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BLOCK INTRODUCTION

Statistics is in fact a science related to analysis of gathered data and hence strengthens
us to conclude and comment on the data gathered by conducting an experiment, this
experiment could belong to any stream of education, science, advertising, etc. and
could be any software t0o. It is the statistical analysis of the customers requirement
which make any industry (could be software industry too) to develop a variety of
products, and hence facilitate their users. You may agree with this, because it was the
statistical need analysis of GUI platforms which make software companies like
Microsoft and many more to switch from CUI to GUI mode. Thus, the study of the
topics discussed in this block will definitely strengthen your analytical skill in 2
scientific way.

This block is composed of three units: Probability distribution, Pseudo random
number generation, Regression. Since, Computers is & discrete science so we should
study the mathematical concepts, which are discrete in nature, that’s why=we talked
about probability and its distribution. It is to be noted that in any experiment the
events are not a sure shot, their occurrence is quite random and this random behaviour
analysis is handled by various distributions discussed in this block. We have further
extended the topic of randomness and also discussed the algorithms related to Pseudo
random number generation. Finally, in this block we have talked about the technique
of regression, which contributes to the determination of exactness out of randomness.
Regression techniques will help you to analyse the random results of any experiment
and hence bring you in the position that you can comment on the results obtained,
these results could be the outcome produced by any software too.
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UNIT 1 PROBABILITY DISTRIBUTIONS

Structure Page Nos.
1.0  Introduction 5
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1.3.2 Poisson Distribution
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1.4.2 Exponential Random Variable
1.4.3 Normal Distribution
1.44 Chi-square Distribution
1.5 Summary 25
1.6  Solutions/Answers 26

1.0 INTRODUCTION

The discipline of statistics deals with the collection, analysis and interpretation of
data. Outcomes may vary, even when measurements are taken under conditions that
appear to be the same. Variation i~ a fact of life. Proper slatistical methods can help us
understand the inherent variability in the collected data, and facilitate the appropriate
analysis of the same. Because of this variability, uncertainty is a part of many of our
decisions. In medical research, for example, interest may center on the effectiveness
of a new vaccine for AIDS; an agronomist may want to decide, if an increase in yield
can be atiributed 1o a new: strain of wheat; a meteorologist may be interested in
predicting, whether it is going to rin on a particular day; an environmentalist may be
interested in testing, whether new controls can lead to a decrease in the pollution
level; an economist’s intere+' may lie in estimating the unemployment rate, etc.
Statistics, and probabilistic 1v.ndations on which statistical methods are based, can
provide the models that may be 1. =d to make decisions in 17ese and many other
situations involving uncertainties, :

Any re;alistic model of a real world phenomenon must take into account the
possiblities of randomness i.e., more often, the quantities we are interested in are not
predicted in advance, but rather wilt exhibit inherent variation and that should be
taken into account by the model. Such a model is, naturally enough, referred to as a
probability model.

In this unit, we shall see what a random variable is, and define it for a particular
random experiment. We shall see that there are two major types of probability
distribution. We shall look into their properties and study the different applications.

1.1 OBJECTIVES

After going through this unit, you shiould be able to:
» describe the events.and sample spaces assaciated with an experiment;
» define a random variable associated with an experiment;
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« decide the whether a random variable is discrele or conlinuous;
e describe the fotlowing distributions:

a) Binomial distribution

b) Poisson distribution

¢) Uniform distribution

d) Exponential distribution

e) Normal distribution, and

) Chi-square distribution.

1.2 RANDOM VARIABLES

Definition: A “Random experiment” or a “Slatislical experiment” is any act whose
outcome cannot be predicted in advance. Any outcome of a random experiment is
known as “‘event”.

We will start with the following illustrations:

1) The number of telephone calls received by Monica, a telephone operator in a call
center in Delhi, between 1:00 am and 3:00 am in the early morming.

2} The amount of rainfall in Mumbai on August 1%,

3) The number of misprints on a randomly chosen page of a particular book.

4) The final results of the 5 one-day matches between India-Pakistan,

5) The outcome of rolling dice.

6) The volume of szles of a certain item in a given year.

7} Time to failure of a machine.

In ail the above cases there is one common feature. These experiments describe the
process of associaling a number to an outcome of the experiment {i.e. to an event). A
funclion which associates a number to each possibie cutcome of the experiment is
called a “random variable”. It is often the case that our primary interest is in the
numerical value of the random variable rather than the outcome itself. The following
examples will help to make this idea clear.

Example 1: Suppose we are interested in the number of heads, say X, obtained in
three tosses of a coin.

Solution: If we toss a coin three times, then the experiment has a total of eight
possible outcomes, and they are as follows;

ay=(HHHY, ay={HHT}, ay={HTH), a,~(HTT}
as={THH}, as={THT}, a,={TTE}, ag={TTT}

Denoting the event corresponding to getting k heads, k=0,1,2,3,.. as{X=k}, observe
that {X=0} => {as} ; {X=1] => {a, asa7} ; {(X=2} =>{a;, aras}; (X=1} =>{a}

In above expressions, each value in the support of X comresponds to some element {or
set of elements) in the sample space S. For example, the value 0 corresponds to the
element {as}, while the value 1 corresponds to the set of elements { a dsdar}.

Therefore, the sample space S, the set of all possible outcomes of this experiment can
be expressed as
S={ay, az, ..., a5}

Since, X is the characteristics, which denotes the number of heads out of the three
tosses, it is associated with each outcome of this experiment. Therefore, X is a
function defined on the clements of § and the possible values of X are {0,1,2,3}. The
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sct of possible values that X can take is called the support of X which may be denocted
as ¥ . Observe, that X can be explicitly expressed as follows;

X(ay)=3, X (a)=X (a;)=X (as)=2, X (a})=X (ag =X (a)=1, X (as)=0

It is interesting to observe that to each value there is always some elements in the
sample space or a set of element in the sample spaces. For, example, the set of
clement, in the sample spaces corresponding to the value ‘0" is the point {a.}; for 1,
the set is {a,, as a;}, for 2, the setis {a,, a3, as} and for 3 the point is {a,}.

Therefore, we can easily make the following identification of events corresponding to
the vailues associated by X. Denoling the event corresponding to “0°, as {X=0},
simnilarly for other values, observe thal

(X=0}={ay}; {X=1}={a,, a5 a;}; {X=2}={a, a,, a5} (X=3}={a,}

If we assume that the coin is unbiased and the tosses have been performed
independently, the probabilities of all the outcomes of the sample space are equal, that

is P(a,)=P(a;)=...=P({ay) = % . Therefore, using the probability law of disjoint events
we can easily obtain

P(X=0) =P ({ah)= ¢

PHX=1}) =P ({a. as a;}) =P ({aD+P ({as})+P ({a7}) =

0oL ®Iw

P ({X=2}) =P ({as a3, a5}) =P ({a:})+P ({a:})+P ({as}) =
1

P{X=3)=P({a;})= Py

Therefore, in this case, the random variable X takes four values 0,1, 2,3 with the

probabilities 1/8,3/8,3/8,1/8 respectively. It is also important to observe that

P({X=0})+P({X=1 N+P({X=2)} 1HP({X=3})=1

Itis not a coincidence, it is always irue. If we add the probabilities of all possible
values of a random variable it is always one.

To sum up, we say that the random variable .X; is a real valued function defined on all
the elements of a sample space of a random experiment. The random variable takes
different values, and for each value therc is a probability associated with it. The sum
of all the probabilities of all the points in the support ¥ of the random variable X adds
up 1o one.

The Figure I will demonstrate the random variable X,

HHH HHT HTH HTT X ]
THH THT TTHTIT —® {0, 1,2,3)

Figure I: Schemstic represeniation of & random varizble

Because of this represeniztion, one can define probabilities for the set of numbers
(depending on the random variable) rather than working with arbitrary space and this
simplifies the prablein considerably, Now, let us consider the following example.

Probability
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Example 2: You have purchased a new vattery operated wristwalch and you have
inscrted one new bartery into it. Suppose you are interested in the following:

a) How long will it be before the first battery needs replacement?
b) How many battery will have 10 be replaced during a one year period?

Solution: Note that both (a) and (b) are random variables. Let us discuss them one by |
one. In case (a), we want to find the duration of time before the battery neads to be =
replaced. Note that the variable takes values continuously along a line say from the i
time duration A to time duration B. No values in between A and B are left out. In
other words there is no break in the values assumed by this random variable,

In case (b), the random variable is the number of batteries. This variable can 1ake
values 0 or 1 or 2 etc. There is no continuity, since only non-negative integer values
can be assumed. So, the range of this variable is a discrete set of points. From this
discussion it is clear that the random variable A defined in Example 1 is also a discrete
random variable. The above examples show that the random variables can be of two
types. We will distinguish between the fotlowing two types of random variables;

1} Discrete Random Variable |, and
2) Continuous Random VYariable.

¥ Check Your Progress I

1} Suppose you take a 50-question maltiple-choice examination, guessing your
answer, and are interested in the number of correct answers obtained. Then .

(a) What is the random variable .Y that you will consider for this situation?
(b) What is the set of possible values of X in this example?
(¢} What does P{(X=10) mean in this context? .

Now in the next two sections we will describe. the discrete and continuous random
variables in detail. 5

1.3 DISCRETE RANDOM VARIABLE

[n this seclion, we define a discrete random variable and mention some of its basic
properties.

Definition: A random variable X is said to be discrete, if the total number of values X
can lake is finile or countably infinite (i.e the support of X is either finite or
countable).

The support x of X' may be listed as {a,, a,, a;,...]. Moreover, for each value of a,,
there is a probability associated with it. Suppose we denote them as {pw, P1: P2re-- 4
therefore, we have P(X= a;)=p; for I=0,1,.... From the properties of a random variable
and from the probability law, we have

(a) piz0forallizo

() D5, =po+p+ps+on=|
r=0




From the above discussions, it is follows that there exists a function p:¥— Ras Probability

follows; ' Distributions
P, if a=a; i=0,12.....

play= {0 otherwise

This function p is called the pgobability mass function {p.m.f.} of the discrete random

variable X, The collection of the pairs {(a,, pi1=0,1,...} is called the probability
distribuiion of X.

Another function which plays a very imporant role for any random variable is known
as the cumulative distribution function (c.d.f.) or simply the distribution function of
the random variable. The ¢.d.f. F : R—[0,1] of the random variable X is defined as

F(b) = P(X < b), for - o < b < oo,

In other words, F(b) denotes the probability that the random variable X wakes on a
value which will be less than or equal to 5. Some important properties of the c.d.f. F
() are

(a} F(b)is a non-decreasing function of 5.
(b) lim F(8)=1

(c} al-tnl F()y=0

Now, we clarify these concepts with the same example discussed in the previous
section. Suppose X is the random variable denoting the number of heads obtained in
three independent tosses of a fair coin, then the probability mass function (pm.f)pis
the function, p: ¥ — R, such that
1 3 I
0= -, 1) =p(2)= -, Iy=—
p(0) 2 p(1) =p(2) 2 p(3) 2
Therefore, p(a,} =p; = 0, for all g;and
Z’: 1.23,.3.
PEs 87878

=

In this case the p.m.f of the random variable by the function p and the corresponding
probability distribution is the set {(0,%),[I,%J,(Z%J{B,%J} .This can also be
expressed in a tabular form as follows:

Table 1: Probability distribution of the number of heads in three independent
tosses of a fair coin

The number of heads (X value) * Probability

i
0 8
3
! 8
2 3
8
3 L}
8
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Statistical Now, let us see (he graphical representation of the distribution.
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0.50
0.40 =T
Probability 0.30 ——
0.20 |

0.10 |

0 ; 2 3
Number of heads

Figore 2: Graphical representation of the distribution of X

Graphically along the horizontal axis, plot the various possible values @, of a random '_
variable and on each value erect a vertical line with height proportional to the
carresponding probahility p,.

Now, let us consider the c.d.f of the random variable X. Note that if b<0, clearly ]
F(b)=P(X < b)=0, becausec X takes values only {0,1,2,3}. [fb=0, that is b
F(O)=P(X < 0)=P(X=0}=1/8. If 0 < b < I, then P( X" < b) = P(X=0)+P(0<X<b) = 1/8+0}
= 1/8. Similarly, if b=1, F(1)= P(X < 1) = P(X=0) + P(X=1)=1/8+3/8=4/8 and so on.
Therefore, the c.d.f. F(.) has the following form;

[0 if b<0
1 if 0<b<l ;
8 |
4 I
F(b)=‘§ if 1€b<2
T iy 2<b<3d .
8 i.;
1

Fy

if b<3 4

Note: Mathematical expectation or Expected values or Expectations forms, the
fundamenta! idea in the study of probability distribution of any discrete random
variable X, the expected value (or mean), denoted as E(X} is defined as

E(X) = xopo+ X1P1+ XaPat. vveeeeenr -T2,

Where x,, x,, X2 elc., are the values assumed by X and pe, pi, p2 etc are probabilities of -
these values. Under special conditions (like alt probabilities are equal) then

E(Y) = mean of xg_ X Xa2-...-

Stmilarly for continuous variables X having density [unction p(x) where

P[X=x] = p(x) , the Expectation E(X) will be given by integral of x;p(x;} w.rt x.
This concept of Expectation also contributes to the definition of Moment Generating !
Function of X i.e M.(1)= E(e").
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Example 3: A box contains twice as many red marbles as green marbles, One marble
is drawn at random from the box and is replaced; then a second marble is drawn at
random from the box. If both marbles are green you win Rs. 50; if both marbles are
red you loose Rs. 10; and if the marbles are of different colours, then you neither
loose nor win. Determine the probability distribution for the amount you win or loose?

Solution: Say X denote the amount you win (+) or loose (-} ; i.e X= +50 or =10
The probability that both marbles are green is 1/9 i.e. P[X= +50] =1/9

The probability that both marbles are red  is 4/9 i.e. P[X=—10] =4/9

The probability that marbles are of different colours is 4/9 i.e. P[X=0] =4/9

Thus, the probability distribution is given by following table

Amount{in Rs won(+) or lost(-)) Probability
+50 1/9
0 4/9
—10 4/9

& Check Your Progress 2

1) Which of the variables piven below are discrete? Give reasons for your answer.

(a) The daily measurement of snowfall at Shimla.
(b) The number of industrial accidents in each month in West Bengal.
(c) The number of defective goods in a shipment of goods from a manufacturer.

1.3.1 Binomial Distribution

One very important discrete random variable (or discrete distribution} is the binomiat
distribution. In this sub-section. we shall discuss this random variable and its

probability distribution.

Quite often we have to deal with the experiments where there are only two possible
outcomes. For example, when a coin is tossed either a head or a tail will come up, a
newbom is either a_girl or a boy, a seed either germinates or fails to germinate. Let us
consider such an experiment. For example consider the same experiment of tossing a
coin independently three times, Note that, the coin necd not necessarily be a fair one,
that is P(Head) may not be equal to P(Tail).

This particular experiment has a certain characteristics. First of all, it involves
repetition of three identical experiments (trials). Each trial has only two possible
outcomes: a Head or a Tail. We refer to the outcome ‘Head® as success and the
outcome “Tail” as failure. AH trials are independent of each other. We also know that
the probability of getting a ‘Head’ in a trial is p and probability of getting a ‘1ail" in a
trial is 1 — p, that is ‘ '

P(Head) = P(success) = p and P(Tail) = P(failure) =q~ [ —p

This shows that the probability of getting a ‘success’ or a ‘[ailure’ does not change
from one trial to another. [f X 'denotes the total number of *“Heads’, obtained in three

Probabilicy
Distribationy
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trials, then X is 2 random variable, which takes values {0,1,2,3}. Then regarding the
abave experiment, we have observed the following;

1) Itinvolves a repetition of n identical trials (Here n=3).
2) The trials are independent of each other,
-3) Each trial has two possible outcomes.

1) The probability of success (p) and the probability of failure (q=1-p) remain
constant and do not change from trial to trial.

Now, let us try to compute the probabiiities P{Y = 0}, P{X=1},P{X=2} and
P{X =13} in this case. Note that

P(X=0) = P(getting tails in all three trials)
=P({TTT}) = (1-p)’=q’.

Similarly,
P(X = 1) = P(gerting one Tail and two Heads in three trials)
= P({THH,HTH,HHT}) = P({THH}) + P({HTH}) + ({HHT))
= (1~pY’pH{1~p)’p +(1-p)’p = 3(1-p)’p = 3¢’p.

Similarly,
P(X = 2) = (getting two Tails and one Head in three trials)
=P({HTT,THF,TTH)}) = P({HTT}} + P({THT}) + ({TTH})
= (I-p)p*+ (1—p)p”+ (1pp* = 3(1—p)p’=3q’p

Finally
P(X=3) = P(gelting Heads in three trials)
= P({HHH})=p’

Now, observe that instead of n=3, in the above example, we can easily compute the
probability for any general . Suppose we compute P(X =r), for 0 < r < n, then note
that

P(X'=1r) = C(n,n)p'(I-p)"" = C(n,0)p'q"",

Where C(n,r) denotes the number of ways n places can be filled with r Heads and ri—r
Tails. From your school mathematics, recall that it is the number of combination of r
objects taken r ata time and it can b= calculated by the following formula:

Clmry=—"— =(:—! 5

Therefore, forr=0,1,...n,

n! r_n-r
P(X=?')=r!(n—_r)!P q

where

n = the number of trials made

r = the number of successes

P = the probability of success in a trial

g = | ~ > = the probability of a failure.

Now, we define the binomial distribution formally.

Let X represents the number of successes in the set of n independent identical trials.

B e
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Then X is a discrete random variable taking values 0,1,...,n. The probability of the Probability
event P(X=r}is given by Distributions

1
P(X;:r)=Lprq"-i" r=0,1,2,.....,ﬂ
riin-r)

where n, r, p, g are same as defined before. Such a random variable X is called a
binomial random variable and ils probability distribulion is called the binomial
distribution. A Binomial disiribution has two parameters » and p.

5" Check Your Progress 3

1} A farmer buys a quantity of cabbage seeds from a company that claims that
approximnately 90% of the seeds will germinate if planted properly. If four seeds
are planted, what is the probability that exactly two will germinate?

-1.3.2 Poisson Distribution

In this sub-section, we will introduce another discrete distribution called “Poisson
Distribution’. First, we shall describe the different situations where we can apply (his
Poisson Distribution.

Suppose it is the first hour in a bank on a busy Monday moming, and we are
interested in the number of customers who might arrive during that hour, or during a
5-minute or a 10-minute interval in that hour. In statistical terms, we want to find the
probabilities for the number of arrivals in a certain time interval frame.

To find this probability, we shall make some assumptions similar to the binomial
distribution.

a) The average arrival rate at any time, remains the same over the entire first hour.

b) The number of arrivals in z time interval does not depend on what has happened
in the previous time intervais.

c) Itis extremely unlikely that more than one customer will arrive at the same time,

Under these assumptions, we can find the required probabilities. Suppose X is the
random variable denoting the number of customers that arrive in the first hour, then

A qi
e_f, i=0123,...
1l

P(X =i)=

Where A (the Greek letter Lambda) denotes the average arrival rate per hour, For
exarnple, suppose we know that the average number of customers that arrive in that
bank during the first hour is 60 and we want to find whether there will be no more
than 3 customiers in the first 10 minutes. Since, we know that the average arrival rate
per hour is 60, if we denote A to be the average arrival rate per 10 minutes, then

60x10
A== Gxo =10. Thereforz, we can use the above formula and get

=10y Ad
=== i=0123...
I
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But we want to find the probability that no more than 3 customers will be there in the
first ten minutes and that is

P(X €3)= P(X =0)+ P(X = 1)+ P(X = 2) + P(X =3) )
N =19 2 =10 ]

=e™ o010+ f fo +£ 3:0 2)

~0.00005 +0.00050 + 0.00226 +0.00757 = 0.01038 G3)

What does this value 0.01038 indicate? It tells us that if the arrival rates are uniform

then there is only 1% chance that less than three customers will be there, or in other

words, there is a 99% chance that there will be more then 3 customers in the first 10
minutes.

Similarly, if we want to find whether there will b no more than 3 customers in the
60x5
= 5.

first 5 minultes, then similarly, as above we can see that in this case A=

) 60
Therefore, if Y denotes the number of customers presents in the first 5 minutes, then
PY<)=P¥=0)+P¥=D+P(Y=2)+P¥=3) {4)
-3 s2 -5 &3
= Syset o £ L €3 5)
2! 3t
= 0.00674 +0.03369 +0.08422 +0.14037 = 0.26502 {6)

From the above two examples it is clear that if we change the time unit (and hence the
value of 1), the probabilities will change. The probability mass function (p.m.f)
given by
-).Al
piy=PX =)= T i=0,123,...
represents the Poisson probability distribution. From the series expansion of &* | it
easily follows that as it should be,

a2

a

iP(X=:‘)=Ze-?f =1
=0 =0

One point that should always be kept in mind is that a random variable denoting the
number of occurrences in an interval of time will follow a Poisson distribution, if the
occurrences have the following characteristics:

a) The average occurrence rate per unit time is constant.

b) Occurrence in an interval is independent of what has happened previously,

¢} The chance that more than one occurrence will happen at the same time is
negligible,

Now, let us look at some situations where we can apply the Poisson distribution. Here
is an example

Example 4: Calls at a particular call center occur at an average rate of & calls per 10
minutes. Suppose that the operator leaves his position for a 5-minute coffee break.
What is the chance that exactly one call comes in while the operator is away?

Solution: In this case the conditions (a), (b)'and (c) are satisfied. Therefore, if X
denotes the number of calls during a 5 minute interval, then X is a Poisson random

variable with A = SJLOS =4, There-fore.

8—4

1
P=1)=22 4 ~0073
It




That means the chance is 7.3% that the operator misses exactly one call,

& Check Your Progress 4

1) [fa bank receives on an average A = 6 bad Cheques per day, what is the
probability that it will receive 4 bad checks on any given day.

1.4 CONTINUOUS RANDOM VARIABLE

So far we have discussed, discrete random variables in details and we have provided
two important discrete distributions namely, binomial and Poisson distributions. Now,
in this section, we will be discussing another type of random variables namely,
continuous random variables.

Let us look at the part (a) of Example 2. Note that we want to find the time of
occurrence rather than the number of occurrences. Therefore, if the random variable X
denotes the time of occurrence of a particular event, then the randorm variable X can
take any value on the positive real line or may be any value on 2 fixed interval say
(A,B). Therefore, the random variable can take uncountably many values. This type of
a random variable which can take uncountably many values is called a continuous
random variable. For a continuous random variable X; the probability that X takes a
particular value is always zero, but we can always specify the probability of X of any
interval through a probability density function (p.d.f.}). The exact details are given
below,

Definition: Let X ba a continuous random variable which takes values in the interval
{A,B). A real valued function f{x): R— R is called the p.d.f of X, if

a)f(x)z0and f(x}=0,ifx<Aorx>B.
b) Ef(x)dr:l

OPc<X<d)= ff(x)dr

Now, we shall see how we can use the graph of the p.d.f. of a continuous random
variable to study real life problems.

Example 5: Suppose the Director of a training programme wants t¢ conduct a
programme 1o upgrade the supervisory skills of the production line supervisors.
Because the programme is seil-administered, supervisors require different number of
hours to complete the programme. Based on a past study, it is known that the
following p.d.f. shows the distribution of time spent by a candidate to complete the
programme.

Probability
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250

Figure 3: The p.d.L of the time spent by a candidaie ta complete the program

In Figure 3, it is clear that the average time spent by the candidate is 250 and it is
symmetrically distributed around 250. How can the Difector use this graph 1o find the
following? What is the chance that a participant selected at random will require:

a) more than 250 hours to complete the program
b) less than 250 hours to complele the program

Solution: Since the graph is symmetric, therefore, it is clear that area under the curve
above 250 is half. Therefore, the probability that the random variable takes values

higher than 250 is —;— . Similarly, the random variable takes value lower than 250 is

1
also —.
2

In the following sub-sections, we will consider different continuous distributions.
1.4.1 Uniform Random Variable

The uniform distribution is the simplest of a few well-known continuous distributions,
which occur quite often. It can be explained intuitively very easily. Suppose X is a
continuous random variable such that if we take any subinterval of the sample space,
then the probability that X belongs to this subinterval is the same as the probability
that X belongs to any other subintervals of the same length. The distribution
corresponding to this random variable is known as a uniform distribution and this
random variable is called a uniform random variable,

Formally, we define the uniform random variable as follows: The random variable X
is @ uniform random variable between (A, B), if its p.d.f. is given by

1@, = B—I‘E for A<x<B
,=${ B -
1o olherwise

Fromi the p.d.f. itis clear that if A <a; < b, <B, A <a; < b, <B and b,-a, = b;-a;,
then Pla; < X' < b,}=P(a; < X < b; ). Therefore, if the length of the intervals are the
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samé Then, the corresponding probabilities will be also equal. Let us see some
examples of such random variables:

Example 6: A train is fikely to arrive at a station al any timé uniformly between 6:15
am and 6:30 am. Suppose X denotes the timic the train reaches, measured in minutes,
after 6:00 am.

Solution: In this case X is a uniform random variable that takes value between
(15,30). Note that in this P(20 < X'<25) is same P(18 < x < 23) and that is equal to

25-30 23-18_1

30-15 30-15 3

=% Check Your Progress 5

1) Anoffice fire drill is scheduled for a particular day, and the fire alarm is likely 1o
ring uniformly at any time between 10:00 am to 1:00 pm.

1.4.2 Exporential Random Variable

In making of mathematical model for a real world phenomenon, it is always necessary
to make certain simplifying assumpticns so as to render the mathematical tractability.
On the other hand, however, we cannot make too many simplifying assumptions, for
then our conclusions obtained from the mathematical model, would not be applicable
to the real world problem. Thus, in short, we must take enough simplifying
assumplions to enable us to handle the mathematics but not so many that the
mathematical model no longer resembles the real world problem. One simplifying
assumption that is often made is to assume that certain random variables are
exponentially distributed. The reason for this is that the exponential distribution is
both easy to work and is ofien a good approximation to Lhe actual distribution.

' We use exponential distribution to model lifetime data that is the data, which are
mainly non-negative. Although, with proper modifications, it can be used to analyse
any type of data (not necessarily non-negative only). The property of the exponential
distribution, which makes it easy to analyse, is that it does not deteriorate with time.
By this we mean that if the lifetime of an item is exponentially distributed, then an
item which has been in use for say ten hours, is as good as a new item in regards to the
amount of time remaining until the item fails.

Now, we define the exponential distribution formally: A continuous random variable
X is said to be an exponential random var~ble if the p.d.f of X is given for some X>0,
by

f)= Ae ™ forx>0
: 0 otherwise
Here A is known as the rale constant. [t can be shown mathematically that the average

viiue or the mean values of X is % Shapes of f(x) for different values.of X are

provided in the Figure 4.
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0 1 2 3 4 3 6

Figure 4: The p.d.I. of the exponential distribution for dilTerent values of A

It is clear that f{x) is a decreasing function for all values of A and f{x) tends to 0 as x
tends to . Now consider the following example.

Example 7: Suppose that the amount of time one spends in a bank to withdraw cash
from an evening counter is exponentially distributed with mean ten minutes, that is
A = 1/10. What is the probability that the customer will spend more than fifteen
minutes in the counter? )

Solution: If X represents the amount of time that the customer spends in the counter
than we need to find P(X>>15). Therefore,

3
2

P(X>15)= j;.e'“=e-‘“ =e? 0223
15 -

P(X>15)=.223 represents that there is a 22.3 % chance that the customer has to wait
mere than 15 minutes.

1.4.3 Normal Distribution

Normal distribution is undoubtedly the most used continuous distribution in different
areas such as, astronomy, biology, psychology and of course in probability and
statistics too. Because of its practical as well as theoretical importance it has reccived
considerable attentions in different fields. The normal distribution has a unique
position in probability theory, and it can be used as an approximation to other
distributions. In practice, ‘normal theory’ can frequently be applied with a small sk
of serious error, when substantially non-normal distributions correspond more closely
to the observed value, The work of Gauss in 1809 and 1816 established techniques
based on normal distribution, which became standard methods used during the
nineteenth century. Because of Gauss’s enormous contribution, it is also popularly
known as Gaussian distribution.

We will now state the normal distribution formatly: The random variable X is said to
be normally distributed with parameters # and o, if the p.d.f f{x} of X is given by
{x—gy

20t

1
x)= e , Where - <X <w
J(x) oy
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Here ¢ is a real number lying between <o and o= and o is a real number lying
between 0 and w0. ’ )

The function f(x) may look a bit strange, but do not let it bother you. Just notice the
following important things. Note that it involves two parameters g and o, that

means corresponding to each u and @ we get a distribution function. Moreover, it
can be seen that for < < g <wand 0 < g <, the function f{x) is symmetric about
4 and is a ‘bell shaped' one. Both i and o have nice interpretation. It can be casily
checked that u is the average value or mean of the distribution and o provides the
measure of spread. The p.d.f. of two different normal distributions are provided in
Figure 5.

0.8 )
0.7

06|
05
04
0.3
021

0.1

4 2 0 2 4

Figure 5: The p.d.f of the normal distribution for two different values of ( 1, o).

It is clear in Figure 5, that the p.d.f. is symmetric about & and the shape depends on
o . The spread of the distribution is more if o is large.

Now, let us find the P(a < X < b) for any @ and &, when X follows normal distribution
with parameters 4 and o, note that,
| (x-.u‘)z h-p 1 L2
Pla<X<b)= [-— ¥ dc=[5—=e 2dz

V270 = N2r
x—u

The last equality follows by simply making the transformation z= —-——.
: o

Therefore it follows

Pla<X<b)=P( a-p bk .
g o

Where Z follows normal distribution with parameters 0 and 1. Although the
probability cannot be calculated in a compact form, extensive tables are available [or
P (Z < z) for different values of z The table values can be used to compute P (a <X <
b)forany u and o .
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Say we denotc F(a) = P[Z<= a}, the probability that the standard normal vasizble Z
takes values less than or equal to *a’. The values of F for different values of a are
calculated and listed in the table. One such tablg is gjven at the end of this unit.

Note that, the entries in the table are values of z for z=0.00 0.01,0.02 , ..0.09. To
calculate the probability that a random variable having standard normal distribution
will take on a value between a and b, we use the equation,

P(a < Z < b] = F(b) — F(a)

And if either a or b is negative then we can make use of the identity
F2)=1-F(z)

Example 8: Use the table to find the following probabilities

a) P[0.87 <Z<128]
b) P[-0.34<Z<0.62]
c) P[Z>=0.85)

d) P[Z>=-0.65]

Solution: a)  P[0.87 <Z < 1.28} : Find F(1.28 from the table of Normal
distribution given at the end of this block/unit). In the table in the row for Z=1.2
find the value under column 0.08 it will be 0.8997 . Similerly find
F(0.87)=0.8078

so, P[0.87 <Z < ].28] = 0.8997 — 0.8078 = 0.0919

b} Similarly, P[—0.34 <Z <0.62] = F(0.62) - F(0.34) = F(0.62) ~ [ 1— F(0.34)]
=0.7324— (1 —0.6331) = 0.3655
¢) Similarly, calculate P[Z > 0.85] = 1—P[Z <= 0.85] = {—F(0.85) = 0.1977

d) P[Z>—0.65]= 1-P[Z<=—065]
=1—F (-0.65)
= 1- F(1-F(0.65))
=0.7422

Next, we shall see that how to use fhe standard norma! probability table to calculete
probability of any normal distribution.

Standardising

Any norrnal random variable X, which has mean z and variance o° can be
standardiscid as follows.

Take a variable X, and
1) subtract its mean (m or x) and then,
ii} divide by its standard deviation(s or o).

We will call the result, Z, so
X-p
o

For example, suppose, as earlier, that X is an individual’s 1Q score and that it has a
normal distribution with mean z = /00 and standard deviation o = [5. To standardize

Z=

EER

BN D L

= zpal i




and individuals 1Q score, X, we subtract = 100 and divide the result bvea~IZio

give,
X -

7= 100

i3

In this way every value of X, has a corresponding value of Z, For instance, when

xmian, 2280000 g g g, 22 0100

The distribution of standardised nermal random variables

The reason for standardizing a normal random variable in this way is lhat a
A-p
)

standardised normal random variable Z =

has a standard normal distribution.

That is, Z is M(0,1). So, if we take any normal random variable, subtract its mean and
then divide by its standard deviation, the resulting random variable will have standard
nommal distribution. We are going to usc this fact to calculate (non-standard) normal
probabilities.

Calculating probabilities

With reference to the problem of IQ score, suppose we want to calculate the
probability that an individual's IQ score is less than 85, i.e. P{X<85). The
corresponding area under the pdf N(100,15%) is shown in Figure 6.

f

P(X<85)

. i | !
70, 85 160 115
Figure 6: Area under the pdf N(100,15%)

We cannot use normal tabies directly because these give N(0,1) probabilities. Instead,
we will convert the. statement X<85 into an equivalent statement which involves the

standardised score, Z =A—Y-i:ﬁ

because we know it has a standard normal

distribution.

We start with X=85. To turn X into Z we must standardisc the X, but to ensure that we
preserve the meaning of the statement we must treat the other side of the inequality in
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exactly the same way. {Otherwise we will end up calculating the probability of
X -100 < 85-100
15 15
The left hand side is now a standard normat random variable and so we can call it Z,
and we have,
Z< 85-100
15

another statement, not Y<85). ‘Standardising’ both sides gives,

which is
Z< -1

So, we have established that the statement we starled with, X < 85 is equivalent to
7 < — 1. This means that whenever an IQ score, X is less than 85 the corresponding
standardised score, Z will be less than — | and so the probability we are seeking,
P[X<85] is the same P[Z < — 1.

P{Z < — 1] is just a standard normal probability and so we can look it up in given
Table at end of block/unit, in the usual way, which gives 0.1587. We get that PX <
85]=0.1587.

This process of rewriting a probability statement about X, in terms of Z, is not
difficult if you are systematically writing down what you are doing at each stage. We
would lay out the working we have just done for P[X < 85] as follows:

X has a normal distribution with mean 100 and standard deviation 15. Lel us find the
probability that X is less than 85.

X-100 85-100
X <835]=P <
ol ] [ 15 i5 ]
=P[Z-1]1=0.1587

Let us do some problems now.

Example 9: For each of these write down the equivalent standard normal probability.

a) The number of people who visit a historical monument in a week is normally
distributed with 2 mean of 10,500 and a standard deviation of 600. Consider the
probability that fewer than 9000 people visitin a week.

b) ‘The nuraber of cheques processed by d bank each day is normally distributed with
a mean of 30,100 znd & standard deviation of 2450. Consider the probability that
the bank processes mote than 32,000 cheques in a day.

Solution: Here, we want fo find the standard normal probability corresponding to the
probability P[X <9000].

X ~10500 < 900010500

=P[Z <-2.5].
600 600 ]P[ ]

a) Wehave P[X <8D00]= P[

b) Here, we want to find the standard normal probability correspondiné to the
probability P[X > 32000].
PLX <32000]= P X -30100 < 32000-30100
. 2450 2450

] = P[Z <-0.78]

VT T, —
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Note: Probabilities like P{a <X < b] can be calculated in the same way. The only
difference is that when Xis standardised, similar operations must be applied to both a
and bje, a <X < b becomes,

a-p AX-p_b-y

8] G G
which is
azh g ook
G c

Example 10: An individual’s [Q score has a N(100, 15%) distribution. Find the
probability that an individual’s IQ score is between 91 and 121.

