Indira Gandhi National Open University UP Rajarshi Tandon Open University

BCA-17
C++ And Object Oriented

Programming

FIRSTBLOCK : AnlIntroductionto Object
Oriented Programming

SECONDBLOCK : C++-AnIntroduction

Shantipuram (Sector-F), Phaphamau, Allahabad - 211013

- COURSE INTRODUCTION

Object Oriented Programining is one of the ways to manage the complexity of
programming through computers. The machine and assembly language were not
highly suitable for very complex programs/applications. Then, came high-level
procedural Janguages such as FORTRAN, BASICS, PASCAL and C. These
languages eliminated the close ties to the machine instructions. Most recent
applications.were written in a combination of these high-level languages and
assembly languages. The programming involved the data structures and
application was a collection of procedures that manipulate these structures.

This procedural approach to programming has worked well, however, the
complexity of software is ever increasing with more powerful computer hardware.
Any new applications today include features such as a window based graphical
user interface, access to data stored in mainframe computers, and the ability to
work in a networked environment. This complexity has forced the programmers to
adopt a new programming pa:adlgm the object oriented programming (QOP). It is
a new way of organising codc and data that enables increased control over the
complexity of the software development process.

The best way to learn C++ may be to learn Object Oriented Programming
Concepts first and then implement such concepts using C++. Therefore, this-
course has been divided into two blocks.

The first block deals with the basic OOPs terminology such as abstraction,
inheritance, and polymorphism. In addition, it provides an overview of various
object oriented programming languages. It also provides a brief introduction to
object oriented design. Block 2 covers the C++ is a programming language and
how does it supports the object oriented programming paradigim.

Please note that you must write C++ classes and programs and run them in order
to gain more in this course during your practical conselling sessions. Some of the
suggested problems that you can attempt during those sessions are:

I. Write a function in C++ for swapping the value of two strings using reference
parameters.

2. Whartis “this” pointer in C++? Give an example. Where is it used? Write

example programs using “this” pointer.

3. Design a class to represent rectangle in C++. The basic functions to be
. designed in addition to constructor and destructor are: to find whether a given
- point is inside or outside or on the boundary of the rectangle. Also design the
" function for outpuitting a rectanglc in visual form. The rectangte in visual form
is to be filled with a colour and may be transparent or opaque.

4. Design a class ARRAY using pointers. Write a default constructor, copy
constructor and overloaded assignment operator for the class Also write the

explicit destructor.

5. Designa class hierarchy for shapes of different types such as square,
rectangle and circle. Write at [east one polymorphic function. Show the run-
time polymorphism by calling the polymorphic function from main().

Design a linked list as a template class.
Show multiple infieritance Ly an examiple.

Describe varicus access methiods using examples

1o o =~ (=2

Describe the use of “files” and “streams” classes in C++ using examples.

You may wrile more such simiiar Programs.

™

IV

T

BLOCK INTRODUCTION

This being the first block of the course, an attempt has been made to define
and consolidate concepts with the help of examples. The important concepts
that one must be able to describe have been discussed in the block. Please
note that this block is the backbone for your practical implementations,
therefore, must be given maximum atrention.

One must be clear about these basic concepts in order to use a lot of functions
and facilities, which does cxist in an Object Oriented System. This block
describes the concept of Object Oriented Programming and introduces the
concept of Object oricnted design. The basic focus of the block being that vou
should be able to design basic objects prior to using an Object oriented
Propramming Language. This will facilitate you in better design and usc of
classes and wic inleritance hierarchy.

This black consists of five units:

Unit ! derines the basic concepts relating to objects and object oriented
programming.

Unit 2 focuses on the various terminology of object oriented programming
system,

Unit 3 provides the focus on the advanced concepts of object oriented systems
such as dynamism and reusability.

Unit 4 provides an overview of various object oriented programming languages.

Unit 5 focuses on object oriented design. This unit provides basic information
on a Object oriented design methodology: The Unified Modeling Language
(UML). ~) . '

Further Readings: Some of the important text books in these areas being:
1. B. Stroustrup: Object Oriented Programming in C++, Pearson-Publication.

2, Barkakat'i, Object Oriented Programming -in C++, PHI.

A Rty ¥ 1 =

ety T~

LR -~y o~

I

o —

UNIT1 WHATIS OBJECT ORIENTED
PROGRAMMING ?

Structure

1.0- _Int‘roduction
1.1 Objectives

1.2 Object Oriented ‘Pl'Og.'u.quling raraaigm
12.1 Object: The Soul of Object Oriented Programniing
122 Object Oriented Programming Characleristics -

1.3 'Advrant:igés of Object Oriented Programming

1.4 Some Applications of Object Oriented, Programming
14.1 -System Software
142 DBMS

1.5 The Object Orientation
'*1.6' _ Object Oriented Languagus
1.'6.'1- Why C-++ Suécceded
. . 16:2 A‘dvaﬁtag_es of C++
1.7 ummary
1.8 Model Answers

1.0 INTRODUCTION -

When Computers were initially introduced, the Engineers purely operated them.
For a layman using computers was something like flying an aircraft so, the
genems of the .computer revolution was in a complex machine. The genesis of
our programming Ianguagcs thus, tends to look like that machine. However .
computers have evolved as user-fr:endher tool, which is not so much of a
maching, bitt a real world friend that support hurhan expression. As a ~osult,

the tools are beginning to look less like machines and more like parts of our
minds, and also like other expressive mediums such as writing, painting, -
sculpture, animation, and filmmaking. Object-oriented programmmg is part of
this movement toward using the computer as an expressive medium,

This unit is an attempt to introduce you what is an objcct—uriented paradigm
and why the indusry should move from a procedural paradigm of programming
to an object orient:d paradigm.

1.1 OBJECTIVES

At the end of this unit, you should be able to:
e Describe the term: object, the heart of Object Oriented languages;

¢ Compare and contrast an object oricnted language from a procedural
language;

© Describe the 1:_:1vantagcs of using object oricnted programming;

e Decide when to use procedural language -and when to use a object oriented
language; and

An [utredellow §u Odject
Orleaticd Progimmicing

L5

@ Discuss the advantages and disadvantages of using C+4, an object
oriented lanpuage.

1.2 OBJECT-ORIENTED PROGRAMMING
PARADIGM

Whenever we have a2 problem in hand, we have a very natural tendency to
diffcrentiate the Problem Space and Solution Space of the problem, i.e. the
place where the problem exists and the placc where we try to find out answer.,
When we use Computer to solve a problem, then Computer is the “Solution
Space” i.e. the place where you modcl that problem and the “problem space”
is the place where the problem that is being solved exists. All programming
languages offer some level of abstraction, and the complexity level for its
solution space. A problem that you are able to solve by any Programming
language is dirceily related to the kind and quality of abstraction done by it.
The term “Kind” in this context implies: '

What s it that you are abstracting?

For example, Assembly language is an abstraction of the machine instruction
set. Many higher level languages (such as Fortran, BASIC, and C) were
abstractions of assembly language. These languages were improvements over
assembly language, but their primary underlying abstraction model still required
you to think in terms of the structure of the zomputer rathcr than the structure
of the problem you are trying to solve. It was the job on the programmer to
establish the association between the maching and the Problem by proposing
the suitable modules, data structures and algorithms. The effort required to-
perform this mapping is extrinsic to the programming !anguage Also this kind
of mapping produces programs that are difficult to write and expensive to
maintain.

Thus, the focus of such programming paradigms is on processing, that is, the
algorithms were needed to perform the desired computation on structured data.
The programming languages support this paradigm by providing functions and
facilities for passing arguments to these functions and returming values from
functions. In other words, emphasis was to:

Decide the structure of data.

I?ccidc \vhic;h procedures are required. (What is needed?)

Usc the best algorithm available (How to achieve it?h)

For example, A Square root function is:

Given a double-precision floating-point argument, it produces the square root.
double sqrt (double arg)

{

i code for calcuiation

}

void f{) - function does not return a value

{

double root2 = sqrt(2);

i Get and then print the square root .
}

¥Code written within.curly brackets express group. They indicate start and end
of function bodies. From the point of view of programming, functions arc used
to create order in 2 maze of algorithms. -

The altematwe to modehng the machine is to model the problem you are trymg
to solve. The object-oriented approach goes a step further by providing tools
for the programmer to represent solution entities with respect to the problem
space, This representation is general enough that the programmer is not
constrained to any particular type of problem. We refer to the entities in the
problem space and their representations in the solution space as “objects.” The
idea is that the program should be allowed to adapt itself t6°the terminology
uscd for the problem. It may appear-to be a more flexible and powerful
language abstraction than what vou have had before. Thus, the idea behind
Object Oriented Programming is to allow you to describe the problem in the
terminology of the problem, rather than iu terms of the computer where the

- solution will run. There is still a connection back to the computer, but how?
That is what we are going to discuss further.

All the Programaming languages have traditionally divided the world into two
parts—data and operations on data. The data is a static entity and can be
changed only by the valid operations. The functions that can operate on data .
has a finitc life cvcle of its own and can affect the state of data over their
lifetime. Such a division is, of course, on the basis the way computers works.
The operations or functions have meaning only when they can“act on data or
modify it. At some point, all programmers - including object-oriented
programmers - must lay out the data structures that their programs will use and
definc the functions that will act on the data.

A procedural programming language like C, may offer various kinds of support
for organising data and functions. Functions and data structures are the basic
elements of procedural design. But Object-oriented programming tries to model
the design of the program as real world philosophy. It groups operations and
data int> modular units called objects and lets you combine objects into
structured. networks to form a complete program. In an object-oriented
programming language, objects and object interactions are the basic elements
of design.

1.2.1 Object: The soul of Object Oriented Programming

Object-oricnted Programming and'Design is alt about abjects. Traditionally, -
code and data are apart. For example, in the “C™ Janguage, units of code are
called functions or operations, while units of dadta are called structures.
Functions and structures are not formally connected in “C”. A “C” function
can operate on more than one type of structure, and .nore than one function

' can operate on the same structure. However, it is not true for object-oriented
programs. In Object Oriented Programming, the data ar.d the operations are

" merged into a single indivisible unit ~ an Object.

An object has both state (data) and behavior (operations on data). In that way
objects are not much different from ordinary physical entities. It is easy to see
how a mechanical device embodies both state and behavior. For example, a
simple non moving entity: an ordinary bottle combine state (how full the bottle
is? is it opcn" how much warm its contents are?) with behavior (the ability to
dispense its contents at various flow rates, to be opened or closed, to withstand
temperatures). It is this resemblance of objects to real things that provides
objcet’s much of their power and appeal. They not only can model components
of real systems, but also fulfil assigned roles as components in.software
systems. Therefore, object based programming scheme have advantages we
will dlscuss them later in this unit. :

What I Objest Orieated
Fropramming ?

An hitroguetion 30 Ohject
Oriented Prugroniming

1

Objects are the physical and conceptual things we find in the world. Hardware,
software, animals, and even concepts arc all examples of objects. Everyone’s
world is built on Objects. For exantple, for nuciear scientist plutonium, atoms,
their speed are all objects for him. For a civil engineer bricks, columns, labour
are the objects. Finally, for a software engincer developing windows based
program windows, menus, buttons etc. are the objects for him. An object has
its well-defined boundary in which it perform its functions while interacting
with other objects with its external interface. Objects interact with cach other
via messages. (Please refer to figure 1). The concept of object being an cntity
can be described as, when we refer to some Object in real world we know it
will be in some state (in time and place), for example, in nuclc'ar_ scientist’s
world the atom will always be in one or the other kind of state {static or
moving and intact or exploded). | ' '

Message for Object 2

*I.
o - - - .
Object 1 Messzdge for Object 1 . Object 2
(Attribuics) . (Atiributes)
M . '
c:sage Mecssage. -
. Mor for i
ject 1
Qbject Object 3
Message Message
Cbject 3 Object 2
Object 3 e
(Altributes) E.Mcnml Il}lerfacc
-via messages
External Interface '

via messages

Figure 1: Objects nnd interfaces.

1.2.2 ' Object Oriented Programlﬁing Characteristics

The fundamental concept of Object Oriented Erogramming is that it allows ~
combination of data and functions/methods/procedures which are working on:
that data, which did not exist in earlier procedure, based programming
paradigms. -

This fundamental unit is called Object. An Object’s has a well-defined
interface, which is the only way to access tht Object’s data. The data is thus
well organised and hidden. Such hidden data is referred to as encapsulated.
Data encapsuilation and data hiding are basic and key terms used-in '00PS. .'

Data

Procedures/Functions/Me(hods

Figure 2: An Object

An Objeéct Oriented: pi-c'ig'rahimip'g system is composed of multiplé ébjécts (See

Figure 3).:When' on® 6bject needs information from ariother object, a‘request is

+ sent asking fof specific information, (for example, a réport object ‘may need to' -
know what is the today’s date and will send a request to the’date object).: -

- . » i B .
Thes¢ requests are called messages and each object has an interface that What ia Ohfect Orlented
manages messages ‘ : Programming?
. _ Generate
[~ Order

Customer
Profilc
Object

Other objccl_k

Figure 3; The abject system nnd messages

\ primary rule of object-oriented programming paradigm is that:
As the user of an object, you should never need to peek inside it.”.

Vhy should you not look inside an object? .

[l communications among the objects is done via messages. Messages define
1¢ interface to the object. The object thar a message is sent to is called the-
xceiver of the message. Everything an object can do is represented by its
icssage interface. So you need not know anything about what is in the object
1 order to use it.

[

“vou look inside the object, it may tempt you and you would like to tampet

ith the details of how the object works. Suppose you have changed the object
d later the person who programmed and designed the object in the first place
:cided to change some of these details, then you may be in trouble. Your
ftware may not be working correctly. But as long as you just deal with

Jjeets via their messages; the software is gearanteed to work. Thus. it is
wortant that access to an object is provided only through its messages, while
:eping the details hidden.

ut why should we be concerned about the changes in the object design?
:cause software engineering experiences have taught us that software do
iange. A popular saying is that “Software is not written, it is re-written.”
case remember that some of the costlicst mistakes in computer history are
:caust of software that failed when someone tried to change it.

), that is an object. Let us now try to identify the basic characteristics of
bject Oriented Programming?

ve basic characteristics of any object®riented language representing a purc
iproach to object-oriented programming are:

The basic Programming cntity is the Object. An object can be considered
to be a variable that stores data and can perform operation on the stored
data itself.

e T T Tl —

An Introduction 10 Ohject
Ortented Programming

10

2. An object oriented Program is a collection of objcets for solving a problem.
These objects send micssages to each other. A message can be equated to
a request to call a functicn of the receiver object, '

- 3. Each object has its own memory or data that may be made up of other

objects. Thus, object oriented Programs are suitable for Complex problem
solving as they hidc the complexity béhind the simplicity of objects.

4. Each object can be related to a type. which is its class. An important
consideration of a class is that it specifics the message interface that is the
messages that can be send to that type/class of the objects.

All object of a particular class can receive the samc messages but may
behave differently. This leads to an important conclusion. Let us take an
example, a cirelg object having center at x=0 and v=0 and a radius of 1 cm
is of the class circle. However, it is also of the tvpe shape, Thus, this
object is bound to accept the messages that can be send to class shape.
Simularly, a rectangle object is also of type rectangle and also of type
shape and will follow messages send to class shape. Both these objeets
may be handled using the type shape, but may respond to a message
differently on receiving the samc message. This is one of the most
_powerful concepts of an Object oriented programming languages. The
concept involves the concepts of inheritance and polymorphism. These
concepts are discussed in unit 2 of this block, - :

W

1.3 ADVANTAGES OF OBJECT ORIENTED
PROGRAMMING

The popularity of Object Oriented Programinting (OOP) was because of its
methodology, which allowed breaking complex large software programs to
simpler, smaller and manageable components. The costs of building large
monolithic software were enormous. Moreover, the fundamental things in
Object Oriented Programing are objects, which model real world objects. The
following are the basic advantages of object-oriented systems.

Modular Design: The software built around QOP arc modular, because they
are built on objects and we know objects are entity in themselves, whose
internal working is hidden from other objects and is decoupled from rest of the
program. . ' >

Simple approach: The objects, we know, model real world, which results in

simple program structure.

Modifiable: Because of its inherent properties of data abstraction and
cncapsulation (discussed in unit 2) the intemal working of objects is hidden
from other objects, thus any modification made to them should not affect rest
of the system.” T

Extensible: The extension to the existing program for its adaptation to new
environment can be done by simple adding few new objects or by adding new
features in old classes/types.

Flexible: Software built on Object Oriented Programming, cgln"be flexible in
adapting to different situations because interaction between objects does not
affect the internal working of objects. '

' Reusable: Objects once made can be rcused in more than onc program.

Maintainable: Objects are separate entities, which can be maintained
separately allowing fixing of bugs or any other change easily.. '

s oL |

Whut is Object Oricnwcn

* heck Your Progress |
N Ly Programming?

.+ An Object contains data and methods. Even a program written in C have
those; then how is ol)|ect oricnted programming different than pr o;edurn!
plouammmg

1.4 SOME APPLICATIONS OF OBJECT ORIENTED
- PROGRAMMING '

QOPS has wide following since jts inception, it is not only a programming too!,
but also a.whole modeling paradigm. In addition to general problem solving two
of the upcoming object oriented paradigms that are emerging very fast are:

1.4.1 System Software

As an object-oriented operating system, its architecture is organized into’
frameworks of objects that are hierarchically classified by function and
performance. By that we mean that the whole Operating system-can be found
as made up of objects. The Object Oriented Programming has been a great
help for Operating system designers; it allowed them to break the whole -
Operating system into simple and manageable objects. It allowed them to reuse
existing codes by putting similar objects in related classes. KDE (a well known"®
desktop of Linux) developers haye extensively used the concepts of Object
Oriented Programming. Linux Kernel itself is a well known application of

Object Oriented Programming.

1.4.2 DBMS

Also known as Object Oriented Database Management Systems (OODBMS).
OODBMS store data together with the appropriate methods for accessing it;
the fundamental concept of Object Oriented Programming i.e. encapsulatlon is
implemented in them. Which allows complex data types to be stored in
database. Which is not supported in Relational Data Base Management
Systems. Every data type as well as its relations are represented as objects in
OODBMS. . : .

An Introductlun (v Object
Ortented Trogrmmmins

OODBMS have the following features.
¢ Complex data types can be stored.

¢ A wide range of data types can be stored in the same database’(c.z.
multimedia applications).

® Easier to follow objects through time; this allows applications which keeps
track of objects which evolve in time.

Applications of OODBMS
The areas of OODBMS applications are:

e CASE
.« CAD ’
o CAM

e Telecommunications

® Healthcare

o Finance

® Muitimedia

® Text/document/quality ma.nagcmcn-t
Advautages of OCODBMS

The objects do not require re-assembling from their component tables(in which
they are initially stored) each time they are used thereby reducing processing
overheads by increasing access speeds.

Paping is reduced.
Versioning is easicr.

Navipation through the database is easier and more natural, with objects able to

. contain pointers to other objects within the database.

Reuse reduces development costs.

Concurrency control is simplified by the ability to place a single lock on an
entire hierarchy.

Better data model as based on the ‘real world’ instead of the ‘flattened’
relational model,

Relationships and constraints on objects can be stored in the server application
rather than the client application, therefore, any changes necd onlv be made in
one place, thus, reducing the need for and risks involved in making multiple

changes.
’ S

Disadvaﬁtages of OODBMS

Late binding (discussed in unit 3); whick may cause extensive searches through
the inheritance hierarchies, may reduce speed of access.

There are as yet no formal semantics for OODBMS. Relational databases can
be ‘proved’. correct by means of set theory and relational calculus.

The simplicity of relational tables is -lost.

AT

* 1.5 THE OBJECT ORIENTATION

Suppose, you want to add two number say, 1 and 2, in an ordinary, non-object-
orientéd computer language like C. You might write this as: B

a=1;
B=2; _
c=a+b;

The above code implies that take a number ‘a’, which has the value 1, and
number ‘b’, which has the value 2, and add them together using the C

- language’s built-in addition capability. Take the result, which happen to be 3 in

this case, and places it into the variable called ‘c”

Now, here’s the same thing expressed in C++, which is a pure object-oriented
language:

a=1];
b=2;
c=ath;

You must be v;v.rondcring that the above code looks exactly the same. You are
right, looks the same, but the meaning is dramatically different,

In C++, this says, Take the object ‘a’ which has the value 1, and send it the
message “+”, which includes the argument ‘b’ which, in turn, has the value 2.
Object ‘a’, receives this message and perform the action requested, whichis to
add the value of the argument to itself. Create a new object, give this the
result, which in this case is 3 and assign this object toc”.

The reason is that objects greatly simplify matters when the data get more
complex. Suppose you wanted a data type called list, which is a list of names.
In C, list would be defined as a structure.

struét list {

<definition of list structure dq'ta here>

%

lista, b, ¢;

a = “Object Oriented”;

b = *Programming”;

Let’s try to add these new a and b in the C language:
c=a+h;

Will it work? No. The C compiler will generate an error when it trics to
compile this because it does not undgrstand what to do with addition of.two
strings. C compilers just understand how to add number, but a and b are not
numbers.

One can do the same thing in C-++, but this time, list is defined and
implemented as a class called a “String”. '

lista, b, c;

a = “Object Oriented”;

-

What Is Object Ortented
Programming?

13

An Introduction to Object’
"Orlented Programmiog

14 .

* b=*Programming™;

c=a+b,

The first three lines simply create List objects ‘a’ and ‘b’ from the given
strings. The addition may work if the list class was created with a function/
method which specifically “knows™ how to handle the message “+". For
example, the message plus might simply be used for concatenation of two
strings. Thus, the value of C may be—

“Object Oriented Programming”
Using Non-Object-Oriented Languages:

Itis also possible to use objects and messages in non-object-oriented
languages. This is done using function calls. Among other things, such en
implementation allows sophisticated client-server software to run
“transparently” from within ordinary programming languages.

Suppese you want to add a “plus” function to a C program:
int plus(int argl, int arg2)
{return (argl + arg2); }

This has not really bought you anything yet. But suppose that instead of doing
the addition on your own computer, you automatically sent it to a server
computer to be performed: :

int plus(intargl, int arg2)

{ return server_plus(argl, arg2); _}

The function server plas () in turn creates a message containing argl and arg2,
and sends this message, via a network, to a special object which sits on a
server computer. This object executes the “plus” function and sends the resuly
back to you. It is an object-oriented computing via a back-door approach.

1.6 .OBJECT-ORIENTED LANGUAGES

There are almost two dozen major object-oriented programming languages in
use today. But the leading commercial OO languages are C++, Smalltalk and
Java. We will discuss about some of these in unit 4 of this block. Let us
discuss some of the reasons of success and advantages of C++ in this section
as it has been selected by us as the language to be given in more details in this
course. Java will be presented in CS-75 course.

1.6.1 Why C++sueceeded

C++ started as an extension to C language or more precisely we can say C++
started as turning C into an OOPL and it emerged out as Superset of C. But
this is just the part of the reason for the success of C++. C++ has solved many
other problems faced by C programmers in today’s development scenarios.
C++ has especially come as a major too! to the person who has made large
investments in C, ' ’

The second reason is the main reason for the success of C++, in a autshell, is
economics: It still costs to move to QOP, but C-++ may cost less.

C++ is aimed at enhancing productivity. The productivity enhancement is due
to design, which helps you as much as possible and do not hinder you with any
arbitrary rules and requirements. I; is designed to follow a practical approach
aimed at benefiting the programmer.

' g e

- 1.6.2 Advan[ages of C++ ' « What ix Object Orlented

Programming ?

The basic advantages of C-++ can be summed up as under:

C++ has closed many holes in the C language and prowdcs better type
chiecking and compile-time analysis.

You are forced to declare functions so that the compiler can check their
use. The nced for the preprocessor has virtually been climinated for value
substitution and macros, which removes a <et of difficult-to-find bugs.

C-++ has a feature called rcferences that allows more convenient handl' 1g

-of addresses for function arguments and returned values.

“The handling of names is improved through a feature called function

averloading, which allows you to use the same name for different
functions. A feature called namespaces also improves the control of
names. There are numerous smaller features that improve the safety of C.

The learning curve for C programmers is very fast: Most of the
companies already have C programmers. They do not want that their
programmer become ineffective in a day. C++ is an extension of C, thus,
reduces the learning time. In addition, C++ compiler accepts C code.

Efficiency: C++ allows greater control of program performance and also
allows programmers to interact with assembly code as the casc with C
language. Thus, C++ is quite a performance-oricnted language. It
sacnfices some flexibility in order to remain efficient, however, C++ uses
compile-time binding, which means that the programmer mist specify the
specific class of an object, or at the very least, the most general class that
an object can belong to. This makes for high run-time efficiency and small
code size, but it trades off some of the power to reuse classes.

Systemns are easier to express and understand: Since, C++ supports
object oriented paradigm, thus, demonstrates the compatibility of good
solution expression as it dcals with higher-level concept like objects and
classcs rather than functions and data, It also produces maintainablc code.
The programs that are easicr to understand are casier to maintain,

Good Library Support: One of the fastest ways to create a program is to
use already written code from the library. C-++ libraries are easy to use
and can be used in creating new classes, C++ guarantees proper
initialization, clean up and call to library functions/classes, you can.use the
libraries by just knowing the message interfaces.

Source Code Reuse using templntes: Template feature reuses same
source code with automatic modification for different classes. It is a very
powerful tool that allows reuse of library code. Templates hide complexity

_of the code reuse for different classes on the user,

L

E rror Handling: C++ supports error-handling capabilitics that catches the
cxrars and reports them too. This feature provides control of error handling
to the programmers in a similar way as being done for the libraries.

P rogramming in Large: Many programming languages have their own

limitation; some have limitations on linc of code, some on recursion ctc.

however, C++ provides many features. that supports the programming,.
S ome of these features are:

e Templates, namespaces and exception handling,

e Strongly typed easy to usc compiler,

Au Intreduction to Object
Oriented Programming -

® Small or largé programs are aliowed,

. Objects help in reduging complex prablem to manageaﬁle one,
Checli Youy Progress 2 -
1 State -“I‘rgge{T)‘o_r Ea_lse‘(F-)

(a)-.ZObjec; Oriepted Frogramning can'not be used for client SErVCrapplications,

‘ _ True [False [
(b) The kern_el of Linux Operating System is inplemented using C.

