ey T

RSHI TAND
o W org,
Q}O 4vide UP. Govt. At No, (/4/
R s o,
N
A, \

Indira Gandhi National Open University UP Rajarshi Tandon Open University

BCA-19
Introduction to Software
Engineering
FIRSTBLOCK : Software Engineering Concepts

SECONDBLOCK : Software Quality Concepts and
Case Tools

——

Rt

Shantipuram (Sector-F), Phaphamau, Allahabad - 21 1013

“ » \
@ Utter Pradesh

Lo ey Rajarshi Tandon Open University

Engineering
‘Block -
Software Engineering Concepts
UNIT 1 S .
Introduction to Software Product, Component . 5.
and Charjcteristics
| U - 2 . .
Software Process Management 15
UNIT 3~
Project Planning and Control .28
UNIT 4
.39

BCA-19

Introduction to Software

Risk Management Concepts

COURSE INTRODUCTION

This course presents an overview of Software Engineering principles. The course
covers different aspects on Software Product component, design and development, -
documentation and software life cycles, requirement analysis and specification, Issues
relating to Human Resource Management, project planning and scheduling, conflicts.
and stendards. This course is a complete courses and alsa covers risk management,
technical planning, project tracking and scheduling, project metrics and case tools.

A separate block is devoted to software tools and environment and software quality
concepts. :

Further Readings

1. Roger S. Pressman — Software Engineering-(A Practitioner's Approach).

— T AT BT s

BLOCK INTRODUCTION

In the early days, programming was viewed as an artistic form. The programmer often
used hit and trail methods. With this tie between computers and solving problems,
computer science examines all aspects of Problem Solving and the inlegration of
Software into this process. This block covers different aspect of Software Engineering
discipline. The first unit focuses on Software Product, Component and characteristics,
Software Engineering concepls, Documentation and Software Procsss. The second unit
reflectssissues relating to Human Resource Management for developing Quality
Software. The important issue of Project Planning and Scheduling, conflict and
Standards are discussed in Unit 3. Finally, Risk Management Concepts, Technical
Planding and Project Tracking concepts are discussed in Unit 4. The students of this
course are also advised to go through at least one book on Sofiware Engineering along
with this matenal. .

‘UNIT 1 iNTRODUCTION TO SOFTWARE

- PRODUCT, COMPONENT" &:

CHARACTERISTICS ENGINEERING

Structure
‘1.0 Introduction
11 Objective _
1.2 Software Product, Components and Characteristics
1.3 Software Engiﬁeering Concepts
131 -FPhases
122 The Study Phase
1_';_3 The Design Phase -
13.4 The Development Phase
1,35 The Operation Phase
1.4 Documentation of the Software Product
1.5 Software Process and Models
1.5.1 Sofwware life Cycle
1.5.2 - Requirement Analysis and Spe_ciﬁcniion
1.5.3 Design and Sp@ciﬁcation
- 1.5.4 Coding and MOC!I:IIB Testing
1.6 Summary
1.7 Model Answer
1.8 Further Readings

1.0 INTRODUCTION

The first unit focused on Soflware Product, Component and Characteristics. This

unit discuss in details the evolulion process of Software Engineering life cycle. A
sample waterfall model is also discussed in this unit. Softwarc Engineering concepts

-and

its phases are also included in this unit. The documentation part is also included

in this unit, Software Documentation is a continuous and parallel activity in

dev

elopment process. The students are advised to go through at Ieast one's_tandard

book in Software Engineeriné along with this material.

1.1 OBJECTIVES

After going through this unit, you should be able to:

Define Software Producl . Component and clharacteristics.
Explain what is documentation of Software Product. -
Describe what is Software Process and what is Software I.ife Cycle.

Describe a Genéric View of Software Enginecring.

—lE I T

Softwnre Eaglneering Concepts

1.2 SOFTWARE PRODUCT, COMPONENTS
AND CHARACTERISTICS

We are entering an information age, one in which the management of the
information resource of organization will be of vital importance. Business

. information systems are systems that use (hese resources 10 convert data into

information in order to improve productivity. Business information systems usuatly
are composed smaller systems, called subsystems. Computer hardware and software
are important resources that support information systems and subsystems.

Systems analysis is a general terms that refers to an orderly, structured process for
solving problems. This process, when applied to information systems, is called the
life cycle-methodology. Four phases-study, design, development, and operation-
make up the life cycle of computer-related business systems. A systems analyst is a
person who performs systems analysis during any or all of the life-cycle phases. The
systems analyst not only analyzes information system problems, but also

synthesizes new systems to solve these problems.

. The four information eras are; the Early Era (1940-1955), the Growing Era (1995-

1965), the Refining Era (1965-1980), and the Maturing Era (1980-). The Early Era
concentrated on hardware, and human-machine communication was very difficult.
The growing Era improved this communication through the introduction of English-

-+ like programming languages; however, techniques for managing computer-related

projects were lacking, During the Refining Era, explosive growth occurred in the

.development of large (midi and maxi) and small (micro and mini) compuler systems

and in their applications. Developments in microelectronics technology contributed
significantly to this growth. Throughout most of the Refining Era, in spite of a
proliferation of applications, difficulties were encountered in using computer to

. solve business problems. However, toward the end of this era, a structured system
.analysis process-called the life-cycle methodology-came into increasing use as a

means of developing usable business information systems. Structured techniques for
the anzlysis, design,-and development of computer-related information systems will
be enhanced in'the maturing Era. These techniques will be used to develop
information systems in applications areas such as distributed data processing, the
automated office, and management-decision suppért. This will be an era in which
information will be acknowledged as an important corporate resource. The systems
analyst will assume an important role in managing the information resources of the
corporation.. T

The computer-based business system also contains hardware components; however,
its most significant characteristics is a software end-product, Software many be
defined as a collection of programs or routines that facilitates'the use of a computer.
This definition includes operation systems, which facilitate the general use
computers, and application programs, which are wrilten to solve specific problems.
The latter is the end-product associated with a computer-based information system.
Software, in contrast with hardware, does not possess attributes that can readily be
observed and measured from concept to end product. The software end - product is
information, Although it may be stored or printed on a physical medium, such as a
magnetic disk, a reel of tape, or a shect of paper, information is transient and fragile
compared with hardware,

Many of the past difficulties in developing effective computer-based business
systems stemmed not only from belated efforts to apply management_controls, but
also from failure to recognize that techniques applicable to the development of
hardware end-products could not be applied without modification to the
development of software end-products. However, as a result of experience gained

e T S T T

from iarg'e government and commercial software. projects in ‘the latter part of the - Introduction to Software
1960s .and throughout the 1970s, the concept of life-cycle management was adapted . Product, Components
. to fit the developmem of computer based busmess systems. ﬂ_Fd Characteristics

The key to mod:fymg the life-cycle concept for the management of software _
projects was the recognition that, although supporting'documentation gccompanies -
‘a physical product throughout its development, documenlahon is the soﬂware
product.. .. - . - . :

TOOLS

METHODS

. . PROCESS

QUALITY |

Figure 1.1 : Software englueering l-.hyers

1.3 SOFTWARE ENGINEERING PIAESES .

[

Life-Cycle Phases and the Life-Cycle Manager :

The life eycle of a computer-based system exhibits disti jct phases. These are:
1.3.1 Phases

Performance of -the Cycle

The life -cycle methodology for developing complex systems is modular, .top-down
procedure, In the study phases, modules that deseribe the major functions to be - 7

Se:fiware Engineering Concepts

performed by the system are developed. The procedufcs is called top-down hcceause
in successive phases the major modules are expanded into additional, increasingly
detailed, cassava phases the major modules are expanded into additionat,
increasingly detailed, modules. Powerful graphic tools have been developed to
structure the fop-down design and development phase activities in detail. For the
present, we can summartze the principal tasks associaled with cach af the phases of
the life cycle of a computer-based business sysiem. -

1.3.2 The Study Phase

This is the phases during which a problem is identificd, alternate system solution are
studied, and re¢commendations are made about commilting the resources required to
design the system. Task performed in the study phase are grossly analogous (o

(1) determining that a shelter from the elements is needed, and (2) deciding that a
two-bedroom house is a mere appropriale shelter than a palace, a cave, or ather
possible scleclions.

1.3.3 The Design Phase

In this phase the detailed designl of the system selected in the slﬁdy phases is
accomplished. This is analogous lo drawing the plans for the two-bedroom home
decided on in the study phase. In the case of a computer-based business system,
design phase activities include the allocation of resources to equipment tasks,
personnel tasks, and computer program task. In the design phase, the technical
specni' cation are prepared for the perfonnance of all allocated tasks.

1.3.4 The development Phase

This is the phase in which the computer-based systern is constructed from the
specifications prepared in the design phase. Equipment is acquired and installed
during the development phase. All necessary procedure, manuals software
specifications, and other documentation are completed. The staff is trained, and the

-complete system is tested for operational readiness. This is analogous to the actnal
’ consl:uctxon of our two-bedroom house from the plans prepared in its demgn phase,

13.5 The Operatxon Phase

In IhJS phase the new system is-installed or there is a changeover from the old
system to the new system. The new system is ‘operated and maintained. lts
performance is reviewed, and changes in its are managed. The operation phase is
analogous to moving into and living in the house that we have built. If we have .
performed the activities of the preceding phases adequately, the roof should not
leak.

All of the activities ‘associated with each life-cycle phase must be pertormed,
managed, and documented. Hence, we now define systems analysis gs the
performance, management. and documentation of the activities related to-the four
life-cycle phases of a computer based business system. Similarly, we now can
identify the systém analyst as the individual who is responsible for the performance
of systems analysis for all, or a-portion of the phases of -the life cycle of a business -

: system The analysl is, in eﬁ'ect. a life-cycle manger. -

Introduciion to Software

1.4. DOCUMENTATION OF THE SOFTWARE Product, Componcnts
. PRODUCT | | . and Characleristics

The accumulation of documentation parallels the life-cycle performance and
management review activities. Documentation is not a task accomplished as a “wind
up” activity; rather, it is continuous and cumulative. The most essential documents
are called baseline specification (that is, specifications to which change can be
referred). There are three baseline specifications:

1. Performance specification : It is completed at the end of the sludy'phase and
"describing in the language of the user exaclly what the system is to do. It is a
“design to” specification.

2, Design specif ication : It is completed at the ¢nd of the design-phase, and
describing in the language of the programmer (and others employed in actually
constructing the system) how to develop the system. It is a “build 10™..

5. System specification : It is completed al the end of the development phase and
containing all of the critical system documentation. It is the basis for all

" manuals and procedures, and it is an " as built" spec:tﬁcatmn.

The design specification evolves from the performance specification, and the
iystem specification evolves from the design specit' cations. Since these documents
we the only measurable evidence (hat progress is being made toward the creation of
\ useful software end-product, it is not possible to manage the life-cycle process
vithout them. Thus, documentation is not only the “visible-* software énd-product,
nt also the key to the successful management of the life cycle of computer-based
ll-lSlI'lCSS systcms ..

.5 SOFTWARE PROCESS AND MODELS

+5.1. Software Life Cycle

rom the inception of an idea for a software system, until it is 1mplemented and
elivered to a customer, and even after that, the system undergoes gradual
evelopment and evolution. The software is said to have a life cycle composed. of
everal phases Of these phases result in the development of either a part of the
ystem or something associated with the system, such as a test plan or user manual.
1 the iraditional life cycle model, called the “waterfall model,” each phases has
rell-defined starung and endtng points, with clearly |denttf'table deliverables to the
ext phase. §

sample waterfall hfe cycle model compnses the phases, sxrmlar to described in
ext sections.

5.2 Requirements analysis and speciﬂcation

equirements analyms is ysually the first phase of large-scale sofiware

svelopment project. It is undeftaken’ after a feasibilily ‘study has been performed to
:fine the precise costs and benefits of a software system. The purpose of this phase
to-identify and document the exact requirements for the system. The customer, the
sveloper, a marketing orgenization or any combination of the three may perform
ich study. In cases where the requirements are not clear e.g., for a system that has

“Software Engineering Concepls

‘10

never been defined, more interaction is required between the user and the developer.
The requirements at this stage are in end-user terms. Various software engineering
methodologies advocate that this phase must also produce user manuals and system
test plans.

1.5.3 Design and specification
Once the requirements for a system have been docﬁmcmud. soltware engineers

design a software system (o meet them. This phase is sametime split into two sub-
phases: architectural or high-level design and detailed design. High-level design

Description Software Phase Typical Fraction
of Total Time

Initial Statement
of Problems

l

+— |Precise Formulation 1. Specifications 10%
of Problems

|

Developmentof a II. Algorithm Design 15%
Detailed Plan
to Solve Problems

|

Translationof - III. Coding 15%
— Plan into a -
Computer Program

|

" l&— Checking Correctness IV. Verification and 10%
of Solution Testing

Documentation

Program Released to Users

l

Modification V. Maintenance 50%
-of ’
Program

Vigure 1.2 : Software Life Cycle

r == T —

deals with overall module structure and organization, rather than the details of .the Introduction to Software
modules. The high level design is refined by designing each module in detail Product, Components
' (detailed design). Separating the requirements analysis phase from the design and Charaeteristics
phase is instance of a fundamental “whavhow" dichotomy that we encounter quite
often in computer science. The general principle involves makings a clear
d:stmchon between what the problem is and how to selve the problem. In this case,
the requirement phase attempts to specify what the problem is. There are usually .
many ways that the requirements may be met, including'some sohitions that do not
involve the use of computers al all. The purpose of the design phase is to specify a'
particular software system that will meet the stated requirements. Again there are -
usually many ways to build the specified system. In the coding' phase, which
_ follows the design phase, a particular system is coded to meet the demgn
specification.

-1.5.4 Coding aﬁd modaule testing .

This is the phase that produces the actual code that will be delivered lo the customc,
as the running system. The other phases of the life cycle may also develop code,
such as pratotypes, tests, and test drivers, but these are for use by the developer.
Individual modules developed in this phase are also tested before being delivered
to the next phase.

e Integralion and sysiem Lesung All the modules that have bcen develoPed
before and tested individually are put together mtegrated-m this phase and
-lested as a whole system.

® Delivery and maintenance : Once the system passes the entire test, is delivered _
to the customer and enters the maintenance phase. Any modifications made to
" the system after initial delivery are usually attributed to this phase.

Requiremenls
analysis and
specification

Design and
specification

Coding and
module tesling

F Integration and
syslem testing

———

Delivery and -
maintenance

Figure 1.3 : Waterfall Model of Software Iife Cycle T

-Sofiwnre Engineering Concepls

1.6 SUMMARY

As presented above, the phases give a partial, simplified view of the conventional
waler(all software life cycle. The process may be decomposed into a different set of
phases, with different names, different purpose, and different granularity. Entirely
different life ¢ycle schemes may even be proposed, not based on a strictly phased
waterfall development. For example, it is clear that if any tests uncover defects in
the system, we have to go back-at-least to the cbding' phases and perhaps to the
design phased to correct some mistakes. In general, any phases may uncover
ptoblems in previous phased this will necessitate going back te the previous phases
and redoing some earlier work. For example, if the system design phaﬁe'uni:overs
inconsistencies or ambiguities in the system requirements, the requirements analysis
phasé must be revisited to determine what requirements were really intended.

Another simplification in the above presentation is that it assumes that a phase is
completed before the next one begins. In practice; it is often expedient (o start a
phase before a previous onc is finished. This may happen, for example, if some date
necessary for the completion of the requirement phase will not be available for some
time. Or it, might be necessary because the people ready to start the next phases are
available and have nolhing“c]sc to do.)

Processing
Control
7 Y
Ticket
Sales Reguest
Records .)
, Ticket and
/ Ticket

Ticket Records Sales D:ata

Records v

Ticket
Initialization " | Reservation Report
and sales Generator
3
. Ticket
i Ticket
Reservation - Ticket and
Sales Sales Data
Data
Reserving Ticket Ticket
Ticket Exchanges Cancelled

12 . Figure 1.4 : An Struciure Chart for Rail-Reservation System showing Duta Flow

e g —.

Most books on software engineering are organized according to the traditional
software life cycle model, each, section or chapter being devoted to one_phase.
Once mastered, the software engineer can apply these principles in all phases of

software development, and also in life cycle models that are not based on phased

development, as discussed ahove. Indeed, research and experience over the past

decade have shown that there is a variety of life ¢
is appropriate for all software systems,

wtieck ‘Your Progress

1. Process is

(a) Program in Hfgh Level Language kept on disk:
{b} Contents of Main/inamory;

"(c) a program in exceulion;
(d) a job in secondary memory;

Tt

{a) Sourcc_cbdc
(b) Object code
(¢) Specification
(d) ldentifier Names
3. Which of the following is (are) among the legitimale purposc§ of software ‘
documentation? --
L To assist in mainlaining and modification.
I To describe the capabilitics of the program,
Hi. To provide the use with instructions.
a) Il only b. Iland IIT only
¢) 1IN only d. 1.HandIII
4. A top down approach 1o programming calls for
(a) Working from the general 1o the gpecific.
(b} Postponing the minor decisions.
(¢} A systematic approach
(d) Immediate cnding of the problem.

Which of the following is not an example of program documentation?

Introduction to Soliware

ycle models and that no single one

1.7 MODEL ANSWERS

- Ql
Q2
Q3
Q4

- (©
- (b
)
- (o)

Product, Components
and Charucleristics

13

T

Software Engineering Concepts

14

1.8 FURTHER READING

The students of this course are advised 1o go through at least ope standard book on
Software Engineering along with this material.

1. Software Enginecring - A Practitioner’s Approach by ROGER S, PRESSMAN :

McGraw Hill International Edition

The students arc also advised to sc:arch the World Wide Web for Sofiware
Enpgineering material, using standard search Engines.

—The——

UNIT 2 SOFTWARE PROCESS MANAGEMENT -

Structure

2.0 Introducltion

2.1 Objective

22 Software Process Management

2.3 Human Resource Management
2.3:1 Sofiware Process
23.2 Team Leaders
233 Preblem Solving
234 Influence and ‘Team Building

14 The Software Team
240 Democratic Decentralised

-2.42 Conrolled Decentralised

243 Centralted Centrafised

5 Organisation, [nformalion and Decision
Problem Identification
2.6.1 Principles of Coupling, Cohesion and Information Hiding
262 Problem Handling Guidelines -

ol Software Crisis ’ _
271 From Programmer's Paint of View
2.7.2 . From User’s Point of View

8 Role of a Systein Analyst

9 Model Answers

0 INTRODUCTION

lis unit deals with the most important capital in any organisation which is Human
ipital. The “people factor” is so important that the Software Engincering Science
s developed a capability model to enhance the ability of Software organisations
undertake complex applications. Major Technology Fortune 500 companics
ntribute their suceess 1o their people. Even the profitability of a Tech Company
Is, if certain key pecople Ieft the organisation; In this Unit you Icarnt about
ftware Process Management, Human Resource Management, the Software Team,
sblem Handling Guidelines and Managing the Software crisis.

1 OBJECTIVE

er going through this unit, yoi should be ablé to:

Describe Software Process Management;

Able to Highlight the Human Management Concept in Software Develop-
‘menl Process, and

Describe Probiem Handling Guidelines in Software Development,

. SOFTWARE PROCESS MANAGEMENT

15

Software Engincering Concepts

16

Most design methodologies focus on designing a “fresh software”. No design
methodology really handles designing from. an existing design, or changing a design
to include new specifications. Change is-an inherent property of software, and its
strength. By having these metrologies, and people following them, the view is
further strengthened that software should be developed as a “fresh product”. This
clearly is inconsistent with the reality of things and can be argued to hinder
productivity growth, as developing a fresh product is likely to be more expensive
than dbevcluf)ing by reusing existing designs and implementations.

The separation of software process and software products is desirable and has
helped software engincers understand both separately and give imporfance to the
process also, which was neglected earlier. However, current process medels and
their implementations, and the current heavy emphasis on process with the belief
that software process determines most properties of softwarc.

Some of the undesirable consequences that we have mentioned are (a) Tendency 1o,
make process documenl heavy ard consequently not liked by people in the process,
{b} neglect of some of the imporiant software product, like software design, (c)
inability of process w maodel change, which is o Tundamental properly and strength
of softwuie, and (d) tendency to develop “processes™ for creative activities like
design.

However, some future trends in sofiware cngincering seem (o be promising. There is
an effort to build newer models that are more consistent with the properties of
software. There is also an effort to develop more formal methods for software
specification, design and verification and software reuse is being targeted as the
future sofltware engincering lechnology - a target that will force development of new
methods for design, which use existing designs.

2.3 HUMAN RESOURCE MANAGEMENT

Effective software project management focuses on the three P's people, problem,
and process. The order is not arbitrary. The manager who forgels that software
engineering work is an intensely human endeavor, will never have success in project
management. A manager who fails to encourage comprehensive customer communi-
cation early in the evolution of a project risks building an elegant solution for the
problem. Finally, the manager who pays little attention o the process runs the risk of
inserting competent technical methods and tools into, a vacuum.

The “people factor” is so important that the Software Engincering Science has
developed a people management capability mawurity model (PM-CMM) “to enhance
the readiness of software organizations to undertake increasingly complex
applications by helping o attract, grow, motivale, deploy, and certain the talent
needed to improve their sofiware development capability™.

The people management maturity model defines the following key practice areas <
software people: recruiting, selection, performance management, training,
compensation, career development, organization and work design, and team/culture
development. Organizations that achieve high levels of matwrity in the people
management area have a higher likelihood of implementing effective software
engineering praclices. '

The PM-CMM is a companion Lo the software capability maturity model, which
guides organizations in the creation of a mature software process.

Before a project can be planned, its objectives and scope should be established,
alternative solution is considered, and technical and management constraints
should be-identified. Without this information, it is impossible to definc reasonable
(and accurate) estimates of the cost; an effective asscssment of risk; a-realistic
oreakdown of project tasks; or a manageable project schedule that provides a
meamngﬁ.ﬂ indication of progress.

The software developer and customer rhust meet to define project objectives and
scope. In many cases, this activily begins as part of the system cngineering process
and continues as the first step in software requirement analysis. Objectives identify
the overall goals of the project without considering how these goals will be
achieved. Scope. identifies the primary data, functions, and behaviors that
Characterize the problem, and more important, attempts to bound these
characteristics in a quantitative manner. .

Once the project objeclives and scope are understood, alternative solufions are
considered. The. alternatives enable managers and professionals to select a “best”
approach, given the constraints imposed by delivery deadlines, budgetary
restrictions, personne! availability, technical interfaces, and other factors.

3.3.1 Software Process

A software process provides Lhe framework from which a comprehensive plan for
software development can be established. A small number-of framework activities
are applicable to all software projects, regardless of their size. or complexity. A
number of different task sets - tasks, milestones, deliverable, and quality assurance
points-enable the framework activities to be adapted lo the characteristics of the.
software project and the requirements of ' the project team. Finally, umbrella
activities - such as soflware quality assurance, software configuration management
and measurement - overlay the process model. Umbrella activities are independent
of any one framework activity and occur throughout the process.

- In a study, the engineering presidents of:three major technology chmpanii:s were

asked the most important contributor o a successful soflwa:e project. They an-
swered in thc followmg way: -

Pl. Ifl had to pick one thing out that is most imporiant in our Organisation, I'd
say it's ot the tools that we use, it's the people.

P2; The most important ingredient that was successful on this project was having
smart people.... very little else matters in my opinion. ... The most important
thing you do for a project is selecting the staff. The success of the software
development organizations is very.much associated with the ability to recrit
good people.

P 3: The only rule I have in management is to ensure I have good people-real
-good people-and that I grow good people - and that I provide an env:ronment
in which good people can produce.

Indeed, this is a compelling testimonial on the imponance of peaple in the software
engineering process. And yet, all of us, from senior engineering vice presidents to
the lowest practitioner, often take people for granted. Managers argue (as the group
above had done) that people are primary, but their actions sometime are lying their
words,

Players who can be categorized into one of five constituencies populate the soft- -
ware process (and every software project).

Software Process Management

[[Y - e =2

Suftware Engincering Concepts

1.- Sentor managers, who define the business issues that often, have significant
influence on the project.

2. Project (technical) managers, who must pian, motivale organize and conlrol the
practitioner who do software work.

3. Practitioners, who deliver the technical skills that, are necessary to engineer a
product or application.

4, Custom'ers, who spécify the requirements for the software to be engineered.

5. End users, who interact with the software once it is released for production use.

The players noted above to be effective, (he project team must be organized in a way

that maximizes each person's skills and abilities populate every software project.
2.3.2 Team Leaders

Project management is a people intensive activity. They simple don’t have the right
mix of people skills.

What do we look for when we select someone to-lead a software project?

Motivation: The ability lo encourage (by “push or pull”) technical people to
produce to their best ability.

The ability to encourage people o create and feel creative when they work within
bounds established for a particular sofiware product or application.

Successful project leaders apply a problem solving management style. That is, a
soflware project manager should concentrate on understanding the problem Lo be
solved managing the flow of ideas, and at the same time, letting everyone the Leam
know {by words, and far more imporiant, by actions) that quality counts and that it
will not be compromised. -

2.3.3 Problem Solving

An effective software project manager can diagnose the technical and organiza-
tional issue are most relevant, systematically structure a solution or properly moti-
vate other professionals to develop the solution, apply lessons learned from past
projects lo new situations, and remain fiexible enough to change direction if initial
atternpts at problem solution are fruitless.

Managerial identity : A good project manger must take care of the projecl. She
must have the confidence to assume conirol when necessary and the assurance to
allow good technical people o follow their instincts.

Achievement : To optimize the productivity of a project team, a manager must
reward initiative and accomplishment, and demonstrate through his own action that
controlled risk taking will not be punished. '

2.3.4 Influence and Team Building

An effective project manager must be able o “read” people; she must be able to
understand verbal and nonverbal signals and react to the needs of the people send-
ing these signals. The manager must remain under control in high siress situations.

e ——

2.4 THE SOFTWARE TEAM

The organization of the people directly involve in a new software project is within
the project manager's purview :

The following options are available for applying human resources to a project that
will require x people working for y years.

l. x individuals are assigned to m different functional tasks, relatively litle
combined work occurs; coordination is the responsibility of a software manager
who may have six other projects to be concerned with.

2. x individuals are assigned o m different tasks {m<n) so that informal “teams"
are established; an ad hoc team leader may be appointed; coordination among
team is lﬁg__respunsibility of a software manager. '

3. x Individuals are organized‘into f teams; each team is essigned one or more
functional task; each team has a specific structure that is defined for all weams
working on a project; coordination is controlled by both the team and a
software project manager.

Although it is possible to voice pros and con arguments for each of the above
approaches, there is a growing body of evidence that indicates a formal team
organization (option 3) is most productive.

The “best” team structure depends on the management style of an organization, the
number of people who will populate the team apd their skill levels, and the overall
problem difficulty. Three generic team organizations are:

2.4.1 Democratic Decentralized (DD)

This sofware eugincering tcam has no permanent leader. Rather, “task coordinators
are appointed for short durations and then replaced by others who may coordinate
different tasks™. Decisions on problems and approach arc made by group
consensus. Communication among leam members is horizontal.

2.4.2 Controlled Decentralized (CD)

This sofiware engineering tcam has a defined leader who coordinates specific tasks
and secondary leaders that have responsibility for subtasks. Prablem solving
remains a group activity, but the team leader pariitions implementation of solutions
among subgroups. Communication among subgroups and individuals is horizontal.
Vertical communication along the control hierarchy also occurs.

2.4.3 Controlled Centralized (CC)

Top-level problem solving and internal tcam coordination are managed by a team
leader. Communication between the leader and team members is verical.

Seven projects factors that should be censidered when p]am{ing the structure of
software engincering teams are :

® The difficulty of the problem is 10 be solved

¢ The size of the resullant program(s) in lines of code or function points

® The time the team will stay together (team lifelime)-

Software Process Manage

19

T

Software Engineeving Concepts

20

Tactical
decisions

Strategic
decisions

L The dcgrce to which the problem can be modularized

]
l '

n
o The required quality and reliability of the syslem to be built
¢ The rigidity of the delivery date

® The degree of sociability (communication) required for the brojcct

_The length of time the icam will “live together” affects team morale. It has been

found that DD team struciure result in high moral and job satisfaclion and are
therefore good for long lifetime teams,

The DD team structure is best apphed to problems with relatively low modularity
because of the higher volume of communication that is needed. When high
modularity is possible {and people can do their own thing), the CC or CD structure
will work well.

CC and CD teams have been found to produce fewer defects than DD tearfis, but
these data have much to do with the specific quality assurance activities that are

applied by the leam. Decentralized teams generalized require more lime to complete -

a project than a centralized structure and at the samc time are best when high
sociability is required.

Four “organizational paradigms' for software engineeting teams are:

I. A closed paradigm structures a team along a traditional hierarchy of authority
(similar to a CC team), Such teams can work well when producing software that
is quite similar to past efforts, but they, will be less likely to be innovative when
working within the closed paradigm.

2. The random paradigm structures a team, loosely and depends on-individual
initiative of the team members. When innovation er technological' breakthrough
is required, teams following the random parad:gm will excel. But such teams
may struggler when” orderly performance" is required. .

3. The open paradigm altempls to structure a team in a manner that achieves some

of the controls associated with the closed paradigm but also much of the inno-
vation that occurs when suing the random paradigm. Work is performed col-

Tactical

Middle Strategic
Data

Oparsiional
tscisions

Operational : Operational
Data

Figure 2.1 : Organizational Paradigms

laboratively with heavy communication and consensus-based decision making. Soltware Process Management
Open paradigm team structures are well suited to the solution of complex
problem, but may not perform as efficiently as other teams.