Solation: We require P[91 <X < 121]. Standardising gives

[91-100 X -100 121—100]
P < <

15 15 15

The middle term is standardised normal random variable and so we have,

P %< A <%:|=P[—-O.6 <Z <1.4]=0.9192-0.2743=0.6449.
5 Check Your Progress 6

1) Ifarandom variable has the standard normal distribution, find the probability that
it will take on a value

a) Less than 1.50
b) Less than—1.20
c} Greater than —-1.75

2} A filling machine is set to pour 952 mi of oil into bottles, The amount to fill are
normally distributed with a mean of 952 ml and a standard deviation of 4 ml. Use
the standard normal table to find the probability that the bottle contains oil
between 952 and 956 mi?

1.4.4 <Chi-Square Distribution

In the last sub-section, we discussed normal distribution. The chi-square distribution
c¢an be obtained from the normal distributior as follows. Suppose Z,,...,Z, are n -
independent identically distributed normal random variables with parameters 0 and 1,
then Z,24-...+ Z.? is said to have chi-square distribution with r degrees of freedom.
The degrees of frecdom here basically indicates the number of independent
components which constitute the chi-square distribution. It has received a great deat of
attention becavse of its appearance in the constructing analysis of variable 1ables,

Probabitity
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contingency tables and for obtaining the critical values of different tesling procedure.
Now, we formally provide the p.d.f of a chi-square random variable with n degrees of
rcedom.

If the random variable X has chi-square distribution with n-degrees of freedom, then

the p.d.f. of Xis fix}

1 —ri2 _{al2)1 :
—_— xh if x >0
SOy = 2" (n/2)

0 otherwise
here I" (.) is a gamma funclion and it is defined as

[(a)= fx""e-‘dx

Although, the p.d.f of chi-square random variable is nol a very nice looking one, do
not vother about that. Keep in mind that the shapes of density functions are always
skewed. [n this case also if we want to compute P(a <X < b) for any a, & and »,
explicitly it will not be possibie to do so. Numerical integralion is needed to compute
1his probability. Even for chi-square distribution extensive tables of Pla< X <b)are
available for different values of a, & and n.

Note: We have a standard table corresponding to Chi-Square Distribution vary often
you may need to refer to the values from the Table given at end of block/unit. So, the
same is given at the end, the method of usage is similar to that discussed under
Normal distribution.

Example |1: Show that the momenl generating function of a random variable X
which is chi-square distributed with v degrees of freedom is My = (1 — 2¢) *~.

i n 1 I v— —x
Solution: M ()= E(e ):.mf e x (D22 g

(v-ZJIZe—:(l-Zr)Hde

1
= vi2 '[El x
27 (v12)

Letting (I —2£)""% =& in the last integral we find

(v- 232
MO [ (] o
2Y°0(v/2) 1-2¢ 1-2¢

_ —wi2
A4

¥ Check Your Progress 7

1) LetX; and X; be independent random variables, which are chi-square distributed
with v, and v, degrees of freedom respectively. Show that the moment generating

function of Z =X, + X; is (] _2,)-v(v-m)rz
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2} Find the $alues of x? for which the area of the right-hand tail of ihe x* distribution
is 0.05, if the number of degrees of freedom v is equal to (a) 15, (b) 21, {c) 50.

1.5 SUMMARY

In this unit we have covered the following points:

a} A random variable is a variable that takes different values according to the chance
outcome

b) Types of random variables: Discrete and Continuous

c)} Probability distribution gives the probabilities with which the random variables
takes various values in their range

d} Discussed probability distributions:

a. Binomial Distribution: The prebability of an event P[X=r] in this distribution
is given by
PCX=1)=C(n,r)p(1-p)"" = C(n,r)pq™",

b. Poisson Distribution: The probability of an event P[X=i] in this distribution is
given by
=1 =
A
Px=i=2% L, i=0123,..

H

c. Uniform Distribution: The probability density function is defined by

1
f(x)= m for A<x< B

0 otherwise

d. Normal Distribution: The probability for this distribution is determined by
calculating the area under the curve of probability density function defined by

1 (z=p)’ |
f(x)=-J,2_ e 2 | where -0<x<®
no

¢. Chi-Square Distribution: If the random variable X has chi-square distribution
with n-degrees of freedom, then the probability density function of X is
given by
1 —xi2_(n 2} p
—_— e V" if x >0
S = 2"'T(n/2)
0

otherwise
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Stutistical here I () is a gamma funclion and it is defined as
Computing

T(a)= f x*le " dx

f.  Mathematical expeclalion or Expected values or Expectations

E(X) is deﬁned as E(X) = x.opn"' x1p1+ pr2+ ........... ‘...=EXipi
when all probabilities are equal then E{X) = mean of xg_x, Xz......

Similérly for continuous variables'X having density function p(x) where
P[X=x] = p(x} , the Expeciation E(X) will be given by integral of x;p(x;) w.r.t
X.

This concept of Expectalion also contributes to the definition of Moment
Generating Function of X i.e M.{1)= E(e").

1.6 SOLUTIONS/ANSWERS

Check Your Progress 1
1) a)If Xdenotes the number of correct answers, then X is the random -
variable for this situation
b) X can take the values 0,1,2,3...up to 50
¢} P[X=10] means the probability that the number of correct answers is 10
Check Your Progress 2
\ 1) Case (a) is not discrete where as case (b) and (c) are discrete because in
_case (a) we are lzking values in an interval but in case(b) the number of accident is
finite , similarly you argue for case (c) :
Check Your Progress 3
1} This sitvation follows the binomial distribution with n=4 and p=90/100=9/10
The random variable X is the number of seeds that germinate. We have to
caleulate the probability that exactly two of the four seeds will germinaie. That is
P[X=2]. By applying Binorhial formula , we get
PEX=2] =('Cy) * (9/10)* *(1/10)* .
=6*(81/100)* (lflUO).= 486/10000 =0.0486
" So, the required probability is 0.0486 -
Check Your Progress 4
1} Here, we are dealing with the prdblem related to the receipt of bad Chagues, |
which is an event with rare occurrence over an interval of time (which is a day

In this case). So, we'can apply Poisson distribution

Avcrage bad Cheques received perday =6
Thus, by substiluting A =6 #nd x=4 in Poisson formula we get

P[X=4]= (6"¢*)/4! = 0.135
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Check Your Progress 5

!) Suppose X denotes the time, the fire alann starts measured in minutes after 10:00
am. Then clearly X is a uniform random variable between (0,180). Il we want to
calculate the probability that fire alarm will ring before noon, then

P (X <12 ;00 noon) = (2-10)x60 2
180 3

Check Your Progress 6

1) a)0.9332
b) 0.1151
c) 0.9599

2) The standard rormal probability corresponding to this probability is given by

P[952 <Z<956] = P{((952-952)/4) < ((X~952)/4) < ((952-956)/4)]
=P0<Z<]]

(1) - F(0)

0.8413 - 0.5 =0.343

o

Check Your Progress 7

1) The moment generating function of Z =X, + X; is
M({) = E[EI(XH-X!)] = E(eﬂ'l )E(eﬂ'l) = (1 — 2,)-1”2 (1 _ 2!)—“:‘2 = (1 _ zr)»(vﬁv;)!l
using Example 9.

2) Using the table in for Chi Square distribution we find in the column headed x? 45

the values: (a) 25.0 corresponding to v=15; (b) 32.7 comresponding to v = 21;
(¢) 67.5 corresponding to v = 50.
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UNIT 2 PSEUDO - RANDOM NUMBER
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2.0 INTRODUCTION

A pseudo-random number peneration is the methodology to develop algorithms and
programs that can be used in, probability and statistics applications when large
quantities of random digits are needed. Most of these programs produce endless
strings of single-digit numbers, usually in base 10, known as the decimal system.
When large samples of pseudo-random numbers are taken, each of the {0 digits in the
set {0,1,2,3,4,5,6,7,8,9} occurs with equal frequency, even though they are not evenly
distributed in the sequence. ’

Many algofithrns have béen developed in an attempt to produce truly random
sequences of numbers, endless strings of digits in which it is theoretically impossible
to predict the next digit in the sequence based on the digits upto a given point. Bui the
very existence of the algorithm, no matter how sophisticated, means that the next digit
can be predicted! This has given rise to the termn pseudo-random for such machine-
generated strings of digits. They are equivalent to random-number sequences for most
applications, but they are not truly random according to the rigorous definition.

A simulation that has any random dspects at all, must ‘avolve sampiing or generating
random variables from different probability distributions. These disttibution3* ¢ often
specified, that is the form of the distribution functions is explicilly known, for
example it can be exponential, gamma, normal or Poisson as discussed in Unit 1.

Random number generation has infrigued scientists for several years and a lot of effon
has gone into examining the creation of randomness on a deterministic {non-random)
machine, that is to design compuler algorithms that are able to produce ‘random’
sequences of integers. This is not a trivial task. Such algorithms are called generators
and alil generators have flaws because all of them construct the n-th number in the
sequence as a function of the (n — 1) —~ th number, initialised with a non-random seed
value. Numerous techniques have been invented over the years that measure justhow
random a sequence is, and the most well known generator, have been subjected to
rigorous testing. The mathernatical tools that are required to design such an algorithm
are largely number theoretic and combinatorial in nature. These tools differ drastically
from thpse needed lo generate sequences, of integers with certain non-uniform
distributions given that a perfect uniform fandom pumber generatgr is available.

The methodelogy of generating random numbers Has a long and interesting historv.
The earliest methods were essentially carried out byy hand, such as casting lots,
throwing dice, dealing out cards or drawing numbered balls from a well-stired urn.
Many lotteries still operate in this fashion. In the early twentieth century, statisticians
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Jjoined gamblers in generating random numbers and mechanised devices were buill to
gencrate random numbers mere quickly. Sometime later, elcetric circuits based on
randomly pulsating vacuum tubes were developed that delivered random digits at rates
up to 50 per second. One such random number generator machine the Electronic

- Random Number Indicator Equipment (ERNIE) was used by the British General Post
"Office to pick the winners in the Premium Savings Bond lottery. Another electronic
device was used by the Rand Corporation to generate a table of million random digits.
In India, Indian Statistical Institute has published a book with a collection of a milljon
random numbers in the mid twentieth century which was used for sample survey
planning.

As computers and simulation became more widely used, attention was paid to
methods of random number generation compatible with the way computers work. A
good uniform between 0 and 1, random generator should possess certain properties as
listed below:

» Above all, the numbers produced should appear to be distributed uniformly on
[0, 1] and should not exhibit any correlation with each other; otherwise, the
simulation’s results may be completely invalid.

= From a practical point of view, a generator should be fast and avoid the need fora
lot of storage.

*  We should be able to produce a given stream of random numbers from a given
initial (seed) value for at least two reasons. First, this can sometimes make
debugping or verification of the computer program easier or we might want to use
identical random numbers in simulating different systems in order to obtain a
more precise comparison.

In this unit, we will describe how to generate &/ (0,1) (uniform between 0 and 1, see
unit [ for the actual definition) in a computer. Once we have a {J (0, 1) random
number, we will use that to generate several other deviates from different discrete and
continuous distributions.

2.1 OBJECTIVES

After going through this unit, you should be able to0:

® how to generate I/ (0, 1) random number in a compuler;

e how 1o generate random deviates from any discrete distribution, and

* how to generate random numbers from many continuocus distributions like,
" exponential, Weibull, gamma, normal, chi-squarc ete.

2.2 UNIFORM RANDOM NUMBER GENERATORS

You may recall that we had mentioned in the previons section that we need the

uniform random number of generator foi ;easrating 1andom numbers (:om any other

distributions. Thercfore, it is very important to have a very gaod uniform randoin
number generator. There are severai methods available for gencraling uniform random
numbers. But currently the most ponular ene is the linear congruential generator
(LCG). Most of the exisiing sofiware’s today uee this LCGs proposed by Lehmer in
the early-50’s. The LCGs piovides an algorithm tha., 2enerates uniform random
number betwecn (0,1). [t can be simply described as foilows. .

A sequence of integers Z,, Z,,... is defined by the recursive formula

Pseudo Random
Number Generation
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Z,=(@Z,;+c) (mod m), ' Lay

where m, the modulus, a, the multiplier, c, the increment and Zo, the secd or the initjal
value, are all non-negative integers. Those who are not familiar with the definition of
madules, note thar for non-negative integers, x, y and =, x = y {mod z) means x is the
remainder when the integer y divides the i integer =. For example lfy =10and z=3,
thenx=1,orify=10and z=2, then x ='0. Thereforc from (1) it is clear that to
vbain Z, first divide aZ,_, + ¢ by m and Z; is the comesponding remainder of this
division. It is clear that 1 € Z, <m - I and to obtain the desired random numbers U, .

fori=1,2...0n[0, I],weletU,= é- The choice of the non-negative integers, a, ¢
m -

and m are the most crucial steps, and they come from the theoretical considerations. In
addition lo non-ncgatively, they also should satisfy 0 <m, a <mrand c <m. Morcover,
the initial value Z; < m.

Immediately, two objections could be raised against LCGs. The first objection is‘one
which is common to all random number generators, na.mely, the Z's défined by (1) are
not really random. It can be easily seen that fori=1, 2,.

Zi '*,:a Zo+ (a l)](mod m),

50 that every Z; is completely determined by m, a, ¢ and Z,. However, by careful
choice of these four parameters the aim is to induce a behavior in the Z’s that makes
the corresponding U;’s appear lo be independent identically distributed U/ (0, 1)
random variates when subjected to a variety of statistical tests.

The second obje'blion to LCGs might be that the U)'s can take on only the rational

2 -
numbers 0, i — .. (m Y ; in fact the U's might take only a fraction of these
m m

values, depending on the specifications of the four parameters. Therefore, there is no

possibility of getling a value of U, between, say E and 0—9— , whereas this should
m m

. .. 0.8 : )
occur with probability — > 0. We will see later that the modulus m is usually
m

chosen to be very large, say 10° or more, so that the points in [0, 1] where U;'s can fal}
are very dense. This provides an accurale approximation to the true continuous
U (0, 1) distribution, sufficient for most purposes.

Let us consider the following example:

Example 1 : Consider the LCG defined by m = 16,a=5, c =3 and Zo 7. The
following table gives Z, and U, (up to three decimal places) fori = I, ..., 19. Note that
Z17=2,=6,Z;5=Z,=| and 5o on. Therefore, fom i = 17, the sequence repeats itself.
Naturally, we would not senuusly suggest to anybody to use this generaior. The main
reason being that in this case m is too small. We are also presenting this for illustrative
purposes,

Table I1: The LCG Z;=(5Z ., + 3) (mod 16) with Z,=7

i z.r Uf ] Z; D’; i Z,i U; i Z.l ’ ()r;

0 7 - 5 10 0.625 10 9 0.563 15 4 0.250

| 6 037516 5 0.313 [t 0 0.000 16 7 0.438
2 1 0.063 | 7 12 0.750 12 3 0.188 17 & 0.375
3 8 0.500 | 8 15 0.938 13 2 0.125 18 l 0.063
4 11 0.688 | 9 ‘14 0.875 14 13 0.813 19 8 0.500

o




Note that, the repeating behaviour of LCG is inevitable. By the definition of Z,.
whenever it takes on a value it had taken previously, from that point onward the
sequence will repeat itself cndlcss!y The length of a cycle is calied the period ol a
generator. For LCG, Z, depends only on the previous valué Z,- | and since
0<Z,<m—1,itis clear that the penod i5 at most . IF it is m, the LCG is said to have
full period. Ciearly, if'a generator is full penod any choice oflhe initial seed Z, from
{0....,m-1} will produce the entire cycle in some other order:

Since for large scale simulation, projects may require hundreds of thousands of
random numbers, it is desirable to have LCGs with long periods. Moreover, it is '
desirable 1o have full period LCGs, because then it is assured that cvery inleger
between 0 and m — 1 will occur exactly once in every cycle. Thus it is very ImpOI’lal'll
to know how to choose a, m and ¢ so thal the corresponding LCG will have full
period. We should also keep in mind that obtaining full period is just one desirable
property for a good LCG. It should also have good statistical properties, such as
apparent independence, computat:ona] and storage efficiency and reproducibility.
Reproducibility is simple. For reproducibility, we must only remember that the initial
seed Z, initiates the generator with this value again to obtain the szme sequence of U,
exactly. Some of the standard LCGs with different values of g, » and ¢ are presented
below. These LCG have been observed to perform very well in several machines and
passed the standard statistical tests also.

Generator 1: a = 16807, m=2"_1, = :
Generator 2: a = 1664525, m=2% = 1664525,

Fortunately today, most of the simulation packages and even simple scientific
calculators have reliable I/ (0 1,) generator available.

¥ Check Your Progress |

1} What do you mean by Pseudo-random number gencration? What is the practical
advantage of the concept of random number generation? Do you know any
algorithm which works in designing the sofiware for Random number gencration?

2.3 GENERATING RANDOM VARIATES FROM
ARBITRARY DISTRIBUTIONS

A simulation that has any random aspects at 2l must involve generating random
variates from different distributions. We usually use the phrase generating a vandom
variate 10 refer to the aclivity of obtaining an observation or a rcalisation on a random
variable from the desired distribution. These distributions are often specified as a
result of fitting some appropriate distributional form. They arc often specified in
advance, for example exponential, gamma or Poisson etc. In this section, we assume
that the distributionai form has already been specified iacluding the values of the
parameters and we address the is-..e of how to generaie randori variate from this
specified distribution. K .

Pseudo Random
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We will sec in this section that the basic ingredient needed for every method of
generating random variates from any distribution is a source of independent
identically distributed U (0, 1) random variales. Therefore, it is essential that a
statistically reliable I (0, 1) generaor is available for gencrating random deviate
correclly from any other distribution. Therefore, from now on, we assume that we
have a reliable sequence of U(0,1) variates available to us.

There are several issues, which sheuld be kept in mind before using any particular
generator. The most important issue is of course the exactness, It is important that one
should use an algorithm that results in' random variates with exaclly the desired
distribution, within the unavoidable external limitations of machine accuracy and the
exactness of U (0,1) random number generator. The second important issue is
cfficiency. Given that we have several choices, we should choose thal algorithm
which is efficient in terms of both storage space and execution time. Now, we provide
some of the most popular and standard techniques to generator non-uniform random
deviates, it may be both discrete or continuous as well as even mixed distribution.

2.4 INVERSE TRANSFORM

Suppose, we want to generate a random variate X that has a contlinuous and strictly
increasing distribution function F, when 0 < F (x) < 1, i.e., whenever x, <x; then
F(x\) <F (x3). We draw a curve of Fin the Figure /. Let F~' denole the inverse of the
function F. Then an algorithm for generating a random variate X having distribution
funclion Fis as follow.

Algorithm

s Step l: Generate U, from U, (0,1)
e Step2:Return X; = F ' (U)).

U,

F(x) T

X

Figure 1: Distribution fuoction of a continuous a random varlable.

Note that when Fis a strictly increasing function, £~ (U) will be always defined,
since 0 £ U< 1 and the range of Fis [0, 1]. Figure ] illustrates the algorithm
graphically. According to the figure it is clear that the uniform random variable U,

S - -
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with the distribution l'unctidn F. To show that the value

resulls the random variable X)
has the desired distribution function F, note that

X, reumed by the above algorithm
P(X sx)=P (F (U)sx)=P(U < F(x)) = F (%)

The first equality follows from the defipition of X|, the second equality follows
because F is invertible and the third equality follows because U, foilows U (0,1).
Example 2: Let X have the Weibull distribution with the following probability density
function:
% a-l »
={ere x>0 Eing !
0 if x<0
Solution: Here ¢ and A both are known constants and both of them are strictly
greater than 0.

Therefore, X has the distribution function

) = - if x>0\
0 if x<0

et us equate u = F (x) and we solve for x to obtain
]

- I, . =
F I(ti=)=[-i {=In(1-u)}]1°
Therefore, to generate X from a Weibul! distribution with &= 2 and A =1, generate
U from U (0, 1) and then set

X=[{-In(l-u)}]

Therefore, to compute F' (),

12 |-

In this case also as before, it is possible to replace U by 1 — U, therefore we can use

1
X=[{-Inu}] 2, toavoidone subtraction.

The inverse-transform method can be used also when the random variable X is
discrete, In this case the distribution function is
F)=PXsx)= 2 px)
x;Sf
Where p(x,) is the probability mass function of X, i.e.,
p(x)y=P{X=x)

We can assume that X can take values xy, x2,...., where x; < X2 < .... Then the

algorithm is as follows:
Algorithm
o Step 1: Generate U from U (0,1)

e Step 2: Determine the smallest positive integer [
X=x,. The Figure 2 illustrates the method. [n that case we gene:

such that U € F (x))and teturn
rate X=Xy

Now to show that the discrete inverse transform methed is valid, we need to show that

PX=x)=p(x)forali=1.we gel X =x,, ifand only if US F (x)) =p (%), since
x,'s are in'the increasing order and U follows U/ {U,1}. Por {22, the algerithm sels
X=xifand only if F(x,_1) < U< Fx), since the i chosen by the algorithm is the
smailest positive integer such that U7 € F (x;). Further, since U follows U7 (0,1) and

0 F(x 1) <FE)s 1,

Pscudo Randem
Number Geoeration

33

TR




. SIatasdical

Computting PX=x)=P{F(x,_,<U SF)}=Flx)-F(x,_) At
o |
U
Xp X Xa X4 Xs
X — X

Figure 2: Distribution funcilon of a discrete reodom .uriable

Now consider the following example.

Example 3; Suppose we want to generate a random sample from the following
discrete probability distribution,

PX=n= %, P(X=2)=—},P(X=4)= El.Generatearandomsa.mple from X7
Solution: The distribution function of the random variable X is
(0 i x<]
1 1sx<2
Fy=42
- if 2<x<4
4
1 if x24

The distribution function X is presented in Figure 3. If we want to generate a random

sample from X, first generate a random variable U from U (0, 1). If U < —1—

, then
2
assign X= 1. If %~: Us %, then assign X'= 2, otherwise assign X' =4,
T T T T T T T
: -
0.8 T
0.6 .
F(x)
04
0.z
i | i i { | |
1’ 1.5 2 2.5 3 3.5 4 4.5 5

X
Figure 3: Distributlon function of the candam variable X of example 3,
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¥ Check Your Progress 2

1} Let Xhave the cxponential distribution with mean 1, The distribution function is

—p " i - >
Foy= {1 "¢ ¥ x20 e
0 if x<0

2) Consider another discrete random variable which may take infinitely many
values. Suppose the random variable X has the following probability mass
function,

PX=0D=p=—,i=1,2,3, .c....... - Generate a random sample from X?

2.5 ACCEPTANCE-REJECTION METHOD

In the last section, we have discussed the inverse transformation method (o generate
random number from differcat non-uniform distributions. Nole that apparently, the.
inverse transformation method seems to be the most general method for gencrating
random deviates from any distribution function functions. In fact, it can be used
provided the distribution function can be written in an explicit form, or more precisely
the inverse of the distribution function can be compuled analytically. For example, in
case of exponential, Weibull, Cauchy distributions the distribution function and also
their inverses can be constructed analytically. Unfortunatcly that is not ihe case with
the general method. Suppose the random variable X follows gamma with the shape
and scale parameters as zand A respectively. Then the density function of X, say &
xla, A),is

-1 Ar -
fla, 1)={Tg" ¢ ¥ x>0

0 i x<0 /

/

The distribution function X, say F(xla,A) = J:f(y k. A)dy cannot be expressed in

explicit form. Therefore, F' (x| &, A)also cannot be calculated explicily. Exactly the
same problem arises if X is a normal random variabic. Suppose X is a normal random
variable with mean g and variance o, then the probability density function of X, say f
(xip a)is

(r-5)2

] .
2 for-w<x<w.

f(IIP,0)=—“l—e
Vino
In this case also, the distribution function cannot be computed analytically and
similarly it’s inverse. Therefore, in these cases, we cannot ap;.ly the inverse
transformation method to generate the corresponding random deviates. The
acceprance-rejection method coa be used quite effectively to generate these random
deviales. It can be described as follows.

Psevde Random
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Supnose we have a density function f (x) and we wanl to generate a random deviate
from the density function f(x). The distribution function of f(x) can not be expressed
in explicit form. The acceplance-rejection method requires that we specify a function

g (x) that majorises the function f(x), that is,f(x)'s g (x) for all x. Natusally, g (x) will
not be a density function always, since

e= [gndez [ /(=1
but the function & (x} = —l-g(x) is clearly a density function provided ¢ < «. Now for
c

any given f(x), we choosc the function g (x), such that c <o and itis possible to
generate random deviate from g (x) by a inverse transformation method. Then we can

generate the random deviate X from f(x) as follows:
Algorithm

« Step 1: Generate Y with density function g (x).
e Step 2: Generale U from U (G,1) which is independent of Y.

e Step:IfUs '—f-%, X =¥, otherwise go back to Step 1 and try again.
g

Note that the algorithm s looping back to Step | until we generate a pair (¥, U) pairs

in Steps 1 and 2 for which U's %, when we accept the value ¥ for X
g .

Theoreticaily, it can be shown that the random deviate X generated by the above
algorithm has indeed the probability density function f(x). Since it is not very easy to
prove the result we do not provide it.

Example 4: Consider the following density function
60x*(1—-x)° if 0<xx]
SG)y= .
0 otherwise
generate random deviates from given f{(x) by using Acceptance Rejection method.

Solution: In this case the distribution function, il is presented in Figure 4, of f(x)is

0 if x<0
F(x) = {10x° +15x* -24x° if O<x<l
i f x> 1
i
0.8 |-
06 |
0.4
F(x) —
02 |_
0
o 02 . 04 0.6 0.8 T

% —_— .
Fipure 4 : Distribution function of the densily fuanction f(x}
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Figure 5: Densliy function f{x)
From the distribution function F (x) is provided in Figure 4. It is clear that the
distribution function F (x).is a strictly increasing function of x in [0, 1). Therelore -
F' (x) exists, but unfortunately to find F~! (x) we need to solve a six degree
polynomial, which cannot be obtained analytically. We need to solve this numerically
only. Therefore, we cannot generate random deviale from the density function /(x)
using the inversion method. But we will be able to generate random deviate from f(x)
using the acceplance-rejection method. '

First, let us look at the graph of the density functionftx). It is presented in Figure 5.
From Figure 5 il is clear that /'(x) is an unimodal function with a unique maximum.
" The maximum can be casily oblained by the standard differential calculus, that is by

d
sefting % = . We see that the maximum of /' (x) occurs at x = 0.6 and the

maximum value at 0.6, that is £(0.6) = 2.0736. Therefore, if we define

) 2.0736 if 0<x<l
I _—
£ 0 otherwise.

then clearly f(x) < g (x) for all x. Now to calcuiate 4 (x), first we need to calculale c.
Since,

c= ,E2.0735 =2.0736, therefore,

20736

hx)=q «

0 otherwise.

=1 if O<x<l

It is immediate that 4 (x) is just the U(0,1) density function. Now the algorithm takes
the following form.

Algorithm

e Step 1: Generate ¥ from U (0, 1)
e Step 2: Generate U from U (0,1) which is independent of ¥,

Pseudo Random
Number Generation

37

T

=R -




Safistical
Compuling

38

601’ (1-Y)*
2.0736
[n this case X has the desired density function f(x).

e Stepi:IfUs then return with X'= ¥, otherwise go back to Step 1.

5 Check Your Progress 3

1} Use acceptance-rejection methad te generate a random deviate from gamma
density function. The gamma density function with the shape parameter « can be
writicn as

1 a=] _-x ;
fw-1t@” ¢ ¥ 0

l 0 otherwise

2.6 SUMMARY

In this unit, we have discussed the meaning of pseudo random number generation and
along with that we have déscribed uniform random number generator and arbitrary
random number generator. Uniform random number generator we emphasiséd on
LCG (Linear Congruential Generator) and some objections related to LCG.
Actually LCGs provides an algorithm how 1o generate unifgrm random number
between (0,1). It can be simply described as follows,

A sequence of integers Z,, Z,,... is defined by the recursive formula

Z;=(aZ,.; +c}(mod m), (1

where m, the modulus, a, the multiplier, ¢, the increment and Z,, the seed or the initial
valug, arc¢ zll non-negative integers

Then we have discussed the concept, algorithm and application of Inverse
transforms for random number generation, in brief. Suppose, we wanl to generale a
random variate X that has a continuous and sirictly increasing distribution function
F, when 0 < F (x) <1, i.e., whenever x, <x, then F (x;) < F (x3). Let # denole the
inverse of the function F. Then an algorithm for generating a random variate of

X with distribution function Fis as follows:

Algorithm

* Step L: Generate U, from U; (0,1)
e Step2: Retumn X; = F' (U)).

The tnverse-transform method can be used when the random variable X is discrete.
In this case the distribution function is

FE=PX<x)= 3 px),

I &x
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Where p(x,) is the probability mass function of X i.e., R Psendo Random
) Number Generztion

p{x)=P(X=x)

We can assume that X can take values x|, x3,...., where x; <x; < .... Then the
algorithm is as follows:

Algorithm

= Step |: Generate U from U(0,1)
. Slep 2: Determine the smallest positive integer [ such that I/ € F (x) and return
X= X .

Note: The inverse transformation method to generate random number from different
non-uniform disiributions. Note that apparently, the inverse transformnation method
seems to be the most general mcthod to generate random deviate from any
distribution function, In fact, it can be vsed prowd‘.d the distribution function can be
written in an explicit ﬁ)rm

Finally, we had the Acccptance Rejection method of random number generation, this
method is quite important especially, when the distribution function cannot be
computed analytically and similarly it’s inverse also. Then in such cases, we cannot
apply the inverse transformation method to generate the corresponding random
deviates. The acceptance-rejéction method can be used quite effectively to generate
these random deviates, -

In brief, suppose we have a density function f(x) and we want 1o generate 2 andom
deviate from the density function /(x). The distribution lunction of / (x) cannot be
expressed in explicit form. The acceptance-rejection method requires that we specify a
function g (x) that majorises the function f(x), that is, f(x) < g {x) for all x. Naturafly,
£ (x} will not be a density function always, since

o= [gwdrz [ =1,

but the function 4 (x) = ig(x) is clearly a density functien provided ¢ < o . Now for
[

any given f (x), we choose the function g (x), such that ¢ < o and it is possible to
gencrate random deviale from g (x) by a inverse transfurmation method. Then we can
gencrale the random deviate X from f(x) as lollows:

Alporithm

» Step 1: Generate Y having density function g (x).
e Slep 2: Generate U from U (0,1) which is independent of Y.

s Stepd:IfUs= %, X' =Y, otherwise go back to Step | and ry again.
g

Note that the algorithm is looping back to Step 1 unti! we generate a pair (¥, U) pairs

in Steps | and 2 for which I/ < %, when we accept the value Y for X.
g

Theoretically, it can be shown ihat the random deviate .Y gencrated by he above

algorithm has indeed the probability density function /(x). Siace, it is not very easy to

prove the result we do not provide it

I Y iy i
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2.7 SOLUTIONS/ANSWERS

Check Your Progress 1

1} A pseudo-random number generation is the methodology 1o develop algorithms
and programs that can be used in, probability and statistics applications when
large quantities of random digits are needed. Most of these programs produce
endless strings of single-digit numbers, usually in base 10, known as the decimal
syslem. When large samples of pseudo-random numbers are taken, each of the
10 digits in the set {0,1,2,3,4,5,6,7,8,9} occurs with equal frequency, even though
they are not evenly disiributed in the sequence.

Many algorithms have been developed in an attempt to produce truly random
sequences of numbers, endless strings of digits in which it is theoretically
impossible to predict the next digit in the sequence based on the digits up toa
given point. But the very existence of the algorithm, no matter how sophisticated,
means that the next digit can be predicted! This has given rise to the term pseudo-
random for such machine-generated sirings of digits. They are equivalent to
random-number sequences for most applications, bui they are not truly random
according to the rigorous definition. ’

There are several methods avaitable to generate uniformi random numbers. But
currently the most popular one is the linear congruential generator (LCG). Most of
the existing software’s today use this LCGs proposed by Lehmer in the early 50°s.

Check Your Progress 2

1) To find F', we set u = F(x) and solve for x to obtain
x=F7(u) = -In{l —u).

Therefore, to generate random variate X from exponential distribution with mcan
|, first generate U from a U (0,1) and then let X' = - In (1 — U). Therefore X will
have exponential distribution with mecan 1. Since I/ and | — U have the same

U7 (0, 1) distribulion, we can also use X = In U. This saves a subtraction,

| . .
2) Note that Z_T = 1, therefore p, denotes the probability mass [unction of a
Jiml
discrete random variable. The comresponding distribution function of the discrete
random variable X can be writlen as

0 if x<l1

Fx)= 12:% if m<x<m+l,

where m is any positive integer. Now to generate a random deviale from the
random variable X, first draw a random sample U from (0, 1),since 0 s U <1,

n—l 1]
ee I e |
there exits a positive integer rr such that ZET U< Z—zr , where 2—2' =0,
J=l 1=l i=1

then X = nr.
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Check Your Progress 3

1) Our problem is to0 generalc random deviate from f(x) for a given 0 < a < |. Note
that, we cannot use the acceptance-rejection method in this case. It is easily
observed if we take

(
0 if x<0
_ ) xa—l )
gx)= @) if O0<x<l
e
t@ 7 7t

then /(x) < g (x) for all x. In this case

J:xu_l s J., e—x'dx= 1 r(e+a)]
I'(a) T@) T(a) ae |

c= [gx =

Therefore, & (x) = l gx}is
c

[

0 if xs0

h(x)= 4axb if 0<xs1
cer ™"
i x>,
ki

where b = 22 The distribution function H (x) corresponds to the density

e
function 4 (x) is

o

X

HE= [ ho)ap= 7
oe .
I_T {f x>],
Which can be easily inverted as

1 1

G if u<—

H™' ()= b

bl-u) .. 1

-In—/——= i u>—

o b

Therefore, it is possible to generate random deviate from the density fungtion
h (x) using the simple inversion method. Generation of 2 random deviate Y from

the density function b (x)} can be performed as follows. First generate U, from U
]

(0,1}, if, = % we set ¥ =(bl))) a, in this case ¥ < 1. Otherwise

_b(-U)
o

Y=-1 and in this case ¥ > 1.
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Also nole that
[y _|et if 0sY<l
gy (ye' i ¥>1

Now, the algorithin to generate random deviate from a gamma density function with
the shape parameter ¢, for 0 <o <1 takes the following form:

o Step 1: Generate U, from U (0,1} and let P = bU,. [F P> |, go to Step 3 otherwise

proceed to Step 2.
1

s Step2:let¥Y=P @ and generate Ui from U/ (0, 1} If U <e ™ ' return X= Y.
Otherwisc go back to Step 1.
(b-P)

e Step 3:Let ¥Y=—1In ——= and generate U, from U (0, 1). If A< ¥~ ' return
o

X'= T, otherwise go back to Step 1.
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3.0 INTRODUCTION

In many problems, there are two or more variables that are inherently related and it may
be necessary to explore the nature of their relationship. Regression analysis is a statistical
technique for modeling and investigating the relationship between two or more variables.
For example, in a chemical process suppose that the yield of the product is related to the
process operating temperature. Regression analysis ¢an be used to build a model that
expresses yield as a function of temperature. This model can be used to predicl yield at a
given temperature level. It can also be used for process optimisation or process control
purposes.