True [] Faise []

(e) .Onc'of' the 'flq\iantages of .object oriented database manhgemént Systém is
that it reduces developmental costs. . © 7 True [jif?aiéé'm

(d) _ObjedgtOr_igptcc_llngqam‘ming_c:l—h isslowerthan C.. True [IFalse E_‘[

© () Cir hibraty is:not as good as €. -~ Trug [] Fakse[]
() Erron]iand‘liq'g:qqnndt be done in C++ - "True [Falsg =]

© 2} What :;;thehea_in_hg:o_ff‘e‘):p‘;egsibq_'Céﬁ{b‘in:tlié contextof C++; Whsrek: -

a and'b 2!l are.complex numbers.

1.7 SUMMARY

Object-oriented programming offers a new and powerful model for writing
computer software. The basic backbone being the object, which sends and
receive messages, object oriénted programming paradigm speeds up the
program development and improves maintainability, reusability and modification
of a program,

Object oriented programming requires a major shift in thinking by .
programmers. The C++ language offers an easier transition via C, but it stii}
requires an Object oriented design approach in order to make proper use of this
technology.

C++ is an object-oriented version of C. It is compatible with C (it is actually a
superset), so that existing C code can be incorporated into C++ programs. C++
programs are fast and efficient, qualities which helped make C ap extremely
popular programming language. C++ has become so popular that most new C
compilers are actually C/C++ compilers. However, to take full advantage of
object-oriented programming, one must program (and think!) using objects,

1.8 MODEL ANSWERS

Check Your Prgress 1

1) The main difference is in the approach. The data of objects can be
modified by the functions of that object/class whereas in procedures/
functions there is concept of loca) data and global data. The basic

L

. advantage of such OOP scheme, thus;-4s what operations that can be
performed on objects are known and one can eastly determine which
clements/function/object has caused an error in data, if any.

2} Through interface mcssages.
3} 1) Reusability

2) Maintainability

3) Modular hierarchical design
Check Your progress 2
1} -a) False

b) . False

¢) True

d) True

cj False

f) False

2) You as a programmer have to define a meaning for the message ‘+' as it is
not directly defined in the language for complex number objects. How can
you do it? You will learn about how to do such defining things using C++ in
block 2.

Whnt Ii Olject Orlented

Programming?

SR = st e

UNIT2 OBJECTORIENTED
PROGRAMMING SYSTEM

~ 2.8 Summary

Structure

2.0 Introduction

2.1 Objectives

2.2 What is QUPS?
2.3 Class

2.4 \ Inheritance

2.5 MAhstraction

2.6 Encapsulation & Information Hiding

o

2.7 Polymorphism

(A2} L1-vid

2.9 Modcl Answers

2.0 INTRODUCTION

Object Oricated Programming over the last decade has become a major trend
in developing software and is accepted in both industry as well as rescarch labs
and academia. Object Oriented Programming System (OOPS) has come a long
way and has secn many languages implementing it as a way of developing
software. OOPS is implcmented by languages in many flavours, some arc
purely object oriented (for example SMALLTALK) and some are a
combination of traditional procedure based and Object-Oriented programming,.
OOPS have several advantages over earlier programming paradigms. In this
unit, we will present a general description of the basic concepts of object-
oriented programming.

Object oricnted technologiss can either confuse you or make vou suecessful, It
deperds on your approach of using them and your understanding of the ultimate
goal of object-oriented (OO) languages.

2.1 OBJECTIVES

After going through this Unit you will be able to:
@ Describe the concepts of Object Oriented Programming;
Decfine various terms used in Object Oriented Programming: and

@ Describe the terminology like abstraction, encapsulation, inheritance,
polymorphism,

2.2 WHAT IS O0OPS?

Object Oricnted Programming Systems (OOPS) is a way of developing

software-using Objects. As described in the previous unit, Objects are the real
world medels, which are entities in themselves. That is they contain their own
data and behaviour, An object resembles the physical world. When something

is called as an object in our world, we associate it ‘with a name, propertics etc.

It can be called or identified by name and/ or properties it bears. When these
real world objects are called they act in some or the other way. Similarly,
Objects in OOPS are called or referenced by way of messages. Objects have
their own internal world (data and procedures) and external inferface to
interact with the rest of the program (real world}. -

Thinking in terms of objects results from the close match between objects in
the programming sense and objects in the real world. What kind of things
become objects in object-oriented programs? The answer depends on your
imagination, but here are some typical categories to start you thinking

Physical Objécts

ATM in Automated teiler machines
Aircraft in an Air traffic control system
Countries in the political model

Elements of the Computer User Environment
Windows

Menus

Gr_aphic-Objc;:ts (lines, rectangles, circles)
The mouse, keyboard, disk dri‘_ves, printer
Data Storage constructs

Arrays

Stacks
Linked Lists

Binary Trees

Human Entities

Employees

Students

Customers

Let us think about an object: cnfployee: The question that we should ask for
this object design is: “What are the data items related to an Employce entity?
And; What are the operations that are to be performed on this type of data?”

One possible solution for employee type may be:
Ohyect: Employee

Data: Name, DOB, Gender, Basic Salary, HRA, Designation, Department,
Contact address; qualification, any other details.

Operations: Find_Age ompute_Salary, Find_address.
Create_new_employ:e_object, delete_an_old_employee_object.

But now the ob\:riou_s Question is: How are the objects defined?

The Objects are defined via the classes.

Programming System -

OhJeet Ortcuted -

r— o .1

:&il Introductien to Objevt
Orlented Programming

- 2.3 CLASS

Objects with similar properties are put together in a class. A class is a pattern,
template, or blueprint for a category of structurally identical items (objects).
OOPS programmers view Objects as instances of Class. A class is a blueprint
from which objects can be created/instantiated.

Class contains basic framework i.c. it describes internal organisation and
defines external interface of an Objcct, When we say a class defines basic
framework, we mcan that it contains necessary functionality for a particular
problem domain. For example, suppose we are developing a program for
calculator, in which we have a class called calculator, which will contain all the
basic functions that exists in a real world calculator, like add, subtract, multiply

ctc., the calculator class will, thus, define the internat working of caléulator and

provides an interface through which we can use this class. For using this
calculator class, we need to instantiate it, i.e, we will create an object of
calculator class. Thus, calculator class'will provide a blueprint for building
objects. An object which is an instance of a class 1s an entity in itself with its
own data members and data functions. Objects belonging to same set of class
shares methods/functions of the class but they have their own scparate data
members.

Class in OOPS contains its members and controls outside access i.e. it
provides interface for external aceess. The class acts as a guard and; tnus,
provides information hiding and encapsulatlon These concepts are dlscusscd
later in the unit.

Class

Member Function |
Member Function 2
Member data A
Mecmiber data B

Object 1 ~ Object 2

Value.of Member data A .
Value of Member data B

Value of Member data A
Value of Member dala B

Figurce I: Class and Objects

All the objects share s same member data functions but maintain separate copy
of member data. (Please refer figure 1). You can use class for defining a user
defined data type. A class serves as a plan, or 2 template that specifies what

data and what functions will be included in objects of that class. Defining the Object Oriented
class does not create any objects, just as the mere existence of a type int does Programming Systcu
not create variables of type int.

A class is a description of a number of similar objects. A class has meaning
only when it is instantiated. For example, we can use a class employee directly.
We define a class employee and instantiate it.

Class Employee;
Empioyee John;

Now we can have various operations on John like compute 'salary of John,

" Check Your Progress |
1) Which of the following cannot be put under the category of an object.

& Linployers
¢ Manager
o Doubly linked list
o Quick S—Orlingofnumbers
& 3Square rpot ¢f a number
o Students
e Word file

2) - State True or False

1) Two objects of same class share same data values. True [] False]
b) A class is an obstruction of an dbjcct. True [] False []
c) An iﬁstanti:uion of a class is an object. True |:|_False a
d) Objects are associated wilh one or more classes True [JFalse []

2.4 INHERITANCE

Let us now consider a sifuation, where two classes are generally similar in
nature with just couple of differences. Would-you have to re-write the entire

class?

Inheritance is the QOPS feature which allows dertvation of the new objects
from the existing ones. It allows the creation of new class, called the derived
class, from the existing classes called as base class.

The concept of inheritance allows the features of base class to be accessed by
the derived classes, which in turn have their new features in addition to the old
base class features. The original base class is also called the parent or super
class and the derived class is also called as sub-class.

An example

Cars, mopeds, trucks have certain features in common i.e. they all have
wheels, engines, headlights etc. They can be grouped under one base class
called automobiles. Apart from these common features they have certain
Jdistinct features which are not common like mopeds have two wheels and cars
have four wheels, also cars uses petrol and trucks run on diesel.

n}\ﬂ futroruction o Objcct

Grleoted Programming

22

The derived class has its own features to in addmon to the class from which
they are derived. -

BASECLASS

FEATUREBI

FEATURE B2

FEATURE B3

FEATURE B4

Derived CLASS one Derived CLASS two

Fi. *TUREB] ' " FEATUREBI
FEATLIRE B2 : FEATUREB2 -
FEATUREB3 FEATURERB3
FEATUREB? FEATURE B4
FEATURECI FEATUREC2.

"Figure 2: Inherjtance

In the fipure 2, Classes one and two are derived from base class, tote that -
both derived clnsses have their own features C land C2 in addition to derived
features Bl, B2, B3, B4 from base class,

Let us extend our e\amp!e of employce class in the context of Inheritancs.
After creating the class Employee, you might make a subciass called Manager
which defines some manager-specific operations on data of the sub-class

‘manager’. The feature, which can be included, may be to keep track of
employee being managed by the manager.

Inheritance also promotes reuse. You do not have to start from scratch ‘when
you write & new program. You can simply reuse an existing repertoire of.
classes that have behaviour similar to what you need in the new program,

Inheritance i is of two types

Single Inherrmm e

' When the derivation of 2 derived class is from one base class it is called smgle

inheritance,

: ‘Muiniole Inheritance .

When the derivation of' 2 derwed class is from more than one base classes then
it is multiple inheritance. The concépt of inheritance is same in both type of
inheritance, the only d:fference being i in number of base classes

Advantages of Inhentance '

Reuse of exlstmg codc :md program l‘unctlonahty The programmer does
not have to.write and re-write the same code for logically same problems:”.
They can derive the existing features from the existing classes and add. the g
required characteristics. to the new derwed classes. -

- et

Much of the art of Object Orlented programmmg involves determining the best - Object Orifénted’

. way to divide a program into an economical set of ¢lasses. In addition to - Programming System

. speeding development time, proper class construction and reuse results in far
" fewer lines of code, wh:eh transiates to less bugs and lower maintenance
costs.

Less labour intensive: The programmers do not have to rewrite same Iong
s:mllar programs_mst becauseé the appllcat:on to be. developed has slightly
different requnrements

Well orgamzed The objects are well organised in a way that they follow
some hierarchy.

An example of inheritance could be taken from bank. A bank maintains several
kind of bank accounts.e.g. Savings Account, Current Account Loan Account
etc., all these accounts at bank have certain common features like customer
name, accoint number etc., at, the same time; every type of account has its .
own characteristics e.g., loan account could have guarantors name, savings
account could contain introducers name ete. All these accounts can be derived
from the base class Bank Account and have separate derived classes for each

‘of them.

Classy Bank Account

' Customer Name

Account Number -
Class: Savings Account | | Class: Current Account "l Class: Loan Account
CustomerName Customer Name .- | . | -Customer Name -
Account Number ' “Account Number - “Account Number
Introducer's Name ~ Guarantor's Name ~ | Loan Type

‘Flgure 3: Example of Inheritance

2.5 ABSTRACTION

Whenever we have to solve a problem then first we try to d:stlngmsh between
the important and unimportant aspects of the problem. This is abstraction, thus,
Abstraction identiiies patterns and frameworks, and separate important-and
non-important problem spaces. There could be many]evels of Abstrae*-ons
like,

e Most importan: details,. -
e Less important details,'and
¢ Unimportant d-tails.

To invent programs, you need to be able to capture the same kinds o
abstractions as the problem havé, and express them in the program design.

Fromthe lmplementatlon point of view, a programmer should be concerned with
“what the program is composed of and how does it works?"On the other hand a
user of the program is only concerned with “What it is and what it does.”

I

;,.-\n [utroduction to Qbyect

Orichtyd Frogrummlng

A programming language should facilitate the process of program invention and
design by letting you encode abstractions to reveal the way things work. If the
langnage inherently does not support Abstraction then it is task of the
programmer to implement Abstraction. All programming languages provides a

_way to express abstractions. In essence, Abstraction is a way of grouping

implementation details, hiding them, and glvmg them, at least to some extent, a
cominon interface. -

Abstraction in a procedural language

The principal units of abstraction in the C language are structures and
functions. Both, in different ways, hide elements of the implementation. For
example, C structures group data elements into larger units, which can then be
handled as a single entity. One structure can include others, so a complex
arrangement of constructs can be built from simpler structure constructs. A
structure is an exampie of data abstraction.

Functions in C language encapsulate behaviours that can be used repeatedly.
Data elements local to a function are protected within their own domain.
Functions can reference (call) other functions, so quite complex behaviours can
be built from smaller pieces. Functions in C language represent procedural side
of abstraction.

Well-designed functions are reusable. Once defined, they can be called any
number of times. The most useful functions can be collected in libraries and
reused in different applications. All the user needs is the function interface and
not the source code. Each function in C must have a unique name. Although
the function may be reusable, its name is not.

C structures and functions are able to express Abstractions to certain extent,
however, they maintain the distinction between data and operations on data.

Abstraction in an Object-Oriented language

Suppose, for example, that you have a group of functions that can act on a
specific data structure. To make those functions easier to use by, as far as
possible, you can take the data structure out of the interface of the entity/
object, by supplying a few additional functions to manage the data. Thus, all the
‘work of manipulating the data structure viz. allocating data, initializing, output

-of information, modifying values, keeping it up to date etc. can be done through

the functions. All the user does; is to call the functions and pass the structure
1o them.

With these changes, the structure has become ait opaque token that other
programmers never need to look inside. They can concentrate on what the
functions do, not how the data is organized. You have taken the first step
toward creating an object.

The next step is to provide support to Abstraction in the programming language
and completely hide the data structure. In such implementations, the data
becomes an internal implementation detail; and user only sees the functignal
interface. Becayse an object completely encapsulates their data (hide it), users
can think of them solely in terms of their behaviour.

The hidden data structure unites all of the functions that share it. So an object
is more than a collection.of random functions; itis a groupmg a bundle of
related behaviours that are supported by shared data. -

This progress:on from thinking about functions and data structures to thinking
about object behaviour is the essence of object-oriented programming. It may
seem unfamiliar at first, but as you gain experience with object- oriented

- programming, you will find that it is a more natural way to think about things::
By providing higher level of Abstraction, object-oriented programming
languages give us a larger vocabulary and a richer model to program jn. -

" Mechanisms of Abstraction

Thus, ‘Abstraction is when we create an ob_lect we concentrate only on its
external working while discarding unnecessary details. The internal details are
hidden inside the object, which makes an object abstract. This techn:que of
hiding details is referred to as data abstraction. a

Objects in an ob_lect-orlented language have been introduced as units that
implement higher-level abstractions and work as coherent roleplayers within
an application. However, they could not be used this way without the support_
of various language mechanisms. Two of the most important mechamsms are:
Encapsulation, and Polymorphism.

Check Your Progress 2

1) What is the need of inheritance?

T T P

A e LA e T T R R P AR RN ALY RN R R n a e A e ST U RSN A A E A AR A AR ERERAE Aha

3) State True {(T)or Faise (F)
‘a) Abstraction can be implemented using:structirres. True D.'Fél'se]

b) Multiple Inheritance means that one base class have: multiple: sub-classes,
TrueD'False (|

c) Inheritance is useful only whien it is single inferitance: True [False [j

d) Object oriented languages provide higher level of abstraction, that is, they
are closerto real world objects. True [False (]

2.6 ENCAPSULATION AND INFORMATION HIDING"-

To design effectively at any level of abstraction, you should not be involved too
much in thinking about details of implementation rather you should be thinking
tn terms of units for grouping those details under a common interface.

Fora programmi-ng unit to be truly effective, the barrier between interface and
‘implementation must be absolute. The interface must encapsulate the '

implementation; hide it from other parts of the program. Encapsulation protects

an implementation from unintended actions and inadvertent access. “

In programming, the process of combining elements to create a new entity is
encapsulation, For example, a procedure is a type of encapsulation because it
combines a scries of computer instructions. Its implementation is inaccessible

. n.Objeet- Orlcntcdl-

Programmirg.System

25

i s VR T

" An Introductlon to Oblect
Oricnted Programming

26

" Internal working

to other parts of the program and protected from whatever actions mi ght be
taken outside the body of the procedure. Likewise, 2 complex data type, such
as a record or class, relies on encapsulation. Object-oriented programming
languages rely heavily on encapsulation to create high-level objects.

In an Object oriented language, a class is clearly encapsulated as the data
variables and the related operations on data are placed together in a class.

For example, in a windows based software, the window object contains
Window’s dimensions, position, colour etc. Encapsulated with these data are
the functions which can be performed on Window i.e. moving, resizing of
Window etc. The other part of this window program will call upon window
object to carry out the necessary function. The cailing or interacting with the
window.object will be performed by sending messages to it. The required

-action will be performed by the window object according to its internal

structure. This internal working is hidden from the external world or from the
other part of the software program.

"Position
Colour
Size etc.

[— e — —— — — e — — ey m—

Implementation of various
. inferface functions/methods

Move ()
Resize(..)
| Change colour (..}

Exter .al interface

Figure 4 : Window Object

Based on the requirement.and choice-there are three types of access modes of

the members of class:

® ' The data variables of.thb_-clas;"A :éér_l-orl'ly be a_cces;sed' by the functions of

the class A & this is private. modé of access.

.® The data variables of the class A t_:a_ﬁ be accessed by any functions - this*

'is public modé of access,
® The data variables of the class A can onl’ be accessed by the functions -
with some special privileges - this is pre.~ ted mode of access.

Thus, an.object's.variables are hidden inside the object and invisible outside it.
The'encapgulation of these instance variables is sometimes also called ,
information hiding. : -

The process of hiding details of an object or function is information hiding.
Information hiding is & powerful programming technique becaise it reduces
complexity, Une of the chief mechanisms for hiding information is

‘ericapsulation —.combiring elements to greate a larger entity. The programmer

c¢an then focus omthe new.object.without worrying-about the hidden:deils.:In
a sense, the entire hierarchy, of programming languages -~ from machine:

Janguages to high-leve! languages:-— can.be seen'as a formi of-information -

hiding.

Infdrmhti_dn hidihg:is also'used to prevent p_rpgr_émmers:from‘;:Jh'éﬂging‘u—;.-r'
intentionally or unintentionally— parts of a program: o e

===

T,

ﬁt might seem, at first, that hiding the information_in instance variables would Object Oriented.
constrain your freedom as a programmer. Actually, it gives you more room to Programaming Systen
act and free you from constraints that might otherwise be imposed. If any part
of an object’s implementation could leak out and becoine accessible or a
concern to other parts of the program, it would tie the hands-of both, the

. person who have implemented the Object and of those who would use the
object. Neither could make modifications without first checkmg with the other.

For example, that you are interested in developing the object say “Pump" for
the program that models use of water.and you want to incorporate it in another
program you are writing. Oncc the interface to the object is decided, you do
not have to be concerned about fixing the bugs, and finding better ways to
implement it, without worrying too much about the people using it.

You will decide all the functions and operations of pump and you will be
providing a complete functional object i.e., pump for the other program through
an-interface. The programmer of the another program will solely depend on the
interface and will not be able to break your code and change the functionality
and implementation of the object pump. As a matter of fact rather s/he will not
be even knowing about the implementation details of the object pump. Sthe will
simply be knowing the functional details of the object pump. Your program is
insulated from the object’s implementation. This way the information about the
object pump will be hidden from all other modules except the one of which it is
part.

Moreover, although those implementing or using the object pump woutld be
interested in how you are using the class and might try to make sure that it
meets your needs, they do not have to be concerned with the way you are
writing your code. Nothing you do can touch the implementation of the object
or limit their freedom to make changes in future releases. The implementation
is insulated from anything that you or other users of the object might do. '

2.7 POLYMORPHISM

The word polymorphism is derived from two Latin words poly (many) and

morphs (forms). This concept of OOPS provides one function to be used in

many different forms depending on the situation it is used. The polymorphism is

used when we have one function to be carried out in several ways or on

several object types. The polymorphism is the ability of different objects to
~respond in there own ways to an identical message.

When a message is sent requesting an object to do a particular function, the
message names the function the object should perform. Because different
objects can have different functions with the same name, the meaning of a
message must be decided with respect to the particular abject that receives the
message. Thus, same message sent to two different objects can invoke two
different methods.

The main advantage of polymorphism is that it simplifies the programming
interface. 1t allows creation of conventions that can be reused from class to
class, Instead of inventing a new name for cach new function you add.toa -
program, the same names that may be reused. The programming interface ean
be described as aset of abstract behaviours that may be different from the
classes that implement them,

Overloading

The terms “polymorphism” and “argument overloading” refer basically to the
same thing, but from slightly-different points of view. Polymorphism takes a : 27

'\x\u lulroduﬂwu te Object 'pluraliétic point of view and notes that severzl classes can have a method with i

Oricuted Programming the same name. Argument overloading takes the point of the view of tha
funtion name and notes that it can have different effects depending on what
kind of object it applies to.

Operator overloading is similar. lt refers to the ability ro turn dperators of the
language (such as *==" and '+’ in C) into methods that can be assigned
particular meanings for particular kind of objects.

For example, we need to build a program, which-will be.used for addition. The
input to the program should not depend on input variable, that is it should be
able to produce the resuit of addition-whether the input is of integer or float or
character variable.

The Polymorphism allows the objects to act as black boxes, i.e. they have
common external interface which will allow them to be called or manipulated in
the same way. But their internal working and the output is different from each
other which depends on the way in which they are invoked or manipulated.

Add(int a, intb) Add (float a, Moar b) Add (char a, char b)

Figure 5: Example of Pelymorphism

These addition functions acting as black boxes. All of them does the same
thing and bears the same name but perform differently, depending on the : f
arguments passed to them. -

Polymorphism also permits code to be isolated in the function of different
objects rather than be gathered in a single function that enumerates all the
possible cases. This-makes the code you write more extensible and reuzable.
When a new case comes along, you do not have to reimplement existing code,
but only add a new class with a new function, leaving the code that is already
written alone.

A very common example for the above is using the “draw” function of an
object. We might have to draw a circle, or square or triangle etc. But for-
different drawing methods we will not be creating different methods like draw
Circle or draw Square etc. rather we will be defining draw methods with
appropriate arguments.

For example,

e Draw (float radius) - Call to this kind of argument will draw cu’cle e.g.
draw(ﬂoat 5. 2 Y will draw circle with radlus 5.2.

) Draw (float a, tloat b), wiil draw square or rectangle.

The same can be extended to sub-classes also where from a base class:shape
sub=classes such as circle, square and rectangle can be created. Each sub-
class will _have its own implementation for the base class function draw ().
Thus, enabling drawing of circle or square or rectangle based on the sub-class
that envokes the message. Thus, polymorphism is a very strong mechanism
that supportreuse of similarities among object hiding dissimilarities under
different behaviour as a result of same message to different objects. The

2% lmplemenrat:on level detalls about polymorphism is gwen in block 2.

‘Ghack Vour Progress 3
D What is operator overloading? Is it different from polymarphism?

M State l“ruc or False
:1) E ncmwh!mn involves data hiding. C Triie [J False []

by A window-h: m.dummnmcm has muables like position, colour, size that
can be modilted by any Tunction. This 1s a valid example of information
. Dhiding. _ True I:I’False m

¢) Information h:dmf- increase maintenance related problems.
True Ij False A

d) _ Polvmorplw;m can be unp[cmented through any object oriented programmm“
language. - True [False [

2.8 - SUMMARY

. In this unit, an overview of various concepts relating to object oriented system
:has been presented. The base of all the concepts in objects oriented
programming is the “object”. All the concepts are related to either its
properties or behaviour. Class defines the behaviour and the data members of
an object. An object encapsuiates its data (generally) and generally external

 interface is the only media for communication with the objects. [nheritance and
polymorphism are the concepts that have given major advantages to object
oriented programming. Thus, the basic concepts discussed in this unit can be
considered as the basic strengths of object oriented programming system.

2.9 MODEL ANSWERS

Check Your Progress 1
1) Quicksorting of numbers; square root of numbers.

2) a) False

b) False
¢) True
d) Talse

Chcck__ Your Progress 2

1) I;{‘l‘mritance helpé in replresenting
1} Classes in a hicrarchy: Well-organized problem solution space.
2) Extending existi‘ng classes thus, promotes reuse.
3) Reducingthe duplication of efforts.

2) Abstraction is to create model of behaviour of a real object and Iudmg its
internal working details,

Objeccr Orlented
Programmniing 3y sten

An Introductivn to Objeet . 3) a) TFalse
Oriented Progranunlog .
' b) False
¢} False .
. dy True

Check Your Progress 3

1) Operator overloading is the way of defining the meaning to operator for a
class by using methods/functions for operators. For example, the function
for operator + can be written that defines conzatenation of two string
objects. Polymorphism is a generic concept that involves operator and
function overloading. It can be used across several classes where same
function name handie may be used for different types of object. -

2) a) True
b) False
¢) False
d) True

30

{ ~rm—— | oY

‘UNIT3 ADVANCED CONCEPTS

Structure

3.0 Introduction
3.1 Objectives
3.2 Dynamism

321 Dynamic Typing
322 Dynamic Binding
3.23 Late Binding
3.24 Dynamic Loading

Structuring Programs

[P3]

[
th A La

i{eusability

Orgaﬁizing Object-Oriented Projects
350 Large Scale Designing

L¥5]

3.52 Scparate Interface and Implementation
3.53 Modularising
3.54 Simple Interface
3.55 Dynamic Decisions
356 Inhgritance of Generic Code
357 Reuse of Tested Code

3.6 Summary
3.7 Model Answers

3.0 INTRODUCTION

Object Oriented design has become popular in the industry.-In the previous two
units of this hlock our focus was on discussion of some of the basic concepts
of object-oriented programming. However, in this unit we would like to touch
upon some of the advanced concepts that are useful for implementation of
object-oriented programming paradign. The unit include discussions on !
dynamism, the basis for overloading and polymorphism, the reusability that is
the plank for building reusuble classes using standards/tools like CORBA,
COM/DCOM ete. and software project related issues. However, in this unit
our objective is not to touch issues relating to object oriented modeling and
design that will be covered in the Jast unit of the block.

