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~ Uncomputablity

*'In Block 2 we continue our study of extensions of finite automata through detailed

COURSE INTRODUCTION

CS-73 is a one-semester introductory course in the Theory of Computation in which
the following topics are covered:

Formal languages
‘ntgmata theorv
KELWssrs o mevoawl NEOTY

FroTT ST

Computational complexity and
Applications to solve practical problems.

The treatment of the subject matter is mathematical but the viewpoint is that of
computer science. Care has been taken to exhibit the relalionLhip between theoretical
topics being presented and the applied topics with which you are expected to be
familiar at this level.

e e e

In Block 1 of this course we will expose you to the elementary approach to the study
of languages through the concepts of alphabet, string, finite automata, grammar and
classification of languages We start with finite automata and formal languages and
elaborate on some of their properties. Then we show that both the approaches are
equivalent, Further, we generalize our classes of finite autornata and formal
languages. ’

You will find that some properties of finite automata and formal languages have very
useful applications in compilers, verifying protocols and in description/specificdtion
of major parts of high-level programming languages and document-description
languages that are pattemed on context free grammars. The Hierarchy of automata
theory and formal languages is developed in the context of constructing well-designed
parser routines for a compiler.

study of Tunng Machine, named so in honour of the inventor of this model of
computation, viz Alarf Turing (1912-1954). Turing Machine is hitherto known
ltimate formal model of computation.

Alsoin ths block we introduce a.nolher formal approach to computation, viz, i .
recurswe function approach Our discussion leads us to the study of partial recursive . ]
functions which have computational poyer equivalent to that of Turing Machines, -

In Block 3 of this course, we focus on uncomputability, complexity and applications
of the theories digcussed in the course, to solve practical problems. Under
uncomputability, we discuss a number of problems which are not solvable by the
formal computational techniques known so far, For such problems or equivalent
languages¢ we will infreduce yoy to standard forms of such problems, and also discuss
their properties. Also, for the problems which are solvable, f.e., for the’ problems
whose language is decidable, we discuss quantitative classification of decidable
languages by considering Turing Machines that are restricted, not in their structural

" capabilities, but in the'arount of effort th/ey are allowed to expand when computing

on an input string,

Open classification problems relating to the classes P and NP also form part of our
discussion of decidable languages.

Now, a word aboilt the way we have presented this course. In each of the three blocks
we first make & general introduction 1o the block: Then we present the detailed
contents of the units of the block. In each unit you will find plenty of exercises
interspersed within the text. Please ry the exercises as and when you come across



these. They. ar¢ meant 1> help-you check Whether you've ungderstood (he material that

is being discussed. We have also given our solutions to the exercises in a section al
the end of the unit.

While you go through the course, you will nolice that each unit is divided into
sections. These sections are often further divided into sub-sections. The sections/
sub-sections of a unit are numbered scquentially, as are the exercises, theorems and
imporfant equations in it. Since the material in the different units are heavily
mtcrhnkcd cross-references are quite frequent. For this purpose we use the notation
Sec.’x . .y to mean Scction y of Unit x.

Another compulsory component of this course is an assignment, which you should
attemnpt after studying all the blocks of the course. Your counselor will evaluate and
return it to you with detailed comments. Thus, the assxgnment is a teaching as we!’ as
an assessment aid. .

The course material that we have sent you is self-suffi cien. If'you have any problem
in understanding any portion of it, please ask your counsellor for help. ."\lso if you
feel like studymg any Ioplc in greater depth, you may consult:

1.) "Introduction to Automata Theory, Languages, and Computation, * by John
Hopcroft, Rajeev Motwani, Jeffery D.Ullman, Pearson Education (2001).

2.)  “Elements of the Theory of Computation” by Lewis, Papad:mitriou, Prcnt:ce
Hall of India (1981).

These books will be available at your study center.

We hope you_ will énjoy this coursel,




BLOCK INTRODUCTION

lo Block |, we shall discuss the general theory of automata, regular expressions and
their. properties, Languages and Grammar. Besides, sufficient attention is devoted to
such topics as equivalence of regular expression and finite automata and equivalence
of pushdown automata and cont« «t-free languages. The theory of computation arose
in the SP’S when computer scientists were trying to use computers to translate one
language into another. Now the theories of computation, formal language, and
automata, which have emerged as mathematical modelis of programming languages
and computers have a wide range of application in computing techniques. All of these
theoretical developments bear directly on what computer scientists do today.

In Unit 1, we begin with a view of what automata theory is about and what its uses
are. A section introduces strings, language, and regular expression. We shall discuss
few machines based on output namely moore and mealy machines.

In Unit 2, we shall discuss one special and commonly used automaton, which are non-
deterministic finite automata. We shall derive an equivalence in between two
approacnes i.e. a tanguage can be derived from a finite automata as well as from a
regular expression. Also, in this unit, we shall also introduce Pumping lemma to

+ obfain whether a language is regular or not.

In Unit 3, which is the last unit of this block, we shall discuss grammar and its
classification. We shall discuss the context free languages in detail and push down
automata. The equivalence of pushdown automata and context free language is also
discussed in the unit.” We shall aiso discuss pumping lemma for a context free
language.

Now, a few suggestions that may help you study the units in this block. Do try the
exercises in the units in this block as and when you come to them. This will help )‘*qu
to confirm your understanding of the related study material. After finishing this biock
please try the assignme:t questions which are based on this block.
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1.0 INTRODUCTION

We shall study difierent types of theoretical machines that are mathematical models
for actual physical processes. By considering the possible inputs on which these
machines can work, we can analyze their various strengths and weaknesses. We then
arrive at what we may believe to be the most powerful machine possible. When we
do so, we would be surprised to find the computational tasks that this machine cannot
perform. This will be our ultimate result that no matter what machine we build, there
will always be questions that are simple to state but even the most powerful machine -

possibly cannot answer. Along the way, we hope you would understand the concept™

of computability, which is the foundation of further research in this field.

1.1. OBJECTIVES

After studyi;'lg this unit, you should be able to:

detine alphabet, substring; ;

definie a language and various operations on languages;
define and use a regular expression;

define a finite automata for computation of a language; and
obtain a finite automata for a known language;

12 REGULAR EXPRESSIONS

In this unit, first we shall discuss the definitions of alphabet, string, and language with
some important properties. o

1.2.1 Introduction to Defining of Languages

For a language, defining rules can be of two types. The rules can either tell us how to
tesi a string of alphabet letters that we might be presented with, to see if it is a valid
word, i.e., a word in the Janguage or the rules can tell us how to vonstruct all the
words in the language by some clear procedures.

T T — oy



Finite Automatu and
Formal Languages

Alphébct: A finite set of symbols/characters. Wc generally denote an alphabet by Z.
If we start an alphabet having only one lelter, say, the letter z, then Z = {2}

Letter : Each symbol of an alphabet may also be called a letter of the alphabet or
simply a letter. ' 7

Language over an alphabet : 'A set of words over an aiphabet, Languages are
denoted by letter L with or without a subscript.

String/word over an alphabet: Every member of any language ts said to be a string
or a world.

Example 1: Let L; be the language of all possible strings obtained by
L, ={zzmzz,2z2...... }

This can also be written as
Li={z"%forn=1,23 ....

A string of length zero is 5aid to be null string and is represented by A.
Above given language L, does not include the null string. We could have defined it

~ so as to include A Thus, L = {Z" | n=0, 1, 2, 3...} contains the null string.

In this language, as in any other, we can define the operation of concatenation, in.
which two strings are written down side by side to form a new longer string. Suppose
u = ab and v = baa, then uv is called concatenation of two strings u and v and is uv =
abbaa and vu = baaab. The words in this language clearly analogous to the positive
integers, and the operation of concatenation are analogous to addition:

z" concatenated with Z™ is the word ™™,
Example 2: If the word zzz is called ¢ and the word zz is calied d, then the word
formed by concatenatingc and d is
cd = zzzzz .

When two words in our language L, are concatenated they produce another word in
the language L,. However, this may not be true in all languages.
Example 3: If the language is Ly = {z, zzz, zzz2z, zzzz2z2.....}

— {zodd}

={z™' forn=0,1,2,3....}
then ¢ = 22z anr d = zzzzz are both words in L,, but their concatenation cd = 2zzzzzzz
is not a word in Ly. The reason is simple that member of L, are of odd length while
after concatenation it is of even length. .

Note: The alphabet for L, is the same as the alphabet for L.

Example 4: A Language L; may denote the language having strings of even lenpths
iriclude of length 0. In other words, Ly = {4, 2z, zzz2, .....}

Another interesting language over the alphabet I = {2} may be
Example 5: L, = {" : p is a prime natural number;.
There are infinitely many possible languages even for a single letter alphabet

Z={z},

In the above description of concatenation we find very commonly, that fora single
letter alphabet when we concatenate ¢ with d, we get the same word as when we




concatenate d with ¢, inat is cd = dc But this relationship does not hold for all Finite Automata aué
languages. For example,in the English language when we concatenate “Ram” and - Languages
“goes™ we get “Ram goes”. This is, indeed, a word but distinct from “goes Ram’™,

Now, let us define the reverse of a ianguage L. Ifc is a word in L, then reverse (c}is
the same string of letters spelled backward. : :
The reverse (L) = {reverse (w), wzL)

Example 6: Reverse (zzz) = zzz .
Reverse (173) =371

Let us define 2 new language called PALINDROME over the alphabet T = {a,b}.

PA‘L‘TNBROME_.;_ {~. and all strings w such that reverse (w) = w)

={A, 3, b, aa, bb, aaa, aba, bab; bbb, aaaa, abba, .. J

Concateﬁéiir-agmlwé words in PALINDROME may or may niot give a word in
palindrome, e.g., if u = abba and v = abbeba, then uv = abbaabbebba which is not
palindrome. )

1.2.2  Kleene Closure Definition

Suppose an alphabet Z, and define a language in which any string of letters from T js a
word, even the nul] string. We shall call this language the closure of the alphabet.

We denote it by writing * after the name of the alphabet as a superscript, which is
written as ", This notation is sometimes also known as Kleene Star-

For a given alphabet Z, the language L cunsists of all possible strings, including the
null string. .

For example, If £ = {z}, then, &' =L, = {A, z, 22, 222 .....}

Example 7: If Z = {0, 1}, then, £* = {A, 0, {, 00, 01, 10, 11, 000, 001 —

So, we can say that Kleene Star is an operation that makes an infinite language of
strings of letters out of an alphabet, if the alphabet, T #¢. However, by the definition
alphabet £ may also be ¢ . In that case, T’ is finite. By “infinite language, we mean a
language with infinitely many words.

Now, we can generalise the use of the star operator to languages, i.e., to a set of
words, not just sets of alphabet letters,

Definition: If s is a set of words, then by " we mean the set of all finite strings
formed by concatenating words from s, where any word may be used as often.

Example 8: If s = {cc, d}, then
s' = { or any word composed of factors of ec and d)

={aorall strings of ¢’s and d’s in which ¢'s occur in even clumps}.
The string ccdeee s motins since it hasa clump of ¢’s of length 3.

{x:x=norx=(c)b di(ec)dk.....(cc)im (d)m} where iy, jiye.... Ty jm = O
Positive Closure: If we want to modify the concept of closure 1o refer to only the
concatenation leading to non-null strings from a set s, we use the notation + instead of

*. This plus operation is called posilive closure.

Theorem 1; Fon:.any set s of strings prove that s* = (s}’ =s*"

STy oo
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Proof: We know that every word in s is made up of tactors from 5.
Also, every factor from s°is made up of factors from s.

Therefore, we can say that every word in s is made up of factors from s.

First, we show s~ Cs . (i)
Letx €5 ... Then x =X;....x, for some x, € s’ which implies s s’

Next, we shows s .
s s (ii}

By above inclusions (i) and (ii), we prove that
$ =5

Now, try some exercises.

Ex.1) If u= ababband v = baa then find
(D) uv (i) vu (iii) uu (iv) vv (v} uuv.

" Ex.2) Write the Kleene closure of the following

(i) f{aa, b}
(ii) {a, ba}

1.2.3 Formal Definition of Regular Expressions

Certain sets of strings or languages can be represented.in algebraic fashion, then these
algebraic expressions of languages are catled regular expressions. Regutar
expressions are in Bold face. The symbols that appear in regular use of the letters of
the alphabet £ are the symbol for the nuli string A, parenthesis, the star operator, and
‘the plus sign.

The set of regular expressibns is defined by the following rules:

1. Every letter of £ can be made into a regular gxpression A itself js a regular
expression.

2. Ifland m are regular expressions. then so arce

) O
(if) Im
(iif) Hm
(v I

(v) I"'=1'

3. Nothing else is regular expression.

For example, now we would build expression from the symbols 0,1 using the
operations of union, concatenation, and Kleene closure.

(i) 01 means a zero followed by a one (concatenation)

(3i) 0+1 means either a zero or a one (union)

(i) 0" means A+0H0+000+.. ... (Kleen closure) .

With parentheses, we ¢an build larger expressions. And, we can associate meanings
with our expressions.: Here's how

Expression _Set represented

(0+1)’ all strings over {0,1}

0'10 10 strings cdntaining exactly two ones
o+1)'11 strings which end with two ones. °

Tt I T
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The language denoted/tcpresented by the regular expression R is L{R). - Finite Automata and
Example 9: The language L defined by the regular expression ah*a ic the set of all ] Languages

strings of a's and b’s that begin and end with a’s, and that have nothing but b’s inside.
L. = {aa, aba, abba, abbba, abbbba, }

Example 10: The language associ:ted with the regular expression a’b” contains all
the strings of a’s and b’s in which <1 the a’s (if any) come before all the b's (if any).
L= {A, a, b, aa, ab, bb, aa , aab, abb, bbb, aaa,...)

Note that ba and aba are not in this language. Notice also that there need not be the
same nuinber or a’s and b’s,

Example [1: Let us consider the language L defined by the regular.expression
(a+b)" aa+b)’. The strings of the fanguage L are obtained by concatenating a string
from the language corresponding to (a+b)’ followed by a followed by a string from
the language associated with (a+h)". W' can also say that the language is a set of all
words over the alphabet £ = {a,b} that have an a in them somewhere.

To inake the association/correspondence/relation between the regular expressions and
their associated Janguages more explicit, we need to define the operation of
multiplication of set of words.

———

Definition: TS and T are sets of strings of letters (they may be finite or infinite setsj,
we define the product set of strings of letters 1o be. ST = {all combinations of a string
from S concatenated with a string from T in that order}.

Example 12: If § = {a, aa, aaa}, T = {bb, bbb}
Then, 8T = {abh, abbb, aabb, aabbb, aaabb,‘ aaabbb}.

Example 13: If S = {a bb bab}, T = {A bbbb}
Then, ST = {a bb bab abbbb bbbbbb babbbbb} *

Exﬁmplc 14: If L is any language, Then, LA = AL=L.

Ex.3)  Find a regular expression to describe each of the following languages:

@) (abic}
{b) {a,b,ab,ba,abb,baa,... }
{c) {~,a,abb,abbbb,....}

Ex.4)  Find a regular expression over the alphabet {0,1,} to descnbe the set of all
binary numerals without feading zeroes (except 0 |tself) So the language is
the set

{0,1,19,11,100,101,110,111,...}.

[.2.4  Algebra of Regular Expressions

There are mmany general equalities for regular expressions. We will list a few simple
cqualities together with some that are not so simple. All the properties can be verified
by using propemes oflanguagu.s and sets. We will assure that R,S and T denote the
arbitrary rcgu]ar expressmns

Properties of Regular Expressions
I. (R+8)+T = R+(S+T)

2. R+tR=R

1]
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3. R+p=¢+R=R.
4. R+§=8+R
5. Re=¢R=¢

6. Ra=naR=R
7. (RS)T=R(ST)
8. R(S+T)=RS+RT
9. (S+T)R=SR+TR
10. § =A"=n
1. ‘R =R =R"’
12. RR'= F‘;.'R =R'= A+RR’
13. (R+S)' =(R'S) = (R™+8") =R'S’=(R'S)R’ =R(SR"Y
14. (RS) =(R'S")" =(R"+SY
Theorem 2: Prove that RFR=R
Proof : We know the .f‘ollowing equalities:
L(R+R) = LIRYUL(R) = L(R)
SoR+R=R
Theorem 3: Prove the distributive property
R(S+T) = RS+RT
Proof: The following set of equalities will prove the propgrty:
L(R(S+T)) = LLRIL(S+T)
= LRYL(S)ULLTY)
= (L{RIL(SHULARIL(T))
= L{RS+RT)

Similarly, by using the equalitics we can prove the rest. The proofs of the rest of the
equalities are left as exercises.

Example 15: Show that R*RS'S = a'bS", where R = b+aa'b and § is any regular
cxpres;ion. '

R+RS'S = RA+RS'S (property 6)
= R(~+8S) (property 8)
= R(A+5S") (property 12)

-RS"  (property 12)

B
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. =(b+aa'b)$" (definition of R) - | Finite Automzata ind
=(a+aa’) bS" (properties 6 and 8) Languages

=a'bS". (Property 12)

Try an exercise now,

Ex.5) Establish the following equality of regular expressions:
b’(abb’+aabb’+aaabb’)’ = (b+ab+aabtanab)’

As we already know the concept of |language and regular expressions, we have an
important type of Janguage derived from the regular expression, called regular
Innguage.

1.3 REGULAR LANGUAGES

Language répresenl}:d by a regular expression is called a regular language. In other
wards, we can say that a regular langunage is a language that can be represented bya
regular expression.

Definition: For a given alphabet £, the following rules define the regular language
associated with a regular expression. ;

Rule 1: ¢.{A} and {a} are regular languages denoted respectively by regular
expressions ¢and A.

Rule 2: For each a in Z, the set {a} is a regular language denoted by the regular
expression a,

Rule 3: If 1 is a regular expression associated with the language L and m is a regular
expression associated with the language M, then:

(i} The language = {xy : xeL and'yeM} isa regnlar exprassi‘on associated with the
regular expression Im

(i1} The regular expression Hm is associated with the language formed by the union
of the sets L and M. .

language (I'+m) = LUM

(iii) The language associated with the regular expression (1)’ is L', the Kleen Closure
of the set L as a set of words:

language (1IN =L".

Now, we shall derive an important relation that, all finite languages are regular.

Theorem 4: [ L is a finite language, then L can be defined by a regular expression.
In other words, all finite languages are regular.

Proof: A language is finite if it contains only finitely many words.

To make one regular expression that defines the language L, turn all the words in L
into bold face type and insert plus signs between them. For example, the regular
expression that defines the language L = {baa, abbba, bababa} is baa + abbba +
bababa '

T == ==
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Examplel 6: If L= {aa; ab, ba, bb}. then the corfesponding regular expression is
aa + ab +ba + bb.

Another regular expression that defines this language is (a+b) (at+b).
So, a particular regular language can be represented by more than one regular
expressions. Also, by definition, each regular language must have at least one regular

expression corresponding to it.

Try some exercises.

Ex.6)  Find a language to describe each of the following regular expressions:

(@ a+b (b) at+b’  (c) a’bec’+ac
Ex.7)  Find a regular expression for each of the following fanguages over the '
alphabet {a,b}:

(a) strings with even length.
(b) strings containing the sub string aba.

In our day to day life we oftenly usc the word Aulomatic. Automation is the process
where the output is produced directly from the input without direct involvement of
mankind. The input passes from various states in process for the processing of a
language we use very imporiant finite state machine called finite automata.

'1.4 FINITEAUTOMATA

Finite automata are important in science, mathematics, and engineering. Engineers
like them because they are superb models for circuits (and. since the advent of VLSI- -
systems sometimes finite automala represent circuits.) computer scientists adore them
because they adapt very likely to algorithm design. For example, the lexical analysis
portion of compiling and translation. Mathcmaticians are introduced by them too due
1o the fact that there are several nifty mathematical characterizations of the sets they
accept.

Can a machine recognise a language? The answer is yes for some machine and some
an clementary class of machines called finile automata. Regular langudpes can be
represented by certain kinds of algebraic expressions by Finite automaton and by
certain grammars. For example, suppose we need to compute with numbers that are
represented in scientific notation. Can we write an algorithm to recogaise strings of
symbols represented in this way? To do this, we need to discuss some basic
computing machines called finite automaton.

An automata will be a finite automata if it accepts all the words of any regutar
language where tanguage means a set of strings. In other words, The.class of regular
language is exactly the same as the class of languages accepted by FA's., a
deterministic finite automata.

1.4.1 Finitc Automata

A system where energy and information are transformed and used for performing
some functions without direct involvement of man is called automaton. Examples arc
automatic machine tools, autematic photo printing tools, eic.

A finite automata is similar to a finite state machine. A finite automata consists of
five parts:

(1) afinite set of slates;




(2). a finite set of alphabets;

(3) an initial state;

(4) asubset of set of states (whose =lements are called “yes” state or; accepting
. state;) and

(5) a next-state function or a transition state function.

A finite automata over a finite al shabet A can be thought of as a finite directed graph
with the property that each node oimits one labelled edge for each distinct element of
A. The nodes are called states. There is one special state called the start (or initial)
state, and there is a possible empty set of states called final states.

I'or example, the labelled graph in fig.1 given below represents a DFA overthe
alphabet A = {a,b} with start state 1 and final state 4.

b

Y

Fmal State

*@ ' .A)a,b

Frg 1: Finite Automata

We always indicate the start state by writing the word start with an arrow painting lo
it. Final states are indicated by double circle.

The single arrow out of state 4 labelled with a,b is short hand for two arrows from’
state 4, going to the same place, one labelled a and one labelled b. It is easy to check
that th:s digraph represents a DFA over {a,b} becausc there is a start state, and each
state emnits exactly two arrows, one labelled with a and one Jabelled with b.

So, we can say that a finite automaton is a collection of three tuples:

l. A finite set of states, one of.which is designated as (he initial state, called the start
state, and some (mdy be none) of which we designated as final states.

2. Analphabet Z of possible input Ierlers from which are formed strings that are to
" be read one letter at a time.

A finite set of transitions that tell for each state and for each letter of the input
alphabet which state to go to next.

L¥X]

For example the input alphabet has only two Jetters a and b. Let us also assume that
there are only three states, x, y and z. Let the following be the rules of transition:

1. from state x and input a go to state y;

2. from state x and input b go to state z;

from state y and input b go 1o stale x;

[FF]

Flmte Automnta and
Languages
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4. from state y and input b go to state z; and

5. from state z and any input stay at slate z.
Lel us also designate state X as the stasting state and stale z as the only final state.

Let us examine what happens to varioug:input strings when presented to this FA. Let
us start with the string 23d.- We begin, as always, in state x. The first letier of the
string is an 4, and it tells us to go state y {by rule 1}. The next input (instruction) is
also an a, and this tells us (by rule 3) to go back to state x. The third input is another
a, and (by Rule 1) again e g0 1o the state v. There are no more input letters in the
input string, so our trip has ended. We did not finish in the {inal state (state z}, so we
have an unsuccessful termination of our run.

The string aaa is not.in the language of all strings that leave this FA in state z. The set
of all strings that do leave as in a final state is called the language defined by the f1.!2
automaton. The input string aaa is not in the language defined by this FA. ¥e may
say that the string aaa is not accepted by this FA because it does not lead to a final
state. We may also say “aza is rejected by this FA.™ The set of all strings accepted is
the language associated with the FA. So, we say that L is the language accepted by
this FA. FA is also called a language recogniscr.

Let us examine a different input string for this same FA. Let the input be abba. As
always, we start in state x. Rule ] tells us that the first input letter, a, takes us 1o state
y. Once we are in state y we read Lhe second input letter, which is ab. Rules 4 now
tells us to move to state z. The third input letter is a b, and since we are in state z,
Rule 5 tells us to stay there. The fourth input letter is an 2, and again Rule 5 says statc
2. Therefore, after we have followed the instruction of each inpul letter we end up in
state z. State z is designated as a finat state. So. the input string abba has taken us
successfully to the final state. The string abba is therefore a word in the language
associated with this FA. The word abba is accepted by this FA.

It is not difficult for us to predict which strings will be accepted by this.FA. Ifan
input string is made up of only the letter a repeated some number of times, then the
action of the FA will be jump back and forth between state x and state y. No such
word can ever be accepled. '

To get into state z, it is necessary for the string to have the letterbinitassoonasab
is encountered in the input string, the FA jumps immediately to state z no matter what
state it was before. Once in state z, it is impossible to leave. When the input strings
run out, the FA will still be in state z, leading to acceptance of the string.

So, the FA above will accept all the strings that have the letter b in them and no other
strings. The.efofe, the language associated with this FA is the one defined by the
regular expression (a+b)' b(a+h)'.

The list of transition rules can grow very long. It is much simipler to summarise them
in a table format. Each row of the 1able is the name of one of the states in FA, and
each column of this table is a letter of the input alphabet. The entries inside the table
are the new states that the FA moves into the transition states, The transition table for
the FA we have described is:

Talble 1
Input
State . " 5
Start x Y z
.Y X z
Final z z z
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The machine we have already defined by the transition Jist and the transition table can - Languages
be depicted by the state graph in Figure 2, .

Fig. 2: State Transition graph

Note: A single state can be start as well as final state both. There will be only one
start stale and none or mare than one final states in Finite Automaton.

1.4.2 Another Method to Describe FA

There is a traditional method to describe finite automata which is extremely intuitive.
It is a picture called a graph. The states of the finite automaton appear as vertices of
the graph while the transitions from state to state under inputs are the graph edges.
The state graph for the same rnachine also appears in Figure3 given below.

-O-@-Q)
A Ao Ao
Fig. 3:~ Finite automata

The finite automata shown in Figure 3 can also be represented in Tabular form as

below:
Ta-blel
Input -
State 0 | Accept?
Start . 1 1 2 No
Final 2 2 3 . Yes
"3 3 3 No

. Before continuing, let’s examine the computation of a finite automaton. Our first
example begins in state one and reads the input symbols in turn changing states as
necessary. Thus, a computation can be characterized by a sequence of states. (Recall
that Turing machine configuratidns needed the state plus the tape content. Since a
finite automaton never writes, we always know what is on the tape and need only look
at a state as a configuration.) Here is the sequence for the input 0001001.

Input Read: O 0 0 1 0 0 1
States : 1 > 1 =1 51 = 2> 22> 223

Example 17 (An elevator controller): Let's imagine an elevator that serves two
floors. nputs are calls to a floor either from inside the elevator or from the floor

itself. This makes three distinct inputs possible, namely:

i b
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1 - call to floor one
2 - call to floor two
The elevator itself can be going up, going down, or haited at a floor. [f it is on a floor.
it could be waiting for a call or abont 10 go to the other floor. This provides us with
the six states shown in figure 4 along with the state graph for the elevator controller.

W Waiting on first floor
Ul Aboutto goup

UP Going up

DN Going down

W2 Waiting-second {loor
D2 Aboul 10 go down

(WO’
O,

2 2

2 2
(W)
N N2
Fig. 41 ElevaTor Contral
A transition stale table for the clevalor is given inTable 3.
Table 3:Elevatar Conrrsl
State ____Imput ) )
None cati to | cill to 2
W (waiton 1) Wt Wi up
Ut (start up) up Ul up
up W2 D2 W2
DN- Wi Wi Ut
W2 (wait on 2) w2 DN . W32
. D2 (start down) DN DN : D2

Accepting and rejecting states arc not included in the elevator design because
acceptance is not an issue. [Fwe were to design a more sophisticated ¢levator, it
might have stafes that indicaied:

Finite attemita
a} pewer faukyrem
B) uverloading, or
¢) breakdown

In this case, acceptance and rejection might make sense.

Lel us make a few small notes abour the desten. 1f the clevator is about to move { i.e.,
18 in state U1 or D2) and it is called (o the Agor it is presently on it will stay. (This may



be good Try it next time you are in an elevator.} And. i1'it is moving (up or down) Finite Automaia and
and gets called back the other way, it.remembers the call by going to the Ui or D2 Languages
state upon arrival on the next flaor. Of course, the elevator does not do things like

open and close doors (these could b.: states 100) since that would hive added

complexity to the design. Speaking of complexity. imagine having (06 {loors.

That is our levity for this section. Now that we know what a finite autonzaton is. we

must (as usual} define it precisely

Definition : A finite automation M is a quintuple M = (0,2, 8,q.,F) where ; "

Q is a finite se1 (ol states)

Zis 2 finite alphabet (of input symbols)
8: Q x Z = Q (next state function)
do<Q (the starting state)

FcQ (the accepting states)

We also need some additional notation. The next state function is called the transition
function and the accepting states are often called final states. The entire machine is
usually defined by presenting a transition state table or a transition diagram. In this
way, the states, alphabet. transition function, and final states are constructively
defined. The starting state is usually the lowest numbered state, Our first example of

a finite automaton is:

M= ({qh q2, q3_}'! {O'I}-: 8, q, {ql}

Where the transition function &, is defined explicitly by either a state (able or a state
graph,

At this point, we must make a slight detour and examine a very important yet
scemingly insignificant input string called the ecmply string. Itisa string without any

symbols in itand is denoted as A. 1t is not a string'of blanks. An cxample might
make this clear. Look between the brackets in the picture below.

A Blank ——p» [ ] An Empty String —— []

Fig. 5: Represcniation of n blank andi2n empty string

“Let us look again at a compﬁtalion by our first finite automaton. For the input 010,
our machine begins in q), reads a 0 and goes to 8(qz,0) = q; after reading the final 0.
All that can be put together as: '

3(5(8(4,0).1)0) = qz
We call this transition on strings 8" and define it as follows:

Definition Let M = (Q,%,8,q0,F). For any input string x, input symhbo] a,
and state q;, the fransition function on strings 5 iakes the values:

87 (au(*e)) = w;
& (gia) = 8(q;,a) ¥ aeX

8" (g.,xa) = 8(8'(q,x),2) V aeZ, xeX

- —
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That certainty was ferse. But & is really just whal one expects it to be. It merely
applies the transition function to the symbols in the string.

a lb -
B ’ -

Ua,b U

Fig. 6: Finite automatu

b

-]

This machine has a set of states = {qQg, qi, a2, q3) and operates over the input alphabet
{a,b}. 1t’s starting state is go which can also be shown by an arrow headed toward il
with no start point (as shown in Fig.6) and its sel of final or accepling states, [ = {qa)
an accepting state can also be shown by two concentric circles as shown in the fig..
“The transition function is fully described twice once in figure 6 as a state graph and 5

- once in tasble 4 as a state table.

Table 4 .

Input :

State A b Accept? f
_ "
0 3 l No ¥

I 3 2 No v
2 2 2 Yes i

3 3 3 No :

1F the machine receives the input bbaa, it goes through the sequence of states: *

d0,q1,92,92:92
While when it gets an input such as abab, it goes through the state transition:

qU:qanllqth . .
Now we shall become a bit more abstract. When a finite automaton receivesan input

string such as:
X =X Xz---Xn
where the x; are symbols from its input alphabet, it progresses through the scquence;
Dy s Qe 7+ Aoy .
where the states in the sequence are defined as:
9y, = Qo
Qk, =8(qx,,%1)=8(dg, X}
Gk, =8(Ax,»%3) =8"(gg,X1%2)

qkno'l = B(qkn ’xn):a-(QO;xleu..xn)

Getting back to a more intuitive reality, the following table provides an assignment of
values to the symbols used above for an input of bbaba to the finite automaton of
figure 3.

i 1 2 3 4 5 6



X; b b a b a
dx, Qo X @ Q2 @ 9

Definition: The sef (of strings) uccepted by the finite automaton M = (O E8qaF)is
M) = i /& (qux) e}

This set of accepted strings (L(M) to mean for language accepted by M) is mcrely all
of the strings for which M endc.d up in a final er accepting state after processing t}\e
string. For our example (figure 3) this was all stnngs of 0's and 1’s that contain
exactly onc 1. Our example (figure 6) accepted the set of strings over the alphabet
{a,b} which began with exactly two b’s.

1.4.3  Finite Automata as Outpuf Devices

The automata that we have discussed so far have only a limited output capability to
the extent that only outputs are ‘accepted’ and *not accepted’ to indicating the
acceptance or rejection of an input string. We want to introduce two classic models
for finite automalta that have additional output capability. We will consider machines
that transform input strings into output strings. These machines are basically DFAs,
cxcept that we associate an output symbol with each state or with each state transition.
But there are no final states because we are not intercsted in aceeptance or rejection.

Mealy and Moore Machines

The first model invented by Mealy [1955] is called a Mealy machine. It associates an
output letter with each transition. For example, if the output associated with the edge -
labelled with the letter a is x, we shall write a/x on that edge. A state transitior for a
Mealy machine can be presented in figure 7 as follows:

O——0

Iig. 7 Mealy machine

Indicating that the machine in state i and on input a gives ontput x and enters state j.

In a Mealy machine, an output always takes place during a transition of the states.
The sccond maodel invented by Moore [1956], is called a Moore machine. It
associates an output letter with cach state. For example, if the output associated with
state I is x, we will always write i/x inside the stale circle. A typical state transition
for a Moore machine can be presented in figure 8 as follows:

O——6

Fig. 8: Moure machine

In a Moore machine, each time a state is entered, simultaneously an output takes®
place. So, the first outpul always occurs as soon as the machine is started. Mealy and
Moore machines are equivalent. In other words, any problem that is soluble by one
lype of machine can-also be solved by the other type of machine.

'Examplc 18: Suppose we want to compute the rumber of sub strings of the form

bab
that occurs in an arbltrary input siring over the alphabet {a,b}., For example, there are
three such sub strings b, a, b in the string bab.

Finite Automata and
Languages
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The diagrantmatic representation of a Mealy machine for the fask s*giver below in
figure 9:
a/0 a/0 /0

b/0 b}
Fig. 9: Mealy auchine
For example. the output of this Mealy machine for the sampie string
Abababaababb i5 300101000010, where each | indicates the availability of a (or an
additional} substring up to that point. On the other hand. & O indicates that the three
previous inputs including the current input do net torm a substring of the form bab.

a i

Fiz. M AMoory machine

For example, the output of this Moore machine for the simple string.

-Abababaababb is 0000101000010. We can countthe number of 1’5 in the output

string o obtain the number of sccutrence of the Sub string bab.

Example 19: A Simp!e Traffic Signal : Suppose we have a simple traffic
intersection, where & north-scuth highway intersects an east-west highway, We will
assume that the cast-west highway always has a green light unless some north-south
traffic is detected by sensors. When north-soyth traffic is detected, after a cerlain time
delay the signals change and slay that way for a fixed period of time. We are required
to design an appropriate ¢ireuil 1o capture the desired result sfated above, We
construct a Moogre machine as a modef of the required circuit as follows:

The input symbols for the required Moore machine are 0 (ae traffic detected) and 1
(traffic detected). Let G, Y and R mean the colours Green, Yellow and Red,
respectively. The cutput strings are GR, YR, RG, AND RY, where the first letter of a
string is the coleur of Lhe cast-west light and the second letter of a string is the colour
of the north-sought light. The Moore machine model for this simple traffic
intersection prablem is given below diagrammatically:

" /‘*
H‘m\/{'

Fig. 11: Traffic signul transition digram
Mealy machines appear to be more useful than Moore machines., Bul problems tike
traffic signal control have hic Maore machine solutions begause each state is
associated with a new output configusation. ‘

Let us iry some exercises:

Ex.8) Build a new FA that accepls anly the word A, AlSo write the corresponding
regular expression,
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Ex.9) Build an FA that accepts only those words that have even lenpths. Also write
the regular expression.

Ex.10) Build an FA that accepts cnly the word baa. ab and abh and no other words.
Also write the corresponcing regular expression. '

Ex.11) Build an FA that will accept the language of all words each having twice as
many a's as the number of b’s, Also write the corresponding regular
exXpression,

Ex.12) Describe the languages accepted by the frilowing FA's:

a.b ap a';@
*Q/;© ~(OF CEO

ab

*Oi"bO\i'@;Q
a,bCO

Fig. 12

1.5 SUMMARY

In this unit we introduced several formulations for regular languages, regular
expressions are algebraic representations of regular languages. Finite Automata are
machincs thal recognise regular languages. From regular expressions, we can derive
regular languages. We also made some other observations, Finite automata can be
used as output devices - Mealy and Maoore machines. A

1.6 SOLUTIONS/ANSWERS

Ex_.I} (i) ababbbaa
(ii} baaahabb
(ii1) ab abb ab abb
{(iv) baaban
(v) ababbababb haa

Ex.2) (i) Suppose aa = x

Then { x, b} = {a, 2, b, 2x, bb. xb, hx, xxx, bxx, xbx, xxb, bbx, bxb, xbb, bbb)
substituting x = aa

{226} = { A 8. b, aaaa, bb, 2ab. baa, azazaa, baaaa, aabaa, ... }
(") {aba} ={ A, a, ba, aa, habe, aba, baa, ... )

Ex.3) () atbtc
(b) ab+ha -

Finite Automata and
Languapes
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M

(¢} a+a(bb)

Ex.4) 0+1(0+1)

Ex.5) Startmg with the left 51de and using propemcs of regular expressions, we get
b’ (abb + aabb -l-aaabb Y
=b ((ab-l-anb-l-aaab)b 1} (properly 9)
=(b+ab+aab+ aaab)’ (property 7)-

Ex.6) (a} {a.b}
(b} {a,Abbb,...b"....}
(c) {ab,ab,bc,abb,bee,.. ab"be",...}

Ex.7) (a) (aa-l—nb+ba+bb)
(b) (a+b) ‘aba(a+b)’

Ex.8)
- ab
=30
O——=
Fig. 13: Regular Expressian of a null string A |
Ex.9) a

-_*/-—\
"\-_./

/-__'\A
v\_/

a

Fig. 14: Regular Expression ls (aa+ba+ab+bb)*

Ex.10)} R.E.is (baa +ab + abb)

Ex.11) (i) All the words of odd lengths.
(ii) All the words ended with a.
*(iii) All the words with a at even places.

s e —
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2.0 INTRODUCTION

In our daily activities, we all encounter the use of various sequential circuits. The
elevator control which remembers to let us out before it picks up people going in the
opposite direction, the traffic-light systems on our roads, trains and subways, all these
are examples of sequential circuits in action. Such systems can be mathematically
represented by Finite state machines, also called finite automata or other powerful
machine like turning machines. In the previous unit, we introduced the concept of
Deterministic Finite Automata (DFA), in which on an input in a given state of the
DFA, there is a unique next state of DFA, However, if we relax the condition of
uniqueness of the next state in a finite automata, then we get Non-Deterministic Finite
Automata (NFA). .

A nawral question which now arises is whether a non-deterministic automata can
recognize sets of strings which cannot be recognized by a deterministic finite
automata. At first, you may suspect that the added flexibility of non-deterministic
finite automata increases their computational capabilities. However, as we shall now
show, there exists an effective procedure for converting a non-deterministic FA- into
an equivalent deterministic one. This leads us to the conclusion that non-deterministic
FA’s and DFA’s have identical computational capabilities.

2.1 OBJECTIVES

Aller studying this unit, you should be able to

define a non-deterministic finite automata:

show the equivalence of NFA and DFA;

compute any string or language in any NFA;

state and prove pumping lemma;

apply pumping lemma for a language which is not regular,

apply closure properties of regular lanpuage and finite autdfnata; and

find an equivalent regular expression from a transition system and vice-versa.

in unit | we discussed about finite automata, You may wonder that in finite automata
for each input symbol there exists a unique slate for processing of it. Do you think
that there may be miore than one possible state, or there may not be any state for

T 1T T T T
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processing of any letter. 1f for processing ol any letter there is more than one state or
none siate, then, the auotmata is known as non-deterministic finite automata (NFA).

2.2 NON-DETERMINSTIC FINITE AUTOMATA

You have already studied finite automata {though ‘automata’ is a plural form of the
noun *automaton’, the word ‘automata’ is also used in singular sense), Now consider
an automata that accepts aii and only strings ending in 01, represented '
diagrammatically, as follows: :

: ' ©)
— 0

- Uo,l

Fig. 1: Transilion Diagram

In the case of the finite automata shown in figure 1, the following points may be
noted:

(i) On input 0 in state qo, the next state may be either of the two states viz., Qs Or qy.
(ii) There is no next state on input O in the state g;.
(iii} There is no next state on input 0 and | in the state qa.

{1 this transition system, what happens when this automala processes the input
.0o101?

0 0 1 0 l
—_— qo — qo e qu — qu g qo > qD
NN N
Q| q| q'|

(Stuck) \: \1‘
9,
{Stuck)

Fig. 2: Processiog of string 00101

Here from the initial state g, for the processing of alphabet 0, there are two states al
once or viewed another way, it can be ‘guessed” which stale to go to next. Such a
finite automata allows to have a choice of 0 or more next statés for each state input
pair and is called a non-deterministic finite automata. An NFA can be in several
states at once. . :

0,1('\, o,lﬂ

2
— =M

0,1
0,1 0.1
0.1 0,1

o, \_}

Fiz. 3: Transitlon diagram.



Before going to the formal definition of NFA, let us discussone more case of non- Non-Deterministie Finite
determinisin of finite automata. Suppose Q = {qo, q), 92}, £ = {0, 1}, qo is an initial Automata
state and g is final state. Apain, supnose the processing of any input symbol does not

result in the transition to a unique siate, but results a chain of states. Let us consider a

machine given in figure 3,

For tne sake of convenience, let v. check the processing of any input symbol. From
the state gp, after processing 0, resulting states are go, q;, q2 and for input symbol I,
there are three possible states qo, q; and q; not a unique state. It clarifies that a non-
delerministic automata can have more than one possible state or none state after
processing any input symbol from Z.

Let us check how the string 01 is processed by the above automata. Here we have
(hree paths to reach to the final state:

0 I

(i) @ » 4o »Y2
(i) qo - 0 —pd) l —p T2
(i) g 0 par— '

A peneralisation which is obtained here by aflowing of several states as a result of the
processing of an inputsymbol is called non-determinism. If from any state, we can

-reach to several states oﬁnﬁst\ate, then the finite automata becomes non-
deterministic,in nature. - '

" Formally, a non-deterministic finite\automata is a quintuple

A= (Q’ E‘\Bl o, F)
Where

Q is a finite set of states

Zis a finite zlphabet for inputs

8 is a transition function from Q x I 10 the power set of Q i.e. 10 2
Qo € Q is the start/initial slate

F Q is a set of final/accepting states,

1 F ¥ * ¥

The NFA, for the example just considered, can be formaily represented as:

({qU’ q1» CI‘.'}, {Dal}: 8! Ao, {Ch})

where 8 the transition function, is given by the table 1:

Table I
States 0 1
—qo " {q0.q:} {q0}
q o {q:}

| .

Now, let us prove that the NFA

R T
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0,1
I'ip. 4: NFA accepting x01

" accepls the language {x01 : xeZX'} of all the strings that terminate with the sub-string

01. A mutual induction on the three statements below proves that the NFA accepts the

given language.

I. wel = qed(gnw)
q,€8 (qo, W) & w=x0
q2€6 {qp, W) < w=x01

w N

If Jw| = 0'then w = A. Then statement (1) follows from def., and statement & (2)‘ and

(3) show that all the string x01 will be accepled by the above non-deterministic
automata, '

Example 1: Consider-the NFA with the formal description as (Q, Z, 8, qo, F} where
Q= {gu, q1, 92}, £ = {2 b}, qo is the initial state and g, is only the final state, and 5is
given by the following table:

Table 2
: Input from 2
State
. a b
== qo 91, gz o

o

In NFA, though the function § maps to a sub-set of the set of states, yet we gcnérally
drop braces, i.., instead of {qo, 41}, we just write g, q1.

The computation for an NFA is also similar to that of DFA. LetN =(Q, Z, 3,00 F)
be an NFA and w is a string over the alphabet £. The string w is accepted by NFA if
corresponding to the input sequence, there exists a sequence of transitions from the
initial state to any of the possible final states.

.. Now, let us check computations (in NFA, there are many possible computations) of
the string aba.

8 (qo, aba) =38 (8(qu, 2), ba)

= & (q1, ba) or & (g, ba)

8 (8(ay, b}, @) or & (8(az b), 2}

I

stuck or & (qz, a)
= q, (an accepting state)

The above sequence of states shows the final state q, which is an accepting state.
Hence, the string aba is accepted by the system and the input sequence of states for the

. . a b a
mputi1s - qy 74 ¥QqQ3 @

Try some exercises:

B v -



Ex.]1) Consider an NFA given in figure 5. Check whether the strings 001, 011101,
01110, 010 are accepted by the machine, or not?

. O’IQ .
— () — —©
Fig.5 :
Ex.2) Give an NFA which accepis all the strings starting with ab over {a,b}.

In unit 1, we discussed DFA and in previous section we discussed NFA. Now a simple
queslion arises, are these iwo automata equivalent? Reply for that is jt is always
possible to find an equivalent DFA to every NFA. In next section-we shall discuss the
cquivalence’'of DFA and NFA.

2.3 EQUIVALENCE OF NFA AND DrA

Every time we find that if we are constructing an automata, then it is quite easy to
form an NFA instead of DFA, So, it is necessary to convert an NFA into a DFA and
this is also said to be equivalence of two automata. Two finite automata M and N are
said to be equivalent if L(M) = L(N).

From the definitions of NFA and DFA, it is clear that thej' are similar in all respects
except for the transition function, In DFA, the transition function takes a stale and an
input symbol to the next state, whereas in NFA, the transition function takes a state -
and an input symbol or the empty strifg into the set of possible next states. If empty
string A s used as an input symbol, then the NFA is called A-NFA. As an NFA is
obtained by relaxing some condition of DFA, intuitively it seems that there may be
some NFAs to which no DFA may correspond. However, it will be shown below that
by relaxing the condition, we are not able to enhance computational power of the
DFAs. In other words, we eslablish that for each NFA, there is a DFA, so that both
recognise/accept the same set of strings.

We now try to find the equivalence between DFA and NFA. Some DFA can be
designed to simulate the behaviour of an NFA. Let us consider M =(Q, Z, §, qo, F) be
an NFA accepting L(M). We de;.ign a DFA, viz., M as described below and show
that the language accepted by M is the same that accepted by M, i.e., the language
LM). M =(Q, %, 5, . F') where Q' = 29 (any state in Q' is denoted by [a1, qz - - -
q;] where q;, 2 - - - q; €Q), 95 = [go] and I is the set of all subsels of Q containing an
element of F. . .

Before defining &, let us lock al the constf‘uqtion of Q', gpand F'. Machine M'is
initially at qo state. But on application of an input symbol, say a, M can reach any of
the states in 8(qp,a). So M’ has to remember all these possible states at any point of
time. Therefore, subsets of Q can be defined as the states of M. Initial state of M’ is
qo. Which is defined as [qo]. A string w accepted by the machine M if a final state is
one of the pussible states M reaches on processing w. So, a final state in M’ is any
subset of Q containing some final state of M. Next We can define the transition
function & as

N
(qi,-....qn), @) = Ul 8(q;.a). So, we have to apply & to (q;, a) foreachi=1,2....N
1=

and take their union to get §'([q;, gs-... qn}, @). Defining & with the help of 6 in this
way is also said to be subset construction approach.

Non-Deterministic Finite
Automata

29
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Example 2: Construct a DFA equivalent to the NFA M, diagrammatically given by

e
—B——=0

1

Fig. 6: NFA

when & for M is given in terms of a transition table, the construction is simpler. Now, i
let us have a iook at the following table3.

—reper -

Table 3
State/Z 0 1 |
—{q : Qo O .
Gm . 0 Qo. i .

(i) In this given M, the set of states is {qo, qi}. The states in the equivalent DFA are
the subsets of the states given in the NFA, So the states in DFA are

subset of (a6, a1} i, &, [aohs . [an, )
(i) [qo} is the initial state. '

@iii) [qo) and [qo, q:] are the final states as these are the only states containing qo, the ;
only final state of M.

Therefore, F* = {[qo), [qo, 9:]}

(iv) & is defined by the following state table:

Table 4
State/S 0 1 :
¢ ¢ J ;
> (q0] fa]
{ai] {a.] [0, q1] "
[ge, 1] {qo, q1}

We start the construction by considering [g,] first. We get [q.] and [q.]: Then, we
construct & for [q,] we get [q;] and [qo, a1]. As [q,] already exists in left most column,
so we construct 8 for [a.; q1]. We get [go, 9] and [qo, @1]. We do not get [qo, q;] and
[qo, Q:]. We do not get any new states and so we terminaté the construction of 5.

When a non-deterministic finite automate has n states, the corresponding finite
automata has 2" states. However, it is not necessary to construct & for all these 2"
states, but only for those states reachable from the initial state. This is because our
interest is only in constructing the equivalent DFA. Therefore, we start the
construction of 5 for initial state and continue by considering only states appearing
earlier under input columns and constructing & for such states. 1f no more new states
appear under the input columns, we halt.

To prove the equivalence of both automata, we will prove the following theorem:



Theorem]: A language L is accepted b}} some NFA if and only if it is accepted by Nom-Deterministic Finlte
some DFA, ’ _ Automata

In the theorem, there are two parts to prove:

If L is accepted by DFA M, then L is accepted by some NFA M.
[f L is accepted by NFA M', then 1 is accepted by some DFA M'.

The first is the easier to prove.

Theorem1(a) (one direction) : If L is accepted by DFA M, then L is accepted by

some NFA M. -

Proof : Let us compare the definitions of NFA and DFA.

Definition : A Deterministic Finite Automata (DFA) M is
defined by the 5-tuple.

M =(Q,Z, &, qq, F') where
Q - The finite set of states,

.2 - The finite set of symbols, the input alphabet.
& - Transition function 8: Qx ¥ - Q. .
go - An initial state, q;, €Qqy. L
F - A set of final states or accept states, F'c()’.

Definition : A Non-deterministic Finite Automata (NFAYM
is a 5-tuple

M=(Q, 2,35, q, F) where
Q - is a finite set of states. bt
3. - is a finite input alphabet.

& - is a transition function 8: Qx (TU{A}) — 29,
qoeQ is the start state. '
FcQ, is the set of accepting states.

e ey ek I

The above deﬁniiions follow that every DFA is also an NFA, which implies that if
weL(M"), then weL(M). '

The other half of the theorem is in the following theorem:

Theorem1(b): If L is accepted by NFA M =(Q, ¥, 5, qo, F), thén L is accepted by
some DFA M =(Q', L, &', q'O , F').

Proof : Construct M’ as in the Subset Construction Algorithm. We will show using
induction on the length of w.

Bage case : Let w be an empty string, i.e., if ]w| =0then w = A. By definition of NFA
and DFA both 8(q.,w) and 5'(q'0,w) are in state {qo}. Hence, the r=sult.

Let us assume that this result is true for each string of length n, we will now show that
this result is true for strings of length (n+1).

11 I



Finite Automatn and
Formal Languages

Lel w = sawith |w]=(n + yand ls|=n. also 8 is the final symbol fo w. As

151 = n, therefore, by induction

&'(qp.S) = 8(qo$)

if {P, Pa,...P1} be the set of states for non-deterministic finile automata M, then

I3
5 {qew}= \._JIS(Pi,a). ()
Next,
k
§({Py. Pr... P} 2) = .':15(1’!.21) : (i)
1=
also §'(qg. 5) = {P1, Pau-.Pud- (i)

Usinz Equations (i), {ii) and (i1i) we gel

5 (qg. W) = 8(8'(qg. 5) )
= 5'(p1- PI\' --Pk}~ a]

X
=&Mmm
= 8(qp. W)

which shows that the result is trae for |w|= n + 1 whenthe result s true for a string of

length n.

Here the result is irue for length @ and for length {n* 1) which is implied by the length
.

Therefore, the given statement is true for alj the strings.

Hence, M and M’ both accept the same string w iff 8'( qg.w) or 3(Qo.v) contains a
state in F', or F respectively. Thercfore,

L(M) = L{M")

For every non-deterministic {inite automaton, there exists an equivaleni deterministic

infinite automaton which accepts the same language. In this way, 1wo finile automali.

M and M’ are said to be equivalent if L{M) = L{M’).
Example 3: Construct a non-determinislic finite automata accepting the sct of ad
strings over {a.b} ending in aba. Use it 1o construct a DFA accepting the same set of

strings.

Solution: Required NIFA is the one (hat accepts strings of the [grin xaba where
xe{ab}

Fig. 7: NFA accepting all the siring ~nded by abp




Transition table of the -diagram shown in Figurc 7 is given in table 5.

Table 5 L
State/Y A B
N Qa, q; o
Ui - q2
a; qQs -
- . -

Naw, det us construct its equivalent DFA, [q,] is the initial state in corresponding
DFA so starting the & function using [yo] as an initial state, we represent it in tables.

Formally, the DFA is

A=({lao), [9e. qu]. [qe. iI:‘]- {36 a5 a3}, {abl, 8. 4ol 4[Tq0. a1, 414

where 8 is given by the 1able 6.

‘Table 6
StatefS a b
— [0} (%%, 19,)]
[9.4.) [400] [94:]
[T | {9,9,9,] (9]
99,8 | 1949,]

Diagramaticaily. DFA is given in figure 8.

&)

/)
&=

Fig. 8: DFA

)

i)

; a
b (95,9, 9,] D

e

This example also highlights one of the reasons for studying NFAa. The reason is that
generally, itis easicr to canstruct an NFA that accepts a language than to construct the
corresponding DFA,

Try some exercises to check your understanding:

x.3) Construct an NFA accepting {01, 10} and use it to {ind a DFA accepting Lhe

same,

Ex.d) M =({qs,q2 q:}, {0,1}. 8, q, {q3}) is a NFA, where § is given by

800D = g2 43}, 8(qr 1) = {qy)
sn (('u'n)- {Q'l- '-T::- ﬁ((lz_- ')'__. ¢
8, (3. 0) = {2} 8lan, )= {qu, g

construct an equivalent DFA

Nan-Determinislic Finitwe

Automan



Finite Aulomata and
Fermal Languages

Ex.5) Construct a (ransition system which-can

accept strings over the alphabet a,b, ---

------ constuining either cat or ral,
1ix.6) Give examiples of muchines distinguishing DIFA and NFA.

2.4. TOUIVALENCE OF A-NFA AND NFA

There exist some transitions graphs when no jnput is applied. 1f no input is applied
then the transilion systems are associated with a null symbol A. Every time we can
find an equivalence in between the systems with ~-move and without a-mmoves. With
the help of an example, we shall find the equivalence of A-NFA and NFA.

Suppose we want 1o remove A-move from the transition shown in figure 9:

Fig. 9: A-NFA

In the above transition qo is an initial state and g is a final state. For this, we proceed

as follows:

If g; q;are two staies and null string is from q; to q; then :

(a) Duplicate all the edges starting from q; which are starting from q,

(b) If q;is a final state, make g; as a final state and if q; is an initial state, make q; as
an initial state.

. Now let us apply these two rules to the transition in figure 9. First of all, removing A

in between q, and qr.
Y U

Iy
N 0
— () -@ ~©

Fig. 10: Removal of orte A

Now, again apply the same rule to remove the remaining A-move.

O,Iﬂ . Om

lm 0
—-@— —=0—0Q
+ ,

1
Fig. 11: After removing both A

Thistransition system is free from A and is equivalent to the A-NFA.

2.5 PUMPING LEMMA

As you know that a language which can be defined by a regular expression is called a
regular language, there are several questions related to regular languages that one can
ask. The important cne is: are all languages regular? The simple answer is no. The
languages which are not regular are called non-regular languages. In this section, we
give a basic result called “pumping lemma”. Pumping lemma gives a necessary
condition for an input string 1o belong to a reeular set. and also states a method of

eeme g s prrmeazem s D,



pumping (generaling) many inpult strings from a given strings all of which should be Non-Deterministic Finite
in the language if the language is regular, As this pumping lemma gives a necessary Automata
(but not sufficient) condition for a language to be regular, we cannot use this lemma to

establish that a given language is regular, but we can use it to prove that a language is

not regular by showing that the language does not cbey the lemma.

The pumping lemma uses the pig: snhole principle which states that if p pigeons are

placed into less than p holes, som.. hole has to have more than one pigeon in it. The

same thing happens in the proof of pumping lemma. The pumping lemma is based on

this fact that in a transition diagram with n states, any string of length greater than or

equal to n must repeat some state.

Pun"lping lemma (PL):

If L is a regular language, then there exists a constant n such that every string win L,
of length n or more, can be written as w = xyz, where

G >0,
(i) [xy| <n
(ifi} xy'zis in L, for all i 20 here ¥y denotes y repeated i times and y°= A

Before proving this PL, a question that may have occurred by now is: Are there any
languages that are not accepted by DFA’s? :

Zonsider the I_a.nguage L={w | w=0*1*, where k is a positive integer}.
Proof of (PL): Sinc;e we have L is regular, there must be a DFA, say A such that
CL=L(A)
Let A have n states, and a string w of-length z ninL whi‘ch is expressed as
w=ayag------ ag where k > n with general elem-ents_ a;, a;, for

! 21 < j<k, the string w can be written as

w=aap------- -1 Aj Bjey Yoz - -~ - A) A - -~ &
and w = xyz
soX=4a;a; ---§
Y = isgy Baz- - - B
and z =g, Bjaa- -~ - &
Let qq be the initial state and further let
Q= 8 (qo, &1), 42 = 8 (qo, 21 3y)
q; be the state in which A is after reading the first i symbols of w.