In gencral, suppose that there is a single dependent variable or response variable y and
that is related to & independent or regressor variables say x,........ Xt The response
variable y is a random variable and the regressor variables x,,.. ... ,Xi are measured with
negligible error. The relationship between y and xy,..... . Xy is characterised by a
mathematical model and it is known as the regression madel. It is also known as the
regression of yonxy,........ X This regression model is fitted to a set of data. In many
situations, the experimenter knows the exact form of the functional relationship betveen y
and x,, ..., xy, say @(xy, ..., x), except for a set of unknown parameters. When the
functional form is unknown, it has to be apnroximated on the basis of past expericace oF
from the existing information. Because of its iractability, a polynomial function is popuiar
in literature.

In this unit, we will be mainly discussing the linear regression model, when k = 1, that is
only one regressor variables. We will be discussing in detail how to estimate the
regression line and how it can be used for prediction purposes from a given set of data.
We will also discuss briefly how we can estimate the function ¢, if it is not linear.

3.1 OBJECTIVES

After going through this unit, you should be able to:

s decide how two variables are related,;

s measure the strength of the linear relationship between two variables;

= calculate a regression line that permits the prediction of the value of one of the

variables if the value of the other variable is known; 43
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« analyse data by the method of least squares to determine the estimated

regression line to be used for prediction, and
 apply the least squares methods to fit different curves and use it for prediction
purposes.

3.2 SIMPLE LINEAR REGRESSION

We wish to determine the relationship between a single regressor variable x and a
response variable y(note: The linear regression with one independent variable is referred
to as a simple linear regression ). We will refer to y as the dependent variable or response
and x as the independent variable or regressor. The regressor variable x is assumed to be a
continuous variable controlled by the experimenter. You know that it is often easy to
understand data through a graph. So, let us plot the data on Scatter diagram (a set of
points in a 2-D graph where horizontal axis is regressor and vertical axis is response).
Suppose that the true relationship between y and x is a straight linc. Therefore, each
observation y can be described by the following mathematical relation {(model)

y=PFo+Pxte M)
| | | I 1

- Yield (y) @

o

i | I I 1 !
8 100 120 140 160 180 200 220

Temperature (x)

Figure 1; Scatter disgram of yield versus temperature

where € is a-random variable with mean 0 and variance ¢*. The € is known as the error
component and it is assumed to be small. If the crror € was absent then it is a perfect
relation between the variables y and x which may not be very practical. Let us look at the
following example.

Example 1: A chemical engineer is investigating the effect of process operating
temperature on product yield. The study results in the following data.

Temperature °C (x) { 100 110 120 130 140 150 160 170 180 190

Yield,%(y) 45 S1 54 61 66 70 74 .78 85 89
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The scatter diagram between the temperature and the yield is presented in Fignre 1. In
Figure 1, it is clear that there is a linear relationship between yield and {emperature but
clearly it is not perfect. For example, we cannot write the relationship between
yand x as follows

y=pFo+ Gx
Clearly the presence of the error € is needed. Morcover the error & is a random variable
because it is not fixed and it varics from one temperature to another. It may also vary
when two obscrvations are taken at the same temperature, If there was a perfect linear
relationship between y and x we would have required just two points to calculate the
relationship. Since, the relationship is not perfectly linear it is usually requires more than
two data points to calculate their relationship. Our main objective is to calculate the
relationship between them from the existing information (data points). Since, it 15
assumed that the relationship between x and y is linear therefore, the relationship can be
expressed by equation (1) and finding the relationship basically boils down to finding the
unknown constants §, and f, from the observations.

Let us discuss this concept of linear regression once more, through the illustration /
collection of data described in Table /. Table 1, encloses the dala of 25 samples of
cement, for cach sample we have a pair of observations (x,y) where x is percentage of
SO,, a chemical and y is the setting time in minutes. These two compaonents are strongly
related; it is the percentage of SO, which influences the setting time of any cement
sample, the recorded observations are given in 7able 1.

Table 1: Data on SO; and Setting Time

SI.No. () Percentage of 805 (X) Setting Time ¥ (in minutes)

| 1.84 190
2 1.91 192
3 1.90 210
4 1.66 194
5 1.48 170
6 1.26 160
7 121 143 ]
g 1.32 164
9 2.1 200
10 0.94 136
1t 2.25 206 ;
12 0.96 138 ]
i3 1.71 185
14 2.35 - 210
15 l.64 178
16 1.19 170
17 1.56 160
18 1.53 160
19 (.96 140
20 7 1.7 ‘168 i
21 1.68 152 N
22 1.28 160
23 1.35 116
24 1.49 i 145
25 1.78 170

Total Sum of 39.04 ' 4217

Sguares 64.446 726539

Regression
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In Table 1, you see that setting time y increases as percentage of SO; increases. Whenever
you find this type of increasing (or decreasing) trend in a table, same will be reflected in
the scatter diagram (Figure 5), and it indicates that there is a linear relationship between x
and p. By drawing the scatter diagram you can observe that the relationship is not perfect
in the sense that a straight line cannot be drawn through all the points in the scatter
diagram.

Nevertheless, we may approximate it with some linear equation. What formula shall we
usc? Suppose, we use the formula y = 90 + 50x to predict y based on x. To examine how
good this formula is, we need to compare the actual values of y with the corresponding
predicted values. When.x = 0.96, the predicted y is equal to 138(=90 + 50 x 0.96). Let
(., v} denote the values of (x, y) for the i*" sample. From Table I, notice that
X127X19=0.96, whereas'y;, = 138 and y;9 = 140.

Let ;r =90+ 50x . That is, ;», is the predicted value of y (then using y = 90 + 50x for

the i™ sample. Since, X12=X15=0.96, both ;n: and ;.o are equal to 138. Thus, the difference
p

-

& = y:= y, the error in prediction, also called residual is observed to be eu= 0 and

ern =2, The formula we have considered above, y = 90 + 50x, is called a simple linear
regression equation, we will study these terms in detail in our successive sections.

3.2.1 Least Squares Estimation

Suppose that we have n pairs of observations, say (x|, y1),....... (X, ¥a). It is assumed that
the observed y, and x, satisfy a linear relation as given in the model {1). These data can be
used to estimate the unknown parameters S, and 4. The method we are going to use is

koown as the method of least squares, that is, we will estimate B,and B, so that the sum

of squares of the deviations from the observations to the regression line is minimum. We
will try to explain it first using a graphical method in Figure 2. For illustrative purposes
we are just taking S data points (x, y) = (0.5, 57), (0.75, 64), (1.00, 59), (1.25, 68),
{1.50,74). The estimated regression line can be obtained as follows. For any line we have
calculated the sum of the differences (vertical distances) squares between the y value and
the value, which is obtained using that particular line. Now, the estimated regression line
is that line for which the sum of thege differences squares is minimum.

% | [ |

85 — —

80 ™

Estimated regres&i%
75

70

| Observed point Difference

Y| s
60

55

| I Estimated l?omt

o 0.5 | 1.5 2
X
Figure 2 Differences between y values and the estimated values using regression line
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Matematically the sum of squares of the deviations of the observations from the "
regression line is given by Analysis
L= =20~ Fo—Bx) m

1=l =l

The least squares estimators of 5, and B, are ﬁo and ﬁ, which can be obtained by
solving the following two linear equations.

o —ZZ()’: —Bo— Bix)=0

f, o
oL z
— =22, -B~Px)=0 (12)
o8, e
Simplifying these two equations yields
- nf, + B z x5 = ZJ’; )
=] i=]

B3 x+B R = S @)
jal

i=l =l

Solving (2) and (3) f,and A, can be obtained as follows:

Bo=7-B% “

. (IZ‘IJ*')(Z;?-&) (5)
IR P

where y = Zy‘ and J?=Zx, _ Therefore, the fitted simple linear regression tine

1=1 i=]

between these n points is
P= B+ B S ®

Note : Linear correlation and regression are very similar. One uses the correlation

coefficient to determine whether two variables are linearly related or not. The correlation
coefficient measures the strength of the linear relationship. Regression on the other hand
is used when we want to answer questions about the relationship between two variables.

Some Properties for Linear Correlation and Regression
1) The line of regression of y on x always passes through(x , y) where xand y are

the mecan of x and » values.

2) There are always two line, of regression one oty on x and other of x on y.
e,y =a,+b xorx=a,+b,y
Ty

where byx = Regression coeffofyonx = r—
Oz
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Oz

bxy = Regression coeffofyonx = r—
Ty

Correlation can be obtained by the following formula also,

r=+bg*hx -lrsl)

Angle betwecn lines of regression is given by,

2
alri=1 o:x*
6 = tan™" '2' a’;
ro\o’ +o?,

Where r = correlation coeff between x and y
o, = standard deviation of vai iable x

o , = standard deviation of variable y

So, now, Regression equation of y on x can be rewritten as

=7)=r2(x-%)

And Regression equation of x on y as,

x-9=rZe(y-7)

oy

Exampie 1 (contd.) Now, we will compute the estimates of 5, and B, for the data
points given in Example 1. In this case it is observed that

I0 10
n=10, D" x, =1450, D> ¥i=673, x=145, y=673.

i=l 1al

10 10 10
D% =218,500, " y?=47,225, > xy,=101,570

i=l ial i=]

Therefore,
ﬁ-; - 101,570 -10x1450% 673
! 218,500 — 10 x 14507

=0.483,
and

fo=673 - 0.483 X 145 =~ 2.739.

The fitted simple lincar regression line through those [0 points is

§==2.739+0.483x ' Q)

The best filted line along with the data points are plotted in Figure 3. Note that the best
futed line can be uzd effectively for prediction purposes. For example, suppose we want
to calculate the expected yield when the temperature is 170°C, for which the data is not
available. We can use the (7) for this purpose as follows.

VT AT




y=-2.739+0.483x170="79371.

Therefore; the best fitted lifie shows that the cxpecsod.yield at 170°C is 79.371.

100 T ] T ] I I
SRl Best fitted ljne B
T ‘xﬂ/ i

40 /’l/ H ] i i i

80 100 120 140 160 180 200 220

:1d {y)

Temperature (x) — >
Figure 3: Data points and the best fitted regression [ne passing throngh these poiats

Shortly, we will discuss the technique that consists of a few steps; which can be used to fit

a line in the best way, such that the error is minimum. In short, we will study the
technigue to determine the best equation, that can fit 2'line in the data such thai the error
is minimum. But before that let’s see one more example.

Example 2: A survey was conducted to relate the time required to deliver a proper
presentation on a topic, to the performance of the student with the scores hefshe receives.
The Table Z shows the matched data:

Table 2
Hours (x) Score {y)

0.5 57
0.75 64
i.00 59
1.25 68
1.50 74
1.75 76
2.00 79
2.25 - 83
2.50 85
2.75 86
3.00 88
3.25 89
3.50 90
3.75 94
4.00 96

Regression
" Anatysis

14

e




1} Find the regression equation that will predict a student’s score .~ we know how

Statistical
Comguting many hours the student studied.

2) If a student had studied 0.85 hours, what is the student’s predici:d score?
Solution. We will arrange the dala in the form of a chart to enable us to perform the
computations easily.

Table 3
X y x* xy
0.5 57 . 0.25 28.5
0.75 64 0.56 48.0
1.00 59 1.00 59.0
1.25 68 1.56 85.0
1.50 74 2.25 111.0
1.75 76 3.06 133.0-
2.00 79 4.00 158.0
2.25 83 5.06 186.75
2.50 85 6.25 2125
2.75 86 1.56 236.5
3.00 88 2.00 246.0
325 89 10.56 289.25
3.50 90 12.25 315.0
3.75 94 14.06 352.50
4.00 96 16.00 384.0
33.75 1188 93.44 2863
In this case n= 15, therefore
ﬁ, ISX2863_33'75“i38 =10.857, ,Bo =-l—[1 188 —10.857x33.75] =54.772
15x%93.44 -33.75 15 _
Therefore, the prediction line becomes:
y=54.772+10.857x
Now, the predicted score when x = 0.85, is
y=54.772+10.857x0.85=64.00
100 I —
95 A
9% // °
85 — o @
80 |— . "V
75 |- °
o
Score ()| 70 | N
65 A7 Predicted line
60 _/ o
ss | °
50 ] I
0 l 3
50 Hours (x}) ——>

Figure 4: Hours siudied and the correspending score with the best fitted regression line-passing

through these points
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Thus, the predicted score of the student who had studied 0.85 hours is approximately Regression
64.00, Analysis

We have plotted the individual scores and the hours studicd with the best fitted prediction
line in the Figure 4. It shows the hours studied by the student, the corresponding score
follows a linear pattern and the predicted line can be used quite effectively to predict the
score of a student if we know how many hours the student had studied.

Now, it’s the time to discuss the technique for determining the best equation, i.e., the
equation which fits the line in a way that the overall error is minimised.

From the above illustrations apd examples you might have noticed that different equations
give us different residuals. What is the best equation? Obviously, the choice will be that

equation for which es are small.

This means that whatever straight line we use, it is not possible to make all eis zero,

where & = y.«-;); (the difference). However, we would expect that the errors are positive
in some cases and negative in the other cases so that, on the whole, their sum is close to
zero. So, our job is to find out the best values of S and f, in the formula

y= B+ fJix+e (s1. e=10).Letus see how we can do this.

Now our aim is to find the values f; and 5, so that the error es are minimum.
For that we state here four steps to be followed.

1) Calculate a sum S, defined by Se==»_ x*, —rix’ (8)

i=1
. - Xxv .
where x;’s are given value of the data and x =— is the mean of the
n

observed values and n is the sample size.
The sum S,, is called the corrected sum of squares.

2) Calculate a sum S, defined by Sy = Z Xy, ~nxy )

=]
where x;’s and y;'s are the x-values and y-values given by the data
and X and ¥ are their means.

Sxy

k=4 IT

(10)

3) Calculate %’- = 31 say. That is 1=
4) Find y— fix = fo, say.

Let us now compute these values of the data in Table 1: Data on SO, and Setting Time,
we get

x =1.5616, Yy =168.68, S., =3.4811, and S, = 191.2328.
Substituting lhese values in (10} and (11), we get
S
il =~§‘1= 54.943 and fo=168.68 —54.943 x 1.5616 = 82.88 {(n

X

Therefore, the best linear prediction formula is given by
y=82.88 + 54.943x.

ARer drawing this linc on the scatter diagram, you will discover that straight line is close
to more points, and hence, it is the best linear prediction.
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Example 3: A hosiery mill wants to estimate how its monthly cods are related to its "
monthly output rate. For that the firm collects data regarding its costs and output fora
sampl: of nine months as given m the Table 4.

lele 4
‘Output (toos) - Production cost (thoasands of doliars)

e Pl Lol AT - - T - S Y
EN]O0 {00 LA en = | Fu [t | b

1) Find the scatter diagram for the data given above.

2) Find the regression equation when the monthly cutput is the dependent variable
{x) and monthly cost is the independent variable (y).

3} Use this regression line to predict the fom’s monthly cost if they decide to produce
4 tons per month.

4) Use this regression line to predict the firm’s monthly cost if they decide to produce
% tons per month.

Selution: a) Suppose that x; denotes the output for the ith month and y; denotes the cost
for the i* month. Then we can plot the graph for the pair (x;, ;) of the values given in

Table . Ther we get the scatter diagram as shown in Figure 5.
10—
g F
. i .
7 ‘
f— . >
&
| L ]
5
— [
4l
s .
3 - »
2
v
A4 :
y | ! I ] 1 | ! 1 i
1 i 1 i I | —1 : l >
i 2 3 4 5 6 7 8 9 10
OUTPUT (TONS)

Figore 5: Scatter Diagram
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a) Now to find the least square regression line, we first calculate the sums S,, and Sy Regres-.
from Eqn.(8) and (9). Analy .

Sn=zn;xr2 -

i=]

Note that from Table(4) we get that

f == !):lx" &
n

7= :=;y 49
n 9

> x%=340
> yi=303

and foy.-=319

Therefore, we get that

B le'yl‘ n‘xy
Z Il -nx

_9x319-50x 49
9 x 340-50°

N 0.752
560

Correspondingly, we get
49 50

=——{0.752) x —
Bo 5 ¢ ) 5
=1.266
Therefore, the best linear regression lina is

y = 1.266 +(0.752)x

b) If the firms decides to produce 4 fons-per month, then one can predict that its cost
would be

1.266 +(0.752) x4=4274
Since, the costs are measured in thousands of dollars, this means that the total cost.
would be expecied to be $4,274.

¢) Ifthe firms decides to produce 9 tons per month, (hen one can predict that its cos
would be 1.266 + (0.752) x 9=8.034

Since, the costs are measured in thousands of dollars, this means that the total aosts

would be expected to be $8034. 53
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K Check Your Progress 1

1) In partially destroyed laboratory record of an analysis of correlation data, the
following results only are legible.

Variance of x =9
Regression equations : 8x — 10y + 66 =0
40x - 18y —-214=0
what were (1) the mean values of x and y,
(2) the correlation coeff between x and y
(3) the standard deviation of y

2) Since humidity influences evaporation, the solvent balance of water reducible paints
during sprayout is affected by humidity. A controlled study is conducted to examine
the relationship between humidity (X) and the extent of evaporation (Y) is given
below in Table 5. Knowledge of this relationship will be useful in the sense that it
will allow the painter to adjust his or her spray gun setting to account for humidity.
Estimate the simple linear regression line and predict the extent of solvent
evaporation (i.e loss of solvent, by weight) when the relative humidity is 50%.

Table 5
Observation (x) Relative humnidity, (%) | (v) Solvent Evaporation, () wt
1 35.3 11.0 N
2 29.7 11.1
3 30.8 12.5
4 58.8 8.4
5 61.4 9.3
6 71.3 . 8.7
7 74.4 6.4
o 8 76.7 8.5
9 70.7 7.8
10 57.5 9.1
{1 46.4 8.2
12 28.9 ' 12.2
13 28.1 ' 11.9
14 39.1 9.6
15 46.8 10.9
16 485 - 9.6
17 59.3 10.1
i8 70.0 8.1
19 70.0 6.8
20 74.4 _ 8.9
21 72.1 7.7
22 58.1 8.5
23 44.6 8.9
T 24 334 10.4
25 286 1.1
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3.2.2 Goodness of Fit et
We have seen in the previous subsection that the regression line provides estimates of the

dependent variable for a given value of the independent variable. The regression line is

called the best fitted line in the sense of minimising the sum of squared errors. The best

fitted line shows the relationship between the independent (x) and dependent (y) variables

better than any other line. Naturally the question arises “How good is our best fitted line?”

We want a measure of this goodness of fit. More precisely, we want a numerical value

which measures this goodness of fit.

For developing a measure of the goodness of fit, we will first examine the varidtion in y.
Let us try the variation in the response y. Since, y depends on x, if we change x, then y
will also change. In other words, a part of variation in y's is accounted by the variation in
x’s. Actually, we can mathematically show that the total variation in y’s ¢in be split up as
follows:

N 2_S 2:y 3 o N2

Sy=) -9 ==+ (-5, (12)

fal S.n’ (L]

where

Se= 0 =58 =) (%, ~ D - 7)
iul in]

Now if we divide (12) by S}, on both sides, we get

n 2
1= S2-Iy +ZJ-|()"_y‘)
S5 S

Y »

Since, the quantities on the right hand side are both non-negative, none of them can -
exceed one. Also if one of them is closer to zero the other one has to be closer to one.
Thus, if we denote

Sy

JS.S,

R=

then

Since R must be between 0 and 1, R must be between — 1 and 1. It is clear that if 2 = 1,
then

D= 5)’ 5 A
-ZL-E—— =0or Z(y,—yjf:o or y =y foralti
S}y iwl
L
Again when R?is close to 1, Z(y, -7 isclose to zero. When R is negative, it means
ful
that y decreases as x increase and when R is positive y increases when x increases. Thus,
R gives 2 measure of strength of the relationship between the variables x and y.

Now let us compute the value of R for Example 1. For calculating the numerical value o7
R, the following formula can be used;

Iy

S : _Z:_, (x; =x)(»~3) , ¥V —AXY

e Se __
N N 2 SRR ) S =g e
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Therefore, for Example 1, the value of R becomes;

l —_— .
01,570 10x145%67.3 _ 398 _ 59981

\/2]8,500—10:-:1452\/472§-SH—_10><67.32 8250v/1932.1

R

and  R*=0.9963.

Therefore, it is clear from the value of R or from R that both of them are very close (o
one, thus the predicted line fits the data very well.

Moreover R is a positive mean, there is a positive relation between the temperature and
yicld. As the temperalure increases the yield also increases.

Now, the natural question is how large should this R or R? be in order for the fil very
good. Therc is a formal statistical test based on F-distribution which can be used to test
whether B? is significantly large or not. We will not go info (hose details here. But as a
thumb rule we may say that if R is greater that 0.9, the fit is very good, if it is between
0.6 to 0.8, the fit is moderate and if it is less than 0.5 it is not good.

= Check Your Progress 2

1) For the data given in the Table 6 compute R and R?

Table 6: 3;: and & For Some Selected i

Sample i2 21 15 1 24
No. (1)
xi .| 096 1.28 1.65 1.84 2.35
¥i 138 160 178 150 210
3‘” 138
& 0

Note: yi =90+ 50x and & =yi— yi
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3.2.3 Residual Analysis

Fitting a regression model to a set of data requires several assumptions. For example,
estimation of the modcl parameters requires the assumptions that the crrors are
uncorrelated random variables with mean zero and constant variance. If these assumptions
are not satisfied, then using the simple least squares method may not produce the efficient
regression line. In fitting a lincar model, it is also assumed that the order of the model is
correct, that is if we fit a first order polynomial, then we are assuming that phenomenon
actually behaves in a first order manner. Therefore, for a practitioner it is important to
verify these assumptions and the adequacy of the model.

We define the residuals as e, =y, ~p,,i=1,2, ..., n, where )y, is an observation and

¥, is the corresponding estimated value from the best fitting regression line.

Analysis of the residuals is frequently helpful in checking the assumption that errors are
independent and identically distributed with mean zero and finite variance and in
determining whether the additional terms in the model would be required not. It is
advisable to plot the residuals

a} in time sequence (if known),

b} against the p,or

¢) against the independent variable x. These graphs will usually look like one of the four
general patterns as shown in the Figures 6 to 9.

M
*
»* * *
* x K * L4
Ci * * %
= *
* % * *
*
* * *® *
* * ¥
* *
* *
* * -
* * e *
L]
* e
-
Fal
Yi

Figurc 6 Pattern of the residuc( plot; satisfactory.

Figure 6 indicates that the restduals are behaving in satisfactory manner and the modei
assumptions can be assumed to be correct. Figures 7 — 2 indicates unsansfactory
behaviour of the residuals. The Figure 7 clearly indicates that the variances arc eradually
increasing. Similarly Figure 8 indicates that the variances are not constant. If the residuals
plovis like Figure 9, then it would seem that the model order is not correct, that means,
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Pattern of the residual plot; indicates the

variance is graduglly increasing this case constant.
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Tigure 9: Patent of the residual plot; indicates the made] order
is oot correct :

Figure 8: Pattern of the residual plot; Indicates the variance isna

TComputing . . .
the first order mode! is not the correct assumption. We should look for higher order
models.
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Example 4: Now, we provide the residual plots of the data-given in Example 1. We have
plotted 3, vs. e,. It is provided in Figure 10. From Figure 10, it is quite clear that the
residuals plot is quite satisfactory and apparently all the model assumptions are satisfied
in Figure 10. : :

1.5 | | | | [ [ |
o
l — —
0.5 | o —
Ci
01 o
o
051 -]
&
L+
-1 < —
o
0 I | i ! | { ! i
45 50 55 G0 65 70 15 80 85 o0
A
Yi
—_—
Figurel0: Pattern of the residual plot; satisfactory.
85 Check Your Progress 3

i) What is the utility of residual plots? What is the disadvantage of residual plots?

3.3 NON-LINEAR REGRESSION

Linear regrgssion is 2 widely used method for analysing data described by models which
are linear in paramelers. However, in many practical situations, people come across Gata
where the relationship between the independent variable and the dependent variable is not
linear. In that case, definitely one should not try to use a linear regression model o

Regression
Amnalysis
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represent the relationship between the independent and dependent variable. Let us
consider the following example.

Example 5: Data on the amount of protein gencrated by a certain experiment was counted
~nd reported over time. The resulls are presented below in Table 7:

Table 7
Time Protein | Time Protein | Time Protein | Time Protein
min (gm) (min} _ (gm) (min)  (gm) (min) (gm)
0 0.844 80 0.818 160 0.580 240 0.457
10 0.908 o0 0.784 170 0.558 250 0.448
20 0.932 100 0.751 180 0.538 260 0.438
30 0.936 110 0.718 190 0.522 270 0.431
40 0.925 120 0.685 200 0.506 280 0.424
50 0.908 130 0.685 210 0.490 290 0.420 -
60 0.881 140 0.628 220 0.478 300 0.414
70 0.850 150 0.603 231 0.467 310 0.411

We present the Time vs. Protein generated in the Figure 11.

From Figure 1/ it is clear that the relationship between time taken and protein gencrated
is not linear. Thercfore, they cannot be explained by a linear equation. In a situation like
this, we may often go for a non-linear model to explain the relationship between the
independent and dependent variables and they are called the non-lincar regression model.

A non-linear regression model can be formally written as
y=f(x,D+e, (13)

where f(x,8) is a known response function of k-dimensional vector of explanatory

variable x and p-dimensional vector of unknown parameter . Here also e represents the
error component and it is assumed that it has mean zero and finite variance. Therefore, it
is clear that the non-linear regression model is a generalisation of the linear regression
model. In case, the linear regression model F(x, ) is a linear function, but, it can also be
eny non-linear function. Similar to the linear regression model, here also, our problem is
the same, that is, if we observe a set of n, {(x|, 1),...... » (Xns Yu}}: how do we estimate the
unknown parameters 8, when we know the functional form of f(x, 8).

3.3.1 Least Squares Estimation

Similar to the linear regression meihod here also to estimate the unknown parameters, we
adopt the same method. We calculate the estimaic of & by minimising the residual sums
of squares, that is minimizc

@ => Iy, - [ (x0T, (14)
r=|

with respect to the unknown parameters. The idea is the samne as before, that is we try to
calculaté that particular value of € for which the sum of squares of the distance between
the points y; and f(x,,&) is minimum. Unfortunately, in this case the minimum cannot be
performed as easily as before. We need to adopt some numerical technique to minimise




the function (&) . This minimisation can be performed iteralively and one technique that Regression
can be used to accomplish this is the Gauss-Newton method. Analysis
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Figure I1: Time vs. Protein generated in an experiment.

You have already learned about the Gauss-Newton method in detail earlier, we just give a
brief description for your ready reference. We use the following notations below:

8 =(8,,.....0,), 64 =(g1,.......0%") (15)
Expand the function f(x,8) using a Taylor series expansion about the starting point
8@ and using only the first order expansion, we get:
S (5 8) = f3,07) 4940, =67 + et v, (8, ~65)
where

v, =% for 0 R
J o lpag®
Let 7(8)=(f(x,6)..... /(x,,0)) and y = y =(p,,......y, )" then in the matrix notation
we can write (15)
7(6)=n(E®)+V V{6 -6,
where V@ is the 5 x p derivative matrix with ¢lements v, Therefore, to compute the first
estimates beyond the stariing value is to compute

bo =7 VO [y @)
and then solve for the new estimate 8V as
g = b, + 8
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.puting

This procedure is repeated then with 8 is replaced by 8 and F** by ¥ and this

produces a new set of estimates. This iteralive procedure continues until convergence is
achieved. Naturally these computations cannot be performed by hands, we need
calculators or computers to perform these computations.

Example 5: (Contd). In this case it is observed (theoretically) that the following model
(16) can be used to explain the relationship the time and yield generated y, where

y, =ag +ae? +aef v e, (16)

Note that as we have mentioned, for ine general non-linear regression model, in this case
also, the form of the non-linear function namely, &, -!-a,e"" +ePtis known, but the
parameters of the model, that is, 8 = (@, .05, 5,,0,) is unknown. Given the data as
provided in Example 5, we want to estimate the unknown paramelers.

We use the following initial guess o, =0.5,¢, =1.5,2, =-1.0, 8, =~0.01, 8, =-0.02,

and finally using the Gauss-Newton algorithm we obtain the estimates of the parameters
as follows:

a, =0.375, &, =1.936 &, =1.465, [30 =-0.013 5, =-0.022
We have plotted the points and also the best fitted regression line, namely in Figure 2.

$=0375+1.9362°"¥ _ 1,465 (7
' I 1 | | j
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Fipure 12: Time vs. Protein gcne{_ﬂted in &an expariment and the best fitied curve
me

Figure 12 indicates that the fitted regression curve provides a very good relationship
between the time and protein generated in that experiment. As before the prediction curve,
that is, the curve (17) can be used easily for prediction purposes also. For example,
suppose we want to estimate the expected protein generation at the time 115 minutes after
the experiment, then using (17), we ohtain

F=0.37541.93627091 1 465000315 = g 698.
Therefore, at the 115 minutes the expected protein generation is 0.698 gms.
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Some points we should keep in mind about the non-linear regression model is that we
have to know the functional form of the relationship, but the parameters involved are
unknown. Usually the functional forms are obtained from the physical nature of the
process and they are available. If they are completely unknown it is difficult to use the
non-linear regression model. In that case, we need to (ry with some guess models but they
are not very easy and they are not pursued here. Another important issue is the choice of
the guess value of the iterative process. This is also a difficult problem. Usually from
prior experimental results we may have to use the trial and error method to calculate (he
initial guess values.

¥ Check Your Progress 4

1) Data on the amount of heat generated by friction were obtained by Count Rumford in
1798. A bore was fitted into a stationary cylinder and pressed against the bottom by
means of a screw. The bore was turned by a team of horses for 30 minutes and
Rumford measured the temperature at smali intervals of time. They are provided in
the Table 8.

Table 8

Time Temperature | Time Temperature
{min) (°F) (min) °F
4 126 24 115
5 125

28 114
7 123

31 113
12 120

34 112
14 119

37.5 il
16 18 a1 110
20 116

a) Plot the time versus temperature curve and convince yourself that the linear
regression model is not the correct model in this case.
b) A model based on Newton’s law of cooling was proposed as

f£it,0)=60+70%

Using an initial guess of 8% = 0.01, find the least squares estimate of & .
c} Based on the fitted least squares regression line find the expected temperature at
the time 15™ minute after starting the experiment.

34 SUMMARY

In this unit you have seen:

e That regression analysis is an important technique, which can be used to verify the
resuits of any experiment,

e How the relationship between a dependent and an independent variable can be
determined by using the Scatter diagram,

e That by using the technique of regression you have an edge that can help you analyse
the results in an organised way. Further, this analysis is smoothened by the

Regression
Analysis
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application of concepts such as, least square estimatior, goodness to fit and residual
analysis,

That very often such as, data obtained by conducting an experiment does not follow
the linear relation, So, to handle such aspects we have also discussed the concept of

non linear regression and we have emphasised least the square estimation technique.

Formulas and applications of the following topics:
* Simple Linear Regression

»  Least Squares Estimation

& (Goodness to Fit

* Residual Analysis
* Non-Lincar Regression

¢ Least Squares Estimation

3.5 SOLUTIONS/ANS

ERS

M T " n i A
T T ot et

Check Your Progress 1

1}-Since both the regression lines pass through the point (¥, ¥}, we have

8T—107+66=0
40X - 187~214=0

Solving we get, X =13

y=17.

Let 8x — 10y + 66 =0 and 40x — 18y~ 214 =0

Be the lines of regression of y and x and x on y respectively. Now, we put them in the
following form.

_18_ . 214

=-—x + @and r=—y + — C)]

10 10 40 40

4
byx = regression coeff of y on x = i = _75'

18
bxy = regression coeffof xony= —= 2—5:)

¢ 9

Hence, r= bxy. byx = i R

5 20 < 25

SDr=i% = + 06

Since, both the regression coeff are +ve, we take r =+ 0.6

3)Wehave,byx=rgi = - = - x —

Ox 5 5 3

gy=4%
%emarks (i) had we taken 8x — 10y + 66 = 0 as regression equation of x on y and
40x — 18y = 214, as regression equation of y on x.

Then

10 40
bx = — and b = —_—
y n an yX 3

A e




or rt = bxy byx = 10 X 40 2.78
g8 18
50 r=x1.66
Which is wrong as r lies between + 1.
2)
Observation {x) Relative humidity, (v} Solvent Evaporation,
(%) (%) wt
1 353 11.0
2 29.7 11.1
3 30.8 12.5
4 58.8 8.4
5 61.4 9.3
6 71.3 8.7
7 744 6.4
3 76.7 8.5
9 . 70.7 7.8
10 57.5 9.1
11 46.4 8.2
12 28.9 12.2
13 28.1 11.9
14 39.1 9.6
15 46.8 10.9
16 48.5 9.6
17 593 10.1
18 70.0 8.1
19 70.0 .68
20 - 744 8.9
2] 72.1 7.7
22 58.1 8.5
23 44.6 89
24 33.4 10.4
25 ’ 28.6 11.1
Summary statistics for these data are
n=25 Zx=1314.9 Zy=23570
T x’=76.308.53 Ty =12286.07 Zxy=11824.44

To cstimate the simple linear regression line, we estimate the sfope 5, and intercept.
fp. these estimates are

m oA nXxy—HE )]
/i >B1—ble HEIZ—(ZX)I
_ 25(11,824.44) - [(1314.90)(235.70)]
~ 25(76,308.53) - (1314.90)>
=08
fo = Po=bo=y-biF
=9.43 — (- .08) (52.60) = 13.64

chrl;-ssiun
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Figure: A graph of the estimated line of regression of ¥, the extent of evapo-ration. on X, the relalive humidity

66

Hence, the estimated regression equation is ;ir e = ;’ =13.64-.08x

The graph of this equation is shown in Figure above. To predict the extent of solvent
evaporzation when the relative humidity is 50 %, we substitute the value 50 for x in the
equation, y =13.64—.08x

To obtain 3' =13.64—.08(50) =9.64 . That is, when there relative humidity is 50 % we
predict that 9.64% of the solvent, by waight, will be lost due to evaporation.

Recall from elementary calculus that the slope of a line gives the change in y for a unit
change in x. If the slope is positive, then as x increases so does y; as x decreases, so does
y. }f the slope is negative, things operate in reverse. An increase in x signals a decrease in
y, whereas a decrease in x yields an increase in y.

Check Your Progress 2

1) R= J;Ls = (138.076) / [(2.6929 * 7839.93)'7] = 0.9504.
=" yy

So, R? = 0.9033

Check Your Progress 3

1) Residual plots are helpful in spotting potential problems. However, they are not
always easy to interpret. Residual patterns are hard to spot with small data set except
in extreme cases, residual plots are most useful with fairly large collection of data.