3.1 OBJECTIVES

At the end of this unit you should be able to:

® Define the dynamism and its implications in the context of overloading
polymorphism;

-

® Describe the reusability concepts, that is bad to better class design; and"

® Discuss the features of object oriented: projects.

. | — |

e

—5

T An Tnvrgduction tu Ohjoct

Orieated Programming - 3.2 DYNI& EVIISNI

Historically, the amount of memory allocation was detecrmined at the compile
and link time of the Program, The source code size was fixed and generally the
memory allocated to a Program was-as per the source code and could not be
increased or decreased once memory' is allocated. The approach was
restrictive in nature. It not only put the restriction of maximum size of the code
for various Programming Languages but also the program design and
Programming techniques being followed. For example. a- function for allocation
and de-aliocation of memory could not be thought of for such a system,
However; development in hardware and software technology and with _
Functions {like malloc(). new) that dynamically allocate memory as a program
runs opened possibilities that did not existed before.

Compile-time and Jink-time constraints are {imiting in pature as they force
resource allocation to be decided from the information obtained from the
source code, rather than from the lnformatlon that is obtained from the running
Program.

Although dynamic aliocation removes one such constraint that is allocating
'memory at run time to a data abject, many others constraints equally as limiting
as static memory allocation. remain. For example, the objccts that make up an

-application must be bound to data types at compile time and the boundaries or
size of an application are typically fixed at link time. The above constraints
necessitates that every part of an application must be created and assembled in
a single executable file. New modulcs and new types cannot be introduced as
the program is being executed.

Object-oriented programming systems tries to overcome these constraints and
try to make programs as dynamic as possible. The basic idea of dynamism is to -
move the burden of decision making regarding resourccs allocation and code
properties from compile time and link time to run time. Thé underlying
philosophy is to allow the contrui.of resources indirectly rather than putting
constrains on their actions by the demands of the computer language and the
requiremeuts of the compiler and linker. In other words, freeing the world of
user’s from the programming environments. But what is dynamism in tne
context of Ob_]t..CtS oriented- dcmgn"

There are three kinds of dynannsm for object-oriented design. These are:
® Dynamic typing: That is, to determine the class of an object at run time.

e Dynamic binding : That is, the decision object involving a function in
response to a call is moved to run time.

® Dynamic loading: That is. adding new components to . program as it is
getting cxecuted,

Let us discuss them in more detail in the following sub-sections.
3.2.1 Dynamic Typing

In general, the compilers give an error massage if the code assigns a value to a
variable of a different type that it cannot accommodate. Some tvplcal warning
" messages in such cascs may be as under:

“Incompatible types in an assignment”
“assignment of integer from pointer does not have a cast”,

Type checking at compile time is uscful as it tries to catch many expressions
39 . related errors, however. there are times when it can tnterfere with the benefits

‘BF mechanisms like polymorphism or the mechanisms whare the type of an Advanced Coneept
object is not known till run time.

Suppose, for example, that you want-to send an object a message to perform
the print method. As the case with other data elements, the object is also
répresented by a variable. In case the class of this variable is to be determined
at compile time then it will not be possible to change the decision about what
kind of object should be assigned to the variable at run time. Once class of
variable is fixed in source code then it automatically fixes the version of print
method that is to be invoked in response to the message. -

However, if we delay the assignment discovery of a class/type of a variable,
then it provide a very flexible approach of class- to- type binding and results in
assignment of any kind of object to that variable. Thus, depending on the class
of the receiver object, the print message might invoke different versions of the
mcthod and produce very different results at run time.

Dynamic typing is the basis of dynamic binding (Plcase refers to next sub-
scction). However, dynamic typing docs more than that. It allows associations
between objects to be determined at run time, rather than fixing them to be
encoded in static compile time design. For example, a message could pass an
object as an argument without declaring cxactly the type/class of that object.
The message receiver may then send a message to the object, again without
ascertaining the class of the object. Beeause the receiver uses the object to do
some of its own work. which is in a'sense customized by the object of
indeterminate type (indetcrminate in source code, but, not at run timc).

3.2.2 Dynamic Binding

In standard C program, one can declare a set of alternative functions, for
example, the standard string-comparison functions,

- int stremp(const char *. const char *): /* casc sensitive */
int streasecmp(const char *, const char *}; /* case insensitive*/

Let us declare a poiuter to function sting_comparc that has the same return
and argument types:

nt (* string_comparc)(const char *, const char *);

In the above case, vou can determine the function assignment to pointer at run-
“imc using the following code (through command line arguments) ’

if { **argv =="{")

string_comparc = strcasecmp;

else
string_compare = strcmp:.
Thus. you can call the function through the pointer:

if (string_compare(s!. s2))

This is a static time binding, where the procedures will be bound at compile
time but for a string, which function to follow will be determined at progrant
run time. '

Tlys is quite close to what in object-oriented programming is calicd dynamic
binding. Dynamic binding means that delaying the decision of exactly which
method to perform until the program is running.

- An futroductlon to Ohject Dynamic binding is not supported by all objects oriented langnages. it can -

Oriented Prozramniuy casily be accomplished throngh messaging. You do not need to go through the
indirection of declaring a pointer and assigning values to it as shown in the -
example above. You also need not assign t.ach alternative procedure a
different nanie.

Messages arc used for invoking mcthods indirectly. Every message must
match a method implementation. To find the matching method, the messaging
system must check the class of the receiver and locate the implementation of
the method requested in the message. Whén such binding is done at run time,

. the method is dynamically bound to the message. When it is done by the
compiler then the method is statically bound.

Dynamic binding is possible even if of dynamic typing does not exist in a

pregrmming language but it is not very uséful, For example. the benefits of

waiting until run time to match a methed to a niessage when the class-of the
. . . e .

receiver is already fixed and known to the compiler ar€ very little. The

compiler could just as well find the method itself, such results will not be

different from run-time binding results.

However, in casc of the type/class of te receiver is dynamic the compiler
cannot determine which mcthod to invoke. The method can be bound only afte:
the class of the recciver is bounded at run time. Thus Dynamic typing, entails
dvn:unlc binding.

Dynamic typing opens the possibility that a message might have very different
resulis depending on the class of the receiver because the run-time data may
influence the outcome of a message.

Dynamic typing and binding opencd the possibility of scnding messages to
objects that have not yet been designed. If object types need not be degided
until run time, you can give more fr’cedom to designers to design their own
classes and name their own data types, and still your code may send messages
to their objtcts. All you need to decide jointly is thc message, that is, the
interfaces of the objects and not the data types.

3.2.3 Late Binding

Some object-criented programming langnages (such as C++) require a message
receiver to be statically typed in source code, but do not require the type to be
exact as per the following rule:

“An objéct can be typed to its own class ot to any class that it inherits from™.
The compiler, therefore, cannot differentiate whether a message receiver is an
instance of the class specified in the type declaration OR an instance of a
subclass, OR an instance. of any further derived class. Since, the sender of the
message does not know the class of the receiver, it does not know which
version of the method named in the message will be invoked..

As a message is received by a receiver, it can either receive it as an instance
of the specified class’and the class can simply bind the method defined for that
class to the message. As an alternative, the binding may be delayed to run- -
time. In C++ the binding decisions are delayed to run time for the methods, also
called mcmber funcuons which are in the same inheritance hierarchy.-

This is feferred to as “late binding" rather than “dynamic bmdmg It i3
“dynam:c in the sense that it happens at run time,-however, it carries with it

strict compile-time type constramts whereas, “dynamrc bmdmg as dlscusscd
earller is unconstrained. ’

1

S 324 Djmnmic Loading o Advanced Coucbats™

From the von Neumann architecture days, the gcneral rule for runninga
program-is to link all its parts together in one file the entire program is Io1dt:d
mto memory that may be virtual memory, prior to execution.

Some cobject-oriented programming environments have overcome this
constraint. They allow different parts of an executable program to be kept in
separate files. The program can be created from the bits and pieces as and
when they are negded. The component of the programs are dynamically loaded
and linked with the-rest of program at run-time. The various facilitics executed
by a user determine the parts of the program that are to be kcpt/m memory for
“execution purposes.

This isa verv useful concept as. in general, only a small core of a large
program is used by the uscrs. Thus, only standard core program may be loaded
in the memory for cxecution. Other modules may be called ns per the
requested of the user. Thus. the component/sections of program that. arc not
exccuted at all are also not loaded in thé memory.

Dynamic loading raises some interesting possibilities. For example, it
encourages modular development with an added flexibility that the entire
program may not to be developed before a program can be used. The programs
can be delivered in picces and vou can update one part of it at any time. You
can also create program that groups many different tools under a single
interface, and load just the tools desired by the uscr. In addition, alternative
sets of tools may also be offered for the given task, the user can select any
ane tool from the available sefs. This will cause only the desired tool set to be
loaded. -

As per prescnt one of' the important benefits of dynamic-loading is that it
makes applications extensible. A program designed by vou can be added or
customized, as per your needs. Such examples are common when we look into
onerating svsl..ms like Linux and it utilities. Such program must provide some

basic framework for extension: at run time these program find the picces that
have been implemented and load them dynamically,

Onc of the key requirements of dynamic loading is to make a neivly loaded part
ofa prognm to work with parts already ruining, especially when the different
parts of the program are written by different people. However, such a problem |
docs not exist in an object-oriented environment because code is organized into
logical modules with a cleor distinction between implementation and interface,
When chsscs arc dynamically loaded, the newly loaded code can not clash
with-the '11rt.'1dv loaded code. Each class encapsulates its implementation 'md
has .an mdependent name space.

In 'lddltlon dwmm]c tvping and dynamic binding concepts allows classes-
desigucd by others to fit effortlessly into your program dbSlgn Your codc can
send messages to other’s objects and vice.versa ncither of you has to know’
what classes the others have implemented. You only nced to agree on the
communication protocal

Loading and Linking

Dynamic Io‘ldln_l_., also involves dynamic Linking of prm,lams that requlres
various parts to be joined so that they can work together. The program is
loaded into volatile memory at run time. Linking usually precedes Ioading.
Dynamic loading involves the process of separately loading new or additional
parts of the program and linking them dynamically to the parts of the program
1lrcady runmng

An Tutraduction to Object
Qriented Prugramming

3.3 STRUCTURING PROGRAMS

An Object-oricnted program has two basic kinds of structure;
© The first Structure is in the inheritance hicrarchy of class definitions.

e The other structure is the pattefn of message passing as the progr’mn rus.
These-messages create a network of object connections,

The inheritance hicrarchy determines how objects are related by type. For
example, in the program that models workers in a organization, it might turn out
that Managers and Employees are of the same kind of object, except that
manager controls a group of employees. Their similarities can be captured in
the program design if the manager and employec classes inherit from a '
common ciass: Human Resources.

The network of objcct connections explains the working of the program. For
cxample. Manager objects might send message requesting employee to do a
picce of wark. Employee object might communicate with the tools objects. etc.
To communicate with cach other in this way. objccts must know about each
others existence. These connections define 2 ‘program structure.

Thus, the Object-oriented programs are designed: by laving down the network’
of objects with their behaviours and basic patierns of interaction, and finally by

: arrangmg the hicrarchy of classes. The object-oriented programming require

structuring both-in the activitics of the.. program and its def'nmon in terms of
inperitance hicrarchy of classes.

|
il

3.4 REUSABILITY o 0

One of the major goal of object-oricnted programming is to make rcusable.
programs to the extent possible such that it can be used in many different
situations and applications without re-implementation, cven though it may be in
slighttv.different form, from the earlier usc.

r

Reusability-of 4 program is; influenced by a number of factors, such as:
« Refisvility of code whether it is bug free or not

® | Clarity of-documcntation-

a Simplicity of prc;gramming interface

¢ Efficiency of code

@ The richncss of feature set of an object to cater for many dlffcrent
situations.

These factors can also be used to juage the reusability of any program
irrespective of the language of implementation as well as class definitions. For
example, efficient and well documcntcd programs/functions would be better -

from the reusability point of view in comparison to the programs that are
uvdocumentcd and unreliable.

The class definitions lend. thcmsclw.s to reusable code in a much better form
than that of procedural functions. Functions can be made more reusablc bv

passing dala as arguments rather thap using global variables. However, the .
reusability of functions is still constrained as per the following reasons:

® Function names are global variables by themselves. Each function must
have a unique name. This makes it difficult to relv heavily on library code

T ATt

when building a compiex svstem. 1t makt} the prograntming very extensive
and, thus, hard to lcarn and difficult to generalize. On the other side,
classes can share programnming interfaces. With the samic naming
conventtons used over and over again. a great deal of functionality can be
packaged with a relatively small and casy-to-understand interface because
of vartous concepts like inheritance, overloading and polymorphism.

® The second problem with functions are that they are selected from a
{ibrary one at a time. The programmer needs to pick and choose the -
individual functions as per his peeds. In contrast, objects are the packages
of functionality and not just individual methods and instance values. They
providc integrated services. Thus. an obiect-oriented library does not have
functions that are to be joined by user for a solution. They have objects.
which represent a solution to a problem.

& Functions arc typrcally coupled to particular kinds of data structures for a
specific program. Thie interaction between the data and function is mamr
part of the interface. A library function is useful only to those who are
using the same kind of data structures. However, an-object hides the data,
thercfore, does not face such a problem. This is one of the main reasons
why classes can be reused more easily than functions.

The data of an object is protected by access rights and cannot be altered by
any other part of the program. Methods of a class are therefore responsible for
integrity of data of an object. The external access cannot put an illogical or
untenable state to data of an object. This makes an object data structure more
reliable than that of the data passed to a function, Therefore, methods can rely
on such reliable data and hence the reusable methods are easier to write.

Moreover, because the data of an object is hidden from an external user, a
class can be redesigned to use a better data structure without affecting its

interface. All programs that use the changed class cau use the new version
without changing any source code; no reprogramming is required,

3.5 ORGANIZING OBJECT-ORIENTED PROJECTS

Object-cricnted programming allows restructuring of the program design in
ways that benefit collaboration. It helps in eliminating the need of collaboration
at low-level implementation details, instcad it provides the structures that

. facilitate collaboration at a higher level. The features of the object model, such
as code reusability, complexity controls etc. have provided the way. people
work together. :

5.1 Large Sca‘e Designing

A program des:m.ﬂd at high level of abstraction allows essicr division of laber
on logical lines: a project organization grows oux of this design.

With an object-oricnted design, it is easicr to focus on ¢common goals, instead
of losing them during the implementation. It is also easier for everyone o
visuakize, how the module they are working on, fits into the whole program.
Their collaborative cfforts are, therefore, bkely to be organized and oru.ntul
topvards problem solution.

3,5.2 Separate interface and Implementation

The inter connecitons among various’ components of an object-oricnted
pregram are normally worked out early in the design process. The mtcractwns
mu:it be well defined prior to implementation,

AdvoncegeUTbmatehis i

\ntlnlrr tlu:llnr‘ to Qbject
')rmfru 4 Progrumming

During implementation phase only the interface of object needs to be monitored
for. Since each class encapsulates its implementation and has its own name
space, the object oriented projects need not be coordinated for implementation.

3 Modularizing

Object oriented system support modularity, which implies that a software can
be broken into its logical components. Each of these logical components can be
implemented separately. Thus, software engineers may be asked to work on
different class or module separately.

The benefit of modularization is not only in implementation but also at the
maintenance time. The class boundaries contain the problems that are related
to.a class. Thus, any bug can be tracked to a class and can be rectified.

~ An interesting outcome with respect to separating responsibilities by class is

that each part can be worked on by specialist object. Classes can be updated
periodically for performance optimization and as per the new technologies.
Such updates need not be coordinated with other parts of the object oriented
program. The improvements to a class implementation can be made at any time
ifits interface remains unchanged.

3.5.4 Simple Interface

The mechanisms such as polymorphism in object-oriented programing yields
simpler programming interfaces, since it allows same names and conventions to
be reused in any number of different classes. Thus, object oriented classes are
easy to learn, and provide a greater understanding of the working of complete
system, and an easier ccmperatlon and collaboration mechanism for program
development,

3.5.5 Dynamic Decisions

Since many object-oriented programing languages allow decisions dynamically
viz., at run time, less information needs to be available at compile time (in
source code) for allowing coordination between two objects/classes. Thus,
there is less to coordinate and less to go wrong.

3.5.6 Inheritance of Generic Code

Inheritance in a v,y allows code reuse. It is advisable that in a project you
define your classes as specialization of more generic classes. This simplifies
programming code. It also simplifies the design as inheritance hierarchy
describes the relationships among the different levels-of classes and makes
them easier to understand.

Inheritance also helps in the reliability of code. For example, the code in a
super class is tested by all its subclasses, thus, is tested thoronghly and hence
mzy be most reliable. Similarly, the generic classes of the library are tested by
other subclasses written by other developers for other applications.

3.5.7 Reuse of Tested Code

You mii+- veuse the code as much as possible. This reduces the workload and
you need not start a project from scratch. There is more code available for
reuse; classes themselves are designed keeping reusability in mind. This
enhances the collaboration among the programmers working in different places
or different organizations.

Classes and frameworks available in an object-oriented library may make
substantial contribution to your software. This allows you to concentrate on

what you uo the best and leave other tasks to the library creators. This also Advanced -Concepts

results in faster project completion with less effort.

An interesting facet in OOPS is that the increased reusability of object-
oriented codes also increases its reliability. This is due to reuse of class in
different situation; because the reused classes get tested in different situations

“and applications. The bugs of such classes must have already been diagnosed
and fixed. :

‘Check Your Progress

1} What is dynamic typing? Ifa language does not support dynamic typing
then is it advisable to have dynamic binding? '

2) State True or False

a) Late binding is same as:dynamic binding , True] False [
b) Late binding is the basis of_‘ run-time p'olymor'phism in C+ , .

. _ True [J False []
¢y Dynamic Loaaing goes not involve dynami,c Iinking_. True.lj Fa;ise O
d) Objec;are reusable as tHey support polymorphism. Troe[] F;;Ise a

¢) Object-oriented programming supports better reliability also. ,
True] False J

3.6 SUMMARY

In this unit our aitempt was to cover some of the important ebject-oriented
features in some more details. The features which have been covered include
dynamic typing, dynamic binding and late binding, These concepts are very
important from the viewpoint of providing flexibility in program design and
development. The other concepts which has formed the basis of popularity of
object oriented programming paradigm, are its reusability, reliability and
modifiability. The unit discusses why object oriented programs.are more.
reusable, reliable and modifiable/maintainable.

3.7- MODEL ANSWERS"

Check Your Progress

1) Dynamic typing is the determination of type of an object at run-time. It is
not useful to have dynamic binding without dynamic typing as if types are
Eound then function indirectly get bound to a type/class to wh jch they will
be bound at run-time {(dynamic binding}. '

2) a) False
b} True

" ¢) False
d) False -

e) True - :;.9

11 L

UNIT4 INTRODUCTION TO OBJECT
ORIENTED LANGUAGES

Strucrure
4.0 Intrdductién
4.1 Objecrives
4.2 Objective-C . a

4.3 Python) —_—
4.4 C# (C Sharp)

4.5 Eiffel

4.6 Modl.l;la-} -

4.7 Smali Talk

4.3 Object REXX

49 JAVA

410 BETA

4.11 Various Object Oriented Programming Languages Comparative Chart
4.12 Summary

4.13 Maodel Answers

4.0 INTRODUCTION -

Object-oriented programming offers a new and powerful model for writing
computer software. Object orientation (O0), or to be more precise, object-
oriented programming, is a problem-solving method in which the software
solution reflects objects in the real world. Objects are “black boxes” which .
send and receive messages. This approach speeds the development of new
programs, and, if properly used, improves the maintenance, reusatility, and
modifiability of software. ' y

. Object Oriented programming requires a major shift in thinking by
programmers, however. The C++ language offers an easier transition via C,
but it still requires an object oriented design approach in order to make proper
use of this technology. Smalltalk offers a pure object oriented environment,

- with more rapid development time and greater flexibility and power. Java
promises much for Web-enabling object oriented programs.

There are-almost two dozén major object-oriented programming languages in
use today. But the leading commercial object oriented languages are far fewer
in number. In this upit, let us look into the features of the mostly used object
oriented programming languages. Some of the details provided in this unit are
impiementation oriented, therefore, it is advisable that you may read the unit

© again after having practical experiences,

4.1 OBJECTIVES

After going throuvgh this unit, you will be able to:
e Describe the jmportance of Object Oriented Programming Languages, and

o Discuss tlie features of various Object Oriented Programming Languages.

C is a low-level, block-structured language often used for systems
programming. C++ is an Object-Oriented (00) language developed as an
extension of C and used for application development. Objective C is an Object
Oriented programming language based on C and used for application and
library programming. The Objective-C language is fully compatible with ANSI
standard C and provides classes and message passing similar to Smalltalk.
Objective-C was invented by Brad Cox who wrote the book “Object Oriented
Programming: An Evolutionary Approach” in which he describes-the language.

The compiler recognizes Objective-C source files by a “.m” extension, just as it
recognizes files containing only standard C syntax by a “.c” extension. The .
.most comman set of libraries for Objective-C programming are the Next
libraries like Foundation and Appkit.

Featurés of Objective-C‘

Objective-C includes, when compared 1o C, a few more keywords and
constructs. Objective-C is a powerful, casy-to-learn, object-oriented extension
to C. Unlike in C++, advanced object-oriented features like dynamic binding,
run-time type identification, and persistence are standard features in Objective-

~C which apply universally and work well together. Moreover, the support for
descriptive message names (as in SmallTalk) makes Objective-C code easy to
read and understand. The GNU and NeXTSTEP C compilers support
objective-C,

Svnrax

(@interface declares a new class. It indicates the nume of the class, the name
of its superciass, the protocols adhered to, the layout of the instance variables
{similar 1o the definition of a struct, but including encapsulation information and
declares the methods implemented by this class. A class® interface usuallv
resides in a file called “classname.h’.

@implementalion defines a class. The implementation is no more than a
collection of method definitions. Without an implementation, a class does not
exist at run time. The implementation of a class usually resides in a file called
‘classname.m’.

@category is a named collection of method definitions, which are added to an
existing class. A category is not allowed to redefine a class existing methods.

Objective-C includes the predefined type ‘id” which stands for a pointer to
some object. Thus, ‘id obj;” declares a pointer to an object. The actual class of
the object being pointed to is almost irrelevant, since Objectwc-C does run-time
Type checkmg

-Message declares a method cailed ‘message’. The -’ indicates that the
message can be sent to objects. A ‘+’ instead indicates the message can be
sent to class objects. A method is similar to a function in that it has arguments
and a return value. The default return type is ‘id’. If a method has nothing
useful to return, it returns “self”, which is a pointer to the object to which the
message was sent (similar to ‘this’ in C++).

Dynamic vs..Static C++ follows the Simula 67 orientation of QO programming,
where Objective-C follows the Smalltalk school.

Objective-C have classes similar to Smalltalk. Objective-C is as close to
Snialltalk as a compiled language allows. The following is a list of the features:

Introduction {o Olifcers

4.2_ OBJECTIVE - C . | Orlented Languages i

4]

,'K-;::Intraduetinu to Object Compiling
Oricnted Programming

T R T

& Objective-C is compiled ---Smalltalk is only partially compiled. The current
Objective-C implementations are all much faster than any Smalltalk.

e Objective-C does hybrid typing : one can choose to represent a string asa -

“char ** or as an object, whereas in Smalltalk, everything is an object. This
is a reason for Objective-C being faster. On the other hand, if every bit of
information in an Objective-C program would be represented by an object,
the program would probably run at a speed comparable to Smalltalk and it
would suffer froi not having optimizations performed on the basic classes,
like Smalltalk can do.

Messages

® You may add or delete methods and classes at runtime.

® Much of the syntax, i.e. Smalltalk uses method names like
*a:method:name:’, as does Objective-C. In Objective-C, the message
sending construct is enclosed in square brackets, like this: *[anObject

aMessage: arg]’ whereas Smalltalk uses something like ‘anObject
aMessage; arg’.

o The basic class hierarchy, thart is, having class ‘Object’ in the very top,
and letting most other classes inherit from it.

- Forwarding

e Smalitalk normally use;s ‘doesNotUnderstand:’ to impiement forwarding,
delegation, proxies etc. In Objective-C, these tasks are different:

. Forwarding/dclegétion: ‘forward::” can be overridden to implement
forwarding. On the NeXT, ‘forward::’ is even used when passing to super.

® - Proxies: (Next) An instance of the NXProxy class forwards all methods
" and their arguments to the remote object via Mach messages.

Classes
.- Obj’é;ctjyc-c_h:a's njlet§ classes mostly like Smalltalk.

e Objective-C does not have class variables like Smalltalk, but pool variables
and globals are easil_y emulated via static-variables.

Other Ft_ea'tur'é&

® The possibility to load class definitions and method definitions (which
extend-a class) at run time.

e - Objects are dynamically typed: Full type information {name and type
information of methods and instance variables and type information of
method arguments) is available at run time. A prime example of application
of this féature is*-loadNibSection:owner:* method of NEXTSTEP’s

“Application class. :

e Persistance: .
e Remote objects
e Delegation énd_targetfaction protocols

e There is no innate multiple inheritance (of course some see this as a
benefit).

® No class variables’

'4.3" PYTHON _ LT

"Python is a language that has.always aimed at consistency, simplicity, ease of

understanding, and portability. It is simple (yet robust), object-oriented (yet can .

be used as a procedural language), extensible, scalable and. features an casy to
learn syntax that'is clear and concise. Python combines the power ofa’
complled object language like Java and C++ with the ease of use. It has
efficient high-level data structures and 2 simple but effective approach to.

" object-oriented programming. Python’s elegant syntax and dynaniic typing, -

- together with its interpreted nature, make’ it an ideal language for scnptmg a.nd
Rapid Application Development (RAD) in many areas on most platforms By
the way, the language is named after the BBC show “Monty-Python’s-Flying
Circus” and has nothing to do with reptiles, Making references to Monty
Python skits in documentation is not only allowed, it is encouraged.

The Python interpreter and the. extensive standard-llbra.ry are freely available

in source or binary form for all major platforms from thc Python Website, http:/.

ferww _python.org/ and can be freely distributed. The same site also contams
-distributions of pointers to many free third party Python modules, programs and
tools, and additional documentation.

Features of Python

The Python interpreter is easily extended with new functions and data
types implemented in C or C++ {or other languages callable from C).
Python is also suitable as an extension Ianguagc for customizable
applications. -

' It offcrs ‘much more error checking than C, and, being a very-high-ievel

language, it has high-level data types built in, such as flexible arrays and
dictiondries that would cost you days to implement efficiently in C.