4. The synchronous paradigm relies on the natural compartmentalization of
problem with litle aclive communication among themselves,

2.5 ORGANISATION, INFORMATION AND DECISION

~ Successful development of information systems call for a deep underslandlng of the

organisational structure and dynamics of the enterprise. Some organisations are
goal oriented, the analyst must be clear as to what information exactly need 1o be
collected, stored and anelysed. Since every information must have a context, only
operational information that ultimately has some decision making contribution must
be collected. Second the information collected and processed must be consistent
with the level of the organisation to which it is to be presented.

According to Anthony’s ¢lassification, there are basically three levels of manage-
ment, independent of the size of the enterprise: operational level, middle level and
top level management. Operational decisions that cail for large volumes of internal
data (local to the enterprise). The middle management is concerned with medium
range (tactical) decisions that cali for much less information. The top management
being concemed with long term (strategic) decisions calling for just a few vital
internal information but a lot of external information as well. Any successful
information system should 1ake into account such a pattern of information needs by’
the management. This is generally piclorially display:d in the form of Management
vs Information Pyramid.

The importance of information 1o management is further emphasized by the fact
that much of management is primarily decision making. While there are several
views of what constitute management, the generally accepted planning, organising,
coordinaling, directing and control are all concerned with decision making. In this
text we take such a view of management and we perceive management information
systems fo support such managerial decision making. We also would like to empha-
size that information systems should address clearly the situations of programmed
decisions and non- 'programmed decisions by properly structuring the appropriatz
information. Failure to recognize intrinsic difference may led to 2 failure of l.hc
information system.

2.6 PROBLEM IDENTIFICATION

We have to reduced the initial, complex problem to a series of simple tasks, each of
which can be solved fairly easily. Second, by working at several levels, we can
move from an overall outline of a solution to various details, without having these
details interfere with our overall understanding of the solution. Third, for large
problems, we may be able to assign various parts of the overall solution to different
people. Then, the overall structure will alluw us to combine the various pieces into
the final solution of the overall problem.

software engineering, each main seclion of the solution is called a module, and a
- module is a piece of a solution that performs a speclﬁc tasle ora collection of
rclaled operations,)

2L

| Rt e 1

[~
HY

Software Engincering Concepts

2.6.1 Principles of Coupling, Cohesion, and information Hiding
Often there may be several reasonable ways (o divide an overall solution into

modules, and it may be difficult 1o determine which approach will work best. In any
decomposition into modules, however, a few general principles should be

Employee,

Employee, -
Request

Registratiocn Result

Employee,

Response

Authorization-requests

Order—féquest

. Er'npi'c»)\'ee4

' “Employees - Employee,

Process

Complete-order

Figure 22 : Data flow disgram representing flow of work in sn office

v
\ i p— e P4 e =

considered. First, we must try to keep the steps independent so that these steps do . Software Process Management(
not interfere with each other. Each module should do a specific task, but we should '

iry to limit the interaction among various modules. More formally, we can consider

the coupling of modules in the problem design. Here coupling describes the

amount that modules depend on each other, and the decomposition of large

problems into picces should minimize coupling.

In software engineering, the rclating of various parts of a module to a central theme
is called cohesion, and we should strive to write concise, cohesive modules for each
part of a solutiun outline.

The third principle related to module decomposmon involves the concept of
abstraction, where we try (o separate the details of a siep from the way that step fits
in the solution as a whole. Of course, at some point all details must be specified, but
once they have been determined we do nol 'want to worry about them when that task
is performed in the overall solution. When we work with major steps in a solution,
we should not.be concerned about just how those steps are actually done, Rather, we
concentrale on pulling those individual tasks into an appropriate framework. This

" is the concept of information hiding, where the details of a task at one level are

- hidden from the use of that task at a higher level. From this standpoint, we normally
-should write modules for each levels of detail in a solution. For example, one main
module often controls the overall running of a program, and that module calls on
other moduies to perform cach major task.

Similarly, details about data storage, retrieval, and processing can be separated from :
the logical interactions involving that data, Information hiding, therefore, can be
" applied o both the structure of problems and the organization and manipulation of
data.

Clearly, a program is correct and useful on]y if it helps to solve the problern al hand
The development of specifications, a general design, detailed algorithms, and
programs, and each of these steps builds on the previous ones. Thus, any. errors
(such as omissions, inconsistencies) from one step normally will be reflected in
.subsequent work. If we can correct difficulties before we start to code, therefore we
will not have to correct such wrouble after the programs are written. More specifi-
cally, we should analyze and check each problem solving step for errors or poteatial
problems.

2.6.2 Problem Handling Guidelines

e Software Specification.

o The Specilication must be complele.

e We should not omit any cases.

e We must indicate what is required in each case.

® The specifications must state what is actuatly .meant.

® Are the specifications contradictory?

¢ Do some cases overlap?

¢ Software Design.

e Broken out problem into logically.

PSS S sl oy § e

Sofiwsn: Ezpiveering Concepls

24

¢ Independent pieces,

o The pieces must fit together.

2.7 SOFTWARE CRISIS

The transition of a familiarity with software into the development of useful applica-
lion is not a straight forward task. This'has lead to the search for methods and .
technigues to be able (o cope with the ever expanding demands for software. The -
present course, which is an attempt to teach the ingredients of a structured systems
development methodology, and elsewhere in the programme there is a reference to
the techniques of software engineering as well. Later on in the subsequent years of
the MCA programme, you would also be exposed to a full course on Software
Engineering.

" However, it is still useful and desirable to have some feel for the kinds of problems

which the programmer and the user faces and collectively perceive as the software
¢risis.

Software crisis can be; broadly classified in the following rﬁnjor areas:
2.7.1 From Programmer’s Point of View

The following types of problems may conuxbule in maximum cases lo software

"grisis: |

¢ Problem of compatibility.
. Problem of portability.
® Problem in documentation.

¢ Problem in coordination ‘of work of different people where a team is :muaung to
develop software, :

e Problems that arise during actual run time in the crganisation. Some lime the
errors are not detected during sample run.

® Problem of pi.racy of software.

o Customers nnrmally expand their specifications after program demgn and

implementation has taken place. '
® Problem of maintenance in proper manner.
272 From User’s Point of View

There are many sources of problcrns that arise out of the user’s end. Some of these

. are as follows:

¢ How to choose a software from total market availability ?
® How to ensure which software is compatible with his_hardware specifications 7

¢ The customerised software generally does not meet his total requirements.

e oG- dmpe. g § g

Problem of vius. ' * Software Process Management

Problem‘ of sollware bugs, which comes to knowledge of customer after consid-
- erable data entry. '

Certain Softwares run only on specific operaling system environment.

The problem of compatibility for user may be because of different size and
density of floppy diskettes.

Problem in learning all the lacilities prov:ded by (he software because compa-
nies gnrc only selective information in manual

Ccnam software run and create files which expand their used memory spaces
and create problcm of disk management.

* .
. Soflwarc crisis develops when system memory requirement of software is more-
than the existing requirements and/or availability.

Problem of different versions of software.

Security brob[em for protecled data in software.

2.8 ROLE OF A SYSTEM ANALYST

Who is Systems Analyst?

A systems analyst is a person who conducts a study, identifies activities and objec-
tives and determines a procedure 1o achieve the objectives. Designing and imple-
menting systems lo suit organisational needs are the functions of the systems
analyst. - He plays a major role in seeing business benefit from Computer technol-
ogy. The analyst is & person with unique skills. He uses these skills to coordinate

the efforts of different type of persons in an organisation to achieve business goals.

What a Systems Analyst does?

A system anajysl camries oul the following job:

(2) The first and perhaps most difficult task of systems analyst is problem defini-
tion. Business problems are quite difficult to define. It is also true that prob-
lems cannot be solved until they are precisely, and clea.rly deﬁned.

(b) Initially a systems analyst does not know how 1o solve a specﬂ' c problem. He

" must consult with managers, users and other data processing professionals in
defining problems and developing solutions. He uses various methods for data
gathering to get the correct solution of a problem.

(c) Having gathered the data relating to a problem, the systems analyst analyses
them and thinks of plan to solve it. He may not come up personally with the
best way of solving a problem but pulls together other people’s 1deas and
refines them until a workable solutmn is achieved.

(d) Systems analysts coordinate the proccss of developing solutions. Since many

problems have number of solutions, the systems analyst must evaluate the merit
of such proposed solution before recommending one to the management.
' ' 25

- ST T e

Software Engineering Concepts

26

(e) Systems analysts are often referrcd lo as planners. A key part of the systems
analys('s job is to develop a plan to meet the management'’s objcclives.

() When the plan has been accepted sysiems analysl is reSpons.lble for demgnmg

il so that management’s goal could be achieved. Systems design is a time
consuming, complex and precise task.

(g) Systems must be .lhoroughly tested. The.systems analyst often coordinates the
tesling procedures and helps in deciding whether or not the new system is
meeting standards established in the planning phase.

Attcibot.es of an effective 'System-s Analyst
Syslems analyst-must have the following’ attributes:

(a) Knowledge of people: Since a systems analyst works with others 50 closely. he
- or shé must understand their needs and what mouvales them to develop systems

. properly

{b) Knowledge of Busmess functions; A syslems analyst must know the environ- -
ment in which he or she works. He must be aware of the peculiarities of man-
- agement and the users al his installation nd realize how they react lo- Systems

Analyst A working knowledge of accounting and marketing principles is a must _

since so many systems are built around these two areas. He must be familiar
-_‘wlth hls; company’s product and services and management’s policies in areas
lconcernmg him,)

Check Your'Progresé

1. A help system in an application program is used to:

(a) ‘Make it easy to switch from one mode to another.

(b) Display menus.to prompt the users with eho:ees of available commands
(c) Dlsplay Explanatory Information,

(d) "All of the above

2. An Expert System

{(a) sirnuldles the reasoning of 2 Human Experl in a I;cnicular Subject,
(b) is an application of Artificial Intelligence research.

() both (a) and (b) ‘ '

(d) None of the above.

3. Vertical Market Application Programs Include

- (a) Dalabase Management Systems.
(b} Farm Management Programs
{(c) Home Finance Programs
(d) All of the above.

4, An example of an expert system is

(a) The Internist, a medicat diagnosis program.

(b)
(c)
(d)

A stock and bnﬁd Analysis program.
A Structural Analysis program

All of the above

5. A simulatjon’ Program

(a)
(b}
(©)
{d}

guides novices through the basics of using other computer programs.
teaches fact, such as arithmetic operations and §pelling.

teaches by emulating the responses of the system being studiced.

None: of the éboye.

2.9 MODELANSWERS

Ql
Q2
Q3
Q4
- Q5

- (e}

S ()
/

- (9/)’

- (a)

- e

" Software Process Management

27

R ey = ey

e gy

28

UNIT 3 PROJECT PLANNING AND CONTROL

Structure

3.0 Iatroduction

3.1+ Objectives
3.2 Project Planning and Conirol
3.3 Project Scheduling
3.4 Project Standards
141 Project Conflicts
3.4.2 Project Modifications
343 Completing the Project
3.5 Project Outsourcing
3.6 Model Answers

3.0 INTRODUCTION

The important aspects of Project Mpnagement are discussed in this Unit. An
effective Manager is essential_for successful project execution. It is important when
orgapizing a project to ensure that every person knows his or her role in the project
and is aware of corporate objectives. The Charting Techniques are discussed under
Project Scheduling heading. A schedule has two primarily functions, it is both a plan
and a device for measuring progress. This Unit deals with Project Manage‘ment
concepts like project standards, conflicts, modifications, project oulsowrcing and
completing the project.

3.1 . OBJECTIVE

After completing this Unit, you should be

e able to describe Important Issues of Project Management,
e describe project standards, conflicts and factors for Project Oulsourcing, and

e ' describing the Task for the Software Project, Refinement of Major Tasks and the
Praject Plan.

3.2 PROJECT PLANNING AND CONTROL

" The planning, design, and installation of a system termed a project and is directed
"by a project leader who uses the available resources to produce a new and better

system for the organizations.

In large companies, the installation of a computer syslem may take years and
involve thousands of people. Planning for smaller projects also requires effective
managemeat controls-to ensure the desired results. Thus, pro_lcact planning for any
company has four main steps.

I. Organizing the resources available for the project.

2. Scheduling the eveﬁts. in the project.

L & e 2

Book
Shelves -
lssue -
_ a
To_pic ' Book .
List of 'TopiCS
- Search
o by
. Authors Topic/
Author
List of Authors
- Titles
List of Titles
Topic Request
by User

Book Request by
the user

Profect Plum}ing and Control

Book
Reception

Book
. List

Display of
List of Titles

Figure 3.1 : Data Flow of SImplified l.lliljary Information System

29

Software Engineering Concepts

30

" 3. Evaluating progress.

4. Establishing standards for the proj_ec-l.

An effective manager is essential for successful project planning. The techniques of .

project planning are not a substitute for good management, but merely a tool to be
used by managers to achicve better results.” Only-effective management can
complete the project on lime, within budget, and with satisfactory results.

To achieve a goal, that goal must be kept clearly in mind; consequently, defining *
the-objectives is the first action taken in any project. Along with defining objéctives,
éorporale management must assign priorities to the various projects underway and
clarify the relationship between systems projects and existing systems. A systems
project Tequires extensive interaction between systems personnel and people in the
user areas, User are, of course, preoccupied with day-lo-day operations, and it
cannot be assumed they will be enthusiastic about participating in-a system study.
Only when corporate management clearly defines the importance of user
participation in systems development will be the necessary cooperation exist.

~ Many systems are designed and implemented through project teams headed by a

project leader. The team may be relatively small during the feasibility slage-
consisting of a few highly qualified systems people, users, and managers. During the
design phase, when more detailed work is required, the size of the team normally is
increased. A typical project team would have a senior systems analyst as project

. leader, supported by junior analysts, programmers and whatever key user personnel

are reqpired. When the project has been completed, the team is disbanded and each’
member is reassigned to a new project or returned Lo normal work.

To crganize a project, the project leader must clé_lcnnine who is required for the
project, when they are available, and for how long their services can be expecied.
The key people required in a systems project are often the key peoﬁlc in the day-
to-day operations of an organization, and they probably will have to continue their
normal routines as they participate in the systems project. In organizing‘lheir

efforts, the project leader must avoid scheduling impoftant project activities when
the users are very busy with normal duties. For users who are “always busy”, plans
must be made o utilize overtime, shift personnel, or and personnel to free the key
systems users for participation in the-project. *

[t is important when organizing a project to ensure that every person knows his or
her role in the project and is aware of corperate objectives. This is accomplished
through formial training as well as informal conversations.

The project leader is solely responsible for the completion of a project, but
obviously cannel do it alone. As the project is organized, responsibility is assigned

-and authority delegated for the completion of each phase of the project.

Responsibilities must be defined precisely, and overlapping responsibilities
avoided. When a phase of a project breaks down, is behind schedule, or is over

. budget, the leader of a well-organized project will be able to identify easily the

responsible person who can provide information and, perhaps, the solution to the
b
problem.

Bcsides organizing people, the project leader must budget money and order
cqu:pmem Acquainting people with their responsibilities and enabling them (o
discharge these responsibilities is the essence of organizing.

3.3 PROJECT SCHEDULING

The charting techniques are the scheduling tools of the project planner. Even the
simplest project should be charted so that progress can be measured. The Gantt
chart is effective in simple projects, especially when the interrelationships among
events are not loo complex. Comphcated scheduling usually requires 2 PERT chart.

Included in the tasks to be scheduled in a normal data processing_project are
systems design, programming, file and data base creation, program and systems
testing, conversion, documentation, and training. The project planner must
anticipate problem areas that inevitably develop and allow for delays in obtalmng
approvals at key check-points in the project.

Projects are organ‘ized into modules, or segments, of related tasks. Modular
planning has these advantages: it facilitates assigning responsibility and measuring
process, and it further allows systems analysis to work in concentrated areas of -
projects so they can master every aspect of that portion of the system.

A schedule must be flexible because unexpected events occur that may alter
matetially the development of the system. Seldom do systems projects meet the,
original schedule at each milestone. This does not imply that schedules are.made to
be broken, but a schedule cannot be go rigid that when the unexpectcd oceurs,
subsequent everits cannot be rescheduled

A schedule has two primary functions, it is both a plan and a device for measuring
progress. The key steps in a schedule are called milestones, or checkpoints. As the
project progress, the date cach milestone is completed is compared with the date
for which it was projecied. In any project, frequent progress reviews take place in
which the status of evenls is reported and evaluated. If, in the original planning
stage, the important milestones were anticipated correctly, reporting them as
completed, late, ahead of schedule, or on time has significance 1o the status of the
project. The status of fringe events is relatively insignificant. Here the value of the
PERT nelwork as a tool for determining the relative importance of milestones is
apparcnt.

Status of projects if often reported in terms of percentage of completion. As a
simplified reporting device, this is effective and allows easy communication with
top management. The problem with percentage of completion reporting is that
events on the critical path are not emphasized. A project may-have 90 percent of its-
2vents complete, but if one of thé incomplete events is on the critical path and is
'wo years Jate, the project is in serious trouble.

Accuralte scheduling requires extensive experience. The novice scheduler almost
always docs not allow enough time for activitics, Even when estimates are carefully
zathered, as in the preparation of a PERT network, some areas of delay are not
pparent. For example, an inexperienced person may not realize that equipment or
‘orms are often delivered tate. Morcover, lead time must be provided for approvals
n several areas, such as file design and input and oulput forms,

At the outset of the project, the project leader must determine the reporting format.
's status (o be measured in days, weeks, and tenths of weceks, or percentage of cach

. Project Planning and Control

1 b e e iy

Software Englncering Concepls

32

- schedule. Enforcement is 2 normal managerial duty. If a project leader cannot

.® Increase manpower in the form of overtime or additional people

. @ Change priorities

-apparently 'unsatisfactory performacne is that the original schedule estimates were

" At the outset of a project, the project .leader should not begome cornmitted to

_ creates morale problems,

Tl

job done? When are stitus reports to be made? Are reports'to be made.oraily;' in
wriling, or in chart form? ’

When a project is behind schedule, comrective sleps must be taken. Establishing
milestones is meaningless unless the project manager can enforce adherence 1o

enforce a schedule, someone else should be ieading the project. If one area is
consistently behind schedule, or aver birdget, the project leader must discuss the
problem with the individual responsible and take corrective action. A variety of

oplions are open to the project teader. . —

@ Increase the budget

-

& . Add equipmenl

© Replace the individtal responsible.

The project leader must determine the real cause of unsatisfactory progress.
Perhaps it is a budgetary or personnel problem. Too ofien, a major cause of

wrong, and that progress is as good as can be expected under the circumstances.

Projects have many target dates, but few deadlines. The project leader must
distinguish one from the other. When target dates -are missed, there may be some
grumbling, but missed deadlines result in financial-loss to the organization.

upreasonable target dates or deadlines. Unreasonable deadlines are costly because
unnecessary effort is made 1o meet them. Moreover, failing {0 meet them oftcn

The project leader must remember that this is not the only project under. way and
delays will occur routinely simply because another, more important project may
have {0 be tested first. Schedules are highly dependent upon priorities and should be
planned accordingly.)

The Problem of Capacity: The problem of capacity occurs when a.system
componenl is not large enough. Capacity problems are specially common in
organisations Lhat experience peak periods of business. During peak periods,
inadequale processing capacity, transmission capacity, storage capacity, staff
capacity, and the like may all exist. Capacity problems are also evident in rapidly
growing organisations. With growth, smaller-capacity equipment soan becomes too
small; smaller staff groups soon become overworked. In either case, some
expansion is needed to handle the increasing volume of business.

Many system problems are directed at solving capacity problems. Because if is
often difficult to justify the purchase of new equipment or the hiring of new staff,
people tend to put off such decisions until the very last moment. Consequently,
when the systems group is contacted, the problem of capacily is-easy 1o spot; the
difficulty, however, lies.in knowing how to handle the problem. For example, an
analyst might be forced o suggest a short-term solution to the problem. This is
done to gain time toward the formulation of a longer-term solution. For instance, an
andlyst might recommend: “Let's hire five part-time employees to help us get
through the peak period.” When a shori-term approach fails, the analyst may be
tempted to implement a quick-fix computer-based solution. Unfortunately, this
solution carries with it the associated danger of crealing an even more severe system
problem in the near future.

The Problem of Throughput: The problem of Throughpiit may be viewed as the

reverse of the problem of capacuy Throughput deals with the cfficiency of a
system. If system capacity is high and production low, a problem of throughput:
OCCLS. Consxder the following example.

Five programmers are assigned to a fairly straightforward programming assignment
consisting of 10,000 lines of computer code. After thirty days of coding, the
programming team is evaluated. It is discovered that they have completed 6000
usable lines of code. Now, if each programmer worked eight hours a day; a total of
1200 hours would have been expended on the project calculfated differently, the
average production rate for each programmer would. be 5 lines of code per hour
(6000 lines divided by 1200 hovrs). These findings might lead thc analysl to
conclude that there is a problem of throughpui.

Similar 10 thc problem of capacity, the problem of throughput may be rnuch easwr

_to spot than to.treat. When repeated equipment breakdowns lead to low rates of
“production (and when the equlpment has been purchased and cannot be retumed),

an organisation can badger the vendor into fixing the equipment but.can achieve
little more short of legal action. Likewise, when groups of people exhibit low rates
of production; such as the five-person programming team, the problem becomes
even more complicated. Badgering and threats may not work at all. Rather, a

" manager must be able to determine the root of the problem for any lmprovemenl in

throughput.

. Evall.iﬁtling the Problem

'Suppose that a problem has been 1dcnuﬁed The next step is problem evaluation,

which consists of asking the following questions: Why is it important to solve the .
problem? Wiat are possible solutions to the problem? What types of benefits. can
be expected once the problem is solved? There will be times when an analyst wiil
recommend that no project be slaried to resolve a problem, as the next example
demonstrates, .

Suppose ihal en analyst discovers that the real problem lies with the supervisor of
an area. Be.cause of mistakes made by this man, the throughput rate js 20 percent
less than had been expected. However, suppose next that the supervisor is new to
the job, is smart enough to realize where mistakes were made, and knows how not to
repeat them in the future. Given this situation, the analyst might close the book on
this project, recommending that no action be taken at this time, .

Consider a different set of circumstances. Suppose that an analyst determines that a

problem of low throughput can be traced to a compuler printer. Suppose further
that the problem must be corrected. Once the problem has been identified, the
analyst would prepare a solutions table to list possible problem solutions and the
expected benefils from each. Somelimes, the best solution is not at all evident. The
analyst might recommend that further study is required to determine which of the
possible solutions is best.

In this section, we have spent considerably moré time examining how an analyst
identiftes & problem compared with how the problem is evaluated, This uneven
split also oceurs in practice. As a general rule, analysts spend 75 percent of the
project-definition phase of analysis defining the problem and 25 percent evaluating
and documenting Lheir findings. Note also that we have limited our discussion to
seven major types of system problems. Because.of this limitation, you might ask,
“What about' the problems of communication” of group conflict? of management?
of system securi'y? Are these problems as well? ' Are these types of problems also
evaluated by the analyst?” Although our discussion has been restricted to more
technical system problems, individual or group problems also occur in a syslems

Project Plnnning and Control

33

Suftware Engincering Councepts

Requirements

Version 1| 3

34

environment and require identification and evaluation.

Still another limitation is the coverage given tp delermining the [easibility of taking
some action Lo solve a problem. The concept of feasibility entails the joint
questions of “Can_something be done?” and, if so, “Should it be done given a
particular sel of circumsiances?”’ For example, is it possible (o climb 2 mountain
when we have at our disposzl only a forty - fool rope? If it is, a second question’is
well advised, namely, “Should we attempt such a climb given the size of our rope?”
We will examine the question of project feasibility in more detail in the next unit of
this block.

A final limitation is the coverage given to tools which the analyst can use 1o identify
and evaluate sysiem problems. These tools are needed when the problems are nol
self-evident. -)

Organisations face various types of problems during their course of operations and
come across opporlunities or situations which could be convened into prolitable

Requirements Requirements

Version 1 3 | Version 1] 3

Veérsion 2 ' 5 Version2 Version 3 7

Figure 3.2 : Sequential Design of a Program Family

solutions. -Wheriever there is an opportunity and /or problem in the existing systém
' of operations or when a system is being developed for the first time, the
organisation considers designing a new system for information processing.

Sources of Problem/Opportunity
Organisat.ibns usually face problems or have obponunity due to the t:ollbﬁring:

® a new product or plant or branch

e a new market or new Iproctass

. failure of an exisling system

e inefficiency of an existing s-yslem

o structural error in the existing system, efc.

.Thus a thorough analysis of the situation need o be required. Not only the above
listed reasons but there exist some organisation based reasons too.

Problem Identification and Definition

For ideﬁlifying prablems/opportunities, we scan the follo'.'ving:

e The performance of the system

The information being. supplied and its form

e o '8

The economy of processing
The control of the information processing
® Security of Data ané Software.

'3.4 PROJECT STANDARDS

Initially, the project must establish the objectives of each phase of the project. Each
phase must be of a conwrollable size, and every task within the phase spelled out. .
The project leader and the individual responsible for the phase must agree upon the
human skills and other resources required to accomplish each task. They also must
agree ' upon the .expected outputs from these tasks. Ultimately, they must decide
upon the measurable outputs that will be examined throughcut the project to
cvaluale progress.

For each phase of a project, the status of time to complete tasks, personnel
utilization, and unforessen problems should be reporied to the project leader. This
report is then reviewed by the project leader and the managers concerned (o
evaluate progress. Alse evaluated is the quality of work, as reflected 1o, lhe ountputs
from each phase. This periodic review has four main tasks; e

1. Review project PIOgTess.
Analyze the impact of delays on the entire project.

Examine any problems existing in the qualny of the data.

LR W

.Anllmpate developing problems.

3 4.1 Pro_lects Conﬂ:cts

Dlsagreement_s are inevitable in most systems projects. Lack of cleaﬂy_ defined

Prolect Planning and Control

'35

I =T

Software Engineering Concepls .

36

" before undertaking the project.

objeclives and standards for acceptable performance are major causes ‘of

disagreement. A project leader should be sure to have these definitions in writing

The project manager is responsible for settling disputes that arise’ within the scope
of the project. This is ‘usually done by calling together all céncerned ‘parties of the
talking the matter- out. Whén the parties cannot reach agrecment, the project -
manager must intervene,

Implied in this procedure is that all the parties are ﬁ_va.rg-of what authority ihe o
project leader has. Too often, this may be vague. In ' general, however, the project

. managér must have the backing of whoever originally requested the project. When

lop management is the requester, the authority of the project leader is rarely . .

'_ questioned. When the project has been requested by a specific department, -branch,

or individuals representing areas of equal of greater status than the project leader,
substantial challenges ‘to-the project leader’s authority may occur. Any irony

' regarding syslems projects is that large projects are usually more successful than

smaller ones because the requester comes from higher up in the corporate structure.
3.4.2_Project Modificztions

For a variety of reasons, changes must sometimes be made in a project while it is
under way. Requests for changes must be evaluated carefully, according to several

criteria.

1. The impact on the present schedule.

2. The impact on the resources available for the project.
3. The cosl .

4. The effect on the deadlines for the systein

_Poor planning is the prﬁnary ‘cause for changes in current projcéls. It has four other

consequences as well -
Obsolescence : The systems in an organization tend to become obsolete quickly.

Poor Follow up : The responsibility for follow-up falts upon corporate executives
instead of project leaders. '

Inﬂéxibiliry : Systems become inflexible, so that minor modifications result In
extensive program writing. :

Lack of Documentation : Procedure writing and documentation are, in general,
neglected, '

3.4.3 Completing the Project

Projects often run on schedule and within budget for most of their existence, only to
fall behind during the final stages. Perhaps the last 10 percent of a project is the
most difficult to complete because enthusiasms -wanes at that point and people look
forward to newer challenges. Often, too, the final phaséfs of a project are the least
interesting. Documentation must be updated and completed, detailed. problems
solved and annoyances cleared up. Discipline on the part of the project team is
required to do the final stages of a project in a professional manner and turn over a
complete and functioning system to the user staff. '

. Project Plnnning and Control

3.5 PROJECT OUTSOURCING

Sooner or later, every company that develops compuler sofiware agks a fundamental

question: “Is there 2 way that we can get, the software and systems that we need at a

lower price?” The answer to this question is not a simple one, and the emotional

discussions that occur in response to the question always lead to a single word:
Outsourcmg

In concept, outsourcing is extremely simple. Software engineering activities are .
contracted to a third party who does the work at lower cost, and hopefully, higher
quality. Software work conducted wrlhm a company is reduced 10 a contract
management acrivity.

If you have been brought up in a culture that glorifies the American software
"industry as a world leader, T ask simply that you remember that it was only a few
years ago that we had the samg opinion of our automobile.iridustry... [Software

development may well move out of the U.S. into software factories in a dozen
countries whose people are well educated, less expensive, and more passionately
devoled to quality and productivity. A strong statement! Bul one that is already
becoming a reality. .

The dec1smn to outsource can be either strategic or tactical. At the strategic level,
business managers consider whether a significant portion of all software work can
be contracied to others. At the taclical level, a project manager deteninines whether
part or all of a project can be best accomplished by subconlractmg some portion of
the soltware work. .

cha.rdlc.;;s of the breadth of focus, the outsourcing decision is often a finarcial one.

One the positive side, cost savings can usvally be achieved by reducing the number
of software people and the facilitics-(e.g., computers, infrastructure) that support
them. On the negative side, a company loses some conuol aver the . software that it
needs. Since soflware is a technology that differentiates its systems, services, and
products, a company runs the risk of putting the fate of its compeuhveness into the
hands of a third party.