Check Your Progress 4

1) Refer to example solved in the section 3.3.1
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Table 1: The distribution function of standard normal random variable

0.00( 0.01

0.02] 0.03

0.8
0.9

o
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0.5000,0.5040
0.5398 0.56438
0.57930.5832
0.61790.6217
0.655410.6591
0.6913 0.6950
0.7257]0.7291
0.758010.7611
0.78810.7910
0.81590.8186
0.841340.8438
0.8643 0.8665
0.8849 0.8869
0.9032 0.9049
0.9192 0.9207
0.9332010.9345
0.9452 0.9463
0.855410.9564
0.9641) 0.9649
0.97130.9719
0.977200.9778
0.9821/0.9826
0.28610.9864
0.989% 0.9896
0.99180.9920
0.9938 0.9940
0.9953 0.9955
0.9965 0.9966
0.89740.9975
0.9981]0.9982
0.99871 0.9987

0.508(0 0.512(
0.5478 0.5517
0.68710.591(
0.6254 0.6293
(.6628 0.6664
0.69840.7019
0.7324 0.7357
0.76420.7673
0.7939 0.7967
0.82120.823§
0.8461 0.8485
0.8686 0.8708
0.8888 0.8907
0.906€ 0.9082
0.92220.9236
0.835
0.947
0.957
0.965
0.972
0.978
0.883
0.986

0.9664
0.9732
0.9784
0.9834
0.9871
0.989§ 0.9901
0.99220.992§
0.9841] 0.9943
0.995€ 0.9957
0.9967 0.9968
0.9976 0.9977
0.9982 0.9983
0.9987]0.998

0.04] 0.05

0.06, 6.07 0.08

0.09

0.516(0 0.5199
0.5557 0.5596
0.56948 0.5987
0.6331 0.6364
0.670Q 0.6736
0.7054 0.7088
0.73890.7422
0.77040.7734
0.79890.8023
0.8289
0.8531
0.8749
0.8944
0.91185

0.9744
0.9798§
0.9842
0.9874
0.9906
0.9929
0.9944
0.9960
0.9970
0.9978
0.9984
0.9989

0.990
0.892

0.523d0.5274 0.5314
0.5636 0.5675 0.5714
0.6026 0.6064 0.6103
0.640€¢ 0.6443 0.648(
0.67720.680d 0.6844
0.71230.7157 0.719¢
0.7454)0.748¢ 0.7517
0.7764 0.7794 0.7823
0.80510.8074 0.810¢
0.8315 0.8340 0.8365
0.8554 0:8577 0.859¢
0.877d 0.879d 0.881¢
0.89674 0.898(¢ 0.8997
0.913110.9147 0.9162
0.9279 0.9294 0.9306
0.9406 0.9414 0.9429
0.9529 0.9535
0.9616 0.9625
0.9694 0.9694
0.9756 0.9761
0.9804 0.9812
0.9844 0.9850 0.9854
0.98810.9884 0.9887
0.990d 0.9211 (.9913
0.99310.99134 0.9934
0.9944 0.9944 0.9951
0.9961 0.9964 0.996

0.99710.9972 0.997

0.99790.997d 0.998

0.9985 0.9984 0.998

0.998d 0.9989 0.999

0.960
0.968
0.975
0.980

0.5358]
0.5753
0.6141
0.6517
0.6879
0.7224
0.7549
0.7852
0.8133
0.8389
0.8621
0.8830

0.9015|

0.9177
0.9319
0.9441
0.9545
0.9633
0.9706
0.9767
0.9817
0.9857
0.9890
0.9916
0.9936
0.9952
0.9964
0.9974
0.9981
0.9986
0.9990
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Table 2: The critical values of chi-square distribution. The areas given across the
top are the areas to the right of the critical value. To look-up an area on the left,
subtract it from one, and then look it up (i.e., 0.05 on the left is 0.5 on the right).

3f [0.995 [0.59 [0975 [0.95 [090 [0.10_ ]0.05 [0.025 [0.01 _[0.005
1 |- - 0.001 | 0.004 |0.016 |2706 |3.841 |5.024 |6.635 |7.879 |
2 ] 0.010 |0.020 {0.051 [0.103 |0.211 |4.605 |5.991 {7.378 |9.210 | 10.597
310072 105 0216 |0352 |0.584 |6251 |7.815 [9.348 |11.345 | 12.838
4 0207 0,297 {0484 0711 |1.064 |7.779 | 9.488 | 11.143 | 13.277 | 14.860
5 [0412 19555 [0.831 |1.145 | 1.610 | 9.236 | 11.070.| 12.833 | 15.086 | 16.750
6 |05/« 10872 |1237 |1.635 |2.204 | 10.645 | 12.592 | 14.449 | 16.812 | 18.548
7 [6.987 1239 |1.690 |2.167 |2.833 | 12.017 | 14.067 | 16.013 | 18.475 | 20.278
8 |1.344 |1.646 |2.180 2733 |3.490 |13.362 | 15.507 | 17.535 [ 20.090 | 21.955
0 [ 1.735 |2.088 |2.700 |3.325 |4.168 |14.684 | 16.919 | 19.023 | 21.666 | 23.589
10 |2.156 | 2.558 | 3.247 |3.940 | 4.865 | 15.987 | 18.307 | 20.483 { 23.209 | 25.188
11_|2.603 |3.053 |3.816 |4.575 |5.578 | 17.275 | 19.675 | 21.920 | 24.725 | 26.757
12-[3.074 | 3.571_|4.404 | 5226 | 6.304 | 18.549 | 21.026 | 23.337 | 26.217 | 28.300
13 [3.565 [4.107 |5.009 | 5892 | 7.042 | 19.812 | 22.362 | 24.736 | 27.688 | 29.819
14 | 4.075 | 4.666 |5.629 | 6571 |7.790 | 21.064 | 23.685 | 26.119 [ 29.141 | 31.319
15 [ 4.601 | 5229 |6.262 | 7.261 |8.547 | 22.307 | 24.996 | 27.488 | 30.578 | 32.801
16 | 5.142 | 5812 [ 6908 | 7952 |9.312 | 23.542 | 26.296 | 28.845 | 32.000 | 34.267
17 | 5.597 | 6.408_ | 7.564 | 8.672 | 10.085 | 24.769 | 27.587 | 30.101 | 33.409 [ 35.718
18 {6265 | 7.015 | 8.231 |9390 | 10.865 | 25.989 | 28.869 | 31.526 | 34.805 | 37.156
19 16844 |7.633 |8.907 |10.117 | 11.651 | 27.204 | 30.144 | 32.852136.19 | 38.582
20 17.434 [ 8260 [9.591 |10.851 | 12.443 | 28.412 | 31.410 | 34.17 | 37.566 | 39.597
21 [8034 [8.897 |10.283 | 11.501 | 13.240 | 29.615 | 32.671 | 35479 | 38.932 | 41.401
22 [ 864> [9.542 | 10.982 | 12338 | 14.041 | 30.813 | 33.924 | 36.781 | 40.289 | 42.796
23 19260 1 10.195 | 11.689 | 13.091 | 14.848 | 32.007 | 35.172 | 38.076 | 41.638 | 44.181
.24 |9.886 | 10856 | 12.401 | 13.848 | 15.659 | 33.196 | 36.415 | 39.364 | 42.980 | 45.559
25 110.520 | 11.524 | 13.120 | 14.611 | 16.473 | 34.382 | 37.652 | 40.646 | 44.341 | 46.928
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BLOCK INTRODUCTION

This block is also composed of three units Interpolation, Numerical
Integration and Numerical Solution of ODE. Interpolation is quite
interesting because this technique will [et you to learn the methods by which
you can use the available data and hence determine the resuft.of the experiment
for which it was not conducted. You will understand the meaning while
reading the text given in the block, secondly you will understand that
determining values at quite close intervals contributes to the integration of the
curve. So we had also discussed some methods for Numerical Integration and
finally Numerical Solution of ODE is also discussed in this block.







UNIT1 INTERPOLATION

Structure Page No.
1.0 Introduction 5
1.1 Objectives . 5
1.2 Differences Forward and Backward Differences 6
1.3 Newton’s Forward Difference Interpolation Formula 9
I.4 Newton’s Backward Difference Interpolation Formula 1o
1.5 Lagrange’s Interpolation Formula 14
1.6 Summary 20
1.7 Solutions/Answers 20

1.0 INTRODUCTION

Interpolation is an interesting topic and has wide application in various fields. Using this
concept you can analyse a problem on solution in a betier way. So, as to understand and
conside an example say a thermometer has a jeast count of 2.5°C, when it is calibrated
than a correction chart is given by the concemed authority. Say the correction chart has
following entries.
Actual Reading(°C) Correction
+0.8
10 0.4

Le., when reading in device is 5°C, the actual temperature is 5.8°C, and when it is 10°C,
the actual temperature is 9.6°C. Say, the device is used in an experiment and the mercury
level is stopped between 5°C and 10°C. Now, what will you say about the temperature
correction at 7.5°C, Since, the t.:{cvice is not calibrated at this point, we use the concept of
interpoiation to solve such tasks. ‘ '

Calculation of the value of a function between the velues already known is called
interpolation. The problem of interpolation can be briefly stated as follows. A function
f{x} is defined by a table of its values for a certain finite set of values X;, ~=0{)n.
Compute the value of the function at some point £ not in the wble. If the point £ is
included in the interval [Xo, X,], it is called the problem of interpolation. It is obvious that,
for any general f{x) and any arbitrary £, the solution to the problem is difficult unless
certain assumptions are made regarding the nature of f{x}. Informally, f(x) is assumed
regular or more precisely the tabulated function is amenable for approximation by some
type of function y(x), preferably using polynomials or trigonometric functions. The
problem of interpolation is to compute y(x). In order to reduce computational effort over a
certain interval, it may be required on some occasions o resort to interpolation, even if an
analytical representation of f{x) is known. The other type of problem, called inverse
interpolation, consists in finding the value of the argument x corresponding to a given
value of y. The problem is similar to direct interpolation since the roles of x and y can be
interchanged. In particular, inverse interpolation can be used for computing the
approximate root of a functien, i.e., for obtaining x in the interval (x;, X;+,), which brackets
the zero of f{x).

1.1 OBJECTIVES

After studying this unit, you should be able to:

selve o Interpolation problem;

evaluation of differences of any function;

use forward and backward differences;

use of Newion's forward and backward differences formulas, and
use of Lagrange's Interpolation formula.

4 = 8 a &
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1.2 DIFFERENCES-FORWARD AND BACKWARD
DIFFERENCES

Calculation of the value of a function between the values alrcady known is called
Interpolation.

The problem is as follows. Given a set of pairs of values (x;,y;), =0(1}n, obtain an o
degree polynomial y{x) that passes through all the poinls (x;.y,). This polynomial is an
approximation to the function f{x}, which coincides with the polynomial at (x;,y;),
=0(1)n.

{n such a problem, the concept of differences is important,

Forward differences These are defined as

first forward differences Ay;= v — ¥i 1=0(Dn-—1
second forward differences A’y = A (Ay)
=A(Yie1—Yi)
=AY+ 1—AY;
=(Yica—Yir) ~Fie1—Yi)
=¥ir2—2¥ia1 Y
K" forward difference A'y; = A i) — Ay i=0()n~k )

These differences are usually expressed as in Table /, the quantities in each columnn

e R T

e

representing the differerices between the quantities in the preceding column. These are *

usually placed midway betwecn the quantities being subtracted so that the forward
differences with like subscripts lie along the diagonals indicated in the table by
arrows. Tt should be noted that if the ' differences A'y; are constants, then all the
differences of an order higher than r are zero. ’

If follows, from formula (1), that

Y1=Yo 1 AYo _
y2=y) + Ay = (Yo + Ayo) +(ATyo + Ayo) = Yo +2 Ay + A’ yo

These results can be written symbalically as
Yi=( + Ao, y2 = (1 + A) Yo,.nee
in which (1 + A)® is an operator on y, with the exponent on the A indicating the ordc:

of the difference. The difference operator is analogous to the differential operator
D( = d/dx).

By induction,
%= +A Yo, k=1,2, e . ' (2)
or, in expanded form,
k(k-1 k(k -1} k-2 p
YE=Y0+MYO+%AZYQ+%)—AJYO+ ,,,,,, )

Formula (3) enables us wo write an expression of every value y, in terms of y, ana the
forward differences Avo, A%¥o,..ieeee.
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Table 1: Forward differences

X y Ay Aly Ay
Xo Yo~
\A}'o--.\\'_ .
X Yi—_ e A }’t:i-\‘\“‘-\i
A Ay—_| A’y,
X3 Yz s '&:}’1
[ Ay,
Xs ¥i

Xn-t YH—J\

Xa ¥n

e

Remark: A'P, (x) =0 forr>n, where P,(x) is a polynomial of degree n.

Check Your Progress 1

1) Construct a forward difference task for the data:
X : 1 2 3 4
1{a) P 7 13 18 25

2} Estimate the missing term in the following data valid it is represents a polynomial

of degree.
X I 2 3 4 5
) 3 7 ? 21 31

Backward differences The pairs of points (3;,y;), i = 0 (1)n, are given. Then,

first backward differences Vy; = yi—¥i -1 i=n(-1)1
second backward differences Vy; = Vyi-Vyiai=n(-1)2
k-th backward differences V*y, = ¥*"'y; - V¥yi i=n(-1)k 4)

The backward djfferences are indicated in Tebie 2.
From formula (4),
VY =¥o—Yo-us
vz ¥n = V)'n" v Ye-17¥n— 2}'11—[ + ¥u -2

These results can be written symbolically as

Yot =¥a— V¥ ={1 = V}yn

Yo-2=Yp— 2 Vy, + vzy.n ={1- v)z ¥n

Yo-r = (1 - V)5, (5)
in which {1 — V)" is an operator on ¥, with the exponent on the V indicating the order
of the differences. V¥ is called the backward differences operator. Formula (5), when
expanded, reads

Interpolation
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Yok = Yo~ kVy, + k(kz," Drgzy,  KE-DE-2)

3 Vot i

(6)

Formuta (6) enables us to represent every value y,  in terms of jrn and the backward

differences Yy,
Table 2; Backward differences
X |° v - Yy Viy Vy
Xo Yo
Xa-3 }'n;i
_,...—"‘""".' VYD-Z
Xp-2 }’n-z
V¥a -__L.---"'"* VZYn—l
Xn-1 Yoo J....--""""* VJ}'
V n --'"’ szn ""—-' .
Xn ¥n _..---"'""'" Y - -]

Example 1: Compute the forward differences for the following set of data:

X I 2 3 4 5 6 7 |8
¥ 2.105 2.808 3.614 4.604 5.857 7.451 9.467 11,985
X Y Vy Viy Vy Viy
1 2.105 )
0.703
2 2.808 0.103
0.806 0.081
3 3.614 0.184 —0.002
0.950 i 0.079
4 4,604 0.263 —0.00]
1.253 0.078
5 5.857 0.341 +0.003
1.594 0.081
6 7.451 0.422 - 0.001
2.016 0.080
7 9.4587 0.502
2518
8 11,985
Check Your Progress 2
1) Evaluate the missing term in the following;
S : 100 101 102 103 104

fixy=<logx : 2.000 2.0043 ? 2.0128 2.0170

Lo me—ree— s rmmmTiz - ST R o

ShTEITTE




2} Obtain the estimate of the missing figure in the following table: nterpolation

X : | 2 3 4 5 6 7 8
f(x) : 1 8 .? 64 ?_ 216 343 512

1.3 NEWTON’S FORWARD DIFFERENCE

INTERPOLATION FORMULA

For a given set of data (x;, ), i= 0 (I)n, let x; be equally spaced and h be the interval
size, Le., . ) ' .
xk=xo+kh, Vi=0, l, ......... ;N (7)
Then, k=22"T0 (8)
On inserting this value of k in - €

k(k -1 kk-D.{k-n+1
Ye=Yo+ kAy, + _.(2'_) 7 + KE=D n(' 7+l) A%, )
we get _

= Xy —Xp (xe ~xp Xxs —x, — )

i=Yot p Ayo + T A’yo-!-;......._...+
(e — X Xy =X = A).er (X, — X ~ 11 +h) A'y,. a0

This relation is satisfied by n + 1 pairs of the tabulated values. Assuming that the
value of y corresponding to an arbitrary x can be obtained from formula (i0) by
replacing x; by x, we get,’ :

- X — X, {(x—x Y x-—x,~h) ,
Yy =yo+ Ayt e Aot o
£ &0 Xx—x —h)...(x—x,~nh+h) Ao

nih"”

_ X —Xo (=X )(x=x) 2 (r=x)(x—x)(x-x,) ., S
yo+[ o J.&yo+TA Yo+ e Ay, (11}

Formula (11) 15 called the Newton forward difference interpolation formula.

Let X = (x — x4)/h be an undimensioned variable, which represents the distance of x
from x; in the units of h. Then, Forrula (1 1) becomes

X(X—I)A,_yO+ + XX -1k X ~n+1) A

Yx= Yo ¥ XAy + —— 2~ Yo (12)
2! nl

where y, = y (xo + hX) = y(x). y(x) is known as the Newton-Gregory forward
polynomial. .

TOTTT T
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1) Write down the polynomial of lowest degree which satisfies the following set of
numbers, using the forward difference polynomiat
X e 1 2 3 4 5 6 7
nx) -. 0 7 26 63 124 215 342 511

2) What is the lowest degree polynomial, which takes the following values? Find this
polynomial using the forward difference polynomial.
x : 0 1 2 3 4 5
fix) 0 3 ‘8 15 24 35

1.4 NEWTON’S BACKWARD DIFFERENCE
INTERPOLATION FORMULA

In the same way as in Section 1.3, we get from formula (6), the Newton backward
difference interpolation formula .

x— - -x ~x V(X — .
Y(X)=y,,+—nx"Vy"+(x xﬂz)l(;’ "")+.....(x "ﬂi!hf x’)V ¥,

L XX +1).....;(x +n=1) gn
nl

Yo, {13)

(X +1
Yoex = Yot XVy, + (T)- Vz)'n

where X = (% — x,)0/h and Y.+ x = y{Xa + X3 = y(x). y(x) is known as the
Newton-Gregory backward polynomial,
Derivatives of Tabulated Functions

On differentiating formula (1 1) successively with respect to x and setting X = xgin the
result, we get

] 1 1 5
Y'() = = (Alyo— A'yo + EA‘YO - EA’}’O Foreeniaes h

i, 3 7
¥ (%o} - ;j‘ (As,"n - EA‘YQ - ZASYu T adrssraas ),
1
¥ (x0) = o (Atyo —20°%g + ceveeene } (14)

10

pe— - -
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Example 2: Given the values

X 1 2 3 4 3. |6 17 2

2.J05 12808 |3.6i14 14604 |5.857 |7451 |9467 {11985
Obtain y(2.2) using forward differencing and linear, quadratic and cubic intérpolation.

Solution: We form the table of forward differences.

A A? A
1 2.105 0.703 0.103
2 2.805 0.806 0.081
3 3.614 0.990
4 4.604

If two nearest points are used (n = 1), i.c., linear interpolation, then x, = 2, y, = 2.808
X1=2,y,=2.808,h=1. N

We get (note xq is a suitable origin).

(%) = yo + (x ~ Xo)%

¥2.2) =yo+024f0
= 2.808 + 0.2 (0.806)
= 2.9692

If three nearest points are used (r = 2), i.e., quadratic interpolation, then we have
Xo= 1, yp=2.105

X =2,y,=2.808, x,=3, y2=3.614. --
Then, X =(22-1)/1=12

Hencc using (12) we get,

v(1.2) = 2.105 + 1.2 (0.703) + (1:202) 2)(0 (4:2X0.2) 4 103y =2.961.

It should be noted that we could have as well defined x, = 2, yo = 2.808, Ay, = 0.808,
Pye=0.184, X =(2.2-2)1 =02

I four nearest points are used (n = 3), i.e., cubic interpolation, then we take
Re=1,x=2,%=3,%=4,Then, X=(22- 1)/l =1.2.

Using {12), we get,
y2:2) =2.105 + 1.20.703) + 202 (g 103) + w;zm (0.081) = 2.958.
L

Error in Newton’s Interpolation polynomial

A data of n+1 values can be represented by a unique poiynomial of degree < n.
Hence, the Newlton forward and backward differences interpolation formulae are
basically the same, and have the samc error bound. Both these formulae give an n-th
degree polynomial y(x) passing through {n+ 1) given points (x;, y), i = 0(1)n. Hence,
the error involved is the same as that described for the Lagrange iaterpolation (to be
derived in Section | 5) The maximum absolute error is riven by

[0
(n+1)!

E, = max Il'] {x- x)lma_x ,;USL,S.r,,,

Isterpolation




Numerlcal
Compuiing-1I

where x is in (Xo, X} and I1"e = (x ~ xo)(x — x1)......... {x—xn).

Error in linear interpolation: The maximum absolute error in estimating f(x) by linear

interpolalion between x, and x, is as follows. Since, n = 1, we have

E.=max|1'lf,(x—x,)|max%, x, SESx,
= max](x—xo)(x—x,)]maxlf &) Xy SE<x,

21 [

From calculus, in stationary points of the quantity {x — xo) (x>~ x;} is obtained from
d Xy + X
e {(x—xo)xr—x)}=0 or x >

le — X -xu % | _ (x, "xn)z

I 2 2 | 4

Hence, max|(x—x,}x-x)}} =
_ 2
Thus, E= ‘(x,_éxo_)# max |fY(E), x=<E<x.

Error in parabolic interpolation: In this case,n =2,

Therefore, £, = maxiﬂoz(x—x, )[maxlfz(ig) Xo SES X,

where, ITlo=(x- X Xx=x)(x—x,)

We invoke the value of X = (x — x;)/h. Thus,

E, = max|X(X —I(X ~2)h*| max % X, SE<x,,
E, = max{X (X —1)(X —2)| max ! ;(F) Xy SES X,

The points of the quantity x (x — 1) (x — 2) are stationary
d .
Lol =m =
(X X-1X-2)}=0

or %{x3 -3x*+2x}=00r 3x2 —6x+2=0

Thatis, if X =1£{1/+/3). When X= 1 +(1/3 Yor 1 = (1/43),

Then, | X{X -IXX -2)|=2/(33).

hi
Thus, E =—f— max|f"()|, XoSE < xs.
Y- B3] E<x,

Since,  |x—xe <P —xe] e ,]i — - | <}xa — x| forxg <x<x,, we get the error in
the {n+1) point interpolation as

- ].\'. _ xo!nlvl Y i
VError] = = max s )|

(r+1)1

T e




Ioterpolatinn
Note that this is a very rough upper bound. For n=1, we get
£

2
max

[Error] S';'l'{"_ Xo
and for n =2, we pet
IError| < %[x: ~ .vcnl2 max|f"'(§)-] .

The values on the right hand sides are very large compared to the values derived
earlier.

Example 3: What is the interpolating polynamial for f{x) = x* + sinlLx through
{0, 0), (1,1), (2,4)? What is the error when x = %? What is the maximum

error?

Solutiom: We from the following table,

x y Ay Aly.
0 0
1
1 1 2.
3
2 4

The interpolating polynomial is

2 g

N
Y@=y @ +x Lrro1) R =0 exrx-1) 2

MNow, the exact and computed values are,
1 1Y | 1 5

f[— =|=| +sin(wW2)=—+1=—,
\ 2_ 2 4 4

y[1]=(1’=1

2 2 4’

' . [ 1Yy_5 1 _

Therefore, the exactermorisf | = |-y[ = |=— — — =1
2 2) 4 4

The maximum error in quadratic interpolation is

K
E, ==—= max| f™(£)|,0<E<2

o5

(say p = m)

Hence, f{x)=x*+sinpx
f'(t)=2x+pcospx
f"(x)=2-p’sinpx
S "(x)=—p’cosp x

1
Hence, £, = ——max|-n cosnf|, O<E<2.
1 9\!5 1 ‘C: E.l .

b

Since,cos E=|,atE =0, we have E, = Bﬁ

R ER e Ee R
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Example 4:Find the largest value of 4 that will ensure five-place accuracy in the table

of sin x.

Solution: The maximum error in linear interpolation should satisfy,

2

% max ] /" "(£)|<.000005

Since, f"=—sinxand max| /"|=1, we require, k%8 < .000005.
Therefore, h = 0.0063 rad.

Check Your Progress 4

From the following data estimate the value of f{2.25) using forward difference
formula, :

x : 0 05 10 L5 20 25
f):  © 10 3.625 7.000 11.875 19.000 29.125

2) Estimate the sale of a particular quantity for 1966 using the following table:

Year : 1931 1941 1951 1961 1971 1981
Sale in thousands : ™ 12 15 20 27 39 52

1.5 LAGRANGE’S INTERPOLATION FORMULA

Give (x;07), i = 0(1)n, where x; may or may not be equally spaced, the problem is to
obtain an n-th degree polynomial y(x) that passes through all the points (x,y)). This
polynomial is an approximation*o the function f{x), which coincides with the
polynomial at (x;, y), i = 0(1)n,

Let the n-th degree polynomial Py(x), k=0(1)n

Py (x) = f[o(x~x;), fori = &, k=0(1)n (15)
That is, Pe(x}=(x—Xo)oo..(x =2 - J(X — Xe o Jerrn (X — 30

Then, the coefficients 4; of

100 = 3 AR () (16)

k=0

can ¢ dewrmined so that equation (16) is satisfied by each of n + | pairs (x,, ).
For, if x = x;, then

Y(x)= = AoPo(x) + AP + ...+ Adi(a) 4+ AL(x)
= Ag Py (xp)

N

Tt oT=I




= _Ji ; -
Therefore, Ag = (n
) F(x)
since Pi(r) =0, ifi=k.
ykﬂ (x)
Hence, y(.r) (18)
Z F(x)

is the equation of the required n-th degree polynomial, which passes through the n + 1
points (x;,.y;). Equation (18} is called the Lagrange interpolation Jormula.

Remainder and Error in Lagrange’s interpolation formula

Let P(x)= f[(x-—x,).

: (19)
From (15), we have P (x) = (x —x;) P: (x) and P"(x) = (xx — x1) P'(x) + Pi(x).
Hence, Py (x) =P"i(xs) (20)
Thus, we can also write y(x) from (18) as
_onn) L nPE) N
Y= i Pilx) g (x—x)P" (x;) @

Let a be a point in [xo, %,] and a # x5, k& = 0(1)n. Then, the error in interpolation is
defined as p(x} = f{x) - y(x).

The function f{x) — y(x} vanishes for x = xqo, x|,...X, . We assume that, forx=a,
we have

f{x) = y(x} + RP(x) (22}

Where R is a constant. Now, define a function

GO =) -y(®-RP () (23)
Where P(t) is a polynomial of degree n+1 in t and y(t) is a polynomial of degree n.

G(t) is zero for t = xg, x1,....x,. By using the Roller’s theorem repeatedly, we conclude
that G*®* " () = 0, where & is in_[xo, X,].

Bu, G®ME=f"""E-R{n+1) (24)

Since (n+1)th derivative (n*1)! of y{t) = 0 and (n+1)th derivative of P(t) = (n+I)!

Hence, R = f‘"“)(E_,) (25)
(n+1}!
Therefore, we obtain
{n+l)
Ay =plx) + f 1()? P(x) (26)
or fxy =) + &—=2= f{r‘”(g) (x—xo)(x —xy}emnnns (x —x.) . (2%,

(n+1)!

Interpolation
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Thus, the remainder in the Lagrange interpolation formula is given by

- _T S E)
Error = (x) - y(x) = H(xmx,)m, xpsSELx, (28)

where x is in [x,, x,]. Hence, the maximum absolute error in the Lagrange
inicrpolation formula is

n {rm+l)
H(x—x,)maxj";nﬂ()g!), xS E <x, ‘ | (29)

t=i} _
(a) A higher order formula does not necessarily give a better result than a lower order

formula. For instance, let us consider the curve y =x7. Also, suppose the values on
this curve are given by

E|=max

Remarks:

X

0

1

2

3

4

Y

0

8

27

64

For computing x when y = 20. Let us use the inverse Lagrange interpolation. This is
obtained by interchanging the roles of x and ¥ in equation (18). Thus,

= =D -8 -27)(y —64) 0+ =0y -8)(y-27)(y-64)
—D(~8Y-27)(—64) (D(=7)(~26)(—63)
O-0(y~D(y-27)0y-64) )+ =0y -1)(y—8)(y—64)
@}7)(-19)(-56) 27)26)(19)(-37)
-0 -D{y—-8)}y-
(64)(63)(56)(37)

B+

3+

27) 4)

For y = 20, we obtain x = -1.31. The actual value is x = 2.71. Now, let us use liniear
interpolation with the data points (8,2), (27.3). We obtain
22272 0y, 28 o

(-19) (19)

Fory =20, we get x =2.63, with the magnitude of error as only 0.03,

(b} The Lagrange formula is often, not used in practical computation. However, it is
very useful in theoretical work within different branches in numerical analysis
(for instance, dériving the Gauss — Legendre quadrature formula),

Example 4: Find the-interpolating polynomial that fits the data:

Xk

0

1

2

5

Si

2

3

i2

147

Using the Lagrarge in_tcrpolation formula
Solution: We have .
- (x"'xl)(x_xz}(x_xz) + (x*-xo)(I—I:J(x"Ia)
) (%6 — X )Xo = X {2y — x3) 7 () (3 — X X%, ~ x, ¥ x, -X)
(=2 )x = 3, )(x - x,) MECIEN CEEY (D
APy L) oo e YA

f(xl) +

e - -

TR




o GoDE-2x-5), L G029, ,
(0-1)(0-2)0-5) -0{1-2)1-5)
(3:—-0)(:::—10(::—5)l2 + (x--(‘.*}(.1r:—1)(x-—2)M,:‘|r
2-0(2~D(2-5) (5-0)5-D(5-2)

(x—l)(xsz)fx 5) 3x(x 2) (x-5)=2x (x—1) (- S)+—x(x DE-2)

Example 5: Compute £'(2.0) from the following data of values

X 1.8 1.9 2.0 2.1 ]
f(x) 6.05 6.69 7.39 8.17
Solution:

Since, four data points are given, the data represents a cubic polynomial, P(x). We can
construct the pelynomial P(x)' end find P*(2.0). Alternatively, we can construct a
quadnatic polynomial P(x} using the data values (1.9, 6.69), (2.0, 7.39), (2.1, 8.17) and
find P'(2.0). We have,

(x—1.9(x-2.00> 2D 60 5) (x~1.8)(x—2.0)(x—2.1)
(-0.1)(0.2)(0.3) ' (-0.1)(0.1)(0.2)
(x—1.8)(x-1.9)(x—2.1) (x—1.8)(x-1.9)(x~2.0)
(—0.2)(0.1)(~0.1) (7.39)+ (0.3)(0%2)(0.1) @17

(6.69)+

P(x)=

We have,
P'(x)= ( 6.05 )(3 2 _12x+11 99)+[ 6.69 )(3.1: —11.8x+11.58)

0.006 0.002:

7.9 817 .. »
3% ~11.6x+11.19 3% —11.4x+10.82
[0 002)( * * )+[0.006](-x x+10.82)

Hence, P'(2.0) = 10.08 — 66.9 +39.95 + 27.33 = 7.46

The quadratic polynomial is given by

P(x) = (x-2)(x-2. 1)( (x 1.9Y(x-2. l)( 39)+ (x-1.9(x- 20)( 8.17)
(—0.1)—0.2) ©0.1)(-0.1) {0.2)(0.1)

P'(x)=+334.5 (2x —4.1) - 739 (2x — 4) + 408.5 (2x = 3.9)
Hence, P'(2.0) = — 33.45 + 40.85 = 7.40

Example 6: Obtain a second degreé polynomial approximation to 1, x by expanding
the function as a Taylor series about x; = 1. Calculate I, 1.2 and obtain a
bound for the truncation error.

Solution: We have, f(x)=1,x, Fx= l, fixy=- Ljs Six) = %
x

Writing Taylor series about xg = 1, we get the second degree polynomial
approxmanon as .

£x) = o) + (x — %0) £ '(Xo )+(" "") £r(xe)

Interpolation
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(x— 1)

Lix=lal+(x-D{D)+ D=(0x- 1)—“(-* 1y

Now, Is1.2= 0.2—%(0.2)2 =0.18

-
| Truncation error [ = %f"(ﬁ) L1<¢<12
Since max|f (&))=m 21_2, and max|x-1" =0.008
’ [l IJ] x [(L12]
2
We get, | Emor | < %)i =0.00267

Example 7: What is linear interpolation? Use linear interpolation to find £{0.3)
for f(x) = 5"

Solution: Let a function f(x) be given at two points xg, x,, i.c. Lﬁc data is (xp, f{xy)) and
f{x;, f(x,)).Take tl= data at the points x,=0,x,= 1,

Then, Imcar mterpolatlon gwcs the value of [ (x) at x =x, , Xp<x,<x;as

-z,
sy = B2 1x) + 2728 1.
Xp—
This process of fixding f(x,) is called linear interpolation.
Now, [(x) =5". Hence, the data is (0, 1), (1, 5).

By the above formula, we get,

o= ‘(1J+"3 2(5)=22

Example 8: Given x) = sin x, f{0.1) = 0.09983, {{0.2) = 0.19867, use the method of
linear interpolation to find f{0.16). Find the error in f{0.16).

Solution
Using the Lagrange interpolation formula, we obtain

16-0.2
£(0.16)= -°—-—(o 09983) + w«) 19867)

= 0039932 +0.119202 = 0.159134,

The error in the Lagrange linear interpolation formula is given by

Ifn-orisi’-"—-x-)— ax | £ "(&)| = (0.00125)(0.19867) = 0.60025

8 [o 1 02]

Exampl:- 9: Find a polynomial of degree 2 with the properties p(1) = 5, p(1.5) = - 3,
p3)}=0.

Solution: The data given is (1, 5), (1.5, -3), (3, 0).Using the Lagrange interpolation
formulz, vve obtain the second degree polynomial as

. {x—-1.5)(x-3) {x—1Xx—-3) (x-1.5)x~ 15)

0y = S)+
PR =T 50T ¢ I s s-n ) Gonais O

T

oo




= 5(x — 1.5) (x - 3) *+ 4(x = 1) (X — 3) = 9x* — 38.5x + 34.5.

Example 10: Sin x is to be computed from a table of values based on the points

1.0,0.9, ......, 1.0~ 0.1 n. How big should n be to guarani(ee that
Jerror} < 0.00001 ?

Solutien: The truncation error is given by

lerror <

|).‘n _xulnfl

(n+1) max|f‘"*” @)!' Xo S5 S X,

From'the given data, we get x, —x; = (1.0 -0.In} - 1.0 =0.In.
Alse, max [sin x| = 1 = max | (cos x) |.

Hence, we require

(0. ln)ru-l

< 0.00001

(n+1)!

Weflindn=6

Check Your Progress 5

1)

2)

3)

4)

In the following table % is the height above the sea level and p the barometric
pressure. Calculate p when h = 5280.

h 0 4763 6942 10594

p : 27 25 23 20

The following table is given:
X 0 1 2 5
f{x): 2 3 12 147

Find the interpolating polynomial that fiis this data.

The following values of the function Hx) for values of x are given:
f(1y=4,1(2)=5,1(7)=5, f{8)=4.

Find the value of {{6) and also the value of x for which f{x) is maximum or
minimum.

By means of Laurange’s formula, prove that
F1=y1-030ys—y}r02(y v —y.s)
where y, = y(i).

Interpolation
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1.6 SUMMARY

. In this Unit on Interpolation, we have:

1) defined forward and backward differences.
2) derived the Newton-Gregory forward and backward difference formulas.
3) derived the errors in Newton forward and backward formulas.