~ Becanse of its more general data types Python is applicable to a much

larger problem domain than Awk or cven Perl, yet many things arc at least
as easy in Python as in those languages.

Python allows you to split up your program in modules that can be reused
in other Python programs. It comes with a large collection of standard -
modules that you can use as the basis of your programs-— or-as examples
to start learning to program in Python. There are also built-in modules that
provide things like file /0, system calls, sockets, and even interfaces to
graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time
during program development because no compilation and linking is
necessary. The interpreter can be used interactively, which makes it easy
to experiment with features of the language, to write throw-away .
programs, or to test functions during bottom-up program development,

Python allows writing very compact and readable programs. Programs
written in Python are typically much shorter than equivalent C or C++
programs, for scveral reasons:

e the high-level data types allow you to express cothplex operations in a single
statement;

. fst_atcrlncnt grouping is done by indentation instead of begin/end brackets;
® no variable or argument declarations are necessary.

Python is extensible: If you know how to program in C, it is easy to add a

" new built-in function or module to the interpreter, either to perform critical

. /

Intrudu:tlon [O.E-ﬂl'- I
" Orlented Lnngungcs

43

7An Introduction to Object

"Oriented Programming

operations at maximum speed, or'to link Python programs to libraries that -
may only be available in binary form (such as a vendor-specific graphics

library). .
e TCP/IP and UDP/IP Network programming using sockets

‘@ Operafing system interface

o GUI development with Tk using Tkinter

¢ Multithreaded programming

e Interactive Web/CGU/Internet applications
® Executing code in a restricted environment

¢ ' Inheritance, type cmulation, operator overloading, and delegation in an
OOP environment,. :

4.4 C# (C SHARP)

C# (C Sharp) is a modern, object-oriented language that enables programmers
to quickly build a wide range of applications for the new Microsoft NET
platform, which provides tools and services that fully exploit both computing
and communications. This is the premier language for the Next Generation
Windows Services (NGWS) Rimntime. This NGWS runtime is a runtime
environment that not only manages the execution of code, but also provides
services that make programming easier. Compilers produce managed code to
target this managed execution environment. You get cross-language integration,
cross-language exception handling, enhanced security, versioning and =
deployment support, and debugging and profiling services for free. C# derived
from C and C++, however it is modem, simple, entirely object oriented and
type safe, Co ;

Because of its elegant object-oriented design, C# is a great choice for
architecting a wide range of components-from high-level business objects to
system-level applications. Using simple C# language constructs, these
components can be converted into XML Web services, allowing them to be
invoked across the Internet, from any language running on any operating
system.,

More than anything else, C# is designed to bring rapid development to the C++
programmer without sacrificing the power and control that have been a
halimark of C and C++. Because of this heritage, C# has a high degree of
fidelity with' C and C++. Developers familiar with these languages can guickly
become productive in C#. As C# is a modem programming language, it
simplifies and modernizes C# in the areas of classes, namespaces, method
overloading, and exceptional handling, Contributing to the ease of use is the
elimination of certain features of C++: no more macros, no templates, and no
multiple inheritance and pointers. '

Features of C#
e Simple

Ci.is a simple langnage. Pointers are missing in C#. In C++ we have 1, .(dot)
and -> operators that are used for namespaces, members and references. But
C# does away with the different aperators in favour-of a single one: the, .(dot)

. operator. All that a programmer now has to understand is the notion of nested
-names. C# provides a-unified type system. This type system enabies-you to
-view every type as-at object, be it a primitive data type oria full-blown:class.

¢ Modern . Introductlon to Object
Oricnted Lunpuages

C# is designed to be the premier language for writing NGWS applications. The
entire memory management is no longer the duty of the programmer - the
runtime of NGWS provides a garbage collector that is responsible for memory
management in the C# programs. Exception handling is cross-language
(another feature of runtime).It provides you metadata syntax for declaring
capabilities and permissions for the underlying NGWS se<urity model.

. Object-Orlented

C# supports all the key object-oriented conzepts such-as encapsulation,
inheritance, and polymorphism. The entire C# class model is built on top of the
NGWS runtime’s Virtual Object System(VCS). Accidental overriding of
methods is overcome in C#. C# supports the private, protected, public and
internal access modifiers. C# allows only one base class. If the programmer
needs the feel for multiple inheritance, he can implement interface.

¢ Type-safe

We cannot use uninitialized variables. For member variables of an object, the
compiler takes care of zeroing them. For local variables, the programmer
should take care of. C# does away with unsafe casts. Bounds checking is part
of C#. Arithmetic operations could overflow the range of the result data type.
‘C# allows you to check for overflow in such operations on either an application
‘level or a statement level. Refertnce parameters that are passed in C# are
type-safe.

e Versionable

In C#, the versioning support for applications is provided by the NGWS
runtime. C# does its best to support this vercioning Although C# itself cannot
guarantee correct versioning, it can ensure that versioning is possxblc for the

" programmecr,

e Compatible

C# allows you to access to different API’s with the foremost being the NGWS
Common Language Specification (CLS). The CLS defines a standard for
interoperation between languages that adhere to this standard. You can also
access the older COM objects. C# supports the OLE automation. Finally, C#
enables you to interoperate with C-style API’s.

e Flexible

If vou need pointers, you can still use them via unsafe code—and no
marshalling is involved when calling the unsafe code.

4.5 EIFFEL

Eiffel is a pure object-oriented language created by Bertrand Meyer and
dcveloped by his company, Interactive Software Enginzering (ISE) of Goleta,
Canada. The language was introduced in 1986. Eiffel is named after Gustave
Eiffel, the engineer who designed the Eiffel Tower. -

~ Eiffel encourages object oriented programming development and supports a
systematic approach to software development. Eiffcl has an elegant design and
programming style, and is easy to learn. .

The Eiffel compiler generates C code, which you can then modify and re-
compile with a C compiler. Its modularity is based on classes. It stresses _
reliability, and facilitates design by contract. It brings design and programming _ 45

" An TIntroduction to Object closer together. It encourages the re-use of software components.Eiffe! offers

Oricated Programming classes, multiple inheritance, polymorphism, static typing and dynamic binding, -
genericity (constrained and unconstrained), a disciplined exception mechanism,
systematic use of assertions to promote programming by contract, and deferred
classes for high-level design and analysis.. ' :

It is hard to generalise, but compared to C++, simple computation-intensive
applications will run perhaps 15% slower. Large applications are often

$. dominated by memory management rather than computation. ISE recently
demonstrated that by simply adding a call to the garbage collector’s “full-
collect” routine at a time when there were' known to be few live objects,
performance became dramatically faster than a corresponding C++ version.

There are several significant language features of Eiffel:

- @ Portable: This language is available for major industry platforms, such as
Windows, O5/2, Linux, UNIX, VMS, etc..

. Open System includes a C and C++ interface making it easily possible to
reuse code previously written.

e “Melting Ice Technology™ combines compilation, for the generation of
efficient code, with bytecode interpretation, for fast turnaround aftera -
change.

¢ “Design by Contract” enforced through assertions such as class
invariants, preconditions and postconditions. :

¢ Automatic Documentation (“Short Form™): Abstract yet precise
documentation produced by the environment at the click of a button.

® Muitiple Inheritance: A class can inherit from as many parents as
' necessary. :

¢ Repeated Inheritance: A class inherits from another through two or
more parents.

® Statically Typed ensure that errors are caught at compile time, rather
than run time. '
® Dynamically Bound guarantees that the right version of an operation will
- always be applied depending on the target object.

. ® The Few Interfaces Principle restricts the overall number of
communication channels between modules in a software architecture:
“Every module should communicate with as few others as possible™.

: 4.6 MODULA-3

Modula-3 programming language is from Digital Equipment Corporation’s
Systems Research Center (SRC). Moduia-3 is a modern, modular, ‘object-
oriented langnage. One of the principal goals for the Modula-3 language was to-
be simple and comprehensible, yet suitable for building large, robust, long-lived
applications and systeins. The language design process was one of .

* ‘consolidation and not inncvation; that is, the goal was to consolidate ideas from
several different.languages, ideas tlia_t'had proven useful for building large -

:sophisticated systems.- ’

The language features garbage collection, exception handling, run-time typing,

generics, and support for muitithreaded applications. The SRC implementation

of this language features a native-code compiler; an incremental, generational,
46 ~ conservative,; multithreoded garbage collector (whew!); a minimal

.recompilation system; a debugger; a rich set of libraries; support for building -
distributed applrcatrons adistributed ob_pect-orrented scripting language; and
finaily; a graphical uscr mterface builder for distributed applications,

Features-.of MODULA-3

e Modula-3 hasa pamcularly srmple definition of an objcct In Mod rla-3 an
object is @ record on the licap with an'associated methad suite. The data
fields of the objcct-define the state and theé method suite defines the
behaviour. The Modula-3 language allows the state of'an object to'be
hidden in an implementation module with only the behaviour visible in the
interface; This is different than C++ where a class definition lists both the
member dataand member function. The C++ model reveals what is
essentlally prrvate "information (narnely the state) to the entire world. ' With
Modula-3 ob_]ccts what should be private can be really be prrvate '

e Modula-3 has the feature of garbage collection. Garbage collection really

cnables. robust, long-lived systems. Without garbage collection, you need to -

. -define- conventions about who owns a piece of storage. In ‘C’, a ‘longjmp” . -
may cause storage td be lost if the proeedure being unwound doesn tgeta
chance 10" clean up.-Exception handling in C++ has the same problems In
general, it is very difficult to manually reclaim storage in the face of -
failure. Having garbage collection in the language removes all of these
'problems Better yet, the garbage collector that is provided with SRC
1n1p1ementatron of Modula-3 has excellent performance It'is the result of

. several years -of production use and tuning.

. Modula—j provides such a standard mterface for creatmg threads In
' "addmon, the language itself includes support for mandging locks. The
_standard libraries provided in the SRC implementation are all thread-safe.
_Trestle, which'is a-library providing an interface to X, is not only thread-
safe,-bit. rtself uses threads to carry out long operations in.the back
ground With a Trestle-based applrcatron _you can create a thread'to carry:
- out some potentrally long running operation in response to a mouse-button
-click. This thread mins in the background without tying up thz nser-
interface. It isa lot srmpler and error prone than trying to accomphsh the
some thlng with signal handlers and timers. -

® Generic interfaces and modules are a key to reuse: One of the principal.

uses is in defining container types such. as stacks, lists, and queues. They
allow containér objects to be independent of the type of entity contained.-

Thus, one needs to define only a single “Table” interface that is then -
instantiated to provide the needed kind of “Table”, whether an integer
table or a floating-point table or some other type of fable is needed.
Modula-3 generics are cleaner than C++ parameterized types, but prowdc
much of the same flexlbrllty

L Modula—B provides a srmp[e single-inheritance object system.

e Existing non-Modula-3 libraries can be importéd. Many existing C librarics
"make extensive use of machine-dependent operations. These can be
. imported as “unsafe” interfaces. . Then, safer interfaces can be built on top
of these while still allowing access to the unsafe f‘eatures of the libraries
- for those applications that need them,

4.7 SMALL TALK

Smalltalk is a purely object-oriented language which cleanly supports the notion
of classes, methods, messages and inheritance. Smalltalk, a programming

- Intruduction to Object
. Orienicd- Longuunges

47

~An Introduction to Object
Orlented Pregromming,

48

language developed in the 1970s at Xerox's Palo Alto Research Center in
California.

Unlike “hybrid” object-oriented languages C++, Smalltalk is considered to be a
“pure” object-oriented language. Smalitalk is said to be “pure” for one main
reason: Everything in Smalltalk is an object, whereas in hybrid systems there
are things, which are not objects (for example, integers in C++ and Java).

The benefits of the “everything is an object” philosophy are great, and pure
languages such as Smalltalk are considered to be more productive and (more
importantly) more fun to program in. :

Smalltalk is fundamentally tied to automatic dynamic memory management, and
as such must be supported by an underlying automatic memory management
system. In practical terms this means that a Smalitalk programmer no longer
needs to worry about when to free allocated memory. When finished with a
dynamically allocated object, the program can simply “walk away” from the
object. The object is automatically freed, and its storage space recycled, when
there is nothing else referencing it.

All Smalltalk code is composed of chains of messages sent to objects. Even the
programming environment itself is designed within this metaphor. A large
number of predefined classes are collectively responsible for the systein’s
impressive functionality. Differcnt from most other programming tools all of
this functionality is always accessible to browsing and change, a fact which
makes Smalltalk an extremely flexible system, which is easy to customize
according to one’s own preferences.

Smalltalk programs are considered by most to be significantly faster to develop
than C++ programs. A rich class library that can be easily reused via
inheritance is one reason for this. Another reason is Smalltalk’s dynamic
dcveloprjﬁcnt environment. It is not explicitly compiled, like C++. This makes
the development process more fluid, so that “what if” scenarios can be easily
tried out, and classes definitions casily refined. But being purely object-
oriented, programmers cannot simply put their toes in the 0-O waters, as with
C++. For this reason, Smalltalk generally takes longer to master than C++, But
most of this time is actually speat learning object-oriented methodology and
techtiques, rather than details of a particular programming language. In fact,

- Smalltalk is.syntactically very simple, much more so than cither C or C4++.

There are many different versions of Smalltalk. You can think of them as
different dialects of the Smalltalk language, much like there are different
dialects of a human languags.

Open Source & Free Smalltalk Versions
® Squeak Smalitalk

® GNU Smalltalk ~

e Little Smalltalk

Commercial Smalltalk Versions

Dolphin Smalltalk

Object Connect’s Smalltalk MT

'@ Exept’s Smalltalk/X.

e Cincom’s Visual Works Smalltalk

‘e Cincom’s Object Studio Smalitalk

o - IBM’s-Visual Age Smalltalk

-o Pocket Smalltalk
° QKS Smalltalk Agents.

4.8 OBJECT REXX

IBM Object REXX is an object-oriented programming language suited for
beginners as we|l as experienced OO programmers. It is upward compatible
with previous versions of classic REXX and provides an easy migration path to
the world of objects. Because it can be used with REXX conventional
programming, Object REXX protects your investment in existing REXX
program code. It provides many programming interfaces to existing
applications, such as DB2, C, and C++ applications. Object REXX runs on
AIX, Linux, 08/2, Windows 2000, Windows 98, Windows Me and
Windows NT.

Features of REXX

e Suitable for solving small autemation problems and developing fully
realized applications.

. Incluaes arich set c:_f‘ system interfaces.

e Can be used for writing powerful command procedures for Windows.

¢ Includes the complete Object REXX Intérpreter.

e Runsimmediately without compilation or linkage.

e (andevelop and debug Object REXX applications, including GUIs
(Development Edition).

¢ Support for OLE/Active X. |

) UNiCODE conversion functions.

e Enhanced winh full object orientation.

e Designed for object-oriented programmmg, and also allows REXX
conventional programiming.

¢ Provides a REXX API to develop external function libraries written in C.-

¢ Includes applications developed mainly in C or C++.

4.9 JAVA

}ava was developed by taking the best points from other programming
languages, primarily C and C-++. Java iherefore utilizes algorithms and
methodologies that are already proven. Error prone tasks such as pointers and
memory management have either been eliminated or are handfed by the Java
environment automatically rather than by the programmer. Since Java is
primartly a derivative of C++ which most programimers are conversant with, it
implies that Java has a familiar feel rendering it easy to use.

Features of Java
o Object oriented

Even though Java las the look and feel of C++, it is a wholly indcpendent
language which has been designed to be object-oriented from the ground up. In

" Introduction te Objecr

Ortented Languages

:—_._rn Introductien tu Object
" Orlented Pregramming

object-oriented programming (OOP), data is treated as objects to which
methods are applied. Java’s basic exccution unit is the class. Advantages of
OOP include: reusability of code, extensibility and dynamic applications.

e - Distributed

Commonly used Internet protocols such as HTTP and FTP as well as calls for
network access are built into Java. Internet programmers can call on the
functions through the supplied libraries and be able-to access files on the
Internet as easily as writing to a local file system.

e Interpreted .

When Java code is compiled, the compiler outputs the Java Bytecode which is
an executable for the Java Virtual Machine. The Java Viriual Machine does
ot exist physically but is the specification for a hypothetical processor that can
run Java code. The bytecode is then run through a Java interpreter on any
given platform that has the interpreter ported to it. The interpreter converts the
code to the target hardware and exccultes it

® Robust

Java compels the programmer to be thorough. It carries out type checking at
both compile and runtime making sure that every data structure has been
clearly defined and typed. Java manages memory automatically by using an
automatic garbage collector. The garbage collector runs as a low priority
thread in the background keeping track of all objects and references to those
objects in a Java program. When an object has no more references, the
garbage collector tags it for removal and removes the object either when there
is an immediate need for more memory or when the demand on processor
cycles by the program is low.

e Secure

The Java language has buili-in capabilities to ensure that violations of security
do not occur. Consider a'Java program running on a workstation on a local
area network which in ture is connected to the Internet. Being a dynamic and
distributed computing environment, the Java program.can, at runtime,
dynamically bring in the classes it needs to run either from the workstation’s
hard drive, other computers on the local area network or a computer thousands
of miles away somewhere on the Internet. This ability of classes or applets to
come from unknown locations and execute automatically on a local computer
sounds like every system administrator’s nightmare gonsidering that there
could be lurking out there on one of the millions of computers on the Internet,
some viruses, trojan horses or worms which can invade the local computer
system and wreak havoc on it.

Java goes to great lengths to address these security issues by putting in place a
very rigorous multilevel system of security: '

‘e First and foremost, at compile time, pointers and memory allocation are

removed thereby eliminating the tools that a system breaker could use to
gain access to system resources. Memory allocation is deferred until
runtime. ' - -

® Even though the Java compiler produces only ‘correct Java code, there is
still the possibility of the code being tampered with between compilation
and runtime. Java guards against this by using the bytecode verifier to
“check the bytecode for language compliance when the code first enters
_the interpreter, before it ever even gets the chance to run.

i

The bytecode verifier ensures that the code does not do any of the following:

1

& Forge pointers

- & Violate access restriclions

® Incorrectly access classes

e Overflow or underflow opsrand stack

& Use incorrcct parameters of bytecode instructions
e Usc illegal datg conversions.

® At runtime, the Jaya interpreter further cnsures that classes loaded do not
access the file system exccpt in the manner permitted by the client or the
user.

Sun Microsystems will soon be adding yet another dimension to the sccurity of
Java. They are currently working on a public-key encryption system to allow
Java applications to be stored and transmitted over the Internet in a secure
encrypted form.

¢ Architecturally neutral

The Java compiler compiles source code to a stage which is intermediate
between source and native machine code. This intermediate stage is known as
the bytecode, which is neutral. The bytecode.conforms to the specification of a
hypothetical machine called the Java Virtual Machine and can be efficiently
converted into native code for a particular processor. :

e Portable

By porting an interpreter for the Java Virtual Machine to any computer
hardware/operating system. one is assured that all code compiled for it w:ll run
on that system. This forms the basis for Java’ 's portability.

Another feature which Java employs in order to guarantee. portab:hty is by
creating a single standard for data sizes irrespective of processor or operating
system plattorms. - - N

& High performance

The Java language supports many high-performance features such as
multithreading, just-in-time compiling, and nativé code usage.

¢ Java has emploved multithreading to help overcome the performance
problems suffered by interpreted code as compared to native code. Since an
executing program hardly ever uses CPU cycles 100 % of the time, Java
uses the idle time to perform the necessary garbage cleanup and general
system maintenance that renders traditional interpreters slow in executing
applications. [NB: Multithreading is the ability of an application to execute
more than onc task (thread) at the same time e.g. a word processor can be
- carrying out spelt check in one document and printing a second documcnt at

the same time.]

¢ Since the bytecode produced by the Java compiler from the corresponding
source code is very close to machine code, it can be interpreted very efficiently
on any platform. In cases where even greater performance is necessary than
the interpreter can provide, just-in-time compilation can be employed whcrcby
the code is compiled at run-time to native code before execution.

¢ An alternative to just-in-time compilation is to link in native C code. This
yields even greater performance but is more burdensome on the programmer
and reduces the portabilily of the code, :

Introduction to Obj ect

Oriented Lnn'suq Bes

51,

JAn Tatroducilon te Qbject | ™ Dynamic
‘Oriented Propramming i

By connccting to the Internet, a user immediately has access to thousands of
programs and other computers. During the execution of a program, Java can ;
dynamically load classes that it requires either from the local hard drive, from
another computer on the local area network or from a computer somewhere on
the Internet.

4.10 BETA

BETA is a modern object-oriented language with comprehensive-facilities for
procedural and functional programmjng. BETA originates from the
Scandinavian school of object-orientation where the first object-oriented
language Simula was developed. Object-oriented programming originated with
the Simula languages developed at the Norwegian Computing Center, Oslo, in
the 1960s. The first Simula language, Simula I, was intended for writing
simulation programs. Simula I was later uscd as a basis for defining a gencral-
purpose programming language, Simula 67 (later renamed to Simala). A
relatively small community has used Simula for number of years, although it
has had a major impact on research in computer scicnce.

‘The BETA language development process started out in 1975 with the aim to
déveiop concepts, constructs and tools for programming, partly based on the
Simula languages. The BETA language team consists of Bent Bruun
Kiristepsen, Birger Moller-Pedersen, Ole Lehrmann Madsen. and Kristen
Nygaard. Kristen Nygaard was one of the two original designers of the Simula
languages. Currently, BETA is available on UNIX workstations, on PowerPC
Macintosh and on Intel-based PCs.

[_
On UNIX, the platforms supported are: Sun Spare (Solaris),|HP 9000 (series
700) and Silicon Graphics MIPS machines running IRIX 5.3 or 6..

The definition of the BETA language is in the public domain.' This definition is
controlled by the original designers of the BETA language: Bent Bruun
Kristensen, Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen
Nygaard. This means that anyone or any company may create a compiler,
interpreter, or whatever having to do with BETA.

BETA has powerful abstraction mechanisms than provide excellent support for
design and implementation, including data definition for persistent data. The
abstraction mechanisms include support for identification of objects,
classification, and composition. BETA is a strongly typed language (like Simula,
Eiffel, and C++), with most type checking being carried out at compile-time.

The abstraction mechanisms include class, procedure; function, coroutine,
process, exception, and many more, all unificd into the ultimate abstraction
mechanism: thé pattern. In addition to the pattern, BETA has subpattern,
virtual pattern, and pattern variable.

BETA does not only allow for passive objects as in Smalltalk, C++, and Eiffel.
BETA objects may also act as coroutines, making it possible to mode!
alternating sequential processes and quasi-parallel processes. BETA curoutines

. mav.also be executed concurrently with sipported facilities for synchronization
afid commmunication, including monitors and rendezvous communication.

Features of BETA

BETA replaces classcs, procedurcs, functions, and types by a single
abstraction mechanism, called the pattern, It gencralizes virtual procedures to
57 virtual patterns, streamlines linguistic.notions such as nesting and block

structure, and provides a unified framework for sequential, coroutine, and
concurrent execution. The resulting language is smaller than Simula in spite of
being considerably more expressive. o ’

The pattern concept is the basic construct. A pattern is a description from
which objects may be created. Patterns describe all aspects of objects, such as
attributes and operations, as seen in traditional object-oriented languages, but
also aspects such as parameters and actions, as seen in procedures.

Objects are'created from the patterns. Objects may be traditional objects as

- found in other languages, but they may also be objects which correspond to
Rrocedure or function activations, exception occurrences, or even coroutines or .
concurrent processes.

Objects may be created statically or dynamically and the objects are
automatically garbage collected by the runtime system.when no references
exist to them any longer.

Patterns may be used as superpatterns to other patterns (the subpatterns). This
corresponds to traditional class hierarchies, but since patterns may describe "
other types of objects, inheritance is a structuring means available also for
procedures, fenctions, exceptions, coroutines, and processes.

Patterns may be virtual. This corresponds to traditional virtual procedures but
-again the generality of the pattern construct implies that also classes,
exceptions, coroutines, and processes may be virtual.

Virtual patterns in the form of classes are similar to generic templates ip other
languages. The prime difference is that the generic parameters (that is, the
virtual class patterns) may be further restricted without actually instantiating
the generic template. The generality of the pattern also implies that generocity
is available for classes, procedures, functions, exceptions, coroutines, and
processes,) : '

Patterns may be handled as first-order values in BETA. This implies the
possibility of defining pattern variables which can be assigned pattern
references dynamically at runtime. This gives the possibilities for a very
dynamic handling of patterus at runtime.

Exception handling is dealt with through a predefined library containing basic
exception handling facilities. The exception handling facilities are fully
implemented within the standard BETA language in the form of a library
pattern, and the usage is often in the form of virtual patterns, inheriting from
this library pattern,

Garbage collection is ¢onducted automatically by the BETA runtime system
when it is discovered that no references to the object exist. The garbage
collection mechanism is based on generation-based scavenging. The
implemented garbage collection system is very efficient.

4.11 VARIOUS OBJECT ORIENTED PROGRAMMING
' LANGUAGES COMPARATIVE CHART

) Object -
Language BETA |[C++ _[Eiffel [Java Paseal | Ruby Smelltalk
N Inheritance simplc - | multiple [mulitiple | simple simple simpic simple
Generic yes ¥es yes no no no no
‘classes
(templates)

Introductlon to Object-’
Oricnted Lanpdages

*

{pattern)
Compiter/ | compiter | compiler | compjler | interpreter compilclr interp-reier interpreter
interpretar '
Special . browser/| - browser/ | - - - class-
cnvironment pretty- prelty browser
prinicr printer
Special pattern | - design by -cvcr_\.'lhing evervthing
concept . . | contract isan isan
{Bertrand object object
Meyer) |- -
Check Your Progress 1
1) What is Object Oriented Programming?
2)" What are Object Oriented Taols?
3) What is Objiect Oriented Analysis and Design?
54

.-*\u Introductlon to Object
Orlented Programming

. Object

Language - |BETA |C++ Eiffel |Java Pascal | Ruby Smalltalk
Strong Lyping | yes yes ycs yes yes no no
Polymorphic yes yes yes yes Yes yes yes
Multithreading | yes possible |possible |yes possible | possible | possible -
Garbage yes no yes b -H no yes yes
collection .
Pre-/ indirect | no yes ne na ne no
postcanditions | (through

patterns)y
Speed +) i+ - ++ - --

hybrid/OOP |hybrid |hybrid jOOP |OOP hybrid | OQP ooP

o

4.12 - SUMMARY

Object-crientation is a new programming concept, which should help you in
developing high quality software. Object-orientation makes developing of
projects easier. Complex software systems become easier to understand, since
object-oriented structuring provides a closer representation of reality than other
programming techniques. In a well-designed object-oriented system, it shouid
be possible to implement changes at class level, without having to make
alterattons at other points in the system. This reduces the overall amount of
maintenance required, Through polymorphism and inheritance, object-oriented

- programming allows you to reuse individual components. In an object-oriented
system, the amount of work involved in revising and maintaining the system is -
reduced, since many problems can be detected and corrected in the design
phase, This unit have presented an overview of some of the lmponant object
oriented languages.

