑗 = 1,… , 𝑘.                                       (4) 

Thus, for example, 𝑅1  is the sum of the joint ranks received by the treatment 1 

observations and 𝑅.1  is the average rank for these same observations. The Kruskal-Wallis 

statistic 𝐻 is then given by 

𝐻 =
12

𝑁(𝑁 + 1)
∑𝑛𝑗 (𝑅.𝑗 −

 𝑁 + 1

2
)
2

 

𝑘

𝑗=1

 



= (
12

𝑁(𝑁 + 1)
∑

𝑅𝑗
2

𝑛𝑗

k

j=1

) − 3(𝑁 + 1)                                               (5) 

where (𝑁 + 1)/2 =    (∑ ∑ 𝑟𝑖𝑗/𝑁)
𝑛𝑗
𝑖=1

𝑘
𝑗=1  is the average rank assigned in the joint ranking. 

To test  

𝐻0: [𝜏1 = ⋯ = 𝜏𝑘] 

versus the general alternative  

𝐻1: [𝜏1 , … , 𝜏𝑘 𝑛𝑜𝑡 𝑎𝑙𝑙 𝑒𝑞𝑢𝑎𝑙], 

At the 𝛼 level of significance, 

Reject 𝐻0 𝑖𝑓 𝐻 ≥ ℎ𝛼; 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑑𝑜 𝑛𝑜𝑡 𝑟𝑒𝑗𝑒𝑐𝑡                                                       (6) 

where the constant ℎ𝛼 is choosen to make the type I error probability equal to 𝛼. The constant ℎ𝛼 

is the upper 𝛼  percentile for the null (𝜏1 = ⋯ = 𝑡𝑘)  distribution of 𝐻 . When 𝐻0  is true the 

statistic 𝐻 has, as min(𝑛1, … , 𝑛𝑘) tends to infinity , an asymptotic Chi-square(𝜒2) distribution 

with (𝑘 − 1) degrees of freedom. The chi-square approximation for procedure (6) is 

Reject 𝐻0 if 𝐻 ≥ 𝜒𝑘−1 ,𝛼 
2  ;  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑑𝑜 𝑛𝑜𝑡 𝑟𝑒𝑗𝑒𝑐𝑡,                                           (7)                                     

where 𝜒𝑘−1,𝛼 ,
2  is the upper 𝛼 percentile point of a chi-square distribution with 𝑘 − 1 degrees of 

freedom. 

9.5    Two-Way ANOVA and Friedman Test 

  The procedure is associated with within-blocks rankings (known as the Friedman ranks). 

 

   Treatments   

Blocks 1 2 … k 

1 𝑋111 𝑋121 … 𝑋1𝑘1 

 ⋮ ⋮ … ⋮ 

2 𝑋11𝐶11 

𝑋211 

𝑋12𝐶12 

𝑋221 

… 

… 

𝑋1𝑘𝐶1𝑘  

𝑋2𝑘1 

 ⋮ ⋮ … ⋮ 



 𝑋21𝐶21 𝑋22𝐶22 … 𝑋2𝑘𝐶2𝑘  

⋮ ⋮ ⋮ ⋮ ⋮ 

n 𝑋𝑛11 𝑋𝑛21 … 𝑋𝑛𝑘1 

 ⋮ ⋮ … ⋮ 

 𝑋𝑛1𝐶𝑛1 𝑋𝑛2𝐶𝑛2 … 𝑋𝑛𝑘𝐶𝑛𝑘  

 

The data consist of 𝑁 = ∑ ∑ 𝑐𝑖𝑗
𝑘
𝑗=1

𝑛
𝑖=1  observations, with 𝑐𝑖𝑗  observations from the 

combination of the 𝑖th block with the 𝑗th treatment (i.e., the (𝑖, 𝑗)th cell), for 𝑖 = 1,… . . , 𝑛 and 

𝑗 = 1,… , 𝑘. 

9.5.1       Assumptions 

A1.  The 𝑁  random variables {(𝑋𝑖𝑗1, . . . , 𝑋𝑖𝑗𝐶𝑖𝑗) , 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… . , 𝑘}  are mutually 

independent. 