4) derived the Lagrange’s formula

- o Vi B (%)
> o fi(x)
where P, (x) = (x — xo)(x = x)eceea{ X~ X0 - )X~ X0 4 1) (x — 20)

5) derived error in Lagrange's formula

1.7 SOLUTIONS/ANSWERS

Check Your Progress 1

1) Since four values of f{x) are known, we can assume that f{x) can be represented
by a polynomial of degree three

X f(x) af Al A?
1 7

6
2 13 -1

5 3
3 18 2

7
4 25 -

Since four data values are given, a polynomial of degree 3 can be passed through
them. Hence, A'P,Cx! = 0 end third differences have the same value.

2) Let the missing valu¢ be a.

X flx) Af A? A’

1 3

2 7 4 a—11 39-3a
3 A a-17 28-2a2 3a-39
4 21 2t-a a-11

5 31 10

Since, third degree are to be same 39 —3a=3a-39, or6a =78 anda = 13. '
Cheek Your Progress 2

1) The value for x = 102. as four values of f (x) are known, forx =1
we gbt, A'fx)=0.

Sof{2)=2.0086 ie. log 102 =2.0086,

TTETETTIT I




2) Assix values of [x, f{x)] are given therefore we may assume the function to be

represented by a polynomial of degree five. So that A® f{x) = constant and

A*f(x)=0

Forx = 1, (1) becomes
fl5)+f(3}=152

For x =2, (1) becomes
104(5) + 3f(3) = 1331,

Solving (30) and (31), we get
f3)=27 and f{5)=125.

Check Your Progress 3

1) Write the forward difference table

x f{x) Af A A A’
0 0 .

1 7 7

2 26 19 12 6

3 63 37 18 6 0

4 124 61 24 6 0

5 215 91 30 6 0

6 342 127 36 6 0

7 511 169 42

Since A'f=0 the data represents a polynomial of degree 3 Using equation (11) with

h=1 we get y{x)=x"3x%+3x
2) Proceed as 1) above. The answer is x* + 2x.
Check Your Progress 4

1) Write the backward difference table

X F(x) Af A A A'f
0 1.0

0.5 3.625 2.625

1.0 7.000 3.375 0.750

1.5 11.875 4.875 1.500 0.150 0

2.0 19.000  7.125 2,250 0.750

25 29.125  10.125  3.000 0759 "0

Since A*f= 0, we note that the data represents a cubic polynomial. Now,
yoXn_ 225-25 =05
a 0.5

Newton's backward difference formula gives

F(2.25) = F(X)+XVE+2 (‘z +4

) v X(X+I6)(X+2)_V3ﬁ

-29.125—0.5 (10.125) + ('0'5;.(0'5) G)+ ("0'5)(2':’)“ ) 0.75)
=23.640625

(30)

&)

latecpolation
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2}

Proceed as L) above, difference formula. Lere x, = 1981, x = 1966, use backward

difference Answer is 32.3437.

Check Your Progress 5

n
2)

3)

4)

Use Lagrange Interpolation p(52.80) =24.8
Ry Lagrange,s formula, we get, {(x) = x™+ x> —x + 2.

Applying Lagrange,s formula for the above values, we get

()= [-x2 +‘;}‘x +16]

Henee, [{6)=5.667.

The siationary points {points of maxima/minima) are the solutions of ['(x)=0. We
get fi(x)= é(9—2x) =0, which gives x = 4.5. Since, f"(x) <0, f{x)hasa
maximum at X = 4.5,

We are required Lo obtain y, while y s, ¥ _s. ¥-3, 1, are given. By Lagranges
formula, we have

o +3)1-3)1-5) (1+5)1=3)1-5)
N T3 5-5) " T (53 -3x2-5) "
(A+5)0+3)1~5)  (1+5)1+3X1-3)
+ Y + s
B 5)B+3X3-5)" ' (5+5X5+3%5-3)
= y1-0.3(ys ~ ya) + 0.2(y_5—Ys)-

] ety et
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2.0 INTRODUCTION

In many physical problems, we are often required to integrate a function between two
specificd limits. The function may be known either explicitly or as a tabulation of data
(equally or uncqually spaced). The numerical methods can be used to solve all such
probiems. The methods we describe demand the knowledge of the function either

(i)  atequidistant points (e.g., all Newton — Cotes clused quadrature rules, or
(i)  at points corresponding to the zeros of some orthogonal polynomial (e.g., the
’ Gauss — Legendre open quadrature formula).

{n case at least one of these two conditions does not hold, the integrand has to be
represented by some interpolating polynomial and the polynomial is then integrated,

2.1 OBJECTIVES

After studying this unit, you shoulu be able to:

¢ use Newton = Cotes formula;
¢ use composite formula, and
¢ use Gaussian Quadrature formula.

2.2 NEWTON — COTES FORMULAS

The Newton — Cotes formulas are ie numerical integration formulas and arise when
the interpolating polynumials are integrated over the ent.re interval at which they
match the tabulated data. These formulac are used to compule the definite integral

bjf(x)dr W

where f(x) is known either explicitly or as a tabulation of dala (at equispaced
points). :

Let the function f be known through its values shown in table 1, where
X, ~Xx_=h, i=1()n (i.e. the ordinates / are know: at equidistant
points), x, = a,

X=X hx, =%, = x,42G..,b=x, = x, +nh

23
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Table 1: Function f as tabulation of Data (at equispaced points)

x "cl:l xl xZ TR x"
J(x) Jo J, A .
We transform the limits of integration as follows. Let
f X% @)
h

Then, dx = hdt, f(x)= f(x, +ht) when x =x,,f =0, and when
x=x, =, =n Thus, from iﬁtegral m,

Thus, from integral (1), _ _
b[ F(x)dx = ]’ f(x)dc = h"j F(x, + hi)dr = hrJ’F(J)dr, - o)
; J _

where F(1) = fao + hf). 0

The values in Table 1 can now be rewritten as in Table 2.

Table 2: Function values for equidistant values of transformed variable ¢

¥ %o X, X, o - - X,
r_.x:-—xc| 0 1 )
== |
F()= f(x, +hr) Lo | A S C 1,

Now we write, the Newlon — Georgy forward diﬁ‘mnoc polynomial for F(r) ,as

F()= j;-l-rAj; 2f|J +{O)+ (= 1){r -

Where R is the even term given by

ntl

R, = (n+ I),(f)(f Do(t—n+DfO(E), 2, <E<x,,
Integrating , we get {from (3)),
I= '] Sk =k [Ft)di
—_ T % j; {2} "-’:'l (n) L () f(‘“l)(‘f)
—hJ[f;+ TRARETIAE Syl +h"™e Y ER YA @)

2.2.1 Trapezoidal Rule over [x,,x,]

Equanon 4) produces the Trapezoidal rule for n=1as
I= j' S(Rax=h|lf+ Af" r+ r""’ S(EN! (5)

B e e e e




Hence,
I'=h[ft+4f,. 3+—2—,(—~—)f"(§)]:,
—h[f;+°—f°+ 31 @=L Lobic e
—h[ f”f "’ UG

Thus, the Trapezoidal Rule is given by
I. h
J7 =20+ £) _ (6)
.'I'“

With error term given by

2

Ri= = 2—f"(§)xq< &> x, Q)

Gerometrically, (£/2)(f, + f;) is the area of the Trapezoid. To obtain the upper
bound of the error, choose & in [x,,x,] such that J (&) has a largest magnitude.

Similarly, to find the lower bound of the ervor, choose ¢ in [x,,x,] such that f"(&)
has a smallest magnitude.

The error in equation (7) that is
2

mind S @I R I max] 7o) ®)

is the error of only a single step, and is hence known as the local error.
.2.2.1 (a) Trapezoidal Rule over [x,,x,]— Compaosite Rule

Itis now easy to write the Trapezoidal rule over the whole of the closed inferval
[x5,x,1. We write

j f(x)de = J]‘ F(x)de+ j‘ f(®)dx bt J‘ 7 (x)dx ' ()

Then, using the Trapezoid Rule, we abtain

Jrea=2, =5 SR - T ..

VAT AT 10)
where h=( X,-Xo)/n ; x,_, <& < x, for i =1(1)n, or
If(x)dr~—m+2f+2fz+ +2,,-1+f)-—[f &)
(&) H et SE D (1)

Numevrical
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Equation (11) represents the Trapczoidal rule over [x,,x_} with the error term .
Hence , the composite Trapezoid Rule is given by

I‘Tf(x)dr=g(_f;+2};+2];+...+2f"_,+j;) (12)
I

The error term is given as

B, ==K [f*E)+ G+ or S )] (3

where x, | S & < x;, for i = 1(1)n. The error E, over n steps, is the total error and is
called the global error. If we now assume that S *(x)} is continuzous on (x0.x,), then

/@D s max g, Ff(x)|=M . (14)

The magnitude of the global error can be written as

3 —
lerror| < 2 ag = o= %) 1oy (15)
12 12 .

Since nh = {x,—x,) and Mis as given in (14)

It should be noted that while the loca! error is O (#° ) , the global error is O(h*).
Remark: This rule is simple to use. It can be applied to unequally spaced argument

values. Thus, it is considerably important in computing the integral of an
experimentally determined function. Let (x,, £;), i = 0(1)n, be the given set of

points, where x, —x,_, = k,, i = I([)n, are the unequal subintervals. Then, the
Trapezoidal rule over [x,, x, ] is given by

{7t =23 hise 5 1. 1)
X

=l
2.22 Simpson’s 1/3 ™ Rule over [x,,x,]

To apply this rule, we need three date values. The dala values are

(%0, S ©)), (70, S (%)) and (xy, f(x,), Let t Ji},‘{“—)

Then equation (4) gives

21!

Iz 2 2 a2 _11
I= [fide=h[Fuyd=h [¥A +°1—{"-; LY P +—3";- (i(r —i)(t = 2) £C ),
;o ; ; ! !

wherex, €& < x,, Therefore,

t* A A R ,
I=hfi- Ay (e ) (St i s Y )P
=/ 7. f;z Y 13 2) (£ Tal V),

s e e e v
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=h[21, +24f, +f—’:%(§—2)+(4—s+4>’;—3,f“’ ©)]

h
=3lh+4hn+ L), an
wherex, S&Sx,, h=x,—x_,, i=1(1)2

We note that the coefficient of the error term vanishes. This implies that the method is
of next higher order. Computing in next cocfTicient, we get the error term as

hf:—‘lt [1=1)t = 2)(t - 3) fO3) it

(32 83 K
= | ==+ —-12 1 D) = -y, , <
24[5 3 )f (m) 9of (n) X, <n<x,

The error bound can be obtained by finding the maximum and minimum values of
[fw(x)lon{xo»xz]-

2.2.2(a) Simpson’s 1/3 rule over [x,,x } — Composite rule
It is now easy to write the Simpson 1/3 rule over the entire closed interval [x,.x,]

Since, each sub internal required three points, we subdivide [x5, x,] into even number
of subinternals, n = 2m , so than we have odd number of points. Hence therefore, we
T A
(2m)
Tim

Jread= T reade=Jreodes [ st | roode
L I 5 ’ ]

Tim-1

=-;1[(fu V8 S+ L)t A+ S ot (Fonn 24 oy + )]

/ i
_=~3i[f,] +4 £+ 2+ A S+ 2 AL+t 2 s A St fo]

n

5[_}’;+4{f, + i+t o) P 2{ et S} o) (18)

The error term is given by

E =“*’£‘f“l(?i|)—£f“)(n) _h_sff”(n 3} (19)
99 90 9 "
mir*

| E, < M, where M, =max|f ' (x)|

90

Numerical
Integration
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(X2m ~Xs) (X3m —xo)h4
2 180 ! . _
Since, each subinterval requires three points, we subdivide [Xs, X,] into even number

of subintervals, n = 2, so that, we have odd number of points. Hence,
h = (Xom =~ %o} (2)-

Since, mh = ,weget|E, | < (20)

2.2.3 Simpson’s 3/8 Rule over [x5.x1]

We obtain, from Equation (4), the Simpson 3/8 rule when we set n = 3. Therefore eac:
sub internal requires four points. We obtain the formula as

_-'J 3 3 M Az_fu AJ];J
I= x:!'f(x)dr-h![fu A TR0 =D+ =D~ D)l

Computing the integrals, we obtain

jf(x)dx_:%[j;+3f, #3415l @

Equation (20) is known as the Simpson 3/8 rule. The generalization over [x;,x,],
where 71 is an integral multiple of 3 (i.e., n = 3m, where m is an integer), can be done.

2.2.4 Weddle’s Rule over [x,,x.],
To apply this rule, we require 7 pairs in the interval
For n = 6, we obtain, from equation (4),

4

If(x)dx=%[41j; 216 +27f, + 272, + 27 f, +216 f; +41£;]. (22)
X5

Adding to the right hand side the term

6h
Figlfe ~6SH15, =204 +15£, =6/ + /i)

we obtain the Weddle’s rule over [x,,x,] as
* 3h
70 =0l fo +Sh+ o465+ fi+5f+ i)
X

. [
The generalization over {x,,x,], where # is an integral multiple of 6 {i.e., n =6m,
where 1 is an integer), can be done.

Example 1: Calculate the value of the integral
52
Ilogxdr by
4

() Trapezoidal rele (b) Simpson’s% rule
() Simpson’s % wle (d) Weddle's rule.




Assume i = 0.2. compare the numerical solutions with the exact solution.
Sclution: Taking # = 0.2, divide the.range of integration (4, 5.2) into six equal parts.

The values of log x for each peint of sub-division are given below:

X f(x)=logx
- =4 - £(0) = 13862944
X +h=42 /(1) = 1.4350845
I°+2h=4.4 f(2)=1-4816045
x,+3h=4.6 f(3)=1.5260563
x,+4h=438 f({4) =1.5686159
x, +5h=50 J(5) =1.6094379
%, +6h=52 f(6)=1.6486586

(a) By Trapezoidal rule, we have
52
jfogxdx = g[f(ﬂ) +/@)+2 /D +f2)+ /@) + f(4)+ S(5)}]
= —%—2[3.034953 +2x7.6207991] = 0.1(18.276551) = 1.8276551

(b) By Simpson’s % rule, we have
_flogxdr = gU(0)+f(6)+4{f(1)+f(3) + SO} +2{/(2)+ f(4}]
= 0T'2[3.034953 +4(4.5705787) + 2(3.0502204)]

- %3[3.034953 +18.282315 + 6.1004408]

- %x 27.417709 = 1 8278472..

(c) By Simpsbn‘s 3/8 rule, we have
Ilogxdx = %[f(o) +S@O+3{S O+ (D+ D)+ O} +2/03)

- --—3(‘;'2) [3.034953 + 3(6.0947428) + 2(1.5260563)]

= %{3.034953 +18.284228+3.0521126]

= %g-x 24.371294 =1.827847.

(d) By Weddle’'s rule, we have

[tog xdx = %[ﬂﬂ) +f(O)+5(/+ SN+ (A + f(H+6/(3)]

- _3(1062) (3.034953 + 5(3.0445224) + 3.0502204 + 6(1.5260563)]

Numerical
Integration
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- %}9 [3.034953 £15.222612 + 3.0502204 +9.1563378]
0.6
= o< 30.464123 = 1.8278474

32
Exact value of the intemal is Ilog xdx =[x(log x — 1)J;2
4

=[5.2(log5.2 - 1) - 4(log 4 - 1)]
-=[3.3730249 - 1.5451774]=1.8278475

Hence, magnitude of the emmors due to different formulae are
(a) 0.0001924 (b} 0.0000003

(c) 0.0000005 (d) 0.0000001

Check Your Progress 1

1

1) Find the approximate value of [ = Ilﬂ using (i) Trapezoidal rule (two points)
+x
0

and (ii) Simpson’s 1/3 rule (three points) .Obtain a bound for the error in the

Trapezoidal Rule. The exact value of /= fn 2 = 0.693147 correct to six decimal
places.

i o= o
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2.2.5 Remarks on Newton — Cotes Formulas Infegration

(@) These formulae are called closed quadrature formulae because they require the
knowledge of the funclion at the end points (or at the limits of integration) as
opposed to the open quadrature, formulas whlch do not require the knowledge of
the function at the end points.

(b) Except for the Trapezoidal rule, all the formulas require the knowledge of the
integrand at equispaced points. Thus, either the function should be known
explicitly or at equally spaced points.

(c¢) The Simpson 1/3 rule is very popular. It integrates exactly a cubic function or,
equivalently, gives the arca under a segment of cubic curve. On the other hand,
the frapezoidal rule integrates exactly a linear function.

2.3 COMPOSITE FORMULAS

We summaries all the composite formulas
Composite Trapezoidal Rule

Subdivide the inlerval {a, y] into M equal parts. The lengtia of each interval is
h = (b-a)/M and the points are a = x,,x, =X, + 11, x, = x, + 2h,..., x, +nh=x_ =b.
Then, the composite Trapezoidal mle is given by (see Equation (12))

Iy =2 f G+ 2{00)+ () 4t S0} S5
=_[_f;. {fi+ 1+ +fn_,}+f] (23)
The error bound is as given in Equation (15)

Composite Simpson’s rule

Subdivided the interval [a, b] into even number of subintervals giving odd number of
points,

Let k = (5 — a) 12M). The points are x,, X, ..x, /7
Then, the composite Simposn’s rule’s given by (see Equation (18))

='§;|:fo+4{f, bt o} 4 2{ s+ fo ot Sraa )t Sfom ] 24)
The error bound is as given in Equation (20).

Example 2: Evaluate r[2 + sin(ZxE )]dx using Trapezoidal rule with 11 points.

Solutlon: To generate 11 sample points, we use /# = [(6 -1}/1 0] ={.5. The points
are 1,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5 and 6.0, Using the formula (12), we obtain

f =%§[f(l) +1O)+2{ f{1.5)+ f()+ F(2.5)+ (D +F(35)+ L&)+ f(45)+ f )+ f(5.5} ]

] By Frane e
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= (.25[2.90929743 + l.0i735756]

+0.5[2.63815764+2.30807174 +1.97931647 +1.68305284 + 1.-4‘135304 10+
+1.24319750+1.10831775 +1.02872220 +1.00024140]

= 0.25[3.92665499]+0.5[14.42438165]

=0.98166375 + 7.21219083 = 8.19385457
Example 3: Evaluate f[Z + 5in (2,/1:)] dx using Simpsons rule with 11 points.

Solutlon: To generate 11 sample points we use A={6—1)/10=10.5, the points are
same as in the previous example. Using the Simpson’s formula, we get
I= %[f(l) +£(6)+4{S(1.5)+ F(2.5)+ F(3.5)+ F(4.5) + f(5:5)).
+2{/D)+ /) + (D + )]
= %[2.90929743 +1.01735756]
+2.0{2.30807174 +1.68305284 +1.24319750 + 1.02872220}

+4.0{2.63815764 +1.97931647 +1.43530410+1.10831775 +1.00024140)

%[(3 .92665499)+-2.0(6.26304429) + 4.0(8.1613373 5)] = 8.18301550.

Cheek Youp Progress 2
e dx
Bqaluate the integral f = IT using (i) composite trapezoidal rule, (ii)
x
a

composite Simpson’s rule, with 2, 4 and 8 equal subintervals.

Error Analysis: We have earlier devided that the errors in the composite Trapezoidal
and Simpson’s rules are of orders, O (4°) and (k) respectively.This signifies that the
error for Simpson’s rule converges to zero faster than the emror for the trapezoidal rule
as the step size k& decreascs to zero. In cases where the derivatives of f(x) are known,
the form:las

- fOOR o - fPH
E(f,h) = T and Ey(fohy="m0

can be uszd to estimate the number of subintervals required to achieve a specified
accuracy.
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Numericsl
Integration

S dldales g

[ %)

33

straight line based

In the evaluation of an integral on the interval a -to &, it is not necessary to evaluate

Gauss-Legendre integration, has one significant further advantage in many situations.
f(x) at the endpoints, ic. at & or 3, of the interval. This will prove valuable when

points at which to evaluate f{x), a careful choice can lead to much more accuracy in
evaluating the inlegral in question. We shall see that this method, called Gaussian or

choice of evaluation points for the function f{x}. They are particularly suited for
computer software designed to produce tables. If one has the freedom to choose the

The numerical integralion methods described so far are based on a rather simple
regularly tabulaled data, such as one might measure in a laboratory, or obtain from

evaluating various improper integrals, such as those with infinite liniits.

2.4 GAUSSIAN QUADRATURE
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uniform weighting over the interval, and the particular poirts at which to evaluate f{x)

are the roots of a particular class of orthogenal polynomials, ihe Legendre
polynomials, over the interval{-1,1]. It can be shown that the best estimale of the
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integral is given by:

[ fde=3 w0

tal]

where x, is a designated evaluation point, and v, is the weight of that point in the sum.
If the number of points at which the function ffx) is evaluated is n, then the resulting
value of the integral is of the order 2n-I. For example, a two poirit formula is of order
3, which is the order pf the Simpson’s rule. A three point formula is of order 5. Thus
the carefully designed choice of function evaluation points in the Gauss-Legendre .
form results in the same accuracy for about half the number of function evaluations,
and (hus at about half the computing effort.

The value of the abscissas and the corresponding weights in the Gauss-Legendre
quadrature, for a given n, are known. These values are given in Table 3.

The choice of value of » depends on the accuracy required in a particular prablem.
When choosing to use » points, we call the methed an **n-point Gaussian" method.
The.abscissas for a given n, are the zeros of the Legendre Polynomia! of order n. For
example , forn = 1, P, (x) =x = 0 gives x = 0, Forn = 2, P, (x) = 3x* — | = gives the

abscissas asx = 4 ,/ ]3 ,Forn=3,Py(x)=5x"—3x= 0 gives the abscissas as

x=0 % / 3/5 orx =0 *0.77459667.

Table 3: Gauss-Legendre Abscissas and Weights

[ [ Values ofx [“weights [ order
;'[2:, =V ‘ 1.0 [ 3
[3] o0 —fossassn[
| [x077459667 jo.ssssssss| s
[4 7] +033998104 [0:65214515 | 7 /
| [=0sstisesr fosamesass|
5| 00  [o56888889 | 9 |

| | £053846931 [0.47862867 |
| [ +0.90617985 [0.23692689 |
[6 [ +023861918 10.45791393 | ¥

| £0.66120939 10.36076157 |

| +£0.93246951 [0.17132449 |

e

Forn = 1, the iacthod is given by Lf(x).‘fx = f(0) (25)
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For n =2, the method is given by

[ raai= 15+ r([% (26)

For n = 3, the method is given by

L= 5lsr 08 +87@+57(08)] e

The Gauss-Legendre integration formula given here computes an estimate of the
infegral on the interval [-1, 1 ]. In most cases [a, b] we may want to evaluate the
integral on a more general interval, say. in this case, we use a linear transformation
and reduce the interval [a, b] to [-1, 1] and then apply the Gauss-Legendre formula,
Let the transformation be x = ¢ + mt, Then
forx=a: a=c—m,
forx=5: b=c+m,
The soluticn is ¢ = (b + a)/2 and m = (b—2)/2. The transformaticn is and

1
dx =mdt. x= —2—[(a+b)+(a—b)r]

b +1
I = j Fo)dx= j S(c+mb)de
Fmally, now, we can write the Gauss-Legendre estimate of the integral as

I= j’ f(x)dx = mzwf(»m.-,

I

_ -
Example 4: Evaluate the integral § = Isinx dx

Using the Gauss-Legendre Formulas. Compare with ine exact solution and the values
obtained by Simpson rule. The exaci value is I=1.

Solution: The required transformalion is

] T
xH-E[(b:l-a)+(b—a)r]=?[l+l].

The integral becomes
a . T
I =7 Lsm [: :1-(1+1)]

The two point formula gives
I== 2 [sm{ (- Jj}+sm{4 a+ %)H

= 0.755398163[0.325885607 - 1.945409207) = 0.9984726i2

Numericsl
Integration

35

S ETTT TR

T




Numericﬂ
Computiog-II

36

The error in evaluating I is |1 —0.598472612| = 0.001527.

For N = 4 and b, we have the values of [ as 0.9999599770 and 0.9995999904
respectively.

The values of f obtained by Simpson’s rule for n = 3, 5 and 7 points are
1.0022798775,

1.0001345845 and 1:0000263 122 respectively.

Note that the Simpson’s rule is of order 3, while the Gauss-Legendre Formula are of
order 2N-1.

[N]Gauss-Legendrel[simpson's 13
rl 0.9984726135 {1.0022798775.
141 09999999770 ||1.0001345845 |
161 09999999904 |1 0000263122

dx
Example 5: Evaluate the integral [ = 'El_ Using Gauss-Legendre three point
+x

formuia
Solution: First we transform the interval [0, 1] to the interval [~1, 1].
Lett=ax+ b We have,

Forx=0: -1=b
Forx=1: I=ag+b=a—-t ora=12
Therefore, ¢ = 2x —1, orx=(1+r)/2.
dx
Hence, = | ——= F(Hdt
1+x 1!'+3 [ 2

Guass — Lengendre three point formula gives

- %[SF(—J 0.6) + 8F(0)+ SF(J0.6) ]

1[ {3 o 3+06} s] 0.693122

The exact solution is / =/n2=0.693147

Check Your Progress 3

2 F
1) Evaluate the integral [ = J'l?'—‘, using the Gauss-Legendre L-point, 2-point and
+x

3-point quadrature rules. Compare with the exact solution
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2.5 SUMMARY

In this unit, we have:

I3 Derived Newton-cotes formulas.

2)  Derived composite formulas,

3)  Derived error in composite formulas,

4)  Derived Gauss-Legendre integration formula,

2.6 SOLUTIONS/ANSWERS

Check Your Progress i
1} Using the trapezoidal rule, we have

I= %[1 +%) =0.75 Error =0.75~0.693147 = 0.056853

The error in the trapezoidal rule is given by

3
IRIISL@—max f (x)l ——2'— l
12 0<x<1 12 os:sl (1+ x) 6

Using the Simpson’s rule, we have

fﬂé[1+§+;]*-§2——0001297 Error—O?S 0.693147 =0.056853 .

]
o

2) Here x, =0,x, =1, x, =2,x, =3,x, =4,x, =5,x, = 6,h =1. Therefore,

I=ih-[f(0)+2f(l)+2f(2)+2f(3)+2f(4)+2f(5)+f(6)]

%[2 +2(4)+2(8) + 2(14) + 2(22) + 2(32) + 44] = 103.

3) Here x, =0,x,=1/3,x,=2/3,x, =1,k =1/3. Therefore,

I=%[f(0)+3f[%)+3f( )+f(1)1- 2 —)[' 2+-9- %] 0.69375.
4) Here ;=L x =1.5x,= Zx, =235,%, =3,x,=3.5x, =4,h=05
Therefore,

I=-—-—[f(0)+5f(l)+f(2)+6f(3)+f(4)-.—> F(5)+£(6)]

=3t S)[l+5{? 3)+4+6(6.25)-1;9+5(12.25)+16]=2!.

Numerical
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Numerleal Check Your Progress 2
Computing-T1 i
1) When N = 2, we have i = 0.5, Nodes are-0,0.5 and 1

We obtain

=—[f(0)+2f(0 5)+f(1)]-—[1+:+ 1) 0.708333

[, =E[f(0)+4f(0.5)+f(l)]= _[1+ g + 2] 0.694444

N =4: h = 0.25, Nodes are 0,0.25, 0.5, 0.75 and 1. We obtain

I = %[ F(0)+2{ £(0.25)+ £ (0.5)+ £(0.75)} + /(1) |= 0.697024
I =T15[ (@ +4£(0.25)+2(0.5)+4£(0.75) + s (1} ] = 0.693254

N=8:h=0.125, nodes are 0, 0.125, 0.25, ..., 1.0
We have eight subintervals for trapezoidal rule and four subintervals for

Simpson’s rule. We get

h==—|f (0)+22 f(—)+ f(l)] 0.694122

16| ey
1]
li=— =0.693155.
24 tal .I'-l

The exact value of the integral is I = 0.693147,
Check Your Progress 3

1) The exact solution is | = tan™'(4) — (z / 4). The required linear transformation is
x = (1 + 3)/2. The integral reduces to

o 8(t+3)dr
grasy

16 +(t+3)"] -[f(')dr'

-1
Using the 1-point rule, we get J =2 7(0)=0.4948.

Using the 2-point rule, we get

I= f(—/ﬁ]ﬂf[/ﬁ) =0.3842+0.1592 = 0.5434 ,
/

Using the 3-point rule, we get
= %[Sf ~/06)+87(0)+5/(0.6 = %[5(0.4393) +8(0.2474) +5(0.1379)] = 0.540¢

The exact sofution is 1 =0.5404.
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3.0 INTRODUCTION

Ordinary differential equation (ODE) occur frequently in the mathematical models
encountered in science and engineering. Consequently, their numerical solution isa
very large area of study.

Itis well-known that the process of integration of an ODE introduces arbitrary
conslants. These constants are determined from the conditions imposed on the
function or its derivatives. For example, a fourth order differential equation would
require four conditions for the determination of the four arbitrary constanis that would
arise. We encounter two types of problems depending on the manner in which such -
conditions are specified. If all the required conditions are given at single point, we
have an initial value problem (IVP). The method of solution here is direct, starting at
the known point and moving step by step along the range of the iniegration. In other

. words, in an [VP, we compute the of functions Wi(x), ¥, (x), ..., y,(x) which satisfy

the given » first order QDEs.
Yi =f(x,y.,y2,..-,y,,). i=1(Dn, (1)

Subject to » given initial conditions
y=a, i=In at x=ux, 2)

However, if the conditions are given at more than one point, then the information
needed to start the computation at any single point is not sufficient and the method of
solution involves either the solution of a set of simultaneous equations or Lhe use of
the estimated values are then corrected by the iteration as the caleulation proceeds.
This second type of problem is known as a boundary value problem (BVP). in
particular, in a two point BVP, we compute the funciions ¥,(x) ,i = 1{D)n ,which
satisfy equation (1) and may take the n given conditions as

Y. =@, lor certain specified valuesof f at x = x, ,

¥, =, forothervaluesofi at x= X, i=YDn (3)

The methods of numerical solution can be derived by various means, including the
finite difference formulas and the truncated Taylor serics. The derivation shows that in
cach computation an approximation is made, and this introduces an error. The
useiulness of a method depends not only on the size of the errors but also on the way
in whiich these enors get maguified or decay, as we proceed along the range of
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integration. Therefore, when using a method, we should keep in mind the concept of
consistency which relates to the error introduced at a particular pont and the concept
of stability which relates to the growth of error, as the calculation proceeds.

3.1 OBJECTIVES
After studying this unit, you should be able to solve an ordinary differential equation
o using Euler’s Method,

e using Improved Euler's Method, and
» using Runge Kutta Method.

3.2 EULER’S METHOD

This method is generally used to get the numerical solution of the differential
equations, because it provides a simple procedure for computing approximations to
the exact solutions.

A Simple 1anitial Yalue Problem

Let us start by looking at an initial value problem whose solution is known:

P _ -
dt-—)’» y(O)-l

The solution of this IVP is y{f) = e' . Using this exact solution, we will be able to
determine the error in the numerical solution.

" Let us suppose that we are interested in the value of the solution at = 1. Since,

y(0) = 1, we oblain,

él

— () =y(0)=1

Al ¥(0)

Let us now use the Taylor series first order approximation about { =0 as
y(O) = y(@+(¢ -0y Q) =1+1.

Hence, the approximale.value at t= 1, is y(I) ~ 2. The magnitude of error in the
solution is e — 2.0].

The demerit of the above approximation is that it assumes that the derivative of the
salution is a constant and equals 1 in the whole interval. We can improve the result by
dividing interval into two sub-intervals. First, we will use the linear Taylor

1 .
arproximation based about t = 0 to approximate the valueatt= 3 Then, we will use

. 1 . .
a linear Taylor approximation about t = 3 to obtain an approximate value al t =1.
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. !
Using the above approximaltion, we get y(E- )= % .

2 2 2

o) (- AA8)t)

Hence, the approximate value att=1, is y{l) = 2.25. Now, lerror} = [e — 2.25] is
mucli smaller than the error obtained in the previous approximalion.

l 1 1 3
Hence, att= — , y '[—] = }{—J = 3 Now, Taylor series linzr approximation about

t=

B | —

You can now guess that if we use more subintervals, then the result may improve
further. Suppose, that we divide [0, 1] inlo n subintervals. On each of the subintervals,
the slope is constant (but the values of the slopes are different). The length of each

subinterval is A= 1 . We will call the points that we obtain as (f, 34} .
]

Notice that {fe, yo} = (0,1) since this is where the initial value problem tells us to
begin. To get from one step to the next, we are assuming that the solution
approximalely passes through (¥, 3,} . At that point, the derivative, is given by

[;ﬂ) 4 = yi. Hence, the linear Taylor approximation at that point is
f

YO =y+{ -6}y =y {t-1)y.
Therefore, we write p(4.) =yt a~4+Dy,=(h+ Dy = (1 +l}yf .
n
Now, extend this conczpt this concept 10 solve a general initial value problem

%5 f&y) ., Y@= G)

We wiil formn an approximate solution by taking a number of steps. We call the
distance between the steps as 4 and the various points as {f, 3.} . To get from one step
to the next, we will form the linear Taylor approximation at f =1, The derivative at

this point is given by the differential equation: {j—y} = f{t,y). The linear Taylor
!

approximation is then
y, .l = yj+(tj . l“'l‘;)y'(f:‘)
= Y+ R (5, 3) @

This technique is called the Euler's Method,

Example I: Forthe IVPy'+2y=2-¢™¥, »(0)=1. Use the Euler’s method

with step size 4 = 0.1 to find approximate values of the solution at £ = 0.1,
0.2,0.3, 0.4, and 0.5. Compare them with the exact values of the solution at
these points. Find the percentase error in the solutions.

1
Solution: The solution of the differential equation is y(f) =1+ %e"" ——2-8'2'

In order to use Euler’s Method we first need to rewnriie the diiferential equation as
y'=2-¢"-2y.

Hence, f(f,y)=2—e™" ~ 23 . The initial values are 1, = 0 and Yo=1.

Equstions

41
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Euler's method gives y,..= 3+ Af (1, ). We have forj=0,and h=0.1.

fo=f(!o,yo)=f(0-l)=2—e_‘(m —2(1)=-1
ya=yn+hfn= 1+(01)(—1)=09

Therefore, the approximation 1o the solution at r; = Q.1
y(0.1) =y =09,

Forj=1, we get,

Si=f(0.109)= 2—et0D _ 2(0.9) = -0.470320046,
yi= i+ A =09+ (0.1){-0.470320046) = 0.852967995

Therefore, the approximation to the solutionatr; =0.2 is
¥(0.2} = y: = 0.852967995 . For j = 2, 3, 4 we obtain the following values.

F1=-0.1552645954, »=0.837441500
f1=0.023522788, »=0.839833779
J«=0.1184359245, »»=0.851677371

The percentage error in the numerical solutions is defined by

percentage error = |exacr value — approx:maa‘e|

x100 .The results are presented in

exactvalue |
the following table
1, Approximation Exact Error
5=0.1 » =09 ¥(0.1) =0.925794646 2.79%

=02 ,=0.852967995 y(0.2)=0.889504459 4.11%
ty=03 y;=0.837441500 {0.3)=0.876151288 4.42%
1,=04 y,=0.839833779 y(0.4)=0876283777 4.16%
;=05 ys=0.851677371 (0.5)=0.883727921 3.63%

Example 2: Repeat the previous example with the approximationsat: = 1,¢ =2,
t =3,t =4,and( =5. Use h=0.1, £ =0.05, 1 =0.01, s = 0.005, and
h = 0.001 for the approximations.