4,13 MODEL ANSWERS

Check Your Progress 1

1) A type of programming in which programmers define not only the data
type of a data structure, but also the types of operations (functions) that
can be applied to the data.structare. In this way, the data structure
becomes an object that includes both data and functions. In addition,
programmers can create relationships between one object and another. For
example, objects can inherit characteristics from other objects. ‘

Oée of the principal advantages of object-oriented programming ,
‘techniques over procedural programming techniques is that they enable
programmers to create modules that do not need to be changed when a°
new type of object is added. A programmer can simply create a new
object that inherits many of its features from existing objects. This makes
object-oriented programs easier to modify.

2) Object-oriented tools allow you to create object-oriented programs in
object-oriented languages. They allow you to model and store development
objects and the relationships between them.

3) 00 -Anal}'sis - Examination of requirements from the perspective of the
classes/objects found in the problem domain.

OODesign - Uses OO decomposition and a notation for deplctmg logical/
physical and static/dynamic models of the system.

tutroduction to 05]:;'. -
Orlented Lnnguages

35

UNITS ANINTRODUCTION TO UNIF IED
MODELING LANGUAGE (UML) T

Siructure

5.0. Introduction
5.1 . Objectives

5.2 What is UML?
52.1" Goals of UML
522 Why vse.UML?
323 Historyof UML
524 Why do We Need UML at AlI?

5.3 Definitions

5.4 The UML Diagrams
341 Use case Diagrams
542 Class Diagrams
543 Interaction Diagrams
544 Siate Diagrams
54.5 Activity Diagrams
546 Physical Diagrams
5.5 - Summary

5.6 Model Answers

5.0 INTRODUCTION

In the previous units, we have discussed about the concepts of object oriented
programming and languages supporting OOP. One of the major asset of object
oriented programming is its reusability. The reusability requires proper design
of classes and inheritance hierarchy. To deal with business problems one need
to do proper design to ensure'quick reusable and reliable solution. Object

~ oriented modeling is an approach to analyse system behaviours, thus, proposing
a realistic and proper solution or design to a problem. There are many modeling

-techniques in this regard. However, a detailed discussion on all such techniques

is beyond the scope of this unit. For the purpose of an introduction to object
oriented analysis and design, we have selected unified modeling language
(UML) for software development. This unit does not attempt to provide a
detailed analysis or design methodology but is an attempt to make you familiar
with some diagrammatic tools that with your knowledge of Software
Engineering may be used as a first cut object analysis and design.

5.1 OBJECTIVES

At the end of this unit you will be able to:
® Describe the UML concept;
® Present simple design for simple problem, and

¢ Identify various diagrams used in UML. -

5.2 WHAT IS UML?

The Unified Modeling Language (UML) isa language for Speclfymg,
visualizing, constructing, and documenting the artifacts of software systems, as
well as for business modeling and other nion-software systems. The UML
represents a collection of best engineering practices that have proven
successful in the modeling of large and complex systems.

5.2.1 Goals of UML
The primary goals in the design of the UML were:

1) Provide users with a ready-to-use, expressive visual modeling language so
that they can develop and exchange meaningful models.

2) Provide extenmb:llt} and specmhzatlon mechanisms to extend the core
concepts.

3) Be 1ndependent of particujar programming languages and development
Processcs.

4) Provide a formal basis for understanding the modeling language.
5) Encourage the growth of the Q0 tools market.

6) Support higher-level devel opment concepts such as collaboratmns
framework:. patterns and components. -

7) Integrate best practices.
522 Why Use UML?

As the strategic value of software increases for many companies, the industry
looks for techniques to automate the production of software and to improve
" quality and reduce cost and time-to-market. These techniques include
* component technology, visual programming, pattérns and frameworks.
Businesses also seek techniques to manage the complexity of systems as they
increase in scope and scale. In particular, they recognize the need to solve
recurring architectural problems, such as physical distribution, concurrency,
- replication, security, load balancing and fault tolerance. Additionally, the
development for the World Wide Web, while making some things simpler, has
increased these architectural problems The Unified Modeling Language
(UML) was designed to respond to these needs.

5.2.3 Hlstory of UML.

The development of UML began in late 1994 when Grady Booch and Jim
Rumbaugh of Rational Software Corporation began their work on unifying the
Booch and OMT (Object Modeling Technique) methods, In the Fall of 1995,
Ivar Jacobson and his Objectory company joined rational and this unification
effort, merging in the OOSE {Object-Oriented Software Engineering) method.

As the primary authors of the Booch (Grady Booch’s work has involved the)
use of application of data abstraction and information hiding with an emphasis
on iterative software devclopment), OMT, and OOSE (Object Oriented
Software Engineering) methods, Grady Booch, Jim Rumbaugh and Ivar
Jacobson were motivated to create a unified modeling language for three
reasons. '

First, these methods were already evolving toward each other independently.. It
made sense to continue that cvolution together rather than apart, that would .
further confuse users.

. An Inlruduefleﬁ to Unified™
Modeling Language (UML)

57

: -Iz\n Intruduction to Object
QOricnted Programming

58

Second, by unifying the semantics and notation, they could bring some stability
to the object-oriented marketplace, allowing projects to settle on one mature
modeling [anguage and letting tool builders focus on delivering more useful
features.)

Third, they expected that their collaboration would yield improvements in all -
three earlier methods, helping them (o capture lessons learned and to address
problems that none of their methods previously handled well. :

The efforts of Booch, Rumbaugh, and Jacobson resulted in the release of the
UML 0.9 and 0.91. Several organizations saw UML as strategic to their
business such as 1BM, ObjecTime, Platinum Technology, Prech, Taskon, Reich
Technologies, these companies joined the UML partners to contribute their
ideas, and together the partners produced the UML1.1.

What is ihe benefit of UML for users?

UML, is based on OMT, Booch, OOSE and other important modeling languages
available. It is a fusion of OMT, Booch and OOSE techniques for software
development and software architecture. Those who have been trained on these
three languages will have little trouble getting to work with UML., It provides
the opportunity for new integration between tools, processes, and domains.
Also it enables developers to focus on delivering business value and provides

. them a paradigm to accomplish this.

3.2.4 Why do we need UML at ali ?

As we have described above UML as “UML is a language for specifying,
visualizing, constructing, and documenting the artifacts of software systems, as
well as for business modeling and other non-software systems.” The question
arises why do we need to carry out such an exercise? To answer this we need
to understand the problem domain, its solution domain and the problem solving
approach. ’ :

Problem can be termed as Requirements of Organisarions or their customers.

" The Solutions of the problem is the desired services or products, as the case

may be. To deliver value added solutions (maximum quantity and minimum cost
and within the minimum time), organisations must capture knowledge,
communicate and leverage knowledge. By capturing knowledge we mean
ac_quiriﬁg.ir. by communicating it we mean share it and by leveraging it we
mean utilzing it. The main aspect we need to deal here is “communication or
sharing” of knowledge. There is an old adage, which says “A picture is worth
thousand words”, when we express knowledge by visual tools we are able to

: deliver (communicate) its contents in a better manner. That’s what UML is all

aboug-exp_rc_ssing captured knowledge.

The problem occurs within business context (domain). The solution must also

fit in organisations IT infrastructure. The problem must be fully understood in

terms of business requirements and the information system must be fully
understood of how it meets those requirements. As we conceptualize the
problem and work towards its solution we capture knowiedge (models), make
decisions (architectural views) about how we will address d iffereént issues and
communicate information (diagrams). UML does it all. '

5.3 DEFINITIONS

UML concept as we know is based on Object Oriented approach; we reed to
define certain QO concepts before marching into UML’s world. '

Objects : An Introduction to Unifled,
' Modeling Langunpe (UMLJ*

Objects are the real world models. They are well defined representatlona[
constructs. Objccts are the physical and conceptual things we find in the world.
When something is called as an object in our world, we associate it with a
name, properties etc. Objects encapsulate structural characteristics known as
attributes, They contain their own data and programming. '

Classes

‘Classes are descriptions of objects, they contain objects with similar
characteristics. Classes encapsulates behavioural characteristics called as
operations. .

Links
Links are representational constructs that define how the classes are related to
each other. Links are objects.

Associations.

Associations are representational constructs that describes links. Associations
are classes.

5.4 THE UML DIAGRAMS

The UML deﬁnes various- types of Diagrams : Class, Object, Use Case,
Sequence, Collaboration, Statechart, Activity, Component and Deployment
diagrams.

5.4.1 Use Case Diagrﬁms

Use Case diagrams describe the functionality of a system and users of a
system. Thesc diagrams contain following items: -

Actors— Which are users of system, mcludmg Human beings and other system
components :

Use Cases— Which includes services prdvidcd to Userd of the‘system.

Actor . Use Case

An actor represents a user or another system that will interact with the system
you are modeling. A use case is an external view of the system that represents
some action the user might perform in order to complete.a task.

When to Use Use Cases Diagrams

Use cases are used in almost cvery projéct. They are helpful in exposing
requirements and planning the project. During the initial stage of a project most
use cases should be defined, but as the project continues more might become

visible.
How te Draw Use Cases Diagrams
Use cases are a relatively |r.:asy UML diagram to draw.

Start by listing a sequence of steps a user might take in order to complete an
action. For example, a user placing an order with a sales company might follow

these steps. ‘ : 59

“An lulrodu:tinn to O
Oriented Programmi

methads. Below is an example of a class.

= v

1) Browse catalog and select items.

2) Call sales representative.

3) Supply shipbing information.

4) Supply payment information.

5) Receive confirmation number from salesperson.

These steps would generate this simple use case diagram:

D

Browse Catalog and Select Items

% / Call Sales Person
Customer . ©

Give Shipping Info

D

Give Payment [nfo

C_ D

Get C-onﬁrmation

This example shows the customer as an actor because the customer is using
the ordering system. The diagram takes the simple steps listed above and
shows them as actions the customer might perform.

From this simple diagram the requirements of the oerdering system can easily be
derived. The system will need to be able to perform actions for all of the use
cases listed. As the project progresses other use cases might appear, The
customer might have a need to add an item to an order that has already been
placed. This diagram can easily be expanded until a complete description of the
ordering system is derived capturing all the requirements that the system will
need to perform.

5.4.2 Class Diagrams

Class diagrams are widely used to describe the types of objects in a system
and their relationships. Class diagrams model class structy re and contents using
design elements such as classes, packages and objects. Class diagrams
describe three different perspectives when designing a $ystem, conceptual,
specification, and implementation. These perspectives become evident as the
diagram is created and help solidify the design.

Classes are composed of three things: a name, attributes, and operations/

An Introduction to Unified

- Class Name - » ° Customer - | Modeling Lanpunpe {UA1.)

Attributes > name : String
address : String
Operations > crédilRatiﬁgO

Class diagrams also display relationships such as contalnment _inheritance,
associations and others. Below is an example of an associative relatlonshlp

<. Order . -

Association’
dateReceived: Date ' Customier
.isPrepaid: Boolean l : —
number: String ,| mname: String
price: Integer M RS ' N ’ - address : String
dispatch0 | ereditRatingd
closed

Multiplicity ‘

'Many-valued : " Mandatory

The association relationship is the most common relationship i a class
liagram. The association shows the relationship between instances of ¢lasses.
or example, the class Order is associated with the class Customer. The
nultiplicity of the association denotes the number of objects that can
»articipate in the relationship. For example, an Order object can be associated
o only one customer, but a customer can be associated to many orders.

Customer

name : String
address ¢ String

creditRating0

[Ix € Generalization

Corporate Customer Personal Customer

contaciName: String creditCard# : Integer

creditRating: String
creditLimit: Double

. remind®
billForMonth0

\nother common relationship in class diagrams is a generalization. A
ieneralization is used when two classes are similar, but have some differences.
.ook at the generalization below:

n this examplé the classes Corporate Customer and Personal Customer have
ome similarities such as name and address, but each ciass has some of its
wh attributes and operations. The class Customer is a general form of both
he Corporate Customer and Personal Customer classes. This allows the

61

EnSwon D all

_"An Intrduction to Object designers 10 JustL usc e Lusiomer class Tor modules and do not require in-
(riented Programming depth representation of each type of customer.

When to. Use Class Diagrams

Class diagrams are used in nearly all Object Oriented software designs. Use
- them 1o describe the Classes of the system and their relationships to each -
other.

How to Draw Class Dingrams

Class diagrams are some of the most difficult UML diagrams 'to-draw. To
draw detailed and useful diagrams a person would have to study UML and
Object Oriented principles fora longtime.

Before drawing a class diagram consider the three different perspectives of -
the system the diagram will present; conceptual, specification, and
implementation. Try not to focus on one perspective and try to see how they all
work together.

When designing classes consider what attributes and operations it will have.
Then try to determjne how instances of the classes will interact with each
other. These are the very first steps of many in developing a class diagram.
However, using just these basic techniques one can develop a complete view
of the software system.

Order

. Customer

" dateReceived: Date

e: Strt
isPrepaid:_Bool_ean nam ring

address : String

number: String M R —

price: Integer creditRatingl |
dispatchO . 4

closed . N

Corporate Customer ' Personal Custoiner

contactName: String creditCard¥ : Integer
creditRating: String
creditLimit: Double

remind0
billForMonthQ

5.4.3 Interaction Diagrams

interaction diagrams model the behaviour of use cases by describing the way
groups of objects interact to complete the task. The two kinds of interaction
diagrams are sequence and col'aboration diagrams. ' '

When to iJse_: Interaction Diagrams

" Interactio diagrams are used wheii'you want to model the behaviour of - -
several abjects in a use case. They demonstrate how the objects coliaborate
for the behaviour. Interaction diagrams do not give a in-depth representation of
the behaviour. If you want to see what a specific object is doing.for several .

: i use cases use a state diagram. To see a particular behaviour over many use
62 _ _cases or threads use an activity diagrams. ,

How to Draw Interaction Diagrams-

Sequence diagrams, collaboration diagrams, or both diagrams can be used to
demonstrate the interaction of objects in.a use case. Sequence diagrams
generally show the sequence of events that occur. Collaboration diagrams
demonstrate how objects are statically connected. Both diagrams are relatively
simple to draw and contain similar elements.

Sequence diagrams

Sequence diagrams descrfbe interactions among classes. These interactions are
exchange of messages. Sequence diagram: demenstrate the behaviour of
objects in a use case by describing the objects and the messages they pass.
The example below shows an object of class 1 start the behaviour by sending a

. message to an object of class 2. Messages pass between the different objects
until the object of class 1 receives the final message.

Object : Class Object : Class 2 | Object : Class 3

h

h 4

Collaboration aiag"rams

Collaborations diagrams describe interactions among classes and associations,
Cotlaboration diagrams are also relativety easy to draw. They show the
relationship between objects and the order of messages passed between them.

Object : Class |

Passive

l 1: Message()

2 : Message()

Object: Class [Object : Class 1

\ &

The objects are lisfed as icons and arrows indicate the messages being passed
between them. The numbers next to the messages are called sequence
numbers. As the name suggests, they show the sequence of the messages as
they are passed between the objects. There are many acceptable sequence
numbering schemes in UML. A simple 1, 2, 3... format can be used, as the
example shows, or for more detailed and complex diagrams a 1,.1,1, 1.2,
1.2.1... scheme can be used.

The following example shows a simple collaboration diagram for the placing an
order use case. This time the names of the class appear after the colon, such
as Order Entry Window; following the object Name: className naming
convention, the class name is shown to demonstrate that all of objects of that
"class will behave the same way.

An Introduction to Unii’_l{:il-_
Modeltng Langunge (UMMLT™

M Introduction to Object
“Oricnted Prngrnmmmg

64

:Order Entry Window

Passive
1 1:Pr sare() -
-Order {in Stock] 1.1 : New () :Delivery lten’t

[
>

5.4.4 State Diagr..ns

State diagrams are used to describe the behaviour of a system, i.e., the states
and responses of a class. They describe the behaviour of a class in response to
external stimulli. State diagrams describe all of the possible states of an object
as events occur. Each diagram usually represents objects of a single clzss and
track the different states of its objects through the v stem.

These diagrams contain the following elements:

States which represents the state of an object during its life cycle i in which rt
satisfies some condition.

Transitions which re_presents relationship between different states of an object.

When to Use State Diagrams

State diagrams are used to demonstrate thie behaviour of an object through

many use cases of the system. Only use state diagrams for classes where it is
necessary to understand the behaviour of the object through the entire system.
Not all classes will require a state diagram and state diagrams are not useful
for describing the collaboration of all objects in a use case. State dlagrams are
combined with other.diagrams such as interaction dlagrams and activity '
diagrams,

How to Draw State Diagrams

State diagrams have very few elements. The basic elements are rounded boxes
-representing the state of the object and arrows indicting the transition to the
next state. The activity section of the state symbol depicts what actwmes the
object will be doing while it is in that state.

(State Narnc)

'\ do/action .) «———— Activily

- — Transition

All state dlagrams be:ng wrth an mmal state of the object This'is thc state of
the obJect when it is created After the initial state the chect beglns changlng
states. Conditions based on the actwrtlcs can detcrmlne what the next state'the
object transitions to. co !

Below is an cxample cfa state dlagram might look like for an Order ObJECt
When the object enters th_g.CheETcmg state it performs the actlwty “check

f}gén > After the activity rs".'co_rﬁ'p!etcd the object transmons to the neat stare
e

d on the condltlons [ali grus avar!able] or [an item is not ava;lab,le] _'[t'an‘

ST IT

item is not available the order is cancelled. Ifall items are available then the
order is dispatched. When the object transitions to the Dlspatchmg state the
activity “initiate delivery” is performed. After this activity is complete the
object transitions apain to the delivered state.

- Initial State

State 1 ~ [Condition) ~ State 3

Do/Activtity ‘

| o N
—

h

il
i

[Condition]

Stalte 2) Transitions

(Checking N (all items available] (Dispatching)

L
>

\ dofcheck ilcms/ ; _do/initiate delivery /

[an item is not available]
W)

3.4.5 Activity Diagrams

Activity diagram describe the activities of a class. It is similar to state diagram
but describes the behaviour of a class in response to internal processing instead
of external stimuli. Activity diagrams describe the workflow behaviour of a
system. Activity diagrams are similar to state diagram because activities are
the state of doing something. The diagrams describe the state of activities by
showing the sequence of activities performed. Activity diagrams can show
activities that are conditional or paral]el

When to Use Activity Diagrams

Activily diagrams should be used in conjunction with other modeling techniques
such asinteraction diagram.and state diagram. The main reason to use activity
diagrams is to model the workflow behind the system being designed. Activity
Diagrams are also useful for analyzing a use case by describing what actions
need totake place and when they should occur; describing a complicated
sequeential algorithm; and modeling apphcatlons with parallel processors.

Howvever, activity diagramns should not take the place of interaction diagram
and state diagram. Activity diagrams do not give details about how objects
behave or how objects collaborate.

in Tutraduction te lEm._.?L
Modeling Lanpunge (UM

__E-',\u Introduction lu Object
Orlcoted Programming

How to Draw Activity Diagrams

Actw:ty diagrams show the flow of activities through the_.systenr’DlagFams are |
read from top to bottom and have branches and forks to describe conditions
and parallel activities. A fork is used when muitiple activities are gcourring at
the same time. The diagram below shows a fork after activity 1. This indicatis
that both activity 2 and activity 3 are occurring at the same time. After activity”
2 there is a branch. The branch describes what activities will take place based
on a set of conditions. All branches at some point are followed by a mergelto’
indicate the end of the conditional behaviour started by that brancii. A fter ihe |
merge all of the parallel activities must be combined by a join before
transitioning into the final activity state.

Starf —————» ?

Fork ”

(@)

activity 3

Branch

activity 4 activity 5

Below is a possible activity diagram for processing an order. The diagram
shows the flow of actions in the system’s workflow. Once the order is
received the activities split into two paralle] sets of activities. One side fills and
sends the order while the other handles the bifling. On the Fill Order side, the
method of delivery is decided conditionally. Depending on the condition either
the Overnight Delivery activity or the Regular Delivery actwlty is performed,
Finally the parallel activities combine to close the,order.

Order

Full Order

(Send Invoice}
[rush order]

—
COvermght) Regu[ar Recewe
Delivery Delivery Payment

4

]

{Close Order

5.4.6 Physical Diagrams

There are two types of physical diagrams: deployment diagrams and
/component diagrams.l Deployment diagrams show the physical relationship
between hardware and software in a system. Component-diagrams show the
“software components of a system and how they are related to each other.
These relationships are called dependencies.

When to Use Physical Diagrams

Plysical diagrams are used when development of the system is complete.
Physical diagrams are used to give descriptions of the physical information
about a system. ' . T

How to Draw Physical Diagrams

Many' times dhe deployment and.component diagrams are combined into one

physical disgram. A combined deployment and component diagram combines ,

» the features of both diagrams into one diagram.

Connection

L

TCPHP

des

The deployment diagram contains nodes and connections: A node usually
represents a piece of hardware in the system. A connection depicts the
communication path used by the hardware to communicate and usually
indicates a method such as TCP/IP,

The component diagram contains components and dependencies. Components :

represent the physical packaging of a module of code. The dependencies
between the components show how changes made to one component may
affect the other components in the system. Dependencies in a component - -
diagram are represented by a dashed line between two or more components.

Component diagrams can also show the interfaces used by the components to

communicate to each other,

The combined deployment and component diagram below gives.a high level
plysical description of the completed system. The diagram shows two nodes
which represent two machines communicating through TCP/IP. Component 2
is dependa‘f\t on componentl, so changes to component 2 could affect
component, 1. The diagram also depicts component 3 interfacing with
component 1. This diagram gives the reader a quick overall view of the entire
system. ' '

An Intruductlon to Unifidf-—
Modeling Language (1M1

e e M e

x‘in_ Introductiou to Object)
Orleqtes Progeamalng. Connection

T TG Vi

- Interface

X

?F(Il il '
= AL

b
LA

Check Y::mr l’rbgrcss

State True (T) or'False (F) ,

1) a) UML is used for waterfall model based implémemal-ion. : L
: Trued] False O
b} UML iycreases burden on designers and implement(s. True“[:] False E']::'

¢y If you are using UML then additional documentation tool is not
needed. . ') ~ True [J False []

' dj An association.in UML is an object. True [False [

e) An actor is a user who interact with the sysiem to be modeled.
' True 7] False [-

f) Class diagrams are very close to E R diagrams True [False []
" g) - State d‘iég'rams;'can be used to represent interaction. TFrue [False [J

h) Activity diagram-describe class and objezts. True O False (O

5.5 SUMMARY

In this last unit, we have discussed about a modeling language which is getting
popular in object oriented analysis and design. The unit presents the bazic
objectives of the methodology and various types of diagrams represented in
UML. It is advisable that you may explore the further readings and web site to
look for more example of UML. :

5.6 MODEL ANSWERS

Check Your Progress

1) a) False e) - True
b) False ' f) True
¢) True ' gy False
d) False h) False

68

- ﬂﬂ - . [-- . . _
UTTAR PRADESH RAJARSH] - - BCA-17
N

TANDON OPEN UNIVERSITY C++ and Object
Oriented Programming

Block
C++.- AN INTRODUCTION
UNIT1 '

Overview of C++ | ' | 5

UNIT 2
Classes and Objects _ 25

UNIT 3 .
Operator Overloading : : | 38

UNIT 4
Inheritance-Extending Classes - 48

UNIT 5

Streams and Templates ' ‘ 56.

FACULTY OF THE SCHOOL

Prof. Manohar Lal
Direclor .

Shri Shashi Bhushan -
Reader, IGNOU

P. V. Suresh
Lecturer, IGNOU

Prof. M.M. Pant

Shri Akshay Kumar
Reader, IGNQU

Sha V. V. Submhmanyam
Lectucer, IGNOU

COURSE CO-ORDINATOR

Shri Akshay Kumar
Reader, IGNOU

BLOCK WRITERS

Shri Akshay Kumar
Reader, IGNQU

P V. Suresh’ :
Leécturer, IGNOU "

EXPERT COMMITTEE FOR BCA

Prof. P.S. Grover

Professor of Compuler Science
University of Delhi

Lelhi

Brig. V.M. Sundaram
Coordinator
DoE-ACC Centre
New Delhi -

Prof. Karmeshu

School of Computer and
Systems Sciences
Jawaharfal Nehr University
Delhi .

Prof. LM, Patnaik
Indian Institute of Scicnce
Bangalore

Proll M.M. Pant
School of Computer
and

Information Sciences
IGNQU, New Delhi

Dr. 8.C. Mchia
Sr. Director

Manpower Dcvelopmeni Division

Depariment of Electronics
Govt. of India
New Delhi

Dr. G. Haider
Director
Information Tec hnology Centre

_ TCIL, Delhi

Prof. H.M. Gupta
Department of Electrical
Engineering

Indian Institute of Technology
Delhi.

" Protf. 8. Sadagopan

Department of Indu sma]
Engineering

Indian Institute of Technolopy
Kanpur

Prof R.G. Gupta i
Schoolof Computer and’
Systems Science .
Jawaharlal Nehiru Umversuy
Delhi

Dr, Sugata Mitra
Principal Scientist

“National Institite of *

Information ‘l'bchnology
New Delhi |

" Prof. Sudbiir Kaicker'

Director- -

Computer Centre -
Jawsharlal Nehru University
Delhi

PRINT PRODUCTION

H. K. Som
IGNQU

July, 2002

@ Indire Gundhi National Open Uuner.rrr_u ..’u!y. 2002

ISBN-81-266-0497-2

All riglus reserved. No part of this work may be r:prodm.ed in any formn, by mimcograph or uny other means,

_withaut pennission in writing from the Indira Gundhi National Open University.