Since there are only n different states at least two of gg, q; - - - g, which are (n+1) in
numbers, must be same say, q;=q; where 0 i< j<n. Then by repeating the loop from
g; to g;with label a;,, - - - - 3; zero times once, or more, we get xy'z is accepjed by A,
because in case of each of the string xy'z for i = 1,2..., the string when given as an

B T
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input to the machine in the initial state qq, reaches the final state g,.
Diagrammatically. . -

@ — 4 (D) —

Flg. 12; representation of xy'z

Hence xy'z € L(A) Vi 20.

How to use PL in establishing a given language as non-regular?

We use the PL to show that a language L is not regular through the following
sequence of steps: .

Stepl: Start by assuming L is regular.
Step2: Suppose carresponding DFA has n states.

Step3: Choose a suitable w such that we L with |w| >n.

Stepd: Apply PL to show that there exists i = 0 such that xy'z ¢ L, where w =xyz
- for some strings Xyz.

Step5: Thus, we derive a contradiction by picking i, which concludes that assumption
in step 1 is false.

Example 4: Consider L= {0"’ln >0},
Suppose L is regular. Then there exists a constant n satisfying the PL conditions,
Moww = 0" &L and jw]=n?
Write w = xyz; where [xy| < nand|y|>0 and hence ML
By PL, xyyz €L.
Here |wj=n’
= |xyg=n?
= |x|+[y] +|d=n>

= n?+nz|x|+y|+|vl+|7 > n?; [as [x| > 0 and |xy|<n]
= n?+n2|xyyz>n’

= (n+1)?>xyyg>n?.
(n+1)? is the next perfect square after n’, therefore,

xvyz is not of square’length and is not in L. Since we have derived a contradiction,
- which conciudes that L is not regular.

e



Let us try some exercises:

Ex.7) Show that the following languages are not regular
() Li={0"1":m =0}
(i) Ly={0" 2%:0 gi-7j <K}
(iii) Ly={a":pisprime}
(iv) L= {ww|we{0,1}"}
(v) Le={0"1"|n>0}

Ex.8) Give an example of a language which is not regular. Justify your answer.

2.6 CLOSURE PROPERTIES
(Regular Languages and Finite Automata)

Suppose L and M are two regular fanguages, then if the operations applied to L. and M
results regular language, then the property is called closure property. The closure
propertics are very useful for regular languages and finite automata. The operations
applied for regular languages produce regular language are union, intersection,
concatenation, complementation, Kleenstar and difference. With the heip of closure
properties, we can eastly construct the, finite automata which accepts the language
which is union, itersection, ..., of regular languages. .

Before discussing the closure properties, let us define a language of a DFA. Suppose
M=(Q, £, 8, qq, F), and the language accepled by M is L{M) and is defined as L(M}
={8 | 8'(qo.8) €F}. That is each string in L{M) is accepted by M. IfL = L(M), then
L i5 regular language. Let us discuss few theorems, showing the closure properties of
regular languages and finite automata.

Theorem?2: I L and M are regular languages, then L+M, LM and L. are also regular
languages.

L and M being given to be regular languages can be denoted by some regular
expressions. say. 1 and m. Then, (I+m) denotes the language L+M. Also, the regular

expression hn denotes the language LM. (1)’ denotes the language L.'. Therefore, all -

three of these sets (i.e., languages) of words are definable by regular expressions, and
hence are themselves regular languages.

«Note: [T any language can be denoted by a régular expression, then that languape is by
definition a regular language,

Complements and Entersection

Definition: If L is a language over the alphabet Z. we define its complement, L, 10 be

the language of all strings of letters from I thai are notin L, ie., L= %'-L.

Example 5: Let L be the languape over the alphabel T = {a,b) having all the words
which starl with the letter a and no other words over E. Then, L. is the language ol the
all other words that do not have the first lctter as a.

" Noo-Reterministic Finite
Autemala
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‘The fact that M is the FA that recognises the language L , follows from the

Example 6: Suppose L is a language over {a,b} ending with ba, then L is the
language of over {a,b} of all other words not ending with ba. . ;

Theorem 3: If L is a regular language, then L. is also a regular languages. In other
words, the set of regular languages is closed under complementation.

Proof: We establish the result by constructing an FA say M, the language L. AsL
is given to be regular, therefore there is as FA, say M that recognizes L. '

e TR MR

IfL=X', then L =, which is, by definition, a regular language.
If L #£’ is a regular language, then there is some FA that accepts the fanguage L.

At least one of the states of the FA is a final state and as L # X', at least one of the
states must not be a final state. The required FA has the same set of states, same set of
input symbols, same transition function and same initial state as M. However, if S is
the set of all states of M and F is the set of all final states of M, then set S F of all

non-final states of M serves as set of final states of the proposed FA viz M .

followlng:

LetxeL =Z ~L & xegl

> the string x when given to M as input string in the initial state terminates in & non-
final state of M, i.e., terminates in a staie belonging to S ~F.

& M accepts x

smr —— e

Theorem 4: IfL and M are vegular languages, then LnM is also a regular language.
In other words, the set of regular languages is closed under intersection.

Proof: We can prove this theorem in two ways: One by De Morgan's Law or by
constructing an appropriate FA. Here the proof with the help'of De Morgan's law is ;
gfven, and leave the proof based on construction of an appropriate FA to the students

as an exercise, -

For any two general sets L and M, whether regutar languages or not, by De Morgan's

. Laws, we have .

LAM = (L +M).

In wew of the fact that complement of a repular language is regular, the languages L
and M are regular languages, given L and M are e regular, Further, the fact that the
stim of two regular languages is regular, makes L +M gs a regular language,

Hence, its complement (L +M ) = LM, is regular,

The following discussion, based on processing of two FAS in parallel, helps us in the
construction of an FA for the union of two regular languages.

Example 7: Suppose we take the two machines whose state graphs are given in the
figure below:



. .y
b (_\' Non-Determinlstic Finite
—+ ——>

809 0—-—»Q)b

)M, (by:M -
_Fig.13: Two Finite State Machines .

T T Tt Ty

We can easily venfy that the machine (M,) of figure 14 accepts all strings {over {a, !
b}) which begin with two b’s. The other machine (M,) in figure 15accepts strings
which end with two b’s. L=t’s try to combine them into one machine which accepts

strings which either begin or end with two b’s.

Why not run both machines at the same time on an input? We could keep track of ~
what state each machine is in, by placing pebbles upen the current states and then

advancmg them according to the transition functions of each machine. Both machines
begin in their starting states, as pictured in the state graphs below:

5 ’ a
“O-=0  _&,

Gl

a,b b

(a)
Fig. 14: Pebbel on , and G

With pebbles on s, and qo, if both machines now read the symbo! b on their input
tapes, they move the pebbles to new states and the machines assume the following

configurations: N

§)
~0——F -G

¢ § 6~

{n) ®)

Fig. 15: Pebble ong, and q,

K1Y
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with pebbles on s and g;. The pebbles have advanced according 1o the transition

functions of the machines. Now let's have them both read as an a. At this point; they

both advance their pebbles to the uext staie and enter the conliguraiions

@—*@ ‘D

2\

© O @—-—*.\).,

a.bu a bu
Fig. 16: Pebble on 5; and g

(a}

With this picwre in mind, let’s trace the computations of both machines as they
pracess several input strings. Pay particular attention to the pairs of states the
machines go through. Let our first string be bbabb, which is accepted by both the
machines.

Table7
Input B b a b b
M,'s states | sp S 5; Sa 3 $2
M,’s states | qo qr a: 9o i 9>

Now. let us look at an input string which neither of the two machines accepls say
babab.

Table 8
Input b a b a b
v, 's states | so L) 53 53 83 53
M,’s states | Qp Qi Jo qQ Qo I

And finally. we consider the string baabb which will be accepted by M but not M;.

et e e -

Table 9 .
] ?\' - ] Input b a a b b
4 M, ’s staies | Sp 5 S3 53 $1 53
M.'s states | qo Gt Jo 9o Qi Qz |

If we imagine 2 multi-processing finite autoinaton with two processessors (one for M;
and one for My), it would probably look just like the pictures given above. Each of it:
state is a pair of states, one {rom each machine, corresponding Lo Lhe pebble positions.
Then, if a pebble ended up on an accepting state. for either machine (that is, either s,
or qa), our multi-processing finite automaton would aceept the string.

The above discussion helps us in sceing the truth of the following staiement
intuitively: We construct the required machine by simulaling (ke muiti-processing
pebbie machine discussed above.

Theorem 3: The class of scts accepted by finite automata is closed under union.

Proof Sketch : Let My = (S, Z. 8. so. FYand Ms = (O, Z. v. qu. G) be two arbitrary
finite automata. To prove the theorem, we must show (hal there is another machine
M) which accepts every string accepted by M, or M and no other string.

We show that the required machine is My = (S x Q, L, E, < s, qo >, H) where § and H
will be described presently.

40 The transition function§ is defined as



E (<5, qi> a) =<d(s; ), Y(g;, 2)>.
It zan easily be seen that £ is a function from S x Q to § x Q.

A state in M; is a finalstate in M; if and only if eitber its first component is in F, i.c..
ts a final state of M, or its second component is in G, i.e., is a final state of M,. In
cross product notation, this is :

H = (F x Q)U(SxG).

This completes the definition of My, We can easily see that M is indeed a finite
automaton because it satisfies 1he definition of finite autornata. We claim it does
accepl T(MJUT(M,) since it mimics the operation of our intuitive multi-processing
pebble machine. The remainder of the formal proof (which we shall Jeave as an
exercise) is merely an introduction on the length of input strings to show that for all
strings x over'the alphabet |:

x&T(M )UT(M)Iff 8 (sp,x)F or ¥'(qo,x)eG
iff £ (<50, g0 > x) eH.

Thuys, by construction we have shown that the class of sets accepted by finite automata

is closed under union.

By manipulating the notation, we have shown that two finite automaia given in figure
15 (a) and (b) can be combined in a special way to prove the desired result, as shown

in figure 17,
@ .—‘“.

“H‘ 4
.—-'.3

-Flg. 17: Union of M, and M,

Note that not all pairs of states are included in the state graph. (For example,<sp, q,>
and <sy, q;> are missing.) This is because il is impossible to get to these states from

<Sp. o~

This is indeed a complicated machine! But, if we are a bit clever, we might notice
that if the machine enters state s,, gy, then it remains in one of the states (s,. go), (52
Qi) {52, q2) all of which are final states. We may replace all such stages of M; by a

single slate say s;q;, which is also a final state and get a smaller but equivalent
" machine as shown in Figure |8: :

—’.—*.*’Q
o9

Fig. 18: Reduced Uhrion Machine

Non-Dete rministic Finite
Artomata
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Finite Automata and Now check your understanding by the following exercises.
Formal Languages

Ex.9) For each of the following pairs of regular languages, L and M find a regular
expression and an FA that correspond to LnM: -

L M ]

L (atb)a ' (a+b)'b :
2. (a+ab)’ (at+A) {a+ba)a II
3. (ab) b(a+b)’ ]
4, (a+h)"a (a+b)’ aa (a+b)’
{f& 5. Al strings of even length b(a+b)”
; = (aa+ab+ba+bb) ' .

2.7 EQUIVALENCE OF REGULAR EXPRESSION
AND FA

‘As you have seen in Unit 1, all the regular languages can be written as regular

expression and vice-versa. Do you find any relation in regular expression and a
transition sysiém? A regular expression can have A, ¢, any input symbol, +, *, ;
concatenation, Let us find the transition system of these. .

—0

Flg. 191 Transition dlagram equlvalent to A

g WG |

Fig. 201 Transitlon dingram equivalent to @

—0-=-0

Fig. 211 Transition dlagram equlvalent (o a

050

R=P+Q
Fig. 22 Tramltion disgrem equivatent to R=P+Q

—~O+0--0

R=PQ
2 - . Fig. 231 Transitlon dlagram equivalent to R = PQ




Non-Deterministic Finife

P
—O=0=0
R=P*

Fig. 24; Transition diagram equivalent to R=P°

Using above equivalence of regular expression and transition systems, we can easily
make use of equivalence of A-NFA and NFA and also of NFA and DFA, and finally
we can find the equivalence between a regular expression and FA.

Example 8: Let us try to get the finite automata which is equivalent to regular
expression (a+b)’ (ab+ba) (a+b)’".

Step 1: Construction of equivalent A-NFA is:

(a+b) (ab+ba) (a+b)’ is

O (a+b)'(ab-+ba) (a+b} N ©

Fig. 25: A Complete regular 'expregslun

It is concatenation of (a+b)’, (ab+ba) and (a+b)",after applyiﬁg concatenation we get

—~O=t0=0=Q

Flg. 26: After concatenatlon

Then removing the * from (a+b)" at both places and applying union rule for eb + aa we get

(atb) (a+b)
. (Y b (Y
A
~0=0+0==0+0+0
ba

Fig. 27: after removing *snd +

Now cancatenating ab and ba, we get
- (O O O
ke

Fig. 28: equlvalent A-NFA

a

0+0*0

Automata

e g i s — o iipeios - -
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Step 2 : Construction of cquivalent NFA, Lel us remove every A one by one

.0
_,QA,.Q_A..O/
b O

T
Fig. 22: Removing ~

LA
O-+0
R

A

Fig. 3E: Removing A

BT o

(A DN~

b

Fig. 32: Removing A

R C -
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After minimizing the number of states, we get,

Fig. 33: Equivalent NFA

" Step 3: Construction of equivalent DFA.

Table 10
| States input
I A b
—90] [90. Q] [, 2]
[90.q1] fas. @] - (a0 92, @3]
{90, Q2] (90, 9z, G1] (90, Q2]

(2, qi; @1} [qe, qy, Qs] [qn, 92, q5]

[0, 1, 5] (9. 92. @s]

Diagrammatically it is shown in Figure 34.

Fig. 34: Equivalent DFA

Now try some exerciscs.

Ex.10) Find the finite antomata equivalent 1o the following regular expressions:

(i) ba+{aatb) a'b

(i) b+aat+aba’b.

Non-Determininte Fiane
Ao

i e e b
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(i)  (a+b) b (atby

As you have seen that there exists un cquivalent NFA with A-transitions, NFA without
A-transitions and DFA 1o cach regalar expression. But il there is some transition
system, then there exists equivalent regular expression. The algorithm we are going
to discuss for this purpose is not restricted to NFA, DFA. This algorithrn can be
applied to each transition system to each transition system to find its equivalent

regular expression. We convert 2 transition system 10 a regular expression by

reducing the states. These states are reduced by replacing each state ane by one with a_
corresponding regular expression. The following steps are used:

e Ifthe label is (a, b, then it is replaced by a+b.

e  First of all, eliminate all the states which are not initial or final states. H we
replace the state q. from the transition given below,

Ry R,

Fig. 35: Transition diagram before elimination of "4,

then q. is eliminated by writing ils corrésponding regular expression R;R; Ry+R,
from q, 1o qg, as follows:

R4+R=R; Rl g

Flg. 36; Trans!tion dlagram after eliminatlon 1:|l'I q.

Continue the process till only initial and final states remain.

® Ifinitial state is final state and the regular expression is R. such as

—O>
Flg. 37: Transitlon system wlith the state

the equivalent regular expression is R

® [finitial state is not final state and is tike,

1g- 38: Transltlon sysiem-wlth different Inltia] and final state

S rmerrmne— e



then this can also be written as

RTRz(R:+R4R:R;)*"; ..@

Flg. 39: Showing equivalent regylar expression

which is the equivalent regular expression. If these are n final states and Ry, Ry,
R,...R, are the regular expressions accepted by these states, then the regular
expression accepted by the transition system will be Ri+Ra+..... ¥Ry,

Now let us try some examples to understand the al gorithm.well.

Example 9: Find the regular expression equivalent to the given system.

(D) @™
)

Fig, 40

There is no state which is neither initial n or final so this can be written as

wr O
—T Ll )

Flg. 41: Equlvalent regular expression

The equivalent re. is b'a(atb)".

Examplel0: Find a regular expression equivalent to

Fip. 43: Equivalent NFA

Non-Delerministic Finite
Autgmata

e

I

P——



Finite Automata and There are two final states, q and q,. The regular expression accepted by qq is a” and
Formal Languages the regular expression'accepted by q; isa’bb’. Then, the regular expression accepted

18

by the transition system is L

a'+a'(bb") = a"(A+bb") (distributive property) -
=a'b’ is the equivalent regular expression.” |

Try some exercise,

Ex.11) Take any regular expression and find the transition system. Using this
transition system, find equivalent regular expression and check your result,

/

2.8 SUMMARY

In this unit. we have covered the following:

| Non—detenn_inistic finite automata,

2, There exist, an equivalent DFA for every NFA,
3 Two Automata M and N are said to be equivalent iff L(M) = (L(N).

4. Pumping lemma with its proof.

5. . A.pplication of pumping lemma in esfablishing a givén language as non-
regular,

6. Closure properties of regular language and finite automata.

7. Equivalence of regular expression and finite automata. The regular language

can be found from a regular expression as well as finite automata. So, these
two approaches of regular languages are equivalent.

2.9 SOLUTIONS/ANSWERS

Ex.1) &isgivenby

Input £
¢ i
—>qo qs q; Go

C
8(qo, 001) = 8(qq, 01) = 8(q,, 1) _=@ {Accepting state)

8(qo, 011101) = &(q,, 11101)

State

= §(qq, 1101)
= 5(qo, 101)
= 8(qo, 01)
=&, 1)

N T T



=@ (accepling state)

8(qg, 01110) = 8(qo, 1110)
= G(CID; 1 10)
= a(qus IO)

= B(Qu- 0)

= gq or q; (Not an accepting state)

8(q, 010) = 5(go, 10)

= a(qU) 0)

= g, or q; (Not an accepting state)

So, strings 001 and 011101 are accepted by the given automata,

Ex.2)

b /)a,b
— (=)@
" Fig. 44
Ex.3) NFA

— (1)
NN

Fig. 45

Transition function is given in the table below:

States 0 L
—r Qo 5]} Q2
qi - as

Equivalent DFA is

Non-Deterininisiic Finite
Automata

e = -t
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Formal Languages ¢ ¢ ¢.
—{qo} [qd] [q2]
[l {6] [as]
[q:] (] [4]
(as] [¢] (4]
Ex.4) DFAis
State 0 1
- [qi} (92, 93] [q)]
{Qz, 93] {q192] fan g2}
(a1, 72 (91, @2 ] [ail
(9 92 aa] | [915 Q2 G3) (91 g2

Ex.5) b
. a,b,....
N o
— ()2 ()
Iy

Fig. 46
Ex7y (OLi= {0‘“i"‘:m20}
w=xyz=0"1"= |w|=2m:
Consider three cases
Iffy=0"= w=0""0"1"

xy'z= om—ko.ik-lm

xy'z = QML m

= xy'z ¢ L, as m+(i—1Dk = m.

Similarly, case I! with y = 0*1' and case !11 with y = I* can be assumed and
will not belong to L,.

- S8k js not regular

LI

‘(i) Similarly, as part (i)
(i) L; {ahpis prime)
- Supposey=a", m>0 and w =xyz=a"s0 |w] =p

= = ay'z =xyy 'z

0 - =2 = e +ly]+ G- D]+
= W]+ -1




(iv)

(v)

Ex.8)

Ex.9)

p+(-1)y|

i

p £(i—1m.
If we choose i—] a multiple of p, then we get
jxy'z| = ptkpm

= (1+km)p .

which is pot a prime number

s0, xyiz & Ly
Suppose L is regular, and n be the number of states in automata M,
ww = xyz with |y| #0, |xy| £n.
Let us consider ww =01"01"€eL,
and fwwj=2(n+1)>n.

] case :yhasno 0's,ie,y=15k21
il case ; y has only one 0.
Here, y cannot have two 0°s. Ifso [yjzn +2. But [y|<}xy|<n..

In éase |, assume i = 0. Then xy_iz =xz and is of the form O 1" 0 1", where m
=n—k<norof ths form 0 1 01™. These both values cannot be written in
form of ww with we {0, 1 }' and so xz€L. In case Il also, take 1 =0 then 0
will be removed and xz =0 1" 1" again this cannot be written in ww form.
Thus, in both the cases we get a contradiction. Therefore, L is not regular.

Left as an exercise.

Any example of a language may be given which is not regular. Use again
pumping lemma to justify

! ¢

2. (aYa.

3. I

4, {atb) aa

5 (aatab+ba+bb)”

Ex.10) (i) Equivalent NFA is O
TN

- Non-Determinixtic Finite
Automate

515
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(i)

NFA is

—

/ b
—*O\'A“—’O /@
OTOJa

Fig. 18
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3.0 INTRODUCTION

In unit 2, we studied the class of regular languages and their representations through
regular expressions and finile automata. We have also seen that not all [anguages are
regular. If a language is not regular than there should be other categories of language
also. We have also scen that lanpuages are defined by regular expression. Regular
languages are closed under union, product, Kleene star, intersection and complement.
Appllcallon arcas are: text editors, sequential cm:uus elc. The corresponding
acceplor is Fifite Automata.

Now, we shall discuss the concept of context free grammar for a larger class of -
languages. Language will be defined by context free grammar. Corresponding
aceeptor is Pushdown Automata. In this unit we shall check whether a context free
language is closed under union, product and Kleene star or not. Language that will be
defined by comtext free grammar is context free language. App]lcatlon areas are:
programming languages. statements and compilers.

3.1 OBJECTIVES

After studyiﬁg this unit, you should be able to

®  create a grammar from language and vice versa;

»  cxplain and create context free grammay and language;

®  define the pushdown automata;

o apply the pumping lemma for non-context free languages; and

¢ [ind the equivaience of context free grammar and Pushdown Aulomata

Inn unit 1, we discussed |anguage and a regular language. A languagelis meaningful if a
crammar is used to derive the language. So. it is very important 1o construct a
language {from a grammar. As you know afl languages are not regular. This non-
regular languages are {uriher categorised on the basis of classification of grammar,

3.2 GRAMMAR AND ITS CLASSIFICATION

In our dav-to-day life, we olien use the common words such as grammar and
language. Let us discuss it through one example.

Example 1: [f we talk about a sentence in English language. “Ram reads”. this
sentence is made up of Ram and reads. Ram and reads are replaced for <noun> and
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where noun can be replaced with many such values as Ram, Sam, Gita..., and also

<verb>. We can say simply that a sentence is changed by noun and verb and is
writlen as -

<sentence> —» <noun> <verb>

<verb> can be replaced with many other values such as read, write, go .... Asnoun
and verb are replaced, we easily write

<poun> - 1

<poun> - Ram

<noun> — Sam :

-zverb> - reads -
<yero> —> wriles 5

From the above, we can collect all the values in two categories. One is with the

parameter changing its values further, and another is with termination. These i
collections are called variables and terminals, respectively. Io the above discussion i
variables are, <sentence>, <noun> and <verb>, and terminals are I, Ram, Sam, redd,
write. As the sentence formation is started with <sentence>, this symbol is special |
symbol and is called start symbol. |

Now formally, a Grammai' G=(V, £, P, 8) where. |

® Viscalled the set of variables. e.g., {8, A,B,C}
e I isthe set of terminals, e.g. {a, b}

® P isaset of production rules _
(- Rules of the form A —> & where Ae (VUX) and ae (VU eg..S—
aA).

® S isa special variable called the start symbol SeV.

Structure of gmmmarﬂl.. is a language over an alphabet A, then a grammar for L
consists of a set of gramMdr rules of the form '

X—=>¥

where x and y denote strings of symbols taken from A and from a set of grammar
symbols disjoint from A. The grammar rule x —  is called a production rule, and
application of production rule (x is replaced by y), is called derivation.

Every grammar has a special grammar symbol called the start symbol and there must

be at least one production with the 1éft side consisting of only the start symbol. For

example, if S is the start symbol for a grammar, then there must be at least one ,
production of the form S— y.

Example 2: Suppose A = {a, b, ¢} then a grammar for the language A’ can be
described by the following four productions:

S>> & (i)

S§—» a8 (ii)
S—» bs (iii)
S— ¢S (iv)

§ =aS =228 — aacS = anchS —>aach = aach
using  using  using using .  using .
prod.(u) prod.(ii} prod.(iv} prodiii} prod.(i}



‘The desired derivation of the string is aach. Each slep in a derivalion corresponds to a Coatext Free Grammar

"branch of a tree and this true is called parse tree, whose root is the start symbol. The '
complcted derivation and parse tree are shown in the Figure 1,2,3: !

s SN |
a/ \s 8/ \S |

I
|
Fig. 1: 5= a8 Fig.2: 5> a8 = an§ !
|
|
|

a

N\
/

N

S

a \S :
c/ |

Fig. 3: 8 => a8 = au5 = AxcS

Let us derive the string aacb, its parse tree is shown in figure 4.
S = aS = aaS = aacS = aacbhS = aacha = aach

SN,
a a/ \S
N

b/ \S
N

A

— T TTTtTTTTER TS ¢ o -

c

Fig. 4: Parse tree deriving aach

Sentential Form: A string made up of terminals and/or non-terminals is called a
sentential form. -

In example 1, formally grammar is rewritten as

InG=(V,Z, P, 8)where

YV = {<sentence>, <noun>, <verb>} . ‘

% = {Ram, reads,...} :

P = <sentence> — <noun> <verb>

~“noun> — Ram

<verb> — reads, and .

S = <sentence>
If x and y arc sentential forms and o —» B is a production, then the replacement of o

by B in xay is called a derivation, and we denote it by writing
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(L)

xay = xpy

To the left hand side of the above production rule x is left context and y is right
context. If the derivation is applicd to left most variable of the right hand side of any
produclion rule, then it is called leftmost derivation, And il applied to rightmost then
is called rightmost derivation. *

The language of a Grammar :

A language is generated from a grammar. 1f G js a grammar with start symbol 8 and
set of terminals 2., then the lanpuage of G is the set

L(G)={W|WeX and S = W}

Any derivation involves the application production Rules. If the production rute is

applied once, then we write o = B, When it is more than ong, it is written as 6= B
Pl

Recursive proc .ctions: A produclion is called recursive if its left side occurs on its
right side. For example, the production S — aS$ is recursive. A production A —» a is
indirectly recursive. If A derives a sentential form that contains A, Then, suppose we
have the following grammar:

S — blaA
A—cdbS

the productions S —>aA and‘A‘-—) bs are both indirectly recursive because of the
following derivations:

S = aA = ab§,
A.-:’ bS = baA

A grammar is recursive if it contains ejther a recursive production or an indirectly

. recursive production. . :

A gramn-mr for an infinite language must be recursive.
Example 3: Consider {A,a, aa,..,a" ...} ={a" | nz0}.

Notice that any string in this language is eithér A or of the form ax for some string x in
the language. The following grammar will derive any of these strings:

S — A/aS.
Now, we shall derive the string aaa:
S = aS = aa8 = aaa§ = aaa.
Example 4: Consider {A, ab, aabb, ...,2"b" ...} = {a"b" | n20}.
Notice that any string in this language is either A or of the form axb for some string x

in the language. The following grammar will derive any of the  strings:
. 8 - AfaShb.

For example, we will derive the string aaabbb;
S => aSb => 2aSbb = 22aSbbb => aaabbb.

Example 5: Consider a language {4, ab, abab, ..., (ab)", ...} = {(ab)" | n20}.

- et
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Notice that any string in this language is either A or of the form abx for some string x
in the language. The following grammar will derive any of these strings:
S — afabS.

For example, we shall derive the string ababab:

§ = ab$ => ababS = ababab8 => ababab.
Sometimes, a Janguage can be written in terms of simpler languages, and a grammar
can be constructed for the language in terms of the grammars for the simpler
languages. We will now concentrate on operations of union, product and closure.
Supposé M and N are languages whose grammars have disjoint sets of non-terminals.

Suppose also that the start symbols for the grammars of M and N are A and B,
respectively. Then, we use the following rules to find the new grammars generated

from Mand N:
Union Rule: The language MUNI starts with the two productions

S > A/B.
Product Rule: The language MN starts with the pron?uction.
S—>AB
Closure Rulé: The language M starts with the production
‘ S > AS/A.
Example 6: iJsing the Union Rule:
Let’s write a grammar for the following language:
L= {Aab,aabb, ... ab ...}
L can be written as union.
3 L=MuN, |
Where M = {a"| n20} and N = {b"| n20}.
Thus, we can write the following grammar for L:
S —) A | B union rule,

A — afaA grammar for M,
B — A/bB grammar for N.

Example 7: Using the Product Rule:
We shall write a grammar for the following language :
L = {a"b"{ m,nz0}.

L can be written as a product L = MN, where M = {a" {m>0} and N = {b“anO}.
Thus we can write the following grammar for L:

s e e
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S = AB product rule
A — AfaA grammar for M,
B — ~/bB grammar for N,

Example 8: - Using the Closure Rule: For the language L of all strings with zero or
more occurrence of aa or bb. L= {ua, bb}’". I1f we let M = faa. bb}. then L = M
Thus, we can write the following grammar for L:

5 — AS/A closure rule,
A — aa/bb grammar for M.

We can simplify the grammar by substituting for A 10 obtain the following prammar:
S — uaS/bhS/A

Example 9: Let £ = {a, b, c}. Let S be the start syntbol. Then, the language of
palindromes over the alphabet T has the grammar. :

S — aSwbSh/cSciasbleia.
For example, the palindrome abcba can be derived as follows:
8 = aSa = abSba = ahcha
Ambiguity: A grammar is said to be ambiguous il its language contains some string
that has two different parse tree. This is equivalent 10 saying that some string has two

distinct lefunost derivations or that some string has two distinct rightmaost derivations.

Example 18: Suppose we define a set of arithmetic_expressions by the grammar:

AN, AN,
AN N,
| | | |

Fig. 5: Parse Tree Vig. 6: Parse Tree shonving sunhiguiry

This is the parse tree for an ambiguous string.

The language of the grammar E — a/b/E-E contains strings like a, b, b—a, a-b-a, and
b~b-a-b. This grammar is ambiguous because it has a string, namely, a—b~a. that has
two distinct parse trees.

Since having two distinct parse trees mean the saime as having 1wo distinet left most
derivations.

E=E-E= i~E=>a-F-E=>a-b-E=a~b-a
E=E-E= E-E-E=a-E-Ea-b-E>a-l~a,

The same is the case with rightmost derivation..

S e



e
. A derivation is called a leftimost derivation if at cach step the leftmost non-

terminal of the sentential form is reduced by some praduction.

. A derivation is called a rightmost derivation if at each step the rightmost non-
terminal of the sentential form is reduced by sormé production,

Let us try some ¢xercises,

Cx.1) Given the following grammar
S —>» S[S)/A

For each of the following strings, construct a leftmost derivation, a rightmost
derivation and a parse tree,

@ (1 ® (N @ (0 @ (0o
Ex.2) Find a grammar for each language

(a) .‘a'"h"|m.neN. n>m}.
)  [a"be"IneN).

:x.5) ‘Find a grammar for each language:

{a) ‘The cven palindromes over {a. b},
(h) The odd paiindromes over {a. bi.

Chomsky Classifieation for Grammar:

As you have seen carlier, there may be many kinds of production rules. So, on the
basis of production rules we can classily a grammar. According 1o Chomsky
classification, grammar is classificd into the following types:

Type 0: This grammar is also called unrestricted grammar. As (1S name suggests,
ttis the grammar whaose production rules are unrestricted,

All grammars are of type 0.

Type 1: This grammar is also called context sensitive grammar. A produection of
the form xAy — xay is called a type | production if a=a, which means lenath of the
working string does not decrease,

In ather words, |xAy | <! xaylas a=a. Herc, x is lelt context and y is righi context.

A grammar is called Iyvpe | grammar, if all of its productions arc of type |. For this.
gramniar § = A is also allowed.

The language generated by a type t grammar is called a type | or context sensitive
language.

Type 2: The grammar is also known as context free grommar. A grammaris called
type 2 grammar if all the production rules are of type 2. A pradi:ction is said (o be of

type 2 if it is of the form A — o where AeV and ae(VUE)'. In ather words, the Teft

hand side of production rule has no left and right cantext. The language generated by
atype 2 graminar is called context free language.

Context Free Grammar

T
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Type 3: A grammar is called type 3 grammar if all of its praduction rules are of type
3. (A production rule is of type 3 ilil is of form A -> A A > aor A = ald where
aeX and A,BeV), i.e.. il a variable derives a terminal or a terminal with one variable.
This type 3 grammar is also called regutar grammar. The language generated by
this grammar is called regular langnage.

Ex.4) Find the highest type number that can be applied to the following grammar:

(a) S — ASB/b, A & aA
(b) S — aSa/bSb/a/b/A
{c) S — Aa, A— S/Ba, B — abec.

3.3 CONTEXT FREE GRAMMAR

We know that there are non-regular languages. For example: {a“b“| nz0} is non-
regular language. Therefore, we can’t describe the language by any of the four
representations of regular languages, regular expressions, DFAs, NFAs, and regular
grammars.

Language {a’d" | n20} can be easily described by the non-regular grammar:
S — A/aSbh.

So, a context-free grammar is a grammar whose productions are of the form :
S—ox

Where S is a non-terminal and x is any string over the alphabet of terminais and non-
terminals. Any regular grammar is context-free. A language is context-free language
if it is generated by a context-free grammar.

A grammar that is not context-free must contain a production whose left side is a
siring of two or more symbols. For example, the production Sc — x is not part of any
conlext-free prammar.

Most programming languages are context-free. For example, a grammar for some

typical statements in an imperative language might look like the following, where the
words in bold face are considered to be the single terminals:

8§ — while E do 8/ if E then S else S/{SL}/T. =E
L — SL/a

E ~>...{description of an expression)
| —....(description of an identifier);

We can combine context-free languages by union, language product, and closure to
form new context-free languages.

Definition: A context-free grammar, called a CFG, consists of three components:

1. An alphabet T of letters called terminals from which we are going to make
strings that will be the words of a language.

2. A set of symbols called non-terminals, one of which is the symbaols, start
symbol.

g 1 = -



3. A finite set of productions of the form ' Context Free Grammar
oo - . . .
One non-terminal — finite string of terminals and/or non-terminals.

Where the strings of terminals and non-terminals can consist of only terminals or of
only non-terminals, or any combination of terminals and non-terminals or even the

empty string.

The language generated by a CFG is the set of all strings of terminals that can be
produced from the start symbol S using the productions as substitutions. A language
gencrated by a CFG is called a context-free language.

Example 11: Find a grammar for the language of decimal numerals by observing that
a decimal numerai is either a digit or a digit followed by a decimal numeral.

Ry R

5 — D/DS
D — 0/1/2/3/41316/7/8/9 i

S = DS =75 = 7DS = 7DDS = 78DS = 7808 = 780D = 780. i
Example 12: Let the set of alphabet A = {a, b, ¢}
Then. the language of palindromes over the alphabet A has the grammar:
s — aSa|bSbleselalbic|a
For example, the palindrome abcba can be derived as follows:
P = aPa = abPba => abcba

Example 13:  Let the CFG is S — L|LA

R e T

A—LA|DA|A

L—albl.. 1z
p-olil..l9
The language generated by the grammar has all the strings formed by a, bic ....2, 0,

) . '_

We shall give a derivation of string a2b to show that it is an identifier.
§ = LA = aA = aDA = a2A =>a2LA = a2bA = a2b

Context-Free Language: Since the set of regular language is closed under all the
operations of union, concatenation, Kleen star, intersection and complement. The set
of context free languages is closed under union, concatenation, Kleen star only.

Union

Theorem 1: if L, and L, are context-free languages, then LiUL, isa context-free
language.

Proo®: 1fL, and L, arc context-free janguages, then each of them has a context-free
prammar; call the grammars G, and G,. Our proof requires that the grammars have
no non-terminals in common. So we shall subscripl all of G;’s non-terminals with a i
and subscript all of G2’s non-terminals with a 2. Now. we combine the two grammars
into one grammar that will generate the union of the two languages. To do this, we
add one new non-terminal, S, and two new productions.

6!
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S—)S|
s,

3 is the starting non-terminal for the new union grammar and can be replaced either
by the starting non-terminal for G, or for G,, therehy generating cither a string from
L, or from L.. Since the non-terminals of the two original languapes are completely
different, and once we begin using one of the original grammars, we must complete
the derivation using only the rules from that eriginal grammar. Note that there is no
need for the alphabets of the two languages to be the same.

Concatenation

Theorem 2: If L, and L; are context-free languages, then L, L, is a context-free
language.

Proof : Tlus preof is similar to the last one, We first subscript all of the non-terminu
of G with' a | and all the non-terminals of G, with a 2. Then, we add a new
nontermin=, S, and one new rule to the combined grammar:

S—>S|Sg

§ is the starting non-terminai for the concatenation grammar and is replaced by the
concatenation of the two original starting non-terminals.

Kleene Star

Theorem 3: If L is a context-free language, then L' is a context-free language.

Proof : Subscript the non-terminals of the gramrﬁar for L with a 1. Then add a new
starting nonterminal, S, and the rules :

S‘I—} S|S
[ A

The rule S — §,8 is used once for each string of L that we want in the stnng of L',
then the rule 8 — A is vsed to kill off the 8.

Intersection

Now, we will show that the set of context-[free languages is not closed under
intersection. Think about the two languages L, = {a"b"¢" | n ;mz0} and L, =

{a"b"c" [n,m20}. These aré both context-free languages and we can give a grammar
for each one:

G|:

5S> AB

A —aAb
| A

B —¢cB
| A

G;:

S—> AB

A—aA

|A . : .
B — bBe

| A

U

SeTeT T



The strings in L) contain the same number ot a's as b’s, while the sirings in Ly contain
the same number of b’s as ¢’s, Strings that have to be both in L, and in L,, i.e., strings
in the intersection, mr_.ls} have the same numbers of a’s as bs and the same number of

b’s as ¢’s.

Thus, LinL; = {a"b"c" | nz0}. Using Pumping lemma for context-free languages it
can be proved easily that {a"b"c"| n = 0} is not context-free language. So, the class

of context-free languages is not closed under intersection.

Althouplh the set is not closed under interseclion, there are cases in which the
intersection of two context-free languages is context-free. Think about regular
languages, for instance. All regular languages are context-free, and the intersection of
two regular fanguages is regular. We have some other special cases in which an
intersection of two context-free languages is context, free.

Suppose that L, and L. are context-free languages and that L,cL,. Then LynL, =L,
which is a context-free language. An example is EQUAL n{a"b"}. Since strings in
1a"b"} always have the same number of a's as b’s, the intersection of these two
languages is the sct {a"b"}, which is context-free,

Another special case is the intersection of a regular language with a non-regular
context-free language. In this case, the intersection will always be context-free. An
example is the intersection of L, = a’ba’, which is regular, with L, =
PALINDROME. L,nL; = {2"b™a" | m.n = 0}. This language is context-free.

Complement

The sct of context-free languages is not closed under complement, although there are
again cascs in which the complement of a context-free language is context-free.

Theorem 4: The set of context-frec languages is not closed under complement.

Proof: Suppose the set is closed under complement. Then, if L, and L, arc context-
free, so are L, and L;. Since the set is closed under union, L,'w L; is also context-
free, as is (L)' Ly ). But, this tast expression is equivalent toL,mL, which is not
guaranteed to be context-free. So. our assumption must be incorrect and the set is not
closed under complement.

Here is an example of a context-frec language whose complement is not context-free.
The language {a"b"¢" [n21 } is not context-free, but the author proves that the
complement of this [anguage is the union of seven different contexi-Tree lanpuages
and 1s thus context-free. Strings that are not in {a"b"c" | n21} must be in one of the
following languages:

Mpq = {a"b'¢"{ p,g.rz1 and p>q ) (more a's than b’s)
Mgp = {a"b%' I p,4.rZ1 and g>p} {more b's than a’s)
M, = {afb’c | p,q.rz! and s>} {(more a’s than ¢'s)
M,, = {a"b'¢’ | p.q.r21 and r>p} (more ¢'s than a's)
M= the complement of a'b"c” (terters cut of order)

N

Using Closure Propertics

Sometimes, we can use closure properties to prove that a language is not context-frec.
Consider the language our author calls DOUBLEWORD = {ww | we(a+b) }. Is this

language context-free’? Assume that it is. Form the intersection of DOUBLEWORD

with the regular language a7 b a* B, we know that the intersection of a context-free

lanpuage and a regular langwage is always context-{ree. The intersection of

Context Free Grammnr
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DOUBLEWORD and is a’b™a"b" | n.m = 1}. But, this language is not context-free, so
DOUBLEWORD cannot be context-free.

‘T'hink carcfully when doing unions and intersections of languages if one is a superset
of the other. The union of PALINDROME and (at+b)” is (atb) , which is regular. S,
sometimes the union of a context-free language and a regular language is regular. The
union of PALINDROME and a’ is PALINDROME, which is context-free but not

regular.

Now try some exercises:

Ex.5) Find CFG for the language over Z = {a,b}.
{a) All words of the form
a*b’ &%, where x,y,z= 1,2,3... and y = 5x+7z

{b) For any two positive integers p and q, the language of all words of the

form a* b a* where x, y,z=1,2,3...and y = px +qz

34 PUSHDOWN AUTOMATA (PDA)

Informally, a pushdown automata is a finite automata with stack. The corresponding
acceptor of context-free grammar is pushdown automata. There is one start state and
there is a possibly empty-set of final states. We can imagine a pushdown automata as
a machine with the ability to read the letters of an input string, perform stack
operations, and make state changes.

The execution of a PDA always begins with one symbol on the stack. We should
always specify the initial symbol on the stack. We assume that a PDA always begins
execution with a particular symbol on the stack. A PDA will use three stack
operations as follows:

(i) The pop operation reads the top symbol and removes it from the stack.

(i) The push operation writes a designated symbol onto the top of the stack.
For example, push {x) means put x on top of the slack. '

(iii) The nop does nothing to the stack.

We can represent a pushdown automata as 2 finite directed graph in which each state
(i.e., node) emits zero or more labelled edges. Each edge from state itostatej
fabelled with three items as shown in the Figure 7, where L is either a letter of an
alphabet or A, S is a stack symbol, and 0 is the stack operation to be performed.

LS

Fig. 7: Direcled graph

It takes fine pieces of information to describe a labelled edge. We can also represent
it by the following 5-tuple, which is called a PDA instruction.

(,L,5,0,j)
An instruction of this form is execuled as follows, where w is an input string whose
letters are scanned from feft to right. :

_If the PDA is in state i, and either L is the current letter of w being scanned or L = A,
and the symbo! on top of the stack is S, then perform the following actions:



(1) execute the stack operation 0;
(2) move to the state ; and
3) if L # A. then scan right to the next letter of w.

A string is accepted by a PDA if there is some path (i.e., sequence of instructions)
from the start state to the final state that consumes all Jetters of the string. Othcrwise,
the string is rejected by the PDA” The language of a PDA is the set of strings that it
accepts.

Nondeterminism: A PDA is deterministic if there is at most one move possible from
cach state. Otherwise, the PDA is non-deterministic. There are two types of non-
determinism that may occur. One kind of non-determinism occurs exactly when a
state emits two or more edges labeiled with the same input symbol and the same stack
symbol. In other words, there are two 5-tuples with the same first three components.
For example, the following two 5-tuples represent nondeterminism:

(i, b, ¢ pop, )
(i, b, ¢, push{D), k).

The second kind of nondeterminism occurs when a state emits two edges labelled with
the same stack symbol, where one input symbal is A and the other input symbol is not.
For example, the following two 5-tuples represent non-determinism because the
machine has the option of consuming the input letter b or cleaning it alone.

(i, A, ¢, pop, j)
(i, b, ¢, push{D), k).

Example i4: The language {a"b"{n>0} can be accepted by a PDA. We will keep
track of the number of a’s in an input string by pushing the symbol Y onto the stack
for each a. A second state will be used to pop the stack for each b encountered. The
following PDA will do the job, where x is the initial symbol on the stack:

a,X a,Y
push(Y) ¥ Ypush(Y) by

Pop A no
—»@ Pop @ P ‘;

ALK
nop

_Y
POp

Fig. 8: Pushdown Automata
The PDA can be represented by the following six instructions:

(0, ~. X, nop, 2)
(0. a, X, push({Y). 0},
{0, a, Y, push{Y), 0},
(0. b. Y. pop.1),
(1,b,Y, pop, 1),
(1, A, X, nop,2}.
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This PDA is non-deterministic because either of the first two instructions in the 1ist
can be executed if the first input letter is 2 and X is on the top of the stack. A
-computation sequence for tle input string aabb can be written as follows:

(0, aabb, X) start in stide O with X on the stack, .
(0, abb, Y X) consume a and push Y,
(0, bb, YYX) consume a and push Y,
(1,b, YX) consume band pdbp.
(0, A, X) consume b and pop .
(2, A, X} . move to the final state.

Equivalent Forms of Acceptance:

Above, we defined acceptance of a string by a PDA in terms of final state acceptance.

That is a string is accepted if it has been consumed and the PDA is in a final state.
But, there is an alternative definition of accepiance called empty stack acceplance,
which requires the input string to be consumed and the stock to be empty, with no
requirement (hat the machine be in any particular state. The class of languwages
accepted by PDAs that use empty stack acceptance is the same class of langaages
accepted by PDAs that use final state acceptance.

Example 15: (An empty stack PDA); Let's consider the language {a"b" | n>0}, the
PDA that foliows will accept this language by empty stack, where X is the initial
symbol on the stack. ;

ax i b,X
(¥ push(X) (¥ /PP

]
]

—_’ \r.

pop

Fig. 9: Pushdown Automata |
PDA shown in figure 9 can also be represented by the following three instructions:

(0, a, X, push (X), 0),
{0, A, X, pop, 1},
(1, b, X, pop, 1.

This.PDA is-non-determinstic. Let's see how a computation proceeds. For example,
a computation sequence for the input string aabb can be as follows:

(0, aabb, X) start in state 0 with X on.the stack
(0, abb, XX) consume a and push X
(0, bk, XXX) consume a and push X
(1. bb, XX) pop. -
(1, b, X) consume b and pop
(1, A, A) consume b and pop (stack is empty)

Now, try some exercises,

Ex.6) Build a PDA that accepts the language odd palindrome.

Ex.7} Build a PDA that accepts the languape even palindrome.




3.5 NON-CONTEXT FREE LANGUAGES

Every coniext free grammar can always be represented in a very interesting form. This
form is known as Chomsky Normal Form (CNF).

A context-free grammar is said to be in Ciomsky Normal Form if the right hand side
of each production has either a terminal or two variablesas 8 —a, S > AB and S— A
it A € L (G). If A € L.(G), then S should not appear to the right hand side of any
production., To construct a CFG in, CNF we can develop a method. In CFG, S— ais
already allowed, if the production is of form § — aA then can be replaced with S —
BA and B—a in CNF. [fthe production is of the form S ~> ABC, it can be written as
S — AD and D — BC. Using these simple methods, every CFG can be constructed in
CNF.

Example 16: Reduce the following grammar, into CNF.

() S—aAB, A—>aFbAEE—obB—d
(i)  S— AOB, A -AA/0S/0, B — 0BB/ 1S/1

Solution: (i) § > a AB is rewritten in CNF as § - FG, F—»aand G>AB
A —> aE is rewritten as A—FE in CNF.
A = BAE in CNF is A — HI, H-b and I»> AE.

So Chomsky Normal Form of CFG is

S—FG, Foa, G—=AB, A—FE, AH),
H—b. |=AE, E—»band B—d

(ii) left as an exercise.

In this section, we will prove that not all languages are context-free. Any coniext-free
grammar can be put into Chomsky Normal Form. Here is our first theorem.

Theorem 5: Let G be a grammar in Chomsky Normal Form, Call the productions
that have two non-terminals on the righthand side live productions and call the ones
that have only a terminal on the right-hand side dead productions. [f we are restricted
to using the live productions of the grammar at mast once each, we can generate only
a finile number of words.

Proof: Each time when we use a live production, we increase the number of non-
terminals in a working string by one. Each time when we use a dead production, we
decrease the number of non-terminals by one. In a derivation starting with non-
terminal S and ending with a string of terminals, we-have to apply onc more dead
production than live production.

Suppose G has p live productions. Any derivation that does not reuse a live
production can use at most p live and p*| dead productions. Each letter in the final
string results from one dead praduction, so words produced without reusing a live
production mus! have no more than pt+! letiers. There are a finite number of such
words.

When doing a leftrnost derivation, we replace the leftmost non-terminal at every step.
Il the grammar is in Chomsky Normal IForm, each working string in a lefimost
derivation is made up of a group of terminals fotlowed by a group non-terminals.
Such working strings are called leftmost Chomsky working strings.

Context Free Grammar
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Suppose we use a live production Z > X Y-ewict in the derivation of some word w..
Before the first use of Z o XY the'working string has the form s,Zs; where s, is a
string of terminals and s; is a string of nonterminals. Before the second use of Z —
XY the working string has form s,5,Zs; where 57 i5 a siring of terminals and sy is a
string of non-terminals.

Suppose we draw a derivation tree representing the leftmost derivation in which we
use Z — XY twice, The second Z we add to the tree could be a descendant of the firsi
Z or it could come from some other nonterminal in s;. Here are examples illustrating
the two cases:

Case 1: " Z is a descendant of itself,

S > AZ
Z— BB
B—ZA

| b
A—a

Beginning of a leftmost derivation:

S=A7Z
= aB
—> aBB
= abB
= abZA

Derivation tree is shown in figure 10:

e

A
!

S\Z
N
N

A

Fig. 10: Lelimosi derivation tree

Case 2: Z comes from a nonterminal in s,.
S— AA
A—>ZC
| 2
CoZZ
Z—>b

Beginning of a lefimost derivation:
3= AA

= ZCA

= bCA

= bZZA

Derivation tree is shown in figure 1 1:

CTEIT T
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A

Fig. 11: Derivation Tree

In the first tree, Z is a descendant of itself. In the second, tree this is not true. Now,
we will show that if a language is infinite, then we can always find an example of the
first type of tree in the derivation tree of any string that is long enaugh.

Theorem 6: If G is a context-free grammar in Chomsky Normal Form that has p live
productions, and if w is a word generated by G that has more than 2° letters in 1t, then
somewhere in every derivation tree for w there is an example of some non-terminal.
Call it Z. being used twice where the second Z is descended from the first.

Proof: If the word w Lias more than 2° letters in it, then the derivation tree for w has
more than p+1 levels. This is because in a derivation trec drawn from a Chomsky
Normal Form grammar, every internal node has either one or two children. It has one
child only if that child is a leaf. At each level, there is at most twice the number of
nodes as on the previous level. A teaf on the lowest level of the tree must have more
than p ancestors. But, there are only p different live productions so if more than p
have been used, then some live production has been used more than once. The non-
terminal on the lefihand-side of this live production will appear at least twice on the
path from the root to the leaf.

In a derivation, a non-terminal is said to be self-embedded if it ever occurs as a tree
descendant of itself. The previous theorem says that in any context-free grammar, all

. sufficiently long words have leftrost derivations that include a self-embedded non-

terminal. Shorter derivations may have self-embedded non-terminals, but we are
puaranteed Lo find one in a sufficiently long derivation.

Consider the following example in which we find a self-mbedded non-terminal:

§— AX
| BY
| AA
| BB
|'a
| b

X—>SA

Y—>SB 8

A::a / \

B—b A X
/

| N

a/s A

5 i

l

a S A
I l
b a

Fig. 12: A derivation Free for the String asbaa
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Finile Automnta gn;g_i“" The production X —> SA and § = AX were uscd twice. Let's consider the X
Formal Lunguagesy production and think about what would happens if we used this production a third
R time. ‘What string would we generate? Corresponding lree is given in figure 13.

- ' 5
/ ' A/ ){K
| |
a S A
v )‘Kl
A a

|
a S A
e I
A a

|
a S A
I |
b a

Fig. 13: Derivation Tree of Siring kaabaaa

This modified tree generates the string anabaaa. We could continue reusing the rule X
—» SA over and over again. Can you tell what the pattern is in the strings that we
would be producing?

The last use of X products the sub-string ba. The previous X produced an a to the left
of this ba and an a to the right of the ba. The X before that produced an a to the left
and an a to the right. In general, X produces a’baa". S produces anato the left of an
X and nothing to the right. So, the strings produced by this grammar are of the form,
aa"baa". Ifall we wish n to signify is a, count that must be the same, then we can
simplify this language description to a"ba" for nz1. Reusing the X — SA rule
_increases the number of a’s in each group by one each time we use it.

Here is another example:

5> AB
A—BC

| a
B—~b
C— AB

In the derivation of the string bbabbb, A — BC is used twice. Look at the red
triangular shapes in the following derivation tree. We could repeat that triangle more
times and we would continue to penerate words in the language. '

70 . Fig- 14: Derivation tree
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Pumping Lemma for Context-Free Languages /

Theorem 7: If G is any context-free grammar in.Chomsky Normal Ferm with p live / )
productions and w is any word generated by G with length > 2°, we can subdivide w
into five pieces uvxyz such that x2A, v and y are not both A and [vxy] <2°and all I

words of the form »w"xy"z for n20 can also be generated by grammar G. !

-

Proof: 17 the length of w is > 27, then there are always self-embedded non-terminals in |
any derivation tree for w. Choose one such sel f-crmbedded non-terminal, call it P, and |
[ct the first production used for P be P — QR. Consider the part of the tree generated |
from the first P. This part of the tree tells us how to subdivide the string into its five
parts. The sub-string vxy is made up of all the Jetters generated from the first
occurrence of P. The sub-string x is made up of all the letters generated by the second
occurrence of P. The string v contains letters generated from the first P, but to the left
of the letters generated by the second P, and y vontains letters generated by the first Pi
to the right of those generated by the second P. The string u contains all letters to the 5
left of v and the string z contains atl letters to the right of y. By using the production

P — QR more times, the strings v and y are repeated in place or “pumped”. If we use

the production P — QR only once instead of twice, the tree generates the string uxz.

Bl

1

I
r
!
]
b

Here is an example of a derivation that produces a self-embedded non-terminal and
the resulting division of the string.

5= PQ :
Q->0Q5 |
| b '

p—a '
|

Fig. 15: A devivation iree for the string abab

Notice that the string generaled by the first occurrence of Q is bab. We have a choice
for which ©Q we take for the second one. Let’s first take the one to the far right. The
string generated by this occurrence of Q isb. Sox=b and v = ba. In this case, y is
empty and so is z. The string u = a. Tf we pump v and y once, we get the string
a|ba|ba|b = ababab which is also in the language. 1f we pump them three times, we

‘éet albal ba| ba [ b= abababab, etc.

Suppose we choose the other occurrence of Q for the second one, then we havea
different sub-division of the string. In this case, the substring generated by the second



Finifc Automsta and occurrence of Q is b; so x = band v is empty. The substring y, however, is ab in the
Formul Languages case. .

Fig. 16: Selection ofu, x and y

If we pump vand y ;::ncc, we get the string a| b|ab|ab = ababab; three times produces
- a|blab|ab] ab = abababab, etc.

Uslng the Pumping Lemma for CFLs

We use the Pumping Lemma for context-free languages to prove that a language is
not context-free. The proofs are always the same:

®  Assume that the language in question is context-free and that the Pumping
Lemma thus applies.

®  Pick the string w, M »2P
e  Sub-divide w into uvxyz such that |vxy| <2F

e  Pick i so that uvixy'z is not in the language. As in pumping lemma uwxyze L,
but it is not true. So, our assumption is not correct and the language in the
question is not CFL.

Here is an example:
Example 17: The Ianguagé: L= {a“b"h“ [n=1 } is not a context-free language.

Solution: Assume that L is 4 context-frec language. Then, any string in L with length
> 2” can be sub-divided into uvxyz where uv"xy"z, n20, are all strings in the language.
Consider the string a®b**a? and how it might be sub-divided. Note that there is
exactly one “ab” in a valid string and exactly one “ba”. Neither v nor y can contain ab
or ba or else pumping the string would produce more than one copy and the resulting
string would be invalid. So both v and y must consist of all one kind of letters. There
are three groups of letters all of which must have the same count for the string to be
valid. Yet, there are only two sub-strings that get pumped, v and y. 1f we only pump
two of the groups, we will get an invalid string.