The trend toward outsourcing will undoubtedly continue. The only way to blunt the
trend is lo recognize that software work in the twenty-first century will be
extremely compelitive at all levels. The only way to survive is to become as
compelitive as the outsourcing vendors themselves,

Check Your Progress
1. Which of the following langh;:gcs is not well suite.d Ct r compulation?
(2) Java "
(b C++
() C
{dy COBOL
2. 'Repeated Execution of Simple.Computation may casse compounding of -

(a) Round off Errors)
(b} Syntax Errors

= a T T =

Soltware Engincerlng Concepls

38

{c) Run Time Errors

(d) Logic Error

Use' of Medern Control Technology in automation systems,

3
(a) - Reduces cost
(b) 1ncreases yield
() Imprm-t.;s Reliability
(d} All-of the above
4.~ The Preliminury evaluation of a Top down design belore programs are writlen
is referred 1o asan: :
(ay Informal Desien Review
th) Structured Walk through
(¢) lFormal Design Review:
(@) Scheduled Review
3.6 MODEL ANSWERS
Ql - (@
Q2 - (a)
(273 . (d)

Q4 - (a)

UNIT 4 RISK MANAGEMENT CONCEPTS

Structure

4.0 Inl.r\odui:lion

4.1 Objective

4.2 Introduction and Risk Management Concepls
4,2.1 Managing Risk
4.2.2 Typical Management Risk in Software Engincering
4,2.3 Technical Planning
4.2.4 Project Tracking
4.2.5 Delivery Timings
4.2.6 Partial Recovery

4.3 Benchmark testing

4,4 Model Answers

4.5 Further ,Readings'

4.0 INTRODUCTION

Risk Analysis and control is a crucial factor for any Software project and it is a topic
of management. Several standard techniques for identifying project risk, assessing
their impacl, monitoring and controlling them are discussed in this Unit. This Unit is
dedicated to Risk Managing Concepts and Tools. This Unit discusses typical risks in
software developing process, technical planning, project tracking, delivery timings
and partical recovery. Software performance a.nd the benchmarkcd versions are
discussed in this Unit.

4.1 OBJECTIVE

Aller completing this Umt you should be able to:

® Describe Risk Management Concepls and’ strateglcs 10 manage such R:sks

® What is Risk Monitoring, Technology Risk, Risk Componcnts and Drwcrs,
Customer Related Risks.

e Knowlcdge of Basic Concepts of Project Scheduling and Tracking.

® Knowledge of Software Testing Fundamentals.

4.2 INTRODUCTION AND RISK MANAGEMENT
' CONCEPTS

Experimental assessment of different organizatipnal structures is difficult. It is
clearly impractical to run large software dévelopment projects using two dilferent
types of organization, just for the purpose of comparing the effectivencss of the twao
structures, While cost estimation models can be asscssed on the basis of how well
they predict actual software costs, an organizational structure cannot be assessed
so casily, because one cannot compare the results achieved with those one would
have achieved with a different orgamzauon

Experiment have been run to measure the effects of such things as teams size and

Soltware Im;inter!n,,

40

uncepls

appropriate for all tasks.

task complexity on the effectiveness of development teams. In the choice of team
organization however, it appears that we must be content with the f'olI0wmg general
considerations:

Just as no life cycle model is appropriate for all projects, no team organization is
L J

Decenlralized control is best when communication among engmeers is necessary for .
achieving a good solution. - :

Centralized control is best when speed of development is the most important goal and
the problem is well understood. .

An appropriate organization tries to limit the amount of communication to what is
nccessary for achieving project-goals no more and no less. '
An appropriate organization.may have to take into account goals other than speed of
development. Among these other important goals are: lower life cycle costs, reduced
personnel turnover, repeatability of the process, development of j junior enginéers lnto
senior engineers and widespread dissemination of specialized knowledge and
expertise among personnel

4.2.1 Managing Risk

An’ ehgineiering project is expected to produce a reliable product, within a limited
time, using limited resources. Any project, however runs the risk of not producing Lhe
desired product overspending its allotted resource budget or overrunning its allolted
time. Rlsk accompanles any human -activity.

Risk analysxs and control is a topic of management theory. Several” standa.rd
techniques exist for identifying project risk, assessing their impact, and monitoring
and controlling them. Knowledge of these technique allows a project manager to apply

- them when necessary to increase the chance of success of a project.

We have already seen in previous seclions, many examples of -software development
problems that can be viewed from a risk analysis point of view. For example, we have
discussed (he difficulties of specifying product requirements completély. Given these
difficulties, a project runs the risk of producing the wrong product or having the
requirements change during-development. An effective approach for reducing this risk
is prototyping or incremental delivery. A different type of approach to handling the

_risk of late chaniges in the | requlremenls is lo produce a.modular design’ so.that such .

changes can be accommodated by actual changes to the software. Of these -
approaches, prototyping-tries to minimize changes in the requirements, -while modular
design tries to miyimize the impact of changes in the requirements.. choosing between
the two alternatives,. or deciding to use both, shoulc! involve a conscious and
systematic analysis of the possible risk, their likelinood, and their impact. :-

Al different levels of an organization, different levels of risk ean be tolerated. For

example, a project manager at the teginning of his career may not want to tolerate any
delay in the schedule (to minimize risk.to his personal career),while his supervisor
might be more concerned with the reliability of the product. A projeét manage inight .
not be able io tolerate the risk of running over budget by more umn 10% while a .
hlgher level manager who _js more aware of the value of early time to market ‘and

_therefore more concerned with the time taken by the project mnight be; wﬂlmg to
. overspend the budget by much more if the product can be produced sooner. To -.
:comphcate matters even more, different people have different tolerances of risk based

on their personal nature, as can be evidenced by observing pe0plc at a gambling
casing.

4.2.2 Typical Management Risks in Software Engineering

By .cxamining (he difficulties that raise in. software engincering, we can identify
typical areas of risk that a software engincering project manager must address. We
have already discussed the example of changes in rcquirements. Another important
risk is in not having the right people working on the project. Since there is great
variability among the abilities of software engineers, it makes as big difference
whether a project is staffed with capable or mediocre engineers. If key positions in a
project are staffed with inappropriate people, the project runs the risk of delaying
deliveries or producing poor quality products, or both.

Risk Details Risk Mnnagcmenl Techniques-

(a) Individual shortfalls Staffing with top talent; job maiching;
tcambuilding; key- personnel
agreements; cross-training; pre-
scheduling key people.

(b} Unrealistic schedules and budgets Detailed multisource cost and
schedule estimation; design to cost;
incremental development; software
reuses, requirements scrubbing.

) Developing the wrong software funclions Organization analysis; mission
analysis; concept formulation; user
surveys, prototypmg early user’s
manuals. .

d) Developing the wrong user interface Prototyping; scenarios; tasks analysis;
user characterization (funct:onally,
style workload)

e) Gold plating Requirements scrubbing; prototyping;
cost-benefit analysis; design to cost.
f) Continuing stream of requirements High change threshold; information
changes hiding; incremental development
. (defer changes to later increments) -
g) Shortfalls in externally furmshed Benchmarking; inspections; reference
componems checking; compatibility analysis.

h) Shortfalls in exlernally performed task Reference checking; per-ward audits ;
award-fee contract; competitive
design or prototyping: teambuilding

'} Real-time performance shorifalls Simulation; Benchmarking' modeling;
prototyping insirumentation; tuning
) Computer science capabilities - Technology analysis; cost benefit
. analysis prototyping; reference
checking.

chedule overrun risks can be reduced by limiling dependencies among tasks. For
xample, if many tasks cannot be started until a given task is completed, delay in
1at one task can delay the entire project. Imaging a computer system project where
ardware and software are being developed concurrently. If all software
evelopment is scheduled to start after the hardware is completed, any delay in
smpletion of the hardware translates directly into a delay in the entire project. A

Risk Management Concepts

41

Soltware Engineering Concepts

42

' .

Wway control this schedule risk is to produce a simulation version of the hardware so
that software development can be carried on even if the hardware is delayed.

PERT charts can help a manager identify schedule bottlenecks immediately-even
mechanically: a node with many outgoing arcs is a sigh of trouble, and the manager
should try to reschedule activities to.avoid it. Such a node should be rescheduled
espccmlly if it happens to be on the critical path. One way 1o reschedule the activity
is to break it up into smaller activities. Examining the risk items in column I of the
table, we can see that they overlap the items that are used in software cost estimation
models. Ff a factor has a high multiplier in cost estimation, it represents a risk that
must be managed carefully.

While we have only talked about management in the large, that is, management of a
group of engineers that must cooperate to produce a common product, many

, lcchmques we have discussed can be used by the individual engineer as well, that is

in the small. Indeed, each engineer must carefully plan, monilor, and execute the
plan for his or her own work. Staffing and directing are the only two management
function that PERT chart can help individual engineers on nontrivial activities.

While we have discussed the difficulties in measuring sofuware productivity, we
have also stated the importance of defining and collection such metrics.' A soltware
existing projects, and validate the melrics in .order to be able to apply management
principles to guide the planmng, decision making, and monitoring of future project
In the absence of metrics, there is no way to measure whether progress is being

.made and, if so, at what rate.-

In adduuan to the technical aspects of management that we have dlscussed the
manager is involved in resolving conflicts among competing goals For example:

In assigning tasks to people, should (he experienced engineer be assigned to do all
the difficult jobs and get them done fast, or should S/he work with less experience
engineers to have them trained for the further?

Large software system exhibit what have been called. progressive and
anliregressively components in their evoiution. A software evolving progressively
when features are being added and funcuonalny is increasing. But after adding (o
the software for a long time, its structure becomes so difficult to deal with, that an.
effort must be undertaken to restructure it-to make it possible to make further
addilions later. Reengineering, which does not add any functionality, is an
antiregressive component of software because its goal is to stop the software from
regressing beyond hope. The decision that the manager must make is when it is time
to undertake antiregressive activities. In its logical-extreme, this decision amounts
to whether a software system must be retired and a new one developed.

A common conflict is known as the mythical man-month conflict. In some
disciplines, people and time are interchangeable, that is, the same task can be

_accomplished by two people in half the time that it takes a single person. In software
" engineering, as we have ssen adding more people increase the overhead of

communication on each engineer, preventing a liner increase in productivity with
additional people. In fact, after a certain point in the project, and beyond e certain
number of people adding mere people to the project and delay the project rather

‘than speed it up. The difficult task of the manager is to determine when those limits

have been reached. The cost estimation models that we have discussed are the
beginning of foundation for allowing such decision to be made quantitatively.

Will the appronched that worked on one project work on another project? One of the
painfully observed phenomena in software =ngineering is that many techniques do
not scale up; that is, a method that works on smaller projects does not necessarily
work on large projects. Qur emphasis throughout the earlier or design, was in fact

motivated by this inability to scale up in software engineering. A corollary of this - Risk Management Concepts
observation 'is that it is not in general possible to derive precise scheduling ' 7
Vinformation from a throwaway prototype. For example, if the protolype

Semonsirates a tenth of the functionality of the final product, the product will not

‘take ten times the deveIOpmenl time that the. prototypes look

Should engineers be encouraged lo reuse existing software in order to reduce
s¢hedule time? While software reuse reduces coding time, it may cause difficulties -
in other phases of the life cycle. If the modules that are reused to not supply the .
exact interfaces suitable lo the design and functionality of the product, they cause
the engineer to go though extra effort just to match the interface, and worse, they
lessen the evolvability of the product. These problems point out the immaturity of

. software reuse (echnology, rather than an inherent flaw in the idea of software’
reuse. Whatever the reasons, however, the manager is left with a dlfﬁcult set. of
compromises to consider. -

Finally, we must recognize that there are no panaceas to software engineering
-problems. For example, using the latest process-an incremental, prototype-oriented,
life cycle model-or the latest technology-an advanced tool for configuration
management-or the latest methodology-object oriented analysis and designing-will
not sole all software production problems. In truth, software engineering is a -
difficult intellectual activity, and there are no easy solutions to difficult problems,
Using the right process, the right technology, the right methodology, and the right
tool will certainly help to control the complexities of software engineering, but it
will not eliminate them altogether. In practice, because sofiware engineering is such
difficult task at times, and because costs are rising rapidly, managers tend to grasp
at any solution that come along -which promises to solve their very real problems,

Panaceas do nol exist, however, and a manager is best advised to accept the
difficulties of the job and carefully evaluate the impact of any newly offered
proposed panaceas. :

4.2.3 Technical Planning

At the start of the project, it would have been wise to write clear and precise
documents stating the requirements for the new product. These comments should
have been based on a careful and organized interaction with potential users, paying
close attention’ to choosing a representative sample of the user population.

One might argue that it would have been difficult, or even impossible, to write such
documents, since the desirable features of the system were not clear in the first
place. A possible solution to this problems would have been 1o put a limited effort
into the development of a system that would act as prototype. The prototype system
would then help assess the most critical issues and derive firm requirements by
observing user’s reactions when suing the system. Unfortunately, the designers did
not even realize that a problem existed, and therefore, they did not even)
consciously choose between the first alternative-specifying requirements ca.refully-
and the second developing a fast exploratory prototype.

Similarly, carcful planning of resource altocation should have started, both from the
point of view of work assignment to designers and programmers and from the point
of view of physical resources management {e.g., hardware acquisition and office
space). Bul instead, just thé oppasite happened. An dmusing but dangerous “Game”
started between the designers and the very few representative clients, In this case,
of course, the designers included the company leaders, since they were technical
people and they had originated the idea of the product in the first place.

In fact; everybody was exciled with the innovative and challenging features of the i

Software Engineering.Concepts

. 44

_product, but nobody paid mush attention to fairly obvious bul crilical details. For -

instance a true programming language was designed to allow the sophisticated user
to define his or her own document composition rules. Very sophisticated-and
cxpensive-word-processing facilities were included ‘without measuring their cost
cffectivencess.

For a long time, nobody paid attention to the definition of suitable user interfaces 1o

[facilitate the interaction of nontechnical people-a lawyer or secrelary-with the

system, Similarly, sophisticated features for the automatic computation of i invoices
on the basis input data (people time, service value, travel expenses, €Ic.), were
designed, but no attention was paid standard office operations such as the filing of
Iai'ge numbers of documents (e.g., records of automobile sales-in some offices,
several hundreds of such documents are produced every day).

From'a lechnical view poinl, many tylﬁiéal mistakes were madc:

No analysis was performed to determine whether all the product features were
needed by all users; or whether it would be better to restructure the functionality of
the product based on different classes of users. More generally, no effort was put
into determining which qualities of the product were mot critical for its success. Fo
instance, in the choice of the hardware and of the development software (the

. operaling system, programming language, etc.) little or no attention was paid to the

evolution, and no effort was made to, prepare for possnblc changes to them.

No “Design for change” was dong, i.e., no design decision was influenced by any
analysis of which parts of the product were likely to change during the product’s
lifetime (e.g., how might possible changes in the law affect product requirements?)

Strong pressure was applied 1o have some (any} code running as early as possible.
No precautions were taken to minimize damages due to personnel tumnover.

What is perhaps worth pointing out js that evcrybody in the company was, of course
were of such classical mistakes in software engineering. This awareness
notwithstanding, the mistakes were made. This remarks shows that knowing the
difficulties is.not enough: it is also necessary to have the technical and organization
ability and willingness {o face them, even at the cost cf doing something that docs

not appear immediately aturactive and productive.

_ 4.2.4 Project Tracking

After a while (about six months after the start of development) some mistakes

_ became apparent both from a technical and from a management point of view, For
. instance, the lack of a clear definition of the product’s functionality caused some

initial misunderstanding between the polential users-the ones with whom the early

. contacls has been established-and the designers. It was realized that some features

that has been neglected at the beginning were actually quite important.

Also, geu.mg in touch with other polenha] users showed ‘that not all of them needed
the same features. Thus, a modular architecture_would have been preferable, even

" from the user point of view, allowmg the product to be customized for different

classes of users, just as the same “skeleton” of a car can be sold with different
computer ¢an be sold with many optional features e.g:, or the same personal can be
sold with many opuon features etc., a color monitor or a floating point coprocessor,

Fma]ly. it became apparent that the ongmal cost estimates’ were off by an order of
magrumde This mvahdated l.he initial economic and ﬁnanc1al plans.

T=u-

Ty T ITTC

The reaction of this sitbation was even worse than the problem itself: the impact of
the mistakes-both technical and non-technical-was again underestimated. In
general, the attitude was of the following type “OK, we made a few mistake but now
we are almost done. So let's put'in a little more effort, and we will complete the

~ product soon and will start earning money. “ That is, no critical and careful analysis
of the mistakes was made, nor was a serious re-planning .and redesign of the whole
project attempted. There was only a generic claim of an intuitive confidence is
being-close to the end. ‘ s

The consequences of this. attitude were disastrous. Under the pressure of “being-
almost done and close to delivering the product,” the design focused more and more
" ofi the very end product i.e., machine code. Classical “patches” on object code were
made wildly, no systematic error and correction logs were kept, and
comrmunications’ among designers occurred almost exclusively orally in an attempt
to save time. :

The-same attitude prevailed on the managerial and financial front: since “we are
almost done” “we just need a little-more financing and can accepl almost any terms.

" -Risk Management Concepts

. 2
A J

A 4

'Y

. Study - Design Construction
(Analysis) '
“TIdeal” Project Progress

_ .Inipleuicnthtion_ |

[

Study " Disign” . .- Construction.
(Analysis) o

Figure 4.1 : “Realily of Project Progress

4.2.5 Delivery Timings

[t was decided that income could be generated as soon as the company started
lelivering the first versions of the product or as soon as new construct could be
signed. In turn, the customers would be good references for the product.

Implementation

45

===

Software Engineering Concepls

This decision, tog, twrned out to be a big misiake. In act. new dimension was added

to the already critical technical and management problems Since the rule was “sign
the contract anyway", while the product was not clearly defined and was only
partially developed, early customers had many problems wilh the product. This
caused a lot of internal problems also, because it was not clear whether some
activity feliiiinder product development or user assistance; nor was it clear who had
to do what. After marketing, some development, some user assistance, some
hardware: acquisition, etc., according to an unpredictable flow of events.

Ticketing Routine Works
Accounting Division
L

Berth Reservation - Program Sales
Allocation - Status .Cash Flow Billing Cycle Managemsnt Status

: , _
_ Agsignment Finang\ 'AccURec{vaA _ REQ' Schedule Marketing

Allocation . Acct/Payable AP Date Schedule Staffing

46

_ Availabllity

Figure 4.2 : A Simple Technical Design for Rall Ticketing System

4.2.6 Partial Recovery

Eventually, it was realized that the naive way the firm was maraging the project was
leading to disaster. Thus, a real effort was made, first to define responsibilities .
- - clearly (who was respons:ble for the design, and also for the distribution, etc.) and

: second, {0 achieve a,clear picture of the state of the product, of its- weaknesses, of -
-the. effon requued to fix them, etc.’ this was done even at the expenses ‘of slowing .,
down the -projedt, increasing costs, and reducing sales. Thus, people "had to resist an
m.mal feelmg that the re.struclunng of the project was 1mped1ng ‘i-e.al" progress

. After a whlle. however. the’ 1mprovement became apparent, so that eventually, the .
product really exisled and full documejitation was available. The company actually
staftéd to ship.the product and eam mdhey from its, although far less than expected

TI—

initiaily. mainly because the delayed introduction of the product cansed it to enter a
more compelitive market than anticipated.

4.3 BENCHMARK TESTING

The term “benchmark™ was derived from the days when the machinist in a factory

would use measurements at each bench to determine if the parts he was machining
were satisfactory. In the computing field, to compare one system with another, you
would run the same set of “benchmark” programs, through each system.

A benchmark 15 a sample program specially designed to evaluate the performance
of different compulers and their software. This is necessary because computers will
10t generally use thg same instructions, words of memory or machine cycle to solve
»articular problem. As regard, cvaluation of software, benchmarking is mainly
soncerned with validation of vendor's claims in respeci of following points:

» minimum hardware configuration nceded to operate a package.

» ume required 10 ¢xecute a program in an ideal environment and how the
performance of own package and that of other programs under execution is
affected, when running in a ‘muli-programming mode.

‘he more elaborate the benchmarking, the more costly is the evaluation. The user’s .

oals must be kept in mind. Time constraints also limit how thorough the testing
rocess can be. There must be a compromise on how much to test while stil]
nsuring that the software (or hardware) meets its functional criteria.

enchmarks can be run in almost all type of systems enviromnent including batch
nd on-line jobs streams and with. the users linked to the system directly or through'
t.ecommunications methods. '

ommon benchmarks test the speed of the central processor, with typical
structions executed in a set of programs, as well as multiple strewns of jobs in a
wltiprogramming environment. The same benchmark run on several different

ymputers will make apparent any speed and performance differences attributable
+ the central processor.

cnchmarks can- also be centered around an expected language mix for the
‘ograms that will be run, a mix of different set of programs and applications
wing widely varying input and output volumes and requirements. The response
ne for sending and receiving data from terminals is an additional benchmark for
¢ comparison of systems.

fieck Your Progress

destion 1 -A stock and bond cnalysis program that focuses on technical analysis
will

{a} Allow 1o eslablish a databasc.
(b) Analyze cach sccurity’s markel pricc and volume statistics.
(c) boih {a) and (c)

(U} None of the above.

iestiom 2 A single Integrated Program may contain

Risk Management Concepts

47

Software Engincering Concepls -

Question 3~

Question 4

(a) Programs that take care of all the basic accounting sysleins used

by & business.

(b) Word Pm-ﬂcssing, Spread Sheet proc@ssing, graphics and daia

nianagement.
(c) An operaung system and an appllcauon program.

(@) both (a) and (b) "
A Structural Program -

{(a) can.be reduced lo canlrol structures. _
(b) is-generally more complicated than non-structured program.

(c) can ofly modified by the developer who wrole it.

(d) all -ofl'th-e above

The case’ that is ,har_de‘sll to fix in Software Requircmepl‘.Spéciﬁc'_'ati'on_'

1

. (a) How user friendly the system should be
‘(b)- - How fast the software should run.
«©) .. 'What lhe software syslem is 0. do ,

(d) _How accurale the oulputs should be

4.4 MODEL ANSWERS

Q1.
Q.2
Q.3
Q4

- ()

(d) -

R O

- (c)

4.5 FURTHER READING -

" SOFTWARE ENGINEERING : ROGERS PRESSMAN TATA McGRAW HILL
PUBLISHING HOUSE

48

Utter Pradesh

BCA-19

Rajarshi Tandon Open University - Introduction to

Software Engineering

Block

2

Software Quality Concepts and Case Tools

UNIT 1
Software Performance . 5
UNITZ2
. Quality Concepts 17
UNIT 3
éoftware Methodology and Object Orienteci Concepts 27
UNIT4 | -
Case Tools “ '51

T Iy =T

FACULTY OF THE SCHOOL

Prof, Mohan Lal Pro M. M. Pant
Director (I/c) .

Shri Sharhi Bhushan - Shrt Akshay Kumar
Reader - Reader

Shri P V. Suresh

Shri V. V: Subrahmanyin '

Lecturer L.ecturer
Course Co-ordinator : P. V. Suresh
. IGNOU

Block Writer:

Pankaj Goel
Consultan

! Print Production H. K. Som (IGNOU)

May, 2001
ISBN-81-266-2152-3 ' ,
@ Indira Gandhi National Open University

All rights reserved. No part of: this work may be reproduced in any form, by
* mimeograph or any other means, without permission in writing from the Indira

Ganghi National Open Unijversity.

Further information on the Indira Gandhi National Open University. courses may he
obtained from _tyc Universitv’s Office at Maidan Garhi, New Delhi-110068.

AV v

BLOCK INTRODUCTION

Soltware engineering is one of the fields of computer science that deals with the
desigd of a complex software system. It examines all aspects of problem solving and
the integration of software into this process. This block covers different agpects of
software Engineering discipline. The unit 1 focuses 6n various features like Software
Reliability, customer friendliness, software Toolkits and Programming Environment. -
Unit 2 describes varions qualities of software Product. (The important influencing
factors of software development, how to select the right methodology is discussed in

+ Unit 3}. Unit 4 describes case tools. The students of this course are also advised to go
through at least one reference book on software Engineering along with this material, -

The process of selecting the right developmental rpelhudolo*gy is discussed in Unit 3. ‘

UNIT1 SOFTWARE PERFORMANCE

Stfucture

1.0 Introduction

1.1 - Objective

[.2 Customer Friendliness

1.3 Software Reliability

1.4 Soltwarc Reviews

1.5 Sollwage Upgradation

1.6 Software Tools and Environment
1.7 Soltware Libraries and Toolkits

[.8 Software Modules

1.9 Reapplication of Software Modules

1.10 Development Tools
1.10.1 Cod= Gencrators]
1.10.2 Debuggers : -
1.11 Model Answers
1.12 Further Readings

1.0 INTRODUCTION

The Soltware development team works towards a single goal of producing high
-quality software. Sottware Qualily Assurance (SQA) is 2 Broad activity that comprises
of? .

(1) A quality management approach.

(b} Effective methadology and use ol appropriale tools.
(¢} Technical Reviews.

() Moedulewise testing strategies.

&) Qualily standards.

The software manufacturer is not responsible for any damages due to product errors.
Softiware engineering can truly be called ar engineering discipline only when we can
achieve software reliability comparable to the reliability of other produclts.

“The functional requirement specification must captures all the desirable properties of
the application and no undesirable properties should be specified in it. The set of all
reliable programs includes the set of correct programns, but not vice versa.
Unfortunately, things are different in practice. In fagt, the specification is a model of
what the user wants, but the model may or may not be an accurale statement of the
user’s needs and actual requirements. All that the software can do is to meet the
specified requirements of the model, it cannot ensure the accuracy of the model.

A program is reliable if it behaves “reascnable”, even is circumstances that were not
anticipated in the requirements specification - for example, when it encounters
incoreect input data or som¢ hardwire malfunction (say, a disk crash). A program that
assumnes perfect input and generates an unrecoverable-run-time error as soon as the
user inadvertently types an incorrect command would not be robust. It might be
correct, though, if the requirements specification does not state what the action should
be upon entry of an incorrect command. Obvionsly, robustness is a difficult-to-define
quality; alter all, if we could state precisely what we should do to make an application

" robust, we would be able to specify its “reasonable” bebavio. completely. Thuq
rabustness would become equivalent. to correctness of reliability.

S =T

Soflware Quality
Cinrepls ahd tuse Toals

An analopy with bridges is instructive. Two bridges connecting two sides of the same

* river are both “correct” it they each satisty the stated requirements. 1t however,

during an unexpected, unprecedented, torrential rain, one collapses and the other one
does not, we can cail the latter more robust than the former. Natice that the Icsson
learned lrom the collapse of the resistance to torrential rains is a correctness
requircment. In otber words, as the phenomenon under study becomes more and more
known, we will approach the ideal case where specifications capture expected
requirements.

The amount of code devoled Lo robusiness depends on the application. For example, a
syslem written (o be used by novice compuler users must be more prepared o deal
with ill-formatted input than an embedded system that reccives ils input from a sensor.
If the embedded system is controlling the space shuttle or some life critical devices,
then extra robustness is advisable. .

i conclusion, we can see that robusiness and correciness are sirongly related, without
a sharp dividing line between them. If we put 4 requirement in the specification, its
accomplishment becomes an issue of correctness: if we leave it out of the
specification, it may become an issue of robusiness. The border line between the Lwo
qualities is the specification of the system. Finally, reliability comes in because not all
incorrect hehaviors signify cqually serious probiems; some incorrect behaviors may
actually he absorhed.

Correctuess, Robustness, and Reliability also apply to the software production
process. A process is robust, for cxample, if' it can accommodate unanticipated
changes in the environment, such as a new release of the operating sysiem or the
sudden transfer of half the employees to anotlier location. A process is reliabie if it
consistently leads o the production of high-quality products. In many engineering
disciplines, considerable research is devoted o the discovery of reliable processes.

Any engineering product is expected to meel a certain level of performance. Unlike
other disciplines, in software engincering we often cquate performance with _
etficiency. We will follow Lhis practice here. A software system is ctficient if iy uses
computing resources economically. ’

Performance is important because it affects the usability of the system. It a software
system is {oo slow, it reduces the productivity of the users, possibly to the point of not
mecting their needs. If a software system uses too much disk space, it may be oo
expensive to run. If a software system user to much melnory, it may affect the other
applications thal are run of the same system, or it may run slowly while the operating
system tries to balance the memory usage of the ditferent applications.

Underlying all of these statements-and also what makes the elticiency issue dilticult-
are the changing limiis of efficiency as technology changes. Our view of what “100
expansive” is conslantly changing s advances in techhology extend the limits. The
computers of today cost orders of magnitude less than computers of a few years apo,
yet they provide order of magnilude more power,’ '

Performance is also important because it : ffects the scalability of a software system,
An algorithm that is quadratic may work t n small inputs but not work at all for Jarger
inputs. For example, a compiler that uses s register allocation algorithm whose
running lime is the square of the number of program variables will m slower and
slower as the length of the program being complied increases.

There are several ways to evaluate the performance of a system. One method is to
measure efficiency by analyzing (he complexity of algorithms. An extedSive theory

_ exists for charact »'zing the average of worst case behavior of algorithms, in terms of

significant resource requirements such as time and space, or-less traditionally-in terms
of number of message exchanges (in the case of distributed system).