Lt o

- BLOCK INTRODUCTION

This block provides an in-depth coverage of C++ Programming Language.
The C++ Programming language at present is one of the most commonly used
object oriented Programming Language. However, it is not the safest of object
oriented programming language. The main concept, which makes C++ slightly
unsafe, is the pointer feature. Most of the latest Object Oriented Programming
Languages such as JAVA and C# (pronounced C- -Sharp) removes such direct’
features and are much simpler to use. They have also attempted to achieve
platform independence through intermediate codes. :

This block is divided into five units. -

.Unit-1 provides an overview of C++ Programming Language where various

programming paradigms have been introduced again. In addition, the
concepts liké funétions, macros in C++ have been mtroduced 'Unit 2 discusses

issues relatmg to classes and ob]ects in C++. Umt 3 focusés on the operator.

overloading in C4-.- Umt 4 dlSCI.ISSeS mhentancc in C-|+ Unit 5 dlscusses
streams and templates :

‘ References

1. Bjame Stroustrup, The_C++ Programmmg Languagc Third edi_tion.
Pearson Pubhcatlon

,_2 N Barkakau Object Onented Programmmg in C++ Prennce Hall of Indla

UNIT1 OVERVIEW OF C++

Structure

1.0 Introduction

1.1 Objecti;res .
1.2 Programming Paradigms

1.2.1 Procedural Programming
- 1.22 Modular Programming
.23 DataAbstraction

1.24 Object Oriented Programming
1.3 C++ Programming Language: A re-visit of Concepts of C/C++
1.4 Functions and Files

1.4l Howto makea Library
1.4.2 Functions
1.43 Macros

1.5 Summary
1.6 Model Answers
1.7 Further Readings

1.0 INTRODUCTION

In this unit, some important features of C++ have been discussed. But, all
these topics will be dealt in the remaining units more elaborately. The Object
Oriented -Programming Paradigm features and the need for such a paradigm
have also been introduced in this unit. Though there is an advantage of
saving the time for transfer of conltrol and storing return addresses in the case
of Macros, several disadvantages were also present and they were discussed in
this unit, The time to write a program is reduced due to the-presence of library
routines. There are instances when we use some routines frequently’ which are
not part of Iibrary. We usually write the routine repeatedly when we are using
it in different programs. To avoid this, we can always make a library of.
routines. The method of making a library of our own routines is also
discussed in this unit.

1.1 OBJECTIVES

After going through this unit, you will be able to:
e Differentiate different programmilj{g paradigms
e Define various statements of C++

Use functions in C++ |

Make a library using C++

Define macros in C++

1.2 PROGRAMMING PARADIGMS

Programming is an art. This art of programming has seen many evolutions.
The basic idea for evolution was to develop simpler, maintainable,
dependable, efficient, reusable programs. This section traces the evolution of
various programming paradigms. ' '

.

Cre-An ‘ L2.1 Procedural Programming
Introduction .

In this paradigm, we divide a problem into sub-problems recursively and then
we write a procedure for each sub-problem. Procedures communicate with
each other by parameters. In this paradigm, data structures are-declared
locally or globally. The procedures can contain local data. Pascal and C
support this programming approach, For example, if you want to implement a
stack, you divide the problem into smaller problems like how to push value in
a stack, how to'pop a value and how to find whether stack is full or empty. f
Then you write functions for Push, Pop, stack cmply and stack full and call
these functions using its parameters (o implement a stack in a program. The
stack size is declared in main program using a data structure (may be an
array).

1.2.2 Modular Programming .

In this paradigm, the program is divided into modules. Each module will
contain all the procedures, which are refated to each other and the data on
which they act. Modular programming is the other name for Data hiding
principle. The reason for this name is that the data in a module cannot be
accessed by the procedures in another module unless it has been specified that
it can be done so. Modula 2 supports this notion. For example, the complete
set of operations of a stack including the data structure and functions may
reside in a module.

The advantages of this paradigm are that we can have different files for a
simple program. Each file can be separately compiled and an executable file
can be made from them. So, if there is any error in one module, the entire
program need not be compiled. Only the module in which the error is
present can be recompiled separately. This will reduce the total compilation
time.

C enables modular programming by providing provision for including files
and separate compilation facilities. The context of module is supported by the

class concept of C++.
1.2.3 Data Abstraction
Data Abstrac-tipn = Modular programming +]jata hiding prin(':ip]e-.

This concept is supported by C++. In C++, classes can be defined in which
the data can be specified as Private. This Private data can be accessed only by
the member functions of the class. Then, we can define the class as a user
defined data type which is the other name of Data Abstraction,

So, in this paradigm, we have to decide the types we want and then, wg have
to provide a full set of operations for each type. For example, in the-data
structure of stack, the data stored in it cannot be accessed or modified by any
other class except the functions of stack class then it can be classified as Data
Abstraction. '

1.2.4 Object Oriented Programming

When we define data types (user defined data types), we may find
commonality among them. Also, when we think of defining a new class, we
may find that there is another class which is already possessing most of the
features of the class, we wish to have. Under such a situation, we can define a
class with only additional features and explicitly state that it includes all the
features of another class, which has been already defined. '

i This concept is known as inheritance. The object oriented programming
6 paradiem is made un of Abstraction and Inheritance

So, OOP = Data Abstraction + Inheritance.

In this paradigm, we have to decide the classes we want; provide a full set of
operations for each class and then we have to make commonality explicit by
using inheritance. These concepts will be further dealt in more details in this
Block. :

-Check Your Progress-1

1) The various' programming, paradigms are

'2) C++supporls
- (a) P.roced-ur:i‘l Programming
(b)Y Mogylar Prograriniing
(© Objséctbrishtcﬂ _Progrémm_.i]ﬁg\
R , ‘__h_/_lilark‘-'"the correct answer(s). _
"—'3)'Tbél}ivébsttactjon'_is a__ | -of—'ﬁlﬁjéct"O'r_ieptéld’Prog_ramniiqg_
Rparadigm. o T PR

1.3 C++ PROGRAMMING LANGUAGE: A RE-VISIT
OF CONCEPTS OF C/C++

In this section, we will define the term expression and discuss different type ‘of
C++ operations.

An expression is composed of one or more operations. The objects of an
operation are referred to as operands. Operators represent the operations.

Operators that act on one operand are referred to as ‘Unary’ operators.
Example: -6 (uniary minus).

Operators that act on two operands are referred to as ‘Binary’ operators.
Example: x * y (multiplication) 2 + 5 (addition).

The evaluation of an expression results in one or more operations, yielding a
result. When two or more operations are combined, the expression is referred
to as a ‘compound’ Expression. The “precedence” and “associativity” of the
operators determine the order of the operator evaluation.

The simplest form of an expression consists of a single literal constant ol a
variable. This “operand" is without an operator. The result is the operand’s
value For example. here are three simple cxpressions:

1.14159
“malancholia®
UpperBound.

The result of 3.14159 is 3.14159. Iis type is Double. The result of
malancholia is the address in memory of the first clement of the string. s
type is char®. The résult of UpperBound is its rvalue (that is the value
bounded with the variable. In other words, the present value stored in the
location held by this variable). Its type is determined by its definition.

Overview of C+t

Cit-An Arithmetic Operators : : _ j
lutruduction

The following table lists the Arithmetic operators:

Operators Function Use ' i
¥ Multiplication expr * expr

! Division _ expr / expr

% Modulus(Remainder)} expr % expr

+ Addition - expr + expr

- Subtraction CXPr - expr

Division between two integers results in an integer output. If the quotient
contains a [ractional part, it is truncated, cxample:

21/6 =3

The modulus operator (%) can be applied only 10 integers. The left operand
of the % is dividend. The divisor is the operator’s right operand. Example:

863 % 5 /! error: floating point operand
65 % 3 /f OK: Resu]t is 2
40 % 8 /f OX: Result is 0

Equality, Relational and Logical Operators

The equality, relational and logical operators evaluale to either true or false. A
true condition yields 1; a-false condition yields 0. The following table lists the
Equality, Relational and Logical Operators:

Operator Function

logical NOT

less than)
less than or equal
greater than

greater than or equal
equality

inequality

&& logical AND

I logical OR

Except of ! all are binary operators.

v v A A~
nn

* . The logical AND (“&#&) operator evaluates to true only if both its éperators
evaluate to true. The logical OR (“II") operator evaluates to true if either of its
operands evaluates to true. The operators are evaluated from left to right.

Evaluation stops as soon as the truth or falsity of the expression is determined.
The logical NOT (*!") operator evaluates to true if its operand has a value of
. Zero. Otherwise, it evaluates to false.

Assignment operators

The left operand of the assignment operator (“=") must be an lvalue.” The
term lvalue is derived from the variable position to the left of the assignment

" operation. You might think of lvalue as meaning location value. The effect of
an assignment is to store a new value in (he storage associated with left
operand. For example, given the following three definitions:

int i, *ip, ia[4];
the following are legal assignments:

ip = &i;

i=1a[0] + 1;

ia[*ip] = 1024;
8 *ip=i*2 +i*alil;

Fo e L T e

" The data type of the result is the type of its left operand. Assignment -
operators can be concatenated provided that each of the operands being
assigned is of the same general data type. For example,

int i, j; _
i =j=0;// OK: each assigned 0
0 is assigned to j and i. The order of evaluation is right to left.

The compound assignment operator also provides a measure of notational
compactness. For example,

int arrayprod (int ia[], int sz)

{
int prod = 0;
for {intt = 0; i < sz; ++i)
prod *= prod[i]
return prod;
}

The general syntactic form of the compound assignment operator is
aop=Db;

where op = may be one of the following ten operators: +=, -=*=/= %h=<<=,
>>=, &=, "=, | = Each compound operator is equivalent to the following long
hand assignment:

a=aophb;
so, a+=b is equivalent toa=a + b,
Increment and Decrement Operators

Two special operators are used in C++, namely incrementer and decrementer.
These operators are used to control the loop in an effective manner. There are
two types of incrementers : Prefix incrementer (++) and postfix incrementer
(i++).

In prefix incrementer, first it is incremented and then the operations are
performed. On the other hand, in postfix incrementer, first the operations are
performed and then it is incremented. However, the result of the incremented
value will be same in both the cases. For example:

1=8;

X = +H;

cout << x; // 9 will be printed
i=T

y=j++ ‘

cout << y; /7 will be printed’
cout << j; //8 will be printed.

The decrementer is also similar to incrementer. The symbol ‘--’ is used for
decrementing. There are two types of decrementers. They are prefix
decrementer (-—i) and postfix decrementer (i--). For example:

i=8§;

X=-—1I

cout << x; // 7 will be printed

i=7 . '
y=j-

cout << y; // 7 will'be printed

cout << j; // 6 will be printed.

Cverview of C++

Cit -An - The sizeof Operator
Introducilen . - .

The ‘sizeof’ operator returns the size, in bytes, of an expression or type- .)
specifier. It may occur in either of two forms: ’

TaTEL

sizeof (typec-specifier);
sizeof expr,
For example, _
sizeof (short); /f returns the storage allocated to a short integer which 1s
// machine dependent
sizeof (stack); // stack is a class. So, storage occupied by it, will be returned.

The Arithmetic If Operator .

The Arithmetic If operator, the only ternary operator in C++. has the following
syntactic form:

exprl 7 expr2:expr3;

exprl is always evaluated. If it evaluates to a true condition - that is, any non-
zero value then expr2 is evalualed, otherwise expr3.is cvalvated. The
following program illustrates the usage of this operator.

include <iostream.h>
void ‘main(-)

(

inti=10, j=20; . ‘

cout << “The larger value of * <<i << “and” <<j << “is” << (i>] 7))
<< endl;
}

When compiled and executed, the program generates the following output:
The larger value of 10 and 20 is 20,
Comma Operator .

A Comma expression is a seri=c of expressions separated by a Comma(s).
These expressions are evaluated from Left to Right. The result of a Comma
expression is the value of Right most expression. In the following example,
each side of the arithmetic if operator is a Comma expression. The value of
the first Comma expression is 1; the .value of second is 0.

main()
{ int ival = (ia! = 0) ? ix = index(), ia[ix] = ix, 1: (set-array (ia), 0);
}

The above expression sets an array if it does not exist or gets and assign-a
value to an index element equal to the index value and returns 1.

The Bitwise Operators

A bitwise operator interprets its operand(s) as an ordered collection of bits.
Each bit may contain either a O (off) or a 1 (on) value. A bitwise operator
allows the programmer to test and set individual bits. '

The operands of the bitwise operation‘must be of an integral type. (Is gﬁ.:;.r an
intigral type? Yes) The following table lists the bitwise operators:

bitwise XOR
bitwise OR

. Operator Function
~ bitwise NOT
<< Left Shaft
> Right Shift
& bitwise AND
A
I

The bitwise NOT operator (~) flips the bits of its operands. Each 1 bit'is set to Overview ol C++

. 0 and 0O bit is set to 1. For example, unsigned char bit = 0227

Lt]ofof 1fo[tTa]n

On applying bitwisc NOT operator will give:

Lof1f 1] o] 1]ofo]0]

'I‘he bitwise left shift operator ("<<") shifts the bits Ito the jeft keeping the same
number of bits by drepping shifted bits off the and and filling in with zeroes

.from the other end.

For example, lct x = 33 (0010 0001) (8 bits). Now, x << 1 results in
0100 0010.

The bitwise Right Shift operator (“>>") shifts the bits to the Right keeping the
same number of bits by dropping shifted bllS off the end and filling in with
zeroes from other end.

For example, let x = 33 (0010 0001) (8 bits). An operation, x >> 3 results in
(0000 0100).

The bitwise AND operator (“&") takes two integral operands. For each bit
position, the result is a 1- bit if both operands contain 1 bit; otherwise, the result
is a 0- bit. This operator is different from logical AND operator (“&&™).

For example:

unsigned char result;

unsigned charbl =0145 [0 |1 J1]ofo 1[0]1

unsigned char b2 = 0257 1|0 |1]jo]1]1[1]|1

Result = bl & b2 ploj1joflolt1|lol1

The bitwise XOR (exclusive or) operator (‘*') takes two integral operands.
For each bit position, the result is a 1-bit if either but not both operands
contain a 1-bit. Otherwise, the result is 0-bit. For example. the result on birb2

" operation would be:

bl*b2 = 1|1 (otof|1]0]1]0

The bitwise OR operator {*“|™) takes two integral operands. For cach bit
position, the result is a 1 -bit if cither or both operands contain a 1 bit;
otherwise, the result is a one bit. For example, the result on bl | b2 operation
would be:

bllb2 = 1Lypr|j1rjopryp 1 131

Precedence

Operator precedence is the order in which operators are evaluated in a
compound expression. Operators that have the same precedence are
evaluated from left to right.

Scope resolution class_name :: member
Global ;name
Member selection object. member
- Member selection pointer = member
0 Subscripting - pointer [expr]
() Function call expr (expr_list)
(), vaiie construction type (expr_list) , 0

T

T gy

v 4 Post increment. lvalue ++
-— Post decrement lvalue -~
sizeof Size of object sizeof expr
sizeof Size of type L sizeof (type)
+ _ Pre increment ++ivalue
_-— Pre decrement + .| == lvalue
~ Complemen!t ~ expr
! Not | expr
- Unary minus | - expr
|+ Unary plus + expr
& Address of & ivalue .
1 * Dereference - ¥ expr
new Create (allocate) new type
~delete Destroy (de-allocate) delete pointer
delete [] Destroy array - delete [] pointer
O Cast (type conversion) (type)expr
¥ Member selection Ot;ject * pointer-to-pointer
¥ Member selection Pointer — *pointer-to-pointer
e ' Multiply expr * expr
/ | Divide . expr / expr
% Modulo(remainder) expr % expr
+ Add (plus) eXpr + expr
- Subtract (minus) expr — expr
<< Shift left | expr << expr
> Shift right expr >> expr
< , Less than eXpr < expr
<= Less than or equal eXpr <= expr
> Less than or equal expr > expr
»= Grcater than sr cqual €Xpr >= expr
== Equal expr = = expr
I= Not equal expr ! = expr
& Bitwise AND .| expr & expr
A Bitwise exclusive OR expr ™ expr
i Bitwise exclusive OR expr [expr
&& Logical AND expr && expr
I Logical inclusive OR ‘ expr | 1 expr
7 Conditional expression expr 7 expr :expr
= Simple assignment lvalue = expr
*= Multiply and assign . lvalue *= expr
f= Divide and assign lvalue /= expr
%= Modulo and assign Ivalue %= expr
+= Add and assign lvalue += expr
-= ‘Subtract and assign value -= expr
<<= Shift left and assign lvalue <<= expr
= Shift right and assign Ivalue >>= expr
&= AND and assign lvalue &= expr
= Inclusive OR and assign Ivalue | = expr
A Exclusive OR and assign Ivalue 4= expr
Throw : Throw exception throw expr
12 ' Comma (sequencing) expr, expr

Reserved Words

The following identifiers are reserved for use as keywords, and may not be
used otherwise:

asm continue float new signed try

auto default for operator | sizeof typedef
break | delete ™ friend | private static union
case do . goto protected -struct Lmsi‘gned
catch double if public “switch virtual
char else inline . * | register template void
class enum int return this volatile
const extern long short throw while

In addition, identifiers containing.a double underscore(__) are reserved for
use by C++ implementations and standard libraries and should be avoided by
USErs.

The ASCII representation of C++ programs uses the following characters as
operators or for punctuation: .

! % A & * () - + = { } | |~

\ ; ' : " < > ? . . /

L]]

And the following character combinations are used as operators:

I
I

1
fo
o

= |+ | — | * ool |2 | e= | =

s
T

| *= | /= To=| += | = | <ec=|>>=| &=

Each is a single token.

In addition, the processor uses the following tokens:
#it

Type Conversion

Converting one predefined type into another typically will change size andfor
interpretation properties of the (ype but not the underlying bit pattern. The
size may widen or narrow, and of course the interpretation will change.

There are two ways of type conversion:

Implicit fype conversion
Using assignment statement. For example,

long Ival = 3.14159;
intt=lval; //i=3

However, such type of type conversion is restricted to pre-specified type
conversions only. Such type conversion sometimes result in surprising
results, for example, int i = 2/3 will assign a zero to i.

Explicit type conversion

The notation used will be.

type(expr)
(type)expr

These are referred to as typecast. For example,

Overview al v+

R

C++-An
Introduction

int(3.14159) results in 3

The if statement
The syntax of the IF statement is as follows:

if (cxpression)
Statement;

The expression must be enclosed in parenthesis. The statement may be a
compound statement. For example,

if (x > 9)
x =0,

The statement will be executed only if the expression is true. The syntax of
the If-else statement is as follows: '

if.(expression)
Statement-1;
else
- Statement-2;
If expression is true statement-1 is executed. If expression is false, statement-

2 is exccuted. So, depending on the truth-value of expression, either
statement-1 or statement-2 is executed. For example,

if (x> 5)
+ys

.else

The statement 1 and 2-may be another if statement if the need so be. The if-
else statement introduces a source of potential ambiguity referred to as the
dangling-else. The problem occurs, when a statement contains more if-else
clauses, The guestion is “with which if does the additional else clause
properly match up? Consider,

if (row < 5)
if (col <10)
cout << “valid”;
else
cout << “Invalid order”

'The indentation indicates the programmer’s belief that the 'else’ is associated
with outer ‘if *. But, it is wrong. To avoid this ambiguity, a rule has been ‘
made that an else is associated with the last pnmatched ‘if’. So, the above
statements will be executed in accordance with the following indentation;

if {row < 5)
if (col < 10) ’
) - cout << “yalid™
else
comt << "“Invalid™;

The Switch-Statement
The syntax of the switch statement is as follows:

switch(expression) {
case constant-]
statement;
case constant-2
statemment;

case statement-n
statement;

defauit; statement

) // end of switch

The expression can be any valid expression except a floating-point value.
The value of expression is compared with each constant for a2 match. The
statement corfesponding to matched case and the statements of thé following
cases are executed. If the vilue of expression is unmatched with ali of the
constant values, then the statement corresponding to default clause is
executed. For example,

- Xx=5;
switch(x)

case 1 : cout << “‘one’; break; °

case 5 : cout << “five”; break;”

case § : cout << “eight™; break;

default : cout << ‘“‘matching did not occur’:

}

'So, the output will be:

five

In the absence of the break stalement, the output will be:
five eight matching did not occur

The WHILE statement

The syntax of the while statement is of the following form:

while (exprassion)
statement;

So, whenaver expression becomes true, the statement will be executed.
The FOR statement
The syntactic form of the FOR loop is as follows:)
for (initialization; expression-1; expression-2)

Statement(s);
The order of the evaluation is as follows:
initialization
expression-1
if expression is true {

statement(s);

expression-2;

}

a]lse
exit loop;

Both initialization and expression-2 can be NULL statements.
Examples:
For (int k=0; k<5; ++k)

Qverview of C++

C++ - An

Imroduclion

16

For (;value>2; ++count)
For /- colour=green:)

Expression-1 must always evaluate to either 1 or 0. Only when expression is
true, the statement(s) is/are executed.

The do while statement
The syntactic form of the do while loop is as follows:

do
Statement(s)
while(expression);

The order of evaluation is as follows:

-Statement(s) '

Expression: If the expression is true then the statement(s) will be executed
again. '

So, the statement is executed before the expression is evaluated. The
expression will always evaluate to True (1) or False (0). So, unlike other loop
structures, the body is always executed atleast once.

The break Statement

The break statemcnt.will transfer control to the first statement after the body
of the latest FOR,WHILE, DO or SWITCH in which it is present. For
example,

while (1)

{
cin>>height; .
if (height>10000)

break;
}

cout << “Reduce Altitude™;
The Continue Statement

The continue statement will terminate the current ileration of the WHILE,
FOR or DO loop statement.

for(i=0; i<st-strength; ++1)

{
if (marks[{i+1)]>=50)
. continue;
else :
/{ communicate to the student that
/1 he has failed
)

The GOTO statement

The goto statement is an unconditional jump statement. The syntax of the
goto statement is as follows: '

goto Label; ,
Both the goto and Label should appear in the same funcﬁon. A colon should

.'ai_w'ays f;illow the Label. For example,

void matri(int i)

if(i==1)
goto Multiply;

Muitiply; .

) . '.
Constraints on GOTO statement -

There should be atleast one statement followed by LABEL. For example,

{goto X;

X ; // a'Null statement is used

}

Between the goto and Label statements, there should be no explicit or implicit ‘

initialise statements. The constraint is applicable only in the case of forward
jumps. In the case of backward jumps, this rule is not applicable.

Howéver. the rule regarding forward jump is not applicable, if the GOTO.
statement jumps on the entire block containing the initialise statement.
Example:] ' : :

goto Process
{ i=0;
=k
Process
A goﬁd programming practice is to avoid goto statement in a program.
Check Your Progress 2 |

1) What are the problems in the following program segment?

main ()
? t
inti, j, k;
float x;
x=1I;
if (i > x) goto mult;
else
i=5
Mult
k=1%];
}
2) What will be the value of following expressions of C++ for the ~vulues
cfimta=35b=06c=7,d=8 '
() a+b*c%d _
(b} a4+ Dk F peb ¥ byt o
(€} ++a ®* b——* 43+ * —h
(d) a&b
{e) cld
() sizeof a

Overvicw of C++

17

| =T o

Ci+r-As
Iniroduyetion

i

3) " How mang} times the following loops will be executed for the values of
int1=7,j=250,k=2>55 '

(@) int count = 0;-
for i <k; 1+=25)
{printf (*'%d™, count)
" count++
b
(b) do {is++;
. count ++;

} while (| >).

1.4 FUNCTIONS AND FILES

In this section we will mainly discuss how to make our own library of
functions which will be used frequently.

1.4.1 How to make a Library?

Let us assume that you want to have a function, which will receive parameters

_of type double, computes their sum and returns that sum which is of type,

double.

Also, let us have a function, which will receive an integer parameter and

. returns a Q(false) if it is odd or a 1 (true) if it is even. Let the names of above
_ functions be sum and even. Let the files in which they are placed are sum.c

and even.c.

Let us make a library wilh these lwb files and let ihe name of library be lib, a.
Now, applying the following sequence of steps in UNIX environment can
make the library lib.a: :

$cc -C SUM.C even.c .{f The result is the eﬁuivalent object files

3ar cr lib.a sum.o even.o /f An archive called lib.a is made which
/f contains the object

) / codes of two functions.
$ranlib liba // Now; the library is indexed for faster access

In the above code, §$ is the system prompt .

Now, the library can be used alongwith any program say, blll c in the -
followmg way:

$cce bill.e liba

The advantage of using a library is that only the functions, which are needed,
will be used and the linker will look after it. If we do not archive them into a
libvary, we have 10 specify the files individually, which will be cumbersomc as
well as error-prone. .

1.4.2 Funcifions '
In C++, any function has to be declared and defined before it is called.

The format of a function declaration is as follows:

_ Return-type functionname _(Argumcni-typel, Arguement-type2.........);

For example,

void swap(int*, int*);

The format of a function definition is as follows:

return-type function-name(Argument-typel, Argument-type?2........)

{
Affunction body

}

For example,

void swap(int* u, int* v)
//Program to swap the values of two integets u and v using third location-temp.
{

int temp;

temp = *u;

1 =y,

*v = temp;
)

Arguments to a function can be passed by value or by reference.

Let us demonstrate the call by value mechanism with a simple example as
- follows:

include <iostream.h>

//swap function prototype

void swap(int, int);

void main()

{inti=2;
intj=3;
swap(i, j);

cout << i << j;

}
//swap function implemented here
void swap (int u, int v)

{ int temp = u;
u=vy:
-¥ = termp:
return

}

The output will be 2 (the value of i) & 3 (the value of j) that is no exchange
has taken place in original values although the values of u & v must have
changed. The reason is, in call by value, temporary storage will be allocated
. lo arguments parameters.

i=2
j=3 Main ()

Start of Main before sw:ip statement execution

Overview of C++

G rAn
Intraducton

temp

I—) u
L]

] swap

] main

On call to Swap function i is passed to u and j is passed to v

W2

St g

temp)
u=3 swap
v=2
- i= 2-
j=3 main

On complete execution of swap but before return.

.j=3 . lrﬁain

On return from the call the values in main() remains unchanged.

The values of i & j in main() remain the same since the memory in which they
reside is different from the storage locations where they are passed as
arguments. This is the reason why the same values are reflected in the output.

Consider the following example for demonstration of call by reference.

include <iostream.h>
void swap (int&, int&);
/findicating call by reference
void main ()
{ inti=2;
int j=3;
swap (i, j);
cout < ' I ="« i< <<’

)

.void swap (int& u, int& v)

{ int w=u;
u=v; -
y=w,

}

The output will be i = 3 j=2. That-is the interchange in the main has occurred
which was the desired purpose.