A Stronger Version of the Pumping Lemma

There are times when a slightly stronger version of the Pumping Lemma is necessary
for a particular proof. Here is the theorem:

Theorem 8: Let L be a context-free language in Chomsky Normal Form with p live
productions. Then, any word w in L with length > 2P can be sub-divided into five

72




parts uvxyz such that the length of vxy is no more than 2P, x#A, v and y are not both
A. and uv"xy"z, n20, are all in the language L.

Now, let’s see a proof in which this stronger version is necessary.
Example 18: The language L = {a“b'“a“b“‘| n,m21} is not context-free,

Proof: Assume that L is a context-free language. Then, any string in L with length >
2" can be sub-divided into uvxyz where x#A, v and y are not both A, the length of vxy
is no more than 2P, and uv"xy"z, n20, are all strings in the language. Consider the
string a’’b*a”b?, (The superscripts on each character are supposed to be 2°. Some
browsers can’t do the double superscript.) Clearly, this string is in L and is longer
than 2. Since the length of vxy is no more than 2", there is no way that we can stretch
vxy across more than two groups of letters. It is not possible to have v and y both
made of a’s, or v and y both made of b's. Thus, pumping v and y will produce strings
with an invalid form. Note that we need the stronger version of the Pumping Lemma
because without it we can find a way to sub-divide the string so that pumping it
produces good strings. We could let u = A, v = the first group of a's, x = the first
group of b's, y = the second group of a’s, and z = the second group of b’s, Now,
duplicating v and y produces only good strings.

Here is another example.

Example 19: DOUBLEWORD = {ss ise {ab}'} is not a context-free language.

Proof : The same proof as we used in the last case works here. Consider the string
a™"ba%Ph? (again supposed to be double superscripts.) It is not possible to have v and
y both made of the same kind of letter, so pumping will produce strings that are not in
DOUBLEWORD.

Now try some exercises

Ex.8) Show that the language {a-“1 |n 21} is not context free.

' Ex.9) Show that the language {a” | p is prime} is not context free.

3.6 EQUIVALENCE OF CFG AND PDA.

[n Unit 2, we established the equivalence of regular languages/expressions and finite
automata, Similarly, the context-{ree grammar and pushdown automata, models are
equivalent in the sense these define the same set of languages.

Theorem 9: Every context free Grammar is accepted by some pushdown
automata.

Let G=(V, T.R, S)be the given grammar
where the components have the following meaning

v : The set of variables
T : The set of terminals
R ro The set of rules of the form

A-a withAeVandxe(VUT,
i.e., o is a string of terminals and non-terminals.
S : The start symbol.

Now, in terms of the given Grammer G. we achieve our goal through the following
three parts:

Context Free Grnmma_r
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(i) We construct a PDA say P = (Q, Z, [,S, qo, Zy, F) where the components
like Q, ¥, etc., are expressed in lerms of the known entities V, T,R, S or
some other known,entities.

(ii) To show that if string & € L (G), then o is accepted by the PDA constructed
by (1) above.

(1) Conversely, if o is a string accepted by the PDA P constructed above, then
o € L. (G)

Part I: For the construction of the PDAP= Q, 2, r. S, qo. Zo, F), we should define
the values of the various components Q, Y, ctc., in terms of already known
components V, T, R, S of the grammar G or some other known or néwly infroduced

symbols.

We define the components of P as Jollows:

(i) Q = the set of states of PDA = { q}, qis the only state of Q, and ¢ is some
new symbol not invelved in V, T,Rand S

(i} " = the set of tape symbals of P, the proposed PDA
= T (the terminals of the given grammar G)

(i) [ = the stack symbols of P, =(TUV)
= the set of all symbols which are terminal or non-terminals in the given

grammar G
@iv) o= initial state = q ( the only state in Q is naturally the initial state also)
(v) Zy = S, the start symbol of the given grammar G )
{vi) F={q} :
q béing the only state in the PDA P, is naturally the only final state of the
PDA. -

(vii) Next, we show below how the required function
o: Qx‘Zxr —» Power Setof(er)
is obtained in terms of the kniown entities Q, V,T,RandS.

(2) ForeachruleA—>P in R of the grammar G with A € V and
Be(VUT),
we define
5(q € A)={(q,B)| A-BisaruleinR}
(Note: There may be more than one rules with the some L.H.S, for example
A—-»fa and A—=>bBCD)
(b) each(terminal) acT,
8(q,3,2) ={(a €
This completes the definition of P, the required PDA. Next or job is to show that
L(G), the language generated by G is same as N(P), the language accepted by P, the
PDA which.we have designed above. ,

Proof of Parts II and III are based on the proof of the i"ollowing:

temmaletS=Yp = 17 P I =W = a; 8ndtn el (G)
be a left-most derivation of w from grammar G,
where
Ti 4 Y-il-'l
is obtained by singie application of feft:most derivation, using some rule of K of the
grammar G,

Then, to each Y}, thereisa ﬁnique configuration / ID of the PDA as explained'
below so that Y, cortesponds to the configuration of PDA which accepts w:

Let . - ;

Yi=X; O .

where x; € T and o € (VUT).




Then
the string Y;of the derivation
Yo=S=2>T1=2Y; ...=2Y... =21 =w

Context Free Grammar

is made to correspond to the ID (y;, o;) of the pushdown autornata constructed in
Part I. The correspondence is diagrammatically shown in figure 17 where y; is the
vet-to-be scanned part of the string w on the tape, and the first terminal inTis being'

scanned by the Head Tape:’

< W
| % | % | Tape
A
] T - D o ap Stack
|‘ q . r
where . '
WX
Fig.17

Proof of the Lemma
We prove the lemma by induction on iof Y;
Base Case: i=10
Yo=8 .

and initially the Head scans the left-most symbol on the tape, i.e.,

<——— W c———

ay A e hede e dn

i

q

thus

To = Xo- S

where x;= € = empty string 8

Sel’
Induction hypéthcsis:
We assume that ifY; =x o forj=1,2,.~....1. (where each o starts with a

non-terminal) for each of Yo, Ty, ...t
the derivation of w from 5
and the configuration config (j) given in figure 13

,Y;, the correspondence belween Mstrings X; in

TrtehITT oo -

T
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<=:>T<3=:>
X ¥
J J
A
1 q -0‘-)' aj
1 ‘c
\‘ .'.
-‘----- :
i . ]
.h‘ L
. ]
EXY
Fig. 18

Induction step

To show that the correspondence is preserved for j =i + 1 also. There is no loss of
generality if we assume that if o # € then

o =Dj th forj=1,....... i

where D is a non-terminal symbol in the grammar.

Let b; be the first symbol of y; (where b; is one of the a;’s)

ie yi=bz

where z; is a string of terminals.

Yin =% Diy B &

As .

b weLfG) '

o /> <—nm =

A O TP RN &y | B PR

X; 2;1 must bea prefix of at least
then there must be either a production Din
D; = bi T D "R

a production in G .
or. A sequence of production

D“-_ 2 biiens

Without loss of generality, we assume that )

Di—=b...... Disl creeerann , with Dy, being the first non-terminal from left in the
production used in Y}y from Y, .

But corresponding to this production there is a move

S(q, € D)= (g bi.c.ov.Dicyonenia)

using this move the canfig becomes
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L
5

Diw

Then all the b’s are popped off from the stack and Head of the tape moves to the right
of the symbol next to be on the tape by the moves of the type

§(a,b,b) =(q,€) )
Finally D;.isthe top configration after the execution of the above moves gives is of

the form
T Yt
o
Where I ] | Q
o ;. has a non-terminal as its left most / f --7,
symbol. :

This completes the proof of the lemma.

ity e e i S R

Next, the lemuna establishes a one-to-onc correspondence between the strings Y;in the
derivations of w in the grammar G and the configurations of the pushdown automata
constructed'in Part [, in such a manner that Y, = w correspond to the following
ronfiguration that indicates acceptance of w and vice-versa.

) aﬂ

Stack

This completes the proof of the Part 11 and Part 111

3.7 SUMMARY

in this unit we have considered the recognition problem and found out whether we can

solve it for a larger class of languapges. The corresponding accepter for the context-

{ree languages are PDA’s. There are some languages which are not confext free. We
77.



Finite Au(gmita and can prove the non-context free languages by using the pumping lemuma. Also in this

FormalLanguages - unit we discussed about the equivalence two approaches, of getting a context free
laniguage. One approach is,psing context free grammar and other is Pushdown
Automata, ' ‘
\

' 3.8 SOLUTIONS/ANSWERS

£x.1} (a) S — S[S]—=[S]—>[)-

() § — S[8] — [S] — [S[S J) = [[S] — [LJI-
| Similarly rest part can be done.
Ex.2) (a) S aShlaAb
A > bA/b
Ex.3) (a) S - aSa/bSb/a
(b) S — aSa/bSbia/b.
Ex.4) (a) S — ASB (type 2 production)

S — b (type 3 production)
A = aA (type 3 production)

So the grammar is of type 2.

(b) S — aSa (type 2 production)

S — bSb (type 2 production)
S — a (type 3 production)
. S > b (type 3 production)
t S = A (type 3 production)

So the grammar is of type 2.
© Type 2.
Ex.5) (a) S— AB
S — aAb’/a
B - b'Ba/a
(b) S— AB
“A—a A |
B — biBa/a t

Ex.6) Suppose Ianguége is {wch:we{a,b}'}.then pdais

(0, &, x, push (a), 0), (0, b, x, puih (b}, 0},
(0, 8, &, push (a), 0, (0, b, a, push (b), 0),
(0, a, b, push (&), 0), (0, b, b, push (b}, 0),
(0, c, a, nop, 1}, (0, ¢, b, nop, 1),
. (0, ¢,x,nop, 1), (1,4, pop, 1),
N ) (1,b, b, pop, 1), (1, A, x,nop, 2),

S (




Ex.7) Language is {ww':we {a,b}'}. Similarly as Ex 6.

Ex.8) Apply pumping lemma to pet a contradiction. The proof is similar to-the proof
that the given language is not regular.

Ex.9)} Apply pumping lemna to get a contradiction. The proof is similar to jhe“proof
that the given language is not regular.

Context Free Grammar
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BLOCK INTRODUCTION

“In truth, it js not krowledge, but leaming; not possessing, but
production; not being there, but traveling there, which provides
the greatest pleas:ire. When I have completely understood
something, then I um away and move on into the dark; indecd,

50 curionsis the nsatinble man, that when he has compleled one
house, raLh'cr than living in it peaceluily, he starts to huild
another." )

Letter from C.F. Gauss 1o W. Bolyai on Sept. 2, 1808

Continuing in Gauss’ vein, after completing the houses (i.e, models) of Finite
Automata, Pushdown Automata, Regular Gramumars, and Context-Free Grammars, let
us build those of Turing Machines, Context-Sensitive Grammars, and Partial
Recursive Functions . ... to have better insight” in the phenomena of computations.

After having studied in prévious blocks, Finite Automata and Pushdown Automata
models of machine-based approach and Regular Grammar and Context-Free Grammar
models of grammatical approach, both approaches for theoretical studies of the notion
sf computation, and hence, for theoretical study of problem solving using computer as
1tool; in this block we extend the respective models to get still more powerful
model of computation for each of the two approaches. Turing Machine is the next
model of computation under machine-based approach and Context-Sensitive or
Phrase-Structure Grammar is the corresponding model under grammatical
approach. It may be mentioned that each of the TM model and-the corresponding
shrase-structure grammar madel, is not just another model of computation. But,
30ing by the current knowledge of the discipline of the Theory of Computation, each
appears to be the ultimate model of computation.

{n ghe fjrst two units of this block, we study various issues related to TMs, viz, '
formal definitions, TM as a computer of functions, extensions of TM and their
:quivalences, how a TM solves a problem etc,

in Unit 3, we introduce a new approach to computation viz, Recursive Function
I'neory. Again, we considerivarious models, viz primitive recursive function,
L-recursive function and partial recursive function models in this approach to
somputation.

n the next and final biuca, v.., ulock 3 of the course, we study some applications of
he concepts developed in the first two blocks. Also, we study unsolvability of many
sroblems by computational means and complexity of those problems, which are
iolvable. .

* The purpose of computation is iinsight, not symbal processing, as per R.W. Hamming’s: “The
ourpose of numerical analysis is insight, not numbers”.

S s






UNIT1 TURING MACHINE'

Structure Page Nos.
1.0 Introduction 5

I.1 Objectives 7

1.2 Prelude to Formal Definitio:: 7

1.3  Turing Machine: Formal Definition and Examples 9
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1.6 Observations 20
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1.10 Solutions/Answers 45

1.11 Further Readings 54

1.0 INTRODUCTION ) Not every problem can be solved

thtough computational means

Every system—natural or man-made, must be continuously, involved in some form of Gadel (1931)

computation in its attempt at preserving its identity as a system.

The earth, revolves around the Sun along almast identical paths, revolution after

revolution; being almost at the corresponding points in the paths after a specific period

>f time within the revolutions. So is true of every planet in the solar system. To be at I a problem can bt solved by some
‘he corresponding points in their paths, revolution after revolution, must involve some camputational means, then fere is

k e a Turing Machine that solves the
;omputation within the solar system. But, the same should be true of any system, not problem.... Turing Machine is an

ust of the solar sysiem. Thus, phenomenon of computation is as universal as is the ultimate model of compztation
shenomena of motion. In order to have better understanding of the phenomena of *Church-Turing Thesis (1936)
notion, we think of different approaches use some models and formulate some

arinciples.

Similarly, attempts at capturing the essence of the universal phenomenon of
somputation are made through various approaches, models and principles.

As happens in the case of medeling of motion, inadequacy of one model (e.g.
Newtonian model) in capturing essence of motions leads to another, more robust
nodel {e.g. Einstein's model), so happens in the case of modeling of computation, as
is discussed below,

in the previous units, we discussed two of the major approaches 1o modeling of
somputation viz. the automata/machine approach and linguistic/grammatical
approach. Under grammatical approach, we discussed two models viz Regular
Lanpuapges and Context-free Languages.

Under automata approach, we discussed two models viz. Finile Automata and
Pushdown Automata.

Further, we defined the concept of computational equivalence and established that

" Turing, Machine is named so, in Honour of its imventor Alar Mathison Turing (1921-1954},

4.M. Turing, a Brtish, was one of the greatest scholars of the twenticth century, and made profound
sontributians to the foundations of computer science. On the lines of Mobel prize, in memary of Alfred -
R. Nabel, for some scientific disciplines, ACM, to commemorate AN Turing, presents since 1966
annually Turing Award ta an individual - for contributions of a technical nature that are judped 16 be of
insting and major importance to the ficld of computing scicnce.

LA
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Turing Machine and
Recursive Kunctions

.- The limits of mathematics
iscovered by Turing sound
iore serious, more dangerous
ran the ones that Godel found.
.And this is the invention of the
smpuler, [or this crazy kind of
eorcticul arpument! You don't
¢ billiens and biltions of
2llars of weehnology in this
336 paper, but it was all there in
Abryonic lonm, as von
crmiainn kepl emphasizing: the
rversal Turdnye machine is
ally the nation of a general-
Ipese programmable
wppuler... ’

Chaitin”

(i)
(i)

(iv)

This
COITCS

Finite Automata compwtational model is computationally equivalent to
Regular Language Model, ‘
Push-down Automata Model is computationally' equivalent to context-Free
language model. ‘ '

Pushdown Automata {or equivalently Comcxt-Frqe Language) model is more
powerful compulational model in comparison to Finite Automata (or
equivalently Regular Language) model in the sense that every language
accepted by Finite Automata is also recognized by Pushdown Automata.
However, there are languages, viz the language {x" ¥" : n € N}, which are
recognized by pushdown automata but not by Finite Automata,

There are languages, including the language {x" y"' 2" n € N}, which are not
accepted even by Push-down automata. '

prompts us to discuss other, still more powerful, automata models and
ponding grammar models of compulation.

Turing machine (7M) is the next more powerful model of aufomata approach

which

recognizes more languages than Pushdown automata models do. Also Phrase-

structure model is the corresponding grammatical modet that matches Turing

machi

nes in computational power.

In this unit, we atiempt a facile and smooth introduction to the concept of Turing
Machine in the following order:

Inn

We givé a formal definition of the concept and then illustrate the involved
ideas through a number of exaniples and remarks.

We show how to realize some mathematical functicrs as TMs.

Further, we discuss how to coksiruct more and more complex TM< through
the earlier constructed TMs, starting  with  actual - constructions
(mathematicallp)of some simple THMs,

later unit, we discuss other issues like extensions, (formal) languages,

properties and equivalences, in context of TMs.

Key words: - Turing Machine (TM), Deterministic Turing Machine, Non-
Deterministic Turing Machine, Turing Thesis, Computation, Computational
Equivalence, Configuration of TM, Turing-Accepiable Language, Turing Decidable

Lanpuage, Recursively Enumerable Languagc._Turing Computable Function
Notations

T Turtng Machine

[ Set of tape symbols, includes #, the blank symbol
z Set of input/machine symbols, does not include
Q the finite set of states of TM

F : Set of final states

abec... : Members of 3,

o4 : Variable for members of T

Txor x: Any symbol of 2, ether than x

i : The blank symbol

a,B,y: Variables for String over 3,

L : Move the Head to (he LNl

R Move the Head te the Right

q Astatc of TM, ie,q € Q

§ 0T Qo The start/initial slate

# Exploring Randomness By Gregory 1. Chaitin. Springer-Verlag (2001)

e m————— e et
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Halt or h: The halt state. The same symbol h is used for the purpose of denoting’
halt state for ail halt state versions of TM. And then h is not used for
other purposes.

CEOreE : The empty string

C; hu Cz: Configuration C; is obtained from configuration C,in one move
Of the machine M
CiFCy:  Configuration C; is ob:ained from configuration C,in finite number
of moves. ’
wj a w;! The symbol a is the symbol currently being scanned by the Head

'

Or

w) 2 wa: The symbol a is the symbol currently being scanned by the Head

1.1 OBJECTIVES .

After going through this unit, you should be able to:

¢ define and explain various terms mentioned under the title key words in the
previous section,

¢ construct TMs for simple computational tasks
. realize some simple mathematical functions as TMs

. apply modular techniques for the construction of TMs for more complex
functions and computational tasks from TMs already constructed for simple
functions and tasks .

12 PRELUDE TO FORMAL DEFINITION

In the next section, we will notice through a formal definition of TM that a TM is an
abstract entity constituted of mathematical objects like sets and a (partial) function,
However, in order to help our understanding of the subject-matter of TMs, we can
visualize a TM as a physical computing device that can be represented as adiagram as
shown inl.2.1 below.

Infinite Tape
td Ja Jo# Jelbl.0i ...

<— >

Read|/Wrile
Hepd

Finite Control

TURING MACHINE
Fig. 1.2.1

Turing Machine
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Such a view, in addition to being more comprehensible to human beings, can be a
quite useful aid in the design of TMs accomplishing some computable tasks, by
allowing informal explanation of the various steps involved in arriving at a particular
design.! Without physical view and informal explanations, whole design process
would be just a sequence of derivations of new formal symbolic expressions from
earlier known or derived symbolic expressions — not natura) for human
understanding.

According to this view of TM, it consists of

(i)  a tape, with an end on the left but infinite on the right side. The tape is divided
into squares or cells, with each cell capable of halding one ol the tape symbols
including the blank symbol 4. At any time, there can be only finirely many cells
of the tape that can contain non-blank symbols. The set of tape symbols is
denoted by T

As the very first step in the sequence of operations of a TM, the input, as'a
finite sequence of the input symbols is placed in the left-most cells of the
tape. The set of input symbols denoted by ¥, does not contain the blank
symbol #. However, during operations of a TM, a cell may contain a fape

symbol which is not necessarily an input symbol.
There are versions of TM, to be discussed later, in which the tape may be infinite in
both left and right sides — having neither left end nor right end.

(ii)  a finite controf, which can be in any orfe of the finite number of states.
The states in TM can be divided in three categories viz.

(2) the Initial state, the state of the control just ai the time when TM starts its
operations. The initial statc of a TM is generally denoted by gy or s.

(b) the Halt state, which is the state in which TM stops all further aperations.
The halt state is generally denoied by h. The halt state is distinct from the
initial state. Thus, a TM HAS AT LEAST TWO STATES.

(cy Other states

(iii) a tape head (or simply Head), is always stationed ‘at one of the tape cells and
provides communication for interaction beiween the tape and the finite control.
The Head can read or scan the symbol in the cell under it. The symbol is
communicated to the finite control, The control taking into consideration the
symbol and its current state cecides for further course of action including

® the change of the symbol in the celi being scannced and/br
® change of its state and/or

@ moving the head to the Left or to the Right. The control may decide not to
move the head.

The course of action is called a move of the Turing Machine. In other words, the
move is a function of current state of the contral and the tape symbol being
seanned.

In case the control decides for change of the symbol in the cell being scanned, then
the change is carried out by the head. This change of symbol in the cell being
scanned is called writing of the cell by the heail.,

Initiaily, the head scans the left-most cell of the tape.

Now, we are ready to consider a formal definition of a Turing Machine in the next
section.

| e et bl Bar-a-E



1.3 TURING MACHINE: FORMAL DEFINITION
AND EXAMPLES

Tuaring Machine

" There are a number of versions of a TM. We consider below Halr State version of
formal definition a Tiv.

Definition: Turing Machine (Halt State Version)
A Turing Machine is a sextuple of the form (Q, 2, 5,8 - 1), where

(i) Q isthe finite set of states,
(i) I is the finite set of non-blank information symbols, |
- (iii) | is the set of tape symbols. including the blank syrbol #

(iv) 8 is the next-move partial function from Q [toQx[ x {L,R,N},
where ‘L* denotes the rape Head moves (o the left adjacent cell, 'R denotes
' tape Head moves to the Right adjacent cell and ‘" denotes Head does not
move, i.e., continues scanning the same cell.

[n other words, forgi e Qanaa, & r, there exists {nor necessurily always,
because & is a partial function) some q; € Q and some a; € [ such that & (qia) =
(q;» a, X), where x may assume any one of the values ‘L’, *R’ and "N'.

The meaning of & (g;, &) = (q;, &), x) is that if g; is the current state of the TM,
and a, is cell currently under the Head, then TM writes a, in the cell currently
under the Head, enters the state q;and the Head moves to the right adjacent cell,
if the value of x is R, Head moves to the left adjacent cell, if the value of x is L
and continues scanning the same cell, if the value of x is N.

(v} qo £ Q, is the initial/start state.

(vi) h e Qis the *Hait State’, in which the machine stops any further activity.
Remark 13.1

Again, there are a number of variations in literature of even the above version of TM.
For example, some authors allow at one time only one of the two actions viz. (i)
writing of the current cell and (it} movement of the Head 1o the lefl or to the right.
However, this restricted version of TM can easily be seen to be computationally
equivalent to the definition of TM given above, because one move of the TM given by
the definition can be replaced by at most two moves-of the TM introduced in the
Remark.

In the next unit, we will discuss different versions of TM and issues re]atmg o
equivalences of these versions.

In order to illustrate the idens involved, let us consider the following simple
examples.

Examplc 1.3. 2:

Consider the Turing Machine (Q, Z, [, 8, qo, h) defincd below that erases all the non-
blank symbols on the tape, where the sequence of non-blank symbols does not contain
any blank symbol # in-between:

Q= {8 h} 2= {a,b}, = (a,b,#
and the next-move function §is defined by the following table:
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q: State g : Input Symbol 8 (q, @)
Qo a {qe, #, R}
qo b {:Tlm # R}
| qp # {h, #, N}
h i # ACCEPT

Next, we consider how to design 2 Turing Machine to accomplish some
computational task through the following example. For this purpose, we need
the definition.

A string Accepted by a TM

A string @ over X s said to be accepted by a TM M = (Q, X, [, 3, qo, ) if when the
string a is placed in the left-most cells on the tape of M and TM is started in the
initial state gq then after a finite number of moves of he TM as determined by &,

Turing Machine is in state h (@hd hence stops an further operations. The concepts will

b: treated in more details later on. Further, a string is said to be rejected if under the
conditions mentioned above, the TM enters a stale q # h and scans some symbol x,
then & (q, x) is not defined.

Example 1.3.3

Design a TM which accepts all strings of the form b" d" for n 2 1 and rejects all other
strings.

Let the TM M to be designed is given by M =(Q, Z,[, 5, qo, h) with £ = { b, d}. The
values of Q, l-, &, shal! be determined by the design process explained below.
However to begin with we take f= {b, d, H}.

We ilustrate the design process by considering various types of strings which are to
be accepted or rejected by the TM.

As input, we consider only those strings whichk are over {b, d}. Also, it is assumed
that, when moving from lefl, occurrence of first ¥ indicates termination of strings aver|

Case I: When the given string is of the form b" d™ (b | d) for n 2 1, m > las shown
belowforn=2m-=}

We are considering this particular type of strings, because, by 1aking simpler cases of
the type, we can determine some initial moves of the required TM both for strings to
be accepted and strings to be rejected.

K]

b b d - - - -

Where *-* denotes one of b, d or &

Initially, TM should mark left-most b. The term mark is used here in this sense that
the symbol is scanned matching with corresponding b or d as the case may be. To
begin with, the TM should altempt 1o maich, from the left, the first b to the d which is
the first d after all b’s have exhausted. For this purpase, TM should move right

skipping over all b’s. And after scanning the corresponding d, it should move
left, until we reach the b, which is the last b that was marked.

Next, TM should mark the b, if it exists, which is immediately on the right of the
previously marked b. i.¢., should mark the b which is the left-most b which is yet to be
marked.



But, in order to recognizd the yet-to-be-marked left-most b, we must change each of Turing Machine _

the b's, immediately on marking, to some other symbol say B. Also, for each b, we
attempt to find the left-most yet-to-be-marked d. In order to identify the left-most .
yet-to-be-marked d, we should change each of the d’s immediately on marking it, by
some other symbol say D.

Thus we require twe additional 7 ape symbols B and D, iel = b, d, 3. D #. -

After one iteration of replacing one b by B and one d by D the tape wauld be of the
form

(B__To Ip__T- - - T

and the tape Head woultd be scanning left-most b,

In respect of the states of the machine, we observe that in the beginning, in the
initial state q, the cell under the Head is a b, and then this b is replaced by a B; and at
this stage, if we drb not change the state then T would attempt to change next b
also to B without matching the previous b to the corresponding d. But in order to
recognize the form b" d" of the string we do not want, in this round, other b’s to be
changed to B's before we have marked the corresponding d. Therefore

8(g0.b)=(q; B,R)

Therefore, the state must be changed to some new state say q. Also in order to locate
corresponding d, the movement of the tape Head must be to the right. Also, in state
q1, the TM Head should skip over all b’s to move to the right to find out the first d
from left. Therefore, even on encountering b, we inay still continue in state q,-
Therefore, we should have

8(q..b) =(g,,b, R)

However, on encountering a d, the behaviour of the machine would be different, ie,
now TM would change the first d from left to D and stars leftward journey. Therefore,
after a d is changed to D, the state should be changed to say ¢, In state q; we start
leftward journey jumping over D's and b's. Therefore

6{(q),d) =(qz,D, L) and
& (qb D) = (‘:Iz, D! L) and
& (qz, b) = (Ch- b: L)

In qz, when we meet.the first B, we know that none of the cells to the lefl of the
current cell contains b and, if there is some b still left on the tape, then it is in the cel]
just to the right of the current cell. Therefore, we should move to the right and then if
ttisab, it is the left-most b on the tape and therefore the whole process should be
repeated, starting in state g, ngain.

‘Therefore, before entering b fromn the left side, TM should enter the initial state qq.
Therefore

8 (a2 B) = (g0, B, R)

For to-be-accepted type string, when all the b’s are converted to B's and when the
last d is converted to D in q., we move towards [eft to first B and then move to right in
Qothen we get the following transition:

from configurntion
BB [D [0 [# [#]
T

G2 ' ¥
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to configurntlon

[B |B [D D [# |# |
T
Qo

Now we consider a special subcase of b" d™ (b |d)., in which initially we have the
following input

[b ID [b [........ ‘ ]

Which after some moves changes to

|B._[D [b I

Qo

The above string is to be rejected. But if we take 8 (qy, D) as qot then whole pracess
of matching b's and d’s will be again repeated and then even the (1nmal) input of the
form

[b [d [b [# | # !

will be incorrectly accepted. In general, in state qo, we encounter D, if all b's have
alregdy been converted to B’s and corresponding d’s to D’s. Therefore, the next state

of § (qq, D) cannot be qg.
Let

8 (ql:l- D) = (q:h Ds R)

As explained just above, for a string of the to-be-accepted type, i.e., of the form b" d",
in g; we do not expect symbols b, B or even another d because then there will be more
d’s than b's in the string, which should be rejected.

In all these cases, strings are to be rejected. One of the ways of rejecting a string
say s by a TM is first giving the string as (initial) input to the TM and then by not
providing a value of & in some state g # h, while making some move of the TM.

Thus the TV, not finding next move, stops in a state  # h. Therefore, \he string
is rejected by the TM. )

Thus, each of 3 (qs, b), (g3, B) and (q3, D) is undclined

Further, in q;, we skip over [)'s, therefore

8 (qs, D) =(qs, D, R)

Finally when in q,, if we meet #, (his should lead to accepting of the string of the form
b" d", i.e, we should enter the state h. Thus

8 (QJ; #) = (h! #1 N)

Next, we consider the cases not covered by b"d™ (b | d) withu>1, m> 1 are.
Such

Case Il whenn=0 butm =0, lLe. when inputstring is of the form d™ (b | d)’ for
m =0,

Case III when the input is of the form b" ¥, n= 0

Case IV when the input is ot'_the form # ...

Rl i B r——
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Now we consider the cases in detail.

Case II:

The above string is to be rejected, therefore; we take 8(qo, d) as undefined

Case 1. When the input is of the form b® # #...4.. ., say

[ b

1

o

After one round we have

i [

'B

| # I

As the string is to be rejected, therefore,

T
9

5 (qr, #) is undefined

Case IV: When # is the left-most symbol in the input

[#

[...

| #

[ #

T
o

As the string is to be rejected, therefore, we take 5(qo, ¥) as undefined

We have considered alf passible cases of input strings over I'= -fb,d} and in which,
while scanning from lefy,

over/,

After the above discussion,
b°d" and rejects all other

eccurrence of the first # indicates termination of strings

The TM is given by (Q, £, F, 8, qo, h) where
Q= {90 91, 92, g3, h}
L={b,d}
[ =1{b.d,B,D,#)

The next-move partial function & is given by

the design of the TM that accepis strings of the form
strings over {b, d}, may be summarized as Sfellows:

b d B D #
1] {Ch- B! R) *f * (‘]J- DI R) *
! {qh b! R) {qlr D! I—') * {qh D, R.) *
z_|{gs b, L) J* {90, B, R} | {q;, D, L) [*
s * * * (ql’ Dv R) (h! #v N)
h * * * * Accept

“** Indicates the move is not defined.

Remark 1.3.4

o+

In general, such lengthy textual exp!a{mribn ns provided in the above casc of

design of a TM, is ot given. We have included such lengthy explanation,

as the

Turing Yachini
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purposc is to explain the very pméecs af design. 1n general, table of the type given
above along with some supporting textual statements are sufficient as solutions to
such problems. In stead of tables, we may give Transition Diagrams (fo b¢

defined),

Ex. 1) Designa TM that recognizes the language of all strings of even lengths over’
the alphabet {a, b}.

Ex. 2) Design a TM that accepts the language of all strings which contain aba as a
sub-string.

1.4 INSTANTANEOUS DESCRIPTION AND
TRANSITION DIAGRAMS

1.4.1 Instantaneous Description

The following differences in the roles of tape and tape Head of Finite Automaton
(FA) and pushdown Automaton (PDA) on one hand and in the roles of tape and tape
head of Tuning Machine on other hand need to be noticed:

(i)  The cells of the tape of an FA or a PDA are only read/scanned but are never
changed/written into, whereas the cells of the tape of a TM may be written
also.

(ii) The tape hcad of an FA ora PDA always moves from left to nght However,
the tape head of a TM can move in both directions.
As a consequence of facts mentioned in (i) and (ii) abovc, we conclude that in
the case of FA and PDA the information in the tape cells already scanned do
nat play any role in deciding future moves of the automaton, but in the case of
a TM, the information contents of all the cells, including the ones earlier
scanned also play a role in deciding future moves. This leads to the slightly
different definitions of configuration or Instantaneous Description (ID) in
the case of a TM.

The total conﬂguratlon or, for short just, configuration of a Turing Machane is the
information in respect of:

(i) Contents of all the cells of the tape, starting from the left-most cell up to atleast
the last cell containing a non-blank symbol and containing all cells upto the cell
being scanned.

(ii) The cell currently being scanned by the machine and

(iii} The state of the machine.

Some authors use the term fustantaneous Description instead of Total
Configuration, :

Initial Configuration: The tota} configuration at the start of the (Turing) Machine is
called the initial configuration.

Halted Configuration: is a configuration whose state component is the Halt state

There are various notations used for denoting the total configuration of a Turing
Machine.

Notation 1: We use the noations, illustrated below through an example:




Let the TM be in state g3 scanning the symbol g with the symbols on the tape as Turing Machine
follows:

Bl e (bl dla]fJ#]e[h[k[a]TEa] 8] # |

Then onc of the notations Is

#I#JbIdIaIfTJ_slhIkI#I#l#l # l

Cb

Notation 2: Howéver, the above being a two-dimensional notation, is sometimes
inconvenient. Therefore the following linear notations are frequently used:
(qa,##bdaf¥,g,hk), in which thiFd component of the above 4-component vector,
contains the symbol being scanned by the tape head.

Alternatively, the configuration is also &enoted by (q,,# bdaf# g hk), where the

symbol under the tape head is underscored but two last commas are dropped.

It may be noted that the sequence of blanks after the last non-blank symbol, is not
shown in the configuration. The notation may be alternatively. written (gs, w, g, u)
where w is the string fo the left and u the string to the right respectively of the symbol
that is currently being scanned.

In case g is the left-most symbol then we use the empty string e instead of w.
Simtlarly, if g is being currently scanned and there is no non-blank character to the
right of g then we use e, the empty string instead of u,

Notation 3: The next nolation neither uses parentheses nor commas. Here the state is
written just to the left of the symbol currently being scanned by the tape Head. Thus
the configuration {(q,, ##bdaf#l, g, h, k} is denoted as # # bdaf#qyghk

Thus if the tape is like

T
Qs
then we may denote the corresponding configuration as (qs, &, g, u). And, if the tape
is like
a b c g d #
T
e

Then the configuration is (qs, abe, g, €) or (qs, abc g ) or alternatively as abcgsg by the

following notation.

1.4.2 Transition Diagrams

In soime situations, graphical representation of the next-mave (partial) function 5 of a
Turing Machine may give better idea of the behaviour of a TM in comparison to the
tabular representation of 6.

A Transition Diagram of the next-move functions 6 of a TM is a graphical
representation consisting of a finite number of nodes and (directed) labelled arcs
beiween the nodes. Each node represents a state of the TM and a labe) on an arc fram
one state (say p) to a state (say q) represents theinformation about the required input
symbot say x for the transition from p to q to take place and the action on the part of

I S |
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the control of the TM. The action part consists of (i) the symbol say y to be written in
the current cell and {ii) the movement of the 1ape Head.

Then the label of an arc is generally written as x/(y, M} where Mis L, R or N.

Example 1.4.2.1
Let M ={Q, £,[, 8, qo, h}
Where Q ={an 91.q2. h}
T ={01}
[ =(0,1,#
and 8 be given by the following table.
0 1 #
Qo - ! - (qln #! R)
q1 (qi: Ov R) (CII. #! R-) (h. #’ N )
9z (92, 0,.L) (9. IL.R) th, 4, N)
h = - -

Then, the above Turing Machine may be denoted by the Transition Diagram shown
below, where we assume that g, is the initial state and h is a final state.

1/4R

Fig. 1.4.2.1

Ex. 3) Design a TM M that recognizes ihe language L of all strings over {a, b, ¢}
with
(i) number of a's = Number of b's = Number of ¢'s  and
(ii} if (@) is satisfied, the final contents of the tape are the same as :he input, i.c.
the initial contents of the tape are also the final contents of the wpe, else
rejects the string.
Ex. 4) Draw the Transition Diagram of the TM that recognizes strings ot the form b"
d", n 21 and was designed in the previous section.

LT



Ex. 5) Design a TM that accepts all the language of all palindromes over the alphabet
{a,b}. A palindrome is a siring which equals the string obtained by reversing
the order of occurrence of letters in it. Further, find computations for each of
the strings (i) babb (ii) bb (iii) bab.

Ex, 6) Construct a TM that copies a given string over {a, b}, Further find a
computation of the TM fi ¢ the string aab. “

1.5 SOME FORMAL DEFINITIONS

In the previous sections of the unit, we have used, without formally defining some of
the concepte like move, acceprance and rejecrion of strings by a TM. In this section,
we define these concepts formaily

In the rest of the section we assume the TM under consideration is

M= (Q: E-» r: 5» qa h)

Definition: Move of a Turing Machine. We give formal definition of the concept
by considering three possible different types of moves, viz.

. ‘move fo the left
. ‘move to the right’, and
. ‘Do not Move ',

For the definition and notation for Move, assume the TA is in the configuration
(Qyar 8z ... 254,25, & ... 3p) '

Case (i) 8( a;, q)= (b, p, L), for motion to left
Consider the following three subcases:

Case i(a) ifi > ], then the move is the activity of TM of going from the configuration

(0. a1 a2 ... &y, M, Ay ... 2,) to the configuration
(ma ... 82,8, 8284+, -..8,) and is denoted as
Qa2 oo Gp, Ay Bey oe ) b (D) A1Biz, Ak b, 2541 oo 2)

The suffix M, denoting the TM under consideration, may be dropped, if the machine
under consideration is known [rom the context.

Case i(b) ifi = I, the move leads to hanging configuration, as TM is already
scanning left-most symbol and attempts to move to the left, which is not possible.
Hence move is not defined.

Casci(c) wheni=nandb is the blank symbaol #, then the move is denoted as
(ql Az .00 Agels dny C) }'(CI: dajdz .. 2y2, ooty G.C).

Casce (i)}  8(a, q)= &(b, p, R}, for motion to the right
Consider the following two subcases:

Chaseiifa) ifi < nthen the moveis denoted as
@ a3, a2 b (P, g bageg, a6 L ay)

Caseii(b) ifi = nihe moveis denoted as
(0 ap ..., 20 e) - (poay . fhc)

Casc (iii) 8( a,, @)= (b, p, ‘No Move’) when Head does not move,

Turing Machine
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then the move is denoted as
(q, 21 ... 1,2y Qie1-.- T S - TP TR V- 1)

Definition: A configuration vesults (or is derived) from dnother configuration:

We illustrate the concept through an exampie based on say Case (jii) above of the
definition of ‘move’. In thié case, we say the configuration (p,a ... ., b, &1
a,) results in a single move or is derived in a single move fromi the confipuration
(Q, 81---21,31, 3 +1--- &), Also, we may say that the maove yields the configuration
{p, ay... s, b, sy .., ay) OF the configuration {q; ar:::di1,di i-i.c & ) yields the
configuration (p, &j... @iy D, &+1 ... &) in a single move.

Definition: Configuration results in n Moves or finite number of moves:

If, for some positive integer n, the configurations i, C; ... ¢rare such that ¢ results
from ci,; in a single move, i.e., )

Ci - & fori=2,...n
then, we may say that ¢, results from: ¢y in i ntoves or a finite mimber of moves. The
fact is generally denoted as

I o & o
The latter notation is the préferred die, because generally n does not play significant
role in most of the relevant discussions. )

The notation ¢, |- ¢, also equivatently stands for the statement that ¢j yields ¢, in
finite number of steps.
Definition: Computation

[f co Is an iitial configuration and for some fi, the configurations ci, €, ..., ¢ are
such that cp, |~ ¢y |- ... |- ca, then, the sequence of configurations cg, € ... G
constitutes a computalioh

Definition: A string @ € X *acceptable by a TM
@ is said to be acceptable by TM M if (qa, @) - (h, 1) forr € [

Informally, o is acceptable by M, if when the machine M is staried in the initial state
qu after writing @ on the lefimost part of the tape, then, if after finite number of
nioves, the machine M halts (i.e., reaches state It and of course, does not hang and
does not continue moving for ever) with some siring yof tape symbols, the griginul
string w is said to be accepted by the machine M

Definition: Length of compuiation

[£ C, is initial configuration of a TM M and Co. Cy....,Cyi5 @ compulation, then n is
called the length of the computation Co, Cy, ...Cy.

Definition: I=put to a computation

In the initial configuration, the string, which is on that portion of the tape.beginning
with the first non-btank square and ending with the {ast non-biank square, is called
input to the computation.

Definition: Language accepted by a TV

M=, 2,0, 5, qo h), denoted by L(M). and is defincd as
LM)={ow|w e £ andif o = a, ... &, then

(qo. €, 21, 8,..20) |-

(h, by ... by, by, ... Dj....bn)

forsomeb; by ....b, € [




L{M), the language accepted by the TM M is the set of aII finite strings o over
which are accepted by M.

Definition: Turing Acceptable Language

A language L over some alphabet i3 said to be Turing dcceptable Language, if there
exists a Turing Machine M such t:at L = L (M)

Definition: Turing Decidable Language

There are at least two alternate, but of course, equivalent ways of defining a Turmg
Decidable Language as given below

Definition: A language L over Z, i.e, L L' is said to be Turing Decidable, if both
the languages L and its complement '~ L are Turing acceptable.

Definition: A language L over 3, ie, L& 5. is said to be Turing DeoMable, if there
Is 4 function }

L (YN} )
such that for each & € 2,
¢ (oym Y foel
Oy ifwe L

Remark L.5.1

A very tmportant fact in respect of Turing acceptability of a string (or a language)
needs our attention. The fact has been discussed in details in a later unit about
undecidability. However, we briefly mention it below.

For 1 TM M and an input string o € %', even after a large number of moves we
may not reach the halt state. However, from this we can neither conclude that:
‘Halt state will be reached in a finite number of moves’ nor can we conclude that
Halt state will not be reached in a finite number moves.

This raiscs the question of how to decide that an input string w is mer accepted by
a T M.

An input string w is said to be ‘nof accepfed® by a TM M =(Q, %, [, 3, qq, h) if any
of the following three cases arise:

()  There is a configuration of M for which there is no next move i.e., there
may be a stale and a symbol under the tape head, for which 8 does not have
a value.

(i}  The tape Head is scanning the left-most cell containing the symbol x and
the state of M is say q and 3 (x, q) suggests a move to the ‘left’ of the
current cell. However, there is no cell to the left of the left-most cell.
Therefore, move is not possible. The potentially resulting situation (can’t
say exactly configuration) is called Hanging configuration.

{iii)  The TM on the given input w cnters an infinite loop. For example if
configuration is as

ey ]
I
Qo

and wec are given

Turing Mnachine
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)

S (g X) - (4e, XL R)

and & (41, ¥} = (9o, y» L)
Then we are in an infinite loop.

1.6 OBSERVATIONS

The cancept of TM is one of the most important concepts in the theory of
Computation. In view of its significance, we discuss a number of issues in respect of
TMs through the following remarks.

Remark 1.6.1

Turing Machine is not just another compulational model. which may be further
extended by another still more powerful computational model. 11 is rot only the masi
powerful computational model known so far but also is conyectured 10 be the ultimate
computational model. In this regard, we state below the

Turing Thesis: The power of uny computational process is cuptured within the class
af Turing Muchines.

It may be noted that Turing thesis is just a conjecture and not a theorem, hence,
Turing Thesis can not be logically deduced from more etementary facts. However, the
conjecture can be shown to be false. if'a more powerful computational medel is
proposed that can recognize all the languages which are recognized by the TM modei
and also recognizes at least one more language that is not recognized by any TM.

In view of the unsuccessful efforts made in this direction since 1936, when Turing
sugaested his model, at least at present, it seems to be unlikely to have a more
powerful computational model than TM Model.

Remark 1.6.2

The Finite Autemaia and Push-Down Automata modefs were used only as accepting
devices for l[anguages in the sense (hat the automata, when given an input string from
a language, tells whether the string is acceptable or rot. The Turing Machines are
designed to pluy at least the following three different roles:

(i)  Asaceepting devices for languages, similar to the role played by FAs and
PDAs.

(ii)  As a computer of functions. In this role, a TM represents a particular function
(say the SOUARE function which gives as output the square of the integer given
as input}, Initial input is treated as representing an argument of the function.
And the (finad) string on Lhe tape when the TM enters the Halt Srate is treated as
representalive of the value obtained by an application of the function to the
argunent represented by the initial string.

(i) As an enumeraior cf strings of a language that outputs the strings ef a
language, one at a time, in some systematic order,’ e, as a list.

Remark 1.6.3

Halt State of TN vs. set of Final States of FA/PDA

We have already briefly discussed the differences in the behaviour of TM on entering
the Halt State and the behaviour of Finite Automata or Push Down Automata en
entering a Final State.

EEa s




A TM on entering the Halt State stops making moves and whatever string is there on
the 1ape, is taken as output irrespective of whether the position of Head is at the end
or in the middle of the string on the tape, However, an FA/PDA, while scanning a
symbol of the input tape, if enters a Fnal state, can still go ahead (as it can do on
enfering a non-final state) with the repeated activities of moving (o the right, of
scanning the symbol under the heai and of entering a new state etc. In the case of
FA[PDA, the portion of string fre'n lefi to the symbol under tape Head is accepted if
the state is a final stare and is not 1ccepted if the state is not a final state of the
machine.

To be mare clear we repeat: the only difference in the two situations when an FA/PDA
enters a final state and when if enters a non-final state is that in the case of the first
situation, the part of the input scanned so far is said to be accepted/recognized,
whereas in the second situation the input scanned so far is said to be unaccepted.

Of course, in the Final State version of TM (discussed below), the Head is
allowed movements even after entering a Final State. Some definite statement Jike
*Accepted/Recognized’ can be made if, in this version, the TM is in Final State.

Remark 1.6.4

Fina] State Version of Turing Machine

Instead of the version discussed above, in which a particular stare is designated as
Halt State, some authors define TM in which a subset of the set c fstates Qis
designated as Set of Final States, which may be denoted by F, This version is
extension of Finite automata with the following changes, which are minimum required
changes to get a Turing Machine from an FA.

(i)  The Head can move in both Left and Right directions whereas in PDA/FA the
head moves only to the Right.

(i) The TM™, while scanning a cell, can both read the cell and also, if required, -
change the value of the cell, i.e., can write in the cell. In Finite Automata, the
Head only can read the cell. It can be shown that the Ha!r State version of TM is
equivalent to the Final State version of Turing Machine.

(iii) In this version, the TM machine halts only if in 2 given state and a given symbol
under the head, no next move is possible. Then the (initial) input on the tape of
TM, is unacceptable.

Definition: Acceptability of » € X" in Final State Version

Let Ml = (Qp Zl rl 5, qul F)
be a TM in final state version. Then w is said to be acceptable if C, is the initjzl
configuration with w as input string to M, and |

G Fc,

is such that

Co=(p, &, 2, B)
"with p in F, set of final states, and a € [, the set of tape symbols,and o, p & *

Equivalence of the Two Versions

We discuss the equivalence only informally. If in the Halt state version of a TM in
stead of the halt state h, we take F= {h} then it is the Final state version of the TM.
Conversely, if F={ |, fs,...... f;} is the set of final states then we should note the fact
that in the case of acceptance of a string, a TM in final state version enters a final state
only once and then halts with acceptance. Therefore if we rename each of the final
state as h, it will not make any difference to the computation of an acceptable or

Turing Machine
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unacceptable string over 2. Thus F may be treated as {h}, which further may be
treated as just h. )

1.7 TURING MACHINES AS-COMPUTER OF
FUNCTIONS

In the previous section of this unit, we mentioned that a Turing Machine may be used
as

(i) A language Recognizer/acceptor
(ii) A computer of Functions
(iii) An Enumerator of Strings of a Ianguage.

We have already discussed the Turing Machine in the role of language accepting
device. Next, we discuss how a TM can be used as a computer of functions

Remark 1.7.1

For the purpose of d:scussmg TMs as computers of functions, we make the following
assumprions:

® A string © over some alphaber say 2. will be written on the tape as #of, where #-
is the blank symbol.

®  Also initially, the TM will be scanmng the right-most % of the string #m#

Thus, the initial configuration, (qg, 40#) represents the starting point for the
computation of the function with @ as input.

The assumption facilitates computution of composition of functions.

Though, mast of the time, we require functions of one or more arguments having cnly
integer values with values of arguments under the functions again as integers, yet, we
consider functions with domain and codomain over drbitrary alphabet sets say Z, and
Z) respectively, neither of which contains the blank symbeol #.

Next we define what is meant by computation, using Turing Machine, of a
function
f: Eo. — 21-

Definition: A function f: /¢ Z," — Z," is said to be Turing-Computable, or simply
computable, if there is a Turing Machme M=(Q, 51,5, qp h ), where X contains the
following holds:

(o #o#) - (b, #u2)

whenever v € %, and p € I, satisfying flw) = p.

Rlemark 1.7.2

It may be noted that, if the string @ contains some symbols from the set

Z - Zy, i.e, symbols not belonging to the domain of f, then the TM may hang or may
not halt at all.

i
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Remark 1.7.3 _ _ Turing Machine |

Next, we discuss the case of functions which require k arguments, where k may be
any finite integer, greater than or equal to zero, For example,

the operation PLUS takes two argements m and n and returns m + n.

The function f with the rule
f,y,2)=(2x+y)*z L
takes three arguments, |
The function C with rule

CCH)=11
takes zerp pumber of arguments

R s R

Let us now discuss how to represent k distinct arguments of a function f on the
tape. Suppose k =3 and x; X3, ¥, ¥2 ¥3 and 2, 2, are the three strings as three
arguments of function f. If these three arguments are written on the tape as

7 Tx T Iwn | Y, [y E EX

then the above tape contents may even be interpreted as a single argument vViz. '
Xy X2, ¥\ Y2 Y3 2 Za. Therefore, in order, to avoid such an incorrect Interpretation,
the arpuments are separated by #. Thus, the above three arguments will be wriiten on
the tape as

1 x Ix J& Ty Y2 [y [ |z = [# ]

In general, If a function ftakes k 2 1 arguments say o,, 3, ..., @ where each of these
arguments is a string over Z, (i.c., each ©; belongs to Zo°) and if f (@, @, ..., @) =
for some u € Z,"; then we say fis Turing Computable if there is a Turing Machine

M such that

e

(CIO » & 0] I#m?. .. -#mk#l e) l_.M (h) €, #IJ'#I e)

Also, when f takes zero number of argnments and f( )=p then, we say fis
computable, if there is a Turing Machine M such that ‘

(q,e,#8,e) |-y(h e #uf e
Remark 1.7.4

Instead of functions with countable, but otherwise arbitrary sets as domains and
ranges, we consider only those functions, for each of which the domain and range is
the sef of natural aumbers. This is not a serious restriction in the sense that any
gountable set can, through proper encoding, be considered as a set of natural numbers.

For natural numbers, there are various representations; some of the well-known
representations are Roman Numerals (e.g. VI for six), Decimal Numerals (6 for six),
Binary Numerals (110 for six). Decimal number system uses 10 symbols vis. 0, 1, 2,
34,5,6,7,8and 9. Binary number system uses two symbols denoted by Oand I.
In the discussion of Turing Computable Functions, the lnary representation
described below is found useful. The unary number system uses one symbol only:

Let the symbol be denoted by I then the number with name six is represented as 1111
11 Inthis notation, zero is represented by empty/null string. Any other. number say
twenty Is represented In unary systems by writing the symboj I, twenty times. In order
to facilitate the discussion, the number n, in unary notation will be denoted by I" in
stead of writing the symbol 1, n times.
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The advantage of the unary representation is that, in view of the fact that most of the
symbols on the tape are input symbols and if the input symbol is just one, then the
next state will generally be determined by only the eurrent state, because the other
determinant of the next state viz lape symbol is most of the time the unary symbol,

We recall that for the set X, the notation X' represents the set of all finite strings of
symbols from the set X. Thus, any function £ from the set of natural number to the set-
of natural numbers, in the unary notation, is a function of the form f£: {I}' = {I}"

Definition: The function f: N — N with f(n) = m for each n € N and considered as
F: {1} — {I}', with {I} a unary number system, will be called Turing Computable
function, if a TM M can be designed such that M starting in initial tape
configuration

#I11 ... T #

with n consective I's between the two #’s of the above string, halts in the following
configuration

#11..... I#
confaining f(n) =m I's between the two #'s

The above idea may be further generalized to the functions of more than one
integer argumerits. For example, SUM of two natural numbers n and m takes two

_integer arguments and returns the integer (n + m). The initial configuration with the

tape containing the representation of the two arguments say n and m respectively, is of
the form

#I1 LERIL ... 1#

where the string contains respectively n and m I's between respective pairs of #'s and
Head scans the last #. The function SUM will be Turing computable if we can
design a2 TM which when started with the initial tape conﬁguratmn as given above,
halts in the Tape configuration as given below:

#11 ..11....1¢&
where the above string contains n + m consecutive I’s between pair of #'s
Example 1.7.5

Show that the SUM funecticn is Turing Computable

The problem under the above-mentioned example may also be stated as: Construct a
TM that finds the sum of two natural numbers.

The following deslgn of the reqliired TM, is not efficient yet explains a number of
issues about which a student should be aware while designing a TM for
computing a function.

Legal and Illegal Configurations for SUM function:

[n order to understand the design process of any TM for a {computable) function in
general and that of SUM in particular, let us consider the possible /egal as well as
illegal initial configuration types as follows.

Note: in the following, the sequence ..’ denotes any sequence of I's possibly empty

. and-the sequences ' ***' denotes any sequence of Tape symbols possibly empty and

possibly including #. Underscore denotes the cell being scanned.



Jicgm’ initlal configuration types:

Configuration (i)

[# _1# [# [+ |
1.

Qo

representing n =0, m =0
Configuration (i)

[# _[& v [.. T¢# [ |

o
n=0m=0

Configuration (iii)

[# 11 [... [ # [ # | s

n20,m=0
Configuration (iv) -
(# |1 [... | # [1 (... [# llm_]

n20,m=0

We treat the following configuration

I P - R I P
T
o

containing two or more than iwo #'s to the left of # being scanned in initial
configuration, as valid, where *..." denotes sequence of I's only.

Some illegal initial configurations:

Configuration (v)

_ltu ][ ':u —|
T

Where at least one of *** does not contain # and initially the Head is scanning.an I or
any symbol other than # . The configuration is invalid as it does not contain required
number of #'s,

Configuration (vi), though is a special case of the above-mentioned configuration, vet
il nceds Lo be mentioned separately.

. [_l I o l# I-u —I
7

Left most symbol is [ or any other non-# symbol
Where *** does not contain any #,

Turlng Mnchine
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Configuration (vii)
7 L ]

Where *** does not contain # the» fhe configuration represents only one of the
patural numbers.

Also, in case of legal initial confipurations, the final configuration that represents the
result m + n should be of the firm.

| I N o L# | |

with ‘..." representing exactly m +n I’s.

Also in case of illegal initial configurations, the TM to be designed, should be in
one of the following three situations indicating non-conputability of the function
with an illegal initial input, as explained at the end of Scction 1.5:

(i) the TM has an infmite loop of moves;

(ii) the TM Head attempts to fall off the left edge (i.e. the TM has Hanging
configuration}; or

(it)  the TM does not have a move in a non-Halt state.

We use the above-mentioned description of initial configurations and the
corresponding final configurations, in helping us to decide about the various
components of the TM to be designed:

At this stage, we plan how to rcach from an initial configuration to 2 final
configuration. In the case of this problem of designing TM for SUM fuaction, it is
easily seen that for a legal initial configuration, we need 1o remove the middle # to get
a final configuration. '

() Summing up initially the machine is supposed to be in the initial state (say) o

(b) In this case of tegal moves for TM for SUM funciion, first move of the Head
should be to the Left only

(c) In this case, initially there are at least two more #'s op the left of the # being
scanned. Therefore, to keep count of the #'s, we must change state after
scanning each # . Let qy, q: and g; be the states in which the required TM enters
after scanning the three #'s

{d) TIn this casethe movement of the Head, afler scanning the initial # and also afier
scanning one more # on the left, should continue to move 1o the Left only, so as
10 be ablc to ensure the prescnce of third # also.  Also, in states q; and gy, the
TM need not change state on scanning [

Thus we have
5((1[1. rr) - ((]g, r‘, L).
5{qi, 7 = (q, #, L)
and
8(qi. 1) = (@ L, L), 8(gz B = (g2, L, L)

However, from this point onward, the Head should stari moving to the Right.
o8 (ql’ #) = (qiv ﬁ-l R)

C B

[

s T - - oo e



Thus, at this stage we are in a configuration of the form . Turing Machine

2 m— 7] 1

QJ-

Feor {further guidance in tise matter of the design of the rcqmred T™, we
again look back on the legal configurations.