Solution: Below are two tables, one gives approximations to the solution and the
other gives the ervors for each approximation. We'll leave the computational details
to you to check. -

Approximations

Time Exact =01 A =005 =001 | A =0005| #=0.001

=1 109414902 | 0.9313244 | 0.9364698 | 0.9404694 | 0.9409957 | 0.9413914

£=2 [0.9910099 | 0.9913681 | 0.9911126 | 0.9910193 | 0.9910139 4 0.9910106

¢=13 [0.9987637 | 0.9990501 | 0.9988982 | 0.9987890 | 0.9987763 | 0.9987662

r=4 [0.9993323 | 0.9998976 | 0.9998657 | 0.99983590 | 0.9998357 | 0.9998330

(=5 | 0.9999773 | 0.9999890 [ 0.9999837 | 0.9999786 | 0.9999780 | 0.9999774

Percentage Errors
Time | h=0.1 h=0.05 h=0.01 £ =0.005 #=0.001 "
t=11 1.08% 0.53 % 0.105 % 0.053 % 0.0105 %
f=2| 0.036% | 0.010% | 0.00094 % [ 0.0004! % : 0.0000703 %
t=3 | 0029% | 0.013% | 0.0025% | 0.0013 % 0.00025 %
t=4 | 0.0065% | 0.0033% { 0.00067 % | 0.00034 % | 0.000067 %
=5 | 0.0012 % | 0.00064 % | 0.00013 % | 0.000068 % | 0.000014 %
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We can see from thgse tables that as # decreases, the accuracy of the approximations
are improved.

Example 3-- Solve the initial value problem to compute approximation for 3{0.1).
¥(0.2) using Euler’s material with # = 0.1.

-2 4
%4_ 2y =3e™, »(0) = 1. Compare with the exact solution y{¢) = (58_5"38_) '

Solul.ion: Euler’s method gives y, .= y+ A (8, )0)
Where, f(1,y)=3e" -2y.

Forj=0, we get, y. = yo+Af (1o, yo).
NOW, f(’ﬂ,)’°)=f(0.1)=3ea _2:1.

We obtain, y(0.1)~ 3 =1+(0.1)1)=1.1
The exact soluticn is y{0.1) ~ 1.0413 and in the absolute error is 0.0587. For in next

time Stepj = 1, we gel Yy = o+ haf (1, 1) .

Now, f(6, y)y=(0.1,1.1) =3 -2(1.1) = -0.189

We obfain y{0.2) = y:=1.1+0.1(-0.189) =1.0811.

The exact solution 1s y(0.2) ~ 1.0018 and the absolute error is 0.0793.

Check Your Progress 1
1) Forthe {VP
y'-y= —]Ee”z sin(51)+ 5e"* cos(51), P(0) =0

use Euler's Method to find the approximation 10 the solution atr = 1. Use
k=0.1, h = 0.05 for the approximations and find the percentage errors.

3.3 RUNGE KUTTA METHOD

One member of the family of Runge-Kutta methods is so commonly used, that it is
often referred tc as “RK4” or as "the Runge~Kutta fourth order method™ or as
“classical Runge-Kutta fourth user method™.

1 ~( an initial value problem be specified as follows:
Y4y o ylte)=y

Then, the RK4 method for the solution of [VP is given by the following:
!
y...=y.+é(k.+2k:+2k,+k.) (5)

Numerical Solution of
Ordinary Dilferential
Equations
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where
kv= (-, 3)
h h ]
k:= fotd—, 3 +—k
d [ 272",

4 : ’ (6)
h h
k1= n =, }a —k

fLr+2 y_+2 J

ko= f{1-+h y.+ hir)
Thus, the next value (y,+) is determined from the present value (¥5) plus the product

ofthe size of the interval (1) and an estimated stope. The slope is a weighted average
of slopes, thatis, WK\ + Wi Ku+ W Ko+ W. K.

* K i (he slope at the beginning of the interval (£, f-.. );

* ki the approximate slope at itie midpoint of the fiterval (It -1), using slope &
to determine the value of y at the a midpoint 1, + (A/2) using Euler's method
(T ot );

» k; is again the approximatc slope at the midpoint, but now using the slope &; to
determine the y-value;

* k4 is the approximate slope at the end of the interval (£, ... ), with its y-value
being determined using ;.

The weights W\, ¥, and W .are determined such that the order of the method is

as high as possible. We use Taylor seris expressions to find the order of the method.
We obtain W\ =1/6,W.=W,=2/6, W.=1/6s0 that the total ertor is of order A%,

Hence, it is called the RK4 method of fourth order.

Note we may also write the Runge-Kutta fourth order method as

Ki=hjl,, v

K= h i, h72 y+ K 72)

Ky=hjt, +h2_y,+ K /2)

K= h fit,+h, yetKa) ()

Paud =Yo + (1) K +2K; +2K; + K (8)

Example 4: Solve the initial value problem #' = ~2f«” with 2{0}=1and #=0.2 on
the interval [0, 1]. Use the fourw order classical Runge-Kutta method.

Solution: Wehave Xo=1,1u,=1,2=0.2, and fit, u} = — 2/
For n=0 I

k= b (ig%,) =0

A',:h_;’f/z +£,u Ak 1=—0.04
2 ._n 570 9™
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k =hf[f°+g,uo+%kz)=—0.038'4]6
k, = hf (8, +hug + k) =0.0739715

u(02)xu; =1+-[0-0.08-0.076832-0.0739715] = 0.9615328

Forn =l

1, =02, = 09615328
k =k f (1,4, ) =-0.0739636

k, =hf(rl +§,ul +%k,]=—0.1025754

k, =hf[r, +g,u, +%k,]=—0.0994255

ke=hf(t, +hu +k}=-0.1189166

u{0.4) ~ u, =0.9615328 +-é-[—0.0739636 —0.2051508 —0.1988510~0.1189166]
=0.8620525

Similarly, we get, u(0.6) =y, =0.7352784

u(0.8) = u, = 0.6097519,u(1.0) ~ u, = 0.5000073

Example 5: A ball which is at temperature 1200K is allowed to cool down in air at an
ambient temperature of 300K. Assuming heat is lost only due to radiation,
the differertial equation for the temperature of the ball is given by

%: 220671072 (6* —81x10°), 6(0)=1200K .

Find the temperature at f = 480 seconds using Runge-Kutta 4th order method. Assume
a step size of & = 240 sec,

Solution: From the given differential equation, we have, -

F(6.6)=-2.2067x1072(8* - 81x10")

h
Ru“gc_Kutm memod gives 9- 1= 9- +E(k'|+ Zk: + 2k)+ k-{)

For n =0, we havet. = 0,8. = 8(0) = 1200

Numerkal Solution o!
Ordinary Diffgrentia
Equatioa:
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o= f(t,62) = £(0,1200) =—2.2067x10™(1200° ~81x10%) = —4.5579
k= f[:., +-;—h,6%+é—k.h] = f[o +%(240),1 200 +%(—4.ss79)240]

= £(120,653.05
=—2.2067x1072(653.05° —81x10%)
=—0.38347

kom f[rn+—;‘h9g+%k=h]= f[0+%-(240),12004";"(*033347)240]

= £(120,1154.0)
=2.2067 =107 (1154.0" ~81x10°) = —3.8954

ko= 7 {to+ B8+ BE) = £(51+240,1200 +240) (-3.8954) = f(120,265.10)
=12.2067x107'2(265.10° -81x10*) = 0.0069750

We obtain,

0(240] = th =90+%(’C| +2ki+ 2k + ka)
240
6
=1200+40(-13.1087) =675.65

= 1200+ —"(—4.5579 + 2(—0.38347) + 2(-3.8954) + (0.0069750)

At the next siep, For n = 1, we have, =240, y, = 675.65

We obtain,

L= f,0)=-044199

k= f(h+lh,91+lk.h] =-0.31372
2 2

ks f(r. +%h, 6 +%m] =-034775,
ko= f(t+h,0+kk) = —0.25351
6(480) ~.6: =6, +g(k. +2k:+ 2k, + k.

=675.65 +%} —-0.44199 +2(-0.31372) + 2(-0.34775) + (-0.25351}

=675.65 +é-(-2.0184)240 =55491K

Cheek Your Progress 2

1} Use Runge-Kutta method to solve the IVP ' = (1 — y)/2 .on [0,0.2] with
y{0)=1.Compare the solutions with h = 0.2 and 0.1

STTTITTITT IR S

Rk e e IR

S oeTT - -

46




Mumerical Solulion of
Ordinary Differential

" 2) Using Ruage-Kuita method of order 4, find y(0.2) given that y =3x+y/2, Equations
»{0y= 1 1aking i1 =0.1.

...................................................................................................

3) Using Runge-Kutta method of order 4, compute (0.2) and 3{0.4) for the IVP
10y =x*+3%, y(0) =1, taking 1 =0.1.

4) Apply Runge-Kutta fourth order method to find an approximate value of y when
x=0.2giventhat y'=x+y withy(0)}=1and h=0.2.

3.4 EXPLICIT RUNGE KUTTA METHODS

The famiiy of explicit Runge-Kutta methods is a generalization of the RK4 method
mentioned above. It is given by

Y= 3a kB b, ®
in]

where

kl = f(f., y.)

k.= S+ (:‘:ll', y-+az=hk))

k= f(f- +C:h,y.+a1|hk|+anhk1) (10}

k= f(f- +ch, Y. + bk + ahks + R, ST A !

Note: We c¢an also write the method as

Yoor=yut Y bk an
i=1

where

ko= hf{t-,3.)

ki= hf(f- + C:h, y-t am".'k.)
ky == hf(f.+CJh,y-+auk1+(Inkr) (12)

.kx ES }j(lﬂ +c;h,)’- - aﬂkl“l' ------- +ﬂ'.-.';-rk= -l)

=T T — -

—_— e — -

YA T T TIART




Numerical
Computl g-11

43

“The method is called s-stage Runge-Kufta method. To derive a method, we first fix

the number of K’s to be used then expand the terms by Taylor seriés expandsious and
compare with the left hand side. The parameters are determined such that the method
is of suitable order. b; are called the wights of the method.

To specify a particular method, we need to provide the integer 5 (the number of
stages), and the coefficients ay (for 1 <) <i<s), b, (fori=1,2,..,s)and ¢,

(for i =2, 3, ..., 5). These data are usually arranged in 2 mnemonic device, known as a
Runge—Kutta tableau:

0

2| Az

cal Az an

Csjdn ds2 -+ Heg=) -
By by ... beuy by b

The Runge—Kutta method is consistent if

n-1
Zay =¢ fori=2,....s.
J=l

There are also accompanying requirements if we require the method to have a certain
order p, meaning that the truncation ermor is O(#*'). These can be derived from the
definition of the truncation error itself.

Examples

The RK4 method falls in this framework. lis tableau is:

12|12

12le 12

1 e o 1

16 18 13 1/6

However, the simplest Runge-Kutta method is the Euler method, giver by the
formula yy+ =y + Af{taya)- This is the only consistent explicit Runge-Kutta method
with one stage. The comresponding tableau is:

0
I

An example of a second-order method with two stages is provided by the midpoint
method

Porr = Pk hf(t.+g,y.+gf(!.,y.)) (13)

The corrcspending lableaw is:

T e

STpTmoO1e —werorosmrtoecog

——npn =t -
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Another example of a two-stage, second user, explicit Runge Kutta method, is,

H
213121

1/4 %
Or

Yo = y.+hf%(ic. +3k1)

where k=hf (1. ,¥») ; k2= hf (1. +%h.y. +§-k.) (14)

Example 6: Solve the initial-value problem y'=(tan y)+1,,3)=i,¢ € {1,113
with step size s = 0.025, using the second Runge-Kutta method defined by
equation {14).

Selution: The method is given by
k.= hf(f-,}’-). k= hf[f-'!‘—;'h'y.-]—%kl)

1 )
y-+1=y-+z(kl+3ktj
Wehaver,=1,p,=1, h=0.025

Forn=0:

ki=hf(1,1) = 0.025(2.2557407725) = 0.063935193

k2= hf[l +9-£-§-, I+ % (0.0639351 93)] =0.067847453

#(1.025) = y. = 1+%(k. +3k.) = 1066869388

Forn=1:
k= hf(1.025, 1.666869388) = 0.070338117

k= hf(l 025 +9-'§§, » +§k.] = 0.075837684

»(1.025) = y, = 3, +-‘-14-(kQ +3ks)

=l.066869388+%[0.0703381 17 +3(0.075837684)]
=1.141332181
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Forn=2:

ki =hf(1.05,1.141332181)=0.079588416

k.= hf(l.OS +%,y: +%k.] =0.088251234

y(1.075) = y, = -i-%(k. +3k:) =1.227417711

Forn=3:

ki =hf(1.075,1.227417711) = 0.094921694

k,=hf(1.07s +°‘%,»+-§-k.}= 0.111908193

y(i.1) = y.= y;+i—(k1+3k:) =1.335079279

3.5 SUMMARY

In this unit we have:

1} devised Euler’s Method
2) devised Runge-Kutta Method
3) devised Explicit Runge-Kutta Methods

3.6 SOLUTIONS/ANSWERS

Check Your Progress 1

1) The solution to the linear first order differential equation is y(f) = e"? sin(5r).
¥y

Approximations at f = | are: with A = 0.1, (1) =~ 0.97167, and with = 0.05,
M1} =-[.26512. The percentage errors are 38.54 %, 19.98 % respectively.

Check Your Progress 2

1Y F=02,k=-0.1,55=—0.085, ks=—0.08575,
ky=—0.07(423, u(0.2) =~ 0.9145125, h = 0.1, u(0.1) = 0.95035,
1(0.2) = 0.911726.

2) 1.1749

3) 1.0207, 1.0438

4) k=02, k= 0.2400, k; = 0.2440, ks = 0.2888, 3(0.2) = 0.2468
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COURSE INTRODUCTION

Block | and Block 2 of the course are providing the coverage of Mumerical
Cdmpuling, whereas Block 3 is providing coverage of Siatistical Computing, While
studying these blocks, you will find the concerned importance of these topics in
compulers.

This course is concermned with an introduction to methods for practical solutions of
problems on computers. Mathematical modeliing of physical or bielogical problems
generally gives rise to ordinary or partial differential equations, integral/integero-
differeniial equations, or a system of algebraic equations. Once a problem has been
so formulated, the next step is to solve these equations. Only a few of these
problems/ equations can be solved exactly by available analytical methods and most
of these cannol be solved analytically. Thus, numerical methods, together with some
error analysis, must be devised for solving such problems. A method which can be
used to solve a problem will be called an algorithm. An algorithm is a complete and
unambiguous set of procedures leading to the solution of a mathematical problem,
The selection and construction of appropriate algorithms based on numerical
computation properly falls within the scope of numerical analysis. Thus, numerical
analysis deals with the developiment and analysis of nuinerical methods. The
awarcness of the order of error in a result computed by a numerical method is of great
importance, and a computable estimate of the error in the method pives an idea about
the accuracy of the result cblained.

After the choice of an algorithm for solving a problem has been made, one should
consider all the sources of error that may affect the results. In numerical analysis,
applied to specific problems, questions conceming the quantum of the required
accuracy estimales of the magnitude of the round-ofT error and discretitation error,
about appropriate step size or the number of iterations required making allewance for
corrective action elc., are considered. The course assumes the basic knowledge of
calculus and certain results from linear algebra.

This course consists of three blocks and each block contains three units. The first
block contains: unit 1: floating point arithmetic and errors. Here, we discuss the
floating point representation of numbers, and its consequences, errors in numbers in
compulation, ete. In successive units of the block, we will discuss the solution of non
linear equations where we put light on several iterative methods to calculate the root
of a non-linear equation, and the efficiency of these methods. Finally, we will discuss
the topics related to the solution of linear algebraic equations.

Again, Block 2 consists of three units: Interpolation, Numerical integration and
Numerical solution to ODE. In interpolation, we consider polynomial interpolation
apart {rom the existence and unigueness of interpolating polynomial. Several forms of
interpolating polynomials like Lagrange form and Newton's divided difference form
with error terms, Numerical Differantiation, Numerical [ntegration and Solution of
Neon-linear Ordinary Differential Equations. Using interpolating polynomials, we
have obtained varicus numerical differéntiation and integration formulas together with
their error analyses. Next, to solve first order ordinary differential equations, various
mcthods like Euler's method', Taylor Series method, and Runge-Kutta method are
discussed. i

Finally in Block 3 we have talked about Statisticat Computing: where we have
discussed various topics related to the concept of probability distribution, pseudo
randoem number generation, and regression.

" This is a very elementary introduction to the subject and restricted/limited treatments
of 1opics are presented. The third phase of numerical problem solving is

== =
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programming, whercin the suggested algorithm is (ransformed into a set of
unambiguous stiep-by-siep instructions to the computer. That is, after producing a
fow chart, if required, the indicated procedures must be transformed into a set of
machine instructions by using any scientific language like C, C++, Fortran, ete,
[nterested swdents can refer to books listed below as reference books for this.

¢ Numerical Methods with programs in BASIC, FORTRAN, Pascal, C++ by
S..Balachandra Rao & C.K. Shantha ; University Press.

> Numerical and Statistical methods in computers by V.K. 3ingh; Paragon
International publishers. )

*  Numerical Methods for Scientific and Engineering computations by
M.K.Jain, 8.R.K. lyengar , and R.K. Jain, Wiley Eastern Limited.

¢ Probability and Statistics by Murray R. Speigel ; Shaum’s Qutline Serics —
McGraw-Hill.




BLOCK INTRODUCTION

This block contzins 3 uxits, cavering the topics related (o floating point arithmetic and
errors, solutions of algebraic equations, cte. In Unit |, we discuss the {loating point
representation of numbers, and its consequences, crrors in numbers in compautation
ete. In successive unit of the block, we will discuss solution of nen-linear cquations
where we put light on several ilerative methods to calculate the root of a non-linear
equation, and the efficiency of these methods. Finally we will discuss the topics
related to the solution of linear algebraic equations.







UNIT 1 FLOATING POINT ARITHMETIC
AND ERRORS
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0 Introduction 7
1.1 Objectives = 8
Floating Point Representations 8
1.2.1 Floating Point Arithmetic 10
122 Propertics of Floaling Point Arithmetic 10
1.2.3  Significant Digits I1
1.3 Eror - Basics 15
1.3.1 Rounding-off Error 16
[.3.2 Absolute and Relative Errors 18
1.3.3 Truncation Error 20
.4 Summary 21
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1.0 INTRODUCTION

Numerical Analysis is the study of computational methods for solving scientific and
engineering problems by using basic arithmetic operations such as addition,
subtraction, multiplication and division. The results obtained by using such methods,
are usually approximaltions to the rue solutions. These approximations to the true
solutions introduce errors but can be made more accurate up lo some extent. There can
be several reasons behind this approximatioa, such as the formula or method used to
solve a problem may not be exact. i.e,, the expression of sin x can be evaluated by~
expressing it as an infinite power series. This series has to be truncated to the finite
number of terms. This truncation introduces an error in the computed result. As a
student of computer science you should also consider the computer oriented aspect of
this concept of approximation and errors, say the machine involved in the computation
doesn’t have the capacity to accommodate the data or resuit produced by calculation
of a numerical problem and hence the data is 1o be approximated ia to the limitations
of the machine. When this approximated data is to be further utilized in successive
caiculations, then it causes the propagation of error, and if (he error starts growing
abnormally then some big disasters may happen. Let me cite some of the well-known
disasters caused because of the approximations and errors.

lestance 1: On February 25, 1991, during the Gulf War, an American Patriot Missile
battery in Dhahran, Saudi Arabia, failed to intercept an incoming Iraqi Scud Missile.
The Scud struck an American Army barracks and killed 28 soldiers. A report of the
General Accounting office, GAOQ/IMTEC-92-26, entilled Pafrior Missile Defense.
Software Problem Led to System Failure at Dhahran, Saudi Arabia reported on the
cause of the failure. It turns out that the cause was an inaccurate calculation of the
time since boot due to computer arithmetic errors.

Instance 2: On June 4, 1996, an unmanned Arjane 5 rocket launched by the European
Space Agency exploded just forty seconds after lift-o . The rocket was on its first
voyage, after a decade of development costing $7 billion. A board of inquiry
investigated the causes of the exploslon and in two weeks issued a report. It turned out
that the cause of the failure was a software error in the inertjal reference system.
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Specifically, 2 64-bit floating noint number relating to the horizontal velocity of the
recker with respect o thie platform was convérled 1o a 16-bit signed integer. 'The
sumber was larger thar 32,768, the largest integer storeable in a 16-bit signed integer,
ant thus the conversion failed.

11 this Tirit, we wil! desoride the concept of numher approrimation, signiticant digits,
ti¢ way, *he numbers are expressed and arithinetic operalions are perfonmed on them,
- ree ot errors and their sources, propagation of errars in succussive operations cic.
Tue Ficwre I describes the stages of Numerical Computing.
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Figure 1: Stages of Numerical Computstion

1.1 OBJECTIVES

After studying (his unit, you should be able to:

describe the concept of fixad point and floating peint numbers representation::
discuss rounding-o[f errors and 1he rules associated with round-off errors;
iniplement floating-point aritwneiic on available data;

concapmal description of significant digits, and

analysis of dilferent types of errors — absolute error, reative errors, truncation
error.

*t & ¢ 4 9

1.2 FLOATING POINT REPERESENTATIONS

lu scienlific calculations, very large numbers such as velocity of light or very small
uumbers such ax size of an electron occur frequently. These numbers cannot be
sattsfaclorily represented in the usval manner. Therefore, scientific calcuiaticns are
usially done by floating point arithmetic.

This mcans that we need to have lwo formats to represent a nurnber, which ace fixed
point representation and floating point representation. We can ransiorm data of one

LTI R
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format in to another and vice versa. The concepl of transforming fixed point data into e Ilt'r:_or:

floating point data is knowan as normaiisation, and it is done to prescrve the maximum
sumber of useful inlormation carrying digits of numbers. This transformation
ultimately leads lo the calculation errors. Then, you may ask what is the benefit of
doing this normalisation when it is contributing 1o erroncous results. The answer is
simply to proceed with the calculations keeping in mind the data and calculation
processing limiiation of machine.

Fixcd-Point numbers are represented by a fixed number of decimal places. Examples
are 62.358, 1.001, 0.007 all correctly expressed up to 3™ decimal place.

Floating-Point numbers have a fixed number of significant places. Examples are

6236 x 103 1.306 x 10-3 which are all given as four significant figures. The position
of the decimal point is determined by the powers of base (in decimal number system it

is 10) 1.6236 x 103,

Base

Let us firet discuss what is a floating-point number. Consider the number [23. It can
be written using exponential notation as:

Maniiss

1.23 x 107, 12.3x 107, 123 x 102, 0.123 x 103, 1230 x 102, etc.

Notice how the decimal point “floats™ within the number as the exponent is changed.
This phenomenon gives [oating point rumbers their name. The representations of the
number 123 above are in kind of standard form. The {irst representation, 1.23 x 10%, is
in a form called “scientific nétation”.

In scientific compulation, a real number x is usvally represented in the form
x=*x(dd,...... d_)x10™ (1)

where d,,d,, ¢, are decimal digits and m is an integer called exponent.
(d,d,.......d,, } is called significand or mantissa. We denote this representation by

fi(x). A floating-peoint number is called a nomalised floating-point number if d, = 0 or
else dy= d; = .... = d, = 0. The exponent m is usually bounded in a range

—M<m<M (2)
In scientific notation, such as 1.23 x 10? in the above example, the significand is
aiways a number greater than or equal to | and less than 10. We may also write

1.23E2,

Standard computer nonnalisation for floating point numbers foltows the fourth form
namely, 0.123 x 10’ in the list above.

In the standard nornalized {loating-point numbers, the significand is greater than or
:qual to 0.1, and is always less than 1.

In floating point notation (1), if fl(x) % 0 and m 2 M (19at is, the number becomes too
large and it cannot be accommotlated), then x is called an over-flow number and il
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m s — M (that is the number is too small but not zere) the number is called an under-
flow number. The number n in the Aoating-point notation is called ils precision.

1.2.1 Floating Point Arithmetic

When arithmetic operations are applied on floating-point numbers, the results usualty
are not Noating-point numbers of the same length. For example, consider an opcration
with 2 digit precision floating-point numbers {i.e., those numbers which are accurate
up to two decimal places) and suppose the result has to be in 2 digit floating point
precision. Consider the following example,

x=030x10', y=066x10°, z=0.10x10'

ther,  x +y=0.300000066 x 10’ =0.30 x 10
xxy=0.198x107° =0 (3)
Zx=0.333...x 10° =0.33 x 10°

Hence, if 0 is one of the arithmetic operations, and 8* is corresponding floating-point
cperation, then we find that
x0*y=x0y

Howcver, xBy=fl(x8y) 4
1.2.2. Properties of Floating Point Arithmefic

Arithmetic using the floating-point number system has two important properties that
differ from those of arithmetic using real numbers.

Floating point arithmetic is not associative. This means that in generai, for floating
point numbers x, y, and z:

v (x+y)+tzEx+(y+2)
e (x.y).z=x.(y.2)

Floating point arithmetic is also not distributive. This means that in general,
o x.(y+2)=2(x.y)+(x.2)

Therelore, the order in which operations are carried out can change the output of a
floating-point calculation. This is important in numerical analysis since two
mathematically equivalent formulas may not produce the same numerical oulput, and
one may be substantially more accnrate than the other.

Example 1: Leta=0.345x10°% b=0245x 10 andc=0.432x 107, Using
3-digit deciiaat arithmetic with rounding, we have

b+ ¢ =0.000245 + 0.000432 = 0.000677 (in accumulator)
=0.677x 107

a+ (b+c)=0,345 + 0.000677 (in accumulator)
=0.346 x 10° (in memory) with rounding

a+b =0.345x 10° +0.245 x 107
=0.345 > 10° (in memory)

{(a+ b)+ ¢ =0.345432 (in accumulator)
=0.345 x 10° (in memory)

Herice, we see that,
(a+by+ crat(b+c)
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Example 2: Suppase thatin floating point notation {1) given above, n =2 andm=11. and Ercors

Consider x =0.10x10", y=-0.10x10" and z=0.10x10". Then,
{(x+»)+2z=0.1x10" while x+(p+2)=00 .
Hence, (x +y)+z#x +(y+2).

Frem the above examples, we note that in a computational process, every floating-
paint operation gives rise (o some error, which may then get amplified or reduced in
subsequent operations,

. & Check Your Progress 1

(@-b)  a b

Leta=0.41,b=0.36and c =0.70. Prove

o
L O
0

2) Leta=.5665El, b= _5556E -, ¢ = .5644E]. Verify the associative property for
the floating point numbers i.e., prove (a+b)—c¢#(a—c¢) +b.

Let a= .5555E1, b = .4545El, ¢ = .4535EI. Verify the distributive property for
‘these floating point numbers, i.e., prove a(b — ¢) # ab —ac.

...................................................................................................

1.2.3 Significant Digits

The concept of significant digits has been introduced primarily {o indicate the
accuracy of a numerical value. For example, if, in the number y = 23.40657, only the
digits 23406 are correct, then we may say that y has given significant digits and is
correci 1o only three decimal places.

The number of significant digits in an answer in 2 calculation depends on the number
of significant digits in the given data, as discussed in the rules below.

When are Digits Signilicant?

Non-zero digits are always significant. Thus, 22 has two significant digits, and 22.3
has three significant digits. The following rules are applied when zeros are
encountered in the numbers,

a) Zeros placed before other digits are not sigunificant; 0.046 has two significant
digits,

b} Zeros placed benween ather digits are always significant; 4009 kg has four
significant digits.

) Zeros placed afier other digits but behind a decimal point are significant;
7.90 has three significant digits.

i1

11
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d) Zeros at the end of a nuinber are significant only if they are behind a decimal
point as in (c). For eaample, in the number 8200, it is not clear il the zeros are
significant or not. The number of significant digits in 8200 is at least two, but
could be three or four. T'o avoid uncertainty, we use scientific notation to place
significant zeros behind a decimal point.

§.200*10° has four significant digits, .

£20*107 has three significant digits,
8.2*10* has two significant digits.

Note: Accuracy and precision are closcly related to significant digits. They are related
as follows:

1) Accuracy refers lo the number of significant digits in a value. For example, the
number 57.396 is accurale to five significant digifs.

2} Precision refers to the number of decimat positions, i.c. the order of magnitude of
the last digit in a valuc. The number 57.396 has a precision of 0.001 or 1077,

Exumpte 1 Which of the following numbers has the greatest precision?

a)4.3291, b) 4.32, c) 4.320106.

Solution:

a) 4.3201 aas u precision of 107
b} 4.32 has a precision of 107
¢) 4.320106 has a precision of 107

The last number has the greatest precision.

Example 2: What is the accyracy of the following numbers?

a) 95.763, b)0.008472, <¢)0.0456000, d)36 e)3600.00.

Solutions

a) This has five significant digits.

b) This has four significant digits. The leading or higher order zeros are only place
holders. ]

¢) This has six significant digits.

d) This has two significant digits.

&) This has six significant digits. Mote that the zeros were made significant by
writing .00 aficr 3600.

Significzat dizits in Multiplication, Division, Trigonometry functions, etc,

In a calculaticn invelving maltiplication, division, trigonometric funclions, etc., the
number of significant digits in an answer should equal the least number of significant
digits in any one of the numbers being multiplied, divided, ctc.

Thus, i evaluaiing sin(kx), where k =0.097 m™ (two significant digits) and

x = 4.73 m (three significant digits), the answer should have two significant digits.

Note that whale numbars have essentially an unlimited number of significuni digils.
As an example, if a hairdryer uses 1.2 kW of power, then 2 identical hairdryers use
2.4 kKW,

1.2 kW {2 significant digit} x 2 {unlimited significant digit) = 2.4 kW
{Z siificant digil}

| T
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Significant digits in Addition and Subtraction “":ET:::E

When quantities are being added or subiracted, the number of decimal places (not
significant digits) in the answer should be the same as the least number of decimal
places in any of the numbers being added or subiracted.

iKeep one extra digit in Intermediate Answers

When doing multi-step calculations, keep ar least one or more significant digits in
intermediate resulis than needed in your final answer.,

For instance, if a final answer requires two significant digits, then carry at least three
significant digits in calculations. If you round-off al] your intermediate answers o
only two digits, you are discarding the information contained in the third digit, and as
a result the second digit in your final answer might be incorrect. (This phenomenon is
known as “round-off error.")

This truncation process is donc either through rounding off or chopping, leading
to round off error.

Example 3: Let x = 4.5 be approximated to x” = 4.49998. Then,
x*—x =-0.00002,

1 1

[x=<1] =0.0000044 < 0.000005 < % (.00001) = > 1079 = 5% 10"-°

x
Hence, x approximates x correct to 6 significunt decimal digits.
Wrong way of writing signilicant digits

1} Writing more digils in an answer (intermediate or final) than justified by the
number of digits in the data.

2) Rounding-off, say, to two digits in an intermediate answer, and then writing three
digits in the final answer,

Examplei4: Expressions for significant digits and scientific notation associated with a
floating ppint number.

Number Number of Scientific
Significant Notatlon
Figures
0.00682 3 6.82 %107 Leading zeros are not significant.
1.072 4 1.072 (* 10°) Embedded zeros are ajways
significant.
300 1 3107 Trailing zeros are significant only if
the decirnal point is specified.
300 3 3.00 * 10°
300.0 4 3.000 * 10°

Loss of Significant Digits

One of the most common (and often avoidable) ways of increasing the importance of
an ervor is known as loss of significant digits.

13
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Loss of significant digits in subiraction of two nearly equal numbers:

Subtraclion of two nearly equal number gives the relative error

X

Teey = Ix -y

x-y x-y
which becomes very large. It has largest value when ry and ry are of opposite signs. L

Suppose we want to calculate the number z=x ~y and x" and y" are approximations
for x and y respectively, accurate to r digits and assume that x and y do not agree in
the most left significant digit,.then z' = x —y" is as good an approximation to X Y as
x andy toxandy.

But, if X" and y" agree at left most digits (one or more), then the tefi most digits will
cance! and there will be loss of significant digits.

The more the digits on left agrees, the more loss of significant digits. A similar loss in
significant digits occurs when a number is divided by a small number (or multiplied
by a very large number).

Remeark 1: To aveid this 1oss of significant digits in algebraic expressions, we must
rationalise these rumbers. If no alternative formulation 1o aveid the loss of significant
digits is possible, then we can calty more significant digits in calculalion using
foating-point numbers in double precision.

Example 5: Solve the quadratic cquation x* +9.9 x — 1 =0 using two decimal digit
arithmetic with rounding.

Solution:

Solving the quadratic equation, we have one of the solutions as

_b+fb —dac_-9.9+/0.9) -4.1(-1)

2a 2

—9.9+~/102 —99+10 0.1
2 2 2

while the t-ue solutions are — 10 and 0.1. Now, if we rationalize the expression, we
obtain

_ -b++/b* —dac _ —dac’

2a 2a(b +/b? - 4ac)

- —2c _ 2 _ 2 _ 2
b rbi—dac) 9.9+102 ~ 99+10 199

= 2 -0.1.(0.1000024)
20 :

which is one of the true solutions.




1.3 ERROR - BASICS

Whatis Error?

An error is defined as the difference between the actual value and the approximate
valuc obtained from the experimental observation or from numerical computation.
Consider that x represents some quantity and xa is an approximation t¢ x, then

Error = actual value — approximate value

How errors are generated in computers?

=X-—Xxa

Every calculation has two parts, one is operand and other is operator. Hence, any
approximation in either of the two contributes to error. Approximations to operands
causes propagaled error and approximation to operators causes gencraled erors. Let
us discuss how the philosophy behind these crrors is related 1o computers.

Floating Point
Arithmetic
and Errors

Operand Point of View: Computers need fixed
nuntbers to do processing, which is mostly not
available. Hence. we need to transform the output
of an operation o a fixed number by performing
truncation of series, rounding, chopping ctc. This
coniributes to difference between exact value and
approximated value. These errors get further
amplified in subsequent calculations as these
values and the resuits produced are further utilized
in subszquent talculations. Hence, this error
contribution is referred 1o as propagated error.

Operator Point of View: Computers need some
operation o be performed on the operands
available. Now, the operations that oceur in
computers arc al bit level and complex operations
are simplified. There are, hence, small changes in
actual operations and operations performed by
computer. This difference in operations produces -
errors in, ealculations, which gel further amplificd
in subsequent calculations. This error conlribution
is referred (o as generated error.

What are the sources of error?

The sources of error can be classified as (i) data input errors, (ii) errors in algorithms
and (iti) errors during computations.

Sources of Error?

v

Data input

Algorithms

v

Computations

Input Error: The"
input information is
rarely exact since il
comes from
experiments and any
experiment can give
results of only limited
accuracy. Moreover,
the quantity used can
be rcpresented in a
computer for only 2
limited number of
digits.

Algorithmic Errors: 1f direct
algorithims based on finite
sequence of operations are used,
errols due to limited steps don’t
amplify the existing errors. But
if algorithms with infinite steps
are used, the algo-ithm has to be
stopped after a finite number of
sleps

Computational Errors:
Even when clementary
operations, such as
multiplication or division
are used, the number of
digils increases greatly so
that the number cannot be
held {ully in register
available in a given
computer. In such a case, a
cerlain number of digits
must be discarded, and this
again feads 1o error
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Tvpe of Errors?