Analysis of the complexity of alposilhms provides only average of worst case:
information, rather than specific informalion, about a particvlar implementation. For
more specific information, we can use lechniques of performance evaluation. The
three basic approaches to evaluating the performance of a system are measure ment,
analysis, and simulation. We can measure the actual performance of & syslem by

_means of monitors that collect data while the system is working and aliow us to - .

oy ¢

discover bottlenecks in the system. Or we can built a model of the product and analyze Software Performance
. Or. finally. we can even build a model that simulates the product. Analytic models-

olten bascd on quening theory-are usually easier to build but are less accurate while

simulation models are niore expensive to build but are inore accurate. We can combine

he 1wy techniques as follows: at the start of a large project, an analytic model can

provide a general understanding of the performance -critical areas of the product.

pomnting ourt are¢as were more thorough study is required: then we can bmld simulation .
models ol these particular areas, :

Iy many soltware development projects, performance is addressed only afier the initial
sersion of the product is implemented. It is very difficult-sometimes even impossible 1o
achieve significant improvements in performance without redesigning the software.
Cyven a simple model, however, is uselul [or predicting system pl.rrorm"mce and guiding
desizgn choices so as lo minimize the need for redesign,

In soinc complex projects, where the feasibility of the performance requirements is not
clear. must effort is devoted Lo building performance models, Such projecis start with a
performance model and vse it initially 1o answer feasibility questions and later in
miaking design decisions. These models can help resolve issues such as whether a
funetion sheuld be provided by sofiware or a special-purpose hardware device.

The notien of performance also applies 1o a process. in which case we call it
productivity. Productivity is important enough to be treated as an independent quality.

1.1 OBJECTIVES

Adter going througlk this unit, you should be able 10:
@ Describe Sofiware Reliability. Upgradation and Customer Friendliness:
® Explain Soltware Libraries and Toolkits

@ Describe Software modules and Reapplication of Software tl.10dules.

1.2 CUSTOMER FRIENDLINESS

A software system is user friendly il'its human users find it easy to use. This definition
rellects, the subjective nature of user. friendliness. An application that is used by
novice programmers qualifies as user friendly by virtue of different properties than an
application that is used by expert programmers. For example. a novice user may
appreciate verbose messages. while an experienced user detects and ignore then.
Similarly. a nonprogrammer may appreciate the nse ol menus. while a progranmmer inay
he mare comfortable with tvping a command.

‘The user intertuce is an'important component of user friendlinéss. A software System
that presents lhe novice user with a window intérface and a mcuse is friendlier than the
one that [requires the user 1o use a set of one-letter commands. On the other hand, an
experienced user might prefer a set of comntands that minimize the number of
keysirokes:™ rather than a fancy window interface through which e was to navigate to
el to the command Lhat he knew all along he wanted to execute, There is more to user
Iriendliness. however, than the user interface. For example. an embec led software
svstenn docs zol have a human uses inter(ace, Instead, il interacts with hardware and
perhaps other sotiware systeiu. In this case. the user friendliness is rellected it the
case with whick the system can be configured and aclapled 10 the hardware
environment.

I general. the user triendliness of a system depends on the consistency of s user

and nperator interfaces. Clearly. however, the other qualitics mentioned above-such as

correcingss and performance-also affect user friendliness. A software system that

produces wrong answers is not friendly. regardless ol how fancy its user interface fs.

Also, a software system thal praduces answers more slowly than the user requires is

not friendiy even i’ the answers are dispiayed in coley,) 7

o

Sofiware Guelily
_ Cepeepta and Case Tools

User friendliness is also discussed under the subject “human factors™. Human factors
or buman engineering plays a major role in many enginecring disciplines. For
example, avtomobile manufacturers devole significant effort to deciding the position
of the various control knobs on the dashboard. Television manufacturers and
microwave oven makers also try-to make their products cagy 1o user. User-interface -
decision in these classical enginecring fields ire made, not randomly by engincers, but
only after extensive study of user necds and atliludes by specialists in fields such as
industrial design or psyrhology. '

Toterestingly, case of use in many of these engineering disciplines is achieved through

standardization of the human interface. Once 4 user knows how to use onc television

sel, he or she operates almost any other lelevision set.

1.3 SOFTWARE RELIABILITY

If an organization depends on a sotiware for its functions then it is reliable software.
Reliability of 4 software program is an important factor of its overall quality. Software
Retiability factor can bt measured and estimated. In statistical terms, the probability
of Failure free operation of a Software Program in a particular environment is defined
as Soltware Reliability. Software Reviews from an important part ol Software Quality
Assurance Activity. The Quality Assurance team must collect data about Software
Engineering Process, evaluate the data and disseminate. The ability to ensure quality
is the measurement o a mature engineering discipline.

Corrcctness is an absolule quality: any deviation from the requirements makes the N

system incorrect, regardless of how minor or serious is the consequence of the
deviation. The notion of reliability is, on the other hand, relative: if the consequence
of a softwarc error is not serious, the incorrect xoftwire may still be reliable,

Engineering products are expected to be reliable. Unreliable products, in general,
disappear quickly [rom the marketplace. Unfortunately, software products have not
achicved this enviable status yet, Software products are commonly released along with
a list of “Known Bugs™. Users of software take it for granted that “Release 17 of a
product is “huggy”. This is one of the most striking symptoms of the immaturity of
the software engineering field as an engineering discipline.

In classic engineering disciplines, a product is not released if it has “bugs”. You do not
expect to take delivery of a automobile along with a list of shortcomings.

Current research and development activity in the area of standard user interfaces for
software systems will lead to more user-[riendly systems in the fulure.

1.4 SOFTWARE REVIEWS

A software system is verifiable if ils properties can be verified easily. For example, th
correctness or the performance of a software system are-properties we would be
interested in verifying, Verification can be performed either by formal analysis
methods or through lesting. A common technique for improving verifiability is the ust
of “sofiware monitors” that is, code inserted in the software to monitor various
qualilies such as performance or correclness.

Modular design, disciplined coding practices, and use of an appropriate programining
language all contribute to verifiability.

Verifiability is usually an internsI quality, although it sometimes becomes an #xternal
quality also. For example, in many security-critical applications, the customer requires
the verifiability of cerlain properties. The highest level of the security standard for a
“trusted computer system” requires the verifiability of the operating system kemel.

Software maiutchanc&is_ commonly used to réfer to the modifications that are made to
a software system after its initial released. Maintenance used (o be viewed as mercly
“bug fixing,” and it was distressing to discover that so much effort was being spent on

. - f i F At revaes e

I

mainienance is in fact spent on enhancing the product with features that were not in the
original specifications or were stated incorrectly.

“Mallltenance™ is indeed not the proper word to use with software. First, as il is used
today. the term covers a wide range of activities, all having to do with modifying an
CXISt111g piece of software in order lo make an improvement. A term that perhaps
captures the essence of this process betler is “software evaluation™ Second. in other
engineering products, such as computer hardware or automabiles or washing machines.
“maintenance” refers to the upkeep of the product in response to the gradual
deterioration ot parts due Lo extended use of the product. For example, ransmissions are
oiled and air filters are dusted and periodically changed. To use the word “maintenance™
with sofiware gives the wrong connotation because software does not wear out
Unfortunaltely, however. the term is used so widely that we will continue using it

There iscvidence that mainienance cost exceeds 60% of the total costs of soltware. To
analyze the factors that affect such costs, it is customary to divide software maintenance
three catcgorics : corrective, adaptive and perfective maintenance.

Corrective maintenance has to do with the removal of residual errors present in the
product when it is delivered as well as errors introduced into the software during its
mallltendnce. Corrective maintenance accounts for about 20 percent of maintenance
cosl.

Adaptive and perfective maintenance are the real sources of changes in software; they
motivate the introduction of evolvability as a fundamental software quality and
anticipation of change as a general principle that should guide the softyare engineer.
Adaptive maintenance accounts for nearly another 20 percent of maintenance costs while
over 50 percent is absorbed by perfective maintenance,

Adaptive maintenance involves adjusting the application 1o changes in the
environment, e g., a new release of the hardware or the operating system or a new
data-base system. In other words, in adaptive maintenance the need for software
changes cannol he attributed to a feature in the software itself, such as the presence of
residual errors or the inability to provide some functionality required by the user.
Rather, the sofiware must change because the environment in, which it is embedded
changes.

Finally. perfective maintenance involves changing the software to improve some of its
qualities. Here. changes are due to the need to modify the funcilions offered by (he application.
add new functions. improved the performance of the application, make it easier to use, etc.
The requests to perform perfective maintenance may come directly from the software engineer,
in order to-improve the status of the product on the market, or they may come from the
custoiner, 1o meet some new requirements.

We will view maintainability as .two separate qualities: reparability and evolvability
Software is repairable if it allows the fixing of defects; it is evolvable if it allows changes

‘hat enable it to satisfy new requirements.
]

The distinction between reparability and evolvability is not always clear. For
:xample, if the requirements specifications are vague, it may not he clear whether we are
fixing defect or satisfying a new requirement.

A software systems is reparability if it allows the correction of its defects with a limited
imount of work. In many engineering products, reparability is a major design goal. For

:xample, automobile engines are buitt with the parts that are most likely to fall as the most.

1ccessible In computer hardware engineering, there is a subsection called reparability,
wailability, and serviceability (RAS).

‘n other engineering fields, as the cost of a product decreases and the product assumes
he status of a commodity, the need for reparability decreases: it is cheaper to replace the
“hole thing, or at least major parts of it, than to repair it. For example, in early television
iets, you could replace a single vacuum tube, Today, a whole board has to be replaced

n fact, d commen technique for achieving reparability in such products is to use
standard parts that ¢an he replaced easily. But software parts do not deteriorate. Thus,

Software Performance

;

g v e e

o =

SuflwnreIQuullly
Cuoucepls and Cuse Toaols

while the ute ol standard 'parls can recduce the cost of softwarce production, (he concept
of replaceable parls does not seem to apply to software repairability. Software is also
different in this regard because the cost of software is determined, not by tangiblc
parts, bul by liuman design activity.

Repairability is also affected by the number of parts is a product. For example, it is
hiieder to repair a defect in a monolithic automobile hody tian if the body were inade
of several regularly shaped paris. In the latter case, we could replace a single part
inore easily than the whole body. Of course, it the body consisted of too many parts, it
would require too inay connections amonyg the parls, leading Lo the probability that the
conneclions might'need repair.

An analogous situation applied Lo soltware: a software product that consisis of well-
designed modules is much easier to analyze and repair than a monolithic one. Merely
increasing the number of modules, however, does not make a more repairable product.
We have 1o choose the right module structure with the right moduie intlertaces to
reduce the need for module interconnections. The right modularization promotes
repairability by allowing errors to be confined to few modules, making il easier to
locate and remove them. We can examine several modularization lechniques,
including information hiding and abstract dala types.

Repairability con be improved through the use of proper tools. For cxample, using a
high-level language rather than an assemble language leads to better repairability.
Also, tools such as debuggers can help in isolating and repairing errors.

‘A product’s repairability affects its reliability. On the other hand, the need for
repairability decreases as reliubility increases.

1.5 SOFTWARE UPGRADATION

Like other engineering products, seftware products are maodified over time to provide
new functions or o change existing functions. Indeed, the Fact that software is so
malleable makes modifications extremely easy to apply 10 an implementation. There

- 13, however, a4 major difference between sofiware modification and modification of

other engineering products. In the case of other engineering products, modificationr
starts at-the design level and then proceeds to the implementation of the product. For
example, if one decides to add u second storey to a house, first one must do a
feasibility study to check whether this can be done safely. Then one to must do a
design, based on the original design of Uie house. Then the design must be approved,
after assessing that it does nol viclate the existing repulations. And, finally, the
construction of the new part may be commissioned.

In the case of software, unfortunately, people seldom proceed in such an organized
fashion. Although the change might be a radical chapge in the application, (oo often
the implementation is started without doing any feasibility study, let alone a change i
the original design.-Still worse, after the change is accomplished, the modificalion is
not even documented a posteriori; i.e., the specifications are not updated Lo reflect the
cliange. This makes future changes morc and more difficult to apply.

On the other hand, successful software products are quite lived. Their first release is
the beginning of & long-lifetime and each successive release is the nexl step in the
evolulion ol the system, if the software is designed with care, and if each modiiicalio
is thought oul carefully, then it can evolve gracefully.

»

1.6 SOFTWARE TOOLS AND ENVIRONMENT

Up 1o this point we have reviewed the various phuses in the software life cycle, and

we have seen how to apply some principles of program design and modularily in the
actual writing ol propgrams. A natural next step is to consider how some of this work
can be streamlines or antomated through the use of computers. Any programs or other
automated aids for the developient of sottware are called tools, and it is appropriate
to consider what kinds of software tools might increase the productivity of '
developments or the effectiveness of the final product.

Development Environment

Somc of the most pbvious arcas for computer support of software development arise
within the programming phase. At an elementary level, programming requires code Lo
be written, compiled, run, modilied, and corrected. This suggests access Lo an edilor
that is easy to use, a compiler that-runs quickly and identifics errors in an
understandable and helpful way. and a means o run programs convenicnily with u
vdnety ol data sels. :

More generally, provisions for editing, compiling, and running. programs ace part of a
senerad programming enviromnent, which includes ail the features avatlable on a
particular compuier 10 aid the programming process, A description ol such an
cavironmenl includes statements about what capabilitics are available for the
programmer and considerations of what the programmer must do o take advantages
 of these capubilitics. For example, on small microcompulers, a programming
enviromment might contain an editor stores on one floppy disk, a compiler on inother,
and programs Lhemselves on a Lhird disk. I the microcompulter has oaly one or two
. disk drives, programmers must swap disks cach time they move from editing 1o
compiling or hick.

In contrast, another environment might include an editor and compiler i our package
so that a programmer can compile and run a program at any lime within an ediling
cnvironment, In this case, the programmer need not spend any extra time moving {rom
editing Lo compiling or running & program.

Beyond this basic inlegration of programming operators, more sophisticated
enviromments may assist further with some of these tasks. For example, some modern
syhlax-directed editar scan a program as it is being calered or revised, and this may
lielp automale program indenting and format. These editors may add the keyword End
on'a following line whenever a programmer Lypes Begin, Sumla.rly, these editofs may
insert the gencral fonn lor procedures (including braces, { }, for initial comments and
a Begin-End block) whenever the programmer siarts a new procedure.

Other programming cnvironments maty inclrde incremental compifers, which allowa -
programmer o work.on one part of a program at a time. These compilers recognize
what section ol code has been revised recently and recompile only these procedurcs
that have been changed, When developing Iarge programs, this capabilitics can speed

- up compilation considerably, since only a [ew lines may need Lo be compiled [rom one
" test to the next il the overall program centains thousands of lines of code.

Once code is 1irst wrilten, its trcing and debupging can be assisted by the use ol i
debugger, which controls the execution of the progrum. With debuggers, progrim
execulion may be stopped at designated points, values of variables printed or changed,
and the order of procedure calls clarified. Individual procedures or groups of
procedures also may he wrillen and tested by themselves, before they are placed
within an overall program. A programmer may supply initial values lor parameters
and then run a module to test the resulis before {hese small picces of code arc
combined into larger units.

_ When available, such capabilities may eliminale the need o write separate driver
programmes for Lesting.

Other advances in autlomating the software development process exiend heyond the
programming phase. Some (ools assist specific phases of the process, and other 1ools
automale parts of scveral phases. This pives rise to peneral software development
environments, which may include a collection of automated aids to assist in the
development process.)

Both the specifications and design phasés of soflware developmenl have the
characteristics that data must be collected organized, checked for comnpleteness and
consistency, and presented clearly for review. Several computer packages with (hese
common leatures have been developed to help store informat‘on about a problemn so
that-it can be storcd and manipulated with relatively little overhead. More
sophisticated systems may allow some automated checking of pieces for consistency
and some possible omissions. The systems also may format parts of the specifications
of designs in appropriate data flow diagrams or structure charts.

Sallware Perfermance

11

P 1= T

Software Quality
Concepts and Case Tools

in any of these environments, automation can help strcamline a particular part of the

software development process, and time may be saved in the transition from one phase
of the work 1o the next. Information and decisions within one phase can be checked for
completeness and consistency, and work at one phase can draw easily on activity that

‘has iaken place earlier. In addition. this recording of information and decisions through

the development of a software package can assist in e maintenance of the package
since maintenance programmers will know how soflware is structured. what each
module does, and how potential modifications will affect a medule.

1.7 SOFTWARE LIBRARIES AND TOOLKITS

Our discussion ol auiomated aids for software development has focussed on the
development of new specifications. designs and programs. Another helpful technique
involves cataloging existing modules and placing tested modules in libraries. With
careful planning, it may not be nece}'\sary to spend time and effort on the development
of new systems if one can reuse matel\'ials that already perform appropriate tasks.

Any atlempt Lo take advaniage of eerlzﬁE'Mvork relies on at least three conditions. First,
we must have a dear Idea of what is needed in the current project so that we can
identity the appropriale capabilities. Second, there must be a well-organized calalogue
of existing software so that we can locate any modules that might be avatlable te do
pieces of the current project. Third, each existing module must be ¢learly documented,
with carefully stated pre and pdst-conditions. : :

Although these conditions may seem obvious. it is essential that each of these points
is satisfied if existing sofiware is 1o be reused, For example. the exisience of even onc
extra undocumented. Write statement is a module may Change what appears on a
user’s terminal. As a result a programmer may waste much time revising code. since
initially the plans for some new code anticipated that the existing medule behaved
differently.

1.8 SOFTWARE MODULES

Since the purpose of problem solving is to find solutions to specific problems. it is
good practice o survey existing software before planning for new code. For example.
many statistical applications can ofien use general purposc packages. such as SPSS.
BMDP, Minitab, RS/1, or S, for entering and editing data and running appropriate 1ests.
In such instances, the use of an existing soflware package may save hours of years of’
development time,

In other cases, an existing package may do most of the work needed in an application.
but some adjustment may be necessary to complete the required ~ask. Here. it may be
possible to change or enhance the existing software to meel the current needs.
Alternatively, one might construct a revised flow of data for which most of the work is
done wilh existing software but some additional work is done before or after this main
step. Such a data flow is shown at a high level in Figure L. In this Tigure, the data as
initially presented in the problem may-not be in a form that can be used by an exisling
package. Thus. we may write a (Short) program or pre-processor to modify the form of
the raw data so that the revised form will be appropriate for the existing package, Then,
after that packages has performed much of the required processing. another (short}
post-processor may be needed 10 compiete the job. In this case, Solving the initial
problem may require the writing of two short programs to handle some details of
processing. However, this work still may be substantially sorter and less error -prone
than ignoring the existing package the writing and entire application.

More generally, much work can he saved by dividing a larger processing task inta
several phases, as shown in Figure 2. Here each phases performs some transiormations
on the data which contribute to the desired results. This approach is particularly
powerful if a computing environment allows such sieps to bg combined in an easy way.
For example, the Unix operating system support a capability called piping. in which the
output of one program can he fed dircctty into the input of the 1ext. This

allows long sequences of programs (o be placed logether easily. In such an
environment. many applications may require little programming ag all: rather,
solutions may he developed by combining various modules in the sume way Lhat
jigsaw puzzles are completed by putting individual, picees together.

Available o
Initial Data o Revised Data |- ® | Processed
Preprocessed Software Dita
Packape
* End Results
Posiprocessed

Figure 1: Modifying Data to use Existing Software

L]

1.9 REAPPLICATION OF SOFTWARE MODULES

A second way to reduce the mount of code that must be written in any application is
to identil'y tasks that must be done in several places and write one low-level module 0
perfonm the commmon task. As a simple example, in designing a wagon, we might starl
from the general concept of “wagon®™. Once we'decide thal a wagon mast he supported
in lour places, we will not try to invent the whecl four times! In a programming
conlext,we might determine the details of a task just once, document of pre-
condilions and post-conditions For this task and how it can be used, and then refer to
that common task from several places. '

oo - Process
Initial Data H Revistonl * Revision 2
Proces .

End Rexults

Figure 2: Data Flow Using Several P'rocess

Tor example. the same types of input or output may he needed in several places within
4 program, and we may wrile some procedures to perform standagd input and output
tasks. In Pascal Language, we regularly rely on the Read and Write procedures in
virlually every progriun. A similar approach can be applied w many programs when
we winl W reasd duticand place then in a standard lonn 1n & particular field of a data
recurd on array. One data entry procedure can ensure that all tenminal or file input will
be handled in-u consistent manner thronghout the progeam.

Between the high level use ol entire programs and the low-level definition of common
procedures for a specilic application, we can develop a collection of these cominonly
uscd procedures and functions that we can use without turther effort in a variety of
applications, Such a collection ol procedures is called a libracy, and we had
experiences using such librarics,

1.10 DEVELOPMENT TOOLS

There are many development tools for development Envirominent, which include
cditors, Since software is ultimately a more or less complex collection of documents

Seftware Perlormance

13

r S —r———y

Sufiware Qualily
Coneepts and Case Tools

14

requirements specifications, module arthitecture descriptions, programs, ete. editors

arc a fundamental soltware development tool.” -

VWith respect Lo the classification of the previous section, we can place editors in
dillerent categories: .

e ‘They can be either textual or graphical.

e They can follow a forinal syntax, or they can be used for wriling informal text or
drawing {rec-from pictures. For instance, a peneral purpose graphical editor such
as Apple's MicDraw could be used Lo produce any kind of diagrams, including
lormal diagrams such as DFDs or Petri net«, but cannot perlorm any check on
ticir symtactic correciness (say, an incorrupt Petri net and connecting two
transitions). Similarly, we may use a word proucssor Lo write progriams in any
Jpropramming language, but the 1ool cannot help in finding missing keywords, ill
forined expressions, undeclared variables, ctc. in order to perform such checks,
one should use tools that are sensitive (o the syntax - and, possible, the semantics
- ol the lungpage.

. They caii be eilher monolignual {e.g. and Ada syntax - directed edilor) or

polylingual {c.2., 2 general syntax - direcled editor thal is driven by the specific
syntax ol 4 progrimming languape). A conventional word processor is
intribnsically polyingual.

A mode may be drive by the sysntax tubles of particular language, allowing
simple checks and standard indcntation o be performed by Lhe edilor.

¢ ‘They may be used not only 10 produce, but also w correet or updata documents.
Thus, editors should be {lexible (¢.g., able 1o be run interactively or in baweh) and
¢asy [0 intgrate with other tools. We can inegrate an editor with a debugger, in
order 10 support program correclion durmL debugging. .-

Linkers are tools that are used to combine muluall:.r objectcode fdgmems mto |
Laghrger system. Thus, they can be both monolingual (when they are language
specific) or palylingual (when Lhey can accept modules written in different
lunguages).

Basically, a linker binds naunes appearing in a module o external names exporied by
otlier modules. In the case of language-specific linkers, this may-also imply kind of
intermodule type checking, depending on (he nature of the language. A polylingugl

linker may perform only binding resolution, Icavmb alt language - upcmﬁc activities

to other tools. " .

The concept of a linker has broader applicabiﬁi? than just to programming language.
Typically, if one deals with a modular specilication Iang,ud;,e, a linker for the language
would be able to perfonn checking and hinding across various specification modules.

The concept of a linker has broader applicability than just 1o programming languages.
Typically, if one deals with a modular specitication language, a linker for that
languape would be able 1o perform checking and binding across various bpccﬂlCdLlOn
maodules.

An interpreler executes actions specified in a formal nationtion- its inpul code. AL one
exlreme, an interpreter is the hardware (hat executes machine code. Flowever, itis
possible to interpret even specifications, if they are written in a formal languzsge. In
this case, in interpreter behaves as a simulator or a prolotype ol the end product and
can Lelp detect mistakes in the specifications even in the early stages of the soliware
process.

We already have observed that requirements specifications often occurs incrementally,
hand in hand with the analysis of the application domain. Even itv'such cases, it would
be useful to check the requirements by suitable execution of an‘impletely system. For
example, Initially one might decide Lo specily only the sequence of screen panels
through which the end user will interact wilh the sysiem, leaving oul the exact
specification of the Iunctions that will be invoked in response o the user inpul. This

“decision might be dictated by the fact that, in the application under development, vser

interfaces are the most critical factor atfecting the requirements. Thus, we would
decide to check wilh the end user whether the interaction style we intend o provide
carresponds to his or her expectations, hefore starting iny development. This implies

that Uie interpreter of the SPeCIICAUODS snuuiu Ve avIE (O generale screen panels and
should allow us 10 display sequences of screen panels in order to demonstrate the
interactive sessions with tie application. The intecpreter should 'olerate the
tncompleteness of specifications e.g., when no functions are provided in responsc to
the virious commands that might be entered in the ficld of the screen pancls. In
sssence, the interpreter operaltes like a partial prototype, allowing experimentation
with the look and lecl of the end product. '

nother cases, the result of inteepreting the requirements is more properly called
equirements ;nimation; what we provide on the screen is a view of the dynamic
svolution ol (he model, which corresponds to the physical behaviour of the specified
tystem. For example, one might easily animate a finite state machine thar is used]
nodel the evolution of a state - changing dynamic system. If the state - changing
ystem is a plant controlied by a computer, and a finite state machine - displaycd on
hie terminal describes the states entered by the plant as a conscquence of cornmands
ssued by the compuier, we may achicve animation by blinking the states to Uic finite
tate machine as the corresponding state of the plant is entered. The control signals
nay be simulated by pressing any key on the terminal.

Jsually, interprets operate on actual input values. It is possible, however, to acsign
ymbolic interpreters, which operaie on symbolic input values. A symbolic execution
orresponds to whole class of exccutions on input data. Thus, a symbolic interpreter
in he a uselnl verification tool and can be used as an intermediate step in the
crivation of test data that cause execution to (ollow certain paths.

.10.1 Code Generators

he software construction process is a sequence of steps that transform a given
roblem deseription called a specification into another description called an
nplementation, In general, the luter description is more formal, more detailed, and
ywer level that the former; it is also more efticicntly executable. The ransformation
rocess eventually end in machine - executable code. As metioned in the previous
:clion, even intermediate step may be cxecutable. The reason we decide 10 proceed
rough additioml transformation step is that interpreters of intermediate are, in
:neral, slower than the interpreter of the final product (which isthe computer itsell).

erivation sleps may require creativity and may be supported by ools to varyinyg
zgrecs. A simple and {ully automatic step is the translation from source code into
yject code. This is perlformed by once of the oldest and best known sofiware tools.

he transformation may be recorded, and even controlled, by a suitable tool, but the
wice of which lower level modules to use to implement a given higher level module
the designer’s responsibility and cannot be automated fully.

‘ith reference 1o the transformation based life cycle model, the oplimizer wol ix
sentially a translator supporting the stepwise transformation of specifications into an
plementation. As we discussed, the optimizer is only partially automated. The

erical job of recording the transfornation steps is automated in order to support later
odifications, We also envisioned the case where the optimizer plays the role of an
telligent assistant. The diflicelt and critical steps, however, cannot be automated;

us, even ik his case, most of the creative tasks are the software engineer's
sponsibility.

aving [rom a formal specilication of a modulg to an implementation may also be
swed as i transformation that involves creative uctivities such as designing data
‘uclure of algorithm. Again, and clerical parls of such a ranslormation can be
pported by automatic tools. Examples of generalized code generators are provided
several so-called fourth-generation tools, which automatically gencraté code for
gher level language, a Foughi-generation or manipulating data in the database and
rquerying the database, Also, reports may be automatically generaled from the
tabase delinition. In this case, the vser can choose amony several oplions Lo defing
: report formats.

1.2 Debuggers

L

‘bugping may be viewed as a kind of interpreler. In fact, they cxecute a program
th the purpose of helping o localize and fix errors. Modern debuggers give the user
Hollowing major capabilities.

Software Perfortionce

F] o =T e el

Sullware Quality
Concepls and Case Tovls

16

To inspect the execution state in a symbolic way. (Mere, “symbolic” means
" “referring 10 symbolic identiliers of program object™, not that the debugger
is 4 symbolic inerpreter).) -

e Toselect the cxecution mode, such as initiating chp-hy-s[cp execution or
selting breakpoints symbolically.

s To select the portion f[or the cxeculion state the cxeculion peints 1o inspect
without manually modifying the source code. This not only mokes’
debugging simpler, but also avoids the risk ol-introducing foreign code (hat
one may lorger Lo remove alter debugging.

e Tocheck intermediate assertions.

e A debugger can also be used for other reasony than just locating and
removing defects from a program. A good symbolic debugger can be used Lo
observe the dynamic behavious of a program. By animating the programs
this way, a debugger can be a useful aid in understanding programs writlen
by another programmer, thus supporting program modification and
reengineering.

Check Your Progress

1. Whet is the purpose of looping staunents in 4 programming langyage?

2. Soltware Quality Assurance (SQA) is a broad activity that comprisc,s of:
a) A Qu.uuy ManagementApproach
b) E[fcchvc Methodology and use of Appropriaw Tools..
.c} Modulewise Testing Sirélegias.
d) All of the above. SN

1.11 MODEL ANSWERS

1.12 FURTHER READINGS

1. Looping stalements aresprovided in a proummmm;, language to qupporl execution
of statements repeatedly.

!
2. (d)) t

F:cm

The students of this course are advised to go though at least one standard book on
Software Engineering along with this material.)

1. Sofiware Engineering - A Practitioner’s Approach by ROGER 8. PRL\SMAN
McGraw Hill International Edition.

UNIT 2 QUALITY CONCEPTS

Structure.