(¢)  Inthe configuration just shown above in g, if the symbol being scanned is # (as
in case of configuration (i) and configuration (i)}, then the only aclion required
is to skip over I's, if any, and halt at the next # on the right.

However, if the symbol being scanned in q, of the above configuration, happens
to be an I (as in case of configuration (iii) and configuration (iv)) then the
actions to be taken, that are to be discussed after a while, have to be different.

But in both cases, movement of the Head has to be to the Right. Therefore, we
need two new states say gy and qs such that

a(qj" #) = (q4’ #l R‘)
(the precessing /scanm‘ng argumens on the lefi, is completed). -
6(q;, ) = (95 LR)

(the scanning of the argumens on the left, is initiated).

Taking into consideration the cases of the initial configuration (i) and configuration:
(ii) we can further say that

s(q"! l) = (qdr I) R-)
5(qu#) = (halt, A N)

Next, taking into consideration the cases of initial configuration (iii} and configuration
(iv) cases, we decide about next moves including the states etc iu the current stale qs.

We are in the following general configuration
(that subsumes the initial configuration (iii) and configuration (iv) cases)

[#  J1__ ] [ # [ [# ! ]

qs

Where the blank spaces between #'s may be empty or non-empty sequence of I's.
Next landmark symbol is the next # on the right. Therefore, we may skip over the I's
without changing the state i.e

s(qsl ]), = .(CIs- In R)

But we must change thg state when # is encountered in qs, otherwuse. the next
sequence of I's will again be skipped over and we will not be able to distinguish
between configuration (iii) and configuration (iv) for further necessary action.
Therefore

5(gs, #) = (qs. #, R}

(notice that, though at this stage, scanning of the argument on the lefl is completed,
yet we can not enler in state q,, as was done earlier, because in this case, the
sequence of subsequent actions have 1o be different. In this case, thell in the middle
has to be deleted, which is not done in state q,)

‘Thus, at this stage we have the general configuration as

[ o)
]
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oF_ 1 L [F — l

# I1 [# T 1 ] [& L |

EN [# | I EA ]
T
s

Next, in g, if the current symbol is a #, as is the case in configuration (iii), then we
must halt after moving to the left i.e.

we reach the final configuration

1 : i
halt -

However, if we are in the configuration (iv) then we have

T

s 1
Then the following sequence of actions is required for deleting the middle #: |

Action (i}: To remove the # in the middle so that we get a continuous sequence of I's
to represent the final result. For this purposes, we move to the left and replace the #
by I. But then it will give one I more than number of I’s required in the final result. -

Therefore

Action (ii): We must find out the rightmost [ and replace the, rightmost I by # and

_stop, i.e, enter halt state. In order to accomplish Action (ii) we reach the next # on the
right, skipping over all I’s and then on reaching the desired #, and then move left to an
I over there. Next, we replace that I by # and halt.

Translating the above actions in terms of formal moves, we get ,

For Action (i)

a(qﬁs I) = (CI‘h _-L L)
8(qn #} = (0 1, R)

(af this stage we have replaced the # in the middle of two sequences of I's by an I)

For Action (i)
S(qﬂl I) = (QS, Ir R) !
5(‘7[3, #) = (qu #’ L) -
S(gw ) = (halt, # N)

1t can be verified that through above-mentioned moves, the designed TM does not
have a next-nove at some stage in the case of each of the illegal configurations.

Formally, the SUM TM can be defined as:

SUM=(Q, 2,1, 5, qo, h) |
where Q = { qo, qu,.---Qrg, halt} i
L ={1} :
[ =(L #)

and



the next-move (partial) function 8 is given by the Table

1 : #
Yo - N [ 1)
q (a5, 1, L) . (9% L)
- g2 {92, 1, L) {q:, #, R)
9 (g5 I, R} (g4, #, R)
Qs - (q4! I, R} halt, #, N)
qs (g5, L. R) (9 ¥ R)
ds (a2, I, L) (halt, #, L)
q- - (qss I) R)
ds (qu L R) (qg'. #, L)
ds (halt, , N)
halt - -

‘~* indicates that 8 is not defined
Remark 1.7.6

'As mentioned earlier also in the case of design of TM for recognizing the language of
strings of the form b"d", the design given above contains too detailed explanation of
the various steps. The purpose is to explain the involved design process if fine
details for better understanding of the students. However, the students need not/
supply such details while solving a problem of designing TM for computing a
function. While giving the values of Q, X, [ explicitly and representing & either by a
table or a transition diagram, we need to give only some supporting statements to help
understanding of the ideas involved in the definitions of Q, %, [ and 5.

Example 1.7.7

Construct a TM that multiplies two integers, each integer greater than or equal to zero
(Problem may also be posed as: show that multiplication of two natural numbers is
Turing Computable)

Informal Description of the solution:
The legal and illegal configurations for this problem are the same as those of the

problem of designing TM for SUM function. Also, the moves required to check the
validity of input given for SUM function are the same and are repeated below:

5( 9o, #) = (qh #r L)

8qi, #) = (g #, L)
8au, ) = (quLL)
5(‘12:. #) = (QS) #l R)
a(qh I) = (qu I! L)

Next, we determine the rest of the behaviour of the proposed TM.
Case I

When n=0 covering configuration (i) and configuration (ii) The general
configuration is of the form

[ T¢ T I

T
qa

Turlng Machlne
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To get representation of Zero, as, one of the multiplier and multiplic and is zero, the
result must be zero. We should enter state say q, which skips all I’s and meets the
next # on the right. )

Once the Head meets the required #, Head should move to the left replacing all I's by
#’s and halt on the # it encounters so that we have the configuration

G &1 ' 7 1 ]
T

Halt

The moves suggested by the above explanation covering configuration (i) and
configuration (ii) are:

8(q5, #) = (g, % R) ' :
5(‘]4- I) (q-h I, R) -
‘S(Ch, #) = (qS) #! L)
B(qu D = (qiv #’ L) I
5(qs, ¥ (Halt, # R)

Case Il

l

Covering configuration (iii), we have at one stage

| # I l | # EN ;
T j
qa |
. |
If we take 8(qs, I) = (qq, #, R}, then we get the following desired configuration in )
finite number of moves: ’ |\.
e I#  [# ] [#  [# [# i |
T i

Halt
Case III .

While covering the configuration (iv), At one stage, we are in the configuration

l «~ nl’s - | |(— ml's —»
¥ 11 [.. ENE # I

T

s
In this case, the final configuration is of the form

‘ <~ mnl’s =
(¢ & .. | # i [T... [ 1 [ # |
‘ T
Halt

The strategy to get the representation for n m I's consists of the following steps

(i)  replace the lefi-most 1 in the representation of n by # and then copy the m I’s in
the cells which are on the right of the # which was being scanned in the initial
configuration. In the subsequent moves, copying of I's is initiated in the cells
which are in the left-most cells on the right hand of last I's on the tape,
containing continuous infinite sequence of #'s,



Repeat the process till all I's of the initial representation of n, are replaced by #,
At this stage, as shown in the following figure, the tape contains m I's of the
initial representation of the integer m and additionally n.m I's. Thus the tape
contains m extra #'s than are required in the representation of final result.
Hence, we replace all I's of o1 by #'s and finally skipping over all P’s of the
representation of (n . m) we reach the # which is on the right of all the (n . m)
1’s on the tape as required.

Al.‘al’ma!ive!y: In stead of copying n times of the m I's, we copy only (n-1)
tirhes to get the configuration

(]  T# T1 T# ] ...L [# 11 ]....... [T |4 ]

l mPs > | Je (aDmrs = | 1

Then we replace the # between two sequences of I’s by I and replace the right-most 1 -
by # and halt,

The case of illegal initial configurations may be handled on similar lines as were
handed for SUM Turing machine

Remark 1.7.8

The informal details given above for the design of TM for multiplication Junciion
are acceplable as complete answer/solution for any problem about design of a
Turing Machine. However, if more detailed formal design Is required, the
examiner shonld explicitly mention about the required details,

Details of case (iii) are not being provided for the following reasons -

(i)  Details are left as an exercise for the students

(i) After some time we will learn how to construct more complex machines out of
already constructed machines, starting with the construction of very simple
machines. One of the simple machines discussed later is a copying machine
which copies symbols on a part of the tape, in other locations on the tape.

Ex. 7) Design a TM to compute the binary function MONUS (or also called PROPER.
SUBTRACTION) defined as follows: .

Monus: NxN —N
(Note 0 also belongs to N)

such that

m-n if mzn
monus (m, n) = 0 ]
eise

Ex.8) To compute the function n (mod 2)
. Let if f denotes the function, then

nN-— 10, 1)
is such that
- ifniseven,

"N i nis oda

Turing Machine
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1.8 MODULAR CONSTRUCTION OF COMPLEX
TURING MACHINES '

In the previous example of constructing 2 Turing Machine even for a simple task of
multiplying two numbers, we saw construction was quite complex. The handling of
complexity can be attempted by looking at the total machine in terms of sub-
machines.

e T B T

In this section, we look at the task of constructing complex Turing Machines by
suitably combining already constructed simplerTuring Machines. For this
purpose, we discuss some Basic Machines and. Hules for combining already =
constructed machines into more complex machines. Also, we develop notation for i
expressing the involved rules and denoting the process for combining.

We begin by giving below rules of combining Turing Machines to get more complex
TMs from the already constructed Turing Machines. Let M be the TM which is to be
construeted by combining the already constructed machines viz. M, My, ooy M,
where M; = {Q,, 5 [, 8, qo, hi} and M= {Q, £,[, 8, gy, h} and

M will start its actions in the machine M.

R b

Then the rules for constructing M out ofM. are:

Rule 1: Assume all the sets Q, Q ... Qi are all mutually disjoint sets. If there is an
overlap, then rename the elements of some sets so that all the sets are mutually i
disjoint.

Rule 2: The state qg; the initial state of M, will be the initial state of Mi.e.qo=qoi
hpwever, the initial state status of Qoz, ... Qox is removed. Also, the set of states for
M will contain as its subset each of Q; for i=1,2, ..., k..

Rule 3: The halt-state status of each s =i=1,2, ..., k is removed and a new state h
is included in Q which will serve as the halt state of M. However, each h; remains
astate of M, but its status as hait state is removed.

Thus :
(in ihe following U ' denoles set union) . N

o=Ueae .

i=]

k
where h g UQ,

el

k
Rule 4: T contains UE, and

Tml

[ contains Ul_, .

=]
It may be neted that £ may confain some more symbols, in addition to the symbols in

k -
U %, and similarly[ may contain some more symbels, in addition 10 the symbols in

=t

(r,

=l

Rute 5(i): If the composite machine M is to halt on reaching h; with symbol currently
being scanned as x, then inFroduce a move & (hy, x) = (h, x, N}.



Rule 5(ii) If, in stead of halting in the state h;, of machine M;, while scanning the Turing Machine
symbol x, the composite machine M is required to transfer the control to some

machine say M, = {y, I, |_|,, 5;, qoi.» hp} in some state say p and the symbol x is

required to be replaced by z then introduce the move § (h;, x) = (p, z, N).

Diagrammalically we have

(g .+

Fig. 1.8.1

This completes the details of the general rules for obtaining a composite machine
ont of already designed machines as componcents. [lowever, there may be some
special rules for design of each particular composite machine.

Example 1.8.1

Let M; = {Q;, Zi 0, 8, gi, i} fori=1,2

be wwo given TMs, We are required to construct a TM which first simulates M, and
then M; and halts.

Then M is obtained by taking

M=(Q,%[,8 q,1)

Where

Q=QivQw{h}

E=EUk, f= r.u rz, g=q, andh=h,
and J§ consists of

(i) all the moves defined by §,

(i) all the moves defined by &,

(iii) d(hy, x)={q2. x. N} forall x e [ (where q; is the initial state of M)

In words: M is obtained by -

(i)  taking initial state q, of M as initial state of M

(it) removing halt state status of h; of M, and initial state status of g of M,

(iii) Introducing & moves from the (old) halt state h; of M, 10 be {old) initial state
g2 of M for cach symbol x of the tape s.1,

o (hh K) = (qh b3t N)
Diagrammatically M js given by

—-—pi-» ] S L .- .

Fig. 1.8.2 33
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Example 1.8.2

Let us consider one way of combining the following three machines. (There are many
possible ways of combining these three machines). For all the three machines, the
input symbol set Z= {0, 1} and [ ={0, 1, ¥} are the same. Further.

M, =(0, %, /;, On Q1 b)), which finds the first I after the current symbol and
halfs, and is given by Q1 = (9,5, qusy h1y) with

81 (Qre» X)=(qi1. x, R) foreachof x =0.1and ~.
8| (qlh 0} = (CIII. 0! R)v

8. (qu, H=(qn, # R} and’

8l (qlh ]) =(h|s ]!N)

Mpy=(0s %, [, &, Gony Ho), which finds the first 0 after the current symbol and ha:!s,
is given by Qo = {qoo, Qo1 ho} With

8o (oo, X)=(gor, X, R) foreach ol x =0, ! and *
8o (qo, 1Y=(qoi, 1, R),

6 (qot, ¥)=(qu, ¥, R); and

80 {Qo1, 0) = (h, 0, N}

M;=(04 5 /, Sy g3, 1), which moves the tape Head one cell to the rightand Haits
where

Qs = {30 13}
& (q3» X} =(h3, x, R) foreach of x=0, 1 or &.

Now we combine the above three Turing Machines M,, M; and M; as, building blocks,
50 that the constructed composite Machine M finds the first occurrence of a non-
blank symbol (i.e., symbol which is a 0 or a 1) after skipping nvo symbols, viz,
currently being scanned symbol and the immediately next symbol. For example, the
cumposite machine returns

(i) 1 for each of the following input strings
OHf# 10 or
00##10# or
001#00

(it) 0 for each of the strings
1140 -or ’
1 1A#A0 or
110#4#1

The Turing Machine M is giveh by

M=(Q,Z,[,8, qus, h), where
Q= {qo0, o1, ho, Quo» Quy, By, Qag, b3, 1}

" In the machine M, qos and quo are nor initial states. Also hy, hy, hy, are o more halt

states and | is the new Halt State.

Ir addition to simulating moves of Mo, M, and M,, the following moves are

.added: -

5 (h'jr}k) = (Chm. *: N)
& (hs, Y =(qyo, s N), where **’ is any symbol from .

A - |




5o that from M, we may go to My or M,on scanning any symbol.
Further in order to halt in the new machine, w¢ introduce

8 (ho, *)=(h, *, N) '
8 (hy, *)=(h, *,N), where “*" is zny symbol from |,

Note: The consiructed machine is of Non-Deterministic (to be defined) type.
After appropriate shortcut Notations, the combined TM is graphically as shown
below:

1

—— M
> M

S Y Mo
0

Fig. 1.8.3 ’
Some Short cut Notations:
{i) If there is the same output and same next state for more than one inputs in

a particular state, then single labeled arrow may be used instead.of more
than one arrow, e.g., The part of the transition diagrain

may be replaced by

Fig. 1.8.5

Turing Mnchine
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(ii} Further, in the case discussed above, if [ = {a, b. ¢, d}, is the set of tape
symbaols, then the diagram may be further modified as

T6/(b.R)

Fig. 1.8.6

where denotes ‘except for b, on all other tape symbols’.

The same shorthand is used when instead of states p and q in the two figures above,
we have component machines M, and Ma.

2(b.R)

d{b,R)

Ml > M1

¢/(b,R

Fig. 1.8.7

Further, if on all inputs the composite machine operates as machine M, until M, halts,

‘and then M, and thién operates as M, would opcrate, then the following notation may

be used.

>M‘ p M

Fig. 1.8.8

Whera there are no labels on the arrow.

(iii) If the composite machine M is such that first it operates as machine M, until it
halts and then operates as say M, or M, depending on the symbol being scanned
at the time of halting of M, say out of a or b respectively, then the following
notation is used. '

a
>Ml —_—» M

Fig. 1.8.9




In the case of above cotaposition of machines, in addition to all moves defined by §, Turing Machine
and &, for machines M; and M, we have the additional moves:

)
(i)

6 (hy, a)=(g;, &, N) and
8 (hy, b) = (g, b, N),

where h, is the halt state of M, and g, and q; are the initial states of M, and M, '
respectively.

Some Basic Machines and Neota. ions:

As the purpose is to explain how complex machines are obtained combining basic
machines, the basic machines do not necessarily start scanning the leR-most symbol.

There are two types of basic machines viz

0

(i)
@

(b)

{c)

Where ¢ denotes any symbol [rom T~ {ar

Symbol Writing Machines: Let M =(Q, I, r, 8, qo, h ) where and let a-e X be
a particular symbol such that for some & (qs, X} =(h,a, N)forallx e &
(where x is used in the sense of a variable, which actually is not a member of X).

This machine after starting in the initial state gy and reading any symbeol, writes
‘a’ in place of the current symbol and halts.

_We denote such machines by W, or sometimes just by a

Wihere a muay denote the symbol a as well as the machine thai writes a.

IHowever, context will resolve whether a particular occurrence denotes the
symbol or the machine.

Right/Left head Moving Machines:

Right Head Moving Muchine

LetM= (Q.-I.r, 8, 4u. W Yand & is given by

8{qo. x)=(h.»,R)forallxe £

(where x .5 used in the sense of a variable. which actually is not a member of Z).
This machine in the initial state gp scans the current symbol and whatever may
be the current symbol. moves liead one 5quare to the Right and halis,

Swch a machine is denoted by R.

Left Head Moving Machine
Similarly, if a machine in the initial state qq, scans the current symbol, and

whatever may be the current symbol, it moves Head are square lo the left and
then halt;

such a machinc is denoted by L.

A machine which goes on moving to the Right except when it meets a specific
svmbol say a e T, and on mceting a, the machine halts. Such a machine is
denoted by

>R a

Fipg. 1.8.10
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Or is denoted by

> R o#a

Fig. 1.8.11

Or is denoted by just
R,
(note in R, there is no bar on a).

Thercfore R, finds the occurrence of first a to the right and halts,

(d) Thus }{i denotes the machine, which finds the first non-blank symbol on the
ight.
In general, R- denotes the machine which while moving to the right skips all
a's and halts on finding a symbol different from a

(e} L, finds the occurrence of the first a to the left and halts. L denotes the

machine, which finds the first non-blank symbol on the left and halts.
In general L- denotes the machine which while moving to the left skips all a’s

and halts on finding a symbol different from a. -On scanning the symbol a, the
machine halts. Such a machine may be denoted by either of the following three
notalions:

OR

>L a >L ofa

Fig. 1.8.12 1.8.13

Using the above notation and basic machines we provide notation for more
complex machines.

Example 1.8.3

>R —Z— R denotes a machine. which in the initial state moves the Head one
square to the Right and halts if the new symbol being scanned is nor 4. However, if
the new symbol being scanned is a then, the Head moves Right once more.

Remark 1.8.4

(i) We should note the difference between R, and Ra (and similarly L, and La)
R, denotes the machine that finds the first a onhe Right. But Ra denotes a
machine which first inoves to the right and then writes *a’ in place of the new
symbol being scanned. Further,




(ii)  the sequence like R a R b L denotes a combinaiion of tive machines, the first of
which moves the Head to the Right and haits; then sécond machine writes an
in the current cell and halts; then the third machme again moves the Head to the
Right and halts; then the fourth machine writes b* in the current cell and halts;
and then finally the last machine moves the Heud to the Left and halts. Thus, if
m:llally the Tape configuration Is as follows:

......... ¢c ba bd#acbé# ...

Then after al] the actions of the above-mentioned combined machine, the Tape
configuration will be

c baa b#fachi

However, the combined machine R,R;, L when starts in the same Tape
configuration, viz.,

c ba bd#acb#
will yield
cbabd#acb#

R,Ry L first searches for the next a to the right on the Tape through the machine R,.
Then R, machine halts but R, machine initiates and moves to the first b on the right
and halts. Then the machine L initiates and moves the Head one cell to the Left.
Another Short-Hand: We use the notation

r

X,z
— gyt
to denote that when the current symbol is any one of x, y or z then the machine should
proceed in the direction of the arrow with r representing the symbol which is actually

present

For exampie, M is the composite machine

L——> } —>

Fig. 1.8.14

and Tape configuration is
#cbade..

Then the machine M, first moves the Head to the Left, and it finds ‘b’ there and licnce
activates the machine wd, which writes d in place of b and halts. Thus the
configuration after M has executed and haited wili be

#cdade..

Using the shorthand notation introduced above, we describe a number of Turing
Machines. Some of thesc machines would be qulte useful in the construction of
more complex machines and hence wlil be given standard names.

Turing Machine
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Example 1.8.5
Sk The right-shifting machine. The machine takes an input of the form

fabec ba##

and relurns

##Habebak

{(with one extra, # on the left hand side)

First, we explain the strategy behind the construction of the machine Sg.

From the current position, we move to the cell on left and note the symbol over there.
And if it is not # then copying it in the cell ta the right of the cell of the noted element;

ie,weapply L —22% 4 RoL . The process is repeated unless the noted symbol o #.
The process terminates on encountering #, followed by moving to the Right and
writing # over there and then moving from there to the # on the right of given
sequence of non-blank symbols. We may further explain the meaning of the

expression
L—2** 5 RolL

p :
In the above expression L means, first move to the Left. Then —="—> means note
the symbol over there and call that symbo! o. If the noted symbol which we call o is

" not # then execute R o L. Otherwise take some other action denoted by a different

arrow, if any Else stop. Next R ¢ L denotes that first move to the right, write down
the symbol which was noted down earlier which we call o and then move left again.
Therefore Sg is of ¢the form

;

> L-—** yRol —!
L
R# - R,

Let us call execution of the following loop, starting with left-most L as one iteration.

v

L2 SR, ——

Then we explain the effect of cach iteration as follows:
Let us start in the configuration.

#abcba¥ #

Then after one iteration we reach {just before the beginning of the left-most L)
flabcbaa #

and afier next iteration we reach the configuration

. #abcbba #

Then we have '
#abccba #

Next, we have
#aabcba #

At this stage when Sg applies L the tape is of the configuration.
H#aabcba #




Therefore, the branch R# is taken up.
icweget
##abcba #

And, finally, when Ry is execuled, then we get the configuration # #abcba#.
Example 1.8.6

To construct the copy machine C which takes a string of the form #w# in the
initial state and gives, in the halt state, the configuration #o#o# where @ is a
string of tape symbols but not containing the blank symbol #.

First we explain how the proposed machine should work through an example and
side by side, be as given below give the construction of C. Let initiaily, we be in

the configuration :
#bacbecca##...

Step I Move to the # which is on the left of the sequence of non-blank symbols. In
other words we apply Ly.
Afer this step we would be in the configuration

Abacbeccad#... _
(i.e. first component machine would be L)

Step II Next we move right and note the symbol (i this case b) and replace it by #
and cross over all non-blank symbols and first # on the Right to reach the second #
on the right of non-blank symbols i.e. we have the configurations##acbcca# ¥

and we remember b also through o. _
We write this b in place of # being scanned, to get the configuration
##acbeca#b. Thisstep may be summarized as

R—Z=E 4 R, Ry
Step XXL. Then we should come back to the original position of b through Ly Ly and
write back b. Thus, we reach the configuration
#bacbcca#b#...
The machine comi:onent of Step 11l is given by
Ly Ly o
Tterative Steps

Now copying of next symbol (which is ‘a’ in this case) can be carried out by applying
the Step 11 followed by Step III once again.

Final Steps

The copying process should stop when.we encounter ¥, after a finite number of
repetitions of “Step 11 and Step 111, Al this stage we should move to the # which is
first on the right of the given string.

Thus the copying machine C is as given beiow:

> L, — R— 4R Rol, Lo
NE
R,

Turing Machine

4|

B T T Y P



Turing Machine and
Recursive Functions

42

To have better understanding, we consider the traces of some more iterations.

After second iteration of Step 1l and Step 111, the tape configuration is
#bacbcca¥bak#..

After 7 iterations we get

#bacbccafibacbeca#

As the copying machine finally scans the # following the copied part through the last
component Ry of the copying machine, is justified, in view ol keepiug the Head on the
#, which is to the right of all non-blanks.

Finally, we get the configuration

. #bacbeccad#bacbecad

Example 1.8.7

Design a Turing Machine that decrements one from a positive intger, using binary
representation for integers.

Sclution: In order to construct the desired machine, we consider some cases of Tape
configurations representing the binary numbers before and after subtraction of 1.

Case (i) When the given binary number is represented on (he tape in the form
# Xy ... % 1 E

where x; = | and x;may be O or 1 i =2, 3, ... k,then after subtraction of 1, the
representation of the number becomes

#x)..x.08%
requiring the change to only the right-most bit.
Case (ii) When the given binary number is represented on the tape in the form

#Xh vaey Ak 1 OE
then after subtraction the binary number representation becomes

#X[ v X 01 ﬁ‘
requiring the two least significant bits to be reversed.

Case (iii) When the given binary number is represented on the tape in the form
Axp..%l 00.. . 0# :
i zeros

The number after subtraction of | is given by
#xp..%0 L1701 111 %
iones

Thus100 ...0 isreplacedby 011111

i zeros i ones

Thus in case (1ii}, which is a generalization of case (i1), each of all the continuous
zeros from right to left, is replaced by 2 1 and the 1, on the left of these 0’s is replaced
by a 0. ’

Case (iv) is apain a special case of case (iii}, in which the given binary number is
represented in the form

S T m e e



. _ #100..0# ' _Turing Maxchine
then after subiraction of [ we get the binary number representation of the form . -

, Hol11111# N .
However, in our binary represen:ations, leading bit, L.e., left-most bit is atways 1.
Therefore, we need to delete the leading 0, by shifting the string
‘01111114 totheleftsothatweget #111111#

The process of subtraction of 1 from a 'binary number may now be summarized
ag follows: ) ’

Step I: The machine starts in the following configuration # # x; %a .... X2 # where
xy=landx; =0orl fori=2,3,... :

Step II: In view of the above case analysis, we attempt to find first 1 while mﬁving,
from right to left and changing each of the 0 on the way to a 1. Acd when the Head
scans the first 1, we change this 1 to a 0. This part of the machine may be represented

-
e

Wy
Where W; denotes ‘write i' which can also be denoted by just i, ie., the above
diagram may be denoted as: s

v . |
L— 1
4o
0

Step III: Next step is to remove the leading zero, if any, by shifting the rest of the
binary string to the Left. This situation may occur if the initial tape configitration is

#100..0%
resulting in the configuration

#011..14

In order that the representations is appropriate, having finally the most significant bit
as 1, we shift the rest of the string to the left so that finally the tape configuration is of
the form ' :

#1118

In order to execute Step 111, we use Ly so that configuration becomes
#otl.. 14

Then move right and check the bit. f the bit is a I then we move to right to the next #
through Ry. If the bit is a 0, then we execute the following steps:

T T ETT T s o e m e
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Step I may be summarized as the machine

Cuase LI (i) Write a #f over 0 Lo pel

#i
Then we use 5 so that we get#1 | ...

11..1%

— |3

]
'L
™.

T~~~ e

L,R—>R,
lo
|

v

48,

Combing the machines of Step I, Step 11 und Step 11l

LL g _

i !
.
|

bl

L,R—5R,
Lo
#S,

Ex.9} Construct the machine 8, which transforms a string #a# o o#, i.e., shifts
each element of @ one position to the Lefi. i

Ex.10} To construct a Turing Machine which simulates a function
[ % s.t. -
foel ie (i.e., ® is of the form w = a, a; ... 3, where a; € ) :
Then f{p) =0 »
i.e.if w =a), a3, ... a, then finaps the configuration
74 a8 ... 3 & to the configuration
#ajgp..yam..ogl

Ex. 11) Design a TM that checks for palindroines over an alphabet {c, d}. In other
words, if ¥ = {c, d} and w € X', then the TM returns y for *Yes’ if w = w," and
retorns N for ‘No’ if w = wk,

1.9 SUMMARY

In this unit, after giving informal idea of what a Turing machine is, thz concept is
formally defined and illustrated through a number of examples. Further, it is explained
how TM can be used to compute mathematical functions. Finally, a technique is
explained for designing more and more complex TMs out of already designed TMs,
slarting with some very simple TMs.



1.10 SOLUTIONS/ANSWERS

Exercise 1: The transition diagram of the required TM is as shown below:

s

[- T4 £ %

- T TTT——
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Fip.1.10.1

— -

The required TMM = (Q. Z, 7, 8, qo, h) with

Q - {qna a1, h}

Z={a, b} and I'={ab,#}. :
The next move function 8 is given by the transition diagram above. If the input string
is of even length the TM reaches the halt state h. However, if the input string is of
udd length, then TM docs not {ind any next move in state g, indicating rejection of the
string.

Exercise 2: The transition diagram of the required T™M is as shnwln below,

Wb R afa, K

— @000
\/

bR
Fig. 1.10.2

The required TM M = (Q, Z, T, 8, qo, h) with

Q = {qn) qi, qu h}

Z={a,b} andI'={a b, #}.

The next move function is given by the transition diagram above.

The transition diagram almost cxplains ihc complete functioning of the required TM.
However, it may be pointed out that, if a string is not of the required type, then the
blank symbol # is encountered either in state qo or in state g, or in state g,. As there is
no next move for (qo, ), (q;, #) or Q(qy, #), therefore, the string is rejected.

Exercise 3: The transition diagram of the required TM is as shown below:
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The required TM M =(Q, Z, T, 8, go, h) with

Q = {90, 91, 92, 91, G4, 54 Q6> g7, 1}
={a, b,c} andI ={a,b,c, A, B, C, #} & is shown by the diagram.

The design strategy is as Il‘ollows:

Step I While moving from left to right, we find the first occurrence of a if it exists..

- If such an a exists, then we replace it by A and enter state q; either directly or after

skipping b's and c’s through state q..

In state q;, we move towards lelt skipping over all symbols to reach the leftimost
symbol of the tape and enter state gs.

In qs, we start searching for b by moving to the right skipping over all non-blank
symbols except b and if such b exists, reach state g,.

In state q;, we move towards left skipping over all symbols ta reach the lefimost
symbol of the tape and enter ge.

In qg, we start searching for c by moving 1o the right skipping over all non-blank
symbols except c and if such ¢ exists, reach stale qa.

In state q;, we move towards left skipping all symbols to reach the leftmost symbol of
the tape and enter state q,.

If in any one of the states qu, s or gs no nexi move is possible, then reject the string.
Else repeat the above process till all a’s are converted to A’s, all b’s to B’s and all ¢'s
to C's.

Step II is concerned with the restoring of a’s from A’s, b's from B's and ¢'s from C’s,
while moving from right to left in state g; and then after successfully completing the
work move to halt state h,

Exercise 4: The Transition Diagram of the TM that recognizes strings of the form b"
d", n 21 and designed in the previous section is given by the follnwing diagram.

A0, I
vk, 1L

~
ber, b ot 1. b, L
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o) et
o/, T
Fig. 1.10.4

Exercise 5: The transition diagram of the required TM is as shown below.
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The required TMM = (Q, £, T, §; qg, h) with - Turing Machine
Q = {ql:h qi> 9z, 43, G, 95, h}

LZ={a,b} andT'={a b, #}.

The next move function is given by the transition diagram above.

The proposed TM functions as follows:

(iy

(i1)

In state gg, at any stage if T™ finds the blank symbol then TM has found a
palindrome of even length. Otherwise, it notes the symbo! being read and
attempts to match it with last non-blank symbol on the tape, If the symbol is
a, the TM replaces it by # goes to state q,, in which it skips all a’s and b’s and
on #, the TM from q, will go to g, to find a matching a in last non-blank symbol
position. If a is found, TM goes to qs replace a by #. However, if b is found
then TM has no more indicating the string is not a palindrome. However, if in
slate q; only #'s are found, then it indicates that the previous ‘a’ was the middle
most symbol of the given string indicating palindrome of odd length.

Similar is the case when b is found in state gy, except that the next state is gz in
this case and roles of a’s and b’s are interchanged in the above argument.

The fact of a string not being a palindrome is indicated by the TM when in state.
qa the symbol b is found or in state g, the symbol a is found.
The initia] configuration is qpbabb.

The required compatations are:

@

(iD)

(iii)

qobabb # q;babb } #agq.bb | #abbq,# | #abqib | #agsb¥# | #qeab | qs#ab
F #qoab | #itq:b | #bq,# } ##qb,

As there is no move in state q; on b, therefore, string is nat accepted.

The initial configuration is qobb. Consider the computation:

qubb } Hqsb | #bgy b #q:b# | qs ### | qo# | h#

(We may drop #'s in the rightmost positions).

The initial configuration is gebab. Consider the computation:

qobab | #qzab |* #aqub | #qsa #} qi# | #qe# | hH

{Note |* denotes sequence of any finite number of P).

Exercise6: The transition diagram of the required TM is as shown below.

Fig. 1.30.6
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" The required TM M = (Q,.Z, T, 8, go, It} with
Q = {QD; Q1 Y2, Q35 Qay (15; Qo _('I'h h}

“E={ab} andl'={a,b, #}.

The next move function is given by the transition diagraun above.

In the solution of the problem, we can deviate slightly from our canvention of plazing
the input string on the lefi-most part of the lape. In this case, we place # in the
Ieftmost cell of the tape followed by the input string. Thercfore, in the beginniny: in
the initial state qgo, the TM is scanning # in stead of the first symbol of the input.
Before we outline the functioning of the proposed TM let us know that for the input
string aab is placed on the tape as

[ # j a | A [b [ # [ # [ wxe A
and for the input, output on the tape is of the form

O 1o la 1o [# o [« [o T8 7 [ _ ]

Outline of the functioning of the proposed TM

The TM in state q, notes the leftmost a or b, replaces it by A or B respectively and
copies it in the next available # (the first # on the right is left as marker and is not
taken as availabl2). If the svmbol in the state g, is a, then TM while skipping symbaols
passes through state q; and reaches qs. However, if the symbol in state q, is b, then
TM while skipping symbols passes through state q; and reaches state qs. Then TM
copies the symbol and reaches the state qs. . Next, TM starts its leftward journey
skipping over a’s, b’s, A’s, B's and # and meets A or B in q;. At this stage, TM gozs
to state q;. Then repeats the whole process until the whole string is copied in the
second part of the tape. ' :

B, in this process original string of a’s and b’s is converted to a string of A’s and
B’s. At this stage TM goes from q, to state qg to replace each A by a and each B by b.
This completes the task,

The Coﬁiputation of the TM on input aab

The iniiial confiouration is gp#abb. Therefore, the computation is
qoffabb | #qabb } #Aqyab
F #Aaq;b + #Aabq#
| #Aab#qs | #Aabqs#a
_ } #Aabgebia
| #Aqeab¥a | #geAabia
| #Aqab#a
(At thizipoint whole process is repeat and, therefore, we use }, representing a finite
number of 1)
F* #AAqeb#Haa
' #AABgqgb#aab
At this stage TM enters state q;.
I #Aqr;Ab#Haab
L #Hg,AabHaab
b qs#Aab¥aab
b h¥aab#aab

Exercise? : In respect of the design of the TM (Q, Z,T, &, Qo h), where 2 ={1}
1, #} where we made the following observations:

Observationl: General form of the tape is

R e e




There are three significant positions of #, which need to be distinguished viz right-
most # on left of I’s, middle #, middle # and left-most # on the right of I's. Therefore,
there should be change of state on visiting each of these positions of #.

Observation2: Initial configration is

do

and as observed above
5 (0o, #) = (qu, #. L)

The following forms of the tape

and
EAER |
T

q
guide us to moves

8 (qu, 1) =(q2 #, L)

change of state is essential else other I’s will also be converted to #’s,
8(q), #)= (hal, % N) '

Observations3: The moves are guided by principle that convert the lefi-most 1to # on
the right side the corresponding right-most [ to # on the left-side

8(q» 1) = (@ LL)
8 (@, #)=_ (9 #, L)
3(gs 1) = (q, LL) .
8(q, #) = (95, # R)

(We have reached the right-most # on the left of all I's as shown below)

ENE EXR R
T - i

Qa
If we have configration of the form

[# [#] Ex

qa
then it must have resulted from initial configuration in which m < n represented by

say
i [ [+ (v [ v T# |

Therefore, we must now enter a siate say q; which skips all I's on the right and then
halts

Turing Machine
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Therefore

&(q, %) = (g7, # R}
8(an) = (97, LR) -
8( g #) ( hal, 7. N) )

Next, we censider 6 (Gey, D

5(‘]4- ]) = (QS.t'-R)
{state must be changed otherwise, all I's will be changed 1574 v)

8{q5.1) = @ LR) ]
8(qs,#} = {qe. 7 R) _ _ r
{(the middie 3 is being crossed while moving from lefi 0 right)

5 (qﬁ: h - fCIs- I RJ

50" = (qo.#,N)
{the left-most # on right side is scanned in gg to reach 9o S0 that whole process may be
repeated again.)

—_——

Summarizing lhe above moves the transition table for & function is aiven by

| 4 i

0 (g, 4 0D
qs (g #, L) Chalt, #,1) |
9z (95, I, L) (g3, % L) L
93 {q:. . L) (qu. 4, L) ‘.
94 ("-lh ¥, R) (Q‘h #, R] .
Qs fqs. I, R) (g6, #, R)
9s (9¢. 1, R) (g, # RY
G2 (g7, 1, R) (halt, # N)
Hal - -

Exercise8: By our representation convenrions. the initial con figuraticn is as follows

(][ Trad=l .
7 :

Qa

afs
[fn is even, then f(n)=0 which further is represented by final contiguration

ENRENN
1
halt

IEn is odd, then f(x} =1 which is represented by fn) = | which is represented by a
final configuration ot the form

(# It [# [ |
T
hale

The strategy of reaching from initial configuration to a final configuration is that after
scanning even nuinber of 1’5 we enter siate ]z 2nd atler scanning odd number of ['s,
we enter slate q, and then lake appropriale action, Jeading to the following (partial)
definition of transition funetion §:



8{(qo,#) = {(qu M L) . Turing Machine
& (qz, I) = (‘:II- #) ]-')

8(q#) = (halt,#,N)

5 (ql) I) = (qZ! #1 I-‘)

8@L#% = (g, #%R)

8 (Qh #) = (halt) Il ?-)
For the transition

8 ( gu &) = (q;, &, m), the sequence of actions is as follows: First a, is written in the
current cell so far containing a,. Then movement of tape head is made to left, to right
ar ‘no move’ respectively according as the value of m is L, R or N. Finally the state
of the control changes to g;.

The transition function & for the above computation is

5 # 1

9o (qh #SL) (qh #’ L)

qu (s, #, R} (9 #,L)

G| (halLtAN) | (gL

qs (halt, I, R) -
halt - -

The students are advised to make transition diagram of the (partial) function
defined by the above table.

Exercise 9: The desired machine S is given by

> L, » R—' 3> LoR __,

L #
L#

Exercise 10: Hint: The machine CS, obtained by composing the earlier designed two.
machines C and §, is the required machine.

Exercise 11: The proposed design is broken up into a number of the following steps:

" Step It is to mark the left end of the tape by writing a non-blank characier say d in lhe
left-most cell after shifting the given string to the Right
Thus we apply Sp which transforms the tape configuration.
#wd with @ ¢ £*
to the configuration
Hdow #

And then we write d in the [eft most cell so that tape configuration becomes
d f#

And the component TM for Step 1 is given by Sg Ly L d.

Step IL: In order to move to the feft-most non-biank symbol of the original string,
apply R 1o reach the # which is to the left of the leR-most non-blank symbol.

Step 1I1: The folowing moves are repeatedly applied:
(i)  Apply R 10 move to the left-most non-blank. The current symbol is read as rand
.then replaced by #. Then this ris attempted fo be matched with the right-most
' 51
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non-blank symbol. The right-most non-blank symbol is reached by applying
RyL. Thus total machine component of Step YII (i) is-given by # R,L.

(i) At this stage one of the possibilities is that the symbol currently being
scanned is same asr.

[n this case the symbol is replaced by # and then the #, if any, to the left of non-

blank part is reached through L..
Whole process is repeated.
The TM component of the part discussed so far, Step Il is of the form

|
Rt R HF

At some stage, either of the following three cases happen.

(a) the tape contains string of #'s only,
(b) only one non-# symbel is left on the tape.
{c) right-most non-# symbel does not matchr.

Out of these three cases, in the first two cases, the given string is a palindrome and
hence the tape configuration,

Ta Ta. TF ] Or [d (7. %8, ]

needs to be replaced finally by

[# __ [y [#

In the third case (c } above, at sore stage the tape may be of the form
dA## B ... b## ...H

In this case first all non-blanks need to be replaced by blanks and then final Tape
configuration should be

HN#

First we discuss the cases when the string is a palindrome and hence we need to
replane the configuration

d#.. # OR d#. . #ré. &

. {In the configurations Head is scanning # or) by the configuration

Hy#

In such cases at some stage, the current symbol is # or r, some non-blank symbol .

Let us first consider the case when head scans # (i.e, case of even length palinidrome)

We move to left-most symbol d through L- , replace d by # then, move to the Right

to write Y in the cell under the Head and finally move tg the Right. Thus the TM
compoenent to handle this part is given by:

lu
L; #RYR

after R component of the component TM of Stage I1.

Next we discuss the case when the initially given strmg is a palindrome of the form.

Habcbat




for which, after 2 number of moves, the following configuration is reached: _ Turing Machine
dé#dcaed

Then ¢ is replaced by #. While execating R ——""—# R, part of the following
component of the TM of Step 111

R—( 4R, L—#L,

leads to the configuration d # # # # # # # by replacing c by # and moving to the next #
on the right. Next executing L of L —2—>#1L, takes us back to the configurations d

##8 # # # #, where in the case of even palindromes or for all states except last for odd
palindromes, we expect under the Head at this stage, the previously noted symbol. But
in this case it does not happen, because # is present in stead of the expect symbol ¢,

Therefore the part —— # L, is not executed. :

Therefore, there is an accepting branch # from L.. Afterward, actions are similar as in
the case of even palindrome discussed above.

Combining the two cases we pet the following component of the TM which
correspond to the two cases of acceptance as Palindrome of the given string:

RL:".’—_,#R,;L’—W#L, :

¥ J#
L #RYR

Case (iii) When the given string is not a palindrome and we have already reached a
stage where the corresponding positions do not have the same lettepe.g.

T TTITTTT e — —

H K ]
ditagd ccga#
in which after having executed
R—22 4R, L2t 4],

once completely and only upto —r=* ¥Ry L in the second round we find a *c’
(instead of expected ‘b’ )
~.at the stage to the component R —=%— -R; L we add

anotherarct=ror #

{in addition to the arc ——> when the pair of letters in corresponding positions
match) as shown in the lower right part of the next diagram.

Action-te-be defined once a non-palindrome is recognized: Replace all non-blanks by
blarks so ¢hat thetape assumes the configuration.
Cod#.. B
which finally through a series of actions assumes the form
ANE

Coming back to the latest non-accepting configuration, the Head is scanning a non-
blank (in our example ‘¢ "), we replace it by # and move to the next non-blank (if any)

on the left-side, i.e., apply L; . Thus application of L. # is repeated as Jong as there
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are non-blanks available on the tape. Also, as alt non-blanks are continuous,
therefore, in stead of # L;, we may take only # L. As all non-blanks are continuous,

therefore, we reach # only when the configuration is of the form d # #. This
configuration is to be replaced by
#N#

The sequence of actions required for the final configuration is L_#RNR.
After combining all the above sub-machines, we get

>S,L,LARR —————» 7 #R, L

r » L,
L;#RYR <——l #O #
#l

Ly ¥RNR
- Fig. 1,10.7
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2.0 INTRODUCTION

For the time being, let us concentrate on the nitty-gritty of other. possibly
easier, ways of designing TMs and viher related issues. and feave the
issuc qf self reference for some later units.

The essence of the discipline of Theory of Computation is to characterize the
phenomenon of computation in terms of formal/mathematical concepts like set.
relation, function, etc. Tor this purpose, the discipline incorporates study of a number
of approaches to. and models and principles of,” computation. Three approaches to
computation included in the curriculum are:

(i} Automata
{ii) grammatical and
(iii) recursive function.

Various approaches to computation are equivalent in the sense that to each model of
computation obtained through one approach. there is a (computationally) equivalent
model of computation through another approach.

We initiated our studies with Finite Automata and Reclar Grammars and established
equivalence of these models. However. thesc models are found inadequate to capture
the notion of computation. in the sense that even a simple language like {x" y": neNj
cannot be captured/computed v either of these models. Then. we studied more
powerful models viz, Pushdown Automata and Context-Free Grammars and
established equivalence between the models. Agaii, these models are found
inadequate.

-
In the previous unit, we introduced still more powerful ;model of computation viz
Turing Machine (TM) and mentioned the important fact that that TM model is
conjectured 1o be the ultimate (formal) model of computation.

1

In this unit, we discuss a number of important issucs abrut TM. First afall, we
mention a number of extensions of the standard TM introduce. ‘n the previous unit.
These extensions, though apparently are expected to provide more ¢ vwerful models,
yet give only models, each onc of which is equivalent to standard TM. The fact of
equivalence of various extensions o' TM support the contjecture mentioned ahove.
The proofs of equivalences are beyond the scope of the course.

** Godel. Escher, Bach: An Eternal Golden Braid By Douglas R. Hofstadter, Purnguin Books (1979)

Tortoise: Oh, how clever, |
wonder why [ never thought of
that myself. Now tell me: is (he
following sentence self-
referential? Ts Composcd, of
Five words. ™ is Composed of
Five Words.

Achilles: Hmm._. [ can't quite
tell. The sentence which ou
Just gave is not reallv aboul
itself, but rather avout the phrose
*is composed of five words™.
Though. of course. that phrase is
parl of the senlence

Torteise: So the sentence refers
to some part of usclf — so what?
Achilles: Well. wouldn't that
qualify as sclf-reference. ton?
Teortoise:. In iny opinzcn. thal is
slill a far crv from tuc self-
reference. Butdon't worry 100
much aboul these ricky mallers.
You'll have ample time to think
about them in the future.

Hofstadter™’
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Next, we discuss Universal Turing Machine (UTM), an equivalent of general-

* purpose computer; The significance of the study of UTM lies-In the facts:

(i) A single General Purpose Computer can be used to solve any problem, if at all |

the problem is solvable by some computational method.
(i) In order to soive a problem by T™M model, unlike general purpose computer,
we are required to construct a new TM for each new problem.

Thus, a single UTM can be used to solve by TM models any solvable problermn.
Next. we introduce langnages associated with TM and discuss briefly properties of
these languages.

Though, some of the books that have appeared in the recent past in the discipline, do
not talk of Chomsky* Hierarchy of languages; we, for the sake of exhibiting complete
parallel between the automata and grammar approaches, just mention Chomsky
Hierarchy and define grammar models of various types of languages discussed under
Chomsky Hierarchy and mention equivalences of these languages to appropriate
automata

2.1 OBJECTIVES

After poing through this unit, you will be able:

to discuss various extensions of standard Turing Machine;

to tell that each of these extensions of TM, is just computationally equivalent
and, is not properly more powerful than standard TM;

to describe the structure of Universal Turing Machine (UTM);

to explain how UTM can be used as a general purpose computer;

to state and prove some of the properties of Turing Acceptable and Turing
Decidable languages; and

to define phrase-structure grammar and to tell that phrase-structure grammar

model is equivalent to TM model.

2.2 EXTENSIONS-CUM-EQUIVALENTS OF
TURING MACHINE

The Turing Machine, as defined in the previous unit, will be referred to as siandard
Turing Machine. In the standard Turing Machine, the tape is semi-infinite and is
bounded on the left-end, however, the tape is unbounded on the right side. In this
section we consider some extensions of the standard TM.

The extensions of Turing Machine considercd are:

(i) The tape may be allowed to be infinite in both the directions

Fr . ] -

(ii) There may be more than one Head scanning various cetls of the tape. Two or
more Heads may simultaneously read the same cell or may attempt to write in

the same cell,

(iii) There may be several Tapes instead of one only, each Tape having its own
independent Head.

{iv) The Tape may be k-dimensional, k 2 2, instead of only one-dimensional.




(v} TFora given pair of current state and symbol under the Head, in stead of at most
one possible move, there may be any finite, possibly zero, number, of next
moves (This madel is called Non-Deferministic Turing Machine.).

Remark 2.2.1

In all the above-mentioned exten: :ons, it is invariably assumed that only finitely many
cells contain non-blank symbols. All other cells are blanks.

Remark 2.2.2

Each of the above-mentioned extensions, being a generalization of the standard
Turing Machine, may appear to yield a strictly more powerful model of computation
through automata approach, yet it has been proved that each of these models is just
equivalent to and nof strictly more powerful than the standard TM model of
computation. '

It has been already mentioned in one of the previous units that it is conjectured that
(standard) TM is ultimate model of computation. )

Remark 2.2.3

Like the standard TM, each of the extensions of TM enumerated above, is formally
defined as, or some variation of| a sextuple of the form (Q, X, 8, qo, h), where Q, Z,
r goand h stand, as in standard TM, for respectively set of states, set of input symbols,
set of Tape symbols, initial state and halt state. :

However, the extensions are distingnished from each other and from the standard
TM through different definitions of next-move relation & and of configrations for
each of the extension. Therefore, in the following, most of the time, we discuss the
extensions only in terms of definifions of d and of configration, .

2.2.1 Extension (i):

Two-way (infinite tape) Turing Machine

Like standard TM, in this case also, the next-move is given by & as a partial function
fromQxl 10Qx [ x{L,R,N} .

The following three points need to be noted in respect of configrations of Two-way
Turing Machine:

(iy  Configuration/Instantaneous Description:

In standard TM, if there are a number of lefi-most positions which contain blanks,
then those are included in the configuration, e.g., if the one-way configuration Tape
is of the form

#f#abi#cdefdd.#

dz
then the configuration in the standard TM is wriwen as:
fqe. # #ab ficdel)
whore we neglect all the continuous sequences of right-hand blanks.

However, in the Two-way infinite Tape TM, both left-hand and right-hand parts of
the tape are symmetrical in the sense that there is'an infinite continuous sequence af
blanks on each of the right-hand and left-hand of the sequence of non-blanks.
Therefore, in the case of Avo-way infinite Tape, if the above string is on the tape then
it will be in the form

Turing Mnchine-
Misecllany
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LA ...#....##a’b#ch el E. 4.
q:

and then, the configuration for Two-way infinite tape TM will be slightly different
as given below:

(4 a b #cdeh

Note the &'s to the left of a are missing here.

(iiy No Hanging (or No ceasing of operations without Halting)

In this case. as there is no left end of the tape, therelore. there 1 no possibility of
jumping off the left-end of the Tape. Thus, il'the machine has the configuraZion
(9.ad..)and 6 (q, a) = (p, b, L), thewr new configuration is (p, # b d ...) instead of the

hanging configuration.

(iii) The emplty Tape configuration: When at some point of time all the cells ot
the Tape are #’s and the state is say q, then the configuration in Two-way Tape may be
denoted as:

(a, #)

where only the current cell containing # is shown in the configuration.

Rest of the notations and definitions given in context of standard TM will be used for
two-way Turing Machine, including the definition of the nexi-move (partial) function
B.

Despite the fact thar, it is possible in the new model of computer te move left as far as
required,; as mentioned earlier, the model does not provide any additional
computational capability.

2.2.2  Extension (ii):
Turing Machine having R heads, k 2 2, with only oneTape

In arder to simplify the discussion, we assume Ml there are only two Heads on the
Tape.

The Tape is assumed 10 be one-way infinite. We explain the involved concepls with
the help of an example.

Ler the contents of the Tape and the position of the two Heads, viz H) and Ha, be as
given below:
'##aTb chde T##.. G ()
K, in

Further, ler the siate of the TM be q.

Then one method of defining the configuration of two-Head onc-way Turing
machine is .
{the state, the Tape description ay if Hy is the only Head of TAL, the Tape description

Lus if Hyis the only Head of TA4).

Therefore, the configuration in the case of (*) given above will be
{q,% #¥abecWdefitdtabeidel)

The Move function of the Two-Head One-way Turing Machine may be defined as
& (state, symbol under Head 1, Symbio! under Head 2)

= (Newr State, (Sh MI), (S}! M!))

— ey —




Where S, is the S)'fmbol to be written in the cell under H;, the ith Head and M; denotes

the movement of H;, where the movement may be L, R or N and further L denotes

movement to the f¢ff, R denotes movement to the right of the current cell and N

denoles ‘no movement of the Head'

Two Special cases of the 8 funct:on defined above, necd to be considered:

LS

(i)  What should be written in v current cell when both Heads are scanning the
same cell at a particular time and the next moves (S, M)), (82, M) for the two

Heads. are such that S, # S; (i.e. symbol to be written in current cell by Hy #

symbol 1o be written in current cell by Ha)?

In such a sitvation, a general rule may be defined, say, as “whatever is to be
done by Hy will take precedence over whatever is (o be done by H;".

(i) The Hanging configuration: For two-Head One-way Tape, a configuration

shall be called

Hanging if

5 (q, symbol under H,, symbol under Hy)
= (p, (81, My), (82, M2))

is such that either

(a) Symbol under H, is in the lefi-most cell and M, is L, i.e., movement of H,

is o be to the left. OR

{b) Symbol under Hz is in the lefi-most cell and M, is L, i.e., movement of H

is to be to the left.

Other concepts and issues in respect of Two-Head One-way Tape may be handled on

the similar lines. The above discussion can be further be extended easily to the case

when number of Heads is more than two.

Again, as mentioned earlier, the power of the TM is not enhanced by the use of extra

Heads.

2.2.3 Extension (iii)

Multi-Tape Turing Machine:

In stead of one Tape, we may have more than onc tapces, each tape having its own
independent Head. To begin with, we may take each of the tape as one-way infinite

tape, bounded on the left.

Again to facilitate the discussion, we initially consider the case of only two tapes:

Configuration/Instantaneous Description:

We explain the concept of configuration for Turing Machine with two Tapes with an
example. Let the contents of the tapes and positions of the Heads be as follows:

| #

| #

Tape 1: L I'a v Jc. |d | e

Tape 2:

FU H g d f #

and the state of the Turing Machine be q.
“Then the configuration may be denoted by
(q.(#liabcede)(efad)

Turing Machine-
Miscellany
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(inner pairs of parentheses are used only to enhance readabilit Y, not requirced
otherwise)

The next Move function 8 may be defined as

8 ((q, Ty, T2))

={(p, (81, My), (S3, My}

where q denotes the current state, T; denotes the symbol of the ith tape currently being
scanned by its Head. The symbol p denotes the next state; S, denotes the symbol to be
written in the current cell of the ith Tape in place of T;. M, e{L. R, N} denotes the
movement of the Head on ith Tape.

Hanging Configuration in the case of Two-Tape, each Tape being one-way
infinite

The TM will be said to be in Hanging Configuration if there is a next move given by

& (ql Th TZ) = (P; (Sh Ml): (SZ| M?)):
where p, q, T;, §;, M;, are the notations explained above, with either

(i) T, being in the left-most cell of Tape 1 and M; being ‘Movement to Left’, or
(ii) T3 being is in the left-most cell of Tape 2 and M, being ‘Movement to Lefi"

The discussion can be further extended on the similar lines to k Tape Turing Machine,
where k>2,

The concept of k-Tape, k 2.2, with each Tape being semi-infinite, can be fin ther
extended when the tapes are allowed to be Two-way infinite. The notions for
configuration and Move function for such machines can be easily defined.

A very important application of the 3-tape Turing Machine model, which we are
going to discuss in Section 2.3, is in the design of universa! Turing Machine,
a sort of a general-purpose computer.

The design of k-tape Turing Machines for some of the functions like copying,
reversing, for verifying whether 2 string is a palindrome or not etc, can be much
more ensily carried out as compared to the design of the corresponding standard
Turing Machines.

Example: 2,2.3.1
Construct a 2-Tape Turing Machine, which retums # o o # for given input  # o &.
Solution: Let the input be placed on Tape 1 and Tape 2 may contain afl blanks, with

the Head of Tape 2 being on the left-most # so that the initial configration is as
follows: .

Tapel: [ # [w: [...]w] # | | # | |

i
Qo

Stepl: Move the Head of Tape 1 containing the input towards (he lefi most cell
through the following moves.




8 (ao. #, #) = (a1, (AL, (4, N))
5 (an # ,#)=(an, (#,L),(# N))

8 (qi.#,#)=(a (KR), % R))
where # denofes the same non-b. amk symbol throughout an equation.