 

A2.  For each fixed (𝑖, 𝑗)  with 𝑖 ∈ {1,… , 𝑛}  and 𝑗 ∈ {1,… , 𝑘} , the 𝑐𝑖𝑗  random variables 

(𝑋𝑖𝑗1, … , 𝑋𝑖𝑗𝑐𝑖𝑗) are a random sample from a continuous distribution with distribution function 

𝐹𝑖𝑗. 

 

A3.  The distribution functions 𝐹11, … , 𝐹1𝑘, … , 𝐹𝑛1, … , 𝐹𝑛𝑘  are connected through the 

relationship  

𝐹𝑖𝑗(𝑢) = 𝐹(𝑢 − β𝑖 − τ𝑗), −∞ < 𝑢 < ∞,    (1) 

 

for 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑘, where 𝐹 is a distribution function for a continuous distribution 

with unknown median θ, β𝑖 is the unknown additive effect contributed by the block 𝑖, and τ𝑖 is 

the unknown additive treatment effect contributed by the 𝑗th treatment. 

We note that Assumption A1-A3 correspond directly to the usual two-way layout additive (See 

Comment 6) model associated with normal theory assumptions; that is, Assumption A1-A3 are 

equivalent to the representation 



𝑋𝑖𝑗𝑡 = θ + β𝑖 + 𝑒𝑖𝑗𝑡,     𝑖 = 1,… , 𝑛; 𝑗 = 1,… , 𝑘; 𝑡 = 1,… , 𝑐𝑖𝑗, 

where θ is the overall median, τ𝑖 is the treatment 𝑗 effect, β𝑖 is block 𝑖 effect, and the 𝑁 𝑒’s form 

a random sample from continuous distribution with median 0. (Under the additional assumption 

of normality, the medians θ and 0 are, of course, also the respective means.) 

The null hypothesis of interest is that of no difference among the additive treatment effects 

τ1, … , τ𝑘, namely, 

𝐻0: [τ1 = ⋯ = τ𝑘].     (2) 

The null hypothesis asserts that the underlying distributions 𝐹𝑖1, … , 𝐹𝑖𝑘 within block 𝑖 are 

the same, for each fixed 𝑖 = 1, … , 𝑛; that is, 𝐹𝑖1 ≡ 𝐹𝑖2 ≡. . . ≡ 𝐹𝑖𝑘 ≡ 𝐹𝑖, for 𝑖 = 1,… , 𝑛, in (1). 

We consider the special case of one observation per treatment-block combination 

(commonly known as a randomized complete block design), corresponding to 𝑐𝑖𝑗 = 1 for every 

𝑖 = 1, … , 𝑛  and 𝑗 = 1, … , 𝑘 . For ease of notation in these five sections, we drop the third 

subscript on the 𝑋 variables, since it is always equal to 1 in this setting. 

9.5.2      FRIEDMAN TEST 

We present a procedure for testing 𝐻0 (2) against the general alternative that at least two 

of the treatment effects are not equal, namely, 

𝐻1: [τ1, … , τ𝑘 not all equal],     (3) 

when 𝑐𝑖𝑗 ≡ 1, for 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑘. 

To compute the Friedman statistic 𝑆 , we first order the 𝑘  observations from least to 

greatest separately within each of the n blocks. Let 𝑟𝑖𝑗 denote the rank of 𝑋𝑖𝑗 in the joint ranking 

of the observations 𝑋𝑖1, … , 𝑋𝑖𝑘 in the 𝑖th block and set 

𝑅𝑗 = ∑ 𝑟𝑖𝑗
𝑛
𝑖=1  and 𝑅.𝑗 =

𝑅𝑗

𝑛
.     (4) 

Thus, for example, 𝑅2 is the sum (over the 𝑛 blocks) of the within-blocks ranks received 

by the treatment 2 observations and 𝑅.2  is the average within-blocks rank for these same 

observations. The Friedman statistic 𝑆 is then given by 



𝑆 =
12𝑛

𝑘(𝑘 + 1)
∑(𝑅.𝑗 −

𝑘 + 1

2
)
2𝑘

𝑗=1

 

= [
12

𝑛𝑘(𝑘+1)
∑ 𝑅𝑗

2𝑘
𝑗=1 ] − 3𝑛(𝑘 + 1),    (5) 

where (𝑘 + 1)/2 = ∑ ∑ 𝑟𝑖𝑗/𝑛𝑘
𝑘
𝑗=1

𝑛
𝑖=1  is the average rank assigned via this within-blocks ranking 

scheme. 