0 Introduction

Objectives

Important Qualities of Soflware Product and Process
.l Correctness

Reliability

Robustness

User Friendliness

Verifiability

226 Maimainability

227 Reusability -,

e 1a g
T =—

~J
-

o 9 o
[N

N

R e A
id
=

228 Portability
229 Data Abstraction
2210 Modularity
23 Principles of Software Engineering
23.1 High-quality Sofiware is Possible '
232 Give Products to Customers Early
235 Determine the Problem Before Writing the Requirements
2341 Evaluate Desizn Alternatives
23.5 Use an Appropriate Process Model
2.3.6 Minimize lntellectual Distance
237 Good Management is morc Important than Good Technology
238 Pcople are the Key 1o Success
239 Follow with Care
23.10 Take Responsibility
24 Summary
25 Model Answers

2.0 INTROBIICTION :

The goat of any engineering activily is to build a product. For example. the aerospace
engineer builds an air ptane. The product of software engineer is a software system.
But the dilference belween sofiware product and other product is that it is modifiable.
This quality makes sofiware quite different from other products such as cars. In this
unit we will first examine the Important sofiware qualities and then discuss software
engl L 1Lnng principles

2.1 OBJECTIVES

After poing through this unit. you will be able to:
© List various qualities of software product;
¢ DISCLUSS various quatities of software product:

® Explain principles ol software engineering,
P K g

2.2 IMPORTANT QUALITIES OF SOFTWARE
PRODUCT AND PROCESS

There are many important quatities of software products. Some of these qualities are
_applicahle both to product and to the process used to produce the product. The user

17

Suftware Quality
Concepis und Case Tools

18

wants the software product to be reliable and user-lriendly. The designer of the
sofiware wanl it to use maintainable portable and extensible. In this unit, we wiil

consider all these qualities.

2.2.1 Correctness

A program is functionally correct if it bechaves according to the specification ol the
funciious it should provide (culled functional requirements specilications)., [Lis
common simply to use the term correct rather the functionally correct; similarly, in’
this context, the term specilication implies functional requirements specifications.
We will follpw this convention when the context is clear, '

The definition of correciness assumes that i specilication ol the system is avatlable
and that it is possible to determine unambigucusly whether or not 4 program meects the
specifications. With most currenl software systems, no such specification cxists. If a
specification does exist, it is usually written in an informal style using natural
language. Such a specification is likely to contain many ambiguities. Regardless ol
these difficullies with current specifications, however, the delinition of correctness is
useful. Clearly, correctness is a desirable property tor soltware systems.

Correctness is-a mathematical property thut cstablishes the equivalence between the
software and its specilication. Obviously, we can be more systematic and precise in
assessing correctness depending on how rigorous we are in specifying functional
requirements. Correctness can be assessed through a variety of functional

_ requirements, Correctness can be assessed through a varicty of methods, some

stressing an experimental approach (e.g. lesting), others stressing an analytic approach
(e.g. formal verification of correctness). Correctness can also be enhanced by using
appropriate tools such as high-level languages, particularly those supporting extensive
static analysis. Likewise, it can be improved by using standard algorithms or using
libraries of standard modules, rather than inventing new ones,

2.2.2 Reliability

~ Informally, software is reliable if the user can depend on it. The specialised literature

oa software reliabilily defines reliability in terms of statistical bebaviour-the
probability that the software will operate as expecied over a specified time interval.

Correciness is an absolute quality; any deviation from the requirements makes Uie
systems incorrect, regardless of how minor-or serious is the consequences of the
deviation. The nation of reliability is on the ather hand, relative; if the consequence of
a software error is not serious, the incorrect software may still be reliable.

Engineering products are expected Lo be reliable. Unreliable products, in general,
disappear quickly from the marketplace. Unfortunately, software products have not
achieved this enviable status, yet, software products are commonly released along
with a list of known bugs. Users of software take it for granted that Release I of a
producl is buggy. This is one of lhc most striking symptoms of the immaturity of the
software engineering field as an engineering discipline.

In classic engineering disciplines, a product is not released if it has bugs. You do not
expect to take delivery of an automobile along with a list of shortcomings or a bridge
with-a warning not to use the railing. Design errors are extremely rare and worthy of
news headlines. A bridge that collapses may even cause the desipners to be p,.'oéeculcd
It court.

On the contrary, software design errors are generally treated as unavoidable. Far from
being surprised with the occurrence of software errors, we expect them. Whereas with
all other products the customer receives a guarantee of reliability, with software we
get a disclaimer that the software manufaciurer is not responsible for any damages due
to product errors. Soltware enginecring can truly he called an engineering discipline
only when we can achieve soltware reliability comparable Lo the reliability of other
products.

2.2.3 Robusiness

'A program is'robust if it behaves reasonably, even in circumstances that were nat

anticipated in the requirements specification - for example, when it encounters

incorrect input data or some hardware malfunction (say, a disk crash). A program that Quullty Concepts
assumes perfect input and gencrates as unrecoverable run-time error as soon as the

user inadvertently Lypes an incorrect command would not be robust, It might be

correct, though, it the requirements specification does not state what the action should |

be upon entry of an incorrect command. Obviously, robusiness is a difficult-to-define

guality; after all, il we could state precisely what we should do to make an application

robust, we would be able (0 speciy its reasonakble behaviour completely. Thus,

robustness would hecome equivalent to correciness.

The amount of code devoted to robustness depends on the application area. For
example, a system writltgn to be used by novice compuler users must-be more prepared
10 deal with ill-formatted input that an embedded system that receives it input from a
sensor - although, if the emmbedded \yslcm is controlling the space qhuttlc or some
life~critical devices, then exira robustness is advisable. .

In conclusion, we cin see that robustness-and correctness are strongly related without
a sharp dividing line bewweea them. If we pat a requirement in the specification, its
accomplishment becomes an.issue of correctness; if we leave it out of the .
grecification, it may become an issue of robustness. The border line between the two
qualites is the specification of the system. Finally, reliability comes in because not all
incorrect behaviours signify equally serious problems; some incorrect behaviours may
auually be tolerated. ~

Corrtctness, robustness, and reliability also apply to the soflware production process.
A process is rohust, for example, if it can accommodate unanticipated changes in the
environment, such ds a new release of the opeml‘mg system of the %uddcn transfer of
half the employecs (o another location. A process is seliable if it consmtently leads to
the production of high-quality prudﬁcls In.many engineering disciplines, considerable
research is devoled Lo the discovery of reliable processed.-

2.2.4 User Friendliness

A softwarc system is user friendly if its human users find it easy to use. This
definition reflects the subjective natute of user friendliness. An application that is
used by novice programmers qualifies as user rnendly by virt:2 of d:rrerent properties
than an application that is used hy expert programmeérs. For example, a novice-user
may appreciate verbose messages, while an experienced user grows to detest and’~
ignore them. 3imilarly, » wonprogrammer may appreciate the use of menas, wh;lc a
programmer may be more comfortable wu.h lyplng a comm;a.nd

The user interface is a 1mp0rl.mt componcnt of user fnendlmess A software system
that presents the novice user with a window interface and a mouse is Iriendlier than
one that requires the user Lo use a set of one-letter commands. On the other hand, an
experienced user might prefer a set of commands that minimize the number of
keystrokes rather than-a fancy window interface through which he has to navigate to
zet to the command that he knew all along he wanted to exci:utc. :

There is more to user fricndliness, however, than the user interface. For example, an
embedded software system does not have a human user interface. Instead, il interacts
with hardwarce and perhaps other software systems. In this case, the user friendliness
is reflected in the case with which the system can be configured a.nd adapled to.the
hardware environment.

In general, the user triendliness of a system dépends on the consistency of its user and
operator interfaces. Clearly, however, the other qualities mentioned above such as

.correctness and perfonnance - also affect user friendliness. A software system that
produces wrong answers is not friendly, regardless of how fancy its user interface 1s.
Also, a software system that produces answers more slowly than the user requires is
nol friendly even if the answers and displayed in colour.

-

User friendliness is also discussed under the subject human factors. Human factors or
human engineering plays a major role in many engineering disciplines. For example,
automobile manufacturers devote significant effort to deciding the position of the
various control knobs on the dashboard. Television manufacturers and microwave
oven makers also Uy o make their products easy to use. User-interface decisions in
these classical engineering field -re made, not randomly By engineers, but only after

19

". Software Quality
Concepts and Case 'Tools

extensive study of user needs and attitude by specialists in fields such as indusirial
design or psychology.)

Interestingly, ease of use in many of these engineering disciplines is achieved through
standardisation of the human interface. Once a vser knows how o use onc television
set, he or she can operate almost any other television set, The significant current
research and development activity in the area of standard user interface for software
systermns will lead to more user - friendly systems in the future.

2.2.5 Verifiability

A software system is verifiable if its properties can be verified easily, For example, the
correctness or the performance of a software system ave properties we would be
interested in verilying. Verification can be performed gither by formal analysis methods
or through testing. A common technique for improving verifiability is the user of |
software monitors, that is, code inserted in the sofiware to monitor various qualities
such as perforiance or correctness.

Modular design, disciplined coding praciices. and the use of a appropriate programming

language all contribuie to verifiability.

Verifiability is usually an internal quality. although it sometimes becomes an external
quality also. For example, in many security-critical applications. the cusiomer requires thc
verifiability of certain properties. The highest level of the security standard for a trusted
computer system requires the verifiability of the operating system kernel.

2.2.6 Maintainability

The term software maintenance is commonly used to refer 1o the modification that are
made 1o a software system its initial release. Maintenance used 10 be viewed as merely
hug fixing, and it was distressing to discover that so much efforr was being open on
fixing defects. Studics have shown, however, thal the majorily of time spent on
maintenance is in fact spent on enhancing the product with features that were not in
the original specifications or were stated incorrectly. ’

‘Maintenance is indeed not the proper word (o use with soflware. First, as it i,., used

today, the term covers a wide range of activities. all having to do with modifying an
existing piece of software in order to make an improvement. A term that perhaps
caplurcs the essence of Lhis process betler 1s soliware evolution. Second. in other
engineering products. such as computer hardware or automobiles or washing machine.
maintenance refers 10 the unkeep of the product in response to the gradual
deterioration of parts due to extended use of the product. For example, transmissions
are oiled and air filters are dusted and periodically changes. To use the word
mainienance with software gives the wrong connotalion because software does not
wear out. Unfortunately, however. the lerm is used so widely that we will continue
usimg 1t

There is evidence that maintenance costs exceed 60% of the 10tal costs of software. To
analyse the factors that affect such cosis. it is customary to divide sofware
maintenance into three calegories; correclive, adaptive and perfective maintenance.

2.2.7 Reusability ¥

Reusability is akin to evolvability. [n product cvolution, we modify a product to build a
new version of that same produet; in product reuse, we use it - perhaps with minor
changes - to build another preduct. Reusability appears to be more applicable to

software componenls than te whole preducts but it certainly seems possible to build
products that are reusable.

A good example of a reusable product is the UNIX shell. The UNIX shell is a command
language interpreter; that is, il accepts user commands and then executes, But it is
designed to be uscd both interactively arfd in baich. The ability to start a new shell
with a file containing a list of shell commands allows us 1o write programs -scripls - in
the shell command language. We can view the program as ~ new preduct thal uses the
shell as a component. By enceuraging standard interfaces, the UNIX environment in
fact supports the reuse of any of its commands. as well as the shell, in building
powerful utilities.

Scientific libraries are best known reusable components, Several large FORTRAN
libraries have existed for many years. Users can buy these and use them to build their
bwn producis. without having to reinvent or recode weli-known algorithms, Indeed,
several comparties are devoted to producing just such libraries.

Another-successful example of reusable packages is the recent development of
windowing sysicms such as X windows or Motif, for the development of user

interface

Unfortunately while reusability is clearly an important tool for reducing software
produclion costs, example of software reuse in practice are rather rare,

Reusability is difficult to achieve a posteriori, therefore, one should strive for
reusability when software components are developed. One of the more promising
techniques is the use of objeet-oriented design. which can unify the qualities of evolvability
and reusability.

So far, we h discussed reusability the framework of reusable components, but

the cencept has broader applicability : it may occur at different [evels and may affect
“baoth product and pracess. A simple and widely practiced type of reusabilily consists

of the reuse of people, i.e. reusing their “specific knowledge of an application domain.

of a development or target environment, and so on. This level of reuse is

unsatisfactory, partially due to the turnover of software engineers : knowledge goes

away with people and never become a permanent assel.

Anather level of reuse may occur at the requirements level. When a new application is
conceived, we may try to identify parts that are similar to parts used in a previous
application. Thus we may reuse parts of the previous requirements specification
instead of developing an entirely new one.

As discussed above, further levels 01 reuse may occur when the applications is
designed. or even at the code level. [n the latter case, we might be provided with
software companents that are reused from a previous application. Some software
experts claim that in the fisture new applications will be produced by assembiing
logether a set of ready-made, off-the-shell co:nponents, Software companies will
invest in the development of their own cavalogues of reusable components so
thal the knowledge acquired in devsloping applications will not disappear as
people leave. bul will progressively accumulate in the catalogues. Other
companies will invest their efforts in the production of generalised reusable
components to be put on the marketplace for use by other software producers.

Reusability applies to the sofiware process as well. Indeed, the various sofiware
methodologies can be viewed as attempts to reuse the same process for building

ditferent products, The various life cycle models are also aempts at reusing higher level
precesses. Another example of reusability in a process is the replay approach to software
maintenance. In this approach, the entire process is repeated when making a modification.
That is. first the requirements are modified, and then the subsequent steps are followed as
in the initial product development.

Reusability IS a key factor that characterizes, the maturity of an industrial field. We see
high degrees of reusability in such mature areas as the automobile industry and
consumer electronics. For example, m the automobile industry, the engine is often
reused from model to model. Moreover, a car is constructed by assembling together-
many components that are high'y standardised and used acress many medels produced
by the same Industry. Finally, the manufacturing process IS often reused. The low
degree of reusability in software is a dear indication that the field must evolve to
achieve the status of a well-cstablished discipline.

2.2.8 Portability

Sofiware is portable if 1t can fun is different environments. The term environment can
refer to a hardware platform or a software environment such as a particular operat ng
system. With the proliferation of dilferent processors and operating systems,
portability has become an important issue for software engineers.

-

Mote generally, portability refers to the ability to run a system on different hardware
plaiforms. As the ratio of moncy spent on software versus hardware increases.

IR

..~ Quality Concept

21,

Sofiwire Juaitly i
Conisrple sad Cuae Touls

portability gains more importance. Some software sysiems arc inherently machine
specific. For example, an operating system is written Lo control a specitic enmputer,
and a compiler produces code for a specific machine. Even in these cases, however, it
is possible to achieve some level of portability. Again, UNIX is an example ol an
operating system that has been ported to many differenl hardware systems. Of course,
the porting etfort requires months of work. Still, we can cali the sofiware poriable
because writing the system from scratch for the new environment would require much
effort than porting it.

For many applications, it is important to he porlable across operating systems. Or,
looked at another way, the operating system provides portability across hardware
platforms. : :

2:2.9 Data Abstraction

Abstraction is a process whereby we identify the important aspects of a phenomenon
and ignore its details. Thus, abstraciion is a special case of separation of concerns
wherein we separate the concern of Lhe important aspects from the’concern of the
unimportant details. .

The programming languages that we use are abstractions built on top of the hardware:
they provide us with useful and powerful constructs so thal we can write {(most)
programs ignoring such details as the number of bits that are used to represent
numbers or the addressing mechanism. This helps us concentrate on the problem-to
solve rather than the way Lo instract the machine on how to solve il. The programs we
write are themselves abstractions. For example, a computersed payroll procedure is ar
abstraction over the manual procedure it replaces; it provides the essence of the
manual-procedure, not its exact deiatils.

Data abstraction is a concept which encapsulate (collect) dala structure and well
defined procedure/function in a single unit. This encapsulation forms a wall which is
intended to'shield the data representation from compuler uscs. There arc two
requirements for data abstraction facilities in programming language.

(i) Data structure and operations as described is a single semantic uniL.

(ii) Data structure and internal representation of the data abstractions are not visible
to the programmer, rather Lthe programmer is presented with a well defined
procedural interface. Today most of the object oriented programming language
support this feature. - . .

2.2.10 Modularity .

'A complex system may be divided into similar pieces called mébdules. A system that is
~ composed of modules is called modular. The main benefit of modularity is that it

allows the p.inciple of sepraration of concerns to be applied in two phases: when
dealing with the details of each module in isolation (and ignoring details of other
modules); and when dealing with the overall characteristics of all modules and their
relationship in order 1o integrate them into a coherent system. It the two phases are
temporarily executed in the order mentioned, then we say that the'system is designed
bottom up; the converse denoles top-down design.

. 1
Modularity is an important property of most engineerinyg processes and products. For

example, in the automobiles industry, the construction of cars- proceeds by
assembling building blocks that are designed and built separately. Furthermore, parts
are often reused from model to model, perhaps after minor changes. Most industrial
processes are essentially modular, made out of work packages thal are combined in .
simple ways (sequentially or overlapping) to achieve the desired result. .

- We will emphasise modularity in the context of software design in the next chéple.r.

Modularity, however, not only in a desirable design principle, but permeates the whole
of software production. In particular, there are three goals that modularity tries to
achieve in practice: capability of decomposing a complex system of composing it
from existing modules, and of understanding the system in pieces.

The decomposability of a system is based on dividing the original problem top down
into sub problems and then applying the decomposition to each sub problem

recursively. This procedure reflects the well-known Latin motto divide et impera.

(divide and conquer), which describes the philosophy followed by the ancient Romans

to dominate other nations: divide and isolate them first and conquer Lthem individually.

The composability of a system is based on starting bottom up from elementary
components and proceeding to the linished sysiem. As an example, a system for office
automation may be designed by assembling together existing hardware components
such as personal workstations, a nelwork, and peripherals; system software such as the
operating system; and productivity tools such as document processors, data bases and
spreadsheets, A car is another obvious example of a system that is built by assembling
compencnts. Consider first the main subsystems into which a car may be decomposed;
the hody, the electrical system, the power system, the Lransmission system, etc. Each
of them, in turn, is madeé out of standard paris; [or example, the battery, fuses, cables,
etc. from the electrical system. When something goes wrong, defective components
may he replaced by new ones.

Ideally, in sofiware production we would like to be able (o assemble new applications
by taking madules from a library and combining them to form the required product.
Such modules should be designed with'the express goal of being reusable. By using
reusable components, we may speed vp both the initial system construction and its
fine-tuning. For example, it would be possible to replace a component by another that
perlorms the same lunction hut dlften in computational resource requirements.

The capabﬂtt}rot understanding each part of a system sedarately aids in modifying a

_System. The evolulionary nature of software is such that the software engineer is often
required to go back Lo previous work to modify it. If the entire system can be

~ understood only in its entirely,‘modifications are likely to be difficult to apply, and the

result unreliable, When the need for repair arises, proper modularity helps confine lhe

search for the sousce of malfunction to single components.

To achicye modular composability, decomposability, ani! understanding, modules
muslt have high cohesion and low coupling. .

A module has high cohesion if all of e!smenls are related strongly. Elements of a

modyle (e.g. statement, procedures, and declaritions) are grouped together in the
same module for a logicul reason, not just by chance; they comperate to achicve a
common.goal. which is the function of the moduie.

Whereas cohesion is an internal property of a module, coupling characlerises a
module’s relationship to other modules. Coupling measures the interdependence of
two modules (e.p. module A calls a routine provided by module B or accesses a
variable declared by Module B). If two modules depend on each other-heavily, they
hive high coupling. Ideally, we would like modules in a system to exhibit low
coupling, because if two modules are highly coupled, it will be difficult to analyse,
undentand modlty, test, or reuse them separalc]y

Module structures with high cohesion and low coupling allow us to see modules as
hlack boxes when the overall structure of a system is described and then deal with
each moduole separately when the module’s tunctionalitt is described or analysed. This
i§ just another example of the principle of <] “ration ot oncerns.

2.3 PRINCIPLES OF SOFT'VARS I-NGINEERING

Engineering'discipliﬁes have principles h...c.} on the laws of physics, biology,
chemistry ur mathematics. Principles are rul¢ < to live hy, they represent the collected
wisdom ot' many-dozens of people who have | aroed through experience,

Because the product of soltware engincering s nuLph vsical, physical laws do not
form a suitable foundation. Instead, software: ~nginecring-has bad to evolvé its
'pnnr:lpleq based solely on observalion of thoy :ands of projects. The following are
probably the more impaortant ones. A castome: will not tolerate a poor-quality
product, regardless of how you define quality. Quality must be quantified and
mechanisms put into lace to motivate-and rew ard its achievement. It may seem -

politically correct to deliver a produc on tite, even th~agh its quality is poor, but this -

Quollty Concepts

oflware Quélity
‘oncepis and Case Tools

is correct only in the short lerm, it is suicide in the middle and long term. There is no
trade-oil to be made here. The first requirement must be quality.

However. there is no one definition of software quality. Te developers. it might he
elegant design or elegant code. To users. it might be good response time or high
capacity, For Cost-conscious managers. [t might be low development Cost. For Some
customers. it might he satisfying atl their perceived and no-yet-perceived needs. The
dilemma is that these definitions may not be compatible.

2.3.1 High-quality Software is Possible

Although our industry is saturated with examples of software systems that perform
poorly, are full of bugs, or otherwise fail to satisfy user needs. there are counter
examples. Large software systems can be buiblt with very high quality but they carry a
steep price tag - on the order of S 1,000 per line of cede. One example is IBM’s on
-board flight software for the space shuttle: three millien lines of code with less than
one error per 10,000 lines.

‘Techniques that have been demonstrated to increase quality considerably include

involving the customer, proto typing (10 verify requirements before full-scale
development), simplifving design, conducting inspections, and hiring the best people.

2.3.2 Give Products to Customers Early

No matter how hard you try 1o learn user’s needs during the requirements phase, the
most effective way to ascertain real needs is 1o give users a product and let them play
with it. The conventional walerfall model delivers the first product after 99 percent of
the development resources have been expanded. Thus, the majority of customer
feedback on need occurs after resources and expended. Contrast this with an approach
that you deliver a quick-and-dirty prototype early in development. gather feedback,
wrile a requirements specification, and then proceed with fuil-scale development, In this
scenario, only five to twenty percent of development resources have been expended
when customers first see the product. '

2.3.3 Determine the Problem Before Writing the Requirements

When faced with what they believe is a problem, most engineers rush to offer a
solution. If the engineer’s perception of the problem is accurate, the solution may work.
However, problems are often elusive. The occupants in high-rise buildings always
complain of long waits for an elevator. Is this really the problem? And whose problem is
it? From the occupants’ perspective, the problem might be that the wait is a waste of
time. From the building owner’s perspective, the problem might be that long waits will
reduce occupancy (and thus rental income). The obvious solution is to increase the -
speed of the elevators. But you could also add elevators, stagger working hours,
reserve some elevators for express service, increase the rent, or refine the homing
algorithm so-clevators go to high-demand floors when they are idle. The range of costs,
risks, and time associated with these solutions is enormous. Yet any one could work,
depending on the situation. Before you try to solve a problem, be sure.io explore all the
alternatives and don’t.be blinded by the obvious solution. .

N

2.3.4 Evaluate Design Alternatives

After the requiremenis aré agreed upon, you must examine a variety of architectures
and algorithms. You certainly do not want to use an architecture simply because it was
used in the requirements specification. After all, that architecture was selected to
optimize the understandability of the system’s externai behavior, The architecture you
want is the one that optimizes conformance with the requirements.

For example, architectures are generally selccted to optimize constructability,
throughout, response time, modifiability, portability. interoperability, safety. functional
requirements. The best way to do this is to enumerate a variety of sofiware
achitectures, analyze (or simulate} each witi respect to the goals, and select the hest
alternative, Some design methods result in specific architectures. so one way to
generate - variety of architectures is to use a variety of methods,

2.3.5 Use an Appropriate Process Model - Quulity Concepts

There are dozens of process models: waterfall, throwaway prototyping, incremental, '
spiral, operational prototyping, and so on. There is no such thing as a proccss model
that works for every project. Each project must select a process that makes the most
sensc for that project, on the basis of corporate culture, willingness to take risks, |
application area, volatility of requirements; and the extent to which requirements are
well-understood.

Study your projc'ct\'s characteristics and sclect a process model that makes the most
sense. When building a prototype for example, choosc a proeess that minimizes
protocol, facilitates rapid development and docs not worry about checks and halances.
Choosc the opposile when building a lite-critical product.

2.3.6 Minimize Intellectual Distance

Edsger Dijkstra defined intellectual distance as the distance between Lhe real-world
sroblem and the computerized solution to the problem. Richard Fairley has argued
hat the smalier the intellectual distance, tie casier it is to maintain the soltware. To
ninimize intellectual distance, the software’s structure should be.as close as possible
o the real-world structure. Thijs is the primary-motivation for approaches such as
sbject-oriented design and Jackson Sysiem Development. But you can minimize
nlellectual distance using any design approach. Of course, the real-world structure
:an vary as Jawed Siddiqni points out (Challenging Universal Truths of
Regnirements Engineering, Mar. 1994, pp. 18-19). Different humans perceive
lifferent structures when lhey examine the same real world and thus construct quile
lifferent rcalities. ,

2.3.7 Good Management is More Important than Good Teclmology

Che best techaology will not compensate Jor poor management, and a good manager
:an produce great results even with meager resources. Successlul softwire start-ups
wre not successinl hecause they have preat process of great tools (or groat products for
lldl'. mauer') Most are successlul because of great management and great marketing.

:ood managemenl motivales peoplc to do their besl, but there are no universal right -
tyles of management. Management style must be adapted to the situation. It is not
meommon for a suceessiul leader to he an aulocrat in one sitnation and a consenses-
used leader in another. Some styles are innate, others can be learnl,

3.8 People are the Key to Success _ -

Iighly skilled people with appropriate experience, talent, and training arc key. The
tght people with insufficient tools, lanpuages, and process will succeed. The wrong
cople with appropriate tool, languages and process will probably fail (as will the

ight people with insulficient training or experience). When interviewing prospective
mployees, remember that there is no substitute for quality. Don’t compare iwo people
y saying, Person x is hetter than person y hut person y good enough and less
xpensive. Your can’t have all superstars, but unless you truly have an overabundance,
ire them when you lind them!

.3.9 Follow with Care

st because everybody is doing something does not make it right for you. 1t may be
.alit, but you must carelully assess its applicabilily to your environment. Object
rientation, measurement, reuse, process improvement, CASE, prolotyping - all these,
light increase qualily, decrease cost, and increase user salislaction,

lowever, only those organization ihat can take advantage of them will reap the
awards. The potential of such techniques is olien oversold, and benelits are by no
1cans guaranteed or universal. You can’t afford 1o ignore a new technology. But don’t
clieve the incvitible hype associated with it Read carefully. Be realistic wilh respect
» payoffs and risks. And run cxperiments before you make-a major commitment.

.3.10 Take Responsibility

fhen a bridge collapses we ask, what did the engineers do wrong? When software

1ils we rarely as this. When we do, the response is, I was just following the 15 steps 2

LR

Software Quality
Concepls and Case Tools

26

of tiis method, or My manager made me-do it or The schedule left in sufficient time to do

it right. The fact is that in any engineering discipline the hest methods can he used to-

produce awful designs, and the most antiquated methods 1o produce elegant designs.

There are no excuses. If you develop a system. [t is your responsibility to do it right. Take
that responsibility. Do it righ(, or don’(do il at all.

Check Your Progress

1. What are the requirements of data abstraction facilities in a language ?

2. How reusability is supponted in object oriented programming language?

2.4 SUMMARY ' _

Software engineering deals with the applications of engineering principles to the
building of software products. The arrive at a set of engineering principles, one has to
select a set of qualities that characterise the products. In this unit we presented a set of
qualities for software product. At the end, we discussed several principles which

should be applied in designing software products that achieve these qualities.

2.5 MODEL ANSWERS

. () The data structure and operations arc described in a singte unit, and

(i) The data structures and internal representation of the data observation are not
visible to the programmer; rather the programmer is presented with a well-.
defined procedural interface. '

I

It is supported through inheritance feature.

.

UNIT3 SOFTWARE METHODOLOGY: AN
' OBJECT ORIENTED CONCEPTS

Structure

3.0 Introduction

3.1 Objectives

32 - The Evolving Role of Soflware
33 An Industry Perspectiife

34 Some [nitial Solutions

35 Structured Methodologies

36 Major Influencing Factors

36.1 Evolution of End-user Computing
362 - Emergence of Case Tools
3063 Use pf Phototyping and 4G |, Tools.
364 Relational databases
365 Object Oriented Programming
3.65 Graphical User Interfaces
37 Using the Methodology
5.8 Choosing the Right Methodelogy
39 Implementing a Methodology
3.10 ~ Which Tools are you Most Likely to Use
311 Current Generation of Software Developing Tools

3.11.1 Fourth Generation
3.112 Fifth Generation
3.2 AGLs .
3.12.1 What isadGL
3.122 End User Computing
3.123 Prototyping
3.12: Non-Procedural i

Considerations in Applications Development

L
L

3.13.1 Problems in Application Development
3.132 How 4GLs Help to Solve Problems
3.133 Limitation of4 GLs :
3.834 Impactof4 GLs
3135 Whatto Look forinad4 GL

3.1 Summary

3.5 Model Answers

3.0 INTRODUCTION

During the first three decades of the computing era. the primary challenge was to
develop computer hardware that reduced the cost of processing and storing data.
Throughout the decade of the 1980s. advances in microelectronics resulted in mole
compuling power at an increasingly lower cost. Today, the problem s different. The
primary challenge during the 1990s is 10 improve the quality (and reduce the cost) of
computer-based solutions - solutions that are implemented with software.

The power ofa 1980s-era mainframe computer is available now of a desk top. The awesome
processing aiid Storage capabilities of modern hardware represent computing potenital.
Software is the mechanism that enables us to harness and tap this potential. -

27 .