After these moves, the configuration is as follows:

Tape |: #Hwi| w2 witt
T
' 17}
2:
Tape Hal 4——
T
q

where w; = # for i=1,2,-—~—, k

Step 2: Next, we copy the contents of Tape.1 to Tape 2 through

6(q21 gi!#)=(qz': (#:R)s (#)R))’ -
where # denotes the same non-blank symbol throughout an equation.

In other words through these k moves, non-blank contents of Tape 1 are copied in the
corresponding cells of tape 2. o

After k times executions of the above move, the configuration becomes

Tape 1: #wy Wg Wy i
T
qz

Tape 2:

P Fwy Wi Wy #
T
02

Step 3t At this stage we intend to move the Head of Tape 2 to the left-most #
without moving the Head of Tape 1

we introduce the moves:
5 (qls #1 #) = 6 (QJ. (#i N): (#'! L))
and :
8(qs #, #) = (@ (4 N)(#,L)
At the end of k moves the configration becomes

Tape |: ]I# [wiws wy | # | |
T
Qs
Tape =: i # w T Wi # ‘
El | wy l | ]
Q.

At this stage, when Head of Tape 2 is also scanning a3 we may enter a new state Q4
in which Head of Tape | does not move but Head of Tape 2 moves right so that-

Turing Machinoe-
Miscellany
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6 (Ch: #! #) = (qh (ﬂl N)$ (#! R)) . . e (*)

In state q4, each non-# symbol of Tape 2 is copied in the current cell of Tape [, and
then content of the current cell of Tape 2 is converted to # and both Heads r1ove to the
Right i.e,

5(as 1 #) = (e (F.R), (4, R)

Step 4: Finally the configuration with state qq is

Tape |
E | W Wl W eeee W | - # |
T
. Ya
Tape 2

| 1 # |
T

Q4
. 8(qs, ¥, #) = (Halt, #, #}
At this stage Tape I contains the required output.

Ex.1) Construct Two-Tape Tun:ing Machines for each of the following:

(i) Convert the input # w# into ¥ w# w#
(ii) Convert the input # w # into # w wh
(iii) Convert the input # w # into # w # w® #

where if W= W Wa-—--W; Wy
R

then w = wy Wy -———-- w2 Wi

Remark 2.2.3.2:

Again, it ias been proved that the power of the standard Turiing Machine is the same
as that of a Turing Machine with any finite munber of Tapes.

Remark 2.2.3.3:

The &-Tape version of a Turing Machine, with each tape being only one-way can be
further extended to a k Tape Turing Machine with cacly Tape heing o way infinite.
[t may again be noted that even with t!iis extension the computing power is the same
as is achievable with standard TM.

Next, let us consider

2.2.4 Extension (iv):

k-Dimensional Turing Machine:

Again to facilitate the understanding of 1he basic idcas involved, let us disciss iniially
only Two—Dimensionatl Turing Machine. Then these ideas can be casily generalized to

k—dimensional case, where k =2,

In the case of two-dimensional tape as shown below, we assume that the tape s
bounded on the fefi and the bottom.

troreme T T



Each cell is given an address say (i, iz) where iy is the row-number of the cell and i, is
the column number of the cell. For example, the shaded cell in the above diagram has

address {2,3).

Introductory Remarks in context of the Instantancous Description (ID) or
canfiguration:

A configuration of a two-dimensional TM at a particular time may be described in
terms of finitely many of the triplets of the form, (i1, 12, €) where for each such triplet,
(i1, i2) is the address of a cell and ¢ denotes the contents of the cell. Only these cells
are included in an ID, for which ¢, the contents, are non-blank symbols.

In the configuration or ID, order of the cells which are included in an ID, Row-
Major Ordering is to be followed, i.e., first all the elements in the row with least
index are included in the ID, followed by the elements of the row with next least
:ndex and so on. Within cells of each row, the cell with non-# contents and having
least column number is included first followed by the non-# cell wilh next least
column number and so on.

For cxample, if we have the following triplets in the ID
(Z!Sv C), (Olzvd)l (4)31 01 (315!g)l (O'B,Il)q

then the order of the triplets in the ID will be

(0.2,d), (0,3,h), (2,5,¢), (3,5.), (4,3,1)

After these introductory remarks, we define configuration and the move function
& etc.
Configuration: Letqg € Q,c € I'~ {#}.

i.e. cyis a non-blank Tape symbol.

Then a configuration at a particular instant is denoted by

(g, (Hi. Hy) (34, Tz €, i2h (jtdllscjlsjl)a covenn (Kiy Kazs Gty k@) coevernonnes ) ),
where each of &72 . Ciojae ----.... is non-blank and these are the only non-blanks on the
Lape.

Also, (H1,H2} denotes the location of the cell currently being scanned, i.c. the cell
under the Head.

Further. (i;. i2) precedes (;2) and (jyj2) precedes (ki kz) iv the row- major ordering,
i

i1 < j| < k|‘

and if i; =jy theni; <j;

orif §i= k¢ then ja<k: elc.

T uring Machine:
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- means the contents viz ¢ of the cell (i, iz) currently being scanned, are replaced by d

Example 2.2.4.1:

Suppose at a particular instant the contents of a Two-Dimensional Tape are as given
below and the state at that instant is q; and the cell being scanned is (3.2). ;

s T

0 - . >
0 1 2 3 4
Then the configuration / ID is given by
(qlv (3 !2)) ( 1'153')' (114: h)! (2:3ad); (4|3!b)l (59410)

The Next-Move l‘unctioﬁ 5: maps an elementof Q x 'to Qx [' x { L. R, U, D, N},
where L, R, U and D denote respectively * Move Left’, “Move Right’, ‘Move Up’ and
‘Move Down’, and ‘N’ denotes ‘No Move'. For example,

8 (Qh C) = (Cls id! R)

and the Head moves to the cell with address (iy, iz +1) if the address of the scanned
cell was (i, iz).

R ncmibral L L Bl i

The following cases need special aitention:
The cases are discussed only in respect of inclusion or exclusion of tripleis nd not
about movement of the Head.

Let 6 (q,¢)=(d, n).

Case (i) if c = # then (i), iz, #) does not occur among the triplets of the configuration
before the move. However if d ## then (i), i, d) will be added to the set of triplets in
the configuration.

Case (i) if c# # but d=# then (i, iz, ¢) occurs as a triplet in the configuration before
the move, but this triplet is dropped from the new configuration arising out of

5 (q2¢) = (d, n).

Case (iii) Whenc=d =#
In this case, there<is no change in the set of triplets in the configuration
& (ga2¢)=(d, n).

Case (iv) Whenc =# ,and d # #, tnen the triplets (i), d) replaces the iriplet (i1,iz0)
in the set of all triplets in the previous configuration to get the new configuration
5 (qz¢) = (d, n)-

Again, it has been proved that the computing power of the above-mentioned model
of TM remains the same as that of the standard TM.
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Next, we come to the most important extension of the TV, viz Misceliny.

2.2.5 [Extcnsion v:
Non-Deterministic Turing Machine. (NDTM)

An NDTM is like the standard TM with the difference as described below. In B
Standard TM, 1o eacl pair of the current state (except the halt state) and the symbol |
being scanned, rhere fs a unigue triplet comprising of the next state, unique action in 2
terms of writing a symbol in the cell being scanned and the motion, if any, to the right '
or lcfi. However, in the case NDTM, to cach pair {q, s} with q as current slate and s
as symbol being scanned, there may be a finite set of the triplets { (qi, si, m;) 1 1
=L.2,.......} of possible next moves. This st of triplets may be empty, i.e. for some
particuiar (q,s) the TM may not have any next move. Or alternatively the set {(q;, s,
mi)} may have more than one triplet, meaning thereby that the NDTM in the state q
and scanning symbols s, has the alternatives for next move to choose from the set

£(<q;. S N4) 3 of next moves.

It can be easily seen that standard TM is a special case of the NDTM in which for ;
eaclt (q.5) the set {(q, s, Jof next moves is a singlelon set or empty. - ;

In arder to define formally the concept of Non-Dctcrminis;ic TM (NDTM), and a
configuration in NDTM etc, we assume that the tape is one-way infinite.

For the extensions of the stundard TM, discussed sa far, we did not state the full

Jformal definition of each of the extension. We only discussed the definition only .
relative to the standard TM. Mainly we discussed configurations and partial move :
function & for cach of the extensions. However, in view of the significant though

small, difference in the behaviour of an NDTMs, we provide below full formal

definition of NDTM.

|
Remark 2.2.5.1: L

An important peint about the definition of NDTM nceds.to the highlighted. By the
definition of & which maps an element of (g, x) of Q x[ to a set {(qis x;, M) } means
that each element (g, X) of Q x I" has the potential of leading to more than one
configurations. In other words, there are various possible routes to a final
configuration from one configuration. However, during ene computation only
one of these possible vatues (q;, X;, M) will be associated with (q, x) through 8. But
we can not tell in advance which one out of the ordered triples from the set {(q;
Xp MI)}

This is why the adjective Non-Deierministic is used for this version of the T.M.
Remark 2.2.5.2:

The set {(qu, x;, M;)} associated with {q, X) under 8, may be empty, This means there
is no possible next move for (g, x), a situation that occurred even in the case of
standard TM and other versions discussed so far. This is why & was called a partial

function from Q x| (o Q xfx{L,R.N).
Remarlc 2.2.5.3:

In the standard TM and the versions discussed before NDTM, we allowed d as a

partial function to Q x [ x {L, R, N}. In other words, if a value under § exists

tor (q, x) then the value has to be unique, i.e, can be determined. Therefore, the

carlier versions are prefixed with the adjective Deterministic. The Non-

Delerministic form of cach of the earlier versions can be obtained by making suitable
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meditications 1n the corresponding definitions of & ele on the lines of modifications
suggested in the definition of NDTM from standard TM.

Remark 2.2.5.4:

Proper non-determinism means that at some stage, there are at jeast (wo next possible
moves. Now, if we are engage two different persons or machines (o work oul further
possible moves according to each of these two moves. the two can work independent
of each other. This means Non-Determination allows parallel computations. This
characteristic of Non-Determinism, also allows is further computations ¢ven if some
of the sequences of moves may be locked as there may nal be any next moves at somc
stages.

Definition: An Non-Deterministic Turing Machine
is a sextuple (Q, Z, I'. 3, q,, h) where

Q: Set of Slates

Z: Set of input symbols

I : Set of tape symbols

go: The initial state

h: The halt state and

5:Qx I Powersetof (Qx I'x {L, R, N})
The concept of a configuration is same as in the case of standard TM. But the

concept of 'yields in one step’ denoted by | — , has different meaning. Here one
m

confipuration may yield more than one configurations. .

We explain these ideas through a suitable example, which also demonstrates the
advantage of the Non- Deterministic Turing Machine over the standard Turing
Machine. The advantage is in respect of the relative case of construction of
NDTM.

Remarks 2.2.5.5

Before coming to the exaniple, showing advantage of an NDTM in solving some
problems; we need to understand properly the concept of acceptance of a iangiage
by an NDTM. First of all, let us recall below what is meant by ucceptance of a
language L by a standard TM M.

A language L is accepted by a TM M if each string o € L. is accepiabie by M.
Further a string o is acceptable M, if staring in the initial state qo of M, with & as input
on the tape of M, if we are able to reach halt state in a finite number of inoves, i.¢, if
8= 3,3 ... 4 € L fora; € Z, the set of input symbols of M, then

(ge.aj22...a)|-*(h, B)

Where f is astring of tape symbo! and tape head may be on any cell of the tape. A
characteristic feature of the standard TM, in this case, is that if there is to be a
sequence of moves from (gg, &) to a final state, than thal sequence might the unique.
However in the case of Non-Deterministic machines. the halt slate may be reached
through any one of various permissible sequences of moves. Therefore in this version

- a string ¢ over the set of input symbols of an NDTM is acceptable by an NDTM M, if

by at least one but by any one of the sequences of moves halt state is reached from
(qo. ©). Now we discuss the example showing advantage of NDTM over standard
™.




Turing Machire-
Miscellany

Example 7.2.5.6¢

Constru.:t an NDTM which accepts the language { a" b™: n=1, m =1}, i.e., the
languag e of all strings over {a,b}, in which there is at least one a and one b and
all a’s precede all b’s,

Solution: The diagrammatic representation of the required NDTM is as given
below:

Ty ———

In the proposed NDTM, as the motion of the head is always to the Right except in the ‘
Halt state. Therefore, R is not mentioned in the labels in the diagram below: |

where the label i/f on an are denotes that if symbol in the current cell is i then
conrents of the cell are 10 be replaced by J.
Formally the proposed NDTM may be defined as
M:{ {q[h qi, h}\ {a) b}; { 4, bv #}u 8, th }
Where & is defined as follows:
6 (qU'- a): {( qn, a, R)! (qh d, R)}
8 (qo. b)= empty
6 (qy. a)= empty
¢ (qls h): {(qh bv R)l (h! b! N)}
If the machine has no next move, then it halts without accepting the string.

Remarks 2.2.5.7:

Though we have already mentioned earlier on a2 number oceasions, yet, in view of
the significance of non-determinism in designing TMs camparatively more easily,
we again bring to notice that in the state gp on scanning symbo!l a, the TM may
move in any one of the two next possible states viz to qpafter moving the head to
the right or to q; (after moving the head to the right). And, if the TM is
implemented as a parallel computer then the computer can pursume
independently both branches initiated by {qp,a,R) and (g;,3,R)

Next, we consider another important variation: Final state Turing Machine Instead of
the halt state, TM may have a sct FF of states designaied as final states.

2.2.6 Final State Version of the Standard TM

On the lines ol the definitions of finite Aulomata and Pushdown Automala, we can
define (standard} TM also in terms of F, a set of final states, instead of h, the halt !
state. The only major differences between the TM with F and the TM with h are:

(i) The TM™, while being in a final state, can still have further moves, But in {alt-
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state version the TM can not move after reaching the Halt state. 1n the case of
Final state version a TM stops further operations only when there is no next
move at 8 time when the machine is scaming a symbol in sohe state. (I there
s no move and (he state of TM is a final state, then the string on the tape is
accepted. However, if there is no move and the state of TM is not in F, then
TM halts without accepting the string on the Tape.

(it) 1f when the TM is in a final state then the string formed by the contents of the
whole tape (excluding the continuous infinite sequences(s} of #'s), is
acceptable, irrespective of the.position of the Head on the tape. The situation is
similar to what we have in case of Halt state version of TM '

it can be shown that Final State version of TM is (computationally) equivalent to Halt
State Version of TM

With these comnments, we give below a formal definition of the Final State version
of TM

Definition: Turing machine (Final State Version)

A Turing Machine is a sextuple ( Q, v.[.8, 0. F)

where the various involved symbols denote various entities as follows:
Q . The set of states

z : The set of input symbols

I : The set of Tape symbols

dg : The initial state

F : The set of finial states and

5 is a partial function from Qx[ 0 @ x[ x { L, R, N}, with L, Rand N

respectively denoling move io the Lefi, move to the Right and No
move of the Head

The standard TM and all the extensions of standard TVt mentioned above can
also be defined in terms of Final State version of the Standard TM on the lines of
the above definition.

Ex.2) Constructan NDTM to accept the language
{a"b™ :n2l, m=0}

2.3 UNIVERSAL TURING MACHINE (UTM)

We know the general-purpose computer has the properiy that the same computer
system is used to solve all sorts of problems from different domains of Iuman
experience, provided, of course, the problem under considerarion is (algorithniically)
solvable.

However, from the discussion of Turing machines so far, it is observed that we have
constructed a new Turing Machine for each new problem to be solved.

On closer examination of the general-purpose computer, we find that the capabiliry
of the_computer in respect of solving any problem, is mainly based on the fact that
the program i.e., the description of the sequence of steps (to be executed by the
executing component of the computer) in sotae coded form alongwith the required
data, can be stored in the memory of the computer. Later, the control unit of the
computer reads the codes for the sieps, oge step at a lime in some order, decodes the
code which is read and the concerned executing unit is activated to execute the
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corresponding step. This process of reading of the code for a step, decoding the code T"ﬂ“gh;it:m“:;

and exectting is repeated till the code for final result is delivered to the memory of the
computer,

By following some similar method, even we can construct a (single) Turing
Machine, which can solve all sorts of solvable problems, Such a Turing Machine
is called a Universal Turing Machine (UTM). In order to construct a UTM, let us
make the following observations:

Observation I: A Turing Machine M designed to solve a particular problem P,
consists, apart from the description of the set of possible states and the set of possible
inputs etc, of mainly the description of the process in some coded form of a sequence
of steps required to solve the problem in the form of the move-function & Thus to
solve the problem P, using Universal Turing Machine, the process part invelving & of
the Turing Machine M, and the inputs, are expressed in the code (i.e. language) of the
Universal Turing Machine. This code of the process (for solving the problem) along
with the code of the input, is stored in the memory (i.e., the Tape) of the UTM. And
just on the lines of the control unit of 2 general-purpose computer, the control unit of
UTM. reads the codes for steps, one step at a time, decodes and executes the code for
each step, until the code for the final result is stored on the Tape of the UTM.

Observation (I[): A Turing Machine M designed to solve a particular problem P,
can essentially be specified by.

(i)  Theinitial state say gow of the Turing Machine M :

(i) The next-move function 8, of M, which can be described by the rules of the
form: if the current state of TM M is q, and contents of cell being scanned
are ajthen the next state of M is au, the symbol to be written in the current
cell is 2 and nove m¢of the Tape Head may be :To-Left, To-Right or None.

Thus. each of these rules for a particular TM M can be specified by quintuples aof the
form (a;, 2, Qu, &, my). And hence the next-move function 8y, for machine M is

completely specified by the sel.
{(q.2.q 2. m):q;, q; €EQui aja, € I w: m; € { To-Left, To-Right, None} }

Process part of the TM which is defined by the set of alt moves is given by the
above set. : '

Observation 3: Next the question that arises in context of the construction of
Universal Turing Machine. is about the number of distinct states in UTM and number
of distinct inputs/Tape symbols required in the UTM, so that it can solve any solvable
problem.

As UTM should be able to simulate each Tuving Machine, therefore, it may appear
thal number of distinct states and number of distinct Tape Symbols in the UTM.
should be at least as much as is possible in any TM. because UTM may be required to
accomplish the task of (i.2. 10 simuialc% any TM. However, by proper coding
technigues we may use only Iwo symbbls ta represent set of symbols. This will be
shovwn to be true in a short winle Of Course; if there are enough symbols say for
states, then the same symbals nay be used for ditferent Turing Machines. if required.
Just by renanung the states for different Tls.

Though, for cach TM. the number of states and the number of Tz;e Symbols. each is
[inite for each TM, yet therc is no upper bound on eaclt of these numbers.

Therefore, we assume each of the set of states,
Qe 1 die Gaenneee i

and the set of Tape Synibols is

rm_— {"\t.ﬂ.:.ﬁ; ......... }

is conitnbly infinite

60!
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The Head-Move set M of the moves of head of course, has only three elements viz,

‘l.e.,

Hu = {L, R, N}
Where L denotes ‘Move-Left’, R denates *“Move-Right” and *N’ denotes *No Move of
the Head’

Observation (IV):

Each of the sets Q.. and[ . involves infinitely many symbols. However we cannot
produce infinitely many distinct symbols required for in the above mentioned entities,
viz Quand L,, But, we can devise 2 mechanism to represent thesc infinite number of
distinct entities.

For this purpose, the alphabet set of {0,1} of two clemenis is used to represent all
these entities, where sequences of repeated 0’s denote various elements of Q., [
and Ho,, . The symbol 1 is used us a separator. Sequences of 1's of different
lengths, are used to separate different coded elements. -

We will explain these ideas with suitable examples. First. we consider a coding
scheme A for@.,[. and H,, in terms of the alphabet{0,1}, as follows:
A=0" i=0,1,2,........ _

(for example 2 (g,) =0, 1 (g;) = 0000, to be denoted by 0 esc)

A (@)=0 forj=1,2,3....... -

(for example }, (ap) = 00, to be denoted by O; Afa,) = 0000, to be denoted by 0’
Also, 2 (L)y=0, 1 (R)=00, (or ¢} and 4 (N)= 000 (or &)

Note that the same sequence of )'s may represent a state, an input symbol or a move,
e.g, 000 may represent the state q,, the input symbol a; and N of moves. However.,
there is no possibility of confusion or error. because, the sirin 25 of 0's are placed in
relatively different positions in the representation of a move 1o denote a state, an input
symbol or a move.

Once the basic sets involved in descriptions of the processes, are encoded, we
describe the funciion 5.

We are going to construct UTM as a Deferministic Turing Machine and hence for the
move (q;, a;, qi, 8, s} the components g, 4, and m; are uniquely determined by the
pair of q; and a;and hence we use the shorthand M;; for the move (q;, a;, qu, 1, my).

By the above-mentioned coding scheme, the five componemns q,. a;, q, a, and my are

respectively represented as 4 (q)), 1 {(a), A (qx), A{a)and 1 (mp. each of which is a
sequence of 0's,

Next the move My given by (g;, a;, q,, a, mg may be coded in terms of {0,1} by
replacing each ¢,’ by one ] and each parentheses also by.one 1.

Thus each move M,-{is coded as
10" 10810 101051,
where
£=1,ifmove is to the Left,
€ =2, if move is to the Right, and
& =3, if there is to the ‘No Move’.
r
As, each of the moves will bégin and end with a '1’, tence, there witl be two I's
between two moves. in the representation, (le thercfore, moves are distinguished
Srom its components like states etc
But there is only one | between various components of a move. Further, by
beginning and ending of the code of a TM marked by threel’s, we distinguish a

TS



TM from its components, i.e, its moves. Also, as mentioned earlier, @ Turing
Machine is completely specified by the initial state say q, and ] the Next-Move
Jimction.

Miscellany

In view of these notational conventions, the code of a TM, may be given by

1A (gl A (M) A (Miz2)1 A (Mig)-.. 1 A(Ma) L A(M2a) .. 12 (M} 11

We may notice that the code of a TM has only two s explicitly given at the end of the
code. The third 1 is contributed by the code of A (M), the last move of the machine M,
e recall that

o= {a|. i PP }
denotes Lhe set of countably infinite tape symbols and each of the tape symbols a,, will
be coded as '

Al)=0¢ fori=1,2.3 (B)

The encoding of various code symbeols in the (initial) input are separated by 1’s, eg, if
a4y a, a- is the initial inpul then it may be represented as 107 10° 107 1.

Remark 2.3.1;

IFrom the above discussion. we make the following observalions, which will play an

important role, when later on, we would be giving examples of a language having or

not having some properties:

(i) Every TM can be thought of as a unique sequence of binary digits, but only
special tvpes of binary sequences, e.g.. sequences starting with three I's,

(1) Not a separate observation, but a consequence of observation (i) above but
slated separately in view of its significance, is thal not every binary sequence
represents a TM. Thus every binary sequences can be interpreted as at most
one TM

(iit) In view of (i) and (ii} above, if a binary word w represents a TM M then w
treated only as a binary string (and not treated as representation of TM) can
also be given as input to the TM M and hence the question ‘Does M accept
w?" or ‘Does a TM having w as ils representation accept w as an input
string?" is a relevant question. This question may have a “yes’ answer far
some pairs of (M,w) and ‘No” answer for some other pairs of (M,w).

Next, we briefly describe how the UTM will selve a problem P for which a TM M
already exists. As a first step. the process component of M is encoded in terms of
the alphabet set {0, 1} as given by (A) above and the (initial) input is encoded using
the coding given by (B).

We assume the UTM is a 3-Tape Machine. The encoding of the input for the
problem P is written on the first Tape of UTM. On the second Tape of UTM is written
the process component of M as is given by (A) above. On the third Tape, the current
srare of M is stored. The control vnit of UTM simulates the TM M. The control unit ’
by counting number of 0°s between 1s. finds out the input symba! a; on Tape 1 and-
finds the current state g; from Tape 3 of UTM. At This stage. control of UTM knows
the pair {q,. a,). which uniquely determines the move M;; = (q;.a;aw.a.mp). The control
unit extracts the quintuple (q.. a, qu, a, my). From the quintuple, the control unit of
UTM extracts q;. the rext state of M; aj, the next symbol to be written in the current
ceil bcing' scanned; and m; the move of the Head. The control unit of UTM then
writes gy in place of g on Tape 3; writes a in place of a; on Tape | and moves the
Ilead on Tape 1 of U'TM according to my. Thus 3-Tape UTM is able to solve the
problem P by simulating the selution imbedded in TM M.
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2.4 LANGUAGES ACCEPTED/DECIDED BY TM

Problem, Its instance and its language:

Let us understand the difference between a problem and an instance of a problem
(sometimes called a question) from the following statement:

A problem mmay be to find out the roots of a (general) quadratic equalion say

ax’ + bx + ¢ = 0, with a = 0, where a, b, ¢ € R, are parameters of the problem. A set
of values one for each of the three parameters, gives an instance of the problem (i.e.,
a question). Thus finding out the roots of a quadratic equation 4x’ + JX +2=0isan
instance of the problem of finding the roots of the quadratlc equation ax’ + bx + ¢= 0.
Hence, the problem of finding the roots of the equation’ ax?~ bx +c =10 can be
equivalently represented by the ser of all triples of the form (a # 0, b, ¢), where each
triple, which is just a single string, say (4, 2, 0), represents an rnsrance of the problem.
Therefore, the problem of finding roots of a quadratic equation ax? + bx + ¢ with”

a =0, b, ¢c € R is equivalently represented by the infinite set {(a, b, ¢), 2, b,c.€ Rand
a #0)}, where each member string (a, b, ¢}, like (4, 2, 0), represents an instance of the
problem.

In general a problem is a set of its instances, where each instance is ebtaired by
assigning values to the parameters, from the domain, say D, over which the
problem is defined. Thus a problem is equivalently defined as a set froma -
domain D. Also, each of the element of a domain D can be written as a string over
some alphabet. For example, in the case of the problem of finding roots of a quadratic
equation, the domain consists of triples (a, b, ¢} were a, b, c are integersand a = 0.
But each integer can be written as a sequence of digits from the alphabet

{0, 1, 2,.., 9}. And hence each triplet can be written as a sequence over the aiphabet
{01 ....9 , ), (} Thus,weconctude that each problem cen be thought of
as a set of strings over some alphabet. Also, a set of strings over an dlphabet is also
called a language over the alphabet.

Thus, we further conclude that a problem can be thought of as a fanguage over
some alphabet.

In the following discussion, unless mentioned otherwise, a language L rep:esenting an
arbitrary problem P shall be over an alphabet, which we denote by Z. In other words.
a language L will be assumed to be a subset of Z°.

For a problem, number of instances need not always be infinite. For example, in the
problem, of finding roots of a quadratic equation ax’ + bx + ¢ = 0 in which each of
a,#0, and ¢ is a natural number less than or equal to 10, then the set of instances or the
set of strings representing the problem is 1210, which is finite. However, in con-:xt
of problems, we are interested, problems generally have infinite number of instances,
i.e., the sets representing the problems have infinite strings.

Definition: Turing Acceptable Language: A language L < I is said to Le Turing
Acceptable langnage if there is a Turing Machine M which when given an input w €
3", such that w also belengs to L, then halts with an output . However, ifo ¢ L,
then M may not halt further if the Turipg Machine halts, on an input @ with & L then
it should halt with an output different from Ei

Some authors cail Turing Acceptable Language as Recurswely Enumerable
fanguage also.

Definition: Turing Decidable Language: A language L ¢ I* representing 2

. problem over 2., is said to be Turing Decidable, if there is a Turing Machine M which




. . - ' . : T ine-
always halts when given any/input weZ whetherw e Lore ¢ L. Fu-therif o €L "H"%’,:::}::y

then M halts with output E, indicating that the string @ is in the language L. And if

¢ L, then M halts with output E indicating that o does not belong to L.

Decidable/Solvable Problem: A problem P is said fo be Decidable or Solvable if the

language L < I representing the problem is Turing Decidable.

(Some authors call a Turing Decidable language as Recursive set or a Recursive |'

Language.) : I'
|

Also, we know that an Algorithm is a program that terminates on all inputs. And, :
also it is not difficult to see that each TM that halts for all inputs can equivalently be
expressed as a programme and vice-versa.

Thus, the three statements:

’ the statement that a language L is Turing Decidable
. the statement that language L is-a recursive set and
. the statement that there is an algorithm for recognizing L

are equivalent,

Note: The phrase recognizing A TM a language is different and more powerful than
the phrase “A TM accepting a language

Remarks 2.4.1: It may be clearly understood that in the case of a language L. which
is Turing Acceptable Language but which is not Turing Decidable, there may bea
TM M which halts on large number of input strings @, where @ # L, but there must
be at least one string @€ L on which M does not halt.

Similarly, in the case of a language L which is not Turing Acceptable {and hence can
not be Turirig Decidable), it may happen that there is a TM M which may halt for a .
large number of inputs w which belong to L. But there must be at least one string b
w & L for which M does not halt.

Remark 2.4.2: In respect of the Janguages defined above, we make the following ;‘
observations:

(i)  Each Turing Decidable language L is necessarily Turing Acceptable.

(i) However. there may be languages which are Turing Acceptable but not Turing
Decidable.

(iii) Further, there may be languages L T' which may neither be Turing

Acceptable and hence nor Turing Decidable. For a language L which is not
Turing Accepiable, there can not be any Turing Machine M which halts for

every string o of L.
Betore discussing properties of the classes of Turing Acceptable languages and Turing
Decidable languages. let us mention that we need to consider at least one example of
cach of the fanguages, which is
(i)  Turing Decidable.
(ii) Turing Acceptable but Turing Decidable.

(iiiy not Turing Acceptable (and hence not Turing Decidable).

However, the last two requircd examples form the background of subject-matter
of the next section.
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Next, we discuss some basic propertics of the class of Turing Decidable lanpuages
and class of Turing Acceptable languages.

As languages are sels (of strings), thercfore, we can talk of union, intersection, and

. complementation ele. of languages.

)
Theorem 2.4.3 f
For two recursive languages L) and L, each ot the following tanguages i
(l) L| (R Y
(i) LinL;
Giy = -L,
is recursive.

We establish each part of the above Theorem by consiructing an appropriate TM i
deciding the language. '

Proof: Let M, be a TM for deciding the language L, fori — 1, 2, such thalifw e L, [
then M; returns [Y] else returns [N]. ’:
For establishing Part (i) above: we (irst ot all, construet a newTurning Machine M; '
having { B]} as the set of symbols. These input symbols are the only possible
owputs of each of M, and M,, and whenever these outpuls are available, are written
on the Tape of M3 as inputs to M;. The machine M; returns ;ﬂ as output, if at least
one of the outputs of M| orof M, is a EJ, )

However, if there is no B in the input to M then the machine returns [N}, The required
TM M-Union has M,, Ma and M, as component machines arranged as given by the
following figure has The overall control is with the machine M-unian.

B o B e L

M |

A 4

A4

we T

v

Y

Next, we briefly explain the functioning of the designed machine M-union A
string w € 2, when given as input to M-union, is further given by the control of
¥-union, as inputs to both M, and M.,

As both languages are decidable, theretore. after some finite amoeunt of time, both
halt, cach with an outpur as E or “'E These outputs, whenever delis ered are written
on the Tape of M:. When both 1he cutputs are written on the Tape o M;, M5 1s
activated. According to the definition of M;, it halts with the desired output I ifoe

L), or w € Ly, else the machine halts with omput E The output of M; is the output
of M-unjon. |

Thus, for each w € ¥, M-union returns a [ﬂ or E and hence its tangoage [, U L, s
Turing Decidable. )
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Part (ii) In this case, first of all. we construct a THM M4 having { E}as set of’
inpul symbols. These input symbols, as mentioned earlier, are the only possible
outputs of each of M; and M;. These outputs whenever available are written on the
Tape of M, as inputs to M,. The machine M, is designed such that it returns a if the
input sequence consists of both ‘s. However, if the input scquence consists of at
least one El then M, returns El b

M,

8

h 4

The required TM M-intersection has M|, M,, and M, as component machines as given
by the above figure. The overall control also is under M-intersection. The machine
functions on the similar lines as M-union functions. The only difference is that its
component machine M, return Y | if both M, and M; return a@. else M, return.
And the output of in, is the output of M-unit. Thus for each @ & 2°, returns either a
or M in such manner that if @ € L, m L2 then M-intersection returns é@ as output,
else {N| as output. Hence its language Ly, m L, is Turing Decidable.

Part (iii): In this case, we construct a TM M; which on reading a E returns @ and on o
reading an El returns a .

The reguited 'TM machine M-complement the following diagrammatic representation. !

)
|

oeck M, M

The rmachine M-complement functions as follows : When a string @ & £ is given an
inpul ¢ M-compiement, its contrel passes, the string ta My as input 1o M. As M, as
decides the fanpuage L, therefare, for @ e L, after a finite number of moves, M,
oulpuls [‘r__\ wiich is then given as input to Ms, which in turn relurns @ Similarly, (or
o e L, M;returns E Also the output of My is delivered as ouiput of M-compilement.
Thus foreachm ¢ L M-complement returng either abﬂor[’[ils.t. ifm € L, then M-
compienent relurns-_Ej. else returns EL Hence the language of M-complement is
Turning-Decidable.

Theorem 2.4.4: 1f L., and L, ave recursively enumerable {i.e, Turing Acceptable)
languages then Ly L, is alse recursively enumerable,
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Proof: LetM,,i= .2, be TM. that accepts all strings © €. L,, but may or may not

haltifo ¢ L;.
Then a TM M-A-union with the following configuration and description acecepts

L[ \J Lz.

Y

Me

o Mz

The overall control in M-A-Union which may stop and start any or all of My, M- and
Ms. The TM M; functions as follows: If, at any stage, there is an output from any
one of M, or Mz, then on the first output from either M, or Ma, the machine Mg is
activated and the output from M, or M, whichever is ayailable, is written on the tape
of M. Ifthe output is E either from M, or M. say M, then the control of the
overall machine M returns a @nd halts the machine. However. if it is an E] say
from M,, then the other machine M, and hence the overall machine M continue
operations. If at any later stage, the other machine, which we have assumed is My,
halls and M; halts with a E then overall machine M gives the output |Y |and Halts.
If M halts with an E , then E is reurned. However, il either none oflh/e’two_
machines M, or Ma halts, or one of the machines halts with output NI but the other
machine does not halt then, the overall machine continues its operations without
halting.

Theorem: For a given language L. if both the languages L and L=%~Lare ',-'.

f

Turing Acceptable, then L is Turing Decidable. i

Proof: LetMand M be the TMs that accept respectively the languages L and L.
The overall machine UM with following contiguration and description will, as we will
show, be able to recognize/decide the language L., thereby establishing that L is
Turing Decidable.

weIE

h 4

UM

Whenever an input string @ € £’ is received by UM, its controt unit writes @ on the
tape of both the machines M and Af and activates both Mand M . Whenever an

output if at all, comes out of M or M then the overall machine UM gives outlput and
Halis. ’ ~

f.



Afler lollowing aétions: 1f w € L then M halts wi iy autput | Y], [ 1s vose the overall . ! “ri"i?il;z;}in:; -

vaatrel relurns Y] as the output of UM. Farther. if oo ¢ L the: U3 hails and

retuens [ﬂ The overall control ¢a checking a E] from M returns li\l_J as oulput of UM.
Thus for @ € £, the machiné UM always halts and rclurns[_ﬂ if i € L and returns l@]
ilfm & L. Thus UM decides the language L. Therefore, L is a Decidable language.

\Vhen a problem is said to be (formatly) solvable/unselvable?

The issue af solvability/ unsolvability of some of the prablems like sqraring a circle
have been occupying the attention ot the scholars since time immemorable. In the

recenl limes, Fermat's Last Theorem and Four Cofour Problent (though solved, have =
been eccupying attention of the researchers/scholars in the concerned discipline.
Also, now computers are heing used as tools for helping the human beings in ;
aitesvipting solutions of probiems. Thus, il is very imporiant to know what in formal
sense we mean by a solution of a problem We discuss the issue briefly here. -
However, the issue i5 the main opic of discussion in a later unit.

[From our earlier discussion, we know that eacl: problem may be represented by a
language say [.. Then we say a problem P is an nnsojvable problem if the
linguage representing the problem is mof deciduble, 1.e.. no Turing Machine can be
designed which decides the language L corresponding tu the prablen: P, The
totlowing preblem, which is quite simple in description, is one of the problems, which
is a1 well-known unsolvable problem.

U'nsolvable Froblem:

The Halting Problem: Given an arbitrary machine M and a string o, does M halt
with o as input string?
Remarlk 2.4.5:

i
The above problem is mentioned just to show how the concepts of Turing Decidable ’-
and Turing Accep'able machines are related to problem solving. However, the proof :
al the above claim about unsolvability of Halting Problem and general discussion of
solvable/unsolvable problems will be subject malter of a later unit.

Remark 2.4.6: .
Though the proof of the above claim will be taken up in a later unit, however, briefly,
we will like to telf here what is meant by an unsolvable problem through the example
of Halting problem. 1n this cantext, it may be stated that there can be large number of
‘I'Ms. in case of each of which it is possible o tell whether it will halt on particular
strings or not. But, if the Halting Problem is unsolvable, then given a generai Th and
an arbitrary input string, ir is not possible to tell swhether she TM will halt or rint.

‘I'he situation is somewhat similar to saying that there is no systematic meihod which
can sofve an equation of degree 5 or more, But for equation of the form x*—a=Gor
ax™™ + bx* + ¢ = 0. there are systematic methods which can sclve equations of degrce
sreater than or equal to 3. But still we say the problem of finding :oots of an
cquation al ¢legree 3 or more is unsolvable.

[:x. 3) Shosv that the language L= { 2" b"c" = 0}
Is Turing Decidable. showing thereby that every decidable language need not
be a context-free language.

77’
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2.5 THE DIAGONAL LANGUAGE AND THE
UNIVERSAL LANGUAGE

2.5.1 : Definitions of the Lunpguages

In continuation cf our discussion, in Section 2.3, about represcntation of TMs as
binary strings, we discuss two very important, but not intuitive, languages which
provide important examples for languages having some patticular properties but not
having some other properties. The languages e

(0 L, the language of strings w, wiere each string w in L, is such that w is
not acceptable by TM M having the string w as its representatinmn Ly also
includes those strings w whicl: are not binary representation of any TM. For
example, as representation of every TM, by cur construction in Section 2.3,
must have ‘111 as leading parl of its representation as a binary string,
therefore the binary string ‘00° is not a representation of any TM and hence
the string G0, not being representation of any TM, can not accept any binary
string w and hence 00 also belongs 10 Ly

In literature, L, is also known as NSA nof self-accepting and by some other
names. The suflix d stands for diugonalization, the significance of which will be
explained later.

(it) L., the set of all binary siring &, where & represents the ordered pair (M, w)
where M is a Turing Machine and w is any binary string such that M accepts
w. In other words &t=(tx;, &) is some suitablc binary represeniation of <M,
w>,where o) is a binary represcntation of a TM M and & = w is a binary
string and M accepts w. L, is also the languape representation of what is
known as Halting Problem for Turing Machine.

Explicitly, Halting Problem stafes: s it possible to tell, for an arbitrary TM M and an
(arbitrary) input string w, whether M accepts w?

The answer to the Halting problem is no, and we discuss the problem in detail later.

The suffix win L, stands for universai.

The following nwo important questions arise about the o langnages viz Lyand L,
defined above

(i)  Can we show the existence of each of Lyand L, by soine constructive methods?
(ii)  Is each of the two languages L, and L, Turing Decidable? And if any of these is
not Turing Decidable, then is that langnage Turing Acceptable?

First of all, we answer the Question (ii) above without justification. Justification
for our answer will be given afier a while. ' :

L The language Lq is not Turing Acceptable (and hence not Turing
Decidable),

° The language L, is Turing Acceptable but not Turing Decidable.
2.5.2 Con.tructive Existence of Ly

From Section 2.3 on Universal Turing Machine, we know that each Turing Machine
can be represented by a finite string over {0, 1}. In ordcr 10 show the existence of Lqg
and L, by constructive means. we discuss a method of enumerating al! TMs, i.e,
listing all TMs by some ordering of their binary represeantations, For thig purpose. we

TttTMITTYTT i T T



define a rule which gives a sequence for representations of TMs, in which a particular
representation follows an already enumerated representation, if any.

By a similar method, we can enumerate all input strings w over { 0, 1}.

We make a list of binary representations of all TMs constructively as follows:
First, we take all bifiary strings of length 0, then we take ail binary strings of lengtli
1; followed by all strings of length 2 and so on.

For distinct strings say s;and s;; of length i, we find out the decimal numbers d, and
d, having sijand s; as binary representations. Then, in our listing, s; precedes sp, iffd,
< d,. Thus all binary strings representing TMs are listed in an order which is
generally called lexicographic order.

The ordering of TMs is as follows:

(i) Take one by one binary strings in the lexicographic ordering defined above.

(i) For the chosen string &, check whethér it represents a TM according to coding
defined in Section 2.3. [f &t does not represent a TM, take next string from the
list and go to Step (ii). If o represents a TM, follow the next step.

(iiiy 1f o represents a TM; then o is put at the end of the list containing members of
the list already obtained by the process. And then take next string from the
fisting of strings and go to Step (ii) above.

This is called enumeration of TMs. After the above discussion, all TMs can be listed
as Ty, Ta, Ts... according to lexicographic listing of their binary representations.
Similarly, all input strings can also be listed as w, w2, Ws.... We have already
explained that, in general, how any [inite or infinite set of binary strings, where a
string may or may not be representing a TM or may or may not be representing an
input w, can be lexicographically ordered.

Constructive Existence of Lg, the language of all those strings w s.t
e _ wrepresents a Turing Machine say T;, and further,

° If w is given as input to Tj, then T;does not accept w.
The construction of L, is three-step process:

Step (i):  Make a Table of the form with row-headings as T; in the order defined
above and column headings as w, the binary strings, which are also lexicographically
ordered. and which may be given as inputs to T;.

Al this stage, the table may appcar as
WOWr Wi

T,

T>
T

(In the above table T,may be a hvpotheticul TAL which actually do not represent any
AL T such cases, for any string w, we say T, docs nar accept w, where womay be any
siving. The complete row for such a T, consists of 'y only )

Step (ii): Next we §ill up eniries of the table as foltows. Theentry (T wyis 147 T;
accepls the string wyand the entry (T, wy) is 0 if T, does not accept W),

Turing Machine-
Miscellany
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_particalar property. . The iethod was devised by the well-known mathematician

Thus, let us assume we et a table o' the {or

i I, |w2 wy w1 ]

0 1 0 6 |1 .

T 0 Lo 1. _
T, ! 1 ~ g !
T, [ 0 P :

PR | —— e —

Step (iii): Next we construct the language L;as -
Ld={u;, Hp aevnennnn y Hyy ........} i
where string uy is obtained from the row labeled T, in the abave table, b inves iing:
its ktiy it and heeping ofl other bits unchanged. For example, u; = 0 001 ..
Which is obtained from the row labeled as T1 by inverting the bit in (1, 1) th
position. Similarly ,

u,=1010..........., which is obtained by changing (4, 4$)tl entry of the row labeled
with T; as row-heaiding.

This completes the corstruction of Ly

Remark2. 5. 2 1

The process of obtaining Ly is by replacing the values of the diagenal elements by
any value different from the earlicr value. This is why, the process is also called
diagonalization. : . .
Diagonalization is an important method of showing that a language does not have u

Georg Cantor (1845-1918) and used the method in 1895 to show that nof every real
number is a rational number. ) :
2.5.3 Constructive Existence of L,

L, is the language of strings of the form &, where o represents un ordered pair -
(&, o3} with o, a binary string, representing a Turing Machine sauy M; and a,
some binary word, such that M; accepts a;,

Onuce oy and oy are known; by an appropriate binary encoding scheme for making
ordered pairs out of binary strings, it can be easily seen that @ € L, isa binary
string. Further the strings within L, are enumerated by Luj‘r."ggmph ic ordering.
This completes the listing process for the elements of L.

S e T SIS TTEITITTION O oh oneore STawsie s

2.5.4: The Diagonal Language is not Turing Acceptable
Remarks 2.5.4.1:

Before we go ahead with the proof of properties of Ly and L,, it is interesting, and

. will be later on useful also, to consider sets representing similarity and differences

between elements of Ly and L., the complement of L,
Lq= { w:'w is not accertable by the TM having w as its binary code}

={w:wlisnol arepresentation of any TM}\J fw : wis binary code of a TM say M,
but My
does not accept w}

Li=f<M,w>:<M w>is binary code representing the pair (M, w) where Misa

Turing Machine that accepts w)
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L, =f @: &is a binary string s.¢ either o » <M, w> or if &= <M, w=> then M does
)

tecept wh

={ a: «dves not represent ordered pair of a TM and an inpuf string} U { &:o=<
M, w= and M does not accept w}

Remark 2.5.4.2:
We may note there is paraliel between cach pair of lunguages Lyand L, and the

lunguages L, uand L, However, differences between languages within a pairare of

the form of inputs:

(i) A member of Ly is a string w whicl represents just the input to the Turing
Muchine M, whiclt, if exists, does not accept w. Therefore, there is inbuilt
spstem which finds out whether such an M exists or not

(it} However, L,
there are twa distinct parts in &, first part of & is expecied to represent a TM
M and the rest of the part an inpnt string w to M s.¢ M doees not accept 1w,

is though ugain a binary string &, yet it represenfs (M, w), i.e,

The first part aof & may nof represent a TM and then antomatically o € L_u without
any further thhe T.M, which failed to exist.
The main difference between Lyand L, is that a member of Ly represents only

inputs w to TMs whereas the each member of L, is a binary string the form <M, w>
in which first purt is expected (o represent & TM and second part an input o TM.

Similar are the difference between L, and L.

Next, we prove that the statements made earlier about Ly

Theorem 2.5.4.3: The languuge L, is not Turing Acceptable (or equivalently L, is
not recursively enumerable)

Proof: The tirearem is proved if we are able fo show that there dees not exist a TM
wihich aecepts the langnage Iy Now the proof follows from the following fucts
wirich we came across during the construction af L

(i) Al possible Turing Machines are listed as row-labels in the falide constructed
Sor the definition af Ly Thus if there is a TM that accepts Ly then it muist be
fubel of some row i.e, must be some Ty which a row-fabel of the table.

(ii} L, by its constriction, differs from the machine Ty, in the kith positien, for all
k. Inother words Ly =T, for all k.

Tli:erefure, there conr not e aue TAS that aceepts Ly

Wenrh LA

Paoving of Ly us ot Furing Aceeptable. by ieseff, ey wof appezr te be o great
acfiievement in the sense that Ly iv a hiehly contrived unintuitive fanguage. The
sfgnificance of Ly not being Turing Acceptable. lies in the fact that, it is used in
esiablishing non-Turing-Decidable/aceeptable character of a nmber of languages,
whiclt wre not so unintuitive. We will discuss « nitmber of Turing non-decidable or
amnfecidable languages and probiemy in Block3. At present we discuss properties of
the wniversal fanguaee I,

ST T -
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2.5.5 L, Turing Acceptable but not Decidable

1'héoremz.5.s.t:

The language L of all binary sirings a reprcsenrmo those pairs of arbitrary TMs M
and arbitrary Input strings w for which M accepis w, is Turing Accepiable bm noat °
Turing Decidable.

May be used as justification for the Halting probilem is undecidable,

Proof: The proof consists af twe paris

() L, is Turing Accepiable
{ii) L, ix not Turing Decidable

L. is Turing Accepiable: A language L is acceptable if we are able fo design a TM
M that accepls L. We only sketch belew the design of the required TM M, which,
designed on the paitern of a Universal Turing Machines, is a three-tape TM. Fora
given TM M and an input string w, the following steps are taken fo refurn a yes, if
M accepts w: )

Step 1 (a) The binary code of M followed by the input string w is placed on Tapel
which is only read, but not written, to gitide simulation of the behavior
of machine M on input w.

(b) The Tape 2 is used. 4'ﬁw' simulating the behaviour of M on w as input.
Initially Tape 2 is written with the string # w #.

Tape 3 contains the slate of M, during the process of simulation of M by M. Initially,
qo, the initial state, is written of Tape 3.

Step 2: The Process of Simulation of M by M

At any time, the Head of Tape 2 scans a celt of Tape 2 and hence, knows its contents v
at any point of time in the process of simulation of M, The control of M_also knows
the state g of the simulated machine M from Tape 3. From the known pair (q, v} the
control of M finds from Tape 1 the value {p, u, m} s.t 8 (q. v} =(p. u, m)’ where 8y
is the next-move function of M. At this stage, the control of M takes the following
actions:

(i)  replaces the contents of the currently scanned cell of Tape 2 from v tou. And
moves the Head of Tape 2 according 1o the move m;

(i} changes the contents of Tape 3 to represent the new state p by replacing the
representation of the previous state g,

If M accepls w, then the whole process is repeated till we reach halt state of M in
which case the control of M returns *yes® and if required, waits for the next (M, w)
pair to be written on Tape | and whole process is repeated.

The language L, is not Turing Decidable:

We prove the above-mentioned statement by contradiction. Let L, be decidable.
'fhen, by definition, L, , the complement of L,,, is Turing acceptable. But, then we

show below that (Turing) acceptability of L_ implies aceeptability of Ly. Rut we

know L, is not acceplable Hence we arrive at a contradiction, leading to the fact that
the assumption is wrong. Therefore L, would be undecidable,



Next we show E: is acceptable = L is acceptable,
— ~ —
If L, is acceptable then there must bea TM say M- that accepts the language L,

We intend to design a TM My which accepts Ly using M- as a component as shown

below.
{But, M, otherwise should not exist as k.4 has already been shown to be not

acceptable)

Turing Machine-

N

Y

M, consists of threc parts

(i) M which converts L the input to My, into an input to M- . In other words, M.

converts a member of Ly into a member of L,
(i) M. . beinga Deciding machine for L; returns a ‘Yes' or *No' on each input w,

irrespective of whether e L, oroee L,
(i} M., then converts this Yes/No into an appropriate responsc of My lo ¢, as input

(s} Wid

As M- isassumed to be already designed TM that decides language L- , therefore, if
we are able to explain the designs of M,.and M, then M, will be designed.

Also, we have already cxplained that Ly and L. represent equivalent languages except
the form of its members. Therefore, responses of machines My and M; must be same

the on corresponding inputs. Therefore, My, is an identity machine that returns the
input as cutput.

Hence we are left with the design of M;, which we accomplish as follows:

Let o be an input to My, the (hypothetical) machine that accepts the language La.
Thetefore o must be treated as a binary string which is to be given as an input to the
TM, which if it exists, has o itself as its code. As all TMs are lexicographically
coded, therefore an algorithm can be designed 1o find out whether o is a code for a
TM or not. If & is not tie code of a TM, then it can not accept itsclf as input and
henee the question *Does o reject 7 * has answer yes. Therefore, we may give the

output of My as accepted or Yes without feeding it to M.

IT ot is the code of some TM say M-, where M is found by the step, explained in
previous paragraph, then the code for the ordered pair M and  is given as input to

M. This completes the construction of M;, and hence of My which decides Ly if

M’; decides L-u .

Y

i T
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But, as Ly is Turing undecidable, there can not be a TM M, deciding it. Hence no M.;

deciding L; can exist leading 1o the conclusion that L- is undecidable.

Remark 2.5.5.1:

The proof given above in support of the truth of the statement ‘L, is not Turing
Decidable®, may withput any change, be given ip support of the truth of the statement:
Halting problem is undecidable.

2.6 CHOMSKY HIERARCHY L

In the previous units of the course, we discussed languages, i.e, sets of strings each
over a (finile) alphabet from at least two different perspestives:

() Languages secepted by automata viz accepted by Finite Autmmn by '
Pushdown Automata and by Turing Machines. i
(i) Languages generated by formal grammars viz by a context-Free '

Informally, a grammar is a notation for speclfymgldeﬁnmg its language through a
finile number of rules.

To have an idea of what a grammer is in the formal sense, we recall the definition of a
context-free grammer. (In the literature, there are many variations of the following
definition).

A context-free grammer of a language is given by

G=(V,T,P,8S),

where V is the set of variables, T is the set of terminals, S the start symbol and P is the
set of preductions of the form

AU

and where A € V, the set of variables and o € (V  T)*, i.e, O is a string, possibly
empty, of variables and terminals.

In the formal sense, a gencral grammer G may be defined as a four-tuple
G=(V,T,PS).

The three components viz V, T, § may be the same for various types of grammers.
However, it is the form of productions that distinguishes the types of languages.
Chomsky" is among the first in the modern times to have introduced the concepts of
formal grammer/language. However, the idea of defining languages. through formal
grammars was used many centuries before Christ, by Panini, 2 Sanskrit scholar, in
defining Sanskrit [anguage through formal grammars,

Chomsky through his papers, defines four classes of languages and named these
classes as Types 0, Type 1, Type 2, and Type 3, such that each language of type (i +1)
is also a language of Type i., but converse does not hold. However, now-a-days, these
classes are better known by other names. For example,

The type 0 languages are betier known as recursively enumerable languages, or as
phrase-structure languages or sometimes as semi-there and even as unrestricted
languages.

-L‘homsky N: Three Models for the Description of language, IRE Trunsactions on
Information Theory 2: 113-124, 1956
*Chomsky N : On certain Formal Propentics ol Grammers, Information and control 2-

137- 167.1959



The type 1 languages are known as context-sensitive languages (CSL) T""i."i,lhi’:::‘[:":;

The type 2 languages are known as context-free languages (CFL). Finally,

the type 3 languages are called regnlar languages. Another type of languages, which
is not mentioned under the Chomsky Hierarchy is the type of recursive languagcs of
Turing Decidable languages, which as per definition given earlier, are the fanguages L
over alphabet T each of which a TM T can be designed which halts for every string o
€ 3", irrespective of whether a € Lorax ¢ L.

Also, we may notice that out of the five types of languages mentioned above, we have
come at some stage or other all the types except the type of context-sensitive
languages (CSL).

Also, the Lincar Bounded Automata (LBA) which corresponds to CSL is also a new
type of automata,

Next, we define a (formal) grammar for each type of languages (under Chomsky
ifierarchy). Then we meniion cne-to-one correspondence, between these languages
and different types of automata and in the process introduce a new type of automata
in order, to make the one-to-one correspondence complete. Also we discuss closure
properties of the various types of languages. ’

Grammars for languages under Chomsky Hiel;archy*

Regular languages (Type 3 languages)

So.far, we know that a language L is regular if
i. L is accepted by a Finite Automata  or
ii L can be expressed hy a regular expression

Also, we know that a regudar language is a context-free language and a context-free
language can be described by a context-free grammar.  Thus, a regular language may
be definable by some special context-free grammer. Actually, a regular [anguage is
characterized by a special context-{ree language called regular grammar to be
defined below. However. for this purpose, we need the definitions of right-linear
arammar and lefi-linear grammer.

Right Linear Grammer: A contexi-free grammer

G=(V.T,PS)

is said to be right linear if every production in P is of the form

A —=>a or A—aB,

Where A and B belong to V, the set of variables; and a beiongs to T, the set of

terminals. S. of course, is the start symbol,

Definition Left-Linear Grammer: A context-tree grammer

G=(V,T,P,85)

is said to be left lincar if everv production is P is of the form

A=>a or A—>Ba

Where A and B belong to V. the sct of variables and A€T. the set of terminals. S is
the starl symbol.

Definition Regular Grammer: A conlext-free gramnier
G-(V.T.P, 5} .
is called tegular, iFitis cither lefi-linear or itis right-linear,

*refer PP, 327-330 Introduchion to Languages and the Tlieary of computation by duia € Mactn: (TivtH.
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Example 2.6.1.1: The regular language L={a": n21} over T ={a} has the regular
grammer given by

A->a

A—>aA .
We have already studled the context-free grammars and context-free languages
(Types2 languages) in detajl. Also we know the equivalence of pushdown
automata to context-free languages. Therefore, we skip to next type of
languages.

Next we introduce context-sensitive grammars, context-sensitive languages .
(type 1 languages) and then we discuss linear bounded Automata, sll three of I
which are new concepts,

Definition: Context-Sensitive Grammer A grammer
G=(V,T.P,S),

where V is the set of variables; T is the set of terminals, P is the set of productions and
S is the start symbol, is said to be context-sensitive grammar, if every production is of
the form

o f :
Where

(i) o, fe(VuUT)

(ii) ]ﬂl .>_| 01, where |x| denotes number of letters in the string x

(iii) ® Contains at least one variable -

Definition Context-Sensltive Language: A language generated by a contéxt-
sensitive grammer is called a context-sensitive language’

Example 2.6.1.2:

We just mentioned, without actually producing a grammer, that many of the
programming languages including Pascal and C are not context-free, but are context-
sensitive languages. These languages are not context-free because of the need for
defining of CSL.