  To test 

𝐻0 = [τ1 =. . . = τ𝑘] 

versus  

𝐻1: [τ1, … , τ𝑘 not all equal], 

at the α level of significance,  

Reject 𝐻0 if 𝑆 ≥ 𝑠α;   otherwise do not reject,   (6) 

where the constant 𝑠α is chosen to make the type I error probability equal to α. The constant 𝑠α is 

the upper α percentile for the null (τ1 =. . . = τ𝑘) distribution of 𝑆. 

9.6          Large-Sample Approximation 

 

When 𝐻0 is true, the statistics 𝑆 has, as 𝑛 tends to infinity, an asymptotic chi-square (χ2) 

distribution with 𝑘 − 1 degree of freedom. The chi-square approximation for procedure (6) is 

Reject 𝐻0 if 𝑆 ≥ χ𝑘−1,α
2 ;   otherwise, do not reject,    (7) 

where χ𝑘−1,α
2  is the upper α percentile point of a chi-square distribution with 𝑘 − 1 degree of 

freedom. 

9.7          Tukey’s Test for Non-Additivity 

In the analysis of variance with one observation per cell (fixed effects model), we 

assumed the interaction between the row and column to be absent, as it cannot be estimated with 

only one observation. But in case of any doubt regarding the presence of interaction, Tukey has 

proposed a test under the following set up. 

The model for a two-way lay-out with interaction effect is given by 



 

yij  =  μ + αi + βj + γij + eij ; i  = 1, . . .,p; j =1, . . ., q;     (1) 

 

where αi is the additive effect due to ith row, βj is the additive effect due to jth column,γij is the 

additive effect due to the interaction of  ith row and jth column and eij is the random component 

which is assumed to be iid and distributed as N( 0, 2

e ). The side conditions are  

 
i

i

  = 
j

j

  = 
ij

i

  = 
ij

j

  = 0. 

 

If we have model (1), then we have p – 1 degrees of freedom for rows, q - 1 d.f. for columns, (p 

– 1)( q – 1) d.f. for interaction and we are left with no d.f. for the error, since the total d.f. 

available with us is 

 pq – 1 = (p – 1) + (q – 1) + (p – 1)( q – 1). 

 

Therefore we write down the model (1) in another form as follows : 

 

yij  =  μ + αi + βj + λ αi βj + eij ; i  = 1, . . .,p; j =1, . . ., q;    (2) 

 

where λ is a constant quantity, the side conditions are 
i

i

  = 
j

j

 = 0 and eij
’s are independent 

normal variates with zero mean and unknown variance 2

e . 

In model (2) we have expressed γij to be equal to λ αi βj and we are justified in expressing it in 

this way as shown below. 

Since γij is the interaction effect due to ith row and jth column, therefore it will be a function of αi 

and βj and let us assume that γij is a function of αi and βj upto the second-degree term, then 

 γij = A + B αi + C βj + D 2

i  + λ αi βj + H 2

j .     (3) 

Summing (3) over j and dividing by q, we have 

γi. = A + B αi + D 2

i + Hθ, where  θ = 

2

1

q
j

j q



=

     (4) 



     = 0 since 
ij

j

 = 0. 

Similarly summing (3) over i and dividing by p, we have 

 γ.j  = A + C βj + Dφ + H 2

j , where φ = 
2

1

p

i

i p



=

     (5) 

      = 0. 

Hence, from (4), we have 

 B αi + D 2

i =  - A – Hθ       (6) 

and from (5),  

 C βj + H 2

j = - A – Dφ.       (7) 

  from (3),(6) and (7), we get 

 γij = A - A – Hθ - A – Dφ + λ αi βj 

                = - A – Hθ – Dφ + λ αi βj.       (8) 

Summing (8) over j, we have 

 0 = - A – Hθ – Dφ. 

Hence, from (8), we arrive at 

 γij = λ αi βj. 