Sufilware Quallly
Cuneepls and Cuse Tools

28

3.1 OBJECTIVES

Arlcr'going through this unit, you will be able to:

e Discuss major influencing factors on s/w development

Sclect right methodology for sollware development

& List current gencration of s/w development tools |

- o Discuss leatures of 4 GL.

3.2 THE EVOLVING ROLE OF SOFTWARE.

The context in which software has been developed is closely coupled to almost five

‘decades of computer system evolution. Better hardware performance, smaller size and

lowér cost have precipitated more sophisticated computer-based systems. We have
moved from vacuum Lube processor to microelectronic devices that are capable of
processing 200 million instructions per second.

During the early years of computer system development, ha:dwa:e underwent
continual change while software was viewed by many as an afterthought. Computer

programining was a art for which few systematic methods existed. Software

development was virtually unmanaged - until schedules slipped or costs began to ~
escalate. During this period, a batch orientation was used for most systems. Notable
exceptions were inactive systems such as (he early American Airlines reservation -
system and real-time defense oriented systems. For the most part, however, ha:dwarp
was dedicated to the execuuon of a single program that in tum was dedlcar.cd toa
specific applicalion.

.Doring the early years, general-purpose hardware became con:imon-j)lace Sofiware, or

the other hand, was custom-designed for each application and had a relatively limited
distribution. Product software (i.¢., programs developed to be sold to one or more
customers) was in ils infancy. Most soltware was developed and“ulﬁmalcly used by
the sume person or organization. You wrole it, you got it running, and if it is failed,
you fixed it. Because job mobility was low, managers could rest assured thal you
would be there when bugs were cncountered. .

Because of this personalized software environment, design was an implicit process
performed in one’ head, and documentation was oftcii nonexistent. During the early
years we learned much about the implementation of computer-based systems, but
relatively liitie about computer system engineering. In faimess, however, we must
acknowledge the many outstanding computer-based systems that were developed
during this era. Some of these remain in use today and provide landmark - -
achievements thal continue to justily admiration.

The second era of computer system evolution spanned the decade from l.he m:d 1960:
to the late 1970s. Multiprogramming the multi-user systems introduced neiv concepts
of human-machine interaction. Interactive techniques opened a new world of -
applications and new {evels of hardware and soltware sophistication. Real- time
systems could collect, analyze and transform data from muitiple sources, u:lereby
controlling processes and producing output in milliseconds rather that minutes.
Advances in on-ling storagc led to the first generation of database managemeut
sysiem.

‘The second era was also characterized by the use of product software and the advent

of software houses. Sofiware was déveloped for widespread distribution in a
multidisciplinary market. Programs for mainframes and minicomputers were
distributed to hundreds and someltimes thousands of users. Entreprenevrs (rom
industry, government, and academia broke away to develop the nltimate :.ottware

- package and earn a biindie of money.

As the number of computer-based systems grew, libraries of computcr softwa.re began
to expand. In-house development projects produced tens of lhousands of programs

=2 — =

source statements. Software products purchased from the outside added hundreds of Softwore Methadology: An Object |

thousands of new stalements. A dark cloud appeared on the horizon. All of these Oriented Concept

programn-all of these source statements-liad to be corrected when faults were detected,
modificd as user requirements changcd or adapled to new hardware thal was
purchd\ed These activities were col]cclwely called software maintenance. Elforl -

© Spenton sofiware maintenance began to absorb resources at an alarming rate.

Worse yel, the personalized nature of many programs made them virtually
unmaintainable. A soltware crisis loomed on the horizon.

The third era of computer system evolution began in the mid-1970s and conlinues
eday. The distribuled system-multiple computers, each performing functions
congurrently and communicating with one another-greatly increased the complexity of
computer-based systems. Global and local area networks, high-bandwidth digital
.communications, and increasing demands for * mslamaneous data access put hcavy
demands of software developers.

The third era has dISO been characterized by the advent and widespread tse of -
microprocessors, personal computers, and powerful desk tip workstations. The
microprocessor has spawned a wide array of inteiligent products-from automobiles to
microwave ovens, from industrial robots to blood serum diagnostic cquipment. In -
many cases, soltware technolopgy is being integrated into products by technical -sml'f
who understand hardware but arc ofien novices in software development.

The perqonal-computcr has been the catalyst for the growth of many software
companies. While the soltware companies of the sccond era sold hundreds of copie:

of their programs, the software companics of the third cra, sold mére than hundreds,of
thousands of copies. Personal computer hardware is rapidly becoming a commodity,
while software provides the difterentiating characteristic. In fact, as the rate of
personal computer sales growth flatiened during the mid-1980s, software product
sales continued to grow. Many people in industry and at home spent more money on.
software than they did 10 purchase the computer on which the software would run.

The fourth era 10 computer soltware is just beginning. Object-oriented technologics
are rapidly displacing more conventional software development approaches in many
applicaiion arcas, Authors predict that fifth-generation compulers, with radically
different computing architectures, and their related software will have a profound
impuct on the balance of political and industrial powcer throughoui the world. Already,
fourth generation techniques for software development are changing the manner in
which some segments of e software communily boild computer programs. Expert
systems and artificial intelligence softwarc has finally move from the [aboratory into
praclical application for wide-ranging problems in the real world. Artificial neural
network soltware has opencd exciting possibilities for pattern recognition and human-
like information processing abilities.

As we move into fourth cra, the problems associated with computer sofiware continue
to intensify.

1. Hardware sophistication has outpaced our ability to build soltware to tap
hardware’s potential.

2. Qur ability to build new programs cannot l\ccp pace with the demand for new
programs.

3. Our ability to maintain existing programs is Lhreatcned by peor designs and
" inadequate resources.

In response to these problems, software engineering practices are heing adopted
thronghout the industry.

3.3 AN INDUSTRY PERSPECTIVE o

In the'early days of computing, computer-based systems were developed using
hardvare-oriented management. Project managers focused on hardware because it was
the single largc'-:t budget item for system development. To conurol hardware costs, . 29

Software Quality
Concepts and Case Tools

30

‘anual system, defining the functions of the new sysiem, designing. coding, testing

"The expectations of end-users from these miracle machines have multiplied manifold.

managers instituted formal controls and 1echnical standards. They demanded thorough {
analysis and design before something was built. They measured the process (o :
determine were improvements could be made. Stated simply. they applied the conlrols,
methods. and tools that we recognize as hardwale enginecring. Sadly. :-,oftw'lre was I

often litle more than an afterthought. ¢

In the carly days, programming was viewed as an art form. Few formal methods existed
and fewer people used them. The programmer often learned his craft by trial and error.
The jargon and challenges of building computer sofiware created a mystique that few
managers cared to penetrate. The sofiware world was virtually und|sc:plmed and
many practitioners of the day loved it.

Today. the distribution of costs for the development of computer-based systems has
changed dramatically. Software. rather than hardware, is often the largest single cost
item. For the past decade managers and many technical practitioners.have asked the
following questions:

® Why docs it lake so fong to get programs finished?

® Why are costs so high?

® Why can’t we find all errors before we give the sofiware to our customers?

® Why do we have difficulty in measuring progress as soflware is being developed.

These. and many other guestions, are a manifestation of the concern about soltware
and the manner in which it is developed - a concern that has led to the adoption of
soflware engineering practices.

The efforts that go into the design and development of computerised applications are
enormous: the detailed studies need 1o be done for analysing the minute nuances of the

and finally implementing i1 live. .

But if we look closely at any compulerisation exercise, we find that the same set of
activitics need 1o be performed even if the system is a run-of-the-mill. Of coursc, when
the system is implemented. ihe end-users invariably find certain things not happening
the way they want, or find errors and hugs. So, the software enters the Maintenance
phase when these problems are tackled by the developers. These activitics. trom
Probtem Definition 10 Implemenlauon and Evaluation, constitute the so-called System
Development Life Cycle (SDLC).

With so much hype surrounding computers and their capabilities, users are often not
clear on what 10 ¢xpect from computers and how soon: thus if the computerised system
fails 10 perform as per their dreams. the users get disillusioned with it very soon! Also
with (heir penchant for jargon, the systems personnel are oficn unable to communicate
properly wilh the end-users and rarely con:e to a mutual understanding of the problem
on hand and the deliverables expected by the user.

With the task defined as ambiguously. if is no wonder that neither of the parties agree
upon the final product and the result is the endless maintenance phase and cost and
time overruns that computerisation projects arc notorious for. Fire-lighting takes centre-
stage, relegating systematic ways of working to the back seat. Documentation, it ar:
never Keeps pace with the system.

3.4 SOMEINITIALSOLUTIONS

One of (he early solution proposed for these problems was Structured Progranuning.
But soon’it was found to he inadequate since merely writing programs in a more
disciplined way did not seem to improve 1hings drastically. The key apparently lay in
having a more holistic picture of the problem: giving enough thought to the very the
program modules are interfaced with each other; and in minimising the cfTect of
changes in one module on othér modules. This gave birth to Structured Design with its

principie of [Op-LIOWIL aesizin, uinunuw Loupning USHWEEH 1uuumes. A IIUNT COlEs1on Soltware Methodology An Object

within the module. and so on. . Oriented Concept

But It still does not help, if you have an excellent solution that addresses the wrong
problem’” Or lor a problém that is itself ill understood. The real solution, hence, was found
in Structured Analysis which was to come first in the cliain of interrelated activities of the
SDI C. This would help in understanding the existing system well and defining users’
problems and requirements. Thus. having dearly understood the

*What of the probleny, Structured Design would look for the ‘How' of the solution and
Structured Programining would carry out this sound design.

Along with these principles, came a host of techniques like the ones for modelling the
systent’s functions (Data Flow Diagrams or DFDs); understanding the relationships
between the system’s data groups (Entity Relationship Diagrams or ERDs): designing
oplimal data croups (Normalisation); designing optimal program modules (Structure
Chawis of Program Structure Diagrams), etc, Used in isolation with the above limited
objectives. this set of discrete tools again fell short somewhere, and the search
continued.

3.5 STRUCTURED METHODOLOGIES

The next quantum jump come in form ol integrated structured methodologies which specify:
® aset ol activities that to he carried ourt in developing an information sysiem;

® the scquence and interrelationships of these aclivities;

® the tools and'tcchniques that will be used for accomplishing these activities; and

® the way 10 record the results of these tasks.

The proposed system is detailed as a Structured Specification and las the properiies of
being graphical, top-down partitionahle (moving from an interview to the details), and
clearly separates the Physical Model (system as it is implemented from the logical mode!
{devoid of physical details retaining only the functionality or essence) of the system,
This specification forms the basis for the Structured Design phase and the Program
Specifications derived ar the end of this later phase lead into the coding and so on.

A melhodology integrates the activities of the SDLC and the completion of the carlier

phase is a pre-condition 1o the start of the later phases. Of course, some amount of

controlled lteration is also allowed within or across phases in order to correct errors or

to accommodate changes owing 1o better understanding of the system as the cycle -
proceeds.

Thus. structured methodologies go well beyond merely clubbing a set of 100ls, They
have a well defined scope of coverage, prescribing standards and conventions and

providing a reference framework applicable Lo all projects. They enforce simultaneous
documentation and define the deliverables from the system clearly. Estimates can he
made easily and clear work breakdown structure facilitales Project Management.

Structured methodologies are thus beneficial 1o a whole host of constituents like the
management. end-users, systems management. analysts, programmers, Q.A. personnel,

and auditors. N

3.6 MAJOR INFLUENCING FACTORS

Some of the recent developments that influence the way Methodologies are being looked
at are: S ! '
L. Evolution of End-user computing

2. Emergence of CASE. tools

31

4 8]

Suftwure Quality
Concepis ond Cuse Tools

12

Use of Prototyping and 4GL tools

. Relational Data Bases

A

Object Oriented Programming

6. Graphical User Interfaces.

3.6.1 Evolution of End-User Computing

This Las brought in a mixture of good and bad influences on systemisation of the
development process. Since end-users are NowW more famitiar with compuler
technology and have first-hand exposure 10 it, they are more aware of its potentizl and
its limitations. They can be involved more in the systems development process and
interact more fruitfully with systems personnel. On the other hand, based on their
interaction with small PC-bused systems of limited power, they may imagine systems
analysis, and proper problem definition 1o be redundant, and expect coding Lo start on-
line on the PC! The importance of documentation may again be lost on them.

3.6.2 Emergence of CASE Tools

As in other application areas, more and more work in sysiems development is also
being transferred to the computer lsell, while human beings retain only the control
clement. Computer Aided Software Engincering (CASE) tools are based on the above

* philosophy and some of Lheir feature arc: Diagramming suppori, screcn paintling, data

dictionary maintenance, documentation support, etc. Certain CASE tools provide
methodology-specilic support and many of them are multi-user wols,

Some advaniages of CASE 1o0ls are : Integration of the activities of the SDLC.
automatic standardisation, guarantced correciness and level of quality, removal of
menotony, self-documentation, reduce cost and time ol development, £Le.

RDBMS engineers use the CASE system 1o

o Assist them in gathering the initial requirements {rom end-user
. Anuly;.c these requirements and determine their feasibility

o - Desigu the system’s general algorithins.

e Design an actual detailed implementation in terms of the target environment
(hardwarc and operating system, specific RDBMS, etc.)

o Check Ueir designs for completeness and consistency, and for contravention of
specific RDBMS naming conventions.

¢ Aulomatically generate the RDBMS tlablcs. indices and forms) from the design.

e Maintin their existing system by reverse engineering the original databases from
their host machines 1o Delt. '

s Control their development efforts through the medium of our conliguration
management tools. :

CASE melliods employ the structured approach to sottware cn gineering and comprise
various methods in which one draws diagramns or models of the compuler system to be
built. The models cach poriray a certain aspect of the system, with four views required
1o adequately model a sySlem that uses an RDRMS as the data repository. These four
views are: Data Flow.Diagrams (DFSs), Entity Relationship Diagrams (ERDs),
Program Structure Diagrams (PSDs) and Form/Report templates.

Some disadvantages of CASE Tools could be : Reinforcement of the tendency of
systems personnel 1o work only with the machine (and not with human beings, e.&.,
users in Analysis phase, or colleagues in Design phase); loss of data due to improper
securily or corruption, high cost for reasenable level of sophistication, etc. There may
be a belief that the CASE tool is a panacea for all ills. ’

[. What are the advantages of CASE Tools?

2. What are the disadvantages of CASE Tools? -

3.6.3 Use of Prototyping and 4GL Tools
Prolotypes can be useful starting in developing a model of the proposed system, help

in establishing the requirements more clearly. They may be constructed to simulate the
business functionality of the system. its scope of coverage, ease of use and suitability 10

the orpanisation’s way of working. etc. Once the initial vagueness about the users’.

expectations and functionality of the system has been cleared by prototyping, a more
formal systemns analysis and design can refine the prototype further. Thus, by using
protolyping as a complement to the use of a Methodology, the advantages of both
approaches can be retained, - :

3.6.4 Relational Databases ‘

The advent of relational data base technology opened up the use of data bases directly
by the end users with minimal programming skills. Today therc are many RDBMS available
under different group of hardware platforms. Some of the databases and the hardware
platforms they are available on are tabulated below: '

H/W Group RDBMS

PCs Focus. Ingres. Oracle, etc.

Minis . Focus, Ingres, Oracle, Sybase, Informix, Unify, elc.
Main -Framcs Ingres, Oracle, RDB, DB2, BAS/S+, ele,

Form the above table, it is clear that most of the databases avai]able do not meet the
first requirement viz. Availability across divergent hardware platforms. Only Oracle

and Ingres are available under different platfarms Le., on PCs, mains and mainfrdmes.
Most of the other databases have interface 1o import data from and export data to
differemt databases on other hardware platforms. But such interfaces do not give
optimum performance. As a result developers get bogged down by performance issues.
Interfaces available with other databases are not user-oriented, and hence, they are not
very user-friendly.)

Two databases, viz. Oracle and Ingres, can run across different platforms. They can
also transfer data [rom various hardware platforms without any conversions of
programs. They, thus, satisfy the feature of having Open archilecture and Distributed
data management capability. :

These databases have industry standard SQL and report writer which are 4GL toals.
Screen-oriented development tools for painting entry screens and menus is an inherent
feature of both Oracle and Ingres. This not only facilitates faster development, but also
enhances Professional productivity.

Oracle and Ingres have a query optimizer. Tbe main function of a query optimizer is to
determine automatically the fastest method in which a database request can be
handled. As a result of this. programmers and end-users do not need any additional

Software Methodology An Object
Oriented Concepl

Ly P v =y

Software Quality
Concepts and Case Tools

34

training to obtain good RDBMS performance. These databases have servers or data
managers which minimizes both memory and CPU resource utilization. This ensures high
performance during transaction processing.

None of the-above mentioned databases have the feature of compound decument handling,
RDBMS have always had robust tools for fixed-length alphanumeric data, and tracking of
applications, However, they have not been able to handle unstructured text. Their only
mechanism for searching words and phrases in a text field is through sequential string
match over the entire database. Some databases have text retrieval applications on top of
their RDBMS. hut their server programs are not designed for large text transaction. As a
result they suffer from poor response time and lack of text navigation features.

. Thus, a compound document having collection of separate date objects like text. graphics,

images, logical structures. layout structures, voice and annotations that can be edited,
formatted or otherwise processed as a whole cannot be stored and retrieved.by a RDBMS.

The databases of the future should not only be able to handle different objects (Object‘
Oriented Database) but also have the following additional features o achieve, if not
paperless office, at least less-paper office.

— Accept document from disparate sources

— Handle several document structures

- Provide from complete documcl:lt identification

— Dynamic and delerred updating of different data structures
—— . Thesaurus-based concept searching for téxt

— Stopword and title control while indexing

— Context searching for text

— Device independent searching

— Soundex and plural control

—_— Reproduction of stored voice after successful search

— Window based interface for end-users.
3.6.5 Object Oriented programming

As the sophistication and capabilities of new computer hardware have grown by leaps
and bounds, it has become evident that new software development techniques are
needed. Users anxiously await more software thal harnesses and capabilitics of
sophisticated hardware such as the Macintosh 11 and the PS/2 family of computers. In
addition, users’ expectations of software quality have increased. They are no longer
satisfied wilh applications that are either not user- friendly or having numerous hugs
which must be worked around. '

A recent approach to Sofiware development. called object-oriented programming. attempts
to completely alter traditional software development methods, and many computer
professionals believe it has the potential for satisfying some of the

enormous demand for more sophisticated software. Object-oriented programming requires
a new way of programming, one more closely related to how we actually think.

We ypically regard the computer as a machine and data as the raw material that the
computer processes. The programmer is the technical who controls the machine. The
program lists all the steps the computer must take o obtain the needed output from the
input. However, an object-oricnied program defines the data and the set of operations that
can act on that data as one unit called as object. The object is thought of as an actor with
a specific set of skills. The programmer is the dircctor of the show. The programmer no
longer has to tell each actor exactly what steps to take but instead simply explains the
ultimate task to be performed.)

Critical to understanding object-oriented prpgramming is the concept of inheritance. Software Methodology An Object
Objects can he defined and then used (o build a hierarchy of descendant objects, each Oriented Concept
of which inherits access to methods used by the ancestors’ objects. Objects can he

reused. Even when a new object is needed, an old one can usually new modified to

meet the new needs. The new object inherits the characteristics of the old object.

For example, a horse is a subclass of mammals. [t inherits the characteristics of a mammal

{body hair, live birth, nursing its young and so on). However, it also has characteristics

that distinguish from other mammals, such as its size and shape, the way it moves, and the :
kinds of sounds it makes. When a programmer creates a new object, it is necessary only to

add its new features: the inherited ones are already there.

To see how this makes the programmer’s job easir, assume you were writing a space-
war game. Both sides - the Federation and the Ferengi - have space ships but of slightly
different types. In addition, each side has not-lighting ships, such as space shuttles and
cargo barges. The object ship has certain characteristics: X- Y coordinates, Shields,
warp speeds, and loyalty (Federation of Ferengi). The object lighting ship has
everylhmg ship has everything ship has plus photon torpedoes. The object shuttlecraft
has everything ship has except shield and warp speeds.

Many pfogrammers agree that object-oriented programming can greatly reduce the time
needed to implement new software. In addition, because new software builds, heavily
on existing objects, the code is more likely to be reusable and error-free. Several object-
orientcd languages are currently available. The first commercially available language
was Xerox’s Small talk. Other languages include C++ (an object -oriented version of C},
and Borland's Turbo Pscal, Version 5.5. The next few years will determine whether the
full potential of object-oriented programming is as great as many compuler
professionals believe. If it is, we should see tremendous improvements in the speed of
software development and the quality of the final product. -

Check Your Progress 2
I. What are the important feature of Oracle and Ingres?

2. What will he the features of the future database?

-

3. Whatis object oriented programming?

3.6.6 Graphical Uscr interfaces .

Graphica‘l user interfaces (GUls) offer a standard look and feel to application thus
reducing development and learning time. A GUI is an application environment that can
work with graphical objects. Microsoft windows, a typical example. has the following

COmMpPONEenis:
1

Sullware Quullly
Concepts und Cuse Tools

16

14

— Menus (including placement and names of options, and style such as
pulldown or popup)

- Icons (for identilying applications and resources)

— Tiled windows ({for views of multiple programs of dara or for multiple views
of a single program of data block) :

— Dialog boxes for selecting files; options, and seltings; when an option is
selected, the one previously sclected is turned off,

— Checklists from which Ihe user can make multiple selections, as in
specifying print of file attributes,

— Support for a pointing device, typically a mouse (especially to select and
~drag screen elements)

— Scroll burs along the edges of windows (o show Lhe relative position of the
contents (such as the end or beginning of the text) or to move Lo a different
posttion (such as another part of a spreadsheet).

A GUI enforces consistency by restricting developers - they must support features for
the program to run under the GUI. In addition, suggestions from the GUI's creators
(such as the arrangement of menu options) often become de facto standards for
applicaiions.

We have described how consistency simplifies the learning of a new application. One
benefit of a GUI is that the user can leamn a second application faster because he or
she is familiar with the environment. Note that the benefit comes with succeeding

_ applications.

Consistency and familiarity help produce shorter learning curves. Users génerally
prefer the interface style they know, whether it be Macintosh, Microsoft Windows, or
Lotus 1-2-3. The consistency offered by a GUI trades on the user’s familiarity with
environment. ' :

Drawing and CAD prograins are the best-suited to GUTs since, by their nature, they - .

manipulate objects, lines and corves, and fill closed areas with colour, For database
programs such manipulation is not as useful. However, they can use GUI's effectively
0: ' ' '

— Specify data field when setting up reports
— Selectsort keys _
— Transfer data to or form other applications (such as a spreadsheet).

The last point is particularly important. Database application often must transfer data
to or from spreadsheets, word processors, desktop publishin g programs business or
presentation graphics programs, statistics programs, or project management software.
GUISs generally have data exchange features, such as Microsoft Window's Dynamic
Duata Exchange (DDE), to handle sich.transfers.

Hewlett-Packard’s New Wave extends the direct manipulation approach. The user can,
for example, drag file icons Lo the printer without loading the applications that created
them. New-Wave also handles the merging of application data with links that are
ransparent to the user. To add to the general confusion, note that New Wave is 1 GUI
that runs vnder another GUI (Microsofi Windows). -

A final benefit of a GUI is that it lets you see the final product before you print it.
What You See Is What You Get (WYSIWYG) is a featore essential to desktop

publishing and drawing applications, and useful in database application (so youcan -

inspect reports to see that all data fits on the page).

However, there are drawbacks associated with using GUI The costs include the
expense of graphics cards, pointing devices (such as mice}, and extra memory. .-

Becanse GUISs run in graphics mode, screen refresh in usually-slower as well. If spet;d:

is important, a GUI's consistency may not be sufficient compensation,

3.7 USING THE METHODOLOGY

Very often, as compared to organisations with systems departments that cater only to
in-house development requirements, many IT consultancy organisations have some
kind of in-house standards and procedures in planning, designing and developing their
clients’ systems. The extent to which these ‘methods’ are formal may vary from
organisation to organisation and be influenced by the environiient in which the
consultant operates (e.g., more formal if addressing the international market or if the

_ consultant has some business tic-up with 2 multinational corporation). Some of these
are proprietary and not available for public usage.

An illustrative list of some of the more popular methodologies includes offerings
from: DeMarco, Gane and Sarson, James Martin (Information Engincering), Ken Orx
Association (Data Structured Systems Development), LBMS (LSDM), Michael
Jachson, N:C.C. (SSADM), Yourdon, etc. .

The scope and complexity of these methodologies vary considerable depending on the
objectives that the methodology seeks to achieve and the tools and techniques they
prescribe. A methodology critic sees a parallel between the proliferation of
methodologies and religious sects, and in his words, Despite the fact that they are 95

.per cent agreed in their aims and their broad areas of getting there they
nevertheless manage to stay separate. Each sect religiously guards lts own style -
and magic ingredients...

Some of the areas in which current day methodologies are deficient are in their

" support to the testing and maintenance phases. Usual response Lo this arc to adapt
them or to dovetail them with in-housc standards governing these areas. Somelimes, it
is said that following and methodology too closcly (with its insistence on formatising
the whole process) may lead to development of ‘systems of Yesterday'. Also,
expecting miracles of Day 1 of introducing the methodology and believing in it as a
panacea may lead to disillusionment.

As the saying goes, A methodology does not replace a good System Analyst, It only
makes a good Systems Analyst better. The ultimate aim of an organisation is ¢till to
build better systems, not to follow an excellent Methodology.”

3.8 CHOOSING THE RIGHT METHODOLOGY

Given the above scenario in the methodology market, how does one go about
evaluating the various options, to decide which methodology is suitable for one’s
organisaion? Well, there are no ready-made answers, and there is obviously no vne
‘best solution’ that is suitable for all organisations and for all its projects. Depending
on the problems faced by individual organisations and the setting in which they do
‘business, the objectives in adopling a methodology may vary. Thus, what seems to
work very well in one place may introduce more chaos in another. However, thu
foHowing questions may be asked about each methodology before deciding on
adopling il as a standard: '

a. Scope and level of detai!:

& Isitapplicable to the various types ol systems thal your organisation ruilds
{e.g., transaction-oriented, process-oricnicd, real time, small vs. Larg)?

e What is its scope and what are its boundaries? Does it cover busincss
planning, IT strategy, fcasibility, analysis, design and mdinienance phises?
In what detail dees it cover these? - .

. Does it facilitate cross-reference betwecn products of varigus technigques
(e.g., DFDs with ERDs).

h. Integratioa with other tools:
o Daes it have enough flexibili ty to inlegrate prototyping?

. & Whatis the data d}c-l.ionary scheme it supports?

Soflware Methodology: An Object
) Oriented Concept

37

Soliware Quality
{ancepts and Case Tools

38

® What is the documentation standard it proposes? Is it easily created, referred
and maintained?

® What output of platforms docs it provide to facililate project management?
® What does it recommend as quality assurance mgchan'isms‘?

c. Ease of learning and use:
® What level of training does it require for use?

® What is the support available from the vendor for training and consultancy while
practicing the methodology? '

® What is Lhe feedback from other users? Are there any user groups active?

3.9 IMPLEMENTING A METHODOLOGY

Recognizing the need for ‘good’ methodology and appreciating its benefits may just be
the first step, and.a lot of hard work still remains to he done before a methodology: can be
successfully introduced in an organisation. '

Some of the important steps are:

® Study the type of application systems your organisation develops (Mix of
transaction processing, decision_ support, on-line, baich, etc.).

® Understand the preblems you face more often and which ones are of more concern
10 you. , o

® ook arcund the methodology market and select the one(s) which are right for
you.

¢ Involve senior management inthe whole process and educate the personnel
directly or indirectly invelved (systems staff and end-users), -

® Train systems staff on the intricacies of the methadology.

® Apply the methodology on a pilot project' (small, non-critical, low priority
application system) to get the feel of it.
® Ensure you get feedback on its effectiveness.

Usual resistance to the introduction of a methodology is that it is looked at as ‘Old wine in
new bottles and that it lakes away the freedém and creativity in doing one’s work. The
path of the ‘golden mean® has never been more opt.

What Tool are Available for Development Software ?

Just as many tools exist for building a house many tools are available for creating or
writing software. These tools comprise different types of programming languages, each
of which consists of a number or different commands that are used to describe the type
of processing to be done, such as multiplying two numbers together. Software
development tools tan best be categorized as falling into one of five generations of
programming languages. The languages in each successive generation represent an
improvement over those of the prior generation-just as the electric saw was an
improvement over the manual one. Languages of later generations are easier to learn
than earlier ones, and they can produce resuits (software) more quickly and more
reliably. But just as a builder might need to use a manual saw occasionally to cur a
tricky corner, professional programmers still need to use early generation languages
(except machine language, which we']l explain shortly to create software. Each of the
five language generations will be described 111 detail in this chapter.)

Compared with’ later generations, the early generation programming languages (first
second, and third) require the use of more complex vocabulary and syntax to write software:
they are, therefore, need primarily by computer professional. The term syntax refers to the
precise rules and _pattern required for the formation “of the

programming language sentences, or statements. that tell the computer what to do and
how to do it. Programmers must use a language’s syntax - just as you would use the
rules of German, not French, grammar to communicate-in German - to write a program in
that language. Because more efficient software development tools are available, .
programmers do not create sofiware using machine language anymore, and few use
assembly language, except for programs with special processing requirements.
However. third generation language are still in wide use today,

Fourth generation language still require the user to employ a specific syntax. but the

Syntax is easy to learn. In fact, fourth-generation programming languages are so much

easier o use than those in prior generations that the non-computer professmnal can

create software afler about a day of training.