Definition: Linear Bounded Automata (LBA) is an NDTM
M=(Q.Z,T,S,qh)
with the following restrictions:

(i) Two special symbols viz ) and (, not belonging to T, are written on the tape along
with the input string x=a, a; ... a, in the following manner

C a2 [ T2 D

[n other words the symbols ) and( are respectively used as the initial right- end
marker and lef-end marker of input string. |

(i) Tape head may scam the cells containing ) and { but, these cells can not be
written into

(iii) Tape head cannot move to or seam any cell right of ) and any cell 1o the left
of { =

Remark 2.6.1.3:

In other words, a Linear Bounded Automata s a restricted Non-Deterministic |
Turing Machine, which does not have potentially infinite tape as working space for
(intermediate) computations: Rather working space is.restricted to the Sinite

number of cells containing the (initial) input and the cells of the two end-markers.
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Remark 2.6.1.4: In view of the statements above that
) Miscellany
(i) Context-sensitive languages can alternativcly be defined as the fanguages
accepted by LBAs
(ii) Every context-sensitive language need not be context-free language,

we conclude that LBA is more powerful automata machines than
pushdown automata.

Next, but not finally, we consider grammars for recursively enumerable
Innguage, (Type 0) i.e, languages accepted by TMs. These grammars are
generally known as unrestricted grammars or phrase-structure grammar.

Definition :  Phrase-structurc/unrestricica Grammer:

A grammer
G=(V.T.P.S),
is said to be phrase-structure uarestricted grammer, if P consists of productions of the

form

o-B,

where

{i) o,B are strings over But and
(i) ., o contains a variable.

As usual. the letters V, T and S respectively denote set of variables, set of terminals
and the start symbol.

Next we discuss a type of languages, which docs not fall under any of the four types
of languages covered by Chomsky hierarchy, viz recursive language or rccurswely
decidable language.

We recall that a recursive Janguage L js language over some alphabet say 2. , for
which there is a TM M such that for each siring x € 2 *, M halts and further

(i) M halts and returns Y (for yes) for each x € L and
{ii) M halts and returns N (for no) for each x €L

However, so far recursive [anguages have not been characterized by any
grammars.

Subject set-Superset Relationship between types of Grammers/Langunages

In the earlier units, we have proved or stated that

(i)  Bach regular language is a context-free language but the converse need not be
true. For Example, the language {a" b" : n 20} is context-free but riot regular

(i, Each context-free language is recursive (i.e, Turing decidable) but the converse
need not be time. :

For example the language L = {2" b” ¢"::n2 0} is not context-free but is Turing
decidable (i.e, is recursive) language.

(i) From the definitions of context-free grammers (CFG) and context-sensitive
grammar CSG, it is clear that every, CFG is also CSG and hence every CFL is
CSL also. However, converse is not true, We have already mentioned that the
programming languages
including Pascal and C are not context-(ree but context-sensitive languages.
(iv) It is beyond the scope of the course, but by using diagonalization method
indirectly or directly it can be proved* that

(1) Every context sensitive language is recursive (or Turing decidable)

(b) There is a recursive language, which is not context sensitive language.
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"(v) In the previous unit, we mentioned that every recursivé/decidable is Turing

Moreover, a recursive lanpunge containing vull string. can not be a context-
sensitive language
acceptable but the converse need not be true

Thus if we use the notations
Lg: the set of all recursive languages

Lee @ the set of all context-free languages E
Les : theset of all context-semsitive languages

Lrec :  the set of all recursive [anguages

Ley :  setof all phrase-structured/Turing acceptable recursively enumerable

languages, then we have the following set relationship:
Lr € Ler © Los © Lrec € wew
Closure propertles of various types of languages under standard set operations

Definition : By closure property of a set of languages L.- having property —P,
under an operation say op means that if L, and L, are {two languages
in Lp then L op L; is also in Ly.

Many of the following properties have been derived in the earlier units. The rest of
the properties ate just imentioned below without any proof. Interesied reader may [ :
refer to martin (1998} and Hopcioft and Ullman (1979, 1987). ;

(i)  Lg, the set of all regular languages, is closed under all standard set operations,
viz under interseciion, unien, complementalion, concatenation and Kleene star.

(1) Lcy, set of all context-frez languages, is clased under unton, concatenation and
Kleene star, but is not closed under intersectien and complementation.

(iii) Lcs, the set of all context-scnsitive languages, is ¢losed under union.
intersection, concatenation and complementation.

However, as a language containing nuil string can not be a context-sensitive
language, therefore, for a context-sensitive language L. the language L,” can not
be context sensitive but, it has been proved that if L is context-sensitive then L*
is also context-sensitive where L' is the set of all strings obtained by
concatenating all finite, but at least one, number of strings from the language L.

2.7 SUMMARY

-

In this unit, we disquss various extensions of the standard TM that was defined in f
Unit 1 and state facts ofthelr equivalences to standard TM. Each TM is designed to

solve one problem (i.e, onc iype of questions). However, Universal Turing Machine,

which alse is defined and <xpiained in this unit, is like a general-purpose computer,

and hence is gapable of solving any problem, provided that the problem is solvable by
computational means. Next, we explain how a problem can be thought ofasa

language and how a language is accepted decided by a TM, and in the process, how a

problem is solved by a TM.

2.8 SOLUTIONS/ANSWERS -

Exercise 1 _ .
Part (1): To convert #wi# into # wi wi



Hinl : In stead of the & -move under (*) of Step 3 ¢f Example 2,2.3.1, in
this case, we have

5 (qs, #, #)=(qs, #, R), (#, R))
Rest of the steps are the same as in Exampte 2.2.3.1
Part (ii) : To covert #wi into#ww" # _

Hint : After executing steps | and steps 2 of Example 2.2.3.1 in Step 3

we .
move the Head of Tape 2 towards left and the Head of Tape 1

towards right as follows

S (qa. #, #) = (a3, (. N}, (. L))
o) (q31 #1 #) = (q:ﬂ (#1 R)., (#7 L))

{(Copying symbols of Tape2 to Tapel in reverse order)
S (qs, #,#) = (Halt, # , #)
Part (iii):  To convert #w# into #wiw"#
Hint : In stead of the following & -move of part (it) above,
¥ 8 (g, # #)= (g3, (#- N). (#, L)
we have the loliowing move
5(qa. #, #} = (g5, (4. R), (#, L).
Rest of the & -moves are the same as in step (ii)
Exercise 2: The required TM M = { Q, 3{, 8, qo, h}, with

Q= {gn qn h}, == {a, b}.[ = { a, b, #} and & being given by the
following Transition Diagram ]

)
> au

Fig 1.8.1

() the TM halts in gp. if the {irst symbo] is not an a
(11} Hhe TM halts in state qy, if it finds an a afier already having scanned b,

(i)  In state o on scanning a, the TM activates two branches, viz, one in state
qo and the other in state q;. If the next symbol happens ta be an a then

Turing Machine-
Mhaceliany

R
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the q,-state branch dies and only ga-state branch remains alive. The rest
of the behavior of the TM is apparent from the fipure above

Exercise 3: In order to show L as Turing Decidable we need to design a TM that
accepts both the language

L= {a"b"c": n20}
and the language 2, *~L, we construct a 3-tape TM M as follows:

LetM={Q,2, T, §,q0,h}, 2:={a, b, c}

~ TI'={a, b, c#}
The sequence of steps for defining & for the required TM is, as given befow

Step 1: Write any given string w over 2, ={a, b, c} on Tape | as # w and the TM is
activated in state qo where all heads, e.g., H1, H2 and H3 of respectively Tape 1, Tape
2 and Tape 3 are scanning of the left-most cells the respective tapes.

Step2: Copy the contents of Tape [ to Tape 2 and Tape 3 through the following
moves:

8 (Qn- (#1#)#) ) = (q 11 (#i#!#)l (R, R! R))

& (q1, (x # #) =(qn, (xxx), RRR)) forxed
& (qu. ( #.#)) =(qx, (h#.#), (L,L.L))

& (g (WA#)) = (h (BH,#) (N,NN)

(null the string case acceptance)

At this slage, all Heads are scanning right-most non-btank cells if any, of respective
tapes.

Step 3: From the right most non-blank cells on three tapes, we reach the right-most
cell of Tapel that contains a, if any, and reach right-most cell of Tape2 that conrains
b, if any, and Tape 3 is not moved, by making the following nioves

b (qz,(C,C,C) = (qi: (C,C,C), (L:L|N))

8 (91 (bibc) =(agu (bb,c}, (LNN))

5 (q3l (a'l bl C)) = (q-h (a'u b) C), (Nl N,N))

At this stage H, Head should be scanning right- most a on Tapel; Head 2 should be
scanning

right-most b on Tape2 and Head 3 should be scanning right-most C onTape3.
Further, for strings in L, we do not expect ¢ to the left ofany b on Tape 2 and
no b orc to the left o fany a on Tape 1.

Step 4: Next we match number of a'& on Tapel, 16 number of bs on Tape2 and
number of ¢’s on Tape3 through the follawing moves:

& (qu{abc) = (g4 (ab.c)), (LLL) and
8 (':h. (#)asb) = (h' (#,a,b). (N,N,N))

If we reach the Halt state h through the above-mentioned moves, then the string is in
the language, {a” b"c":n 20}, and hence TM returns ‘Yes’

If at any stage, the TM does not have any move, it indicates that the string w is not in
{a" b7 ¢": n 20}, and hence TM returns *No’ indicating w isin 2. ~L.

This complete the construction of the required TM-
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3.0 IN TRODUCTION

Let us stop for a moment and know that there really is another way (rather,
more ways)” of looking formally at the notion of computation.

In the previous units, we have discussed the aulomata or machine models of the
computational phenomenon. The automata approach to computation is Operational in
nature, i.c., automata approach is concerned with the compulational aspect of *how
the computation is to be perforined”.

In this unit, we will be concerncd with Recursive Function Theory, which is a
functional or declarative approach to compufation. Under this approach,
computarion is described in terms of “what is to be accomplished” in stead of ‘how
to accomplish’.

Each computational theory (rather each theory about any other phenomenen also)
starts with some assumptions, {or example, ebout basic ( undef ned) concepls,
operational capabilities and a set of statements, called axioms and postniates, which
are assumed to be fundamentally rrue (i.c. assumed o be true without any argument).
In Automata Theory, the concepts tike ‘siate’ “initial state’, ‘final state’ and ‘input” etc
are assumed to be understood, without any elaboration. Further, ¢he capabilities of an
aufomata to accept an input from the environinent; 10 change its state on some, or
€ven on no input; to give signal abow! acceptabilityfunacceptability of a string; are
assumed.

In Récurs_ive Funclion.Thmry, to begii with, it is assumed that three types of
. . i .
functions (viz&, ¢ and I—L which are called initial finctions and are described

under Notations below) and three structuring roles ( viz combination, composition
and primitive recursion) for construcling more complex functions out of the already
constructed or assumed to be constructible functions are so simple thal our ability (o -
construct machines to realize these functions and the structuring rules'is taken as
acceptable without any argument. The functions, obtained by applying a finiie
sequence of tl.e structuring rules 10 the initial functions, are catled Primitive

. Recursive‘functions. However, with these simple functions and elementary

structuring rules, though it is possible to construct very complex functions yet even

some simple functions like division are not constructible by the above mechanism.

I3

* Two other well-kmawn formalisms are (i} Church's A -Caleulus and {ii} Curry's Combinatory Logic




‘Therefore, another structuring rule, viz unbounded minimalization is added whiohl
leads to the concepts of P-recursion and partial recursion.

Constructibility/Computability has been a pursuit of the mathematicians, since at
least the peak of Greek civilization in third/fourth century B.C. The intellectual
concern was about the constructibility of real numbers, i.e, for a given real number
a, to attempt to draw a line of length o, with the help.of only an unmarked straight
edge and a compass, provided fundamental unit length is given. These attempts at
constructibility of real numbers, lead to some fumous problems” including the
problems of

(i) Trisecting an angle, (ii) Duplicating a cube and (i} squaring a circle.

In this unit, the concept of constructible or computable, the latter being the more often
used term in Computer Science, is based only on our infuitive understanding of the
concepl. Discussion of compurable in the formal sense based on Church-Turing
hypothesis, is taken up in other units.

To some of the learncrs, the treatment of some of the topics may appear to be
undesirably too detailed. However, the details are justified in view of the fact that
the subject matter is presented from the point of view of the undergraduate
students, many of whom may not have studied Mathematics even at 1042 level,

In order to facilitate faster coverage of the material by advanced learners, some
of the contents are placed in boxes which, without any loss of continuity, can be
skipped after first reading or cven after a cursory glance.

Note: Exercises in the Block are numbered in one sequence; all other numbered
items like theorems, examples, lemmas, statements are taken together for another

numbering sequence.

Key words: recursive definition, partial function, total function, initial
functions, structuring rules, primitive recursion, bounded
minimalization unbounded minimalisation, partial recursion,

pi-recursion.

Notations: N : the set of natural numbers including 0
I : theset of integers
£ : the zero function which maps every element of the domain
to 0.
6 : the successor function, which maps cach natural number n
ton+1

k . . .
1—[ . the projection function which maps the k-tuple

{my. ..., m;, ... m} ta the ith component m;, forl <isk
4 ¢ negation
3 : there exists

3.1 OBJECTIVES

At the end of this unit, you should be able 10

" [or more details refer pp 297-299, A First Course in Absiract Algebra by J.B. Fraleigh, VII
edition, Pearson Education, 2003.
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. To explain the concepts of primitive recursion. w-recursion and partial recursion
®  alongwith other auxiliary concepls

. to tell the hicrarchy between the classes of primitive recursive functions, total
computable functions, p-recursive functions and partial recursive functions.

. use these concepts and techniques for generating functions of these classes

3.2 SOME RECURSIVE DEFINITIONS

We are familiar with the concept of facrorial of a natural nuinber n, denoted as n!,
with one of the ways of defining it as:

nf=n(m-1............ | N
TRis is an explicit definition of n!.

However, the following is an implicir definition, called recursive definition, of
Jactorial.

0l=1 and
n'=n.{n-~ 1) for nz 1. (2)

The definition (2) above of the factorial is recursive in the sense that in order to find
the value of factorial at an argument n, we need to find the value of factorial at some
simpler argument, in this case (n-1), alongwith possibly some other calculations.

In both the explicit and implicit definitions (1) and (2) above of n!,our approach is
Junctional or declarative in nature, where computation is described-in terms of *what
is to be accomplished’ instead of ‘how to accomplish’.

Similarly, for a natural number n or a real number (or even a complex number) x, the
exponential x" is explicitly defined as )
XM= xx..x {(3)

nifmes

Also, the exponential x" is recursively defined as:

0
x =1
X"=x- x"7), for a natural numbern > |. (4)
Remark 1
iy Wwe may observe that non-recursive definitions (1} and (3) given above
: respectively for n! and x" use the imprecise notation *.-.." , On the other
hand, the corresponding recursive definitions (2) and (4) use only precise
notations.. :

(i) In (2) and (4), the definitions are given in terms of their own partial
definitions viz. n! in terms of (n — 1)! and x" in terms of x"~". In this way, th
problem of evaluating n! is converted to the problem of evaluation of (n - 1)!
This conversion of a problem to a less complex version of the problem may
be called reduction in case we are able to show shat calculating (n— 1)! is
relatively less complex than calculating n!. -1fwe look back on definition )
of n!, we observe that 0! is given as a definite number requiring no more
applications of the definition of factorial to another number. And reaching 0!
from (n —1)! takes lesser number of applications of (2) than reaching Of -
from n!. Thus, we can see that the problem of calculating n! is reduced
through successive applications of the definition of factorial as given by (2)




and is terminated when 01 is replaced by 1. Exactly on the similar lines, the Recursive Function
proeblem of calculating x" is gradually reduced by the application of definition Theory
{4) and is terminated when x° is replaced by I.

3.3 PARTIAL,TOTAL AND CONSTANT FUNCTIONS

As mentioned under Remarks (ii) above, the factorial of n is defined in terms of only
the factorial of another, but smaller, number. Howewer, this idea of defining a
function in terms of only itsellf may be further generalized when a function f may
be defined, in addition to in terms of f itsclf, possibly in terms of some other
functions also. Another way in which the idea of recursion as explained above is
generalized, is through extending the scope of recursive definitions to partial
functions (fo be defined). ¥V arious generalizations, including the ore given below,
lead to the definitions of primitive recursion and partial recursion.

The idea of functions from N to N, can be generalized to functions from NN

where
k=0,1,2,.......
p=012,....

Example 2: of Functions from N* - N" where k> 1
Plus: N x N = N, with
plus (n.m)=n+m, (5)

Mapping every pair of integers of N to integers in N.
E.g., Plus akes the ordered pair (3, 2) and returns 5. Similarly, Plus takes the ordered

pair (4,-0) and recturns 4.

_Similarly, we may define
PROD: NxN — N, with

PROD (m,n)=m-nform,ne N (6)
‘And we may define
Exp(m,n)=m"forallm,ne N (7

Example 3: of a function from.N*to N where k> | and p > I

Plus-Prod: N> — N2, such that
Phus-Prod (m, n)={m+ n.m - n}=(Plus (in, n}, Prod (m, n)) 8

In other words, the function Plus-Prod takes a pair of elements m and n of N and
maps this pair (m, n) to a pair of integers, viz, (m + n} and (m . n)

Also, we may define the function
Plus-Prod-Exp: N* — N* with
Plus-Prod-Exp (m, n) ={m +n, m-n, m")
= {Plus (m, n), Prod (m, n), Exp {m, n)) (9)

Here the ordered pair (m, n} is mapped to the ordered triple of three integers, viz,
(m+n), (m.n) and m"

Example 4: of function from N* = N? x N* wherek,q,pe N
A somewhat similar but distinet function say
New-Plus-Prod-Exp: N’ SN*x N

may be defined as

New-Plis-Prod-Exp (m, n) = ((m¥n, m-n), m")}
= (Plus-Prod (m, n), Exp (m, n)) {10) 95

e



Turing Machine and
Recursive Functions

86

Please note the minute difference between Plus-Prod-Exp and New-Plus-Prod-Exp
Remarks 5

In the definitions under (5) to {10) above, among other facts. we may observe that
earlier defined functions may be used in defining more complex functions. Our ability
to define more and more complex functions in terms of earlier defined functions,
plays a very important role in the study of primitive recursion and partial recursion
etc, which are generalizations of the concept of recursion discussed in defining n! and
x" etc.

The recursive deﬁm'n'ons of Plus, Prod erc. will be discussed later.,

The constant Functions:

Though it is not intuitive, yet we may have functions on N which do not require any
argument.

Consider the function

Cs: N—= N such that
Cs(n)=S5, forallne N (11)

In view of the fact that the value 5 is intependent ofnin (11}, we can very well
write (11) as

Cs(}=5, (12)

Given the fact that we are considering domains of functions as N* for k-e.N, we

extend our nolation for functions from N* — N to include functions from N">» N, and
rewrite (11) as

Cs :N°> N such that
Cs ()=5.

Also, in order to include in the notation itself the fact that the function takes zero
number of arguments, we may use the notation C° instead of C , ie.,

C% =5 (13)
Generalizing the constant function C° we may define
C% iN°5 N such that
C’ O=q, for some fixed integer q i N. !

Further, we can extend the set of constant functions to'includelihe functions

C:q N> N such that
C q (nli n2! ==y nk) = q|
forn,ny, ..., n. € N and for some integers k and q in N. (14)

Partial Function

We are already familiar with the concept of finction in the mathematical sense.
Informally, for two given sets X and Y a function

f:X Y
is a rule that associates to each element x of X a unique element y of Y. Here X is
called the domain of the function fand Y the codomain of f, ' (15)

However, in order 1o exiend the class of computable functions beyond the class of
primitive recursive functions (to be defined), to parial-recursive functions (fo be —

Bt e i SRR LT



defined), we relax the condition for each element x of X" in the definition ot functien
leading to the following definition.

Partial Function: A partial function is a rule

tX->Y
that associates elements of Y to elements of X in such a way that, for y; € Y if there
exists an element x;, of X s.t. f{X,) = v, then there is no element y, of Y, with

y1# ¥z, sl f{x) =y (16)

However, there nay be some elements x of X for which there may not be any y such
that f{x) = y. In other words, in the definition of a partial function, it is not necessary
that for each element x of X, there must be an element y of Y that corresponds tox
under £f. However, for an element x of X, ifthere is an element y) of Y that
corre_spong;to x under f, then there can not be a y, in Y with y,# y» such that y; also
corresponds to x under the partial function under consideration.

| Example 6: We consider a rule of correspondance Cuot: N x N — N that takes a pair
*(m, n) of integers and associates an integer g, if it exists, s.t. m=nq +r with
0 <r < n. Now if n =0 then no r with 0 < r <0 exists implying Quof (m, n) is not
defined for n = 0. Thus Quot is a partial function, but not a function or a fotal function
as is going to be defined below. '

Total Function: If a partial function satisfies the condition given in (15), i, itisa
function in the conventicnal sense, then it will be called Total Function. The
adjective total is added to a function in conventional sense in order to differentiate the
function in conventional sense from the partial function which satisfy condition (16)
but do not satisfy the condition (15} above.

Remarks 7

In this block, unless it is mentioned otherwise we will be dealing with functions
(partial or total), the domains of which are only of the form Nf=Nx..xNfork e N.

Functions with domain N* are called k-place finctions.

Also, unless it is mentioned otherwise, the functions under consideration are restricted
to the ones that have N as their codomain. Our consideration of only the functions of
the form f: N* = N, is not a major restriction, because using some encoding
tefhniques like Godel Numbering, any domain can be expressed as a subset of the set
N-.

Why we nced partial functions?

We know there are infinitely many possible sets which can be represented by finite
means. For example the infinite set N is finitely representable by the following two
staternents: '

(i) 0isamemberof N and
(i) if nis a member of N then so is o {n) (i.e, (n +1)).

And for each such non-empty set X, at least one function, say the identity function
1:X — X, can be defined. Also, for such sets X, Y, Z ete,, we can think of new sets
which may be the product sets, for example X x ¥, ¥ x Z x X, just to nainc a few.
Each of these product sets itself can be the domain (or even the range) of some
functions.

Thus, unless we use an ingenious method of the type described below, the general
discussion of functions would involve consideration of infinitely many types of
domains and codomains, even if, each of these may be finitely representable.

Recursive Function
Theory
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Bj! an appropriate encoding, it can be easily seen that ecach countable set can be
| thought of as either N* or as a proper subset of N, for some
k=01 2 -

For example

The set X={a, b, ¢, ..., z}can easily be thought of as a subset of N, by using the
following encoding

a—>1

b—2

z— 26

Thus, functions, in stead of being considered between arbitrary but countable domains
and codomains, may be considered as functions of the form P — N™, where P either
equals an N* or is a proper subset of N¥, for suitable integers K and m.

However, any function f: X = N™ for X = {a, b, ..., z} above when considered after an
encoding as a function f: N — N, cannet be total, because f (m) form 2 27, is not
defined. In general, any function with a finize domain when considered as a function
between the encoded sets N* and N™ must be strictly partial.

Also, for large number of functions invalved in the solution of everyday problems,
each has a finite domain.

Thus, in order to simplify the discussion of functions with arbitrary but countabie
domains and ranges, it is possible, through appropriate encoding, to consider such’

a function as a function of the form N' — N™ provided Sunctions are allowed to be
partially defined on the domain N*. ’

Examples 8: of fotal and Partial Functions

(i) The successor function S: N - N, s.1., $(x) = x + | for all x € N. The function
§ is a total function from’ N to N. Successor function plays an important role

in the recursion theory. Therefore, it is useful to know that even the notation o
is used to denote the successor function.

(ii} The function
Plus: N - N such that forall x. v & N.
Plus(x,v)=x+y,
is also a fotal function

(iii) However, the function
Minus: N> 5 N such that
Minds (x, y)= x~y forx 2yinN,
is only a partial function, which is not a total function,
In other words, Minus is a strictly partial function.

However, a slightly different function say Minus_Int becomes total, if we
allow

Minus_Int: N> |,

with I, the set of integers as codomais and the rule of correspondance given by
Minus_Int(x,y)=x-y forx,veN. (in stead of, for just x 2 y)

_ 1 While talking of tolal or parifal functions, it is understood thar the domain is of the form N*.




However, as mentioned earlier, we are restricting to only functions of the form Recursive Function
¥
Fi NN Theory

Therefore, if required, we discuss only the stricily partial function Minus.

However, we will discuss a scheme of discussing Minus-Int as a function from
NioN.

(iv) corresponding to the partial function minus, there is 2 well-known function

monus, also denoted as —— and defined as

X- ifxz
Monus {3, ¥) = {0 y ifx<yy

Monus (x. ¥) may also be written as x —y.

(v) Wecdefine the lunction div from NZ to N with div (x,y) = z, only for those pairs
(x,y) of elements of N for which x = y.z for some z from N. Then div is strictly
partial.

(vi) The Square-Root function, named as say SQRT,
(also denoted by .,/_) and given by
SQRT: N—=N
such that forx, y € N,
SQRT (x) =y if y¥*=x.

Again SQRT is a strictly partial function.

After having provided the necessary background, we explain the concept of primitive
recursive functions the set of which forms a proper subset of the set of iotal functions.
As the discussion of general partial recursive functions requires introduction of some
more background material, the general partial recursive functions will be discussed
later.

We mentioned earlier that, each of the approaches to computation starts with some
elementary entities of some domain and some structuring rules, where the rules are
casily applicable to form more and more complex entities of the domain.

3.4 PRIMITIVE RECURSIVE FUNCTIONS

The sei of primitive recursive functions is obtained by three types of initial functions
(which are elementary primitive functions) and three’ structuring rules for
constructing more complex functions from already constructed functions.

Three types of initial functions are

(i)  The 0-Place zero function ¢ from N°to N such that &( ) =0 (19}
(il The successor function

g:N—=>N

such that

¢ (n)="n+1 forallne N. (20)

" In the literature, two of the three structuring rules are combined in one rele and hence, in
most of the literature, number of structuring rules is mentioned as TWO ond nol THREE.

However, then presentation of the subject matter becomes too complex from the point of view 9%

ol undergraduate students.

T I T T



Turlny Muchine and
liecursive unctions

100

-

(i) The Projections: We know Uit for k 2 1, N® is the set of all k-luples

of the form n ={(n;, Nz, ..., N;, ..., M) for1 i<k,
For each fixed i, with | <i <€ k, we may define a function, denoted by H:‘ \
with
H: :N* 5 N such that for n = (T PR | PR, T
! o k
]_—L n= I—L (ny, ng, ... Mieees, M)
= ith component of (n, ng, --. Ni__, N = 1 (21)

Thus, we have defined k prajection functions, each with domain N¥, viz.

H:, H:, I-_[T,, H: and each of which maps to N.

For the sake of explanation, we have 1__[; (2,-7,12,4,3)=12
Finally, the zéro-place zero function &, the successor function o and the
projection function 1__[: fork € N,and i e N, with 1< i <k, are the only

initial functions, which are also called elementary primitive functions.

Ex.1) Prove that each of the elementary primitive function viz zero function E,

.. . k . .
successor function o and each of the projection functions H , 1=igk,is.

a rotal function.

In the'very beginning itself, it was mentioned that computability of functions is a
major concern in the Theory of Computation.

In this context, consider the following

"

Sta‘tement 9: The initial functions &,  and E areall computable’.

The statement is not a thegrem, the truth of which can be established through a
proof. The statement is axiomatic in the sense that it should not only be intuitively
«correct but should be fundamentally true in the sense that it can not be otherwise. In
splte of the above, we give an informal argument in support of the apparent truth of
the statement. The computability of the initial finction & is about our capability of
constructing a machine to perform the activity of writing the symbol 0. This
capability can be assumed without any doubt. Similarly, our capability of
constructing a machine which returns (n +1) for each input n, ¢an also be assumed

without any'doubt. Hence, we may assume that the successor function G is
sothputable, :

Finally,-computability of a projection function say Hf , is about the designing of a

machine capable of scanning a k-type say m= (my,mg, . 1) TN my)
starting with the first component m, and go on moving to the right till ith component

| ™ 1s scanned and then writing m; as output. In view of the type of machines

available, it can be safely assumed that we can construct a machine to execute these
activities required for a projection function.

Next, we define the three structuring rules which are mown as

(i) combination

' Computability in the formal sense of Church-Turing Thesis has been discussed in other unit.
Here computability is taken as an intuitive infornjal notion. :




(ii) composition and Recursive Funclion
(lii) primitive recursion. ' Co Theory

Remarks 10

Before providing the definitions for the above—mentioned structuring rules, it may be
stated that by applying these structuring rules, fo begin with, to the initial functions
and then by successive applications of these structuring rules to the functlons already
obruined by previous applications, we can construcl quife complex functions

(I} Combination as a structuring rule

The combination of two funclions
g NN
h: N¥=- N
is a function
£+ N¥ - NxN
such that for (n,....n) = # e Nk,

Rn)=(g(n).h(n)). (22)
Then, the function f is denated by g X k and Is called combination of g and h.

Remarls 11

fnn stead of g: N¥ — N and h: N‘—» N, we may take 7. N >N und h; N* >N, and
then we get a function f: Nt — N from the definition of f given by  (22).

(1) Compasition as a structuring Rule

Let
g NK = NP and
h: NP — N for k,p,qeN

be two glyen functlons.
Then we define a function
FiNF N
as follows:
if (R, Nz, ,.. M) E N¥ and
g (N N2y ... 0K = (M), My, .\, My) e NP
Further, if
b (my, Mz, . M) = {12y - tqy) € N¢
then
f:N* —» N' s such that
f(ny, na, ..o )
= h(g (Rys N - 1))
=h (M, ma, .- mp) = (6 b - b _
The funetion £, so defined, is called the composition of g and h and is denoted by h.g -
(Some aunthory use the notation g-h instead)

25

Examples 12:

(iy Ifg:N —Nisgivenby
g(n) = n®  and
h:N — N isgivenby
hn) = (n+3)
Then we define a fupctian
fiN =N such that
f=hg, then

finy=h{g{n))= h(n’) =n' + 3 lor all nEN (0]

TTTTTT TV kT ——o
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(1) Functions g and h are as given in Example 12.(i) above. Lel us define a function
kN—=N
such that k = g'h, then
k(n) = g(h(n))
=g(n+3) = (n + 3
forallneN

4]
!

Ex -2) Wh_at is_-ﬂ_a,e result of applyi'r.ng the fﬁnc;tion ([I:x Hf ) (I_I:x ]__L- | to
four tuple (8,7,4,2)?, where (£ X g) (x) = (f(x), g(x))

Ex.3) A function f: N — N is defined as
flo)=£() and

f=oc0-0-fiy-1)
+  What is the value of f{(4)?

Remarks 13

As mentioned earlier the two structuring rules discussed so far, viz, combination rule
and composition rule, ae presented in the literature as a single rule, and is generally
called as composition rule, which is actually a generalization of our composition and
combination rules. We call this rule as Generalised Composition Rule and discuss it
below: ' ’

Let the function
g:N* 5 NP and
hy, hy...... . by are k functions with
hi:N" =N, fori=12,...... Jk

Then we define a function

£:N™ - NP such that for # = (N1yr.nly) € NT
n)=ghi(n). h(n), .....h (). (24)

Then f is said to be obtained from g, hy, hy, ...... » e by generalized comiposition or if
there is no confusion just by composition.

Ex.4) Show that the combination rule given by (22) and composition rule given by
(23) are special cases of the generalized composition rule given by (24).

Next, we consider the third structuring rule, viz Primitive Recursion. As the rule
requires comprehensive discussion, we discuss it in an independent sectiop beloyv.

3.5 INTUITIVE INTRODUCTION TO PRIMITIVE
RECURSION

Earlier, we considered,the recursive definition of n! for ne N as;
0!=1 and '

n'=n-((n-NH Cfornxl,

. 1
Also, we considered for recursive definition of the exponential X" of x, a real number
andn € N as:

x"=1 and
X"=y.xtl forng 1.

eITTreny T IT T
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In order to understand the generalization of the recursive definitions considered Recursive Funclion
above, let us consider the following examnple. Theory

Example 14: As an Intuitive Introduction to Primitive Recursion,

Let us consider a special kind of tree that initially has only one branch, which is
treated as a new branch. At the end of each year, out of each new branch, m new
branches grow out {sve call m as the branching factor of the tree). And the branch,
out of which branches grew out once, is no more a new branch. We define a finction
say f which gives the total number of branches in the tree after » years, assuming the
branching out process continues for ever (or at least for more than n years) at the rate
of m branches per year. '

s e DU T EE P

It is clear that the function f depends on both m and n. In order to facilitate the i
understanding of the process of getting £as a function of m and n, fef us injtially i
consider m as a constant. Also to begin with, we consider only the function b(n) that
returns the number of new branches that are generated at the end of the nth year for
n=1,2, ....... Subsequently, b (n) shall be used in computing f (m, n), where

b(1) = After one year, number of rew branches =m

b(2) = After two years, number of new branches.=m.b{(l)=m.m= m’

b(3) = After three years, number of new branches =m (number of new

branches afler 2 years) = n’. )

Continuing like this, we get,
b(n} = After n years, number of new branches
= m(number of new branches after (n— 1) years)
=m-bm~1)=mm™ =m’

Next, we copsider f(m, n), the number of all branches at the end of n years, .
f(m,1} = Total Number of branches after one year ) ,
= old branches at the end of one year + new branches generated at the L
end of the first year, i.e., ' F
flm, 1) =l+m |
f(m,2) = Total number of branches after two years
= Old branches at completion of two yé_a_rs + New branches ge'ncratgd
at the end pf second year, i.e.,
f(m,2) =f(m, 1)+m’
f{m, n) = Continuing like this, total number of branches after n years
= Total number of branches after {n — 1)} year + New branches at the end
of the nth year, i.c, '
= fm,n-1) +m-b(n-1), ie,
f(m, n) =f{lm.n-1)+m" ’ (25)

For a short while, il" we denote f{m,n~1) as t
Then (25) becomes

t{m, n) =t m, a function of m, n and t, say
=h(m,n,t), forsome function h: N’ - N.
Summerising, we get

f(m, n) =h(m,n,t), forsome functionh:N? N,
Replacing t by £ (m, n- 1), we get
ftm, n} = h(m, n, f{m, n— 1))
Thus f(m, n), the number of all branckes immediately on completion of n years can
be defined as:
fim,0) =i=m’
f{m,n) =h (mn, f(mn-1)) (26)

where 103
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h(m,nt) =m"+1 !

[n order to lurther generalize the congcept of recursion, we cousider the same
probien with a litde difference by taking a new starting time (i.e., zeroth year) for
the problem of counting of the number of branches when the 1ree already has, say,
I+ m+ m? + m’ branches. (i. <., the initial branch is already 3 years old) and let

4 (m, n) denote the number of toral branches affer n yeurs of the new starting time,
where m is the branching factor.

Then J(m, n) is defined as/

F(m,0) =1+m -m’+m? which is some function say g(m) of m, i.c.,

Jm,0) = g(m)  and

Jon, n+1) =Mm, n,+m"",

which is some functioi say L of m, nand I (m, n), i.c.

ITmya+10}=L{m,n, J(m,n).

Summarizing, the function J {m, n) may be defined as

I'{m, 0) = g{m) and .27
J{m,n+1) = L{m,n, J(m,n)) (28)

far some function g of m and another function L of m, nand J (m, n).
The above discussion can be generalized still further when insicad of one tree,

fnitially, we have ktrees Tp, To, ... Ty, 5.t Jor the ith tree T, thy branching facior is m,
Jori=123 .,k :

Also, we assume that differen| trees started growing (i.c., having their first branches)
in different calendar years. After all these rees have started growing, some calendar

year is taken as starting or zeroth year for the purpose of counting the number of
branches in all the trees taken together.

Then (27) and (28) can be rewritten as

Ji (m;, 0) = & (m) .
Li(mi,n+1) Li (mi, n, J; {m;, n)) fori=1, 2.,k (29)

(where g; (m;) denote the number of branches, In the zeroth year, of the ith trec whose
branching factor is m;) :

I

Then total number of branches on alf the k frees, after com

pletion of n years after
the starting year, may be defined by a function F of m,, m,,

... My, and n as follows:
F{mi, my, .m0} - = gy(my) +pa(my) = ... + a{m) =G (i, my....., iy ),
for some function G of m,, my, ... M, and

Fimy, my, omen+7) = Ji(m,n+1) th{my,n+ 1+,
B_ut_b_y (29), cach J; (my, n +]) is a functiop of Ji {m;, m) :
If ”’ =(mh m!s oo My 0y l“k)

. +3(my, m-1) (30)

Then in view of these Jacts, j.e,

() F(,n+1)isasumofd (m, n+ 0 by

i) eachJ, (m, n +i}is afunction af J, (m, w) in addition to being u function of
m; and n by 129} '

tii) thesumof J,(m, ), 1< ISk, is an expression w.
replacing n + I by n in the RHSaf (30} and )
in the LHS of the equality (30),

this sum of .!;__ (my, n)’s must be of the form F ( E, n)

hich can be obtained by
ence, by replacing (n + 1) byn

R ek s S R
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In view of (i), (ii} & (iii) above, F( m S+ l)is some function H of F (.;; .n)in
addition to being lunction of my’ s and n

Then the above definition of F may be rewritten as
F(m.D = G{m) and
F(m.n+1)  =H(m, n FQm n)) (31)

This is exactly what, in formal sense, we say that F is obtained from G and H by
-primitive recursion. Restating the 2bove, we get the formal

Definition: Primitive Recursion

For k 2 0, a function

f: N > NT
is snid to be constructed using primitive recursion from the functions
g : N — N" and

h @ NO™TT N
i, for x eN* andy€N,
flx,0) =g(x) and
F(x.y+1) = h{x,yf(x, ") (32)
The above discussion about three initial fimctions viz. the zero-place zero function
& (), the swccessor function o and the projections H: and about the three

structuring rules viz. combination, composition given by the discussion preceding and
including (22), (23) and primitive recursion given by (31 }, leads to the following

definition:

Printitive Recursive Function: A function fis primitive recursive function if (and
only if} either

(i)  itis onc of the initial functions viz. § (), o or one of the projections

Hf i =k, or

(ii) it is obtained by application of some finite sequence of strucluring rules viz
combination, composition, and primitive recursion to the initial functions.

Remark 15

It is implied in the above definition that if a function Fis obtained by a {inite sequence
of application of structuring rules including primitive recursion to some functions (not
necessarily initial functions) say g1, g2 --- gk €ach of which has been obtained earlicr
by application of some finite sequence of combination, composition and priniitive
recursion 10 some af (he initial functions, then F must be primitive recursive. The
implication follows from the fact that F can be obtained from initial functions by first
applying sequences of combination. composition and primitive recursion to obtain
cach of gy, B2, ... B and then applying a sequence of combination, composition and

primitive recursion to get { from gy, g2, ... &.

Examples 16: All functions considercd below are from N*to N, Tor somek & N.

Example 16(i): The well-known binary finction plus (m, ) = m + nis primitive
rechirsive, because ;

Plus (m, 0) = Hi {m)
Plusfm . n+ 1) = o- Hi (m. n, plus (. 1)), Jorn =20 (33)

Recursive Franction
Theory
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Example 16 (ii}: The well-known binary finction Produce (written here as prod) and
given by
prod (m, n) = m -1 is primitive recursive, because

prod (m,0)  =&() X
prod (m, n + 1} = plus (rLJ (m, n, prod {(m, n}), l—L (m, n, prod{m, n))} (34)

As plus has already been shown to be primitive recursive, therefore, prod is also
primitive recursive.

Example 16 (ifi): In this example we consider simple funtion say int-plus whose

domain and codomain are not N but I, the set of all integers including negative
integers and zero. We show that the function

int-plus : Ix1— 1
is primitive-recursive.

The proof is based on the fact that Each integer can be thought of as a member of N°,
for example, 5 may be thought of as (6, 1) and —5 as ( 1, 6), In general, (m, n) € N?
denotes the integer m —n.

Then the function int-plust T x I — I can be thought of as

int-plus :(NxN}x (N xN)=> NxN

Such that, if (m;, !y} and (my, n2) € N x N then

int-plus ((m,, 0}, (M3, 03) ) = (my+ M, 0y, ny)

= (plus (my, my), plus (ny, ny)) : (35)

Plus is already shown to be primitive recursive and combination of two primitive
recursive functions {viz plus and plus) is primitive recursive. Hence the above
equation ( 35 ) shows that int-plus is a primitive recursive function.

Example 16(iv): The fuctorial function

fim) = n! Jor neN,
is primitive recursive,

The proof follows from the following argument based on Principle of Mathematical
Induction:

Base Case:
forn=0

f(0)=0!=0=8()
Induction Hypothesis:
Let f{p) be primitive recursive
Induction step:
fp+ 1) =(p+ D! =(p!) (p+1) = fp)- (p+ 1) = prod (f (p), p+ 1).

Using Induction Hypothesis and the fact that praduct is primitive recursive, f (p +1) is
primitive recursive.

Gcncralizing the above example, we get the

Theorem 17:

Let
g N1 5N
be primitive recursive.




Then; for an m € N; thé hirction

f NS SN

given by

fn,my=] ] e(n,i)=g(n.0yen,1)g(nm) | (36)
i=0 "

with 71 ={n;,nz,...n) € N,
is primitive recursive

Proof:
We nrove the result by Principle of Mathematical Induction on m
Buse case!
\When m = @, by (36), we get
f(n,0)=pg(n.0.

As g is given to be primitive recursive, the base case follows

Induction Hypothesis:
for m = p we assume

- i -
fKn,p)=]] &(n,D)
1=0
is primitive recursive

Induction Step:
Consider
_ Top+l - I —_ _
fn,p+)=T] @n.=]] tet2.0)en.p+D
i=0 =0

=f(n.p)-g(n,p+1)=prod (f(n,p) g (n,p+1).
In view of the Induction Step and the fact that both g and product are primitive

recursive. we get [{ 77, p + 1) is primitive recursive.

Definition: The function f, given by (36) above, is said to be obtained from g
by Bounded Product. Thus lhe above theorem may be restated as

Theorem 17:
Bounded Product of a primitive lunction is primitive recursive

Ex.5) Show hat cach of the following, carlier defined, functions is primitive

recursive:
(i Plus-Prod {given by equation(8))
(i) Exp

(i) New-Plus-Prod-Exp (given by equation (10))
Ex. 6) Show that the predecessar function pred: N — N defined as
aw) [0 itn=90
yred{n} = 1
AT n-t ifazl

is primitive recursive,

¥ recall the definition of constant functions:

. . . "
For ench k = 0 and cach j = 0, o constant function ('; maps ¢ach k-tupic
(my, My, ... my) to the fixed integer J. e,
1 1 . N k
(,j - N¥ -3 N such that (.: (my. My, ..., M) =J, for all {m,. m,, ..., m} €N

_ Recursive Function
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We show that C:.- are all primitive recursive functions. To begin with, consider

the
Lemina 18: Each of the functions C'f for j 2 0 is primitive recursive.
Proof:  The proof is presented in two parts:

Case (i) Cg is the function which maps a zero-tuple to the constant 0. It is primitive
recursive, because

Co =&

Case (if) Each of the functions C}? forj =1 is primitive recursive
As C? =1=0¢.E,

0, s e .
therefore, (o, is primitive recursive

b

Again as CZ =0.¢

0. e - 0 . . s .
and ¢, isalready shown to primitive recurstve, therefore, C, is primitive recursive.

We use mathematical induction on j to show C f is primitive recursive for all j.
Base case. For j = 0, we have already shown, that ¢ is primitive recursive.

Induction Hypothesis: Let C :_ is primitive recursive, for any integer m.

Induction step

1]
C‘m+|

=0 Cf; By induction hypothesis, ¢ is assumed to be primitive recursive and
o is primitive recursive and compositien of two recursive functions is primitive

a
nt+

recursive, therefore, €, is primitive recursive,

Hence by Principle of mathematical induction, C f is primitive recursive, forall .
jeN

k L. . .
The lemma proves C,. 2 primitive recursive vnly for k = .

The proof for the general integer k follows from the
Theorem 19: The constant function C; , for k2 ¢ and j 2 0, is primitive recursive.

Proof: We prove the theorem by induction on k.

Base case: When k =0, the proof follows from the lemma, in which we proved that

C‘; is primitive recursive for all j.

Induction Hypothesis: Assume C:« is primitive recursive, for all integers j and all

integers i < p.

Induction step:
Let m =(m;, my, ....., my) € NP

Now Cf” (m,0)= Cc7 (m ), each of the two sides of the equality, is equal to j

T (man, P ()

Pl =
C; (m.,n+t1)= 2




Henge, the theorem is proved.

Let us try the following exercises

Ex.7) The monus function defined earlier as

- m-n, ifmzn
monus (m, n) = .
0, othervise,
is primitive recursive.
Ex.8) Show that following function
I, if m=n and
eq (m, n) =
0, else

is primitive recursive.

Ex. 9) Show that the function minus: I X I =1, with
Minus (m,n) =m-nforallm,né€l,
where I is the set of all integers, is primitive recursive

Ex. 16) Show that the function

() 1, ifm=n
m,n)= .
1E4 0, ifm=n

is primitive recursive
Ex. 11) Show that for i €N, characteristic functions

if n=i

Ki(n)= I ’ .
10, otherwise

is primitive recursive
Ex. 12) Show that the function
f: N = N given by
7 when n=0
fin)= 4112  when n=>5
8.  when otherwise

-~

is primitive recursive.

Statement 20: The structuring rules viz combination, composition and primitive
recursion produce computable functions from computable functions.

Like Statement 9 earlier, no formal proof of the statement is possible. As earlier, we
present an informal/intitive argument in support the apparent truth of the
Statement (20).

(i) Composition Rule produces computable functions from computable

functions
Let
g: N N and
h: N 5N

be computable functions.
Then value f{ # Yof n =(n, Nz, ..., &) E Ny

Recursive Funclion
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under the function [ which is the combination function of g and h, is given by

(g(n) h(n)) _ )

In other words, if the values g (#) and h (#1) are computable then the additional
computational effprt required is that for putting these values between a pair of
parentheses separated by a comma. However, a machine having these additional
capabilities, in addition to the capabilitics of the already existing machines for

computing g ( ;) and h (r), can easily be constructed. The above informal argument
supports the claim that combination rule produces computabte.functions from
compuiable functions.

(ii) Composition Rule produces computable functions from computable

functions.
Let
g NY > N and
h: N" NP
be computable and
x = (XI,X2, reney Kk) € Nks

then g being computable produces through a computational process, some in-tuple say
y = ( Y ¥ o }’m) € va

such that g (;) =y
Nex1, h is comiputable function with domain N™ and ; € N".
Therefore, the process of getting h( ;) from ; is computable.

Thus, if we assume computational capabilities already exist for computing g (;) and -
h (y ), then for computing the value h(g( x )) under the composition function of g and-
h, the only additional computational capability required is that of passing the value

g (;) as an argument to h. This capability can reasonably be assumed.
Thus, the computability of the composition structuring rule is justified.

Next, we present an argument for the claim that the structuring rule primifive
recursion gives computable functions from computable functions.
Let us recall that a functien
f: N5 N
is said to be constructed using primitive recursion
from the functions
g: N5 N® and
h @ NO™1 Nm,
if, for x eN* andy €N,
f(x,0) =g(x) and
f(x,y+1) = h(x,y,f(x,y), (32)
((32) was used to denote this equation once earlier also).
Thékslaim about computability of f as defined above, is Justified by using the
Priniciple of Mathematical Induction on the argument yoff(x, yh

Baie case, Fory=0, as g is computable, therefore, forx € N¥, g (x ) and hence
f(x, 0) is computable. i

Induction Hypothesis: Let us assume that for 5 € N¥, and for some YEN, f(x,y)is
computable. )

Induction Step: In view of the assumption under Induction Hypothesis and the fact

thath is given to be computable; for h (x, y, f(x, y)) and therefore, for (3, y + 53
to be computable, the only additional computational capability required is that of




passing the value of f{ x ,y) as an argument to h. This capability can be reasonably
assumed.

Thus, we have informally argued in favour of the truth of statement.

Theorem 21: Each primitive recursive function is a foral function.

Proof: We know primitive recursive functions are, by definition
{a) either initial functions
{b) or the functions obtained by some finite number of applications of the
three structuring rules to initial functions.

First, we show initial functions are total:
By definition

(i) The Zero function: &: N® =3 N, is such that & (} = 0
Thus & is defined for all elements of its domain N°, which is by
definition, empty. Thus, € is a total function.

(i)  the Successor function o : N = N is such that
ox)=x+1, Jor all x €N, the domain.
Thus, successor function is also defined for all elements of its domain N, Thus

o is a total function.

ity the projection [ |, withi, k €N, and i<k
S 5.0 i X = (X)) Xz, «eve gy oony X)) € NE
then l__[: (x)= % forall x &N, the domain.

Thus each of the initial functions, is a total function.
Next, we establish that the structuring rules lead from total functions to total

functions.

(i)  The Structuring Rule: Combination
Let g:N¥— N
h: N¥ —» N°
be two total functions, for which f: N¥ = N™* is such that
f=gXh

‘Then by definition of total, for each x = (X1, Xz, - Xipere %) € N
3y =, Yo - Y- V) €N" such that

g(x)=y and
.3z = (21, Z2,..:Ziy---sZn) € N such that
h{x)= =z

Thus for each x eN*

{g(x)h(x)) eN"""

Therefore =g x h is total, and hence, combination of two total functions is
total.

(i) The Structuring Rule: Composition
Let functions
g:N*—>N" and
h:NT — N"
be fotal and = h-g
"Then by definition of fotal, for each x = (X1, Xz . Xir X4) € N

Recursive Function
' Theory
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3y =(Yu Y2 Yir- Yi) € N™ such that
g{x}=y and

further, as h from N™ to N" is a total function, therefore, for each ; in N™, there is a
z in N"such thafh( ; }= z.

But then foreach x € N;,3 ze N

such that (h -g) (x ) =h(g(x N=h(y)=z & N

Therefore, f=h-g: N* = N" is a total function if g and h are total functions.

(iii) The structuring rule: primitive recursion
Let f: N** 7 ~5 N™ be a primitive recursive function’ which is obtained from the
two already defined fotal functions viz ;
g:N 5> N™ and

B N1 5N,

as follows: _
f(x,0)=g(x)and _ 7
f(x?y+1)=h(x,y,t‘(x,y)) for x e N (38)

Let z = (X1, X2, ... Xu, Xiss) be an arbitrary element of N**'. We show by induction on
the (k + 1) th component of z that f'is toral, given that both g and h are roral.

Base Case; When x4, =0
Then from (37), using the fact that g is total we get that f is defined for all
(%1, X2y -+ X 0) With (%), ... %) € N¥

Induction Hypothesis: Let us assume that for all x =(x, Xk ) € N* and for y €N, f
is defined for (xy, ... X, ¥) -

Induction step: Using the above induction hypothesis and the fact that h is fotal, the
R.H.S of (38) above is defined for all x andy. Hence the L.H.S. of (38), i.e,
Sx,y+1)is total on N**'. '

Hence, primitive recursion leads from total functions to total JSunctions,

Thus, we see that all primitive recursive functions must be total and, as mentioned
earlier, computable also.

3.6 PRIMITIVE RECURSION IS WEAK
TECHNIQUE

It is natural to ask whether class of all primitive recursive functions cover all
computable functions or not? Or in other words, every function, which can be
accepted as computable, is also primitive recursive?

The answer to the above is #o, which is substantiated by the following

Theorem 22; (i) There are computable functions which are oz primitive recursive,
and even, o

(ii) there are total computable functions which are not primitive
recursive.

T



Proof: In order to establish the above, it is sufficiert to pive an appropriate example
for each of the two results.

Exampie for Theorem part (i) We have established that a primitive recursive function
is necessarily total. Hence a function which is not total can not be primltive
recursive,

Consider the following function, which has been discussed earlier.
Quot :NxN->N

st

z ify#0andx=y.z+k
Quot (X, y) = for0<k<y

undefined ify=0

is not total, i.e., is strictly partial. Hence Quot can not be primitive recursive function.
Example for Theorem part (ii)

The Ackermann’s function A : N x N = N defined below is total and computable
function but nor primitive recursive,

A, y)=y+lI
Ax+1,0=Ax1)
A(x + Ly + D)= Ax, A(x 1, %))

The proof, that A is total and computable but not primitive recursive, is beyond the
scope of the course.

Existence Theorems & Their Constructive/Nonconstructive Proofs

Many a theorem is an assertion about the existence of objects(s) of a particular type.
For example, the assertion, CUBE_SUM: 'There is a positive integer, which can be
written as the sum of two cubes of positive integers in two different ways’, if proved
true is an example of an existence theorem. There are two ways of proving an
existence theorem viz through

(f) aconstructive proof
(ii) anon-constructive proof.

A constructive proof of an existence theorem is actually about showing an object 6f
the required type. E.g, writing

1729 = 10° + 97 = 12° + 1°,
provides a constructive proof of the CUBE -SUM assertion.

In many cases of existence theorems, either it is quite difficult to produce a
constructive proof or the constructive proof is not known, then we use a
nonconstructive method to prove an existence theorem.

Non—Constructive Proof; Sometimes, we do not (rather we are unable to) show the
existence of an object of the required type. In such cases, we prove an existence
thcorem by some non-constructive method of establishing the truth of the existence
theorem. A non-constructive method shows that some element of the required type
must exist, but the method is not able to tell exactly which is the element of the
required type. We give below two examples of non-constructive proofs of existence

1 theorerns.
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The first non-constructive existence proof is about the claim: The polynomial
equation

5%+ 23 X7 +37x' 7+ 52x - 88 = @
has a real root.

The fruth of the claim is based on the Sollowing well-known result:

A polynomial equation p(x) = 0 of degree n and having real coefficients, has n

complex rools (not necessarily all distinct) and for each complex root a + ib with b =
0, a—ib is also aroot of P (x) = 0,

As a consequence, if P(x) is odd degree, it must have a real root. However, it is quite
difficult to find out the real number, which is a real root of the given polynomial -
equation given above.

The next non-constructive‘proot‘is about a well-known result: These exist
irrational numbers x and y such that x* is a rational number.

The following argument establishes the rruth of the abo fresuir: We know \/E is an
irratior:?.Lnumber, but we do not know whether («/5) 2 is irrational OR not. If
(JE) 2 is rational then x ::?_d y each equal lo \E are,/lhe ri?,uired rational
numbers. However, ii‘(ﬁ)- 2 is irrati ny.hen X= («/5) 2 and y = V2 are
two irrational numbers such that (/2 ) J%") 2 (/2 =2 is rational. -

Howavj-_ in the argument above, we exactly do not know whether the required pair is

(ﬁ) 2and-f2_ar ﬁandﬁ.

We give below a non—constructive proof of the theorem: There is a total
computable function whick is not primitive recursive. .

Second Proof of Theorem 21 (ii)

All the functions in the following argument are assumed to be of the form
f: N — N. only. Let us assume that the above statement is false, i.e, we assume thar
every fotal computable function is primitive recursive. Then, we use Cantors’

Diagonalization Method, (as is used in showing the existence of a non-ratjonal real
number} to arrive al a contradiction.

The representation of a primitive recursive function is obtained by applying finite
number of times the structuring rules to the initial functlons £ o E . The

representation of a function which is obtained by an application of a structuring rule
to initial functions gives the function as a finite sequence of symbols, e.g,

g. Hf (my, ..... my) uses only finitely many symbol. Each structuring rule adds only

finitely many additional symbols to get the represenlation of a new function from that
of already defined function. Thus each primitive recursive function must be
representable as a finite sequence of symbols, We arrange the primitive recursive
functions according to the number of symbols in the sequence representing the
funclions, starting with the one with least number of symbols in it, followed by the
one having least number of symbols among the remaining. Among function
represented by equal number of symbols, we use dictionary type of ordering. Thus,

all the sequences of symbols representing the primitive recursive functions can be
written in the form of an ordered table starting at the top with a function having least
number of symbols in its representation. According to the order of the function in the



table we name the functions, with the top one named as f;, next as fand in general nth
function in the table being called €,

Next, we construct a new function
g: N—> N suchthat -
gn) = fu (n) +1 - (39

In other words, the value under function g of the argument n € N, is obtained by
taking value under the nth function f, of n and then adding 1 to it.

As f, is primitive recursive for cach n, the value f(n) exists and s obtainable in finite
number of steps. Also, adding 1 is only one additional step to get g(n) from

f, {n). Also as f, is total, therefore for cach n€N, f,(n) exists and hence f(n)+1 exists
and hence for each neN, g (n), being equal to f(n)+1, exists. Thus gin} is also total
und computable and its value ar n differs from the value of f,, because

g(r) = f, (n) +1 # i(n),
for cach §, in the table.