We list below the types of errqrs that are encountered while carrying out numerical
calculations to solve a prodlem.

1} Round off errors arise due to fioating point represeniation of initial data in the
wrachine. Subsequent errors in the solution due to this are called propagated
2rOTS.

2} Diue o finite digit arithmetic operations, the computer produces generated errors
or rounding errors.

2} Error due to finite representation of an inherently infinite process. For example,
consider the use of a finite number of terms in the infinite series expansions of
Sin x, Cos x or f{x) by Maclaurin’s or Taylor Series expression. Such errors are
called truncation errors.

Remark 2: Sensitivity of an algorithm for a numerical process used for computing
f{x): if small changes in the initial data x lead to large errors in the value of [{x), then
the algorithm is called unsrable.

How error measures accuracy?

The two terms “error” and “ accuracy” are inter-related, onc measures the other, in the
sensc less the error is, more the acecuracy is and vice versa. In general, the emrors
which are used {u. verenmination of accuracy are calegorized as:

a) Absolute error b} Relative error c) Percentage error

Now, we define these errors.,

a) Absolute Error: Absolute error is the magnitude of the difference between the
{rue value x and the approximate value xa. Therefore, absolute error =} x —xa |.

b} Relative Error: Relative error is the ratio of the absolufe error and actual value
Therefore, relative crror =[x ~xa [/ x.

¢) Percentage Error: Percentage error is defined as,
percentage error = 100er= {00 * ix - xal/x.

Now, we discuss each of the crrors defined above, and its propagation in detail.

i.3.1 Rounding-off Eiror

There are two ways of translating a given real number x into floating-point number
f{x) — rounding and chopping. For example, suppose we want to represent the number

5562 in the nermalized floating point representation. The representations for different
values of nm are as follows:

a=1, f1(5562) =.5* 10" chopped

= .6*10*rounded . (5)
n=2, f1(5562) = .55 * 10" chopped

= ,56*10" rounded . (&
n=3, 1(5562) =.556 * 10 chopped

=.556 *10*rounded . €

Tr——m -
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Rules for rounding-off: Whenever, we want to use only a certain number of digits :m(l Frrors

afler the decimal point, then number is rounded-off to that many digits. A number is
rounded-oflto n places afier decimal by secing (n+1)th place digit d,., as follows:

i) Ifd,. <35, then itis chopped

i) Ifd,., >3, thend,=d, +1
iii) Ifd, =5, and d, is odd then d, = d, + | else the number d,,, is chopped.

The difference between a number x and fI{x) is called the round-off error. it is clear

that the round-off error decreases when precision increases. The round-off error also
depends on the size of x and is therefore represented relative 1o x as

fi(x)=x(1 + 5). (8)
I is not difficult to show that

[8 <.5%107"" in  rounding

while, —107™ " «<5<0in chopping . [¢))]
Definition Ir Let x be a real number and x* be a real number having non-terminal
decimal expansion, then we say x* represents x rounded to k decimal places if

| - e .
|x -X "| < 3 107", where k is a positive integer.

Example 6: If m =3.14159%565, then find out i how many decimal places the
approximatc value o 22/7 is accurate?

Solution: We find that

2 —27—2 =0.00126449

1
2
approximation is accurate to 2 decimal places or three significant digits.

Since, 0.00126449 <0.005=—=10"2_ Hence, k = 2, and we conclude that the

" Check Your Progress 2

I) Round off the following numbers Lo four significant digits.

(i) 450.92, (ii) 48.366%,  (iii) 9.3265, (iv) 8.4155,
(v) 0.80012, (vi) 0.042514, (vii) 0.0049125, (viii) 0.00020215

2) Write the foilowing numbers in floaling-point form rounded to four significant
digits.
(i) 100000, (it} -0.0022136, (i1i) -35.666
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3) The numbers 28.483 and 27.984 are both approximate and are correct up to the
last digit shown. Compute their difference. Indicale how many significant digits
are present in the result and comment.

4) Consider the number 2/3. Its floating point representation rounded to 5 decimal
places is 0.66667. Find oul to how many decimal places the approximale value of
2/3 is accurate?

5) Find out lo how many decimal places the value 355/133 is accurate as an
approximationto 1 ?

1.3.2 Absolute.and Relative Errors

We shall now discuss two types of errors that are commonly encounlered in numeiical
computations. You are already familiar with the rounding off error. These rounded-off
numbers are approximations of the actual values. In any computational procedure, we
make use of these approximate values instead of the true values. How do we measure
the goodness of an approximation fi(x) to x ? The simplest measure which naturally
comes to our mind is the difference between x and fl{x)- This measure is called the
error. Formally, we define error as a quantity which satisfies the identity

x=f(x)+e, (10)

If error € is considerably smali, then we say that fl(x) is a good approximation of x.
Edror can be positive or negative: We are in general interested in the magnitude or
absolute value of the error which is defincd as follows

le| =|x-—ﬂ(x)i {an

Sometimes, when the true value x is very large or very small, we prei=r to study the
error by comparing il with the true value. This is known as relative error and we
define this error as

x—f(x)

relative error =r. =
. x

and

x—11(x) _

(12)

|relative errorl =

X X

PR
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Note that in certain computations, the true value may not be available. In that case, we
replace the true value by the computed approximate value in the definilion of relative
error.

Theorem: If fl(x) is the n-digit floaling point representation in base B of a real
number x, then r, the relative error in x, satisfies the following:

) |n] < ~21- B'"* if rounding is used.

ii) 0| <p’'""ifchopping is used.

For proving i), you may use the following:

Case 1. dryy < %ﬁ, then fl(x} = #(.dd;...d,)B*
II:ﬂ(I_ﬁ = dn*h dnrJ ---,ﬁe-w-jl

i e-n-}{ =i &—n
s2ppei=lp
1
Casel. d,.; > Ep,
A) = 2 ((didy...d)f+ B
Il‘:ﬂ(-'-‘_ﬂ = '|_dn+.frdn+2 -ﬁg-n-r-"'ﬂhn
=prt ldnu- dm.?—ﬁl
e-n-{ 1 - i —p
ST p=S B

Example 7; The true value of 7 is 3.14159265... In menstruation problems the value
22/7 is commonly used as-an approximation to 7. What is the error in this
approximation?

Solution: The true value of 7@ ism =3.14159265.

Now, we convert 22/7 to decimal form, so that we can find *he difference between the
approximate value and true value. Then, the approximate vaiue of -

22
T is7 =3.14285714
Therefore, absolute error = 0.00126449 and relative-error = 0.00040249966.
The round-off crror of computer representation of the number 7t depends on how

many digits-are left out. Make sure that you understand cach line ofthe following
rounding off of the number 7 ;

Number of digits | Approximation for ™ | absofute error | relative error
[ 3.100 0.041593 0.0132%
2 3.140 0.001593 0.0507%
3 5.142 0.000407 0.0130%

Round-off errors may accumulate, propagate and even lead to catastrophic
cancellations leading to loss of accuracy of numerical calculagpns.

Floating Point
Axrithmetic
amd Frrors
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% Check Your Progress 3

i) Letx'=.3454 and y* = .3443 be approximations to x and y respectively correct to
3 significant digits. Further, let 7z =% —y be the approximation to x —y. Then
show that the relative error in z as an approximation to X —y can be as large as
100 times the relative crrorin X ory.

2) Round the number x = 2.2554 to three significant figures. Find the absolute error
und the relative error.

3) Mn=3.14 instead of 2?/?, find the relative error and percentage crror.

4) Determine the number of correct digits in s = 0.2217, if it has a relative
error,g, =0.2*107".

5) Round-off the nusmber 4.5126 to four significan: figures and find the relative
percentage error.

1.3.3 Truncation Error

Truncation crror is a consequence of doing only a finitc number of steps ina
calculation that would require an infinite number of steps to do exactly. A simple
exampie nf a calculation that will be alfected.by truncation error is the evaluation of
an infinite sum. The computer uses only a finite number of wrms and the texms the
arc lef out lead to truncation error.

E e LR

EIE R




Numerical integration is another example of an operation that is affected by truncatic.
error. A quadrature fortnula works by evaluating the integrand at a finite number of
points and using smooth functions to approximate the integrand between those points.
The difference between tiose smooth functions and the actual integrand leads to
truncation error.

Tavler series represents the local behaviour of a function near a give n point. If one

replaces the series by the n-th order polynomial, the truncation error is said to be
arder of n, or O(h"), where A is the distance to the given point. Consider the

irrational pumber e
e=2.71828182845905...

and compare it with the Taylor series of the function exp(x) near the given point x = 0.
exp(x)=t+x+x/2+x>[6+.....

Let us check a few Taylor series approximatians of the number e = exp(i):

orderof n | approximation fo1 e absolute error relative error
3 2.500000 0.2]18282 8.030140%
4 /| 2.666667 0.051615 1.898816%
5 2.708333 0.009948 0.365984%

Example 8: Find the value of e correct to three decirnal places.

Solution: Recall thél‘- e =l+l+—1-+l+ .........
21 31 41

The series is to be truncated such that the finite sum equals e to three decimal places.
This means the must be less than 0.0005. Suppose that the tail starts at n = k+1. Then,

i—!—-= ! + t +
Sl k+D)! (k4 2)!

[ I 1
< 1+ + +
+DY k+D) (k+D?

1 k+) ] 1
- (k+l)![l—f(k'+ 1)]_ g < 00005

For k =6, This expréssion is satisfied and the truncated value of ¢ = 27181,

1.4 SUMMARY

In this un'it., we have defined the floating point numbers and their representation for
usage in computers, We have defined accuracy and number of significant digits in a
given number. We have also discussed the soarces of errors in computation. We have
defined the round-offand truncation errors and their prepagation in later computations

Flating Point
Arithmetic
and Errors
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we are sure (hial the output of computations is meaningful.
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1.5 SOLUTIONS/ANSWERS

Check Your Progress 1

-1) Using two decimal digit arithmetic with rounding we have,

(@=5) _ 21w 107 and 2-2= 59— 51 = 80 % 10”
o c c

a-b) _

while true value of ( =0.071428 ....
c
- )
Therefore, a-b) # £ 2
c ¢

2) Do as 1)above.
3) Doas 1) ebove.

Check Your Progress 2

1) (i) 50.9 (ii) 48.37 (ii) 9.326 (iv) 8.416 (v) 0.8001 {vi) 0.04251 (vii) 0.004912
{viii) 0.0002022
2) (i) 1000 * 107 or-0.1000 * 10° (i) —0.2214 * 107 (iii) -0.3567 * 107
22
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4)

3)

Floating Point
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We have 28.4835 - 27.984 = 00.499. The result has only three significant digits.
This is due 1o the loss of significant digits during subtraction of nearly equal
numbers.

We find that[2/3 - 0.66667] = 0.0000033... < 110"

We find, k = 5. Therefore, the approximation is accurate to 5 decimal places.

Left as an exercise.

Check Your Progress 3

1)

2)

3)

4)

5)

Given, |r.], Iry|,s % 103
Z =x -y =0.3454-0.3443 =0.0011=0.11 x 102

This is correct lo one significant digit since last digits 4 in x” and 3 in y" are not
reliable and second significant digit of i is derived from the fourth digits of x"
and y'.

1o I 1) ...
Max. |r{ = > 10" ‘=E = (100). [EJ.IﬂzleO Ir.l, 100 fr,]|

The rounded-off number is 2.25. The absolute error is 0.0054.

0'20224 =0.6024. The percentage error is 0.24%.

The relative error is =

Relative error = (—2,}% - 3.!4]/-2?% = (00093, Percentage error = 0.093 %.

Absolute error = 0.2*10™' *0.2217 = 0.04493. Hence x has only one correct digit
x =0.2.

The number 4.5126 round-off'to four significant figures is 4.153.
Relative percentage error = —9.0004, 100 = —0.0088% .
4.5126

1.6 EXERCISES

El) Give the floaling-point representation of the following numbers in 2 decimal

52)

E3)

digit and 4 decimal digit floating point number using (i) rounding and (ii)
choppifg,
(a) 37.21829

(b) 0.022712
(c)  3000527.11059

Show that a{b - ¢) # ab — ac, where, a=.5555 x 10, b=.4545 x 10,
¢=.4535 x 10",

How many bits of significance will be lost in the following subtraction?

37.593621 ~ 37.584216, Assume each number is correct to seven significant
digits.

23
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F4) What is the relative error in the computation of x —y, where x = 0.3721448693
and y = 0.372021437} with five decimal digit of accuracy?
E<) Find the smaller root in the magnitude of the quadratic equation
¥? +111.11x +1.2121 = 0, using five-decimal digit floating point chopped
arithmetic.
1.7 SOLUTIONS TO EXERCISES
El) a) rounding chopping
37 x 107 37 % 10°
3722 x 107 3721 x 107
B} 23 x 107" 22 x 107’
2272 % 1070, 2271 % 107"
c) 31x10* 30 x 107
3056 x 102 3055 x 10°
E2) Let,a=.5555 x 10',b=.4545 x 10',c=.4535 x 10'
b—c=.0010 x 10'=.1000 x 107
a(b - c) =(.5555 x 10%) x {.1000 x 107")=.05555 x 10° =.5550 x 107
ab = (.5555 x 10") (4545 x 10')= (2524 x 10%)
ac = (5555 x 10")(.4535 x 10"y = (2519 x10%)
and ab—ac = 2524 x 102~ 2519 x 10?= 0005 x 10>=.5000 x 10”*
"Hence a(b ~— ¢} = ab — ac.
E3) 37.593621 - 37.584216 = (9.37593621)10°— (0.37584216)10’
=x"—y" =(0.00009405)10°
The numbers are, corect to scven significant digits. Then, in eight digit
floating-point arithmetic, the sumber can be writtcn as
z =x —y = (0.94050000)107 But as an approximation to z =x -, z is
good only to three digits, since the fourth significant digit of z is derived fior:
the eighth digits of x” and ', and both possibly contains errors. Here, whils
the error in z s an approxiration to z =X — Y is at most the sum of the eriors in
% anc y'. the relative error in z'is possibly 10,000 times ihe relative error in x
or y'. Loss of significant digits is, therefore, dangerous only if we wish to
keep the relative error small.
Given |r,],|ry{ c—: 10%7, 27 =(0.9405)107 , is cotrect 10 three signilicant digits.
! N
Max |r| = 10" = 10000107 2 (1000) || cz0000)} |
E4) With "ve decimal digit accuracy x'=0.37214 x 10°,¥' =0.37202 x 10°,

x — 37 =0.00012 whilex- y =0.0001234322.

L (s-0)-(=~5") | 00000034322

= ~3%107.
|x -3 0.0001234322




Floziing Point
TI itude of this refative error is quite farge wh d with d A el
1¢ maguitude of this relative error is quite farge when compared with the and Urrors

relative errors of X and y” (which cannot exceed 3 x 107 and in this case i is
approximately 1.3 x 107)

E5) Using the formula

“h+b 4 —111.11+111.09
x=—--2—‘b—ac-, we get, X =—2--—— =—0.01000
a

while the true solution is x, = —0.010910, correct to the number of digiis

shown.
2c

However, if we calculate x, as xy = ——p==0—o-
b++b’ —dac
—2x1.2121 -2.4242

X = =
II1.11+111.09 22220

__ 24292 _ 50109099 =—.0109099

2222000

, We get

which is accurate to five digits.
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2.0 INTRGDUCTION

We oflen come across equations of the forms x* =3 x* +x*+ 6 x -5 =0 or
¢* +x — 2 =0 ¢lc. Finding ore or more values of x which satisfy these equations is
onc of the important problems in Mathematics.

An equation of the type fix) = 0 is algebraic if it contains power of x, that is, f{x) isa
polynomial. The equation is called transcendental, if it contains powers of x,
exponenltiai functions, logarithm functions etc.

Example of algebraic equaloins:
2x=5, x*+x=1 x’ =x(1+2x).

Example of transcendental equations

x+sinx=0, e’ =X, tanx=ux,
As we know, dircct methods can be used te solve the polynomial equations of fourih
or lower orders. We do not have any direct methods for finding the solution of highc.
order polynomial equations or transcendentzl equation. In these cases, we use
numerical methods 1o solve them.

In this unit, we shali discuss some numerical methods which give approximate
sclutions of ar equation: f(x) = 0. These methods are iterative in nature. An iterative
method gives an approximate solution by repeated application of a numerical process.
In an iteralive methed, we start with an initial solution and the method improves this
solution until it is improved 1o acceptable accuracy.

Properties of pelynomial equations:

i} Ths total number of roots of an algebraic equation is the same as its degrec,

if) An algebraic cquation can have at most as many positive rools as the number of
changes of sign in the coefficients of f{x).




iii} An algebraic equation can have at most as niany negative roots as the number of
changes of sign in the coefficient of {{ - x).
iv) IFf(X) =ax" +a,x"" " +a,x" "% + . +a,_x + a, have roots q,,as,...,¢,, then the
following hold good:
-a a 2 a,
Z(.x,-—— -, Za,afJ =2 Ha,z(hl) —_
f a, ‘ (21

ay <]

2.1 OBJECTIVES

Alfter studying this unit, you should be able to :

find an initial guess of a root;
use bisection method;

use Regula-falsi method;

use Newton’s Method;

use Secant Method, and

use successi\_r'e iterative method.

2.2 INITIAL APPROXIMATION TO A ROOT

All the numerical methods have in common the requirement that we need to make an
initial guess for the root. Graphically, we can plot the equation and make a rough
estimate of the solution. However, graphic method is not possible to use in most cases.
We with to determine analytically an approximation io the root.

Intermediale Valuc Theorem

This theorem states that if £is a conlinous function on [a, b]'and the sign of f(a) is
different from the sizr of f{b), that is [{(a)f{b) < 0, then there exists a point ¢, in the
interval (a, b) such that f{¢) = 0. Hence, any value c ¢ (g, b) can be taken as an initial
approximalion tc the root.

Example 1: Find an initial guess to find a root of the equation, 2x — logg x = 7.
Solution: Let {{x} =2 x — logo x — 7. The values of function f are as given in Table 1.

Table 1

X [ 2 3 4

f{x) -5 ~-3.30! - 1477 0.397

We {ind f{3){{(4) < 0. Hence, any values in (3, 4) can be taken as an initial guess.

Example 2: Estimale an initial guess to find a root of the equation,

2x -3 sinx—-3=0.
Solution: Let-f{x) =2x — 3 sin x — 5. Nole that {—x)=—-2x + 3 sinx -5 which is
always negative. Therefore, the function f{x} has no negative real roots. We tabulate
the values of the funclion {or positive %, in Table 2.

Table 2

X

0

1

2

3

f(x)

-5

- 5.5224

~17278

0.5766

Since f{2) and f(3) are of opposite signs, a root lies benween 2 and 3. The initial guess

can be taiken as any value in (2, 3).

Solution of
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2.3 BISECTIOM METHOD

This is one of the simplest methods and is based on the repeated application of the
intermediate value theoreim.

The bisection method is defined as follows:

i} Fiad an interval (z, b) in which in root lies, using intermediate value theorem. c
ii} Direction the interval (a, b). Let ¢ = (a -+ b)/2. If {{c) =0, then x = ¢ is the root and :
the root is determined. Othenvise, use the intermediate value theorem to decide

whether the root lies in (a, ¢} or (c, b).
fii) Repeat step using the interval (a, c).
iv} The procedure is repeated while an length the last interval s less than the destred

accuracy. The mid point of this last interval is taken as the root.

Example 3: Use bisection method to find a positive root of the equation

f(xy=05¢e"-5x+2

Soluiion: We find that f{0) = 2.5 and f(1) = —1.6408. Therefore, there is a root

between 0 and 1. We apply the bisection method with a=0 and b= 1. The mid point is

¢ = 0.5 and f(0.5) = 0.32436. The root now lies in (0.5, 1.0).

The tabulated values are shown in Table 3.

Table 3
a b omidpeint(e) _fl ()  flo) N
0 1 05 . 25 ,-1.6408591 032436864
D 075 0.32436064 -1.6408591° -0.6915
U 5 0.75 0.625 0.32436064 -0.6915 - -O0. 1908?? )
) 0. 5 0.625 ) 0, 5625 0.32436064 -0.1%0877 Q. 06502?33
0.5625 0.625 1059375 0.06502733 -0.190877 -0.063367
05625 - 0.593%5 0578125 0.06502733 -0.063367 0.00072137
0578125 059375 . 0.5659375 0.00072137 -0.063367 -0.0313502
05768125 058593?5 056203125 0.00072137 00313502 00155212
0578125 058203125 05800?31310000?213? -0.0153212 000750!6
0578125 0.580078125 057910156 0.00072137 -0.0073016 -0.0032906
0578125 05?9101563 037361-328 £.00072137 013032906 -0.0012847 P
0578125 " 0578613281 " 0.57836914 0.00072137 -0.0012847 -0.0062817 i:
0578125  0578363i41 0.57824707.0. 0007213? -0 DUUZB‘? G. 00021984_ I
05?824?07 .o 478369141 0‘:}(3308“ 100002i984 -0.0002817" -3 033E-05
057824707 - 0. 5?8*08105 U LY 2??59_"0 00021934 —::- 093E -05 : 9.4453E - 05

0575277580 - 0. 576308105 .0, 5?829285__9 4453E-05 -3.093E- EIS 3 1762t~ 05
05?829284?‘_ '0.578308105 -0.57830048 3.1762€-05: -3. 093E-05 4. 1644E-07 -
0573300476 - 0578308105 []5?830429-41644E 07 -3.093E-05. -1,526E- 05[

© 0576300476 0578304291 0.57830238  4,1644E-07, -1.5267-05 . -7.42E-06
0578300476 0578502383 057830143 4.1644E-07 | -7.426-06 -35026-06

" 0576300476 - 105?830143 . 057830095 : 41644E 07 -3.502£-06 -1 543E-06 -
05?83004?6 ... 0.578300953 05?3300?1 "4.16448- U? -1 54'E EIG ~5 63|.E U?_
0578300476 © 0.576300713 05783006 41644E 07: -5.631E-07 ?333E 08
0578300476 *05?8300“95 l:l5'¢‘83(][l5'Ll 4!644E Ui -7.333E-08 1.71562-07

After 24 iterations we see that the smaller root can be found in the interval
[.578300476, .578300595]. Therefore, we can estimate ane rooito be 0 .5783005 7
of the first things to be noticed about this method is (hal it takes a iot of jierations ic




gct a high degree of precision. In the following error analysis, we shall sze meihod as
lo why the methad is taking so many direciionus.

2.3.1  Error Analysis

The maximum error afler the i™ iteration using this process is given by

-4
-} = 2[
Taking logarittuns on both sides and simplfying, we get
log(b—~a)-loge

log2
As the interval at each iteration is halved, we have {£,,,/£,) = (1/2). Thus, this
method converges linearly .

Etpwe 4 : Obtain the smallest positive root of x* — 2x — 5 =0, correct upto 2
decimal places.

Solution : We have f(x) =x’ —2x -5, {{2)=-! and {{(3) = 16. The small- st positive
root lies in (2, 3). Therefore,a=2,b=3,b~a=1,we need solution corre-t 1o two
decimal places, that is,

EX 0.5(10"2), from (1), we gel

is log1—logf0.5(107")] . —log(0.005) _ g
log iog2

This shows that 8 iterations are required to oblain the required accuracy. Bisection
method gives Lhe iteratived values as x; = 2.5, X2 = 2.25, ..., % = 2.09. Then x = 2,09
is the approximate root.

2.4 REGULA FALSIMETHOCB

Lei die root lie in the interval (a, b). Then, P(a, f{a)), Q(b, (b))} arc points as the curve.
Join the points P and Q. The point of intersection of Lhis, with the X-axis, ¢, line is
taken as the next approximation to the raot, We drermine by the intermediate value
theorem, whether the root now lics in (a, <) or {¢, b) we repeat the procedure. 1f xq, X,
b CTON are lhe sequence of approximations, then we stop the iteration when

| Xx.( — ¥} < given error tolerance.

Slgure 2.0: Regula £alsi method

Sotuiian of

Algchiaic pag

T

ranscendental
Equations

29

P S

- m




Numerical
Computing -§

The equation of line chord joining (a, f(a)), (b, f(b)) is
y—f{a) :'—*——-—f(b) —/(a) (x — a).
b-a

Setting y = 0, we set the point of interscction with X-axis as givens
b—a
e -r@ @
_ af(0)-bf(a)
S (@&)- f(a)

If we denole x5 = a, x; = b, then the jteration formula can be written as
x — xnﬂf(xn) - Inf(xn-l)
m+l T N »
' JGe)~ (x5

n=12,.... 2)
The rate of convergence is still finear :uwt “ster than thet o7 the bisection method.
Both these methads will fail if fhas a doul:le root.

Exampie 5: Obtain the positive root of the equation x* ~1 =0 by Regua Falsi method.

Solution: Let f{(x)=x*—1. Since K0)=-1, {2) =3, Let us take that the root lies in
(1, 2). Wehavexo =0, x, = 2.

Then, using (2), we get
o 2B =x fO) _0-2(-1)
’ S(2) - f(0) 3+l

=05,  f(0.5)=-0.75

The root ties in (0.5, 2.0}, we get
. = 0.5/(2)-2.01(0.5) _0.5(3)--2.0(-0.75 _
2T re- f05 3+0.75 -

0.8

{(0.8) = -0.36. The root lies in (0.8, 2). The next approximation

.y —
x, = 28D 200030 _ 0006 ri0.9286) = ~0.1377.
37036

We oblain the next approximations as xs = 0.9756, x¢ = 0.991 8, x;=09973,
xg = 0.9990. Since, |xg - x5 = 0.0017 < 0.005, the approximation x3 = 0.99%. is correct
to decimal places.

Note that in this problem, the lower end of the interval tends to the root, and the
minimum error tends to zero, but the upper limit and maximum error remain fixed. In
other problems, the opposite may happen. This is the property to the regula falsi
niethod.

2.5 NEWTON’S METHOD

This mmethod is also called Newton-Raphsan method. We assume tliatfis a
diffeieatiable funciion in some interva! [a, b] containing the root.

We first look ot ¢ “pictorial” view of how Newton's method works. The graph of
¥ = Kx) is plotted in Figure 3.7, The poiat of intersection x = r, is the required root.
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Xy r‘-\‘l-ﬁ__‘_‘_

Figure 2.1: Plor of ¥y = ({1}

Let xp be an initial approximation of r. Then, (x0, [{x0)) is a peint as the curve

(Figure 3.2).

(%o. T(Xo))

Xo r--‘-\-“-h.‘_‘-—

Figure 2.2: Point on the centre

Draw the tangent line to the curve at the point {x; , f{xo }) . This line intersects the
Xx-aXis at a new point, say x; (Figure 3.3).

(Xo, {xp))

Xg X r —

Figare 2.3: Taogent at {xo, {x,))

Now, x| is a belter approximation to r, than xp . We new repeat this process, yielding
new points xz, xy, ... until we arc “closc enough™ to r. Figure 3.4 shows one more
iteration of this process, determining >, .

X h o) x r —

Figure 2,41 Newton's method

3l
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Cornuting -1 Now, we derive this method algebraically. The cquation of the rangent at (X, f{xy)) is

given by
¥ — [(x0) =F (Xo)(X — %o)

Where £(x;) it the slope of the curve at (xq, f(xo)). Setting y = @, we get the point of
intersection of the langent with x-axis as

J(x,)
¥ — f(x0) =1 (%e)(x — x0), Or X =x; —"———
P S
But, this is our next approximalion, that is
¢S
VAES
Iterating this process, we get the Newlon-Rephson as
.,=_r.—--f-rl(—x"—) forn=0,1,2, ... ()
F'(x)

Example 6: Find the smallest positive root of x” +9x° — 13x = 17 = 0.

Solution : Let f{x) =x’ + 9x* — 13x — 17, we have f{0} <0, {1} <0 and f{(2) < 0.
Hence, the smallest positive root lies in (1, 2). We can take any vailue in (!, 2) or one
of the end points as the initial approximation. Let x0 = I, we have,

f(x) =7x® +45x" — 13. The Newton-Raphson method becomes

74955 13z, —17
VI ksl ik LR S F S
7x6 +45x¢ —13

rtl

Siarting with xo = 1, we oblain the values given in Table 4.

) Table 4 ) o

W[ W [ fx P [ e
0[ I 20 | 39 1.512820513 |
t! 1.5128205i3 | 52.78287188 1 306.6130739 | 1.340672368
2| 1.340672368 | 12.33751268 | 173.0270062 | 1.269368397
3| 1.269368397 1.46911353 | 133.1159618 | 1.258332053
4| 1.258332053 | 0.03053547 | 127.6107243 | 1.258092767
5| 1258092767 | 0.00001407 | 127.4932403 | 1.258092657

J

After 6 tterations of Newton’s method, we have
|xs — x| =1.258092657 —1.258092767] = 0.0000001 10.

Therefore, the root correct 1o 6 decimal places is r = 1,.258092657.
Possiblie drawbacks:

Newton's method may not work in the following cases:

i) The x-values may run away as in Figure 2.5¢a). This might occur when the x-axis
is an asymptote.

ii) We might choose an x-value that when cvaluated, the derivative gives us 0 as in
Figure 2.5(b). The problem here is thal we want the tangent line to intersect the
x-axis so that we can approxitnate 1nc root. If x has a horizental tangent line, then
we can't do this.
32




iii) We might choose an x, that is the beginning of a cycle as in Figure 2.5(¢). Again
it is hoped that the picture will clarify. this.

{c) Cycle
Figure 2.5: Bivergence of Newton's methed

However, the dificultics posed have one artifical. Normally, we do not encounter such
problems in practice. Newton-Raphson methods is one of the powerful methods
available for obtaning a simple root of f{x) = 0.

2.5.1 Error Analysis

Let the error at the n™ step be defined as
En=Xn—X

Then the error at the next step is

S{x+e,)
[(x+e,)

x+e,., =x+e, —

Explaing ir Taylor Series, we obtain
. J(x) +e, (D) +5e (D) +..... @
eﬂ' =6, i ™
H S e, f(x)+..

Since, x is a root, we have [(x) = 0. Then,

S(x)
l+—g, Z—=+u...
,.J()[+9f()r. ]

T e, );((i)) Ford
et be LD e, L
—e —e [1*% jr(”‘)) ........ ][]—-en%%+ ........ ]
—e e [1-% f—f%)ﬂu]
;((;)) ........ ] (5)

We can neglect the centric end higher powers of ¢, as they are much smaliest than c,n,

(2. is itself a siall number).
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Notice that the error is squared at each step. This means that the number of cormrect
decimal places doubles with each siep, mucii faster than linear convergence. We call it
quadratic convergence.

This sequence will converge if
S . S (x)
frx 7 f1(x)
If {* is not zero at the root (simple root), then there will always be 2 range round the
root where this method converges.

<le.,

v les] <2 ()

If £ is zero at the root (double root), then the convergence becomes linear.

Exzmple 7: Compute the square root of a, using Newton's method. How does the
error behave?

Solution: Let x = -JE, or x* = a, Define flx) =x* - a. Here, we know the root exactly,
so that we can see how well the method converges.

We have the Newton’s methed for finding a root of f{x) =0 as

2 2
X, x‘—a x"+a 1 a
xrl‘l'l =xn-_. f( ") =xn_ ’ =— == xn+-_ (‘?J
S(x,) 2x, 2x, 2 x,
Starting with any suilable initial approximation to -J;, we find X,, X3, -.--.,"which

convege to the required value.

Error al the n"’_step ise~=x, — -JE. Substituting, we get

_ (e, vy
o Tarey
Za+?en+\/z_z+eﬂ2_
- 2Ja+e) va
_2(JE+e")J;+e"2_JE
T 2(Ja+e)

€

“2(a+e,)

If @ = 0, this simplifies to e,/2, as expected. Here, we are finding the root of x*=0,
which gives a double root x =90.

(&)

Since a>0, e, will be positive, provided e, is greater ihan —a,ie provided x, is
positive. Thus, starting from any positive number, all the errors, except perhaps the
first, will be positive,.

The method converges when,

de,| &

eﬂ
2(Va+e,)
or e <2(e, +JE)

| en+| |:
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which is always true. Thus, the method converges to the square rool, sfariing jrom any Traﬁsmndm:ﬂ

positive number, and it does so quad:atically. Equations

We now discuss another methad, which does not require the knowledge of the
derivative of a functio:.

2.6 SECANT METHOD

Let Xq, X, be two initial approximations to the root. We do not require that the roo1 lie
in (X0, x;) as in Regula Falsi method. Therc{ore, the approximations xp, x, may lie on
the same side of the rool. Further, we obtain the sequence of approximations as

X2y X31unnes Al any stagc, we do not require or check that the not lies in the interval
(%4, X .1). The derivation of the method is same as in the Regula Falsi method.

(Figure 2.6) )

Rooats oof Fylettions

» Secant line
y—fixy /,

- o ————

L]
i
1
— + X
r (_’ L I
Figure 2.6: Secant method
The method is given by (see Equation (21))
— xﬂ-lj:l -_xn-f |
Xntt = (! 0)
fn - fn—l

We compulte X, using X, X;; X3 Using x;, xz; and 50 oa.

The rate of convergence of the method is super iinear (1.618), that is, it works better
an the Regula Falsi method.

ple 8: Use secant method to find the roots of the equation f{x) = 0.5¢" - 5x + 2.

Solation: We have f{(—x) =0.5¢™ + 5x +2 > 0 for all x. Hence, there is no negative
root.

We obtain,
f0) = 2.5, f{1) = — 1.6408, f{2) = - 4.3055, f{3)= -2.9572,
f{4) = 902990, () > 0 for x > 4.

Therefore, the given function has two roots, one root in (0, 1) and the second root in
(3, 4).

For finding the first not, we take xo =0, x, = 1, 2nd compute the sequence of
Approximations Xz, Xa,.....

For finding the second root, we take X, = 3, x; = 4 and compute the sequence of
approximations Xz, Xa,--....
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The results are given in Table 5.

Tabje 5

Xn-1 Xn Xn-1 Xa Xnry

0 ] 2.5 ~1.640859086 0.60373945
[ 0.603739453 -1.6408591 —0.104224624 0.57686246
0.6G3739453 0.576862465 -0.1042246 0.002909403 0.57830459
0.576862465 0.578304589 0.0029094 -1.68E-06 0.57830058
0.578304589 0.578300578 -1.65E-05 -2.57E-09 0.57830058
0.578300578 0.578300577 -2.57E-09 1.11E-15 0.57830058
0.578300577 '0.578300577 1.11E-i5 ¢ 0.57830053
3 4 ~2.5572315 9.299075017 3.24128244
4 3.241282439 9299207502 —1.423168098 334198736
3.241282439 3.341987358 -—~1.4231€81 -0.572324798 3.40972316
3.341987358 3.409723161 -0.5723048 0.079817605 340173252
3.409723161 3.401432525 G(.07981761 -0.003635061 3.40179365
3.401432525 13.401793651 -0.0036351 —2.15E-09 3.3017958
3.401793651 3.401795804 -2.15E-05 5.87E-09 3.4017958
3.401795804 3.401795804 5.87E-09 -T.11E-15 34017958

The two roots arc 0.57830058. 3.4017958 correct to all decimal places given.