D Natural Languages enabled. Processing Language currently under development
—ili constitute the fifth generation of languages. With this type of language, the
user w ill be able to, specify processing.procedures using.statements similar to
idiomatic human speech - simple statements in English (or French, German, Japanese,
and so on). The use of natural language will not require the user to leam a specific
synlax.

In addition to the five generations of programming languages, some microcomputer software
_ packages (such as etectronic spreadsheet and database management software) are: widely
used for creating software. Although these packages generally cannot be categorized into
one of the five generations, many people consider some of the database management
systems software used on microcomputcrs. such'as dBASE 1V, to fall into the fourth
generation calegory.

3.10 WHICHTOOLSARE YOUMOST LIKELY TO USE?

“The decision about which software development tool to use depends on what
processing procedures you need tb perform. Developing software is tike building a
house: The work will go much farter if you have a plan and the right tools. However,
the tools have little value if you do not know how to use them; consequently, one of
the most important steps towards effective and efficient software development is the
selection of the right development tool.

As most or the Applications that exist in market today are developed using Third
Generation Programming Language, the software that you buy ofTthe sheilofa computer
store has been created by a computer specialist using one of these

languages. Also computer specialists need to know how to use these languages in -
order to update, or maintain, this existing software to accommodate new processing and
outpul requirements.

For the user who is not a computer specialist the most popular tools for developing
sofiware will he the fourth-generation programming language and existing off the shelf
software packages such as electronic spreadsheets and database management systems
software, because one does not have to be an experienced computer professional to use
them. The user who is working with these tools can create specialized software
applications, such as keeping track or a company’s expenses by department (a good
application for a spreadsheet package), or maintainipg a comprehensive customer file
used in a clothing Store for billing, marketing. an; hecking customer credit status (a
good application for a database package).

3.11 CURRENT GENERATION OF SOFTWARE
DEVELOPMENT TOOLS

Over the past 40 years, the programming langua) s used to develop software have
been steadily improving in terms of ease of use, the time it takes to develop software,
and the reliability of the finished product. Hen: we describe the major characteristics of
current generation of languages, or software development tools, and pay special
attention to the tools you will likely be using i the business environment.

Software Methodology An Object
Oriented Concept

* R g % by

. Soltware Quulity
Concepts ond Cuse Taols

3.11.1 Fourth Generation

Also known as very-high level languages, fourth-generation languages (4GLs) are as
yet dilficult Lo defing, because they are defend diflerently by differcnt vendors:
sometimes these languages are tied (o a software package produced by the vendor,
such as a databasc management system. Basically, 4GLs itre casicr for programmers-
and user-1o handie than third-gencration languages. Fourth-generation languages are
non-procedural langeages, so named hecome they allow programmers and user to
specify what the computer is supposed (o do without having to specify how the
compuler is supposed to it, which, as you recall, must be done with third-generation,
bigh-levet (procedural) languages. Consequently, fourth-gencration languages need
approximately one tenth the number of stalements that a high-level language needs to
achieve the same resull, Because they are so much easier 1o use than third-peneration
languages, fourth-generation languages allow users, or noncomputer professionals, to
develop software. It is likely that, in the business environment, you will al some time

. use a fourth-generation languages. Five basic type of lanpuage tools fall into the

lorth-generation category: (1) query language, (2) report generators, (3) applications
gencrators, (4) decision support systems and financial planning language and (5) some_
microcomputer applications software,

Query languages allow the vser Lo ask questions about, or retrieve information from,
database file by forming requests in normal human-language statements (such as
English). Query languages-do have a specific grammar, vocabulary, and syntax that
must be mastered (like third-generation languages), but this is usually a simple task
for both user and programmers. For example, 2 manager in charge of inventory may
key i the following questions of a database:

How many items in inventory have a quantity-on-hand that’s is less than the

. reorder point?

The query language will do the following to retrieve the information:

1. Copy the data for items with quantity-on-hand less than the reorder point into a
temporary location in main memory. :

2. Sorithe data into order by inventory number.
3. Present the information on the video display screen (or printer).

The manager now has the information necessary to proceed with reorderi ng cerlain -
low-stock items. The important thing to note is that the management did not have to

specify how to get the job done, only what ieeded to be done. In other words, in our
example; the user needed only to specily the questions, and the sysiem automatically
performed each of the three steps listed above.

Some query languages also allow the user to add data to and modify database files,
which is identical to what database management systems software allows you to do. .
The difference between the definitions for query language and for database C
management systems software is so light that most people consider the definitions o
be the same,’ ')

Report generators are similar to query languages in that they allow users to ask
questions of a database and retrieve information form it for a report (the output); -
however, in Lhe case of a report generator, the user is unable 1o alter the contents of |
the database file. And with a report generator, the user has much greater confrol over
what specify that the software automatically determine how the ontput should lock or
can create his or her own custcmized output reports using special report-generator
command instructions. (Ordinary users may need the help of a computer specialist to,
use a report generalor). In most feports, users require that a total or totals of one or
more groups of numbers appear at the bottom. And, if more than one category of
information is to be included in the report, the user usnally wants subtotalsto appear
for each category. In the case of a third-generation language, the number of
instructions necessary (o create totals is about 10 times the number needed in a fourth.
generation language because the programmer needs to specify not-only what to total
buthow to total'and where to place the total. Report generators haye mapy built-in * -
assumplions that relieve the user from having to make such tedious decisions. -

= § 7 o —

\pplications generators, as opposed to query languages and report generators which
llow the-user to specify only output-related processing tasks (and some input-related
asks, in the case of query languages), allow the user to reduce the time it takes to
lesign an entire-software application that accepts input, ensures data has been input
ceurately, performs complex calculations and processing logic, and output information
n the form of reports. The user key into computer usable from the specifications for
vhat the program is supposed to do. The resulting specification file is input to the
pplications generator. which determines how to perform the tasks and which then
roduces the necessary instructions for software program. For example, a user like
ourself could use an applications generator to design payroll runs-to calculate each
mployee’s pay for a certain period and to output printed cheques. Again, as with query
inguages and report generators, the user does not have to specify how 1o get the
rocessing tasks how {o get the processing tasks performed.

Jecision support systems and financial planning languages combine special

lleractive computer programs and some special hardware to allow high level

1anagers to bring data and information together from different sources and

lanipulate it in new ways-to make projections. do what if analyses, and make long- term
lanning decisions. We correct fourth-generation software tools in more details.

ome microcomputer applications software can also be used Lo create specialized
splication-in other words, to create new software, Microcomputer software packages
iat fall into this category include many spreadsheet programs (such as Lotus 1-2-3).
atabase managers (such as dBASE 1V), and integrated packages (such as Symphony).
or example, in a business without computers, to age accounts receivable (to penalize
zople with overdue account balances), some one has to manually calculate how may
1ys have passed between invoice data and the current date and then calculate the
ypropriate penalty based on the balance due. This can take hours of work. However,
ith an electronic spreadsheet, in less than half an hour the user can create an

yplication that will calculate accounts receivable automatically. And the application can
: used over and over.

nother example of microcomputer software that is used to create new programs is
yperCard for the Macintosh-created by Bill Atkinson of Apple. IN general, this
ickages is a database management program that ailows users to store, oranize, and
anipulate lext and graphics, but it is also a programmable program that uses a new
ogramming language called Hyper Talk to allow ordinary user to create customized
Nware by following the authoring instruction that come with the package.

11.2 Fifth Generation

atural Janguages represent the next step in the development of programming
nguages- fifth-generation languages. Natural language is similar to query languages,
th one difference : | eliminates the need for the user or programmer to learn a specific
cabulary, grammar or syntax, The tex! of a natural-language statement very closely
semble human speech. In fact, one could word a statement in several ways- perhaps
en misspelling some words or changing the order of the words- and gel the same
sult. Natural language takes the user ane step further away from having to deal
"ectly and in detail with computer hardware and software. These languages are aiso
sign to.make to computer smarter- that is, to simulate the human learning - process.
wural languages already available for microcomputer include Clout, Q & A and Savy

triever (for use with databases) and HAL {(Human Access Language) for use with
s [-2-3, o '

€ use of natural language 1ouches on expert systems, computerized coltections of

: knowledge of many human experts in a given field, and artificial intelligence,
lependently smart computer system- two topics that are receiving much attention and
velopment and will continue to do so in the future, '

12 FOURTH GENERATION LANGUAGES

wi the road of computer history, one sees the evolution of computer technology in
ms of both hardwaré and software. It can be traced back to the tine of first generation
mputers which used vacuum tubes as basic components of internal” '

Software Methodology An Object
Oriented Conecepl

41

pwarep et s .~

sSuftware Quality
Conceplts und Cuse Tools

42

circuits. Then came the era of sccond generation computers the era of trangistors.
Since then & subsequent improvement in the basic design using integrated circuils and
then using very large scale integrated circuits led Lo what was termed as the third and
the fourth generations of computers. Computers of the fifth generation have also .
emerged form behind the academic curtains. The filth generition computers are those
which emulate artifictal intelligence resembling human intelligence. This generation
of computers represents a feap into knawledge processing campared Lo data and
numerical processing carricd qut in the computers of all the previous generations,

Scanning the development phase, in the [icld of computers software, we sce that the
first generation software was very near to machine language coding. Since then, the
following gencration of languages have aitempted Lo euse the effort which goesinto
programming. Second generation software was using a command langnage, e.g., the
job control Ianguage (JCL) vsed in IBM 360 computers.

Third peneralion languages which are very commonly used include C, COBOL, Pascal
and PL/1. We have entered into the era of fourth generation languages with languages

_ like Focus, Ramis and Linc.

'3.12.1 Whatis a4GL?

Computer hardivare has evolved through various generations as the vacusm tube gave
way Lo Lransistors, then integrated circuits and subsequently.to very large scale
inteprated circuits. Compuler languages have also kept place with this trend and have
evolved over a period of time, [rom machine on first generation languages, featuring
intricate combinations of Os and 1s through assemble level languages (second
generation) and the third generation COBOL, BASIC, etc., presently to the 4GLs.

Most application software that is available these days in the one writlen in third
peneration languages, like COBOL, BASIC and C. Till date, these languages, also
called the higher level languages, have been used to solve any application demand
whether suited for it or not. This results in a lot of unnecessary code which drains a
great deal of tinie in programming activity and also increases the response time
thereby causing a dip in the efficiency of the compuler. So what was needed was a
computer language which could do everything thata third generation language does
but with much less effort. Hence what emerged was a fourth generation langusge.

A 4GL can be defined as a very high level computer language that enables rapid

devélopment of applications, sometimes without the help of information system (IS) o

professional, aiming to improve productivity in computer systemg development and
use. -) -

A survey conducted to assess the gains of a 4 GL chowed that it required one-tenth of

the time and effort o develop software using 4 4GL. A 4 GL is-more of an application -

building language and has all encompassing syntax for every aspect of application
building. .

Trained manpower for software development is a scarce resource all over the world.
While the hardware costs are dropping, the professional staff is becoming more
expensive and harder to recruit and retain. Economic law dictates that tHere should be
an effort towards replacing the more expensive resources by the less expensive ones. 4
GLs provide a means to do so. 4GL significantly affects two major factors, i.e., effort
and time. :

Comparatively less effort is needed in designing applications using 4GL as these are
generally very user-programmer-friendly. The programs writien in 4GL have to'be
specified with what is required of the task and in what particular sequence it needs to
be done. It requires much less expertise to write down the code compared to whal is
needed Lo program in a third generation language. Subsequently, much less effort is
needed 10 debug and modify the programs.) -

Not only does 4GL let you build applications faster, it lets you.run them faster too.
These speeds have been achieved through the combination of automatic indexing,
concise instruction set, abbreviated instruction, clear and well defined conditions- all
topesher lead o improved programming productivity. Enhanced query optimizers and
report generators go a long way in faster access in formation for the people who
depend on it the most. : ' . '

'~ B gy Y=g

3.12.2 End-user Computing

Users themselves can get information out of computerized databases. This ensures that
‘information systefns can respond to end-users as per their needs. In that sense the
system become demand driven and not supply driven. End users can successf ully
undertake complete development of single systems (less than 1 man year).

3.12.3 Prototyping

Usually 4 considezahle amount of time is spent in arriving at the correct functional
specifications. Over the years, a number of methodologies have been developed to
help this process. 4GLs offer prototyping as a technique to reduce the time spent in
the process. Application development in a prototyping cnwronment proceeds as
follow: -

—_— Information systein professionals quickly arrive at a prototype of the syslcm.

— Users and information system professionals together review prototype and
make changes till prototype is correct.

— Inf_onnar.ion system professional optimizes database design for programs.
— The critical program ate rewritten for better throughout.

3.12.4 Non-procedural

A 4GL programmer writes a program specifying what needs to be done and the
-appropriate procedure to accomplish (he task. This shift towards non-procedural
programming de-skills the expertise required to write programs and also makes it
simpler to modify the existing system.

3.13 CONSIDERATIONS IN APPLICATION
DEVELOPMENT

Applications development is still a botﬂeneck in most organisations’ effective use of,
and satisfaction with, computers. For the purpose of discussion we are including all
processes involved from conceplion of the application through its ongoing use as
applications development. The considerations that apply in developing a suitable
application and Lthe problems associated with each consideration is given beiow.

1. The program must cnable the user to do whatever he is doing currently as well as
whatever may come up in the future which he has to do.

2. Most users expect the programs-to be ready in a short time.

3. Programs must be close to error-free and errors, where found, must be solved in a
short time.

4. ' Programs must be modifiéd at short nouce to take care of missed or new
requirements.

5. Tumover in personnel or computer systems must notmterrupl the running of
programs.

6. Costs must be justifiable.

7. Some PC- based applications are meant for use by a senjor manager or director of
the company and are expected to be developed by a more or less trial-and-
modification approach.

3.13.1 Problems in Application Development

1. This simple requirement is unfortunately not simple to accompl:sh asit
necessitates the programmer to master the application before developing it. This
requires time from the user and programmer, dialogue between the two, good
communications skills on the part of both, and an effective recordmg of Lhc
underslmdmg so all can later be up-to-date.

Soltware Mcihodology: An Objcct'
Orlented Concept

43

Software Quality
Concepts and Casc Tools

44

|~

v

For the system to be better than the current one, innovation thinking is required
and like most innovative ideas, they require considerable time for experimenting
and check-out.

Trying to develop a system in a short time generally leads to tension and attempts
at short cuts which affect the quality which, in wurn, affects the schedule.

Programs typically deal with hundreds of abstract logical processes and to
guarantee a 100 percent error-free performance is generally impossible. And, yet
even a single error seems shocking, Probably, 60 per cent of the programming
effort goes in trapping the S per cent errors and misunderstandings that enter the
system, Tesling programs is still more a skill than a science and accuracy is a
function of the skill of the programmer, the complexity of the system, and the
effort spent in testing.

Modifying programs is the most error-prone activity and gets tested the Iea3t
because it is required soon, and testing the program fully lakes a lot of time. And
often, the part that is nol modified malfunctions because of unanticipated
interactions. '

Programs being complex, o train someone clse to take over a program requires
substantial efforts, and with other schedules in the pipeline, as well as
maintenance requirements, it is generally done only when a notice of termination
of transfer is received. When someone leaves without adequate notice, it can be a
disaster. Change of computer systems to incompatible languages is a huge
project and must only be done with a significant budget, big expected gains, and
a strong heart,

This, IS of course, the bottom-line and with the other problems involved, is a real
challenge.

These MIS systemé do not justify a rigorous Systems Analysis and Design
approach and yet the quality is expected to be very high.

3.13.2 How 4 GLs Help to Solve Problems

For the purpose of comparison, LINC or MAPPER is treated as a representative 4GL
and COBOL. as a representative 3G L. The distincrive features ofa 4 GL are:

|
2

4.

They are much easier to learn and use.

They provide more powerful features, so fewer commands arc required to accomplish
the task at hand.

They provide convenicnt feedback on syntactic mislakes and enable the user to
correct the same and continue the program.

They are being improved at a much faster rate than 3GLs.

The above features have, is a sense. introduced a revoluticnary change in the programming
scene. Some of the changes are explained below:

1.

8

Many young professionals, who are nol programmers, feels, and become
competent enough to develop programs for their areas of interest. Due to their
expertise in their applicalions. their programs meet, their requirements. Asthey
represent both the user and the programmer, they are able (o make better
compromises between what must be handied manuatly and what must be handled
programmatically. And, being primarily users. they are more user oriented and more
cosl-less and benefit-more oriented than a typical programmer. Thus, their programs
are simpler to the necessary point, and easier to develop. This contributes to
reducing many of the problems associated with applications.

Programmers spend less time in writing and testing programs due to the brevity of
the commands. This has improved programmer productivity by abour 2-3 times.

Ad-hoc information can be, comparatively, easily provided.

4. I is“easier to develop models of the syslems, i.e., prototyping developing models
takes 2 fraction of the efforr to develop the real thing and it helps to clarify the
understanding of the application and thus serves a similar purpose as an
architect’s blueprint of a house that is ro become a home,

5 The on-geing improvement in 4GLs promise increasing productivity of programmers
and computers,

3.13.3 Limitation of 4GLs

Is it necessary that the organisation using a AGL for its database development will
show a dramatic increase in the productivity? Will the usc of some 4GLs bring abou
significant Improvement in the organisation’s performance? The answer might be a-
No. This is because our industry, overwhelmed by Very conspicuous advantages, is
offering 4GLs as a selution to all possible problems. Unfortunately, people and falling
for this, overlooking that there is a substantial gap between where they are and where
they want 10 be

Let us view why 4GLs are not delivering the goods even.though they have some very
obvious benefits. '

- Probably the main reason for this is the not-so-good performance of many products. This

might be because these products provide programiner productivity gains, but leave little
scope for the desigher or the analyst. :

The approach of a 3GL in development was concentrated on the paper intensive
technique which required a lot of time. e ffort. experlise and experience. 4GLs by
conlrast, support prototyping (which are working models of the system and can be
changed quickly and casily) and metlods of modil | cations which enable the user to be
directly involved in the process of development - as the end user’s requests can be

* accommodated and the change reflected in a very short span of time.

Secondly. the database management system supporting the 4GL might not be sound.
Forexample, ifa relational DBMS is being implemented, then it is required that the
non-redundant tables should be used - which is not very often the case. Also the
present 4GLs go in for no data dictionaries of passive data dictionaries which cannot
maintain the data naming standards.

Another reason why the vendor claims of huge productivity gains from programming
are not Inct is that not all the, products claiming to bt 4GL qualify to fall under this
category. They can be carrying out.one or more functions of a 4GL but lack in having al]
the characteristics of a 4GL. To list only a few, these producls might be just query
Processors running against some file management system. They might be high level
languages teamed with a DBMS. or they just might be COBOL code eenerators.

tHence to really get value for one’s money spent, understanding of the differences and the
gap between the old and new generalion technologies is required.

Possibly, the biggest problem in using 4GLs is that experienced 3GL programiners have
to invesl considerable effort {about a few man-months) to master a new language. Also,
since the instailed programs in COBOL, BASIC, etc., are very m,~I1 Y, and converting
them to 4GLs is generally a prohibitively expensive effort, the new 4G programs must
also provide a mechanism for a full two-way transfer between IGL and 4GL systems.

3.13.4 Impact of 4GLs -

There are certain areas wherein the impact of 4th generation computer languages (4GLs)
ke Focus, Ramis, etc., deserve management attenlion.

I Productivity and cost of software development.

2. Restructuring of the systems development process,

Y]

(EDU)

Increased- emphasis on decision support systems (DSS) and end-user computing

Software Methodology An Object
Oriented Conept

A M iy e 3 e

Sofiwure Quality
Concepts and Cuase Taols

4. Changes in the roles of users and systems professionals.

Let us study each in some delail.

' Software Development '

One major reason for the development of 4GLs is preductivity. The 10-to-1 gain is
now becoming visible, and though we see applications geuting developed for
implementation which a tenth of the man hours that it took with, for instance COBOL,
it does not mean that cost has become one-tenth. The exlra hardware resources
required by 4GLs (more CPU cycles, additional memaory, etc.) contribute towards
some increase in cost, but in spite of this, 4GL solutions cost much less. And in the
years Lo come, hardware cost will continue to plunge downwards while cost of euch
technical man-hour that is used for the development of software will more upwards -
rapidly. '

Productivity increase takes place because of two characteristics of 4GLs. First, that
every man hour of programming generates much more lines (COBOL equivalent) of
program, and second, that the level of skills required to write programs in 4GLs is
Lypically lower than that required Lo write programs in 3GLs like COBOI. The
management implications are obvious.-On the one hand, lower development cost
means that more and more applications become ¢ost effective for computerization and
on the other there is a faster turnaround ol applications because of which
computerization can progress for more rapidly. ~

System Development Process

It begins with the generation of idea like why don’t we evaluate the passibility of
computerizing the maintenance planning activity? This type of thinking lermed
Conception, usually starts in the minds of senior managers, and leads Lo a process of
evaluation in the form of a brief feasibility study. For this purpose, a task force
comprising one or mere people each from (he compuler section evaivate the idea from
two viewpoints-the technical feasibilily and economic viability. This stage which may
be termed Initiation, is réquired because it is important to evaluate each attempt at
developing systems. Cost can be preluoitive and application development skills are
scarce. SoTigid discipline (of ensuring that each idea is viable) needs Lo be introduced
and no project should begin till this 1s done.

The analysis phase is carried out by the systems analyst once a clear go-ahead is

obtained from Lhe evaluation group. It ends with a very well defined set of
deliverables, termed Funclional Specification. The Design phase sees the system
designer converting the functional specification into yet another set of highly defined
paramelers and guidelines that include file design, codification structure and program
specification. Programming is the next phase and it all ends with a rigorous testing
that concludes the development cycle. . ' :

It is a widely accepted fact (though not as widely practiced) that to keep Lhings under
contro! and in order, the sequence of phases in the Systems Development Cycle
should be followed very rigidly. This means that the designer shonld not begin his
work till the analyst has finished. And it should be accepted that Analysis iy not over

_ till such time as the user has signed and accepted the. output formats to the very last

detail. This also implies that once the user has committed himself 10 a sel of output
formats, it is wise not to seek changes till the system is settled and running smoothly
since a good part of the subsequent aclivity {design, programming .and tesling) would
have to be re-done. . - -

- One major reason attributed to the sizeable delays that uépally take place in

development is that the Systems Development.Cycle has not been followed tigidly.
The usual tendency.is to take short cuts in analysis and then implement changes once
the system is almost complete. This plays havoc with time-frames as weli as the
stability and reliability of the system.since changes introduced later can generate
additional errors that may go undetected. S

The impact of this phenomenon has been quot'pd often. If those changes that e,
sought after the system is operational had been identified earlier, through more

intensive and thorough analysis in the Systems Analysis phase, then there would be an

\lmost hundred-fold saving of that time. In other words 100 hours spent in modifying
1system that is operational could have been saved for every exira hour spent during
nalysis to ensure completeness and accuracy

IGLs provide an environment where it is possible to iteratively and simultaneously
‘arcy out analysis, design and programming. This activity called prototyping needs
kill as well as expertise and it is appropriate for systems of low to medium
omplexity.-In protolypmg and analyst identifics a part of the functional specifications
nd while he is carrying on with the remaining part of the analysis also carries out
ome part of the design (the in-built database packages in the 4GLs aid this process
mmensely). Programming in any case, is a simpler activity with 4GLs and is carried
ut concurrently for that part of the system which has gone through design. As a resuit
T this a small, but perhaps the most important part, of the system-is set up early and
1e end user ¢an cvaluate it for suitability before the remaining part is worked upon in
reater detail. 4GLs provide inherent easc in polishing up the prototype using the
mbedded database coupled with powerful and easy-to-use mlerfaces

rotolyping is no child’s play, though today’s software tools need major
nprovements to make this an easy process. Nonctheless the way in which 4GLs arc
volving points to the distinct possibility of this being the dominant manner in which
ystems will he developed in the future,

acreased emphasix of DSS and EUC

/hile productivily increase is 4 major objective of 4GLs, an equally important
tpeciation from 4GLs is their case of use. On.this count, all 4GLs are not equal but
yme even provide features that-make il possible for end-users to create their own
:ports with just a Few hours of training (not days and weeks).

his ts accomplished tlirough the provision of end-user interfaces and program
:nerglors, In Focus there Is the revolutionary TALK lcchnology that enables users to
eate complex reports as well as graphical outputs by interacting with the system
rough only the ARROW and ENTER keys. The process involves a series of
teractions, where the compuler screen shows a set of options and the user moves the
irsor to the required option using the arrow key up, down or Lo the side -and then
mfirms the option by pressing the ENTER key. This throws up the next sereen, and
e process is repeated as the user moves Lhe cursor and chooses an option.

1is diadogue continues ull the user has nput the desired (.huu.t,.-,, at the end of wluch
e report is Lenemlcd

iis new found ability of the end-user to develop his own reporls open up new vistas
compulerization. Once the database is in place (Information System professionals
Juld nzve played Some role in the design of the database), dnd end-user is (ree to
ek informalion in the manner and schcdulc‘lhal he wants iL

1 hoc information retrieval is the first step in the process of development of more
d more sophisticated Decision Support Systems. It is also the most commonly vsed

plication by top level managers. Gradua!l,y. we see the use of mathematical models
d statistical techniques., - .

:ading 4GLs provide such tools in the form of building blocks and even these tools
me with easy-10-use interfaces. ;

slational database structure coupled with versatile modelling tools and fronl-ended
powerlul graphics as well easy-lo-use reporting functions - all of which are
nstituents of the more populat 4GLs - are making end-uscr computing and Decision
pport Systems 4 reality that can be actualized by end-users themselves.

bat it means trom the madagement viewpoint is that now it is becoming possible to
ocate part of the software development responsibility (o user departments directly.

ianging Rolex

‘st it becomes mandatory to train end-users adequately to cope with the new
iponsibilities.

Software Melhodology: An OhjJect
Oriented Concept

TITo LT

Software Quality
Concepts and Case Tools

3

‘components, events and profiles.

Secondly, it is possible to draw up more ambitious computerization plans since amuch
larger number of people are directly working on the development of new systems.

Thirdly, top management needs to change the role of the 1S professional from a
developer of application to one of coach, guide and consultant to a arge number of
developers, i.e., end-users. -

And finally, management needs to put in place a comprehensive set of policies,
procedures, standards and puidelines (to be developed and monitored Jointly with IS
staff) that will enable end-users to develop profitable applications with standard
software tools, using rigid consistent document standards across the organization,

3.13.5 What to Look for in 2 4GL

Tle issues which go into making of a 4GL need to be careiuily equated to have the
greatest impact on the performance, resource usage and productivity. It is the 4GL,
design that extends or limits the uitimate degree of success in using it. Hence belore
entering into functional evaluation, one must understand how the 4GL is built and
design Portability IS another aspecl to ponder over This is because it is quite likely that
some time or the other a new version of the operating system might be installed or
some change in the hardware configuration may be brought about. Hence questions
about the present configuration and case of migralion to the new environment should
be ‘asked.

LINC

Linc and information network computer is an Australian developed and supporied
example of a 4GL that is being used at more than 3000 sites around the world. Line
enables you to design, develop, modify and generate on-line applicaticns systems. It
consists of a definition language and an interactive computer which checks the validity
coding as you input it and creates the program for the system. It allows the definition o
the problem through a brief series of business-oriented, English-like statement which
help minimise the errors and misinterpretations usually associated with complex
programming languages. Ervors in the code and highlighted and the cOrres~onding
explanation of the errors can be listed by giving an ‘ERROR’ comml’ 1d This permits .
rapid development of the software code.

The Linc-interactive computer is a menu-assisted system which operates through an
aclivities menu. The menu displays the activity modes which are used lo create Linc
systems, reports and networks. It is possible to access anyone of them in any order.
Each activity mode consists of one or more input screens through which one can defing
the appropriate part of to be Line sysiem being developed, e.g., reports are defined
through Report mode and networks through the Network mode.

Line was developed for the business functions, hence its basic structure is business
activity compatibility. A Line sysiem definition consists[ofthree basic parts:

Events are business transactions that occur with this fixed data, e.g., receipt of goods
sales, cash receipts and 50 on.

Profiles arc used to specify the various ways in which the components and events in a
system are to he combined, viewed and accessed. For example, profile on a component
which deals in employee information could be a way to access or view the employee
information in the ascending order of employee number. It might be in the order of
employee name depending on the specific requirements.

Components and events were initially included in the Line system by keeping the
(master tile and transaction tile) idea of the business world in mind where components
simulated a master file and events simulated the transaction file. -

A . .
Creation’ Using the Line definition language and viewing the business activity in terms ¢
components and events, the logic specification for these (components and events) can b
declared.

Generation: Once the specifications arc defined through the LDL (Linc Definitio
Language) the generation phase begins, in which all the applications system .

specifications are established and mamtained and the system made ready to use, This is
done without any further programming activity. [n this each functional aspect of
programming code needed to create the system is generated automatically by Line. On
this generated system it is possible to ‘add’, ‘change’, 'inquire’, and ‘delete’
information thal s present in the database.

Reports can he made to run and also a query session can be started using a DMS 11 inquiry

Reports: Reports are developed by tie use of LIRC (Logic and Information Report
Computer}). which describes the function of each LIRC speciftcation using LDL (Line
Definition Language). LIRC is the reporling aspect of the Line system. Once a Line
information system has been designed, LIRC may he used to destgn the reports
required lor accessing and presenting the information recorded in the sysiem,

Some Examples

An accountant who employs computers, developed the accounting system for his
company alone in just two months {using the dBASE language in Clipper). He and his
company Me ‘lay happy.wilh the system in terms of Tts productivity and reliability.
Typically, an experienced non-accountant pregrammer would have taken over a man--
vear to develop the same application m COBOL, and possibly about 5 mouths in

- dBASE. Here, four productivity facters got compounded: dBASE is more productive
than COBOL.: an accountani programmer is more productive than a non-accountant
programmer; uscr programmer is more productive that a non user programmer; and
dBASE enabled the other 3 productivity factors to be more practical. A programmer
chartered accountant firm routinely turns oul customized applications in almost the
costand lime frame it takes to implement a packages soflware Probably, the reasons arc:
they are very competent, they quickly grasp user requirements, they program in the
dBASE language, and they religiously try to keep their systems as simple as they can.