Thus g is not in the table of aff the primitive recursive {unctions, i.e., g is #of primitive
recursive.

The last statement contradicls the assumption that every total computable function is
primitive. Hence the assumption is wrong, thereby proving the theorem.

Thus, we have proved that the class of primitive recursive functions is a proper
subclasy of the cluss of total compiitable functions.

Thus primitive recursion as a technique for constructin? computable functions is
weuak in the sense that it is not able 1o construct even such simple lunctions as Quof.
The above discussion suggests thai ithe formal rechniguie of primitive recursion should
be further strengthened, so that, the enhanced formal technique captures all such
Junctions which are otherwise, eusily seen to be computable. One such technique,
culled unhounded minimal f.'rfu ion, 1s discussed in the next section.

Recursive Function
Theory

3.7 THE TECHNIQUES OF UNBOUNDED
MINIMALISATION, PARTIAL RECURSION AND
p-RECURSION

In order to achieve the goal mentioned in the previous paragraph, we first consider the

Pefimition: Unbounded Minimalisalion
For a g/ven function

g:NY N

we define a function

NS > N such that

forx = (x; %2 ...x) ¢ N* and for some Vo N

S eginaly v
if and only ifi the folloveing conditions are sarisficd.
(i) glx,y)=0 and

() ilg(x,2z)=0theny =z

{i.e., y is the smallest among all the values = € N for which g(;. =0

(1ii) g{._\;, u) is defined for all u < v, withu & N. (40)
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- Let g(n, i)= {

Further, if, for some x € N¥ such a y does not exist, rhen f(;) = undefined.
Such a function f is said to be obtained from g through unbounded
minlmalization and is denoted as

f(x)=py [g(X,y) =0]

Example 22: Let g : N x N — N be defined by the following table,

g(0,0)=5 g(l,0)=35 g(2,0)=8 8(3,0)=1
g0,1)=4 = g, 1)=6 g(2,3)=0 g3, 1N=2
g(0,2)=6 g,2)=0  g2,)=5 8(3,2)=0
g0,3)=0  g(,3)=3  p(2.2)= undefined (3, 3)=4
£(0,4)=1 8, 4)=0 g2, =7 £(3, 4) = undefinied
Then

f0) =3

f(1)=2 (though g(1, 4) = 0 also, but 2 is the minimum k such that £ (1, 2) = 0)

f(2)= is not defined, because g (2,3) =0, yet g (2,n) is undefined forn = 2°
which is less than 3.

f(3) =2 (though g(3, 4) is undefined for y = 4 but then 4 > 2 and g(3, 2)=0)

As can be seen from the above example, minimalisation can be defined for functions
that are undefined for some values of the domains. Also, minimalisation muay produce
Junctions that are undefinéd for some values of the domain.

Also, unbounded minimalization may lead from total functions g: N*** — N to
partial functions f: N*— N.

For Examble 23: _
' m+l, Jorallm<n<10
g(n,m)= 0, form=nx<10
n, otherwise

Then obviously g NxN - Nis total, but, f: N — N is such that f (n) is not defined for
nz1l. -

Also the converse may happen, l.e., unbounded minkmalization may lead from
some partlal functions g: N**' - N to total functions f: N* - N. For exatmple

n—i Jorign
undefined if i>n

Then we canseethat f(n)=n  foralln

Thus unbounded minimalisation leads from a strictly partial function g 10 a total
Junction f.

Using the technique of unbounded minimalization, we extend the set of computable
functions to the class of p-recursive Functions, also called Partial Recursive
Functions. The new class includes the class of Primitive Recursive Functions as its
proper subclass.

Remarks24

The reason for the use of the adjective unbounded before minimalization lies in the
fact that, there is no bound, on the argument, upto which we are required to try to find
&y, which satisfies (i) and (iii) under (40).




Remark 25 _ Recursive Function

Thegry
Problems with unrestricted application of unbounded minimalisation to a primitive

recursive function.

If g is an’ arbitrary primitive recursive function, then there is no general method of
telling whether a y that satisfies all the three conditions of unbounded minimalisation
given by (40), exists. In other words, unbounded minimalisation applied to an
arbitrary primitive recursive function, may not yield a function which may be
computable in any intuitive sense (the proof of the claim is teyond the scope of the
course). '

Reniark 26

Bounded Minimalisaiion: On the lines of the definition of unhounded
mintinalisation, we can define bounded minimalisation, for a given integer, m, of
a partial function

g: N*'oN
as a function

f: N3 N such that

for x = (X1 X25 arung X} € N, meN
andy eENwithy =m

f(x, m) equalsy
if (and only if'} the following conditions are satisfied:

® g(z,y)=0

(i) ifg(x,z)=0thenysz
(i.e, y is the smallest among all values z € N for which g (x,z)=0)

Gi) g(x,u) is defined for all u <y with u € N

Further, if, for some ; € N*, such a y (< m), does not exist, then

f(x) = undefined.

Such a function f is said to be obtained from g through bonnded minimalisation
and is denoted as

f(x,m)=py<m|g(x,y)]
However, through the following theorem, we show that bounded minimalization is
not a powerful technique fo extend the class of primitive recursive functions to more
general class of computable functions.

Theorem 27: If the function f(J_r, m) is obtained by bounded minimalization for a
given integer m and when applied to only primitive recursive function g (x,y), then f

( x, m) must be primitive recursive (however, only the last value may be ‘undefined”).

Proof: Dcfine the functions
b (x) 2 NY = N

as follows:
ho(x) = g(x,00  _
=(g(xv0]! gl(x!l)) ll-

by {x)
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As hy (;:) is obtained by combination rule applied to values of a primitiva recursive

function g (x, y), therefore, h, (J_c) is a primilive recursive function.
Next, consider

by (%) =, (%), g (%, 2))

Again as h, (;) is obtained by applying combination rule to two primitvé recursive
functions h, (J_c) and g (J_c, 2) therefore, h; (x) is primitive recursive. Continuing like
this, the function h.(;) ««wx i (x) are all primitive recursive functions. But

By ()= (f €, 0), 8 (x L 1), 80X, 2)).. g (X, )

Thus for any ;, we can compute the row of values p (J_c, 0), e B (;, m) can find

the minmum i < m, if it exists, with g (x,{)=0

However, if such an i does not exist then also we able to determine that f(x, m)is
‘undefined’. 'Thus, we can say that bounded minimalizations of a primitive
recursive function is primitive recursive

Remarks 28

At this stage, it is important to note that in unbounded minimélization, the number m
is nat given and hence, in the case of f { x) the unbounded minimalization of a given
primitive function g (x, y), we can not know when to stop finding vajues g ( x, 0),

glx, Doornnnnn , if all these values happen to be non-zero, before declaring f (;) as
undefined.

Therefore, we'can not claim that the unbounded minimalization of a primitive
recursive function is primitive recursive.

Rerﬁarks 29

We already know that primitive recursion is a weak computational technique in the
sense that it is not able to show even div as computable function. Further, through

Theorem 30: we show that Bounded Minimalisation produces only primitive
recursive functions from primitive recursive  funotions. Thus .Bounded
Minimalisation can not be used as a technique to extend primitive recursion to more
powerful computational technique.

Also, under Remarks25, we mentioned that Unbounded Minimalization though is
more powerful technique, yet, its unrestricted application may lead to functions which
may not be computable in any intuitive sense. Thus we haye to find a technique which
is a restriction of unbounded minimalisation but is an extension of Bounded
Minimalisation. The technique to be described is called H-recursion or partial
recursion. The discussion of partjal recursion requires intreduction of a number of
concepts including the B

Definition: Regular Function
A function )
NN
is said to be regular if (and only in
for each n € N¥, there is an n such that

P e T



f'(n m) = . n“mgp cllgn

[n view of the fact that unbounded minimalization may lead from total qupnons to
strictly partial functions, therefore, we need to generalize our definitions of
combinations, composition of functions and that of primitive recursion so as to be
applicable to strictly partial functions also.

Génceralized/New) Combination Rule

Let

Y T S

g NF 5 N™ and
h: N> N"

be iwo partial functions. Then the composition partial function ' |
f: NF— N™*
is defined as follows:

If X= (X1, .o %a) €N

f(x) = (g(x), h(x)),

and both the values g ( x) and then h ( x ) are defined; else f{ x ) is undefined.

{Generalized/New) Composition Rule

Let f£N*>N° and ,
g: N™ — NF . !
be partial functions then
g- NS> N"
is given as follows:

Let x = (%, Xz, --. Xi) € N¥

Then (g - ) (x) = (g (F(x))), if both f{ x ) and g (£ ( x)) are defined, else g-fis
undefined. i

e i i L

Similarly, we have the

(Generalized/New) Primitive Recursion:

Given the partial functions
B: N¥ — N and
h:N""? > N

then a (partial) function

N SN

is said to be obtained through partlal recursion from g and h, if

£(x,0)=g(x), :

including ‘undefired’ as a possible value for g as well as f and

flx.y+1y=h(x.y. f{x,y)}

which will have the value * undefined” if cither f(x y) is ‘undefined’ or if f( x,y)is

defined but h{.x, v, |i(x . ¥)) is ‘undefined’.

Now. we define below the concept of p-recursion, which as a technique for
constructing mere complex computable functions, subsumes partial recursion and is
more powerful a technique than primitive recursion,

Definition: A l-recursive function is a partial function (including a tolal function)
that cant e constructed from the initiad functions by a  finite number of
applications of the (i) combinations, (if) compositions, (iii) primitive recursions and

(iv) unbounded minimalization to {only) regular funcrions. He
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Remarks 31

The fuct of primitive recursion technique is a special case of p-recursion technique,
easily follows from the fact that any primitive recursive function fis obtained by finite
numbers of applications of (i} combination {ii) composition and (iii) primitive
recursion to initial functions. But'then by definition of p-recursion, F must be
p-recursive function (i) However, U-recursion is stricilly more powerful a technique
than primitive recursive from the facts that div is not primitive recursive but is -
recursive as follows from

Example 32: Show the function quot: N? = N defined carlier as
div (%, y) = {integer portion of x/y if y # 0, undefined if y =0},
is P-recursive, but not primitive recursive.

Hint: quot iy p-recursive, as
quot (m, n} =P t [{(m+ ) —=(prod (t, n}+n)} =0}
Futher div is a partial function, therefore, it can not be primitive recursive.

Ex. 13} Show that the function SQRT: N—»N such that SORT (x) =y if and only if
x = y?, is p-recursive but not primitive recursive,

Finally we come to the end of this unit with Church’s Thesis which states: The class
of p-recursive functions contains all computable functions. Church’s thesis about
y-recursive functions is paralle! of Turing thesis about Turing Machines. Church’s
thesis claims that the p-recursion technique is ultimate in constructing compuiable
function in the sense that if a function is not Y-recursive then il can not be computable
by any formal technique. As mentioned in the previous unii, similar claim is made by
Turing Thesis about Turing Machine Model. We repeat the claim of Turing Thesis:
Turing Machines possess the power of solving any problem that can solved by any
computational means. In the next unit, we discuss the equivalence of the two theses
giving rise to what is commonly known as Church-Turing Thesis.

3.8 SUMMARY

In this unit, we introduced the Theory of Recursive Functions, which is a declarative
approach to the study of compulational phenomenon. We slarted with some examples
of recursive definitions of some functions. Then we introduced the concepts of initial
Junctions and primitive recursion followed by the concept of primitive recursive
Junciion. An example to motivate the student for the understanding of the concept of
primitive recursion, was given before the introduction of the concept of primitive
recursion. Next, we exhibited that primitive recursion is not strong enough a
technique to capture the computational phenomenon, in the sense that some of even
elementary functions, though easily seen to be computable, zre not primitive-
recursive. Then the notion of total computable functions which subsumes the concept
of primitive recursive function was introduced, that captures more functions which are
intuitively computable. But again it was shown that even the concept of total
computable function is not satisfactory in capturing a number of functions which are,
intuitively and even formally, computable. Finatly, we discussed y-recursion using
.unbounded minimalization technique to capture essentially all the functions which can
be shown 10 be computable by any formal means. '

Also, we established the following inclusion relation (<) between various classes as:
set of Initial’ Functions < set of Primitive Recursive Functions < set of Total
computable Functions ¢ set of [I-Recursive Function < set of partial recursive

_function < set of all (partial) functions.

AR T S-S
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3.9 SOLUTIONS/ANSWERS ' T heony
Exercise 1 For a function f: X‘;—>Y to be rotal, we need to"show that for each

element x o

of the domain X, there is an element y of the codomain Y such that

f) =y

&is total 1 £: N o Nis such that for each n € N, the domain there exists
0 € N, the codomain, such that & (n) = 0. Hence £ is total

o is total:
o : N — N is such that for each n € N, the domain, thereexistsn+1 €

N, the codomnain, such that ' : s
c(ny=n+1. . | ;
Therefore o is total ‘:
rE I 5i<k,istotal: By definition

H:N"—)N | !

is such that i
for an arbitrary element (ny, Rz, -...n. ny) of the domain N,

H: ( n, n, .., 0o, "‘snk) =
Hence HT is total. |

ST Tyt

Exercise 2 Consider
- [T-IL)- [-IL e
- TIT ) [T anxLe742)
- [TAIT e
- [Lea<ITe2)

-t T —

={2,8)

Exercise 3 f{4)= o - f(3) )
=d-(c" K2) .
=(c’ - &) - (f2))
=c*-(a- 1)

e G (D))
=o' fl0)=12

Exercise 4 Hint: n(24), take k=2, and g as identity function g: NxN — NxN lie,
g(n, m)= (_nl, n,) forallny,n; €N.

Then (24) takes the form £(n) = g (hi (%), hy (7)) = (s (1), bz (1)) for

all n €N",
Which gives f as combination of hyand by
Again take k=1 and we get f as the Composition of /i, and g.

Exercise 5 (i) Form,n€N
Plus-Prod (m,n) = (Plus (m,n), Prod (m,n))

Plus and Prod are already shown to be Primitive recursive. And
combination of primitive recursive functions gives a primitive recursive

function. Hence the proof

k-]

(ii) Exp is primitive recursive follows from the following . 121
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Exp(m0)=0 . § ()and
Exp(m,n+ 1)=prod (H? (m, n, Exp (m, n)), H; (m, n, Lxp (m, n)

(iil) Hint: on the line of Exercise 5 (1)

Exercise 6 Pred (0) =€ ()
Pred (1}=¢§

Pred (n +D=o[]. (n,pred @)

. Exerecise 7 monus (m, 0)=m

monus (m, n+ 1)=pred (monus (m, n))
Exercise 8 [t can be easily verified that

BY (itt, n) = 1+ ((m == n) + (n == m)),
Which in formal notation turns out to be
Eq(m,n) =monus (o & (), plus (monus (m, n), monus {n, m))

= (monus -(l_lix l_L2 ) X monus (HTXH; '-)))) (m,n) -

For example

Eq@,1) =
= 1-*=(3+0)
=0

Again

Eq.(4,4) =1-{(3"4)+@-+4)
=1-=0+0)=1

Exercise 9 Each integer-can be thought of as a member of N?, for example, 5 may be
thought of as

(6, 1)and -5 as ( 1, 6). In general, (m, n) € N* denotes the integér m-n.

Then the function minus: I x I — I can be sought of as
titlfis! (N x N) x (N x N} = N x N such that if (my, n;) & €my, n;) € N x N then

minus ((m), ng) & (M, nz))
=(my +ng, 0, +my)
= (plus (m,, ng ), plus (m, mz)) (39)

Blus {v attesdy shown to be primitive recursive and combination of two prlmltlve
recursive functions (viz plus and plus) is primitive recursive. Hence the above
equation { 39 } shows that minus is a primitive recursive function.

Exercise 10 Hint
7 eq=monus.( ¢, Xeq)

Exercise 11 Hint

Ki =monus (i, I;.;)
Where
I; (m) =eq (m-*j, 0)

Esertise 12 Hint




= mult (7, k) + mult (12, ks) + mult (8, mult (1 K, 1 ks}) Recursive Function
n Thebry

Exerclse 13 As SQRT is a strictly partial function, therefore, SQRT is not primitive
recursive. ; '

Further as SQRT (x) =  t[{(1~-Eq (x, prod (t,£)))=0], therefote, SQRT is p-recursive.

3.10 FURTHER READINGS | - :

Lewis H.R and -Pdpadimiiriou C.H., Elements of the Theory of Computation - :
PHI (1981), ] ]

Peter R., Recursive Functions, Academic Press (1967)

Epstein Richard L. and Carmilll W.A., Computabillty, Computuble Funitions, Logic
and the Foundations of Mathematics ({1 Edition) Wadsworth & Brooks (2000).

(A highly readable book presenting advanced level topics from elementary point of view) i
Goodstein R.L., Recursive Analysis North-Holland (1961)

Rogers H., Theory of Recursive Functions and Effective Computability, McGraw-Hill
(1967) _ ' ’ .
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BLOCK INTRODUCTION

“Both knowledge and wirdom extend man's reach. Knowledge led to
computers, wisdom 1o ¢ ippsticks, Unforunetly our association is
overinvolved with the j rmer. The latter will have to wait for a more

sublime day”.

Alan J. Perlis In his 1966 Turing Award Lecture
{The Turing Award was given for the first time in 1966.}

Let us wait for some more time for chowmein and chopsticks and, ingtead, have some
other nugget of wisdom:

S gurt Godel's incompleteness theorems tell us that rational thought can never
penclrate 1o the final, uitimare truth... Gadel was oue of the undisputed
mathematical geniuses of the twenticth centiry and his thearems are pure
mathemaiics, the ultimate precision in reasen...”

B.K. Baneriee
in

‘Primacy of Faith over Reason’
Times of India May 10, 1993,

After having agreed to rcpose our faith in Turing-Church thesis, according to which
Turing Machine and, hence, all its equivalenis from other approaches, are uftimate
models of computation; let us investigate what (type of) problems are computable,

- i.e., (computationally) solvable. Further, out of the solvable problems, we study the
issue of relative degrees of difficulty in solving the solvable problems.

In Unit 1, we discuss various issues related to the problems, which are not solvable by
any computational means. Such problems are also called undecidable problems.

Qut of the problems that are solvable by some computational means, there are
problems which are not feasible in the sense that such problems require very large
amount of computational resources. In Unit 2, we classify computationally selvable
problems into various categories like P, NP, intraclable, NP-Hard, and NP-compicic
problems. Also, we discuss a technique for establishing some of the well known

problems etc as NP-complete.

Finally, in Unit 3, We discuss some of the applications of the various topics covered
in all the three blocks of this course. )
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0 INTRODUCTION

lost of the time, the computers are talked in respect of their wondcrful achievements
ind, of course, once in a while, also about the blunders committed by some

>mputer system, e.g., of withdrawing or depositing more than 99 million dollars
om a bank account against the required 99 dollars only}. However, most of the
on-specialists are not aware of the general limitations of computers. Cne very
nportant fact, in this respect, is that there are large number of problems which no
smputer, including any one that may be designed and developed at any time in the
iture, is and will ever be able to solve. Rather, the number of problems that can be
rived computationally is much less than the number of problems that can never be
sived using only computational means. In this unit, we discuss issues and problems
1at exhibit the limitations of computing devices in solving problems.

1 this sense, we explore the [imits on the capabilities of computers. We also prove
ne of the deepest resulls in computer science: the undecidability of the halting
roblem. Alan Turing first proved this result in 1936. It is related to Gédel's
wcompleteness Theorem which stales that there is no system of logic strong enough
» prove all true sentences of number theory. Essentially, Godel uses a ixpoiint
anstruction to construct a self-referential sentence of number theory which states
»mething 10 the effect: "fam nof provable”. The argument is quite complex.
owever, the argument is basically analogous to the one given in support of the fact

tat the truth value of the statement ‘/ am telling lies’ can not be determined.

1 view of the large number of applications of modemn computer systems that help us
i solving problems from almost every domain of human experience, you might be
:mpted to think that compulers can solve any problem if the problemis properly
srmulated. You'd soon find that there are problems, even from a highly formal -
iscipline like mathamatics, which can be properly formulated, but can not be solved
y computational means to through computational means those problems from
isciplines like social science’s, philosoply or religion ctc. that can't even be
»rmulated as computational problems.

7e will discuss problems, which though can be formulated properly. yet are not
slvable through any computational means. And we will prove that such probiems
annot be solved no matter

what language is used?

what machine is used?

T TWoTLTT YT

...as long as there were n¢’

Tl T T
ieunting, progrannfilip

was no problem at all; whe
we had a few weak )
COMmpulers, rogramminyg |,
became a mild problem, a;
now that we have giganiic:
compuiers, prograniming |
has beeamz an equally
gigontte problem. Zu rthis '
sense the electronic
indusiry has nort solved a |
single problew, it has onl
created them — it has
created the problem of
usin'g, its producis, To pul
in another way: ... socicty
ambilion to apply thése
machines grew in
proportion and it is the pc
programmer ...

Edsger W. Dijkstra |
In
Turing Award Lociur

(1972)
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L) much computational resources are devoied in attempting to solve the problem
etc.

For problems that can not be solved by computational means, we can approximate
their solutions, but it's impossible o get the perfectly correct solutions in all cascs.
One of the imporiant problem among all such problems is the halting problem:
given a program and an input, does the program halt when applied to that input?
Answer; it's impossiblc to determire in general. However, there may be some special
cases for which you may get the answer, but there is no general algorithm that works
in all cases, and provably so.

1.1 OBJECTIVES

At the end of this unit, you should be able to:

‘e show that Halting Problem is uncomputable/unsolvable/undecidable;

. to explain the general technique of Reduction to establish other problems as
uncomputable;

e  ¢stablish unsolvability of many unsolvable problems using the technique of
reduction;

. enumerate large number of unsolvable problems, including those about Turing
Machines and about various types of grammars/languages including context-
free, context-sensitive and unrestricted etc.

1.2 DECIDABLE AND UNDECIDABLE
PROBLEMS

A function g with domain D is said to be compultable if there exists some Turing
machine

M=(Q, Z, T, 8§, qq, F) such that
Qo W i~ grg{w), qre F,foraliweD.

where

qo ® denotes the initial configuration with left-most symbol of the string © being
scanned in state g, and gy g(e) denetes the final c.

A function is said to be uncomputable if no such machine exists. There may be a
Turing machine that can compute f on part of its domain, but we call the function
computable only if there is a Turing machine that computes the function on the whole
of its domain.

For some problems, we are interested in simpler solution in terms of “yes” or “no™.
For example, we consider problem of context free grammar i.¢., for a context free
grammar G, [s the lapguage L{(G) ambiguous, For some G the answer will be “yes”,
for others it 'will be “no”, but clearly we must have one or the other. The problem is
to decide whether the statement is true for any G we are given. The domain for this

problem is the set of all context free grammars. We say that a problem is decidable if :

there exists a Turing machine that gives the correct answer for every statement in the
domain of the problem,

Similarly, consider the problem of equivalence of context free grammar i.e., to
determine whether bwo context free grammars are eguivalent. Again, given context
free grammars G, and Gy, the answer may be “yes” or “no”. The problem s to
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decide whether the statement is true for any two given context free grammars G, and ai';f:dual;“ﬁy

G;. The domain for this problem is the set of all context free'trammars. We say that
a problem is decidable if there exists 2 Turing machine that gives the correct answer
for every statement in the domain of the problem.

A class of problems with two output: “yes” or “no” is said to be decidable (solvable)
if there exists some definite algerithin which always terminates (halts) with one of
two outputs yes” or “no". Otherwise, the class of problems is said to be undecidable
(unsolvable).

13 THE HALTING PROBLEM

There are many problem which are not computable’ But, we start with a problem
which is important and that at the same time gives us a platform for developing later
results. One such problem is the halting problem. Algorithms may contain loops that
may be infinite or finite in length. The amount of work done in an algorithm usually
depends on the data input. Algorithms may consist of various numbers of loops, -
resled or in sequence. Informally, the Halting problem can be put as:

Given a Turing machine M and an input w to the machine M, determine if the ..the programming task

machine M will eventually hait when it is given input w. is {still) an intcllectual
challenge of the highest

Trial solution: Just run the machine M with the given input w. caliber...How not to gel
lost in the complexitics of

. . our o aking is still
. If the machine M halts, we know the machine halts. co:np‘::-:nr;.s c‘;gr;s st
. i . . challenge...
L But if the machine doesn't halt in a reasonable amount of time, we cannot
conclude that it won't halt, Maybe we didn't wait long enough. Edger W. Dijkstra
in
What we need is an algorithm that can determine the correct answer for any M and w l;:;:“l':gr_'{gt,ggrf:; to
by performing some analysis on the machine’s description and the input. But, we will Award Lecture

show that no such algorithm exists.

Let us see first, proof devised by Alan Turing (1936) that halting problem is
unsolvable.

Suppose you have a solution to the halling problem in lerms of a machine, say, H.
H takes two inputs:

1. aprogram M and
2.  aninput w for the program M.

H generates an output "Aals" if H determines that M stops on input w or it outputs
“leop" otherwise.

M halt
—» —>
W—pp —» loop

So now H can be revised to lake M as both inputs (the program and its input) and H
should be able to determine if M will halt on M as its input.

Tt/ rreTmryrTT. T e s -
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Let us construct a new, simple algorithm K that takes H's output as its input and does
the following:

1. if H ourputs "loap” then K halts, :
2. otherwise H's ourput of "kailr” causes K to loop forever. "

That is, K will do the opposite of H's ourput.

M -
M alt

> loop i
I —‘>C)____... "
M loop halt
" H

Since K is a program, let us use K as the input o K.
K K It ;

—» loop

N —o_,
K loop halt
H

If 1T says that K halts then K itself would loop (that's how we constructed it),
IF Il says that K foops then K will halt.

In cither case H gives the wrong answer for K. Thus H cannot work in all cases.

We've shown that i s possible to construct an input that causes any solution H to
fail. Hence, The halting probletn is undecidable.

Now, we formally define whal we mean by the halting problem. ‘
Definition 1.1: Let Wy be a string that describes a Turing machine M = (Q,Z,T,8,
qo, F), and let -v be a string in ', We will assume that Wy, and w are encoded as a
string of 0”s and 1’s. A solution of the halting problem is a Turing machine H, which
for any Wy, and w, performis the computation

Qo Wy W s qy %z if M applied to w halts, and

Go Wn W |‘"' Y1 Qa Y2 if M applied to w does not halt.

ilere q, and q, are both final states of H.

Theorem 1.1: There does no: exist any Turing machine H that behaves as required
by Definition I.1. The halting problem is therefore undecidable,

Proof: We provide proof by contradiction. Let us assume that there exists an

algorilim, and consequently some Turing machine H, that solves the halting i
problem. The input to H will be the string W) w. The requirement is then that, the f
Turing machine H will halt with either a yes or 1:0 answer. We capture this by asking



~ that H will halt in one of :wo corresponding final states, say, q, or q..As per
Definition 8.1, we want H to operate according to the following rules:

Go Wh w = u x Qy X2 if M applied to w halts, and
Qo W w =" Y14n Y2 if M applied to w does not halt.

This situation can also be visualize 1 by a block diagram given below:

qy

WM w Qo

—O

Qn

Next, we modify H to produce H, such that
e  IfH says that it will halt then H, itself would loop
e  If H says that H will not halt then H, will halt.

We can achieve this by adding two more states say, q; and ga. Transrtlons are defined
-from gy to qs, from q to q, and from g 1o Q, regardless of the tape symbol, in sucha °
way that the tape remains unchanged. This is shown by another block diagram given |

below:

Qy
O
Wuw

Qn J

Formally, the action of H, is described by
Qo W w l_° g © if M applied to w halts, and

Qo Wi w |~ 1 vi19.v2 if M applied to w does not halt.

Here, % stands for Turing machine is in infinite loop i.e., Turing machine will run
forever. Next, we construct another Tunng machine H; from H,- This newmachine
takes as input Wy, and copies it, ending in its initral state qg. Aftcr that, it behaves

cxactly like H,. The action of H, is such that
qQu Wi |~ 12 o W W |~ 2 if M applied to W), halts, and

0 Wn [~ 1 Y1q.y: if Hy applied to Wy does not halt,

Computaﬁililyé';
Decldabllity ;
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This clearly contradicts what we assumed. In either case H, gives the wrong answer
for Wy. Thus H cannot work in all cases.

We've shown that it is possible lo construct an input that causes any solution H to
fail. Hence, the halting problem is undecidable.

Theorem 2.2: If the halting problem were decidable, then every recursively
enumerable language would be recursive, Consequently, the halting problem is
undecidable,

Proof: Recall that
1. Alanguage is recursively enumerabie if there exists a Turing mechine thza,

-accepts every string in the language and does not accept any string not in the
language,

-2, Alanguage is recursive if there exists a Turin g machine that accepts every

string in the language and rejects every string not in the language.

Let L be a recursively enumerable language on X, and let M be a Turing machine that
accepts L. Let us assume H be the Turing machine that solves the halting problem.
We construct from this the following algorithm: '

L. Apply Hto Wy w. If H says “no”, then by definition w is not in L,

2. IfH says “yes", then apply M to w. But M must halt, so it will ultimately tell
us whether w is in L or not.

This constitutes a membcrshjp algorithm, making L recursive. But, we know that
there are recursively enumerable languages thai are not recursive. The contradiction
implies that H cannot exist i.e., the halting problem is undecidable,

1.4 REDUCTION TO ANOTHER UNDECIDABLE
PROBLEM

Once we have shown that the halting problem is undecidable, we can show that a
large class of other problems about the input/output behaviour of programs are
undecidable.

Examples of undecidable problems

L About Turing machines;
* Is the language accepted by a TM empty, finite; regular, or context-free?
- = Doesa TM meet its “specification ? ,” ﬂlat is, does it have any “bugs.”
L About Coantext Free langunges
" Are two context-free grammars equivalent?

® Isa context-free grammar ambiguous?

Not so surprising, Although this result is sweeping in scope, maybe it is nol  »
surprising. If a simple question such as whether a program halls or not is
undecidable, why should one expect that any other property of the input/output
behavior of programs is decidable? Rice’s theorem makes it clear that failure to
decide halting implies failure to decide any other interesting question about the




input/output behaviour of programs. Before we consider Rice’s theorem, we need to
understand the concept of problem reduction on which its proof is based.

Reducing problem B to problem A m:ans finding a way to convert problem B to
problem A, so that a solution to probiem A can be used to solve problem B.

One may ask, Why is this importan ! A reduction of problem B to problem A shows
that problem A is at least as difficul: to solve as problem B.Also, we can show the
following: '

¢  Toshow that a problem A is undecidal:;le, we reduce another problem that is
known to be undecidabie to A. -

. Having,proved that the halting problem is undecidable, we use problem
reduction to show that other problems are undecidable.

Example 1: Totality Problem

Decide whether an arbitrary TM halts on all inputs. (If it does, it computes a “total
function™). This is equivalent to the problem of whether a program can ever enter an
infinite loop, for any input. It differs from the halting problem, which asks whether it
enters an infinite loop for a-particular input.

Proof: We prove that the halting problem is reducible to the totality problem. That
is, if an algorithm can solve the totality problem, it can be used to solve the haiting
problem. Since no algorithin can solve the halting problem, the totality problem must
also be undecidabie.

The reduction is as follows. For any TM M and input w, we create another TM M,
that takes an arbitrary input, ignores it, and runs M on w. Note that M, halts on all
inputs if and only if M halts on input w. Therefore, an algorithm that tells us whether
M, halts on all inputs also tells us whether M halts on input w, which would be a
solution to the halting problem.

Hence, The totality proi:lern is undecidable.
Example 2: Equivalence problem

Decide whether two TMs accept the same language. This is equivalent to the problem
of whether two programs compute the same output for every input.

Proof: We prove that the totality problem is reducible to the equivalence problem.
That is, if an algorithm can solve the equivalence problem, it can be used to solve the
totality problem. Since no algorithm can solve the totality problem, the equivalence
problem must also be unsolvable.

The reduction is as follows. For any TM M, we can construct a TM M, that takes any
input w, runs M on that input, and ouiputs “yes” if M halts on w. We can also
construct a TM M, that takes any input and simply outputs "“yes,” If an algorithm can
telt us whether M, and M, are equivalent, it can also tell us whether M, nalis on all
inputs, which would be a solution ta the totality problem.

Hence, the equivalence problem is undecidable.

Practlcal‘implications

] The fact that the totality problem is undecidable means that we cannot wrile a
program that can find any infinite loop in any program.

Computabllity/
Decidablllty
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®  The fact that the equivalence problem is undecidable means that the code
optimization phase of a2 compiler may improve a program, but can never

guarantee finding the optimally efficient version of the program. There may be

potentially improved versions of the program that it cannot even be sure are
equivalent,

We now describe a more general way of showing that a problem is undecidable
1.e., Rice’s theorem. First we introduce some definitions.

*  Aproperty of a program (TM) can be viewed as the set of programs ihat hirve
that property.

® A functional (or non-trivial) property of a program (TM} is one that some
programs have and some don’t.

Rice’s theorem (proof is not required)

®  "Any functional property of programs is undecidable.”
® A functional property is:

(1) a property of the input/output behaviour of the program, that s, it
describes  the mathematical function the program computes,

(if) nontrivial, in the sense that it is a property of some programs but not all
programs.

Examples of functional properties
®  The language accepted by a TM contains at least two strings.
®  The language accepted by a TM is empty (cont;u'ns fo strings).

®  The language accepted by a TM contains two different strings of the same
length. ;

Rice’s theorem can be used to show that whether the language accepted by a Tu}ing
machine is context-free, regular, or even finite, are undecidable problems.
Not all properties of programs are functional.

1.5 UNDECIDABILITY OF POST
CORRESPONDENCE PROBLEM

Undecidable problems arise in language theory also. It is required to develop
techniques for proving particular problems undecidable. In 1946, Emil Poslt proved -
that the following problem is undecidable: )

LetZ be an'alphabet, and let L and M be two lists of nonempty strings over X, such.
that L and M have the same number of strings. We can represent L and M as follows:

L= ('W], Wi, Wi, oy wk)
M = ( v, ¥, L4 MY vk)

Does there exist a sequence of one or more integers, which we represent as (i, Ik
..., M), that meet the following requirements:

¥

¢ Eachof'the integers is greater than or equal to one.
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L Each of the integers is less than or equal to k. (Recall that each list has k _Decldabitity
strings). : -
. The concalenation of Wi, Wj, “, ..., Wm i5 €qual to the concatenation of vi, vj,
¥ip v-25 Ym- '

If there éxists the sequence (i, j, k, ..., m) satisfying above conditions then (i, j, k, ...,
m) is a solution of PCP. -

Let us consider some examples.

Example 3: Consider the following instance of the PCP:

AlphabetZ={3a,b}
List L= (a, ab)
List M = (aa, b)

We see that { I, 2 ) is a sequence of integers that solves this PCP instance, since the
concatenation of a and ab is equal to the ¢oncatenation of aa and b(iew wa=v, vz
= aab). other solutions include: (1,2,1,2 ),(1,2,1,2,1,2)andso on.

Example 4: ‘Considet the following instance of the PCP Alphabet % = {0,1}

~ ListL=(0,01000,01 )
List M = (000, 01, 1)

" A sequence of integers that solves this problem is ( 2, 1, 1,'_ 3 ), since the
concatenation of 01000, 0, 0 and 01 is equal to the concatenation of 01, 000, 000 and
1 (e, W Wy W W= Va2 ViV ¥y =010000001). .

1.6 UNDECIDABLE PROBLEMS FOR CONTEXT-
FREE LANGUAGES '

The Post correspondence problem is a conventent tool to study undecidable questions
for context free languages. We illustrate this with an example.

Theorem 1.2: There exists no algorithm for deciding whether any given context-free
grammar is ambiguous. -

Proof : Consider two sequences of strings A = (1, U, ..., u)and B={v, v ...,"
v,.) over some alphabet 2. Choose a new set of distinct symbols a;, 2z, ... , @g sSuch
that

{ay, 2z, ... ,an} N 2=,
and consider the two languages
La={uy, ... muxaya ... , @ a;} defined over A and {a, a». ... . am}
and |
La={Vvivj ... IV ..., 8 a;} defined over B and {ai, a,, s @m}.

Let G be the context free grammar given by

({S$ SA E) SB}: {ah d3, .v- s arn} | E: Pn S)

13
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where the set of productions P is the union of the two subsets: the first set P,
consists of

S— SA,
Sa —uSaz; | ug;, i=1,2,...,n,

the second set Pp consists of

S— SB,
Sg =vSpa; | via;, i=1,2,...,n

Now take
GA=({SD SA}: {ah az, ... ram} Uz, PA,S)
and

GB=({Ss SB }r {ah 43, ... !aﬂl} Uzr PB! S) .

Then,
LA = L(GA).
LB = L(GB))
and
L(G‘) = LA w ]-B-

Itis easy to see that G, and Gg by themselves are unambiguous. Ifa given string in L
(G) ends with a;, then its derivation with grammar G, must have started with S= u;
S 8;. Similarly, we can tell at any later stage which rule has to be applied. Thus, If G
is ambiguous it must be because there is w for which there are two derjvations

S=> Sa=> uSai =" wuy.. uay .83 =W
and

8= 5= V;Sa;=>. Vi Vi Vidy .38 = W

Consequently, if G is ambiguous, then the Post correspondence problem with the pair
(A, B) has a solution. Conversely, If G is unambiguous, then the Post correspondence
problem cannot have solution. ’

If there existed an algorithm for solving the ambiguity problem, we could adapt it to
solve the Post correspondence problem, But, since there is no algorithm for the Post
correspondence problem, we conclude that the ambiguity problem is undecidable.

1.7 OTHER UNDECIDABLE PROBLEMS

®  Docs a given Turing machine M halt on all inputs?

* Does Turing machine M halt for any input? (That is, is L(M)=@&7)
® Do two Turing machines M, and M, accept the same language?

¢ Isthe language L.(M) finite?

®  Does L{M) contain any two strings of the same length?

®  Does L(M) contain a string of length k, for some given k?




. . ) Computabllity/
e If G is a unrestricted grammar. Decidabllity

e Doesl(G)=927

®  Does L(G) infinite ?

. If G is a context sensitive granmar.

* Does L(G) =7

o  Does L{G) infinite ?

e  IfL, and L; are any context free languages over z.
L] DoesL i mL;=&7

* Does L =L, ?

. DoesLigl,?

* If L is recursively enumerable language over Z.
* Does L empty ?

e DoesL fmite ?

Ex. 1) Show that the state-entry problem is undecidable. .

Hint:  The problem is described as follows: Given any Turing machineM =(Q, Z,
T, 8, go, F) and any q € Q, we E;, to determine whether Turing machine M,
when given input w, ever enters state q.

Ex. 2) Show that the blank tape halting problem is undecidable.

Hint: The problem is described as follows: Given a Turing machine M, Does
Turing machine M halts when given a blank input tape?

Ex.3) Consider the following instance of the PCP:
Alphabet £={0,1,2}
ListL=(0,1,2)
List M = (00, 11,22)
Does PCP have a solution ?

Ex. 4) Consider the following instance of the PCP:
Alphabet £={a,b}
List L = ( ba, abb, bab )
List M = ( bab, bb, abb )
Does PCP have a solution ?

Ex.5) Does PCP with two lists A = (b, babbb, ba) and B = (bbb, ba, a) have a
solution ? .

Ex. 6) DoesPCP with two lists A= (ab, b, b) and (abb, ba, bb) have a solution ?

Ex.7) Show that there does not exist algorithm for deciding whether or not

L (GA) N 1L(Gg) =@ for asbitrary context free grammars G and Gp.

15
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1.8 SUMMARY

. A decision problem is a problem that requires a yes or no answer. A decision
problem that admits no algorithmic solution is said to be undecidable.

®  No undecidable problem can ever be solved by a computer or computer
program of any kind. In particular, there is no Turing machine to solve an
undecidable problem. |

®  We have not said that undecidable means we don't know of a solution today but
might find one tomormow. It means we can never find an algorithm for the
problem.

®  We can show no solution can exist for a problem A if we can reduce it into
another problem B and problem B is undecidable.

1.9 . SOLUTIONS/ANSWERS

Exercise 1

The problem is described as follows: Given any Turing machine M = (Q, Z, T, 5, o,
F)and any q € Q, we X', to determine whether Turing machine M, when given input
W, cver enters state q. Lo

The problem is to determine whether Turing machine M, when given inpul w, ever
enters state q.

The only way a Turing machine M halts is if it enters a state q for which some
transition function 8(q;, a;) is undefined. Add a new final state Z to the Turing
machine, and add all these missing transitions to Iead to state Z.

Now use the (assumed) state-entry procedure to test whether state Z is ever entered
when M is given input w. This will reveal whether the original machine M halts. We
conclude that it must not be possible to build the assumed state-entry procedure,

Exercise 2

It is another problem which is undecidable, The problem is described as follows:
Given a Turing machine M, does Turing machine M halts when given a blank input
tape? ;

Here, we will reduce the blank tape halting problem to the halting problem, Given M
and w, we first construct from M a new machine M, that starts with a blank tape,
writes w on it, then positions itself in configuration Qow. After that, M, acts exactly
like M. Hence, M,, will halt on a blank tape if and only if M halts on w.

Suppose that the blank tape halting problem were decidable. Given any M and w, we
first construct My, then apply the blank tape halting problem algorithm to it. The
canclusion tells us whether M applied to w will halt. Since this can be done for any
M and w, an algorithm for the blank tape halting problem can be converted into an
algorithm for the halting problem. Since the halting problem is undecidable, the same
rmust be true for the blank tape halting problem. :

Exercise 3

" There is no solulion to this problem, sinca, any potential solution, the

T T T T T T T T T T e



concatenation of the strings from list L will contain half as many letters as the onl;l:::;:‘;m;

concatenation of the corresponding strings from list M.

Exercise 4

We can not have string beginning 1 ith w2 = abb as the counterpart v, = bb exists in
another sequence and first character does not match. Similarly, no string can begin
with i, = bab as the counterpart v; = abb exisis in another sequernce and first
character does not match. The next choice left with us is start the string with w, =ba
from L and the counterpart v, = bab from M. So, we have

ba

bab

The next choice from L must begin with b. Thus, either we choose w, or w; as their
string starts with symbol b. But, the choice of w, will make two string look like:

baba

'be_lbbab

While the choice of ws direct to make choice of v and the string will look like:
babab

bababb

Since the string from list M again exceeds the string from list L by the single symbol
1, a similar argument shows that we should pick up w; from list L and v3 from list M.
Thus, there is only one sequence of choices that generates compatible strings, and for
this sequence string M is always one character longer. Thus, this instance of PCP has

no solution,

Exerclse S

We see that (2, 1, 1, 3 ) is a sequence of integers that solves this PCP instance, since
the concatenation of babbb, b, b and ba is equal to the concatenation of ba, bbb, bbb
anda {(l.e, Wz Wy Wi W3=V2V V| V2 = babbbbbba).

Exerclse 6
For each string in A and corresponding string in B, the length of siring of A is less |
than counterpart string of B for the same sequence number. Hence, the string '

generated by a sequence of strings from A ia shorter than the string generated by the
sequence of coresponding strings of B. Therefore, the PCP has no solution.

Exercise 7

Proof : Consider two grammars
Ga=({Sa}, (812 .- 8} Y 2, Pa, Sa)
and

Ga~({Se }s &1, 32 -0 &} UL, Pp, So).

where the set of productions P, consists of

1
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Sa —U;Saz | i:ja,-, i=1, 2,1,
and the set of preductions Py consists of

Sa »vi8pa; | via;, i=1,2,...,n

where consider two sequences of strings A = (u, uy, ... ,u,) and B = Vi, V2 oLy

m)

over some alphabet 3. Choose a new set of distinct symbols ay, a,, ..., a, such that

{a,a...,2,} " E=0,

Suppose that L(G,) and L{(Gg) have a common element, i.e,
Sa=> uS%=" yiup.. wa, B

and

S5= viSa;=3" viv;... via, .. 87

Then the pair (A, B) has a PC-solution. Conversely, if the pair does not have a PC-

solution, then L(G,) and L{Gp) cannot have a common element. We conclude that

L(G.) n L(Gg) is nonempty if and only if (A, B) has a PC- solution.
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2.0 INTRODUCTION

In the previous unit, we introduced you to the fact that therc aré a large number of
problems which cannot be solved by algorithmic means and discussed a number of *
issues about such problems.

The advantage of such a study i§ our becoming aware of the fact that in stead of
attempting 1o write an algorithm for every problem that we are required to solve using
a computer, we should first study the essential nature of the problem. In case the
problem under consideration is not solvable by algorithmic means, we may aucpt

other computational techniques including use of heuristics, numerical and/or statistical -

techniques. Even out of problems, which though theoretically have algorithmic
solutions, yet require such large amount of resources, that this type of problems are
designated as infeasible for the purpose of computational solution. Out of the
problems, which are feasibly solvable, there are problems each 6f which may have
more than one algorithms to solve the problem. For us, it is desirable to know which
onc is better among the available ones. For cxample, we can use the algorithms viz,
Bubble sort, Insertion sort, Heapsort and Quicksort, for sorting a list of numbers.
Their designs are different but the outcome is the same for all, for a given list of
numbers. As, there are more than one algorithms available to us to sort a list of
numbers, it-is natural for us to think of using the algorithm which solves a particular
sorting problem, in some way better than the others. In context of practical
disciplines like computer applications, an gfficient solution js generally taken as a
better solution. Efficiency of an algorithm can be considered in terms of the efficient
use of computer resources, such as processor time and memory space used. In

addition o the efficiency of execution of algorithms, other factors like time (taken by

a team of software engineers and/or programmers) required for developing algorithms
and reliability may also be taken into consideration as factors towards overall
efficiency of an algorithm.

However, most of the lire, in respect of efficiency of algorithms, we are only
concerned with the time and space requirements of execution of algorithms.

In this unit, we will discuss the issue of efficiency of computation of an algorithm in
terms of the amount of time used ins its execution. On the basis of analysis of an
algorithm, the amount of time that is estimmated to be required in executing an
algorithm, will be referred to as the time comsplexity of the algorithm. The time

- complexity of an algorithm is measured in terms of some (basic) time unit (not second
or nano-second). Generally, time taken in executing one move of a TM, is taken as
(basic) time unit for the purpose. Or, altematively, time taken in executing some
lammantamr anaratinn like addition. is taken as one unit. More complex operations like

Meanwhile, we have
actually succeeded in ;.
making our disciplinc e;
science, and in a ¥
remarkably simple way:
merely by deciding to !
call it “computer '
science™...

...¥¥C NBVE Seen
COmpUter programming
is an art, because it
applies accumulated
knowledge to the work
because it requires skil
and ingenuity, and
specially because it
produces objects of
beauty...

Donald E. Knut!

in :
Turlng Award -
Lecture (1974)
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multiplication etc, are assumed to require an infegral number of basic units. As
mentioned earfier, given many algorithms (solutions) for solving a problem, we would
like to choose the most efficient algorithm from amongst the available ones, For
comparing efficiencies of algorithms, that solve a particular problem, time
complexities of algorithms are considered as _functions of the sizes of the problems (to
be discussed). The time complexity functions of the algorithms are compared in terms
of their growth rates (to be defined) as growth rates are considered important measures
of comparative efficiencies. :

E -

TTTTATTTITE

The concept of the size of a problem, though a fundamental one, yet is difficult 1o
define precisely. Generally, the size of a problem, is measured in terms of the size of
the input. The concept of the size of an input of a problem may be explained
informally through examples. In the case of multiplication of two nxn {squares)
matrices, the size of the problem may be taken as n?, i.e, the number of elementy - :
each matrix to be multiplied. For problems involving polynomials, the degrees of the :
polynomials may be taken as measure of the sizes of the problems,

Also, we may have an intuitive idea about the term growth rate and its significance
in the comparative study of algorithms that can be designed to solve problems. For
the time being, in stead of attempting a formal definition, we illustrate the concept of
growth rate of time complexity function of an algorithm and its significance through
the following example. ”

Let us consider two algorithms to solve a problem P, having time-complexities
respectively as fy(n) = 1000n” and fy(n) = 5n°, where size of the problem is assumed to
be n. Then -

fimyzf;(n) for n<14 and

fimsf(m) fornz1s.

Also, the increase in the ratio (f, (n)/f, {n)) is faster than increase inn. Thus,
informally, growth rate of f; (n) is more than the growth rate of f; (n). In one sense,’
the aigoriihm having time complexity f, (n) is inferior to the algorithm having time
complexity fi(n) as growth rate of f3(n) is faster than that of fi (n).

A number of well-known notations for the formai treatment of the growth rate will be
intraduced later on within this seciion itself.

For a problem, a solution with time complexity which can be expressed as a
polynomial of the size of the problem, is considered to have an efficient solution,
UnZortunately, not many problems that arise m practice, admit any efficient
algorithms, as these problems can be solved, if at all, by only non-polynomial time
algorithms. A problem which does not have any (Anown) polynomial time algorithm is
called an intractable problem.

At this stage, it is important to be aware of the following relevant facts

(i) A non-polynomis! function need not always be exponentisl:. Fur cxampie,
the function f(n) = nlog, n is neither pelynomial fanction nor exponential
function of n, but, somewhere between the two".

(i) The term sglusion in its general jorm: need not be an algorithm. If by tossing
& zo0in, we get the corcect answer to each instance of a problem, then the process
of tossing the coin and geiting answers constitutes a solution. But, the process is
not an algorithm. Similarly, we solve problems based on heuristics, i.e, good

* For details, refer Page 415, Introduction to Automata Théory, Languages, and Computation
(Second Edition) by Hopcroft, Motwani &Ullman, Pearson Eduction Inc (2001}



paesses which, generally but not necessarily always, lead to solutions. All such
cases of solutions are not algorith.ms, or algorithmic solutions. To be more
explicit, by an algorithmic solution A of a probiem L (considered as a
language) from a problem dorrain ., we mean that among other conditions,
the following are satisfied:

(a) A isastep-by-step meti:od in which for each instance of the problem,
there is a definite sequence of execution steps (not involving any guess
work). : ' '

(b) A terminates for cach €Y, irrespective of whether x € Lor x eL.

In this sense of algor:'rhm:'c'salulion, only a solution ﬁy a Deterministic TM is called
an algorithm. A solutionby a Non-Deterministic TM may not be an algorithm.

(iii). However, for every NTM solution, there is a Deterministic TM (DTM) solution
of a problem. Therefore, if there is an NTM solution of a problem, then there is
an algorithmic solution of the problem. However, the symmelry may end here.

The computational equivalence of Deterministic and Non-Deterministic TMs
does not state or guarantee any equivalence in respect of requirement of
resources like time and space by the Deterministic and Non-Deterministic
models of TM, for solving a (solvable) problem. To be more precise, if a
problem is solvable in polynomial-time by a Non-Deterministic Turing
Machine, then it is, of course, guaranteed that there is a deterministic TM that
solves the problem, but it is ro! guaranteed that there exists a Deterministic TM
that solves the problem in polynomial time. Rather, this fact forms the basls

_ for one of the deepest open questions of Mathematics, which Is stated as

" swhether P = NP?'(P and NP to be defined soon).

The questloh put in stmpler language means: Is it possible to design a
Deterministic TM to solve a problem in polynomial time, for which, a
Non-Deterministic TM that solves the problem in polynomial time, has already

"been designed?

We summarize the sbove discusslon from the intractable problem’s
definition onward. Let us begin with definitions of the notions of P and NP.

P denotes the class of all problems, for each of which there is at least one
known polynomial time Deterministic TM solving it.

NP denotes the class of all problems, for each of which, thete is at least o;le,
known Non-Deterministic, polynomial time solution. However, this solution
may not be reducible to a polynomial time algorithm, i.e, to a polynomial time
DTM.

Thus starting with two distinct classes of problems, viz, tractable problems and

intractable problems, we introduced two classes of problems called P and NP, Some

interesting relations known about these classes are:

(i) P =set of tractable problems
(iiy Pc NP

(The relation (ii)- above simply follows from the fact that every Deterministic TM is a special case
of 3 Non-Deterministic TM). )

However, it is not known whether P=NP or P NP. This forms the basis for the
subject matter of the rest of the chapter. As a first step, we introduce some notations
to facilitatg the discussion of the concept of computational cdmplexity.

Complexity
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2.1+ OBJECTIVES

. At the end of this unit, you should be able to:

®  explain the concepts of time complexity, size of a problem, érowth rate of a
function; :

®  define and explain the well-known notations for growth rates ot tunctions, viz
0,Q, 0,0,

®  explain criteria for classification of problems into undefincable defineable but
not solvable, solvable but not feasible, P, NP, NP-hard and NP-Complete etc.;

define a number of problems which are known to be NP-complete probler-:

. explain polymomial-reduction as a technique of establishing problems as NI'-
~ hard;
. establish NP-completeness of 2 number of problems.
)’

2.2 NOTATIONS FOR GROWTH RATES OF *
FUNCTIONS N

2.2.1 The Constant Factor in Complexity Measure

The time required by a solution or an algorithm for solving a {solvable) problem,
depends nof only on the size of the problemvinput and the number of operations that
the algorithm/solution uses, bur afso on the hardware and software used to execute lhe
solution. However, the effect of change/improvement in hardware and so ftware on
the time required may be closely approximated by a consrany.

Suppose, a supercomputer executes instructions one million times faster than another
computer. Then irrespective of the size of a (solvable) problem and the solution used
to solve it, the supercomputer solves the problem roughly million times faster than the
computer, if the same solution is used on both the machines to solve the problem.
Thus we conclude that the time requirement for execution of a solution, changes
roughly by a'constant factor on change in hardware, software and environmenta!
factors.

An important consequence of the above discussion is that if the time taken by one
machine in execuling a solution of a problem is a polynemial {or exponential)
function in the size of the problem, then time taken by every machine is a polynomial
{or exponential) function respectively, in the size of the problem. Thus, functions
differing from each other by constant factors, when treated as time complexities
should nor be treated as different, i.e., should be treated as complexity-wise
egquivalenr.

2.2.2 Asymptotic Considerations

Computers are generally used to solve problems involving complex solutions. The
complexity of solutions may be either because of the large number of involved
computational steps and/or large size of input data. The plausibility of the claim
apparently follows from the fact that, when required, computers are used generally not
to find the product of two 2x2 matrices but to find the product of two nxn matrices for
large n running into hundreds or even theusands,

Simrilarly, computers, when required, are generally used nof ro Jind roots of quadratic
equations but for finding roots of complex equations including polynomial equations
of degrees more than hundreds or sometimes even thousands.




The above discussion leads to the conclusion that when considering time complexities Complexity.

f,(n) and f;{n) of (computer) solutions of a problem of size n, we need to consider and
compare the behaviors of the two functions only for large values of n. If the relative
behaviors of two functions for smaller values conflict with the relative behaviours for
larger values, then we may ignore the conflicting behaviour for smaller values. Fof -
example, if the earlier considered tvo functions '

fi(n)=10000"  and
f,(n) = 5n*

represent time complexities of two solutions of a problem of size n, then despite the
fact that

fi(n)z £ (n) forns 14,
we would still prefer the solution having f, (n) as time complexity because

fi(n) s f2 (n) forallnz15.

This explains the reason for the pruelice of the phrase ‘n 2k’ In the detinitions
of the various measures of complexitles discassed below:

923 Well Known Asymptotic Growth Rate Notations

In the following we discuss some well-known growth rate notatiops. These notations
denote relations from functions to functions.

For example, if functions

“f g N N  aregivenby.

fin)=n’—50 and

g(n)=n’

then

O(fm)) =g(n) or o(n’ - 5m) =n’

(the notation O fo be defined soon).

To be more precise, each of these notations is a mapping that associates a sef of
functions to each function. For example, if f(n}isa polynomial of degree k then the
set O (f (n)) includes all polynomials of degree less than or equal to k.

The flve well-known notations and hc;w these are pronounced:

() O(O (n?)is pronounced as ‘big-ch of o' or sometimes just as oh of i)

iy Q@ @ (n* ) is pronounced as ‘big-omega of n? or sometimes just as
omega of n**)

@i) © (O (@) is pronounced as ‘theta of n™*)
(ivy o  (o(n®)is pronounced as “little-oh of n*")

(v) © (o (n%ispronomnced as ‘liftle- omega of n*")

e e
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Remark 2.2.3.1

These functions may also be considered as having domain and codomain as R.

Remark 2.2.3.2

The purpose of these asymptotic growth rate notations and functions denoted by *b.se
notations, is to facilitate the recognition of essential character of a complexity
Junction through some simpler functions delivered by these notations., For example, a
complexity function f{n) = 5004 o’ + 83 n®+ 19 g + 408, has essentially the same
behaviour as that of 8(n) =n’ as the problem size n becomes larger and larger. But
g(o) = n* is much more comprehensible than the function f(n). Let vs discuss the
notations, starting with the notation Q,

2.2.4 The Notation O

Provides asymplotic upper bound for a given function. Let f{x) and g(x) be two

functions each from the set of natural numbers or set of positive real numbers to
positive real numbers.