The null hypothesis for testing interaction will be H0 : λ = 0. In this case we cannot apply the 

usual mean square theory because the expectations are non-linear, but however, we find from (2) 

that 

 
.iy  = μ + αi + .ie , where 

.iy = 
1

1 q

ij

j

y
q =

  is the ith row mean and .ie = 
1

1 q

ij

j

e
q =

  is the 

corresponding value of the error. Similarly, the jth block mean is given by 

 . jy  = μ + βj + . je , where . jy  = 
1

1 p

ij

i

y
p =

  and . je  = 
1

1 p

ij

i

e
p =

 .  



Finally the overall mean is given by 

 
..

y  = μ + ..e , where 
..

y  = 
1 1

1 p q

ij

i j

y
pq = =

  and ..e  = 
1 1

1 p q

ij

i j

e
pq = =

 . 

Hence, E(
.iy  - 

..
y ) = E(   + αi + .ie -  - ..e ) = αi.  

In other words, we can say that 
.iy  - 

..
y  is an unbiased estimate of αi. Similarly,  

 E(
. jy  - 

..
y ) = E(  + βj + . je -   - ..e ) = βj  . jy  - 

..
y is an unbiased estimate of βj, E(

..
y

) = E(μ + ..e ) = μ   is an unbiased estimate of μ, and finally, 

E( yij - -  + ) = E( + αi + βj + λ αi βj + eij -  - αi - -  - βj - +  + ) 

   = E (λ αi βj + eij -  - + ) = λ αi βj. 

 yij - -  +  is an unbiased estimate of  λ αi βj. 

If we assume that μ, αi and βj are known, then from (2), we find that it is linear in λ and we can 

find the estimate of λ by making use of the usual least square procedure, which is by obtaining 

the residual sum of squares 

 SSE = . 

Differentiating this with respect to λ and equating to zero, we have 

 = 0  =0 

          = . 

Or λ* = . 

When μ, αi and βj are not known, then they are replaced by their unbiased estimates and we 

obtain 


..

y

.iy
. j

y
..

y   .ie  . je  ..e

.ie . je ..e


.iy

. j
y

..
y

2

1 1

( )
p q

ij i j i j

i j

y     
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− − − −

SSE




1 1

( )
p q

i j ij i j i j

i j
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
1 1

( )
p q

i j ij i j

i j
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1 1
i j

p q

i j
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1 1

2 2

1 1

( )

i j

p q

i j ij i j

i j

p q

i j

y    
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= =

= =

− − −
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 λ** =  

       = , 

where SA = = q  

and     SB = = p . 

Now,  

        =  -  

  -  +  

        =  

Hence,  λ** = . 

Thus, if our null hypothesis H0 is true, then E(λ**|αiβj) = 0 

And V(λ**|αiβj) = σ2 =  σ2. 

 ~ . 
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Also we know that  ~  

and   =  ~ , 

where SSN = . 

 SSE – SSN = SS due to residuals (SSR) and SSR will have (p-1)(q-1) -1 df. In other words, 

 ~ . Hence the test statistic for testing H0 is 

F =  = ~ F1,(p - 1)(q - 1) – 1. 

 

Analysis of Variance Table 

Source of Variation d.f. SS MSS Variance 

Ratio 

Rows 

 

 

Columns 

 

Non-additivity 

Residuals 

p – 1 

 

 

q – 1 

 

1 

(p -1)(q – 1) – 1                        

SA =  

 

SB =  

 

 

MSA =  

MSB  =  

MSN = SSN 

MSR =  

 

 

 

 

 

 

F =  

Total pq - 1 TSS =    

 

9.8    Summary 
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This unit provides a thorough understanding of concepts related to Nonparametric 

Inference. The concepts of Asymptotic Relative Efficiency, One Way ANOVA and Kruskal-

Wallis Test, Two-way ANOVA and Friedman Test. are described in details. The learner should 

try to solve the self-assessment problems given in the next section. 

9.9         Self-Assessment Exercises 

Q1. What do you understand by Asymptotic Relative Efficiency by Pitman. 

Q2. Describe the procedure of One Way ANOVA and Kruskal-Wallis Test by clearly stating the 

assumptions. 

Q3. Explain the procedure of Two-way ANOVA and Friedman Test. 