2.7 METHOD OF SUCCESSIVE ITERATION

The first step in 1his method is to wriltc the equation f{x) = 0 in the form

x = g(x)-

For example, consider the equation x2—4x '+ 2 =0 . We can write it as

x=4x-2, (i2)
or as x={(x*+2)/4, (13)

- 14
or as x i—x (14)

Thus, we can cheose from (11) in several wey's. Since, f{x) =0 is the same as x =
g(x), finding a root of f{x) =0 is the same as finding a root of x = g(x), i.e. finding a
{ixed point u ¢f g(x) such that a = g(a) . The function g(x) is called an iteration
Junction for solving f{x) =0,

If an initial approximation'x, to a root d is provided , a sequence x, , X 3 ,..... may be
defined by the iteration scheme

e =p{ %} (15}

Jwith the hope that the sequence will converge to a. The successive iterations for
solving x = e™/3, by the method x,., = ¢™/3 is given in Figure 2.7.
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Figure 2,7: Successtve lteration method

The method converges if , for some constant M such that '0<M <1, the inequalizy
lgx)-gla} =M |x-a| (161
nolds true whenever |x — ot | €} xp—a| - For, if (18) holds, we find that

| %pe1—a|=g(xa) —ai=]g(xa) —gla} [ M| % -] )
Using this relation recutsively, we get

| Xpet =0 J <M 1%y -} SM? | X0p —€| SM"[x0~a] (18)
Since, 0 <M < 1, liin M" = 0 and thus lim x, = «

Condiion (16) is satisfied if the function g(x) possesses a derivalive g’(x) such that
| g'Gt<1forjx—a|<|x—a)Ifxis close to @, then we have

| Xne 1 - [= |g{xa) - gla){< g (€)% - 2l (19
for some E between x, and « . Therefore, condition for convergence is
Lg'&)i<i,or | g'Gl<1. e
Example ¢ ; Let us consider the equation i{x) = x” +x — 2_ L has only one real root at
x = 1. There are several ways in which f{x)=0 can be writlen in the desired

‘form, x = g(x).

For example, we may write x = x + {{x) = g(x) and write the method as
X, =X+ f(x)=x+2x-2

In this case, g'{x)= 3x? + 2, and the convergence condition is

lg'(x)|=3x*+2<1,  or  3x'<-L

Since, this is never true, this arrangement doesn’ converge o the toot.

An altemate rearrangement is
x,=2-x"
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This method converges when

|8'(x)|=|—3x2|<1, or x2<l, or |x]<L.

3 7

Since this range [— l/wﬁ, 1/4/3] does not include the root x = 1, this method will not
converge cither,

Another rearrangement is

P |
X = qZ—x"

In this case, the convergence condition becomes

%I(Z—x")rz'lJ <l, or (2-x)7%<3, or |x,—2|>+27.

Again, this range does not conain the root.

Another rearrangement is
2

x?+1

(21)

le

In this case, the convergence condition becomes

4 §
H:{;";')—zcl, 4| xj<(l+x*)?

This inequality is satisfied when x > 1. Hence, if we start with such an x, the method
will converge to the root.

Letx, = 1.2, Then, from (21), we obtain the sequence of approximations as.
x1=0.8197, x, = 1.1963, x; = 0.8227, x, = 1.1927, x5 = 0.8255, x, = 1.1894, .......

The approximations oscillate about x = | and converge very slowly.

2.8 SUMMARY

In this unit, we have discussed the acylal meaning of root. In general, root
determination of an equalion is a tedious exercise. So, to handle such tasts. we have
discussed some basic, simple, but still powerful methods of rool determination. The
methods discussed in this unit are Bisection method, Regular falsi method, Newton's
method, Secan method and Successive iteration method.

2.9 EXLERCISES

El) Inthe follm".'ing problems, find the intervals of length 1 unit, in which the rools
lie -
(@) 12x* - 76x* +131x —42=0; (D) 4x*+8x—-21=0
{c)x—-e*=0 (dyx=2cosx

EZ) Find all ihe roots in Prablems 1(a), (b), {c) by ergular falth method, secant
meihod and Newton-Raghsou method.
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E3) Find the smaller roots in Problems 1{b} and the reot in 1(c), by successive
tHeration method.

E4) Show that the equation x* — 6x — | =0, has a root in the internal (-1, 0). Obtain
this root using the successive iteration method.

2.10 SOLUTIONS TO EXERCISES

El) (a) (0,1)(1,2),(3, 9 (b) (-4,-3).(1,2)
(© (0., 1) (d) (0.5, 1.5)
E2) (a) 0.5, 1.2,3.5 (b) —3.5,1.5

(¢) 0.567143

E3) (a) Use Xar = X, — 0.05(4x,” + 8%, ~ 21) with xo = 1.4
(b) Write x,., = ¢,

E4) Write Xoi, = (%o — 1)/ 6; X =—0.5, - 0.167449
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UNIT 3 SOLUTION OF LINEAR
ALGEBRAIC EQUATIONS
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3.0 INTRODUCTION

Systems of linear equations arise in many areas of study, both directly in modelling
nhysical situations and indirectly in the numerical solution of other mathematical
modeis. Linear algebraic equalions occur in the linear optlimization theory, icast
square fitling of data, numerical solution of ordinary and partial differential equations,
statistical interference ele. Therefore, finding the nurnerical solution of a system of
linear cquations is an important area of study.

From study of algebra, you must be familiar with the following two common methods
of solving a system of linear equations :

1) By the elimiination of the variables by elementary row operatioans.
2) By the use of determinants, a method better known as Cramer’s rule.

When smaller number of equations are involved, Cramer’s rule appears to be better
than elimination method. However, Cramer's rule is completely impractical when a
large number of equalions are to be solved because here n+! determinants are to be
computed for # unknowns.

Numerica! methods for solving linear algebraic systems can be divided into two
methods, direct and iterative. Direct methods are those which, in the absense of
round-oft or other errors, yield exact soluticn in a finite number of arithmetic
operations. Iterative methods, on the other hand, start with an initial guess and by
applying a suitable procedure, give successively better approximations.

To understand, the numerical methods for solving linear systems of equations, it is
necessary to have some knowledge of propertics of the matrices, You might have *»
sludied matrices, determinants and their properties in your linear algebra course.

In this unit, we shall discuss two direct methods, namely, Gauss elimination method
and LU decomposition method, and two.iterative methods, viz.; Jacobi method,
Gauss — Scidel method and Successive over relaxation method. These methods are
frequently used (o solve systems of linear equations.

Tra-




3.1 OBJECTIVES

Afler studying this nnit, you should be able 1o:

¢ slate the difference between direct and iterative methods for solving a system of
linear equations;
learn how to solve a system of linear equations by Gauss elimination method;
understand the effect of round off errors on the solution obtained by Gauss
elimination method;

e learn how to modify Gauss elimination method 1¢c Gaussian elimination with
parlial pivoling to avoid pitfalls of the {former method;

e learn LU decomposition method to solve a system of linear equations;
learn how to find inverse of a square marrix numencally;
learn how to obtain the solution of a syiein of linear equations by using an.
iterative method, and

e state whether an iterative method will converge or not.

3.2 GAUSS ELIMINATICN METHOD

One of the most popular technigues for solving simultancous linear equations is the
Gaussian' elimination method. Karl Friedrich Gauss, a great 19" century
mathematician, suggested this elimination method as a part of his proof of a particular
theorem. Computational scientists use this “proof” as a direct computational method.
The approach is designed to solve a gencrai sct of n equations and n unknowns

a, X, + a7, +apx, .. +a,x, =b

ay X, b yeXy + AgyXy + ot @y %, = by
. . n

a, X, +a,,%,+ 0,5 +..+ad,x, =8,

In matrix form, we write Ax = b, where

Gaussian elimination consists of two steps:

1) Forwdard Elimination: In this step, the elementary row operations are applied on
the augmenled matrix [Alb] to transform the ccefficient matrix A into upper
irianguiar form.

2) Back Substitution: In (his step, starting from .2 last ev,zdlion, each of the
unknowns is found by back substituticn.

_Fonvard Elimination of Unknowus: In this first step the first unknowa, x; is
climinated from all rows below the first row. The first equation is selected as the
pivot equation Lo elirainale x, So, to eliminate x, in the second equation, one dividus

Sofution of
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Edquslions

4]

Rt R




42

Numerical
Conputiog -1

the first equation by a,, (hence called the pivot element) and then multiply it by a;,.
That is, same as multiplying the first equation by a;,/ a,; to give

a,x + g x 4 + B,
2171 1271 - In"*n
11 [ H]

Now, this equation is subtracted from the second equation 1o give

ay ty ay
[an - a,z]x2 +...+[ah -—*a, |x, =b, -5,

i a, a,

or Xy ot day,x, =b,
a
where 6, =a,, ——2a,,...,
a,
. a
21 i
a3, =y, a,, b, =b, - a b

This procedure of eliminating *1, is now repeated for the third equation to the
n'" equation to reduce the set of cquations as

X, +apX, +ayX; + ..+ a,x, = b
Xy +ApX; +.. v ay,x, =b, 2)

X, +ay.x, . +ay,x, =b,

I=""n

A%y + 45X+t a,,x, =b

n"

This completes the first step of forward elimination. Now, for the second step of

r
forward elimination, we start with the second equation as the pivot equation and < 22
as the pivol eiement. So, to eliminate x, in the third equation, one divides the second

] r
equation by 7 2z (the pivot element) and then mulliply it by sz, _That is, same as

multiplying the second equation by <32 )_’a 22 and subtracting from the third equation.

This makes the coefficient of x; zero in the third equation. The same pro-adure is
now repeated for the fourth equation lill the nth equation to give

a,x, +a,x, a5+ ..+ a,x, = b,
ApX, +dyux, +..+a,,x, =b,

33Xy +otay,x, =5, 3

a,x, +..+a,x, =b,

The next steps of forward climination are done by using the third equatien as a pivot
equation and so on. That is, there wilt be a total of (n—1) steps of forward elimination.

At the end of (n—TI) steps of forward elimination, we get the set of equations

a,x; + a,x, + QX +...+a,x, =b

ApXs + %5+ 4Gy, x, = b,

ORISR R
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afx, =57

Back Substitution: Now, the equations are solved starting from the Jast equation as it
has only onc unknown. We obtain

(n-1}
_5
N

nn

X

Now, we solve the (n—1)th equation to give

1
= {n-2) _ (n-2)
Xna= a(n_-z) [bn—l an-l.n xn ]

n=-Ln=-2

since x_ is determined.

We repeat the procedure until x, is determined. The solution is given by

b{n—l)
x =n _
e
b{(r‘—l} . i—- ag—:)xj
¥ = Jai+l
t a(-‘-l}
and ., Jfori=n—1,n-2,..,1 5)

Example 1: Solve the following linear system of equations
Xt K+ X3 = 3,

4X| + 3){.2 + 4x_1= 8,

9x| +3XZ+4X3=7

using the Gauss elimination method.

Solution: In augmented form, we write the system as

1 1 13
4 3 48
9 3 47

Subtractling 4 times the first row from the second row gives

1 1 113
0 -1 0f]-4
9 3 47

Subtracting 9 times the first row from the third row, we get

1 1 13
0 -1 ©0|-4
0 -6 --5/-20
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Subtracting 6 times the second row from the third row gives

1 1 113
0 -1 0[-4
4

¢ 0 -5

Restoring the transformed malrix equation gives

'L 1 1 9(%1] 3
0 -1 0] Xz =I—4l,
4

0 0O -5)ix3)
. . -4- . .
Solving the last equation, we get x;, = —5—- Solving the second equation, we get
. 4 -1
x,=4 and the first equation gives x, =3 -x,-x;=3 -4+ 3 = -g-

Example 2: Use Gauss Elimination to solve
10x, -7x, =7

-3x, +2.099x, +6x, =3.901

5% -x,+5%,=6

correct to six places of significant digits.

Solation : 'n matrix form , we write

I A T

10 -7 0]]x, 7
~3 2095 6|{x| = |3.901
15 -1 5i|x 6
Multiply the first row by 3/10 and add to the second equation, we get
0 -7 0][x 7
0 -0.001 6||x,[=[6.001
s -1 5||x| | 6
Multiply the first row by 5/10 and subtract from the third equation, we get
o ~7  O[x [ 7
0 ~0.001 6||x,|-|6.001
0 25 5(|x 2.5

This completes the first step of forward elirtination.

Multiply the second equation by 2.5/(—0.005)= —2500 and subtract from the third
equation, we obtain

10 -7 0 ] [x 7
0 —0001 6 ||x,|= [6001
0 0 15005/ |x, 15005

We can now solve the above equations by back substitution. From the third equation,
we get

e L IR T S Sl PR
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Equations
Substiwuting the value of x, in the second equatioi, we get
-0.001x, +6x; =6.001, or-0.001 x, = 0.001 - 6=0.001,0r x, =-1
Substituting the values of x, and x; in the [irst equation, we gel

18x| _?le =7 , OF 10x| =7+7x2 =0’Or Xy 20'

Hence, the salution is [0 -1 l]r.

3.3 PITFALLS OF GAUSS ELIMINATION
METHOD

There are two pitfalls in the Gauss elimination method.

Division by zere: It is possible that division by zero may occur during forward
elimination steps. For example, for the set of equatiens

10x, = Tx, =7
6x, +2.099x, — 3x, =3.901

S5x, —x, +3x; =6

Guring the first forward elimination step, the coefficient of x, is zero and hence
normatisation would require division by zero.

Round-off error: Gauss elimination method is prone 1o round-off errors. This is true,
when there are large numbers of equations as errors propagate. Also, if there is
subtraction of almost equal numbers, it may create large ervors, We illustrate through
ihe following examples.

Example 3: Solve the following linear cquations
107 x+y=1.0,
x+ty=20 (6)
correct (o 4 places of accuracy.

Solution: For 4 places of accuracy the solution is . x =y = 1.0.
Applying the Gauss elimination methad, we get (by dividing with the pivotal element)

x+ 10°y =10’
(1-10%yy=2.0-10°

Now, 10° — 1 when rounded 1o four places of accuracy, become is 10 >, Similarly,
10° —2 when rounded 1o four places of accuracy hecomes (0 5

Hence, from the second equaiion we get, 10°y= 10°% ory =10

Substituting in the first equation, we get x = 0.0, which is not the soiution,
Such errors can also an-¢ when we perform compuitztions with less number of digits.
- e . . . 3 . - .
Yo avoid these compulatinnal disasiers, we apply partial pivoling 1o gauss climinatioi.
15!
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3.4 GAUSS ELIMINATION METHOD WITH
PARTIAL PIVOTING

We perform the following madification to the Gauss climination method. At the
beginning of each step of forward ¢limination, a row interchange is done, if necessary,
based cn the following criterion. If there are n equations, then there are (n — I)
forward elimination steps. At the beginning of the k™ step of forward climination, we
find the maximum of

|aul |ai+:,l
*

Tha* 15, maximum in magnitude of this elements on or below the diagonal element.

Then, if the maximum of these vaiucs is [a*"*' in the p* row, k< P <n, then
interchar.zs rows p and k.. The other steps of forward climination arc the same as in
Gauss climination method. The back substitution steps remain exactly the same as in
Gauss climination method.

Example 4: Consider Example 3. We now apply partial pivoting on system (6).
Solution: We obtain the new system as
Since, a|| <a ,, we interchange the first and second rows (equations).

x+y=20
10%x+y=1.0

On elimination , we get second equation as y = 1.0 correct to 4 places, Substituting in
the first equation, we get x = 1.0, which is the correct solution,

3.5 LU DECOMPOSITION METHOD

The Gauss elimination method has the disadvantage that the right-hand sides are
modificd (repeatedly) during the sleps of elimination). The LU decomposition method
has Lhe property that the matrix modification (or decomposition) step can be
performed independent of the right hand side vector. This fexture is quite useful in
practice. Therefore, the LU decomposition method is usually chosen for computations.

[n this method, the coefficient malrix into a product of two matrices is written as
A=LU (D

where L is a lower triangular matrix and U is an upper triangular matrix.

Now, the original system of equations, A x =b becomes
LUx=b ' ®)

Now, set U x =Yy, then, (8) becomes
Ly=b (5}

The rationale behind this approach is that the two systems given in (9) are both easy to
solve. Since, L is a lower triangular matrix, the equations, Ly = b, can be solved for
y using the forward substitution step. Since U is an upper triangular matrix, Ux =y
can be solved for x using the back substitution algorithm,
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We define writing A as LU as the Decomposition Step. We discuss the following
three approaches of Decomposition using 4 x 4 matrices.

Daoaolittle Decomposilion

We choose |, = 1, i=1, 2, 3, and write

10 0 0w, wu, u, a, 4. G, a
Ly U 0 0|0 wny, u, #, _|n an dy @ (10)
L, L, 1 0|0 0 u wu, dy Gy dyy Gy
Iy I, 43 1])LO0 O 0 wu, a, a, 4, da.,

Because of the specific structure of the matrices, we can derive a systematic sct of
formulae for the components of Land U .

Crout Decompositinn:

Wechoose uw, =1 ,1=1,2,3,4and write

Ly 0 0 Of1 w, u; u, a, 4 4; 4y
Ly L, 0 00 1wy uy 18y 9z dpn Gy (1)
Ly L, L; 0|0 0 1wy 4y 4 a3 ay
o Lo 1n L0 € 0 1 a, 4yp 4y Gy

The evaluation of the components of L and U is done in a similar fashion as above.
Cholesky Factorization:

If A is a symmetric and positive definite matrix, then we can write the decomposition
as

Where L is the lower triangular matrix

I, 0 0 0
L L 0 0

L = | 22 ( 12)
IJI 132 I!]3 0

41 ;42 143 144

We now describe the rationale behind the choice of ;=1 in (18 or u, =1 in (11).
Consider the decomposition of 1 3x3 matrix as follows.

Ly 0 03w, u, u, 4, G &y
Ly In 00 2y uy|=|a, a, ay,

L, Ly L0 0 u, &y G Oy

_lu“u Ly, I, a4, G ay
by L, +1u, g + Ly =gy d= a5 (13)

I Ly +lpu, Ly, vl +h | e, a, a

Soluvtion of
Lincar Algebraic
Fquations
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We note that L has 1+2+453=6 unknowns and U has 3+241=6 unkrowns, that is, a total
ol 12 unknowns. Comparing the elements of the matrices en the feft and right hand
sides of (13), we pel 9 equations to determine 12 unknowns . Hence, have 3 arbitrary
parameters, the choice of which can be done in advance. Therefore, to make

computations casy we choose |, = | in Doolittle method and #, =1 in Crout's
method.

in the general case of decomyposition of an N XN matrix, L has 142+3+. .. A-N=
Iv(n + I)KZ] And U also has N(N+1)/2 unknowns, that is a total of \’2 - N

unknowns comparing the clements of A and the product LU, we obtain N*
cquations. Hernce, we have N arbitrary parameters. Thercflore, we clicose cither
i=lor uw, =1 ,i=12,...n,

Now , 12t a3 give the solution for the Doeolittle and Crout decomposition,

Doolifit2 Sfethod: Here 1,= ‘. i=1]10N. In this case, generalisation of (13) gives
uy=ag;, J=hto M
l“=a“/a“. 1=21N

Uy, "_'32_;—121.[1” R j=2 to N
2 =(au—l;lulz) .(Un. i=3!0N,andsoon

Crout’s Method: Hereu;; =1, i= 1 to N . In this case , we get

Ii| = a;, =l woN
w; =aj/a; , j=2toN
[iawap-ljup, i=2toN

uy =(ag—lauy; )k j=3toN, and 50 on

Example 5: Given'the following system of linear equations, determine the value of

" =ach of the variables using the LU decomposition method.

6x,-- 2%, =14
Oxy— Xz + %= 21
3x1—7x-¢+_5x3 9

Solution: We write A =LU, withu,;=[ as

-

-2 0 L 0 0! u, u,
U tl=lh, 4y oflo 1wy,
3 +7 5] [N 4 ][0 0 1
-{n Illulz f1%3
=1L L+ bty £ 1yt
L6yt ‘”32 Iyity + Ity +1

Weobtain iy, =6, 13 =9, 13 =3, I =-2,u2=-1/3;
lhw; =0, up=0
LUz tle=-2ip=-1+3=2hug+lzuy=1

n=12, b +hy=+7, lLh=+7+1=8§;

Lrtys + D3ty + 3 =5, 133 =5 — 4 = +1,
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6 0 0 I -1/3 0 -I ’ Einear Alpehiaie
Equutins
Hence, L=}9 2 0 |LU=|0 1 172 quitinns
3 08 +1 0 0 1 J

|’6 0 oil» 14'|
Solvingg=b.[9 2 0 21

1=

Y
i w Lg

[T]

14 7 i
We get, y, = ?;-3-;931 2y =21Ly: " -2-(21—2I)=0

3y; By +y: =9, 7a=9%-7=12.

1 ~173 0 |[x] [7/3)
Selving U, =y, |0 1 1/2 || xut=] 0O
0 0- 1 X 2

1 .
We get, Xy = 2, xa + 5 X3=0, %= —[;x;—-g Xa = —3-.x,=-——-.=2.

The solution vectoris[2 -1 2].

Solving-the system of Equations

Afer decomposing A as A = LU, the next step is o computate the solution. We have,
LUX =b, setUX =y

Solve {irst Ly'= b, by forward substitution. Then, selve Ux =y, by backward
substitution to get the selution vector x.

3.6 ITERATIVE METHODS

Iterate means repeat. Hence, an iteralive meti. ;d repeals its process over and over,
each time using the current approximation 1o produce w hetter approximaiion for the
true solution, until the current approximation s s¢ Miciently close to the true solution --
or uritil you realize that the sequence of approximaticns rasuiting from these iterations
is not converging to the true solution.

{Given an initial guess or approximalion X for the true soiution x, we use x*¥ to find
a new approximation x*”, then we use x'" to find the better approximation x? and so
on. We expect that ¥ — xas & — oo; that is, our approximations should become
closer 1o the 1rue solution 2s we 1ake more itcrations af this process:

Since, we do not actuzlty have the wrue solution x, we cannci check to see how close

our current approximation x* is to x. One cominen way to check the closeness of
to x is instead by checking how close Ax™ is 10 Ax, that is, how close Ax™ is to 5.
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Another way to check the accuracy of our current approximatipn-is-by looking at the
magnitude of the difference in successive approximations, |x1*) - x("")t. We expect
x* to be close to x if | x® ~ x*V{ is small .

The Jacobi Method

This method is also called Gauss ~ Jacobi method. In Jacobi method, the first equation
is used 1o solve for x;, second equation is used to solve x; etc. That is,

L P
xi= . [bl ( uxz+......+a|.x.)]

x; =“1-‘[b: —(anx.+anx;. ...... +a:-.l'.)]
tu

{fin the ith equation

ia,_),x_, =b, (15)

\::: solve for the value of x;, we obtain

x, =(b, —ia,_jxj)!a,_j (16)

This suggesjt.:.lan iterative method defined by

0= -3 a8V a, a7
Ll

- is the Jacobi method. Note that the order in which the equations are solved is
-¥ent, since the Jacobi method treats them independently. For this reason, the
obi method is also known as the method of simultaneous displacements, since the
-‘ates could in principle be done simultaneously.

~obi method can be written in matrix notation.

et A be written as A =L + D + U, where L is strictly lower triangular part, D the
diagonal part and U is strictly upper triangular part.

¢ 0 - 0 0 au - a. au )]
dn 0 .'. 0 0 0 -'. 7 P dn

L= . . . . U= A . . |P=
@a an --- 0 0O 0 - 0 0 a. |

Therefore, we have

L+D+U)X=b,orDX=-(L+U)x+b

Since, a; # 0, D™ exists and is equal to
D' =diag ( 1/ay,, 12y, ..... 1/a.).

Inverting D, we wrile the intersection as

XY =_pT' L +U)XP+D" b (18)
=M, x®+C (19
where M;-D'(L+U)and C=D"b.

The matrix M, is called the iteration matrix. Covergence of the method depends on the
properties of the matrix M,.
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Dizgonally dominant: A matrix A is said to be diagonally dominant if Linear Algebraic
n ) Equations
lafz > la | (20)
Jelixj

with inequality satisfied for atlcast one row.
Convergence: (i) The Jacobi methed converges when the matrix A is diagonally
dominant. However, this is a sufficient condition and necessary condition.

(ii) The Jacobi method convc'rgcs if Spectral radius (M,) < . Where Spectiral radius
of a matrix = max =| 4 |and x; are cigenralues of M,.This is a necessary and sufTicient

condition. If no intial approximation is known, we may assume X© = 0.

Exercise E_Are the following matrices diaganally dominant?

2 =581 34 124 34 56
A= 45 43 1 and B=|23 53 35
123 16 1 06 34 129

Solutiom: In A, all the three rows violate the condition (20). Hence, A is nol
diagonally dominant.

In B, in the row [ =129 | = 129 < 96 + 34 = 130. Therefore, B is also not diagonally
dominant,

Examgpte Z: Solve the following system, of equations
¥fy—z=0, -x+3y=2, x—2z=-3 by Jacobi Method, both directly and in
matrix form. Assume the initial solution vectoras {0.8 0.8 2.1]".

Solution : We write the Jacobi method as
XD = L y® 0 G o %(2 +x®), 2040 = %g + x®)

with x® = 0.8, y® = 0.8, 2% = 2.1, we get the foiiowing approximations.

xP=13,y"=09333,2V=19;
x®=09667, y¥=1.1, 20 =2.5;

x® = 1.0500, y® = 0.9889, z* = 1.98335;

0 =0.99445, y* = 101667, 2 = 2.025;

x*) = 1.00833, y¥® = 0.99815, 29 = 1.997225;
x) = 0.988895, y = 1.00278, 29 = 2.004165,
XM= 1.001385;?-"” =0.99630, 27 = 1.99445;
x® =0.99815, y® = 1.00046, 2% = 2.00069;
x® = 1,00023, y* = 0.99938, 2 = 1 .999075.

At this stage, we have,
X~ x®| = 0.002, | y® - y@ { = 0.0019, | 2 — 2| = 0.0616.
Therefore, the 9™ interaction is correct to two decimal places.
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¢ . Let us represent the matrix A in the form
amputing -1

0 0 0 {”! 0 0
A=L4+D+U=|-1 0 0|+ 5 0

1 0 6] 0 0 -2

We have,

Mj=-D'(L+U)=-]0 1/3 0
0 0 -1/2

I 0o o o 'i
e=D"b=[0 1/3 0 [jz/5,
1o 0 -172]13/2)

Therefore, Jacobi method gives,

0 -t 1 0
YOl 0 olxWalasma
1z 0 0 3/2

The intial approximation is given as X =(0.8 0.8 2.1]"

Then, we have

6 -1 1]fo8] [ o 13
Xx"=l1/3 ¢ 0fl08|+2/3|=|09333
i/2 0 of[2.1] {3/2] [ 19

which Is same as X obtained earlier.

Since, the two procedures (direct and In matrix form) are identical, we get the same
approximations x@, ..... x*. The exact solution is x =ft 1 2]~

Note ihat the coefTicient matrix A is not diagonal dominant. But, we have obtained the
solution correct to two decimal places in 9 interactions. This shows that the
requirement of A being diagonal dominant s a sufficient condition.
Example 3: Solve by Jacobi’s method the following system of linear equations.

?.X] — X3 +XJ=—I

X +2x; —%3=6

X~ X3 t2%x;=-3.
Solution: This system can ke written as

X =0.5%x;-05x3— 0.5

X2=—~05%x, + 0.5x, +30
KT — 0.5 X + O.SXI - 1.5
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So the Jacobi iteration is Lincar Algebraic
Equaztions

xn 00 05 0571 x® -0.5

o =[-05 00 05 || x*i+] 30

x&0 05 05 00 [[x® ~1.5

Stnce, no intial approximation is given, we start with x® = (0, 0, 0)7. We get the
foilowing approximations.

X" =1_0.5000 3.0000 - 1.5000]"
X®=[1.7500 25000  0.2500]"
X™=[0.6250 2.2500 - 1.1250)"
X®=[1.1875 21250 -0.6875]
X®=[0.9063 2.0625 - 1.0313]"
X®=[1.0469 20313 -0.9219]"
XP=[09766 2.0156 - 1.0078]"
X®=[1.0117 20078 -0.9805]
X®=[0.9941 . 2.0039 -1.0020]"
X09=(1.0029 20020 -0.9951]"
X®"=10.9985 2.0010 - 1.0005]
X'?=11.0007 2.0005 -0.9988]7
x07=109996 2.0002 -1.0001]"
X“=11.0002 20001 -0.9997]

After 14 iteractions, the errors in the solutions are

b9 1= 0.0006, | X" - x%| = 0.0001, | %, ~ x,0¥ | = 0.0004.

The solutions x!'" are 1herefore almost correct 10 3 decimal places.

The Gauss-Seidc] Method

We observe from Examples 2 and 3 that even for a 3 x 3 system, the number of
iterations taken by the Jacobi method (to achieve 2 or 3 decimal accuracy) is large.
Far large systems, the numbper of iterations required may run into thousands. Hence,
the Jacobi method is slow,/We also observe that wlien the variable x' is being iterated
in say the k-th iteration, e variables, x,, .... x;.y have already been updated in the k-th
iteration. However, these values are not being used to compute x;®. This is the
disadvantage of the Jacobi method. If we usc a!l the current available values, we call it
the Gauss-Seidel method.

Therefore, Gauss — seidel metliod is defined by

x¥ = (br'—Zau.r‘" —Za._}x,"'”)/a.,. (21)
ju

FET

Two important facts about the Gauss-Seidel method should be noted. First, the
computations in (21) are scrial. Since, each component of the new iterate depends
upon all previously computed components, the tpdates cannot be done simultaneously
as in the Jacobi method. Second, the new iterate deaends upen the order in which the
equations are being used. The Gauss-Seidet method is sometimes called the metiod of
successive displacements to indicate the dependence of the jterates on the ordering. If
this ordering is changed, the components of the new itera.c {and not iusi their order)
will alse change.
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To derive the maltrix formulation, we write,
AX=(L+D+)X=>b or L+D)X=-UX+b.
The Gauss-Seidel method can be expressed as

X0 =_(L+D)T UX®+(L+D)'b
=MgX®+C 22)

where Mg = (L + D)™ U is in iteration matrix and C= (L + D)™' b.

Again, convergence depends on the propenties of Mg if Spectral radius(Mg) < 1, the
iteraction converges always for any intial solution vector. Further, it is known that
Gauss-Seidel method converges atleast two times faster than for Jacobi method.

Example 4: Solve the system in Example 2, by the Gauss-Seidel method. Write its
matrix form.

Solution: Gauss-Seidel method for solving the system in Example 2 is given by
) = yflr} " 2_,.(I:), y('h-l} - %(2 + x(k]), A0 = %(3 F xm)

with x = 0.8, y® = 0.8, 2£” = 2.1, we obtain the following results.
x=13,y"=1.1,2"=2.15;

x@ = 105, y? =1.01667, 2 = 2.025;

x® = 1.00833, y™ = 1.00278, 2 = 2.004165;

x® = 1.001385, v = 1.00046, 2 =2.00069;

x® = 1.00023, v = 1.000077. 2¥ = 2.000115;

The ermors after the 5% iteractions are

| ¥ — x®=0.0012, } ¥ — y* | = 0.00038, [ 2 - 2| = 0.00057.

I § iteractions, we have for two place accuracy, while 9 iteractions we required in the
Jacobi method.

The matrix function can be written as

1 0 ol'fo 1 =1 1 0 oo
X®-o_la 3 o 00 O0[X®+|-1 3 o0
1 0 2| |0 0o o 1 o -2] -3
F s 0 0]fo 1 -6 0 o|[o]
I w1
=+=|-=2 -2 ofllo o ol|lxW==)-=2 -2 o] 2
6 6
(3 o 3llo 0o o -3 0 3] -3]
[0 % 6 o
1
=+—|0 -2 2|x%-—|-4
6 6
0 3 3 -9

Starting with X®=[0.8 0.8 2.1, we get the same iterated values as above

Example 5: Solve the system given in Example 3 by Gauss-Seidel method.
Solution: For Gauss- Seidel iterations, the system in Example 3 can be written as .

%, & =056Y-05x%-05
¥V =_05%x,%" +0.5 M +3.0
% =—0.5x,*" + 0.5, + L5
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Start with (0, 0, 0), we get the following values

X®=[-0.5000 3.2500
X®=[09375 2.7188
XO=r1.1641 2.1133
XW=[1.0693 1.9526
X®=11.0055 1.9681
X®=[09934 1.9939
XM=[09968 2.0017
X®=[0.9996 2.0014
X®=[1.0003 2.0003
XU9=11.0001 1.9999

0.3750]"
- 0.6094]7
- 1.0254]T
- 1.058377
-1.0187]°
-0.9997]"
-0.9976]"
-0.9991)7
- 1.000077
- 1.0001T°

Afier 10 iteratio_ns, the errors in solutions are
[xi% - | =0.0002, | 26" - x| = 0.0.6004, | %,%% -, | = 0.0001.

The solutions are correct 10 3 decimal places.

3.7 SUMMARY

In this unit, we have discussed direct and interative methods for solving z system of
linear equations. Under these categories of methods, used to solve a system of linear
equations, we have discussed Gauss elimination method and LU decomposition
method. We have also discussed the method of finding inverse of a square matrix.
Further, under the category of iterative methods for root determination we have

discussed Jacobi and Gauss

Scidel method.

3.8 EXERCISES

El.  Solve the following systems using the Gauss elimination method.

(a) 3X] +2Xz+3)(3 =5,
Xy, T 4x; T 2x; =4,
2%, +4x; + 8x, =8,

(C) Xj—x; +x3 -_—0,

(e

(d)

2.1',‘ +3Iz +XJ —2.x;=—7
3).'; +x; — xy + 4I.;= 12,

3x;—5x;+x,=9

3XI +tXp+ Ny = 1.8,
2xp + 4%, +%;=2.7,
Xt 3)(2 + 5!(3 = 4.0,

31; +x = 5,

Xy + 3I2 + 6.1'3 =6
dx; +x;+ 3x,=7
x;+5x,~8,

E2.  Solve the following systems using the LU d:ecompusition method,

{a) 3x+y+z=
=O,

X+4y+2z

3, (b)

2x+y+5z2=4,

{c) dx+y+2z

=3.6, (5

X+3y+z=225,
2u+ty+22=40,

2x+ty+z=35,
X+3y+2z=4,
=¥ +y+6z=4,

3ty =22,
Xx+3y-z=0,
-y +T7c=13,

Solution of
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E3.

For problems in 1(a), (b); 2(2), (b), (c), (d), obtain the solution to 3 decimals
using the Jacobi and Gauss Seidel methods. Write the matrix forrnulations

also. Assume the initial solution vectors respectively as

@ [08,06,0.5],
(i) [0.3,0.3,06]",
(i) [0.9,-0.6,0.6]",
(iv) 11.9,02,0971,
() [0.2,05, 11T,
i) [=1.1,09,2.17"

3.9 SOLUTIONS TO ANSWERS

(@ 1,%%.
© 1,-1,-2,2.

@@ 1.-12, 172
(c) 03,04, 1.

Refer to Page 49 and 52.

(b) 0.3,0.4,0.5.
(d 3/2,%, %, 3/2.

b) 2,0,1.
{(d) -1, 1,2, (You can also try LLT decomposition)
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