Then f (x) is said to be O (&(x)) (pronounced as big-oh of g of x) if there exist two -
positive integer/real number Constants Candk such that

fx)sCpx) forallxzk S (A)

(The restriction of being positive on integersireals is justified as all complexities are
positive numbers)

Example 2,2.4.1: For the function defined by

fo)=2+332+1
show that

M fx) =00
(i) fx) = O(x
(i) x* = Q(fix))
(iv) x* = Q (i)

M X -0 ()
Solutions
Part (f)
Consider -

fix} = 2x? +3x% 41

2" 13x* +1 x* = 6x° forallx 21

(by replacing each term x' by the highes: degree term x’)

S thereexist C=6andk=1 such that
f)<C. X forallxek® -

R ek i e



IMmus we have found the required constants C and k. Hence f(x} is o). Complexity '’

Part (11
As above, we can show that

fx)s6 x' forallxz L.

However, we may also, by computing some values of f{x) and x*, find C and k as
follows:
f(1) =2+3+1 =0 : (=1
f2)=22"+32:+1=29 ; @)y=16
f3)=23"+33+1=82 : (3)* =81

for C=2 and k=3 wehave
f(x) <2 x° forall x2k

Hence  f(x} is O(Y)
Part (iii)

for C=1 andk=1- weget
@ <C (2 +3¢+1) forallx2k

Part (iv)

We prove the result by contradiction. Let there exist positive constants Candk

such that

KgCcx+ 3x* +1) foralixzk
X< C X 3XHK) = 6Cx° for x2k
L x*<6Cx forallxzk
2

implying x £6C forallx= k
But for x =maxoff { 6C+ 1, k}, the previous statement is not truc.

Hence the proof.

Part (v)

Again we establish the result by contradiction.

Let O (2 X*+3x%+1) =%

Then for some positive numbers Candk

2x® + 3x%+1 <C x” for all x 2k,

implying

¥<C x? for all x2k (- x <250+ 3x°+1 forallx 21}
implying

x<C forx 2k

Again for x = max {C+ 1,k}

‘The last imaquality does not hold. Hen&e the result,

Example: The big-oh notation can be used to estimate Sg, the sum of first n posilive

integers

Hint; §,=142+3+.......- +n<ntnt. o
Therefore, S, =0 (@)
] 25
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R;mark 2.2.4.2

1t can be easily seen t}ia_t for given functions f{x) and g(x),
and k with f{x) < C.g (x) for all x 2 k, then there exist infi

which satisfy

f(x) <G g(x) ‘ forall x > k;.

Because for any C, > C and any k, > k, the above inequality is true., if f(x)< c.g(x) ft

allx > k.

2.2.5 The Q Notation

Provides an asymptolic lower bound for a given function.

Let f(x} and g(x) be two functions, each from the set of natural numbers or sct of

positive real numbers to positive real numbers.

if there exists one pair of|.
nitely many pairs (C;, k;)

|
I
4

T N

Then f(x) is said to be Q (8(x)) (pronounced as big-omega of g of x) if there exist twy

positive integer/real number Constants C and k

f(x) = C (g(x)) whenever x > k

Example 2.2,5.1: For the functions

f(x) =2x*+3x*+ 1 and h (x) = 2x>-3x%+2

show that

(i) flx)=Q (%)
()  bhEEQE)

i) hx)=Q @)
(v) X’ =Q(mx)
() x=Q )
Selutions;

Part (f)

For C=1, we have
fix)2Cx* forallx>1

Part {if)

h(x) = 2x>-3x*+2

Let Cand k>0 be such that
2342 2 C X forallx >k
1.e (2-C)x’-3x™+2 20 forall x> k

Then C =1 and k2 3 satisfy the last incquality.
Part (ili)

270-3x442=0 69

Let the above equation be true.

Then there exists positive numbers C and k

5.t .
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2x3-(3+C)+220

[t can be easily seen that lesser the. value of C, petter the chances of the above
inequality being true. So, to begin with, letus take C = 1 and try to find 2 value of k

5.t
2x3-4x2+2 = 0.

For x 2 2, the above inequality holds
- k=21is such that

2xi-4x2+2 2 0 forall x 2 k
Part (iv)
Let the equality

3 = 0 (2x3-3%°+2)

be true. Therefore, let C>0 and k > 0 be such that
2 2 CE-312 % +1))

For C='and k=1, the above inequality is true.
Part (¥)

We prove the result by contradiction.

Let 2 = Q (3x-2*+2)

Then, there exist positive constants C and k such that
£ 2C 0% ~2xt+2) -forallxzk

ie(C+)x*23C ¥ +22Cx forallxzk

2C+] > x forallx2k
Butforanyxz 2 (ZCC+1)',

The above inequality can not hold. Hence contradiction.

2.2.6 The Notation ®

Provides simultaneously both asymptotic lower bound and asymptotic upper bound
for a given function.

Let f(x) and g(x) be two functions, each from the set of natural numbers ot positive
real numbers to positive real numbers. Then f(x) said to be © (g(x)) (pronounced as
big-theta of g of x) if, there exist positive constants C,, C; and k such that Cgx) =

f{x) < C, g(x) for allx 2 k.

(Note the last inequalities represeni iwo conditions fo be satisfied simultaneously viz
C: o) <fix) and fix) SCr 8

We state the following theorem without proof, which relates the three functions
0,0,0

Theorem: For any [wo functions f(x) and g(x), f{x) = O {(g(x) if and only if
f(x) = O (g(x)) and f{x) =0 (g(x))-

Complexity
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Examples 2.2.6.1; For th= fanction
f(x)=2x>+3x*+ 1, show that

0 =0 x)
@ = ew)
(i) ° fx) = © (x')

Solutions

Part (i)

forC,=3,C,=1 andk=4

I. CxXsf=<c ¥ forall x>k

Part (ii)

We can show by contradiction that no C, exists.

Let, if possible for some positive integers k and C,,

x>k
Then

X< C, x* for all x>k

i.e,
XS C] fOl' all x=k
But for

x=max {C; +1,k}
The last inequality is not true

Part (iii)
fx) = © (x%

s.t

Cox* < (2x° + 3%

If such a C; exists for some k then C:x* 2 +3x* + 1 < 6x° for all x 2 k21,

implying

We can show by contradiction that there does not exist Cy

-+ l)

Cyx<6 forallx>k

But forx = ~—6—+]
G,

the above inequality is false. Hence, proof of the claim by contradiciion,

2.2.7 The Notation o

The asymptotic upper bound provided b
tight in the sease that If f(x) = 25 + 3¢ +3

Then for £ (x) = O (x%), thou
f) SC(x) forallx >k

y big-oh notation may or ntay not he

gh there exist C and k suckh thay

we have 2x™3x%+1<C,. x° for al
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establishing the NP-Completeness (to be form ally defined jateryof 2

~gpstituies of designing 8 po!ynomial time reduclion
», for ench instanee of Py, Where P, is already known 1o be

The direction of the mapping must be clearly understood 65 shown below-

Po\ynuminl-time
L !

Reduction

¥

(Problem already known 10 be undccidab\c) ¢ roblem whose NP-Comp‘.ctcncss

isto bt esmh‘.ishui]

Though Wé have already explained ihe concept of NP-C
of completencss we give clow the formal definition of NP-Compleness

Definition: NP-Complete Pproblem: A Problem por equiva\emly its language L
s said to be NP-comp'leter if the following tWO conditions a1® satisfied:

1) The problem 1, is inthe class NP
Gy For any problem® 1, in NF, there 158 polynomial-time reduction ofLitolz

n this context, W€ introduce below another closely related and useful concepts

Pefinition: Np-Mard Problem A problem L js said to be NP-hard if for any

ptoblem 1, in NP, thete_is a polynomia‘l—time reduction of LitoL

In other words, 8 problem L is hard if only condition (1) of NP—Completeness is
satisfied- But the prob'lemhas may be 50 hard that establishing Lasan NP-class

prpblem is 50 far oot possible-

However, from the above definitions, it is cteal that every NP-comp'le.te problem L

must be NP-Hard and additionally should satisfy the condition thatLisan NP-class
problem-

Tn the next gection, W€ discuss NP—completeness of some of problems discussed in the

As mentioned earlier, Stephen Cook (1971) estabh'shed Satisfiablity a5 the firs

2R
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NP-Complete problem. The proof was based on explicit reduction of the language of Cémph*i‘
any non-deterministic, polynomial-time TM to the satisfiablity problem. '

The proof of Satisfiablity problem as the first NP-Complete problem, is quite lengthy
and we skip the proof. Interested readers may consult any of the text given in the

A H i T

reference.
Assuming the satisfiablity problem as NP-complete, the rest of the problems that we |
establish as NP-complete, are established by reduction method as explained above. i
[
!
A diagrammatic notation of the form ,;
Ld
Q ;
Indicates: Assuming P is already established as NP- Complete, the NP-Completeness
of  is established by through a polynomial-time reduction JfromPio O :
A scheme for establishing NP-Completeness of some the problems mentioned in i
Section 2.2, is suggested by Fig. 2.1 given below 5
SAT i
3-CNF-SAT |
Clique \
Pmbllm Subset -Sum
Vertex Cover
Hamiltonian Cycle
Travellinoe Salesman
Flg. 2.1

Example 2.4.1: Show that the Clique problem is an NF-complete problem.

Proof : The verfication of whether every pairs of vertices is connected by an edge in
E, is done for different paris of vertices by a Non-deterministic TM, i.c, in parallel.
Hence, it takes only polynomial time because for each of n vertices we need to verify
at most n (n+1) /2 edges, the maximum number of edges in a graph wilh n vertices.

We next show that 3- CNF-SAT problem can be transformed to clique problem in i
polynomial time.
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Take an instance of 3-CNF-SAT. An instance of 3CNF-SAT consists ofasetofn

clauses, each consisting of
vagable. It is satisfiable if we can choose literals in such 2 way that:

xactly 3 literals, each being either a variable or negated

at least one literal from each clause is chosen
if literal of form x is chosen, no literal of form —x is considered.

Fig. 2.2

For each of the literals, create a graph node, and connect each node to every node in
other clauses, except those with the same variable but different sign. This graph can

be easily confputed from a boolean formula @ in 3-CNF-SAT in polynomial time.
Consider an example, if we have

Ay
&= (‘—l){[v XzV X;) Fal ( xn_V -1x2V —lX],) I ( =X v -IK';'V —|X3)
then G is the graph shown in Figure 2.2 above.

In the given example, a satisfying assignment of Dis(x,=0,%=0,x=1).A
corresponding clique of size k = 3 consists of the vertices corresponding to x; from

the first clause, —x; from the second clause, and —x; from the t_hird clause.

The problem of finding n-element clique is equivalent to finding a set of literals
satisfying SAT. Because there are no edges between literals of the same clause, such
a clique must contain exactly one literal from each clause. And because there are no
edges betwéen literals of the same variable but different sign, if node of literal x is in

the clique, no nede of literal of form ~x is.

This proves that finding n-element clique in In-element graph is NP-Complete.

Example 5: Show that the Vertex cover problem is an NP- complete.

A vertex cover of an andirected graphG = (V,E) is a subset ¥ of the vertices of the
graph which contains at least one of the two endpoints of each edge.

bt i Tl skl it
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Fig. 2.3 Fig. 2.4

The vertex cover problem is the optimization problem of finding a vertex cover of : .
minimum size in a graph. The problem can also be stated as a dacision problem :

VERTEX-COVER = {<G, k>| graph G has a vertex cover of size k }.

A deterministic algorithm to find a vertex cover in a graph is to list all subsets of
vertices of size & and check each one to see whether it forms a vertex cover. This
algorithm is exponential in k.

Proof : To show that Vertex cover problem € NP, for a given graph G = (V, E), we L
take V’C 'V and verifies to see if it forms a vertex cover. Verification can be done
by checking for each edge (u, v} € E whether u € V* or v € V’. This verification can
be done in polynomial time. :

Now, We show that clique problem can be transformed to vertex cover problem in
polynomial time. This transformation is based on the notion of the complement ofa
graph G. Given an undirected graph G = (V, E), we define the complement of G as
G'=(V,E"), where E’ = { (1, v) | (u, v) & E}. i.e G’ is the graph containing exactly
those edges that are not in G. The transformation takes a graph G and & of the clique
problem. It computes the complement G* which can be done in polynomial time.

B o b

To complete the proof, we can show that this transformation is indeed reduction ; the
graph has a clique of size & if and only if the graph G~ has a vertex cover of size
[V]- k. '

Suppose that G has a clique V' ¢ V with [V’| = . We claim that V — V’ is a vertex
cover in G’. Let (u, v) be any edge in E’. Then, (u, v) ¢ E, which implies that atleast
one of u or v does not belong to V°, since every pair of vertices in ¥ is connected by

_an edge of E. Equivalently, atleast one of u or v is in V - V’, which means that edge
(u, v} is covered by V — V. Since (u, v) was chosen arbitrarily from E’, every edge of
E' is covered by a vertex in V — V”. Hence, the set V - V’, which has size [V]- &,
forms a vertex-cover for G, : -

Conversely, suppose that G’ has a vewex cover V' © V , where [V’} = |V - k. Then,
forallu,v e V,if(u, v) € E*, thenu € V’ or v € V’ or both. The contrapositive of -
this implication is that forallu,v < V,ifue V'andv ¢ V', then (u.v) € E. In
other words, V — V' is a clique, and it has size [V]-[V'|= £

For example, The graph G(V,E} has a clique {A, B, E} given by Figure 7.4, The
complement of graph G is given by G’ shown as Figure 7.5 and have irdependent set :
given by {C, D, F}. - : :

This proves that finding the vertex cover is NP-Complete.

4]

Ex.4)  Show that the Partition problem is NP.
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Ex.5)  Show that the k-colorability problem is NP.

Ex.6) Show that the Indcpendent Set problem is NP- complete.

Ex.%)  Show that the Travelling salesman problem is NP- complete.

2.6 SUMMARY

In this unit in rumber of concepts are defined.

P denotes the class of all problems, for each of which there is at least one known
polynomial time Deterministic TM solving it. '

NP denotes the class of all problems, for each of which, there is at least one known
Non-Deterministic polynomial time solution. However, this solution may not be
reducible to a polyneomial time algorithm, i.e, to a polynormal time DTM

Next, five Well Known Asymptotlc Gr_owth Rate Notations are defined.

The notation O provides asymi)lotib upper bound for a given function.
Let f(x) and g(x) be two functions each from the set of natural numbers or set of
pdksitive real numbers to positive real numbers.

Then f () is said to be O (g(x)) (prbnbunced as big-oh of g of x) if there exist two
positive integer/real number Constants C and k such that
fx)sCeg(x) forallxzk

The ) notation provides an asymptolic lower bound for a given function

Let f{x) and g{x) be two functions, each from the set of natural numbers or set of
positive real numbers to positive real numbers.

Then f (x) is said to be Q (g(x)) (pronounced as big-omega of g of x) if there exist two
positive integer/real number Constants Candk such that
f(x) 2 C (g(x) whenever x 2k

The Notation ©®

Provides simultaneously borh asymptotic lower bound and asymptotic upper bourid
for a given function.’

Let fx) and g(x) be two functions, each from the set of natural numbers or positive
real numbers to positive real numbers. Then f{x) said to be © (g(x)) (pronounced as
big-theta of g of x) if, there exist positive constants C;, C; and k such that C; g{x) <
f(x) s C glx) forall x 2 k,

The Notation o

Let f(x) and g(x) be two functions, each from the set of natural numbers or posmve
real numbers to positive real numbers

Further, let C > ¢ be any number, then f{x) = o{g(x)) (pronounced as little oh of g of
x) if there exists natural number k satisfying
[(x) < Cgx) forall x=k=1

ST T T T



The Notation @

Again the asymptotic lower bound & may or may not be tight. However, the
asymptotic bound @ cannot be tight. The formal definition of @ is follows:

Let f{x) and g(x) be two functions each from the set of natural numbers or the set of
positive real numbers to set of positive real numbers.
Further
Let C > 0 be any number, then
fx) = o (g(x))

if there exist a positive integer k s.t
fx)>C g(x) forallxzk

In Section 2.2 in defined, 14 well known problems, which are known to be NP-
Complete. .

In Section 2.3 we defined the following concepts.

A Polynomial-time reduction is a polynomial-time algorithm which construcis the
instances of a problem P, from the instances of some other problems P,

Definition: NP-Coleéte Problem:  A'Problem P or equivalently its language L,
is said to be NP-complete if the following two conditions are satisfied:

(i) The problem L, is in the class NP
(ii)  For any problem L; in NP, there is a polynomial-time reduction of L, to L;

Definition: NP-Hard Problem A problem L is said to be NP-hard if for any
problem L, in NP, there is a polynomial-time reduction of L, to L

*Finally in Section 2.4, we discussed how some of the problems defined in Section 2.2
are established as NP-Complete.

2.7 SOLUTIONS/ANSWERS -

‘Exercise 1: n!/n” = (n/n) ((n-1)/n) ((r-2)/n} ((n-3)/n)...(2/n){1/n)
= 1(1-(1/m)) (A-(2/n)) (1-(3/m)). ..(2/m)(L/m)

Each factor on the right hand side is less than equal to 1 for all value of n. Hence, The
right hand side expression is always less than one.

Therefore, nl/in™ <1
or, n!<n”
Thercfore, , T nl=0(n" |
Exercise 2: For large value of n, 3logn < <n®
Therfore, 3logn/ n*< < 1
(n* + 3logn)/ n® =1+ 3logn/ n®
or, {n® + 3logn)/ n* <2

or, n’ + 3logn = O(n%).

Complexlty'
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Exercise 3 : 'We have, 275" < 1
or, 2" <5°
Therefore, 2" = O(5").

Exercise 4 : Given a set of integers, we have to divide the set in to two disjoint scts
such that their sum value is equal .

A deterministic aigorithm to find two disjoint sets 1s to list all possible combination
of two subsets such that one set contain & elements and other contains remaining
(n-X) elements. Then to check if the sum of elements of one set is equal to the sum of
elments of another set. Here, the possible number of combination is C(n, &). This
algorithm is exponential in n.

To show thal the partition problem & NP, for a given set S, we take 5, 8,5cS
and 8; N S; = @ and verify to see if the sum of all elements of set S, is equal to the

.sum of all elements of set S,. This verification can be done in polynomial time.

Hence, the partition problem is NP,

Exercise 5 : The graph coloring problém is to detemine the minimum number of
colors needed to color given graph G(V, E) vertices such that no two adjacent vetices
has the same color, A deterministic algorithm for this requires exponential time.

If we cast the graph—coloring problem as a decision preblem i.e. Can we color the

* graph G with k-colors such that no two adjacent vertices have same color ? We can

verify that if this is possible then it is possible in polynomial time.
Hence, The graph —coloring problem is NP.

Exercise 6 :- An independent set is defined as a subset of a vertices in & graph such
that no two vertices-are adjacent.

The independent set problem is the optimization problem of finding an independent
set of maximum size in a graph. The problem can also be stated as a decision
problem :

INDEPENDENT-SET = {<G, k>| G has an independent set of atleast size k }.

A deterministic algorithm to find an independent set in a graph is to list all subsets of
vertices of size k and check each one to see whether it forms an independent set. This
algorithm is exponential in &

Proof : To show that the independent set problem € NP, for a given graph

G =(V, E), we take V'V and verifies to see if it forms an independent set.
Verification can be done by checking foru € V' and v € V*, does (u,v) € E. This
verification can be done in polynomial time.

Now, We show that clique problem can be transformed to independent set problem
in polynomial timé, The transformation is similar clique to vertex cover. This
transformation is based on the notion of the complement of a graph G. Given an
undirected graph G = (V, E), we define the complement of G as G' = (V, E"), where
E'={(u,v}|{(u, v} ¢ E). i.e G'is the graph containing exactly those edges that are
not in G. The transformation takes a graph G and k& of the clique problem. It

- computes the complement G’ which can be done in polynomial time.

To complete the proof, we can show that this transformation is indeed reduction : the
graph has a clique of size £ if and only if the graph G’ has an independent set of size

VI~ &
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Suppose that G has a clique V' € V with [V’ =k We claim that V -~ V’ is an
independent set in G’. Let (u, v) be any edge in E’. Then, (u, v) ¢ E, which implies
that atleast one of : or v does not belong to V°, since every pair of vertices in V* is
connected by an edge of E. Equivalently, atleast one of u or v is in V —V’, which
means that edge (u, v} is covered by V — V., Since (u, v) was chosen arbitrarily from
E!, every cdge of E’ is covered by a vertex in V - V', So, eitheruorvisin vV ~'v*
and no two adjacent vertices are in V — V', Hence, the set V — V*, which has size [V|
- k, forms an independent set for G*.

L

\
A

Fig. 2.5 Fig. 2.6

For example, The graph G(V,E) has a clique {A, B, C, D} given by Figure 2.5. The
complement of graph G is given by G’ shown as Figure 2.6 and have independent set
given by {E F}

This transformation can be performed in polynomial time. This proves that finding
the independent set problem is NP-Complete.

Exercise 7:

Proof : To show that travelling salesman problem € NP, we show that vertfication of
the problem can be done in polynomial time. Given a constant M and a closed circuit
path of a weighted graph G = (V, E) . Does such path exists in graph G and total
weight of such path is less than M 7, Verification can be done by checking, does (u,v)
& E and the sum of weights of these edges is less than M. This verification can be
done in polynomial time.

Now, We show that Hamiltonian circuit problem can be transformed to travelling
problem in polynomial time. It can be shown that , Hamiltonian circuit problem is a
special case of the travelling salesman problem. Towards this goal, given any Graph
G(Y, E), we construct an instance of the [V|-city Travelling salesman by letting d;; = 1
if (v, v;) € E, and 2 otherwise. We let the cost of travel M cqual to [V]. 1t is
immediatc that there is a tour of length M or less if and only if there exists a
Hamiltonian circuit in G.

Hence, The travelling salesman is NP-complete.
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3.0 INTRODUCTION

In the paragraph by Prof. Scot, Thomas Shadwell satirically emphasizes, for all
teachers and students, the need for conducting practicals and experiencing first-hand
the phenomena ,which forms the basis of the subjcct matter of our study. In the case
of computer science, the above mentioned emphasis translates to the need for
practising and expericncing first-hand the computational phenomena, by developing
programs and carrying out projects, if not large ones, at least of moderate sizes.

In order to develop taste in students for practicals, it is necessary to emphasize
applications in addition to the theoretical, mind-expanding exercises. Today ideas
from Theoretical Computer Science (TCS) find applications in as varied disciplines as
- Mathematics, Astroronomy, Manufacturing and Biology. Within Computer Science,
the ideas from TCS are useful in various areas including cryptography and secure
computation, VLS design, and communication networks. A nice sumtnary of the
applications of TCS is given in J.E. Savage, A.L. Selman and C. Smith: (2001).

In this unit, we discuss applications of Finite Automata to Web scarch and extraction
of information from text; of Regular Expressions to designing of Lexical Analyzers;
and of Context-Free Grammars (CFG) to designing of Parsers.

The elegant notation — now well-known as BNF — played a significant role in
facilitating definitions of (context-free portions of) programming languages. The
following references may be quite useful in this direction: J.W. Backus [1959],
P. Naur et al. [1960].

The tools like LEX for lexical analysis and YACC for parsing are useful in
developing student’s interest in practical work.

For details of LEX and YACC, the following references may be useful:
M.E. Lesk [1975], N. Chomsky [1956], S.C. Johnson [1975].

3.1 OBJECTIVES

At the end of this unit, you should be able to:

®  cxplain application of Finite Autoimata to searches of the World Wide Web and
textual information bascs;

T F .- 7 7T
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«  explain applications of Regular Expressions to lexical analysis tasks and also to

textual search and subjection jobs.
e  explain how ideas from Context-Free Grammers and BNF nolations can be used
in defining part of programming languages and also in parsing jobs.

3.2 APPLICATIONS OF FINITE AUTOMATA

Problems involving searches of the (World Wide) Web and other on-line textual
information bases, generally require finding all the documents that contain some or all
of a given set of words. Let us call such words in a given set as keywords.

The techniques used for searching documents for keywords mainly use either inverted
indexes or automata for the purpose. Search engines generally use inverted indexes.

However, the automata-based searches are more suitable than inverted indexes
in the type of information bases in which

(i} most of the information contents change frequently 2 happens in the case of
daily on-line news items, and

(ii} the documenté being searched are not, and even can not be, catalogued, which
makes searches based on inverted indexes difficult.

In such situations, the task is accomplished using finite automata, through the
following three-step sequence:

(i) - First, 2 Non-Deterministic Finite Automata (NFA) is designed that accepts and.
signals the acceptance of the keywords. '

(ii) . Then, as an NFA is not a program, we use either of the following approaches
for its implermnentation:

(a) Using subset construction, convert the NFA designed in Step (i) to an
equivalent DFA and then simulate the DFA directly. The problem with
this approach is that the number of states in the DFA increases
exponentially with the inciease in the number of states in the NFA

(b) Write a program that simulates the NFA by computing the set of states in
which the NFA would be after reaching each input symbol. The
advantage of the approach is that withou! actually converting into a DFA,
we ‘are able to simulate an equivalent DFA which never has more stales
than the number of states in the NFA of Step (i). Ina short while, we
discuss the approach in detail.

(iii) Writing an algorithm/program by simulating the DFA obtained at step (ii)
A mixture of the two approaches is actually used in the text-processing
programs egrep and fgrep, which are advanced forms of UNIX grep program.
First, we Wlustrate the Step (1) of deslgning of NFA through an example.

Then we explain how to simulate 2 DFA equivalent to the NFA, asan ™
illustration of S'2p (i) (b)

Example: We design'an NFA lo recognize the strings red and eday. If 2'denotes the
set of all possible printable ASCH characters, then the following diagram represents
an NFA that recognizes the strings red and eday.




Applicallons

Now, we givc below the details of the approach mentioned under Step (i) b above
and illustrale it with an example. )

The states and transitions of the to-be-simulated DFA equivalent to the NFA of Step
(i) are explained below. First, we discuss the states followed by the discussion for
transitions. Jt may be noted that each state of the simulated DFA is a set of states of
the NFA designed in step (i) above. The states of the DFA are obtained from the
states of NFA through the following two steps

(a) If qo is thie start state of the NFA of Step (i) then {qo} is one of the states of the
simulated DFA. :

(b)  Other states of the DFA are constructed using only those states p of the NFA
which are reachable from the initial state gg of NFA through some input
sequence by bz ... bn. In other words, if & is the transition relation of the
NFA then p is the state which satisfies

PE 8 (Qu, bl bz ------ bm)
for some input sequence by by ...... b

Then, for each such state p of NFA, we obtain a state of the DFA as the set of states
of the NFA which consists of

() Qo the initial state of NFA

(ii)  p, the state which is reachable from q, through some sequence by b, ....... by
of inputs and

(iii) each of the other states of the NFA which is reachable from qp through a sub-
sequence b; byy ........ by, forescu) =2, ....., m, of the sequence b, b; ...bn.

Though we shall not attempt to prove .t the above construction leads fo an
equivalent DFA having at most as many states as the NFA yet the fact is easily seen
{o be true from the following illusiration.

The diagram only for the states (iransitions fo be considered after a while)of the
simulated DFA corresponding to the NFA of the previous example, recognizing the
strings red and eday is as given below
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In the above diagram 04 denotes the state {0,4} and 035 denotes the state {0, 3, 5} etc
Next we discuss how the transitions between these states of the simulating DFA
are obtained. As'an illustration, first we explain the transitions between some states
in the above diagram and then generalize.

Let us consider transitions out of the state 024 of the DFA. For this purpose we
consider the two states viz 2 and 4 of the NFA. Then, for each input symbol out of
the symbols constituling the strings red and eday, we find out the target states of the
transitions from 2 and 4. First, we consider the symbol d. The state 2 in the NFA
goes to state 3 on input of symbol d and state 4 goes to state 5 on input d. Taking the
union of the target states alongwith initial state 0 we get {0, 3, 5} which corresponds
to the state 035 of the DFA. Thus the state 024 goes to the state 035 on input d in the
simulating DFA.

Next, we consider an input symbol say e for which there is no transition out of the two
states 2 and 4 in the NFA. In such cases, we consider a transition out of the initial
state 0. The state O goes to the state 4 on input of the symbol e in the NFA.

Taking the state 4 alongwith the initial state o of the NFA, we get the set {0,4} which
corresponds to the state 04 of the DFA. Thus the state 024 on input input of the
symbol e goes to the state 04 in the DFA. The above essentially explains the method
of defining transitions of the proposed DFA. We summarise below the method of
defining the transitions in general:

If qq is the initial state and py, p;.....are the states of the NFA other than qy,
then considers for each input symbol x, and each state qq p; p; pr of the DFA,
the target states on input x of the transitions, in the NFA, from each of p, p;
etc which form a part of the name qq p; p; pi of the state of DFA. Collect all
these target states.

If the set of target states is not empty, say it is {s;, sz, s;}then go 5, 5z s2 is the

target state on input x from the state g p; p; p.. However, if the set of target
states is empty then only we consider the transitions out of the initial state q
on input x. If'sis the target state of this transition, then qp s is the target state
on input x from the state qp p; p; P« ‘

The transition function d for the simulating DFA is given by the following table,
from which, if required, the transition diagram can be drawn.

Bt ) S T
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Input T E d a y 2~ e~ ~ |[Z~
symbols {e,1} | {n,e,1} | (d,e, 1} | {e, .y} Applications

States - - - -1 -1- -1 - - -
0 - 01 04 X X X 0 X X X
0l - 01 024 | x X X 0 X X X
024 - [ o1 |04 [035] x X X b3 0 X
035 . 01 [ 04 [ x [ 06 | x X 0 X X
04 - 01 04 | 05 X X X X 0 X
05 - ]| 04 X 06 X X 0 X X
06 - 01 04 X X 07 X X X 0
07 - 01 04 X X X 0 X x X

In the above table, the symbol ‘x' denotes: there is no transition for fhe corre.s‘pondzng
(state, input) pair.

3.3 APPLICATIONS OF REGULAR
EXPRESSIONS

In the earlier units, we discussed how a particular type of languages (viz. regular
languages) can be defined using finite automata. From the definition of a regular
Janguage as a'finite automaton; though it is quite straightforward to check whether a
particular string or a particular set of strings belongs to the language yet it is quite
difficult to infer general or characteristic features of the strings in the language. The
problem with the automata approach in this respect lies in the fact that though each
automaton can be thought of as a mathematical entity in the form of an ordered set of
states, set of input symbols etc., yer aulomata are basically mechanical tools with the
notion of stale as primitive. States make generalizalions and derivation of formal
proofs of the properties of the elements of the languages, extremely difficult, Being
basically, mechanical tools, automata are more useful for implementation as programs
lo recognize languages than for specifying a language.

For specification of many languages, the mathematica! teol of inductive definitions
has been found quite useful. The inductive definition of the language of natural
numbers through Peano’s axioms is well-known. An inductive definition of a
language, that can be defined so, states with some basic concepts, some primittve
operations and some axioms that state fundamenital properties of the language., The
inductive definition of a language captures the characteristic features of the defined
language and hence facilitates proofs of the language. Aiso inductive definition
facilitates understanding of the language by human beings.

Regular expression is an inductive approach for defining a regular language, and
hence, a more useful one for specyyeng a regular langnage. On the other hand, as
mentioned earlier, finite antomata approach for defining a regular laiguage is more
suitable for implementation as a program to recognize strings of the language.
Therefore, in most of the applications involving regular languages, generally the
followmg sequence of four steps, including the three-steps discussed in the prewous
section, is followed:

)] The language of the appiicalion under consideration is specified in terms of a
regular expression.

3]
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(i1) An equivalent NFA is designed.

(iii)  An equivalent DFA is either designed or simulated.

{iv)  The DFA is then simulated to produce a program that recopnizes the strings-of
the language of the application.

However, for all these apphcauons, bullt-ln routiaes, grep, regex, and Jex for
tokenization are avnllable

The Appllcanons — Introduction
The regular expressions are found useful in the three types of applicﬁtions:
(i) For validating inputs,

(if) - For searching and selecting pm:ts of a given text on the basis of a given
pattern, -

(iii)  For lexical analysis.

Before, we go into the details of each of these applications, we introduce UNIX
type extension of the regular expression notation. We consider below only those
extended notations which provide us with more conclse notations than norma) -
regular expression notation allows for representing regular languages. Other
extensions of regular expression notation, used in UNIX, which may represent
non-regular languages are, however, not considered.

Extension of regular expression notation
(i) the operator * |* is used in place of *+’

(i1) more than one pair of parentheses may be dropped, if the meaning of the
expression does not change. For example, L, the language of prime digits
may be denoted by
@l3lslm |
in stead of the usual r.¢. notation
@+@3+(5+7)

(iii)  The symbol *." (dot) represents ‘any character’ -

(iv)  Thenotation [a, a; ... 2] represents a; +a; + ... + a,. for example, the set of
fo1.||r ccimpalrison operators > <= | may be represented by [> < =] in stead of
>l<i=]1 )

(v All the characters between x and y, including x and y, in the ASCIY sequence
may be represented by [x — y]. For example, [A — Z] represent all capital
letters of the English alphabet. Similarly, the set of all letiers and digits may
be represented by [A —Za — Z0 - 9].

(vi) Tl'ie suffix operator ? means ‘Izero or one of’. For example (xy)? Stands for
€ [ xy..

(vii) _The'ﬁufﬁx dperator + means ‘one or more’. For example, (xy) + stands for
xyl Xy xy | ..

(viﬁ) The BNF symbol :; = is used to assign names to languages. For example,
<digi-: =0)11213]4]5]61718l9 o
<digit>:: =0~ 9] '

e e e
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Next, we discuss above-mentioned three types of applications of regular expressions.
AppHteatlons

Validating inputs from a regular language

One of the common problems with the users of computer svstem is given incorrect
type of inputs. For example, an identifier whicl: is required to have its character as a
letter followed by finite number of letters or digits may be incorrectly given by
beginning with a dot. Or incomes of individuals in some applicaticn are required to
be only non-negative inlegers, bul may negalive number may by mistake may be
given as inputs. N

In all such cases, in order to guard against incorrect inputs, programmers use somg ad
hoc method which is directly programmed into the input routine, A better approach is
to use routines such as regex that take the input string and a regular expression and
then return TRUE, if the irput string matches the regular expression specifying the
input type. For example, the above mentioned identifiers may be specified by the
regular expression. )

<identifier>:: = [A~Za~-2)({A-Za-2z0-9)*

And the above mentioned set of non-negative integers may be specified by
<Non-Neg> ::= ([0 - 9))+

Textual Search & Selection

Next, we explain how regular expressions can be used to locate files and text within
files using grep' Command.

One of the uses of the grep command is for searching for patterns specified by regular
expressions. The general form of the grep comniand is

grep < regular—expression-in-Unix-notation > < filenames™>
The utility of the regular expressions in searches'can be seen from the way the use of
regular expressions simplifies the specification of a problem involving complex
searches and then solves the problem using prep command. Let us consider the
problem of finding all those words in the dictionary word list file say

/user/dict/words
in which all the five vowels occur at least once and one of these occurrences of
vowels has the five vowels in lexicographic order, i.e, in one occurrence of the
vowels, .a procedes e ., e precedes i then i precedes o and finally o precedes u.
It can be easily seen that without the use of regular expressions, the task of
specification of the search problem is quite difficult. However the following
command '

Grep . *a.%e.*i.*o."u’ Juser/diet/words
Easily speciﬁes-t.he problem. The above command prints words like

adventitious
facetious
sacrilegious

Lel us consider another probiem. Suppose we have a directory of a large number of
files, where each file is a book on computer scicnce in electronic form. We want to

I grep stands for “global regular expression print” 53
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know about Turing. However, we do not remember the exact book (3} find the
required references throt vh the command

grep Turing *

Also the technique of specifice 1131 Lhrough regular expressions has been found quite
useful in the description of vagu. i, defined class of pattems, As we will illustrate
below, because of vagueness, it is not possible fo describe the patterns carrectly, not
only in the first instance, but it may not be possible to describe the pattern correctly
after even a number of attempts. However, the regular expression techmique allows s
gradually better and better specifications of the vaguely defined class of patterns.
Next, we illustrate what we have said above through the following example:

Suppose we want to generate a mailing list for the purpose of expansion of our
business. Further, we want to focus on recognizing street addresses in particulay. DBut,
we 0 know street parts of o the addresses may contain ‘Street’ or just ‘st’. elc,
Therelore, to begin with, we use the regular expression

Street  St\.

{Note the backslash is used to override the use of dot, in extended regular expression
nolation, for any character and not just for the character dot).

Later on, we realize some of the street addresses use to ‘Road’ or *Rd.” in stead of
‘Street” or St\.’. Therefore we extend our earlier notation to

Street St\. Road R4\

On further examination, we find even the words “Puri’ or ‘Gali” are also used for the
purpose.

However, the regular expression technique dees not require us to rewrite the whole
specification once again. Rather, we extend the earlier specification to

Street S(\. Road Rd\. Gali Puri
Thus the specification for street part of the addresses is improved gradually.

Apart from grep command, regular expressions techniques is an elegant vehicle for
specification of arguments for most of the UNIX commands.

Application of Regular Expression in Lexical ‘Analysis

We know that in order to solve problems using computers, most of the solutions of the
(solvable) problems are written as programs in some hi gh-level language. But, on the
other hand, computers understand and act (directly) only on solutions expressed in
machine languages, i.e., expressed as sequences of 0's and 1°s. Compliers, alongwith
other translators, are computer programs that are used to translate a high-level
language program into an equivalent machine language program. The process of
wranslation by compliers called compilation, is quite a complex task and, hence is
divided into a number of phases, Well-known phases of compilation are: Lexical
analysis, syntax analysis, Intermediate code gencration, Code optimization, Code
generation, Table management and Ervor handling.

Input to lexical analysis phase of compilation are high-level language programs, but
program is treated only as a sequence of charucters. Sequences of characters do not
carry any meaning. The lexica) analysis phase converts a sequence of characters of
a correctly written program into a sequence of tokens; while for an incorrectly
written program, the phase generaies an appropriale error message. Tokens in




crogramming language context, are like words in a natural language— rheyp rar-y

viwena, To elaborate further, we may notice that characters like a, b, ¢, ... civ. and Applications
evun siving like rea and nrv do not carry any meaning in English language. {3 words

i'ke car and run carry meanings, rather are basic units of meaning of expressioas in

English. Similarly, tokens in programming languages are units of meaning of

pragrams. However, each programming language has its own definition for its legal

tokens.

In almost all programming languages, tokens arc categorized into different token
classes viz keywords, identifiers, literals, operators, separators and comments. For
tokens from different classes, different actions are generated at lexical analysis and
later phases. These categories are illustrated as constituents of the following ¢

program fragment
The program computes nth Fibonacei number

Voidmain () {
mntn;
n=22

In the above fragment, the first line of the code is a comment, the tokeas void and int
ar: keywords, the toke n is an identiffer (or a name}, the token = is an operator; the
tok :n 2213 @ r1eral and each of the four tokens ) ( { and ; is a separator.

In tlns seci- . we explain how regular expressions are usefid in the lexical analysis
phase o/ co, .pilation. In the nexi section, we discuss how regular expressions are
used in syntax analysis phase of compilation.

We have mentioned that a lexical analyzer is a module in the overall complier, a
computer program. Lexical analyzer takes sequences of (ineaningless) characters as
input and returns corresponding sequences of (meaningful) tokens. Writing a lexical
analyzer module has been quite a complex task. However, less [1975] suggested a
tool, called LEX, for automatically generating lexical analyzers, And, here comes the
role for the regular expressions. The inputs to LEX is a set of pairs of the form
(regular expression, action for the lexical analyzer for the regutar expression), where
cach regular expression specifies a token and action is in the form of piece of code
which is executed whenever a token specified by the corresponding regular
cxpression, 18 recognized. The output of LEX is a Jexical analyzer. Thus LEX,
using regular expressions, simplifies the tedious task of developing a lexical analyzer
for a given pair of high-level language and a machine level language. 1t is out of
scope for the course (o discuss how LEX generates lexical analyzers, or even what
actions are associated with different tokens. However, we give below how and what
regular expressions are associated with differenl token classes.

Class regular expression

digit [0-9]

alphabet [a-z A-Z)

integer [0-9] + .

identifier [a-z A-Z] [a-z A-Z 0-9]

keyword “if" | “else” | “while" | "boolean™ | “in¢" | “real” |
| “man” | “void”

Iiteral [0-9] +{true” | “false™

Leolern “wue” | “falsc”

whilespace W vn e [Arvn] v ] (invisible space)

comment “IF [a-z A-Z] (VT [ P

L
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Class . regular expression

separator il oy e
operator +h- 1

Ly
1<
Next, the above regular-expression based definitions alongwith the codes for
appropriate corresponding actions (int defined and discussed here) is fed to the LEX
tool, which in tum gencrates a lexical analyzer. Then any input sequence of characters
constituting a program in the high-level language is fed to the lexical analyzer
dclivered by LEX. If the program is correctly written, (hen segments of the input
sequence are marked as whitespaces, comments or other appropriate token classes.
Then, the lexical analyzer takes appropriate action according to the classification of
each segment of the input sequence. This, in essence, explains the role of regular
expressions in the lexical phase of compilation.

In the next section, we discuss applications of context-free grammars.

3.4 APPLICATION OF CONTEXT-FREE
GRAMMARS

In his attempt to describe natural languages, N.Chomsky [1956] conceived the idea of
context-free grammar (CFG). Though the attempt has not been completely successful
as definitions of natural languages are concemned, yet the idea of CFG has been quite
useful in providing definitions of major parts of programming languages. J.W. Backus

'11959] and P. Naur [1960) used the idea of CFG in the definition of the syntax of the

programming languages FORTRAN and ALGOL respectively. In fact, several
hundred years beforc chrisitan era, Panini used ideas, somewhat similar to that of
context-free grammars, to describe the syntax of Sanskrit language, : .

Coming back to Backus and Naur, they in the process of defining respectively -

FORTRAN and ALGOL, gave an elegant notation, now very well-known as Backus- °
Naur Form or BNF, to describe programming languages. As BNF is used to

describe languages, therefore, the notation of BNF is a meta-language — 2 language
to describe language.

BNF notation can represent any context-free language, i.e., it is equivalent to the
vehicle of context-free grammar (CFG) in respect of definitions of languages.
However, BNF has the advantage that it uses a small number of symbols, distinct
from tke symbols used in the programming languagss, to define {context-free parts of)
programming languages. In order that the notation is easy to read and is more
concise, here we use extended BNF which includes some ¢lements of extended
regular expressions. The extended BNF notatipn mainly conslsts of

(i) angular brackets, i.e., < > td denpte variables e.g, < identifier > denotes the
class of identifiers '

(il *:: =" is used to denote ‘is defined as’. For example the BNF statement
< identifier > :; = < letter > (<letter> | <digit>)"
states that an identifier is obtained by writing a letter followed by zero or more
of fetters and digits . '

(iii) the symbol * |+, *** and ‘+' have the same | eanings of ‘or’ ‘zero or more
number of times’ and ‘one or more number of times' respectively as used in the
regular expressions.
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(iv) The pair [ ] of brackets denotes zero or one. .For example, [<digit>] denotes

zerr of one of < digit >

As discussed earlier, CGF is a useful tool for defining programming
languages. In this context, we discuss parts of definitions of a C type
small hypothetical language and definition of part of HTML. For this

purpose, weé use BNF notation.

3.4.1 Definition of C-Type Small Language

@

Lel us first discuss how the concept of CFG, with BNF notation, is used in

defining C type of a small hypothetical language.
< gtatement > :: = < assignment statement > ] < compound-statement > |
< seleclion-statement > | < iteration-statement >

< assignment-statement >:: = < identifier > = < cxpression >;

< selection — statement > :: = if (< logical-exp >) < statement > |
if ( < logical-exp >} < staternent> else

< statcment >
switch ( < expression >) {<Cases>}

< logical-exp > :: = < comparison > | < comparison > && <logical=exp> I
< comparisons || < logical-exp>

< comparison > :: = ( < Bool-operand > < comparison-operator>
<Bool- operand >)

- < Bool-operand > :: = true { false | < identifier >

< expression > :: = < factor > | < expression > + < factor > |
< expression > - < factor >

< faclor > :: = < operand > | < factor > * < operand >

<operand> ! = < inleger > | < identifier > I( < expression > )

< comparison-operator > I =>l>=|<|<= [=]1=

< Cases » 11 =< Case > < Cases > | < Default >

< Case > :: = < CaseHead> < cases > | < case Head > < statement >
< CascHead>:: = case < literal > :

< Default > :: = default : <slatement-seq >

< jteration-statement > :: = while (< logical-exp >) < statement > |

do < statement > while (< expression > ) l
for ([<expression >); {< expression >];

[<expression>])< stalement >

Remarks: [t may be pb:‘nred out here that in almost all programming languages,
there are some context-sensitive (i.e., non-context-free} issues. For example, the types

of identifiers are de

identifier in an expression is of correct [ype, CFG vehicle is not enough. For this
~remaro wo uca some other non-contexi-free tool like a symbol-table.

clared under declarations. However, in order to check wh ether an

Applications
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(i) In the grevious section we discussed how the various token classes are defined
specified in terms of regular expressions. However, the token classes, when
defined in terms of & CFG notation, their are is more undersiandable Below we
define some token classes in terms of extended BNF notation.

< input > ::= < whitespace > | < comment > | < token >
< white space > ;=\ f INnlve \rynfie | (invisible space)

< comment > :: = // < sequence of characters >\r |\nl\rin

The meaning of the above expre.ss:'ou in BNF-notatlon is that a comment in the
hypothetical language is denoted by a sequence of characters consisting of

(2) a pair slashes
Y] any sequence of characters, terminated by
(c) either\r or \n or \rin

< token > :: = < identifier > | < keyword > | < literal > |
< separator > | < operator >

<hidenliﬁer > =<lefter > (< letter > l< digit >)"

<letter>z=a | ble | ..lylzla Bl...]Y|Z

<digit> ==0 112 ..18]9

<keyword> :: = if |else | while | boolean | int | rea] | main | void
< literal > :: = < integer-value > [ < boolean value > | < real-value >
< infeger-value > :; = (digif) +

< Boolean-‘va[ue > = true | false

< real-value > :: =< decimal > | < exponential >

<decimal > :: = < signed-integer> . < integer > | < signed-integer >, |< sign >
< integer-value >

3.4.2 Definition of Part of HTML

Next, we define a part of HTML. In the followlng, we use ‘=’ in stead of
‘:=""and we use the underscore in stead angular brackets, €.g., in stead of

<lype> we use type

HTML-Document ~> < html > document < / html >

Document — <head > head-pani </ head > < body [body-attributes]*>
body-part </ body >

head.part — [ < title > title-part </ title >]

title-part — string

string —| letter ] [ letter l digit]*
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digit »0[1]2]....1819

letter — albl...|y|zlA|B|...]Y|Z

body-attributes — [ background = “background-value™)] {bgcolor = “color™]
[ text = “coior”]

Color — aqua | black | blue | fuchsia gray [ green |line | maroon | navy | olive | purple |
red | silver | teal | yellow | white] ...

Remarks:
(i) ' The set of available colors may change and is generally enhanced from
time to time :
(ii) The background-value can not be specified here. However, we may

specify some website address for sources of background, e.g.,
< q hrog = “http:/Avww.gantini.com>background-value</a>

hody-part — comment | paragraph | textual | line-break | imz;ge | linking | map-
code | form-code .

Comment = < ! —body-part - >

Parag[aph-—> < p [ para — attribute]* body-part </p>

Para-atiribute — align = “align-attribute”
align-attribute —» lefi | right | center

textual —> [text ] body-paxt

text —» string | [ < text-marker > text </ text-marker > ]*

text-marker — header-marker | physical-text-marker | conlent-based-marker|
list-marker

header-marker — h1 }h2 | h3|h4|h5|h6

physical-text-marker — b | biglblinkli | slsmalllsub | suphtlu _

content-based-marker —» cite | code | dfn| em | kbd | samp l strong | var

list-marker —unordered-list-marker 1 ordered-lisi-marker | definition-list-marker

unordered-list-marker = < ul > listed-items < ful >
\isted-item — <b> string </b;>

ordered-list-marker — < ol > listed-tlems < /ol >

definition-list-marker — < dl > definition-list </di >

definition —list — [defintion *

definition < dt > string < /d1 > < dd > siring </dd>
line-break — <br> body-part

** Applications
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image —» < img src = “path” [blank imape-attribute]* > blank ~» & nbsp.
" nage-attribute — alt = “string"| align=" align-attribule"|

integer-attribute = “integer” )
align-artribute —left ] right | top | texttop { middlc | absmiddie | centre | bottom |

| baseline | absbotlom

integer-alirihute — height|width | hspace | vspace | bordert integer —» [digit] *
linking — < a href = “path” > |inked-item-identifier </a>
linked-item-identifier — string_ |

[image] + path — absolute-path | relative-path

absolute-gath-l—> [web-path | non-web-path} relative-path
web-path— web-protocol  DNS-name of host
web protacol - web-protocol-name:

web-protocol-name ~> hrtp | ﬂr | gopher | telnec

DNS-name-of-host—// [www

ftp] [. Sring ] + [: port]

port — integer .
non-web-path — non-web-protocol mail-address

non-web-protocal — news ] mailto

mail-address — string @ string {.string ]*

relative-path —» / directory/file

3.5 SUMMARY

In this unit, we di;‘.cusseci applications of some of the models of computation
developed in the earlier units of the course:

first of all, we explained the process of the design of finite-automata based
algorithms for search of text on the Web or of any on-line textual database.

next, we explained how regular expfessions are used for (i) validating inputs,
for searching and selecting parts of a given text on the basis of a given pattern
(ii) for lexical analysis.

finally, we illustraied how Backus-Naur Form (BNF) notation can be used for
defining (the syntax of ) context-free parts of programming languages through
the examples of definition of a small C-type language and definition of a subset
of HTML.

3.6
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EPILOGUE: FOR THOSE WHO CARE....

..+ Specially those from amongst us — the teachers, particularly of computer
_science, {rom institutions of higher learning, and, of course, the students:

[ believe these three topics — ethics, professional behaviour, and social responsibility
~ must be incorporated into the computer science curriculum. Personally I do not
believe that a separate course on these topics will be effective. From what little I
understand of the matter of teaching these kinds of things, they can best be taught by
example, by the behaviour of the professor. They are taught in the odd moments, by
-the way the professor phrases his remarks and handles himself. Thus it is the
orofessor who must first be made conscious that a significant part of his teaching role
is in communicafing these delicate, elusive matters and that he is not justified in
saying. “They are none of my business.” These are things that must be taught
constantly, all the time, by everyone, or they will not be taught at all. And if they are
not somehow taught 1o the majority of our students, then the field will justly keep its
oresent reputation (which may well surprise you if you ask your colleagues in other

departmentis for their frank opinions).
R.W. Hamming
in
Turing Award Lecture (1968)

R.W. Hamming emphasizes below the need for treating computer science as more of
an engineering discipline then as pure mathematics.

...For example, let me make an arbitrary distinction between science and engineering
by saying that sclence is concerned with what is possible while engineering is
concerned with choosing, from among the many possible ways, one that meets a
number of r-/ten poorly stated economic and practical objectives. We call the field
“compui_r science” but I believe that it would be more accurately labeled “computer

engineering” ...

...Iwould like to see far more of a pracrica}, engineering flavor in what we teach than
I usually find in course outlines... :

...At the heart of computer science lies a technological device, the computing
machine. Without the machine almost all of what we do would become idle
speculation, hardly different from that of the natorious Scholastics of the Middle

Ages...

... still believe that it is important for us to recognizé that the computer, the
infprmation processing machine, is the foundation of our field. How shall we produce
this flavor of practicality that I dm asking for, as well as the reputation for delivering
what society needs at the time it is needed?...

... We need to avoid making computer science look like pure mathematics: our
priwmary standard for acceptance should be expericnce in the real world, not

aesthetics...

... Without real experience in using the compuuer to get useful results the computer
science major is apt to know all about the marvelous tool except how fo use ir. Such a
person is a mere technician, skilled in manipulating the tool bur with litdle sense of
how and when to use it for its basic purposes. 1 believe we should avoid turniing out
more idior savants — we have more than enough “computniks” now to last us a long
time. What we need are professionals!... '
RW. Hamming

in
Turing Award Lecture {1968)

Applications
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Coniplexity and
Compultability
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. who have a leadership role, whether in the workplace or in a volunteer capacity such

* The Code shall be supplemented by a set of Guidelines, which provide explanation to

SUMMARY OF
ACM Code of Ethics and Professional Conduct

Adopted by ACM Council 16 Oct. 92, :

¥ Preamble
W Contents & Guidelines

TIIT Y

Preamble :
\ )
Commitment to ethical professional conduct is expectéd of every member (voung

members, associate members, and student members) of the Association for :
Computing Machinery (ACM). . L

This Code, consisting of 24 imperatives formulated as statements of personal
responsibility, identifies the elements of such a commitment. It contains many, but not
all, issues professionals are likely to face Section ! outlines fundamental ethical
considerations, while Secrion 2 addresses additional, more specific considerations of
professionat conduct. Statements in Secrion 3 pertain more specifically to individuals

as with organizations like ACM. Principles involving compliance with this Code are
given in Section 4.

assist members in dealing with the various issues contained in the Code. It is expected :
that the Guidelines will be changed more frequently than the Code. |

The Code and its supplemented Guidelines are intended to serve as a basis for ethical _
decision making in the conduct of professional work. Secondarily, they may serve as a
basis for judging the merit of a formal complaint pertaining to violation of
professional ethical standards.

It should be noted that although computing is not mentioned in the imperatives of
Section 1, the Code is concerned with how these fundamental imperatives apply to
one's conduct as a computing professional. These imperatives are expréssed in a
general form to emphasize that ethical principles which apply to computer ethics are
derived from more general ethical principles,

It is understood that some words and phrases in a code of cthics are subject to varying
interpretations, and that any ethical principle may conflict with other ethical principles
in specific situations. Questions related to ethical conflicts can best be answered by
thoughtful consideration of fundamental principles, rather than reliance on detailed
regulations.

Contents & Guidelines

General Moral Imperatives.

More Specific Professional Responsibilities.
Organization.l Leadership Imperatives.
Compliance with the Code.
Acknowledgments.
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1. . GENERAL MORAL IMPERATIVES.
: Anplicntions

As an ACM member [ will ....

1.1 Contribute to society and human well-being.

1.2 Avoid harm to others,

1.2 .- honest and trustworthy.

1.4 Be falr and take action not to discriminate.

1.5 Honor property rights including copyrights and patent.

1.6 Give proper credit for intellectual preperty.

1.7 Respect the privacy of others.

1.8 Honor confidentiality.

2. MORE SPECIFIC PROFESSIONAL
RESPONSIBILITIES.

As an ACM computing professional I will ...

2.1 Strive to achieve the highest quality, effectiveness and dignity in both the
process and products of professional work.

2.2 Acquire and maintain prefessional competence.
2.3 Know and respect existing laws pertaining te professional worl:,
2.4 Accept and provide appropriate professional revieiw.

2.5 Give comprehensive and thorough evaluations of computer systems and
their impacts, including analysis of possible risks.

2.6 Honor contracts, agreements, and assigned responsibilities.
2.7 Improve public understanding of computing and its consequences.

2.8  Access computing and communication resources only when authorized to
do so.

3. ORGANIZATIONAL LEADERSHIP IMPERATIVES.

As an ACM member and an orgarizational leader, £wili ...

3.1 Articulate social respons bilities of me.rbers of an organizational unit and
encourage full acceptance of those responsibilities.

3.2 Manage personnel and resources to design and buii.: information systems
that enhance the quality of working life.
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Complexity and
Computabillty
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3.6

Acknowledge and support proper and authorized uses of an organizatlon's
computing and communication reseurces,

Ensure that users and those who will be affected by a system have their
needs clearly articulated during the assessment and design of
requirements; later the system must be validated to meet requirements.

Articulate and support policies that protect the dignity of users and others
affected by a computing system,

Create opportunities for members of the organization to learn the
principles and limltations of computer systems.

4, COMPLIANCE WITH THE CODE.
As an ACM member Iwill ..
4.1 Uphold and promote the principles of this Code.

4.2 Treat violations of this code as inconsistent with membership in the ACM.

Let us strwe to comply with the above-mentioned morat and l&uderslup lmpentwe

 and t‘ollow the code of professwnal msponmbllmes
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