The reason is that during the coinpilation and execution of main(), the
20 locations i & j are created and they were assigned the values 2 & 3 as follows:

i=2 ’ .
main

When there is a call to swap, the control will be transferred to procedure swap.
Since the argument passing is by call by reference, the memory location u & v
will refer 101 & j. It can be illustrated as shown in the following figure:

u

s swap
temp)

i=2 main
i=3

u 1s a pomteria]las toi and v is alias to f.

After the completlon of execution of procedure swap, the control passes to the
main {) program and the location of i & j will contain 3 & 2.

u
v '] 'swap
temp
i=3 |
main
- j=2 -

On intercha:ige, u & v will change the values of i & j.

“The locations in all the above situations are the same. In this way, the output
will be =3 j=2 in call by reference.

We can declare an argument as const if we want that it should not be modified .

by the called function. It is also possible to change the type of the argument
For example,

int check(const int& u)
{ ifu >0
return 1;
else return 0;}

At the same time, if there is need for any type conversion between a forma!
parameter & an actual parameter then the argument must be declared const to
the reference argument. It cannot be converted if it is not declared const.

Arrays can be passed as arguments to a function in C++ as in C.

Overloading means using the same name for different operators on different
types. For example, '+ is an overloaded operator in most of the languages
since '+' is the sign used for addition of two integers as well as two floating
point numbers. The same is the case with ‘-’ operator.

Function names can also be overloaded in C++ as demonstrated by an
example as follows:

void search (const char*),

Overview of C++

C+- An
Introduction

22

void search (int*);

include <iostream.h>

void main{)
{ int j{5];
char k[5];

/] code for reading elements
search (j); // second function is used
search (k), // first function is used _

}

When a function name is overloaded, the overloaded functions should have
different number of arguments or different types of arguments. If not, the
compiler cannot take a decision regarding which function to use.

Type conversion will take place if the matching of arguments does not take
place and in such cases, error messages will result. We can also have
unspecified number of arguments by using va_arg, va_end, va_list, va_start
of library <stdarg.h>. We can have pointers to a function as in C language.

1.4.3 Macros .-

A Macro can be defined as a segment of code with a name which replaces the

. OCCUITENCeS of name in_the code. For example:

#define, Msoft Bill Gates

So, in the program, whenever the token “Msoft” is encountered, “Bill Gates”
replaces it.

Macros can be used effectively for defining a symbolic name to a constant. It
improves the readability of the program. However, the same work can be
done using constant declarations, for example:

Macros ' : . Constant Variable Definition
Example Example

define PI 3.14159 “const PI = 3.14159,

define MAXSIZE 5000 const MAXSIZE = 5000;
Advantage the symbol PI will be taken as Symbols declared here can
value and no space will ‘be reserved by - be identified to a type. " Thus,
compiler for them. But symbols cannot be helps in identifying

identified 10 a type compiiation errors.

The capabilities of macros is far beyond Just symbols. However, they should
be used wilh cautions.

e There will be problems with macros when there were recursive calls,
e Another problem is with precedence.

For example,

#define cube(a) axaxa |

Now, let us asseme that there is a statemeént in the program as follows:
intk:cube(k+3'), -

Now, this statcment WI" be- -expanded as follows:

intk=(k+3*k+3*%k+3) -
which is certainly not (k + 3) as per precedence of operator.

Due to these and many other reasons, C++' provides const, and template
mechanisms so that the use of Macros can be minimised.

Check Your Progress 3 '

1) What is overloading of funciions? How does compiler resolve which of
the overloaded function has been called? :

2} Implement SWAP functions using call by value and call by refarence
and print intermediawe results to eheck he justification given in the
section above.

1.§ SUMMARY

In this unit, we have introduced various programming paradigms. Object
Oriented Programming has become popular since the paradigm perfectly fits
the real life situations. -

We have also discussed various control statements namely- IJF THEN, IF
THEN ELSE, SWITCH, WHILE, DO, FOR and the circumstances when we
have to prefer a particular statement through one can be expressed in the form
of other. ' '

We are also able to know about the declaration and use of functiohs. "A
function can have more than one return statement.

We have seen the method of defining macros and a few disadvantages of
thern. We will explore the “Inline functions” in the remaining sections of the
block. T

In the next unit, we will also describe the Declaration and usages of classes,
concept of overloading, inheritance and also how C++ supports Object
Oriented Programming,

1.6 MODEL ANSWERS
- Check Your Progress 1

1) Procedural Programming, Modular Programming, Object Oriented
Programming '

2) (@& ()
3) . Part.

Overview of C++

Ci++-An
Iniroduction

24

Check Your Progress 2

= { WP | { P fd e .37

1} e no return type to main (')

e an asmgnment & comparison of dissimilar type “not necessan]y will
give syntax error as C++ as it is’ not very slrong typed language

e use of goto is not recommended.

2) Write and run a small C++ program and compare your theoretlcal results
with those obtained from program.

3) Write and run a small C++ program and tompare your theoretical results
with those ohtained from program.

Check Your Progress 3

1} More than one function with the same name but different number of or

" type of arguments. The different number of arguments or type of
arguments is used by compiler for resolving which function has been
actually called.

2) Do it through a program and check results with different set of data.
3) # define max(a,b)(a>b)? a:b

1.7 FURTHER READINGS

1) B, Stroustrup, The C++ Programming Language, Third edmon Pcarsonf
Add:son -Wesley Publication.

2) N. Barkakati, Object Oriented Programmlng In C++; Prentlce Hall of
India.

ity [

UNIT2 CLASSESAND OBJECTS

Sltruciure

2.0 Introduction

2.1 Objectives

2.2 Definition and Declaration of a Class
23 | Scope Resolution Operation

2.4 Private and Public Member Functicns
2.5 Creating Objécts

2.6 Accessing Class Data Members aﬁd Member Functions
2.7 Arrays of Objects

2.8 Objects as Function Arguments

2.9 Summary :

2.10 Model Answers

2.0 INTRODUCTION

In the previous unit we discussed different programming paradigms as well as
the syntax of various C++ statements. We also learnt how to make our own
library. In this unit we will discuss Class, as important Data Structure of C—.
A Class is the backbone of Object Oriented Computing. It is an abstract data
type. We can declare and define data as well as functions in a class. An
object is a replica of the class to the exception that it has its own name. A
class is a data type and an object is a variable of that type.

2.1 OBJECTIVES

At the end of this unit, you will be able to:

e Define the basic concept of a class
e Explain private and public clauses
e Create objects

e Wrnte prograins with functions taking objects as arguments.

2.2 'DEFl.NI_’I‘IO_N AND DECLARATION OF A CLASS

A class is a user-defined type. The definition of a class includes declaring a

* data object of that type, specifying the data items as well as functions which
operate on these data items, indicating if the data can be accessed by functions
which are out of scope of class by indicating “public or private” and other

- details,

We shall consider the class “Queue” as an example:
class Queue -
{ .

int front, rear;

_ int queue_array[10];

public: ‘

int isquenempty();

int isqueuefull(¥:

25

U4+ - An
Latrmbiretion”

26

void inseri{int);

void delete();

void print{ };
-+

In the above Class front, rear, queue_array are data members. Whenever, we
define and declare a class, all the data as well as member functions are
“private” by default. '

“Private” means that they can be accessed only by the [unctions within the
class. These functions are known as Member functions. '

. “Public” means that they can be accessed by the functions which are outside
the class also. Since, everything in a class is Private by default, we can
spécifically indicate that something is public as we have done in the case of
above member functions. ’

access Friend class
-Private
Members Permitted
Public Friend function
Members—
external
world window
Protecled
Members
Inherited
lasses

Figure I : Public and Private Members of a class

So, in the above e}éample. the Private members front, rear, queue_array can be
accessed only by the five member functions. (Any way we can override this.
We will discuss about it later).

The ability to declare the members of a class as private gives rise to the
concept of “data hiding”.

Encapsulation is, the mechanism that binds together code and the data. It
manipulates and keeps both safe from outside interference and misuse. The
concept of class in C++ supports encapsulation by enabling both data as well
as functions. to be declared and defined in the same class and declaration of all
members as “private” by default.

“We can declare arrays within a class just like any other data item.
Queue_array in the class “Queue” is an example.

-y L B Y |

[e pu—

2.3 SCOPE RESOLUTION OPERATION

The scope resolutlon operator is denoted by *::"

A class is identified by the external world through the public member
functions, constructor and destructors, which is also referred to as the interface
of a class. The interface of class, in general, needs to speruy the names of
member functions and the parameters to be passed to values to be returned.
Therefore, in general the interface of the class is kept separately from the
implementation of its member functions. Cne of the key reason for that is, a
user of a class need not know the implementation details, it just need to know
how a class can be used.

Since, implementation/definition may be defined separately, therefore, we
need a mechanism to identify with what class a function implementation is

~associated. The scope resolution operator specify the scope of a functlon that
is to what class it is associated.

For example, any function of the Queue class in Section 2.2 may be
implemented as: : - -

Queue ::isqueuempty()

(

}
The scope resolution operator can also be used for defining the global
variables also.

Please note here that the functions can: also be defined inline that is during the
class definition itself. : .

Consider the following example:

include <iostream.h>
" int X;
void main{)

{

)
void [()

(

f()

int x; // hides the Global x
x = 1; // assigns to local x .
/1 if we want to make any assignments to global x in (), it is not
// possible '
| :

"

But with the help of scope resolution operator “::", we can do that as follows:
void ()
{ .
int x;
x = |; // assigns 10 local x
X = 2; // assigns to global x
}

So, whenever a variable is prefixed by ::, it refers to Global variable.

So, with the help of Scope Resolution operator, we can usc a hidden globat
name.

&

Classes and Objegls !

27

Ch#+ - An
Introductlon

28

24 PRIVATE AND PUBLIC MEMBER FUNCTIONS

All the member functions, which are declared in a class, are private by default
unless specifically indicated as publilc (refer to Queue class where all the
member functions are declared public).

Other member functions of the same class and friends of it can only call all
private functions. Private functions, by themselves cannot be invoked. (Refer
to figure 1). For example,

class one’
{
int X, y;
one()
flone () is a private function by default.
{-
=1
y=2,
}

void print()

cout << X << y;

}
B

one x1; /fwrong :
/1 the procedure one() cannot be executed as it is private.

If we change it to public, then it will be executed.
Consider the following:

class one

{

int x, y,
void print()
{

}

public:
one()

X

cout << X << y;

1
2;

mnn

Y
)
L
one x1;

void main({)

{....}

Now, one() will be executed. Bur, any call such as x1. print() is invalid as it
is a privale member function. So, we can invoke it from some other member
function of the same class follows:

class one

{

int x, y;
void print()
{

cout << X << y;

)
public:
one()

{

X= 1,

y=2; _

print (); /#/ valid call to print within one()
-}

ki

one x1;

void main()

(.

}

Also, a private member function can be called from another private member
function. Anyway, the first member function, which starts the chain should
be a public member function.

Check Your Progress |
1) Define a siring data \vpe \;'ilh the following functionality:
- A constructos Having no parameters
- Constructors which initialize strings as follows:
* A constructor that creates a string of specific size
. Conslmctc.nr that initializes 'using a pointer string -
e A copy constructor
- Dettiie the destructor for the class

- It has overloaded operators (This part of question will be taken up in
the later units).

- There is operation for finding length of the string.

Classes snd Ohjeets

Tty e e

C++-An
Intreduction

2.5 CREATING OBJECTS

If a class has a constructor, then it-is called whenever an object of that class is
crealed otherwise a default constructor for the class is called. [If the class has
the destructor, then it is called whenever an object of that class is to be
destroyed otherwise a defauit destructor for the class is called.

We can create objects in the following ways. We can creale an automaltic

object, which is created each time its declaration is encountered during the
execution of the program and is destroyed cach .time the block in which it
occurs is left. For example,

class examplel

{

L
void main()

{
fO
}

voidf()
{

example! exl;

}

Now, in (he above example, the object ex] is created whenever the control is -

transferred to f() and the statement declaring ex1 is executed. exl is
desuoyed, once the execution of f() is complete, Here ex! is automatic object.
Please note that in this example no constructor or destructor of the object is
defined, therefore, it will use default constructor & destructor generated by the
compiler itself. '

We can create a stalic object, which is created once during the start of program
and is destroyed once the execution of program is completed.

Consider the following example:

class example

{
i
)
void main()
{
fO;
f0);

/1 last statement

} \

[y rrpap s =

void £() - . Classes und Objeges

{

slatic example exl;

}

Now, cx] is created once during the first call to f(). It is not destroyed after
the completion of execution of f() since it is a static object. Also, since it is
not created once again, the data stored in it which was present at the end of
previous call is not lost when f() is called again. It is destroyed only once and
that is done after the completion of execution of the program. In this case -
objcct still be created by default constructor, however, it will be run oaly once
during the lifelime of the object. '

We can create an object on the free store-using new operator and destroy it
using delete operator. Consider the following example:

Class examplel

B

I
maing)

{

examplel*p= new examplel;
delete p;
)

P is a pointer (o an object of type example|. The object as well as the
pointer, which points to it, is destroyed when delete is executed. A user can
design his own new and delete operators.

An object can also be created as a member of another class. Consider the
following example: '

Class examplel

{ .

Class example 2

{

examplel ex1; // ex] is an object which is member of another class

}:
Whenever an object of example2 is created and if there were constructors for

beth or either without taking arguments, then the constructor of object ex] is
executed followed by the execution of constructor of example2. ,

— L IO T

PO e T R

_ G - An _ If there were arguments to one or bbth ffi¢” constructors, then they have to be
Introduction explicitly called. The same is case with destruction. Whenever an object of -
example2 has to he destroyed, the object ex! is destroyed followed by the
destruction of obj'ect' of examiple2.
An object can also be created as an array element. Consider the folldwing
example: - ‘
Class ex
{
.
ex-ten[10}, .
If the =x contains constructors, then there should be a default constructor,
which need not be called with a parameter. The reason is, there is no way to
specify an argument along with an array.
2.6 ACCESSING CLASS DATA MEMBERS AND
MEMBER FUNCTIONS
If 4 data member is public, then it can bé accessed by the following syntax
objecmame.dataﬁ'lcmber'
If the data member is private then it can be accessed by the member fun : izus
only. _
Any public member function can be accessed as follows:
object_name.member function_name
If the member function is private, then it cannot be accessed as mentioned for
public member functions. A private member function can be accessed only
through another member function. (Please refer to figure 1).
Consider the following example which i'llustrate's the above concepts. The
following is a linear search program which will receive a key value as well as
a list of integers and gives the position ‘of the key value in the list if it is
present.
include<iostream.h>
class data
{
int list[10];
int size;
public:
data () /fconstructor of class data
{ - o
cout << “size of list is atmost 10" <<"Enter the size of Jist”;
cin'>> size; //Accessing private data '
for(int i = 0; i<size; ++)
(.
.cout << “Enter the element™;
cin >> list [i];
) .
}#/ end of constructor
32 void search(int p)

{

Delete X #/ if X is a single object.

int check = 1; _ Cligges and Objects

inti=0;
while ((check) && (i<size))’
* //Check is not equal to Q and i is less than size

(.
if (p==list[i])
check = 0;
else
+Hi;

1

if (check = = 0) // key is found as check is assigned to zero value
_ cout << "key matched at the following position” << ++ i;
else :

}

}: & end of class data

cout << “No matching element found”;

void ‘main() -
{ /{Calls the constructor defined in the process
data d1; _
int key; :
cout << “Enter the key value™;
cin>> key; -
dl.search(key); // Accessing member function. Notice the way
member function has been
/f Called by the object d1 which is of class data.

2.7 ARRAYS OF OBJECTS

' Consider the following class:
class Cl1.

{

15 .

Now, an Array of objects of C1 can be declared as C1 ¢ [10];

So, we have declared 10 objects of type C1. Also, we can create an array of
objects C1 en the free store as follows:

Cl'c = new C110];

If C1 is having ‘a constructor, then it should have a default argument or no

arguments. During the execution of above statement, each constructor
belonging to each object is executed in sequence one after another.

The way of accessing data members or member functions of the objects are.
similar to the method we have outlined in the previous sections except that she
prefix of data-member as well. as member function name will be
Array_namefirdex].

So, if you are accessing data item (say, i assuming that i is public) of object
c[3], then it is indicated as ¢[3).i

When we are creating objects on free store; we can delete them as follows:

Delete[] ¢; // Since ¢ is an Array

AT I b e

C++-An
Iniroduction

34

2. 8 OBJECTS AS FUNCTION ARGUMENTS

We can pass Ob_IGClS as arguments to a function. We can send them by
reference or by value. .

. Consider the problems of adding two matrices: _
This can be done by sending objects by reference as follows:

#include <iostream.h>

#define MAXROW 50

#define MAXCOL 50

int row, col:

class matrix

(

int m[MAXROW][MAXCOLY);

“public ,
void in_element(void);
void print(void);

friend matrix add{const matrix&, const matrix&)
//The addition will be cat_'ried aut by a friend function.
/[This function however will not change the value of its arguments,
//hence const been used before each argument.
K _
void matrix::in_element() . fiplease note use of scope resolution oocrator

{ - cout << “the matrix is:™;
for (int i.=0; 1 < row; ++ i)
for(int j = 0; j< col; ++j)
- cin >> m[i][j];

) |
void matrix::print()
{ cout << “the matrx is:";
for (inti=0; i < row; +i)
“{ cout << *\n”;
for (int j = 0; j < col; ++j) //Print the matrix in tabular form
- cout << m{i}[j] << “W",”
) :
}

In the functlon prototype “matrix add(const matnk& const matnx&) the
matrix& is a reference to matrix class. Pledse note this represent “call, by
reference aha not call by ‘value. The advantage of call by reference here is
that since the’ ‘atrix’is'a]arge object, its instance will not be duphcatcd as’is ’
the case in call by value. Moreover, const ensures that ongmal values of
matrix- does-not get modified even by mistake .in programsning, -Such- -mistakes
will be caught by compiler, Thus, this method of. parameter passmg may-be
considered for large objects:

_matrix .ﬁrst,- second;
void main ()
{
cout << “enter the oider-of the.matrix:! B
cin >> row;
cin >> col:

s ~pr-)

= 3 = it e

first.in_element ();
second.in_element ();

matrix result = add (first, second);
result.print ()

}

matrix add(const matrix& one, const matrix& two)
{
matrix’ temp_result:
for(int k = 0; k < row; ++k) .
for (int 1 = 0; 1 <col; ++1)

temp_result.m{k][1] = one.m[k][1] + two.m[k][1];

return temp_result;

)

The same can, be done by sending objects by value as follows:

{/demonstration of call of objects by value

ftinclude <iostream.h>
fdefine MAXROW 50
fidefine MAXCOL 50
int row. col;
class ntrix

(

int m[MAXROW][MAXCOLY]:
public:
~ void in_element(void);
voud print(void);

friend matrix add{(const matrix&, const matrixé&e);

);
void matrix::print()
{ .cout << “the matrix i1s:";
for (inti=0; i < row; ++i)
{ cout<<™n™;
for (int j = 0; j < col; ++j)
cout << mfi]j] << ‘Ww™;
}
1
void matrix::print{) _
{ cout << “the matrix is:";
for (inti=0; i < row; ++i)
{ couttz<"™\n"™
For (iatj = 0; j < col; ++})
cout << mfi][j) << ™
}
}

matrix addmatrix, matrix);
malrix first, second:
void main{)
{
cout <<, enter the order of the matrix :"';
Cim > 1{ &
CIin > &l
first.in_ciement();
scgond.ir_element();

Classes and Objects

r ey ey e) o

G -
Intredection

a6

matrix result = add(first, second);
result.print(');

}

matrix add(matrix one, matrix two)

{

matrix temp_result;
for {int k = 0; k < row; ++k)
for (int 1 = 0; 1 < col; ++1) _
temp_result.m[k][1] = one.m[k}[1] + tow.m[k][1];
return temp_result; oL, ' oy
} f
Check Your Progress 2 :

1) Wrire a program lor the implementation of stack using classes.

2) Write a program for the multiplication of matrix of order m X n with 2
veelor of order m x 1 using classes. Design a function, which accepts
matrix and vector as arguments and returns the resultant matrix.

2.9 SUMMARY

In this unit, we discussed the concept of class, its declaration and definition. It
also contains the ways for creating objects, accessing the data members of the
class. We have secn the way to pass objects as arguments to the functions with
call by value and.call by reference. ;

2.10° MODEL ANSWERS

Check Your Progress 1

1) const maxlen = 20;

class stnng

{ private:
char * str;
int length;

. Public:

I constructors .
string (); // defines a string of length O but of a default size 20.
string (int I_len) // create a blank string of size i_len
string {const cnar *s)
int strlength (const string &s)
/l-other string Functions
~string (); /l destructor

L
string :: string ()
str = new char [maxlen};
‘length = 0;
str [0] = \O';
) . .
string :: string (int i_len)
{
length = i_len;
str = new char [i_len);
int 1 =0;
- for (i =0; i<i_len; i++) str [0} =* ";
stefi] = "\0';
}
string ::string (const char *s)
{fconstructor with initialization using a constant string
{
length = strlen(s); . .
str = new char [length + 1];
~ strepy (str, s); '
} /f strlen & strepy one library string functions-
string :: string (const 'string & s)’ // copy construcior
{
length = s.length
str = new char (s.length +1)
strepy (str, s.str)
} /] create a new instance of a string
string :: length (void) const
{ .
: return length;
} _
string :* ~siring ()
{

delete str;

}

Check Your Progress 2

I) Hint: Use array as data structure for implementing the stack and for
pushing and popping elements on the stack. :

2) Hint: The following should be provided in your program:

e A Class for Matrix

e A Class for Vector (One dimensional array)

e A Function that accepts, Matrix and Vector as arguments and returns
Matrix or Vector as per the type of expected result.

Classes and Obhjects

37

.|

UNIT 3 OPERATOR OVERLOADING

Structure

3.0 lntroduction

3.1 Objectives

3.2 Operator Functions
3.3 Large Objects

3.4 Assignment and Initialisation
3.5 Subscripting

3.6 Function Call

3.:? Increment

3.8 Decrement Operator
3.9 Friends

3.10 Summary

3.11 Modcl Answers

3.0 INTRODUCTION

In the previous unit we discussed concept of a Class. In this unit, we shall
discuss the concept of overloading. For example, to add two matrices, you
need to define a Matrix class. We will: create two objects of this class. Now,
when we have to add these two matrices, we have to access the data of their
objects through member functions and add them. But, this is cumbersome. It
will be convenient if T can add the two objects directly and the other details
can be taken care of compiler. But, the ‘+* operator is meant for addition of
data types like integers etc. So, to add two objects with “+” operator, in C++,
there is a facility to define a function with name ‘+’ which accepts two objects
as arguments. Then, we write the code in that procedure, which adds the data
of these two objects and returns the object. This concept is known as operator
overloading 'since single opérator can be used for more (han one purpose.

3.1 OBJECTIVES

After going through this unit, you should be able to:

e write functions with operator overloading feaif.cs and

e use friends clause.

3.2, OPERATOR FUNCTIONS

- The meanings of the, following operator can be' redefined using functions:

+ - oo % A & 1~ 1

= > < += .= *= /= %= A= &=
I= << o >o= - <= == = <= >= &&

I ++ — L ? [1 () New Delete

Though the meanings are redefined, their precedence cannot be changed. At
the same time, a Unary operator cannot be redefined as a Binary Operator.

The Syntax of declaration of an Operator function is as follows: Operator Overloading

Operator Operator_name

For example, suppose that we want to declare an Operator function for ‘=",
We can do it as follows: ‘

operator =

A Binary Operator can be defined by either a member function taking one
argument or a global function taking two arguments. For a Binary Operator
X, a X b can be interpreted as either a.operator X (b) or operator X (a, b).

For a Prefix unary operator Y, Ya can be interpreted as either aoperator Y ()
or Operator Y(a). For a Postfix unary operator Z, aZ can be interpreted as
either a.operator Z{int) or Operator (Z(a), int).

The operator functions namely operator=, operator{], operator {) and
operator 7 must be_non-static member functions. Due to this their first
operands will be lvalues.

An operator function should be either a member or take atleast one class
object argument. The operators new and delete need not follow the ruld,
Also, an operator function, which needs to accept a basic lype as its first
argement, cannot be a member function. Some examples of declarations of
~ operator functions are given below: '

class C
' .

C operator ++ (int}; // Postfix increment
C operator +4{); // Prelix incrermemt
C operator |l (C); # Binary OR -

] .

Some examples of Global Operator functions are given below:

C operator — (C); // Prefix unary minus °
C operator ~ (C, C); // Binary “minus”
C operator - - (C&, int); // Postfix Decrement

We can declare these Global Operator Functions as being friends of any
other class.

Examples of operator overloading:
Operator overloading using friend.

Class complex
{
int real;
int imag;
public;
friend complex operator + (const complex & x, const complex & y);
ffoperalor overloading using fricnd
complex () {real = imag = 0;)
complex (int x, int y) { real = x; imag = y;}

complex operator + (const complex & x, const complex & ¥)
{ .

complex z;

zreal = x.real + y.real;

z.imag = x.1umag + y.imag;

return z;

|C+-|' -An
Introduction

}
main () {
Complex x, v, z;
x = complex (5,6);
y = complex (7,8);
z = complex (9,10);
Z=X+Y,; {/ addition using friend function +

}

Operator everloading vsing member function:

Class string

{

char * str .

int length; // Present length of the string.

int max_len; f/(maximum space allocated 1o string)

public: : .

string (): {f blank string of length 0 of maximum allowed length

{1 of size 10.
String (const string & s) // copy constructor
~ string () {delete str;}
int operator = = (const string & s) const; // check for equality
string & operator = (const string & s)
// overloaded assignment operator
friend string operator + (const string & sl, const string & s2)
) /f string concatenation
string :: string ()
{
max_len = 10;
str = new char [max_len];

length = G; .
str [0] = \0';
)

string :: string (const string & s)

{

length = s.length;

max_len = s.max_len

str = new char [max_len];

strcpy (str, s.str) /iphysical copying in the new location
} . .
[Comment: Please note the need of explicit copy constructor as we are using
pointers. For example, if a string object containing string “first™ is to be used to
initialize a new string and if we do not use capy constructor then will cause:

Strl

--9

F|T| R| Sy T|W

A1

Str2

That is two pointers pointing to one instance of allocaled memory, this will
create problem if we just want to modify the current value of one of the string
only. Even destruction of one string will create problem. That 15 why we
need to create separate space for the pointed strings as:

Str 1 — |F| 1| R| S T %0

Sr2 | = [F|I|R| SI T W

Thus, we have explicitly written the copy constructor. We have also wrilten

the explicit destructor for the class. This will not be a problem if we do not™
use pointers. :

String :: ~ string ()
{

}

string & string : operator = (const string & s)

delete sir

{ :
if (this | = &s) // if the left and right hand variables are different
{ . . B
length = s.Jengti;
max_len = s.max-len;
delete str; // get rid of old memory space allocated to this string
Sir = new- char [max_len]; - If create new locations
strcpy (str, s.str); // copy the content using string copy function
}

i -return *this
}

/1 Please note the use of this operator which is a pointer to object that invokes
the call to this assignment operator function.

inline int string :: operator == (const string & s) const
{
/f uses string comparison function
retumn stremp (str, s.5tr)

)
string string :: operator + (const string & s)
{ string s3;

s3.length = length + s.length
s3.max_len = s3.length : -
char * newstr = new char [len+1];
strepy {newstr, str);
strcat (newstr, s.str);
$3.sir = newstr;
_ return {s3)
).
Overloading << operator
To overload << operator, the following function may be used:
Ostream & operator << (ostream & s, const string & X)
{
s << “The String is:” << x
retum s
- :
You can write appropriate main function and use the above overloaded
operators as shown in the complex number example.