Prospcc'ls for the future

Probably, for more programs are currently being developed in 4GLs than in 3GLs.
This trend is expected to grow. As more and more managers are expected (o use
compuiers as they use their calculators and diaries. they will turn to 4GLs for meeting
their information requirements. Also, improvements in 4GLs promise more power and
ease o Liwe users

There are several hundred products on the market that can claim 1o he 4GLs. The
producl can cover program generalors, expert Systems virlually anything that
encourages an cnd-user 1o produce applications without resoriing to conventional
progranuning languages,

3.14 SUMMARY

AGLs promise easier and faster development of applications Broadly, they cut down the
oumber of lines of program code required and they provide a simplified approach to the
design ol'programs. such that (in theory) the end-user is able to do the programming work
fora particular task she requires. -

4Gls ave not, however, had the acceptance that the promotional hype would seem to
warranl.

® They cater for the production ol new application; they do nothing for
‘maintenance’ programming - amending existing software to remove bugs or add
lunclion, - which is the bulk of programming work.

® Mosl DP depariments and informaltion centres spend a good deal of their resources
on running systems [or user. but 4GLs do nothing for the operations area,

®* JGLsexemplify the sofiware equation that more capability demands more of a computer,
4G Ls need a fast computer and a lot of memory.

Software Mcthodology An-Object

Oriented Conept

19

[o 3

Soltware Quulity
Concepts und Case Taols

e Programs written in 4GLs cannot male well with existing software.
e There are no universally agrecd upon standards and little real-world experience. -

e 4GL may be relatively easy to leamn, but the basic principles of gbod
programining still apply. The end-user may not have the training or the
professional background to foilow them - error lesting, maintainahility so that

_ someone else can take on the task of future amendment documentation so that
others can use the program. That all takes skill; it can also take a good deal ol
time.

e The availability of 4GLs has encouraged end-users to ulilize them in developing
relatively trivial applications rather than the more sophisticated tasks for which
they were intended. 4GLs can produce large clumsy program lor such small jobs.

1

3.15 MODEL ANSWERS

Check Your Progress 1

- 1. Some advantages of CASE tools are: Integration of the activities of the SDLC,
automAtic standardization, guaraniced correciness and level of quality, removal of

monotony, self-documentation, reduced cost and lime of developinent ete.

2. Some disadvantages of CASE Tools could be : Reinforcement of Lthe tendency of
systems personnel to work only with the machine (and not with human beings;
e.g., users in Analysis phase, or colleagues in Design phase); loss of data due to
improper security or corruption, high cost for reasonable level of sophisiication
ctc. There may be belief that the CASE 100l is a panacea for all this.

Check Your Progress 2

1. Bath Oracle and Ingres are Relationat Database management systems. Their
important features are:

e Open architccture and distributed data management capability.

e Support of standard query, SQL and 4GL tools like Reportwriter.

s Supportof scéccn-oriemed development tools for painting entry screens.
s Support of queer optimizer:

2. The future DBMS are designed 1o widen the applicability of database technology
to new kind of applications. These applications include computer aided software*
engineering (CASE), mechanical and electrical computer aided design (CAD),
computer aided manufacturing (CAM), scientific and medical applications,
praphics representalion office automation, knowledge representation for artificial
intelligence and business applications where traditional DBMS have proven -
inadequalte. ' '

3. Itisaprogramming paradigm which supports:
(i) Design of reusable software components using inheritance mechanism.
(ii) Design of code which can he easily maintained

(iii} Beuter conceptualization and modelling of real world phenomena.

UNIT4 CASETOOLS -
Structure | -

4.0 “Imroducljon
4.1 Objectives
4,2 Sofwware Crisis

43 Whatis Wrong with Current Development Methods?
43.1 Sohware and its Increasing Cost
43.2 Software Ecrrors and their Impact

44 AnEngineering Approach to Software

45 Why Case Fails? |

4.6 CaseTools /
4.6.1 Generation of CASE Tools Lo {
4.6.2 Catcgories of CASE Tools -

4.6.3 Selecting CASE Tools
4.64 Deh CASE Tools

4.7 Faclors Aftecting Software Development
4.8 The Benefits of Using CASE

49 ‘Summar);

4.10 Mode] Answers

4.0 INTRODUCTION

Computer Aided Sofiware Engineering (CASE) is the application of computers to
assist in developing and maintaining software. CASE has been one of the most
common uses of enginecring workstations in the past decade.

CASE represents 4 cumprehensive philosophy for modelling business, their activities
and information system development. The CASE philosophy involves using the
computer as a development tool to build models that describe the business, the
business environment, and corporate planning, and to document computer system
development from planning through implementation. -

The complete picture of the CASE philosophy presents that specification for corporate
plans, system design and system development become fully integrated. This occurs by
sharing for the three functions of corporate planning, system analysis and design and
system development across CASE component. ' '

4.1 OBJECTIVES

After going through this unit, you will be able 1o:
e Discuss what is software crisis development
e List various stages of software development life cycle

e Discuss the develapment tools associated with different phases of sofiware
development life cycle.

s Classify categories of CASE tools.

4.2 SOFTWARE CRISIS

The software i~ lustry is facing a o loday because ol —

Software Quality
Concepts and Case Tools

® increase in the size of the software packages
& increase in complexity of the problem arcas

® project management coordination preblem due to Therease in personnel
requirements per project

o duplication of effort because most software packages are built manually, i.e., with
no automation, no methodology for the most part.

e The increase in cost of software compared (o hardware.

Large software projects (100 K lines ol code) have become feasible for medium as

well as large soflware organizations due to the failing cost of hardware systems. One
of the major areas where the soflware industry has expanded is the area of specialised
applications. The area is usually characterised by a high level of compilexity. This has
given rise 1o an increase in the use of formal methodologies for sofiware development.
However, these methodologies, for the most part, do not completely solve the problem
of complexity. -

Medium/large software projects require considerable manpower. This leads 1o
management and coordination problems which in turn give rise (o lime and cosl
overruns. Typically inlarge software development efforts. the engineers working on
different parts of the software package do not “interact’ very closely. This sometimes
results § 11 duplication of effort especially in the design and coding of small commonty
used routines. it could also lead to problems in integration. As software development
groups are becoming larger, it has been observed (1) that productivity per person
reduces. On the other hand the cost of technically skilled personnel is rising. Most
software packages built today have almost no flexibility or scope for extendibility. This

_ contributes to higher maintenance cosls. These are three of the factors which have

contributed to rising sofiware costs as opposed 1o falling hardware costs.

Advances in hardware technology and the lack of malching pace in sofiware
technology is a well known facl. Sofiware conlinues to increase its share ofthe EDP
budgets. Studies, surveys and symposia are being conducled the world over to
pinpoint the concerns and issues so that they may be addressed.

1. Requirements analysis has been voted as the most troublesome phase of the life
cycle in a recent survey. The basic problem is one of communication.

2 Maintenance is costly, entailing an expenditure amounting to at least 50 per cent of
" budgets. -

3. There is a movement toward decentralization of control. End-uscr computing is
being encouraged and being made effective and practical. There is stifl a long way

to go before end uscrs can really make a dent on the sofiware applications backlog.

4. The applications backlog in the USA has been quoted 10 be benween a slaggering
three to seven years.

5. Theconcept of‘buildinh soltware systems as characterized by the waterfall life
cycle is changing. Today, people arc talking of growing sofnware systerns through
rapid prototyping and manufacluring software systems thraugh ‘software
factories’. The basic problem is one of communication.

In another survey, most of the respondents recognized information technelogy as a renl
or potential source of competitive advantage. [n India, with an increase in competition
in the marketplace in general, information is SO0 gOINE 10 A vital resource. The new
system development techinologies muist address this issue. The fop four concerns
described by MI1S exccutives were: Facilitating/managing end user computing,.
Translating information technology to a competitive advaniage, having the Lop
managemenl understand needs and perspective of MIS. and measuring and improving
MIS/DP effectiveness/productivity.

A third survey shows a 15 to 20 per cent average personnel lurnover rate in the

D S

country. Undocumented and unstructured s) stems become the mghtmare of
SUCCES50rS,

Another survey conducled by AT & T many ears ago projected ihat, if the demand for

telephones continued to grow, every soon every man. woman and child i in USA would-

have 10 he a telephone operator. Of course. It did not happen. From surveys, the numbers

have been extrapolated and by 2000 AD It is said that every man, woman and child in USA

will have to be a programmer .

4.3 WHAT IS WRONG WITH CURRENT
DEVELOPMENT METHODS?

*We have a wide variéty of methods, and the iife' cycle curve is well-known, so what is

going wrong? The computer press is full of articles on. The Applications Backing, ‘The
Maintenance Crisis’ Skills Shortages and other related topics.

The analysis and programming tools were developed in an envilronment that was highly
centralised. The machine and the DP (Dats Processing) professionals were at a central
site, often remote from the users. Also, there is a large commitment in terms of costs for
the organisation winch has such a site. (Salaries of the development and support staff, as
well as machine costs). Therefore, it should be no surprise that this has led to development
methods which do not offer sufficient flexibility, since one of the requirements for
management was the increase in control over the projects offered

by the tools. and methodologies. Hence the adoption of the production environment
which is difTerent from a more flexible decentralized development environment.

The application backlog appears as a result of development teams spending the time
allocated to development on maintenance and upgrading of existing systems. This in
turn leads to a maintenance crisis, whereby systems thal are coming live were

designed in (he past and hence were decigned for pist requirements. Modifications,
sometimes called enhancements. therefore need to oe added at a late stage in the

development process. Syslems were probably designed in such a way that end users .

were not considered at ail. In fact they may have been the last people to be consulted.

The modern user has probably have brought up to use sophisticated systems, or have

seen lefevision programs that show them what is possible. Therefore, the expectations
from any systems that is delivered have increased.

To achieve what the user wants is a skilied job; but there is still a shortage of skilled
compuler staff.

Another factor which has added to this crisls to the falling cost of hardware. This fall has
been dramatic over the years. and it is now feasible for an organisation to have a personal
computer in every office, if not on every desk, and 1o have many machines scattered
about a site or many sites, rather than a central mainframe. The result is more prohlems,

including lack-of standardization of hardware and software, and the decentralisation of
control as well as development. This leads to a conflict between existing methods for the
centralized production of software to a fixed standard on a fixed machinc, and the user
who wishes to have more control and a quicker response: on a decentralised set of machines.

Ifatypical commercial projects is |8t 24 months in gestation, and due to the applications
backlog this slips to around 48 months, itis not surprising that the requirements will alter
during this time.

Often the delivered system is unreliable, its accuracy questionable and the Functions
offered are variants of the ones planned in the stages. The end result is that the user is
frustrated or loses interest is the project. The cost of not getting its right is quite high,
and the place where the errors or omissions occurred s significant.

Despite the advent of structured ‘methods, {which naot all development teams use) the
major resource cost is the result of errors or omissions in the analysis phase of the
_ project. Hence the three problems exace-bate each other, compounding the difficulties

Case ‘Tools

Software Quulity
Cuncepts und Case Tools

of un already complex task. ‘Fhe solution lies in the vse ol automated analysis
environments, structured programming methods and closer consultation with the end
user.

Letus exzu_nine the cause of the soltware crisis more closely.
4.3.1 Software and its Incréasing Cost

Software costs increasc-hccal.ise of the following reasons:

e - Each application will need the generation of new pragrams;

e Purchasing of uew equipment reans Lhat existing soltware will either have to be
modified or rewritien; . .

. Progfammin g is Jabour intensive and therefore strongly affected by inflation
despite new techniques. -

[

4.3.2 Software Errors and their Impact
“L

In the majority of current systems, the cost of testing and maintenance is around 40
per cent of the total spent. Some would go so far as to say it is 60 per cent. In any cas
itis a significant portion of the software budget. Indeed in certain case DP. _
departments are so tied up with maintenance of current systems that no development
cari take place. The increasing costs of error correction can be identified with the
following components: -)

e The increase in software complexity increase the testing corﬁplexi ty and the
amount of testing that has to be done; - :

o Notification and communication of errors become widespread and more costly
and there are frequent changes in documentation; o T

e Repeating tests that have been done before is costly. It should be possible to test
the portions of code that are changed but often this is not the case;

e The project team will have becn disbanded due to leavers and over commitments

e Inadequate or inaccurate requirements and needs used throughout the project due
to lack or user involvement and consultation in the early stages of a development;

e The cost of maintaining a system is often underestimated at the outset ofa
_project.

4.4 . AN ENGINEERING APPROACH TO SOFTWARE

‘Computer Science is one of the r-ost evolved technologies of the twentieth century.

And, like any other rapidly evolving technology a necessary by-product or this one
has been new techniques and terms. CASE or Compuler Aided Software Enginecring
is among the most talked about of these techniques and terms. -

We are aware that al] forms of engineering originate from a since. Science provides
the fundamental laws, technolopy users these fundamental laws, and, engineering uses
technology. When a technology is used for an engineering product the prime '
additional considerations become cost, ease of manufacture mass production,
standerdization and marketability. . :

IL is interesting to note that Computer Software is also evolving from 2 science to an
engineering discipline. The science of accessing information, computing, organizing
information and applying logic to it developed into an implementable technology with

. the advent of programming languages. In the course of time, programming langnages

graduated from low-level Assembly languages to bigh-level languages like

T

FORTRAN, PASCAL, COBOL and C. This helped Software technolopy to gather
momentumn and proliferate. With the proliferation of this technolopy and the increase
in its complexity, the need for mass production, cost reduction, and standardization
was [elti-which is why, today, we are talking about Software Engineering.

Soltware Eogineering, or affordable production of complex software is becoming
pussible today, because we have the lechnology to build tools for Software
Development. These CASE tools are based on techniques and methods that span the
entire Software Development Life Cycle (SDLC), and are implementable on a
compuler. To get a good undersianding of CASE methodology or CASE tools, it is
imporiant Lo appreciate the techniques and methods which have made CASE possible.

The important technigues and Lools available at each stage of the SDLC are discussed
and shown in figure 1.

. Requirement
changes (Requirements)

{ Decomposition) Diagramming and T T
. design tools)
Clarification - *) Project
4—_—@[‘1@&0:1' | management
Design tools
Chunges | Expert
| Design systems
| R =0T . 4GL forms
<—Gding_) “Smart"
. cede editor
L_— Symbolic .
Testing debugger
(Ducumentation) Document tools Conlfigitration
. —1 manag zment’
(Use ')
: Bug and request i
' tracking databnse

|

Evelution

Figure 1: Typicul Phases of the Software Life Cycle and Associnted Pevelopment Tools

=4

o

Feasibility S.t,g:&ly: This is the stage where the need for automation is felt, but its
cost-benelit id not clear. A simple tools like spreadsheets can be _used for'camying
oul a cost-henelit analysis. This tools'may or may not be included in » CASE
tools kit. : ’

Requirements Study: Once a green signal is obtaincd for automation, the first
exercise to he undertaken is a requirements study. This study decides the
automation boundary and specifies the requirements of the user in detail, The
techn:ques used for require'ments study are varied, but process modelling
techniques like structured systems analysis and design (S5AD) and datz
model!ing techniques like I3-R modelling are popular. In both these techinigues, a
detailed datu dictionary is prepared. CASE tools provide a means to document
these techniques, and Facililate checking completeness and correctness.

Hardware Sizing and Capz city Planning: The information collecled during
requircments study can be processed by a (ools to arrive at hardware sizing, Since
the tool necds to aperate on the requirements study information, il is necessary
for this tool (o be integrated. with the CASE tonls for requirements studv. Another

Casxe Tanls

T) e oy

n

‘Soltware Quality

Concepte prd Case Tools

advaniage of integrating sizing with study is prediction of capacity changes resulting
from changes or enhancements to requirements. N

d.

Sofiware Development Estimates: The effort and duration for software designand
development can be estimated using the information gathered for requirements
study. Formal techniques like function point analysis (FPA) and construction cost
model (COCOMO) are available for estimation, These lcchnique‘% should ideally be
integrated in a CASE 1ool.

Design: The requirements study of a system identifies its inputs (screens), oulput
(repons), inquiries, data dictionary and processing logic. During the design phase,
these get translated to programs, libraries and files or databases. This transkation

can easily be aided by a CASE tool. ,

Sofltware Development: Once the design is complete:” the code needs to be
produced. Several tools arc available for this. Fourth generation languages and
program generators can be used to produce code. These often interface, or form an
integral part of a CASE tool.

Testing and Quality Assurance: Testing development sofiware systematicaily,
with every release, is essential. Tools for testing must allow easy preparation ui
test data, and automatic testing of the total system (on-line and batch) with error
reporting and automatic recovery from error. Other tools like the Test Coverage
Analyser (TCA) are also useful.

Implementation: Implementation of developed software involves loadingor
distributing developed software 10 user sites and, training user personnel. Tools
are available for loading and distributing software. Tools are also available for
building twtorials and other forms of training material. '

Maintenance: Released and operational software requires maintenance, for error '
correction and enhancements. Traditionally it has been found that the highest
costs are associated with this phase. and fortunately for us, it is this stage that the
CASE tool addresses best The documentation facilitated by proper usage of CASE
tools form analysis through implementarion becomes vital for mainlenance. '
Besides, the informalion repesitory makes tools for Impact Analysis, Version
Control and Amendment log possible.

Project Management: Project Management spans the entire lifc cycle of a project.
A too! for effective Project Management is essential for the success of a large
project. The Project Management tool could very well be integrated in a CASE tool
kit. because much of the information required for Project Management is available
at the various stages of SDLC. C

Some tools that can be used for Project Management are:

l.. Network and Bar chart Drawing: A tool for drawing PDM {or ADM) network and

bar charls can be effectively used for planning time, cost and resources. Such a
tool facilitates updating changes 10 plans, and maintaining records of variance
between plan and actuals.

Skills Inventory: A skills inventory system can he very useful for selection of
suitable manpower hr a project.

Project Costing: We have seen ear her how estimation can he integrated into)
CASE. With these estimates available, and with manpower allocation using a skills

iinventory system, manpower costing can be easily automated. Costing of other

resources can he obtained from the network drawing tool. Any records maintained
here can be very useful for sizing and estimalting future projects..

Sofltware Metries: A tools for maintenance of software metrics can record errors
detected at each stage of testing for future risk prediction.

Quality Assurance Calendar: A tool could help set up a quality assurance
calendar (this could interface with the network drawing tool}. This tool could also
maintain QA review suggestions and recommendations.

CASE tools thal address even a subset of the requirements motioned here are very
uselui. However, the ullimate CASE tools for quickly developed, easily maintainable,
low-cost, standardized, quality software should address all aspects of SDLC.

45 WHY CASE FAILS?

Being aware of the most cited cauqed of CASE failure will, obwuuxly. increase the
chanees ol success. Amceng the most often cited reasons are:

¢ low management involvement
. ur-ul'cal.islic expectations - :
s nostandards of methodologies already in place

¢ lack ol integration with current practices.

Some other causes that are cited are:

» Mi“susc of CASE tools

e Too much emﬁhasis on tools as total solution

s [grnoring the importance of management support and intcracl.idn

e ~ Poor documentation (of tools)

o Notenough functionality

s Loocking at CASE as a risk element.

Therc is &4 small and si:ﬁple setof do’s l.hal are recommencted. These are:
e Start slowly and do not invest very heavily on CASE tools.

e Begin with a few relatively small pilot projects.

o Get senior level management’s blessings.

- Give the movement credibility by 'selling’ the ideas within the company.
e Be sure to spend on training.

s DBepatient.

e Make an analysis of needs and priorities and identity the tools for them.

& Start a metrics program, This will help quantify the benefits of CASE which
would be critical when asking for more *blessings” from the management.

4.6 CASE TOOLS

4.6.1 Generatipn of CASE Tools

There are two generation of CASE tools. The first generation CASE tools can be
broadly classitied into three groups; information generations or 4GL, front-end
- designfanalysis tools applications tools and applications generalors.

The vagiety ol 4GL products includes the following; report gencrators, query
languages, DBMS tront ends and modelling languages.: Most suffer from

- shortcomings: they are tied too closely to a proprietory database sysiem therchy
offering a very restricted solution; they are functionatly too weak to be more than a
building block in a larger application solution or they are niot easily integrated with
existing produclion system and dala.

Case Tools

57

o

Sofltware Qualily
Concepts and Case Tools

58

Design tools help a user to draw blue prints or design diagrams based on some pre-
selected methodology. Typically high-level design documentation is provided
automatically. The obvious flow in these tools is that they are standatone and their
results are not easily integrated into the subsequent phases of the life cycle.

A major shoricoming of these first generation CASE products is their inability to bridge

the gap between design and application generation. The second generation CASE tools
evolved into two major categories: life cycle automation and solution software. The firsl’
category of tools is aimed at data processing profession to provide general solutions to

their problems. The second category of tools is aimed-ar analyst or application

specialisy, in a restricted domain of application, to provide fast solution to the end user.

Electronic spread sheets represent such a tools in the very restricted domain of
financial analysis.

4.6.2 Categorics of CASE Tools

CASE tools might be classified into four broad categories according te the CASE
problems on which they focus.

I. Front-end CASE wols, or Upper CASE wols:

These deal with the high-level design, specification and analysis of software and
requirements. These tools include computer-aided diagramming tools oriented
toward a particular programming design methadology, more recently including
object-oriented design.

2 Back-end CASE tools, or Lower CASE tools: ~

These deal with the detailed design, coding, assembly, and lésling of software.
These tools may aid the programmer directly; for example, they include graphical

debugging, aids and query and browsing lacilities to find quickie a particular
procedure or uses of a variable.

3. Maintenance Tools:

These deals with software after initial release. These tools may assist in tracking
bug fixes and enhancement requests, porting to new platforms or performing new

relcases. : :
4, Support Sofiware and Frameworks:

These provide basic functionality required in tools of Lype 1, 2 and 3. Suppon
sofiware includes basic operating-system functionality as well as higher-level
suppor! such as project management and scheduling software, and database

support 1o track different version and configurations of software releases. Varioug
- - - s
projects have been directed toward standardizing framewerks to support and ..
ot

integrate CASE applications.

In addition to CASE methodology based on traditional programming languages and

tools, there are two quite different approaches to CASE, particularly for back-end tools:

I. Higher-level languages and packages:

Some commercial produets have focused on specific applications. For example,
therc are dozens of fourih-generation Iangdages {4GLs), forms packages, and
database design tools oriented toward the large market for business database
applications on character terminals. Some more recent preducts are targeted at
simplifying development of user interfaces in window systems, [t is possible to

make large gains in application programming productivity by focusing on a single

applicalion area.
2. Expert Sysiems

The application of artificial intelligence to programming, to select designs and
produrce code automatically in limited domains in another approach. So far, this

approach has seen limited application-sufficiently general automatic Case Taols
propramming is very difficult to do.

4.6.3 Selecting Case Tools

This brigs us to the onerous lask of idenlifying, evalualing and selecting CASE tools.
There are currently more than 200 CASE tools available in USA alone. The prices
ranges from $ 100 (o ones which sell for upwards of § 300,000. In efficient markets,
the prince is a good proxy tor functionality. The incredible variance in the type and
functionality of tools which [all under the banner of CASE can thus be gauged.
Selecting one from among them is not a trivial risk. If maximizing performance per
unit is the ohjective then the obvious choice is Turho Analyst. Telco's CASE offering
Turho Analyst priced at only Rs 20,000 is 4 low risk acquisition for organisations not

yet convinced of 1he efficacy of the technology.” . . -
/

As already mentioned there are many other tools to choose from. Any comprehensive
evaluation and selection methodology must pay due atiéntion to two thinks.

Developing a menu of features and facilities that tools offer-a checklist of features/
tacilities/functionality that one desires for one’s environment.

Importance must be given Lo eachfeature so as to tacilitate a computation of scores
for dach short listed tool. The best is selecled subject to the budgel constraints. One -
such methodology has been developed by P-CUBE Corp., USA. We should adapt this
to our context and include certain factors like after-sales services, support and
training, foreign exchanges restrictions, dulies, interfaces to packages/languages
common in India, ete.

After all this evaluation, selection and implemehtalion, one notices a drop in
productivity. Have patience. Because CASE manages to improve long term
productivity and quality significantly, once the learning curve has been taken carc of..

4.6.4 Deft Case Tools

DEFT supplies Computer Aided System Engineering (CASE) products to engineers
who work with Relational Data Base Management Systems. RDBMS engineers use
the Deft CASE systems 10;

e Assist them in pathering the initial requirements from end-user.
® Analyze thege requirements and determine their feasibility
e Design the syslem’s peneral algorithms

s Design an acwal detailed implcmeﬁr.alion in terms of the tarpet environment
(bardware and operating system, specific RDBMS, etc.)

e Check (heir designs lor completeness and consistency, and for contravention of
specttic RDBMS naming conventions.

e Automutically gencrate the RDBMS (tables, indices and forms) from the dcsién

e~ Mainwain their existing systems by reverse cngmecrmg Lhe 0r1g1nal dalabasaa .
from their host machines to Deft

e Control their development efforts through the medium of our configuration
" management [gols. :

The Deft CASE System

Deft CASE system consists of both tools and methods. Deft is flexible—it aliows you
the fuxury of using either your own methods or The Deft Way is easy to use and
simple methodology. In either case, your projects will run on-time #nd within budget,
predictably and consistently.

The Deft Wav

CASE mumoda employ the structured approach to software engineering and comprise

various methods in which one draws diagrams or models of the compuler system {o be ’ 59
X §

v f v

Solftware Quality
Concepts und Case Taols

60

built. The models cach portray a certain aspect of the system, with four views required
Lo adequately model a system that uscs an RDBMS as the data repository. These four
views are:

o Datu Flow Diagrams (DFDs): These show the path of the data from one process
to another and from and Lo the users of the sysiem. The diagram represents the
processes Lo be performed-and-identifies the data itself,

e Entity Relationship Diagrams (ERDs): These show the relationships of the
various data entities to cach other. With Defl's approach you can model not only
your logical analysis, but also the physical database design itsell, since Deft
wllows you o deline key or index structures right in the model.

e Program Structure Diagrams (PSDs): These describe tic logic or business rules
involved in the processes, PSDs can used to depict pseudo code for either 3GL. or
4GL programs, and o break 2 module into subroulines or functions in addition 1o
graphically showing the main procedures.

e Form/Reporl templates and prolotypes complete the views required Lo model the
tarpet system. Deft provides a tool that allows you to rapidly create these forms
or report templates. Using Delt's Gateway products, you can aclually create these
templates on your host machine within your RDBMS environment.

4.7 FACTORS AFFECTING SOFTWARE
DEVELOPMENT

Main faclors_ -

¢ The people that are to develop the prodﬁcl

. The work environment in which they develop the software

s The mc'thodol-ogies and tools that they use -

e The need o produce quality software

Subsidiary factors

e The politics of th.e orgzmisa;ion

e The need feor experimentation and error

; The apﬁointmenl of the correct person as development contreller
The psychology of the term members

e The need for standardisation.

4.8 THE BENEFITS OF USING CASE

- The henelits of upper CASE are more direct il you usuvally pertorin corporate

plamiing. By using an vpper CASE zystein to build an enterprise model, you pain
areater insight into the importance of certain funciions and how the activities they
control affect the entire organisation. You can better understand—

1. corporate and departmental mechanisms and responsibilities;
2. the goals"of the company and its departments;

3. the influence of operations on achieving these goals;

4. their place within corporate and departmental administration and operations;

5. the timeliness and sequence of operations;

factors intluencing operations and goal achievement;

allocation of resources insupport of operations;

the effect of external influences of the organisation;

problems facing the organisation; and
0. the importance of information relative to the success of the organisation.
‘heck your Progress

What isa SDLC ? List differenl phases of SDLC.

What is a major shortcoming of the first generation CASE tools?

What is the difference between upper CASE tools and lower CASE tools?

-

9 SUMMARY

he purpose of this unit was to provide a broad perspective of the emerging CASE

xld. Wil software expenditure skyrocketing CASE has become a competitive edge for .
yth major corporations and nations. Considering the fact that some countries

rend around 30 to 40 billion on software, a 50% reduction in cost means billions of

ving ecach year.

urrently CASE products are classified into upper CASE and lower CASE. Upper

ASE tools supports-the front end of development life cycle: lower CASE tools

ipport the back end of development life cycle. Many of the tools are designed to
ipport a particular methodelogy. One approach is to integrate these tools to cover
ore of the development life cycle. Another is the devetopment of a CASE shell, which
an environment that provides advanced facilities for the user to build his/her own
ols.

Case Tools

61

8w = ey

Softwuore Quullty

Concepls und Case Tools 4.10 MODEL ANSWERS

1. A SDLC is a tull life cycle of a software project which goes through different
stages: Requirements, Decomposition, Speciticution, Design, Cading, Testing,
Documentation etc.

2. A major shorlcoming of the first generation CASE products is their inability to
bridge the gap between design and applicalion programs.

3. The difference between the two is that the first deals with high level Design,
Specification and analysis of S/W and requirement whereas the second deals with
the detailed design, Coding, Asseinbly and Testing of Software.

62

Lo I3 1

i
i
'