3.3 LARGE OBJECTS

For all operator functions, which take classes as arguments, there is the
overhead of copying entire object in the temporary storage. This can be
avoided by declaring operator functions as taking reference arguments. For
example, consider the following class matrix.

class Matrix

{ int m[10][10];
public :

Matrix {);

Opérqtor-O\rcrloaain;;

41

Ci+-An

Introduction

42

friend Matrix operator + (const Matrix&, ﬁonst Matrix&);
friend Matrix operator * (const Matrix&, const Matrix&)

}

Pointer cannot be used because it is not possible to redefine the meaning of an
operator when applied to a pointer. The. reference type, thus, avoids copying-
of large objects. - :

3.4 ASSIGNMENT AND INITIALISATION

Consider the following class:

class Employee

{

char name;

int ssno;

public: s
Employee() {name =new char[20];}
~Employee() {delete[] name;}

h :

int f{)

{Employee E1, E2;
cin »> El;
cin »>» E2;
El = E2;

}

Now, the problem is that after the execution of f(), destructors for E1 & E2
will be executed. Since both EI.& E2 point to the same storage, execution of

" destructor twice will lead to error as the storage being pointed by E1 & E2

were disposed off during the execution of destructor for E1 jtself/
Defining assignment of strings as follows can solve this problem.

class Employee

{
Public:
char name
int ssno;
Employee-() {name = new char [20];}
~Employee () {delete [] name;} .
Employee& operator = (const Employee&
L '
Employee & Employee :: operator = const Employee & e)
if (this I=&e)
{

delete{] name;
name = new char [20];
strcpy(name, e.name);

}

return *this

L D

3.5 SUBSCRIPTING

An operator (] function can be used to give subscripts, a meaqi:_lg._fp_r‘cla;s
objects. The second argument (the subscript) of an operator(] fuflction_m,ay
be of any type. . '

o o ——— ey —

Consider the following example ~which ‘demonstrates the use of operator([]
function:
#include <iostream.h>

cldss item
{ int 1;
public:
item{)}
{ cout<< “enter the number’;
cin>>i;
}
int operator[] (int);
h
int item :: operator{] (int j‘)
{ if (i==j)
. cottt<< "it matches";
else . .
cout<< “it doesn’t match’™
return 1;
} .
void main()
(

itemn array[8]; i
for (int i=0; i<8; ++i)
o if (array[i}[2])
cout << “operator overloading”;
}

3.6 FUNCTION CALL

Function call which is written as Procedure_name (argument], argument2,
.........) can also be interpreted. as a binary operation with procedure_name as
the left operand and arguments as the right operand. The call operator() can
be overloaded in the same way as other operators. An argument list for an
operator() function is evaluated and checked according to the usua} argument
passing rules.

The following example 'demonslrat_e the operator() function:

#include < iostream.h>
#include <string.h>
class data .
{ charhame[20];
int index;
: public:
data()
[cout << “Enter the name:™;, |
cip >> name;
}
void_opefalor() (char);
);
void data :: operator{) (char source)
{ if(strcmp(source, name) = =0)
cout << “Matching occurred’;

}

void main{)

Opcrator Overloading

43

LW e - it —

LN
CH - An
Introduction

44 |

data bank[10];
char str{10];
cout << “Enter the search string™;
cin »>> str;
for (inl i=0; i<10; i++)
{ bank[i]{str);
}
}

3.7 INCREMENT

We can also overload “++"operator. Conventionally, since ++ can be used as
postfix as well as prefix operator, we can have two different overloaded
functions.

The following is an example program, which uses an operator function of ++
for prefix application:

#include<iostream.h>
class increment

{
inti, j, k;
public : . .
increme_nt()
{
i=5;
i=6
k=7,
}
void operator++()
()
cout << (++i) << (++j)<< (++k);
}
L
void main()
{ _
increment in;
++in;
} .

The following is an example of an operator function of ++ for postfix
application. n

#include<iostream.h>
class increment
'z
it i, ks
public :
increment()
; i=3;
i=6;
k=T
}

cout << (i++) << (j++)<< (k++);
\} '
B :
void main()
{
:ncremcnt ll'l,
II'H—I-

}

Please note the prototype of prefix and postﬁﬁ ++ operator,

3.8 DECREMENT OPERATOR

We can also overload '- - " ‘operator. Convenuonélly, smce *--' can be used as
a prefix as well as postfix operator, we can have two dlfferent overloaded
functions.

The following is an example of a program, which uses an operator function of
-- for prefix application.

#include<iostream.h>

class decrement

{

inti, j. K
public :
decrement()
{
i=5;
1=6;
k=1

}
void operator -- {)
2
f
k

roid main{)

cout << (- - i) << (~-j)<< (—-k);

iecrcment de;
- de;

‘he following is an example of a program; which uses an operator function of
--* for postfix application.

include<iostream.h>
lass decrement

int i, j, k; ;
public :
decrement() ’
{
p 1=5;
| . J=6;
k=7,
}

oid operator -- (int)

Operator Overloading

s —abom 7 e — ey o

C+ -An
lnireduction

46

!

}
h

cout << (i--) << (j-- y<< (k--);

void main()

{

decrement de;
de --;

}

3.9 FRIENDS

As we dlstussed previously, any private data of a class can be accessed by
only its member functions. But, any other function, which is not a part of
class, can also access private data provided it was declared as a friend of the
class whose privale data is to be accessed.

-

For example,

Class x {
{ int i,
char j;
public:
int modify()
{ i
i
}
friend void check();
|
void check()
{ if (x.i < 0) // no error
{ 1
]) .
}

Now, the function “check” is able to access the private data of class x since it
has been declared as a friend of the class x. Similarly, we can also declare a
member fonction of a_class to be-a friend of another class. . '

Check Your Progress

1) -All operators of C++ can be overloaded. True [False [

2) There cannot be a2 member operator funclion, which receives other -
than___ as its left argument.

3) We can define our own-storage allocations by overioading’
and

4)" The pre‘t:@:lt':lencc of operators remains unchanged even if
" they are oves loaded. ' True [Fatse [

5) . A Binary Operator function hwy be defined for a
" unary operator function. '

True [l_:'alsé [

3.10 SUMMARY

In this unit, we have seen how to overload operators. All the operators that
can be overloaded were listed in 3.2. Even after writing operator overloaded
functions, the precedence of operators remains unchanged. Also, an operator
that is unary cannot be used as a Binary operator by overloading. A ‘—’

operator can be tised as Postfix unary operator. The ‘++' & *--" operators can

be used as Postfix or Prefix operators. So, separate functions overloading
them for both the different applications have been shown. Finally, until the
last unit, we are of a view that Private data of -a class can be accessed only in
member functions of that class. But, other functions, which are declared as
“friend"”, can also access them.

3.11 MODEL ANSWERS

1) Fa!sc

2) Object

3) New, Delete
4) True

5) Faise.

Gperetar 0\'crinndlng

48

UNIT4 INHERITANCE-EXTENDING
CLASSES

Structure

4.0 Introduction

4.1 Objectives

4.2 Concept of Inheritance

4.3 Base Class and Derived Class
4.4 Visibility Modes

45 Single Inheritance

4.5.1 Private Inheritance
452 Public Inheritance
453 Protected Inheritance

4.6 Muitiple Inheritance
4,7 Nested Classes

4.8 .Virtual Functions
49 Summary

4,10 Model Answers

4.0 INTRODUCTION

In this unit, you will go through the concept of inheritance using C++.
Inheritance allows a class to include the members of other classes withoul
repetition of members. There were three ways to inherit @ class. They are
public, private and protected inheritance. Public Inheritance means, “public
parts of super class remain-public and protected parts of super class remain
protected”. Private Inheritance means “Public and Protected Parts of Super
Class remain Privale in Sub-Class”. Protected Inheritance means “Public and

Protected Parts of Superclass remain protected in Subclass. We shall also deal

with nested classes in this unit.

4.1 OBJECTIVES

After going through this unit, you should be able to:

e Describe the concepts of inheritance

‘e Apply inheritance concepts to real-life programs

o Define different types of inheritance.

4.2 CONCEPT OF INHERITANCE

- Inheritance is a concept, which is the result of commonality between classes.

Due to this mechanism, we need not repeat the declaration as well as member
fur:ctions in a class if they are already present in another class.

For ‘example, consider the classes namely “minister™ and “prime-minister”.
Whatever information is present in minister, the same will be present in Prime
Minister also. Apart from that there will be some extra information in class

o

=

Prime Minister die to the extra privileges enjoyed by him. Now, due to the
mechanism of inheritance, it is enough only to indicate that information which
is specific to prime minister in its class. In addition, the class prime minister
will inherit the information of cldss minister.

4.3 BASE CLASS AND DERIVED CLASS
Let us take thé classes Employee and class Manager. A Manager is an
Employee with some additional information.

Now, wheii 'we are declaring the classes Employee and Manager without
applying the concept of inhéritance, they will look as follows:

class Employee
{ public:’
char* name;
int age;
char* address:
int salary;.
. char* department;
int id;
):
Now, the class Manager is as follows:
class Manager
{ public:
char* name;
int age,
char* address:
int salary;
char* department;
int id;
employee* team_members; //He heads a group of employees
int level: //his position in hierarchy of the organization

D
Now, without re;eating the entire information of class Fimployee in class
Manager, we car declare the Manager class as follows:

class Manager: Yhublic Employee

{ public:
Emplovee* Team_members;
int level-

Inheritance-
Extending Classes

| =

T

Cot - Al The latest declaration of class Manager is same as that of its previous one with
wntroduction
the exception that we did not repeat the information of tlass Employee
explicitly. This is what is meant by the Application of inheritance mechanism.

Please note that in the above example, Emp.oyee is cnlleﬂ Base Class and
Manager is called Derived Class.

4.4 VISIBILITY MODES

There were a total of three visibility modes. They are private, public, and
protected. In the previous units, we have already learnt about private and
public.

If a member of a class is declared as “protected”, then only member functions
and friends of the class in which it is declared and by member functions and
friends of classes derived from this class can use its member.

4.5 SINGLE INHERITANCE

In this section, you will leamn the ways of deriving a class from single class.
So, there will be- only one base class for the derived class.

4.5.1 Private Inheritance
Consider the following classes:

classA { /*........ *};
class C : private A
{ ~

v

All the public parts of class A and all the protected parts of class A become
. private members/parts of the derived class C in class C. No private member
‘of class A can be accessed by class C. To do so you need to write public or
private functions in the Base class. A public function can be accessed by any
object, however, private function can be used only within the class hierarchy
that is class A and class C and friends of these classes in the above cases.

4.52 PublicInheritance
Consider the following classes:

class A{/f*.....c....... *1};
class. E : public A
(*

b

Now, all the public parts of class A become public in class E and protccted
parts of A-become protected in E.

4.5.3. Protected Inheritance
Consider the following classes:
class A { /*........ '} |

class E : protected A
A .

”
L

Now, all the public and protected parts of class A become protected in class E.

No private member of class'A can be accessed by class E. Let us take a single
example to demonstrate the inheéritance of public and private type in more
details. Let us assume a class close_shape as follows:

Class closed_shape

{
public:

!

class circle: public closed_shape

/I circle is derived in public access mode from class

/i closed-shab_e

float x, y; /f Co-ordinates of the centre of the circle

float radius;
public:

)

class semi-circle; public circle
{ private:

public:

).

class rectangle: private closed_shapo

{

float X, ¥y

ﬂoa.t xl y!:

Inleritnnee—
Extending Clnsses

) C++ - An

Introduction

52

public:

B

Class rounded-rectangle : public rectangle

{ private:

} public:

Figure 1 shows the access control for these inherited classes.

é Clgss closed_shape

r * ¥ Protecied | | Private
> ¥
F 9

K e .
(Class circle: “\
— hr_‘___‘_‘puhlic cksed_shapo NO
- - - public
— ' X
lProlectedI | Private f_ lProied ﬂ | Prn.rate i“ -
7 O NO Q
A y, W ,5 .
ﬂ\ derlved from : gK derl.ved from

7N\ 7N
class seml-gircle: ’ - class reunded_reclangle: |
publie c;rdec ' public rectangle A
ubliz - ublic | - _
P |Pr0mctud| Private P lT LPmlocled“ Private |

J

derived [rom

darived from

class roctanple:
|:|rwala ¢closed_shape

z
o

-y
———

\I

Fipure 1: Access control
Piease note the following in the above diagram:

® (Class rectangle is a privately derived class, thus, all the public: and
protected members of class closed_shape will become private in
rectangle class and, therefore, rounded-rectangle will not be able to
access as they for this inherited class are private. On the other hand,
circle & semi-circle both are derived as public classes and will allow
access except for private members.

4.6 MULTIPLE INHERITANCE

A class can have more than one direct base classes.

Consider the following classes:

classA { /*...*% |
class B { /*..... ¥/};
class C : public A, public B

=y

Inherirtance~
Extending Classes .

P 1 # e —m =

o

)
This is called Multiple Inheritance. If a class is having only one base ciass,
then it is known as single. inheritance.

In the case of ¢lass C, other than the operations specified in it, the union of
operat:ons of classes A and B can also be applied.

- 4.7 NESTED CLASSES

A class may be declared as a member of another class. Consider the

'{

following:
class M|
int n;
public:
int m;
I .
class M2
{
intm;
public:
int m:
)i
class M3
{ M1 NI;)
public:
M2 N2;

b

Now, N1 & N2 are nested classes of M3. M3 can access only public
members of N1 and N2. A nested class is hidden in the lexically enclosing
class.

4.8 VIRTUAL FUNCTIONS

Polymorphism is a mechanism that enables same’ interface functions to work
with the whole class hierarchy. Polymorphism mechanism is supported in
C++ by the use of virwal functions. The concept of virtual function is related
to the concept of dynamic binding. The term Binding refers to binding of
actuat code to a function call. Dynamic binding also called late binding is a
binding mechanism in which the actual function call is bound at rup-time
and it is dependent on the contents of function pointer at run time. It means
that by altering the content of function pointers we may be able to call
different functions havmg a same name but different code, that is
demonstratmg poly- morphlc behavior.

53

C+ - An
Introduction

54

Let us look into an example for the above concept.

#include <iostream.h>

class employee

{

. public:

char* name;
char* department;

. employee(char* n, char* d)
{
name = n;,
department = d;
) .
virtual void print();
Y

void employee:: pﬁnt()

{
cout << “name : "<< name;
cout << “‘department: “<< department;
)
class manager : public employee
t :
public:
short position;
manager (char* n, char* d, short p) : employee(n, d)
{
name = n;
department = d;
position = p;
}
void print()
{ -
cout << name << “\n” << department <<*“\n" <<position;
| ,
h
void main()
{
employee¥* e (“john”, “sales”); _
-manager* m (“james”, "ma:keting", 3);
e — print () :
m— print();

The output will be:

John
Sales

"1 P) =P g

Inheritance-

James : :
_ Extending Classes
marketing
3
Check Your Progress
1) None of the subclasses can access members of a base
class.
2) members ol a class can only be accessed by
another class for which it is a member.
k)| Both public and protected members of a class become
when this class is privaicly derived.
4) Both public and protected members of a class become

when this class is protectedly derived.

4.9 SUMMARY

In this unit, you have been exposed to the concepts of base class and derived
classes. A derived class is a class, which includes the members of another
class. This concept is also known as inheritance. When a derived class has
more than one direct base class, then it is called Multiple Inheritance. There
were three types of Inheritance. .They are Public, Private and Protected
Inheritance. We can also declare classes as members of another class. -We
have also touched on the concept of polymorphism.

4.10 MODEL ANSWERS

1) Private
2) Public
3 Private

4) Protected.

UNIT5 STREAMSAND TEMPLATES _

Structure .

5.0 Introduction

5.1 Objectives

5.2 Output

5.3 Input

5.4 Files and Streams
5.5 Templates

5.6 Exception Handling
5.7 Summary _
5.8 Model Answers

5.0 INTRODUCTION

In this unit, we will discuss about C++ streams library, We have already
used “<<" and “>>" for standard input and output. In this unit, we will
discuss the way of using the same operators for user defined types. Also,
we will discuss the ways of reading data from and writing data to other
files. We will discuss ways of opening files in different modes and closing
them. In the context, we will be discussing about istream and ostream
classes. In addition, we will also look into Exception Handling using C++.

5.1 OBJECTIVES - ‘ oo

~ After studying this unit, you should be able to:

e Write programs which perform input and output from built in data types,

e Write programs which perform input and output froni user defined data types,
and

e Write programs which open other fites and perform operations on the data
in those files.

5.2 OUTPUT

As we have seen in a number of previous programs, the standard operation for
output is left shift operation “<<”.

We have already seen, how to apply this operator for built in types. For example,
Consider

int x = 5;
. cout << x; // will print 5
Now, we will consider, how to apply this operator for user-defined types:

. The following program demonstrates the applicatioh of this operator for user
defined types: '

#include <iostream.h>

class output
36 {

int i;
public:
output(int j = 0)
{ P=]
) . .

. friend int show(output& a) {return a.i,}
b _
ostream& operator << (ostreamé& s, output o)
{ return s<<show(o);
)
void mﬁin()
{ output x(1);

cont << X =" x;

53 INPUT

— - _ ‘
‘As previously seen, the standard operator for input is right shift operator “>>".
We have already applied it for built in dafa types. For example,

int i;)
“cin >> i; // reads the value into i.

Now, we shall apply it for user defined data types. For an input operation, it is
essential that the second argument is of reference type.

The following iJrogram demonstrates use: of operator “>>" for user defined types:

#include <iostream.h>
class output {

int i;
public :
output(int j = 0)
{
i=}
1. _
friend int show(output& a)
(. '
© return a.i;
}
B
ostreamée operator<<(ostreamé s, output o)
(
return s<<show(o);
}

[

Streams and Templrtes

C+4 - An

Iitruductlon

58

inti=0;
S>>i;
if (s) o=output(i);
return s;
1
void main()
{
output X;
cin >> X;
cout << "“k="" <<x;

y e

5.4 FILES AND STREAMS

In this section, we will see how to open files, close files and attaching files to
streams.

The following example demonstrates those concepts. This is a program, which
copies the data from one file and copies it to another. The program receives the

. names of the files as command line arguments.

#include<fstream.h>

void main(int arge, char* argv{])

{

if(arge 1= 3) _
{ cout << “The no. of arguments should be 3™;

return;

}

ifstream read(argv([1i1);

ofstream write{argv[2]);

char c;

while(read.get(c)) write.put(c);

}

<fstream.h> is a library which declares the C++ stream classes that support file
input and output. It also includes iostream.h.

ifstream is a class that provides an input stream to input from a file using a
buffer.

Now, hereafter, “read” will be the handle to the file presented as second argument.
So, whenever we have to refer to the second argument, we will be using “read”.
So, the second argument on the command line will be opened from which data
is read in future operations.

ofstream is a class which provides an output streams to extract from a file using
a buffer.

Now, hereafter, “write” will be the handle to the file presented as third argument.
So, whenever we have to refer to the third argument, we will be using “write”.
So, the third argument on the command line will be opened for writing the data
in future operations, :

L o

Here “read™ & “write™ are two names, which we have chosen on our own. The “Streams and Templates

user can have any other names as handies to files.

So, finally, read.get(c) will read a character from file argv[1] and writt;,.put(c) will
write it to file argv{2]. This is automatically done until the end of file is encountered.

An “ofstream” is opened for writing by default and “ifstream” is opened for
reading by default.

Also, we can open a file in other modes. 1n this case, the above classes will
N ALY
accept a second argument.

The different modes are defined in the following class ios.
class io0s {
public:

enum open_mode

{ in=l,out=2, ate =4, app = 010, trunc = 020, nocreate =040,
noreplace =0100

H

in mean “Open for Reading”

out means “Open for output”

ate means “Open and seek to end of file”

. app means “Abpend"

trunc means “truncate file to 0-length”

nocreate means “Fail if file doesnot exist”

noreplace means “fail if file exists”

Consider; .

ofstream ex(file, 1os::out | ios::nocreate);

This means, “Open’the file identified by variable “‘ﬁ]e" for output mode. If the
file does not exist, the operation should fail.

We can also open a file for both input and output. For example, consider
. fstream ex(name, ios::in | ios::out);

A file can be closed by calling the function close() on its stream. For example,
consider

ex.close();

5.5 TEMPLATES

‘Templates are also referred to as Parameterised types. It enables you to define
generic classes. It defines a family of classes and functions. For example,
stack of various data types such as int, float etc, Similarly function template
for sort function will help create versions of sort function. It enables function
of classes and function with parameters.

A Stack template:

template <class T> class stack

{
}

39

- Crt-An " template <class T> prefix in the class declaration states that you are going to
Introduction .

. declare a class template and you would use T as a class name in the
declaration. Thus, stack is a parametrized class with the type T as its
parameter. With this definition of the stack class template you can create
stacks for different data types, such as:

stack <int> istack
stack <float> fstack
You could similarly define a generic array class as follows:

Template <class T>> class Array

{

)

You can then create instances of different Array types in the following manner:

Array <int> iarray(128);
Amray <float> farray(32);

Function templates

Like class templates, function templates define a family of functions
parameterized by a data type. For example, you could define a pa:ametenzed
sort function for sorting any type of array like this.

template <class T> void sort(Array <T>)
{
// Body of function (do the sorting)

-

}

You can invoke the sort function just like any ordinary function. The C++ compiler
will analyse the arguments to the function and call the proper-function.

Advantage of tempiates . _

1) It helps you define classes that are general in nature.
A Simple Stack Template |

template <class T> class stack {

T*v;

T*p; // Stack Pointer

int 8Z;

public: - ,

stack(int s) {v=p=new T[SZ = s]

}

o ~stack(){delete [] V-f}

f B e mpem 3 Ly i ey

~ void Push (T a) {*P'H' = a;) - Streams ‘III1.I.! Ttmplnies
T Pop() {return *-- p;} | |
}
l The template <class T>> prefix specifies that a template is being declared and
that an argument T of type <type> will be used in the declaration.

Template <class T> says that T is a type name, it need not actually be the
name of a class. The name of a class template follow by a type bracketed by
<T is the name of a class (as defined by template) and can be used exactly like
other class names. For example, E

Stack <char> SC(100); // stack of characters defines an object SC of a class
stack<char>

Except for the special syntax of its name, stack «:char:- works exactly as if it
had been defined.

class Stack-char {
char *v;
char *p;
int $Z;
public
. Stack-char (int s} { v=p=new char[sz=s];

I}
One can think of 2 template as a clever kind of macro that obeys the scope,
naming and types rules of C++. '

It is important to write templates so that they have a few dependencies on |
global information as possible. The reason is that a template will be used to
generate function and classes based on unknown types and in unknown
contexts. Any context dependency will surface as a debugging tool.

5.6 EXCEPTION HANDLING

Exception means unusual condition while execution of a program. They may
cause programs to fail or may lead to errors. Some exceptions can be * array
out of bound”. null pointer assignment”, “file does not exist”, etc. The
exception handling provides a uniform way of handling errors in C++ class
libraries and p-ograms. Let us discuss exception handling with the help of an
example.

Let us assume a class
ReportlOExcesiion as:

' Class ReportiOException {
Publie: _
ReportIOException (Char* filename):
_filename (filename) {) '
Private: '

Char*_filename;

€+ -An
Introduction

62

LY

In case in a Report class any output related problem such asthere is no space on

the storage device can be thrown as ReportIOException as:

void

Report:: write (const char* filename}) :

ofstream fs1 (filename) "/ open a file for output

if (1 fsl) {1 If cannot open a new ﬁle as no space

{

}

i throw exception

“throw ReportIOExcepnon (filename),

{1 continue normal processing

}

The code for catching the exception is provided by the programmer using the

Report class It may be as:

/1 prepare report & wy to output it but be ready for any error.

try

{

mis.write (“Report_l.rep"):

{f In case of any error the exception will

// be transferred to catch block.

.

catch (ReporffOEicepﬁon_ ﬁléiol)

_5)

{.
i D:splay an error message:
cout << “ERROR! Cannat open file! Disk is full *
}.. -
Check Your Progress
) et and “>>" can be used for inpul-an_d output on buill-in-data types as
: _well as u.ser‘ defined types. Trae I3 False
2y '_“«“ and “>>" should be - i they have to he applied
+ for user defined types, :
3) Foran input opcrauon. it is essential that the second mgument is of
. ‘lype.
4) A close() Tunction should"bg applied if we wan{*(@ close 'the file before
reaching the end.of s¢ope in whi'ch'j-lhc' stream was declared,
' . - True' CJ Fatse O
It is possible to open a file in more than one modc-slmﬁlltunepusly.

‘Trie T Balse O

[o=

Streamsxnd “Templates’

5.7 SUMMARY

So, we can overload operators “<<” and “>>" for mput and output on
userdefined types: For an input operation, it is essential that the second
argument is of reference type. A file is opened for output for creating an
object of class of stream and a file is opened for reading by creating an Object
of class ifstream. Other than for reading and writing, we can also open a file
in more than one mode simultaneously. Though, you can close a file with

" close() funcnon. it is not necessary to close a file, because the conceived
object will-contain a destructor which closes a file after the exécution of that

' particular program. Any way, the close() functlon can be applied if we want to
close the file before reaching the end - of the scope in which the stréam was
declared. We have ailso discussed about the exception handling in C++.

Ina C++ program, we‘ can freely use any I/O funcuon_s, which are defined in C.

5.8 MODEL ANSWERS

: 1.) True

2) Overloaded
_ 3) Reference .
4) True

5) True.

63

el

