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TI—IERMODYNANIICS AND STATISTICAL
MECHANICS -

Energy has reigned all facets of human activity ever since man lived in cave: In its
manifestation as heat, energy is intimate to our existence. The energy that cooks
food, lights our houses, operates machines and runs trains originates in heat released
in burning of wood, coal, gas or oil. What is heat? How can we specify the direction

of flow of heat? Our quest to answer these and other related questions is contained
in the subject of thermodynamics. This subject developed on a postulatory basis long
before we knew the nature of behaviour of elementary constituents of matter such as
electrons, atoms or molecules.

There are two distinct- approaches to learn this subject. The traditional_or classical
. approach is based on some postulates derived from experience. In the statistical
approach on the other hand, the firm physical and statistical basis of thermodynamics
is first demonstrated by relating the properties of bulk systems to the behaviour of
their elementary constituents. One can argue for and against either alternative. But
we think that a distance learner will find it easy to understand the subject following
the formal postulatory approach, which is illustrated in first two blocks of this course.
Among others, you will learn the contributions of Joule, Carnot, Clausius, Kelvin,
Maxweli and Glbbs in the development of this subject.

Theromodynamics has-some limitations, which can be overcome by making
hypotheris regarding the nature of matter. It was postulated that matter is made up
of molecules, which can exist in free state while possessing all basic properties of a
substance. This gave birth to the molucular theory. Starting with molecular theory

_we can obtain bulk properties of matter in two different ways. When we supplement
molecular theory with the law of mechanics for individual molecules, we obtain the
Kineti¢ theory of matter. In block 3 you will learn Kinetic theory 1 of gases under
equilibrium as well as non equilibrium conditions. This subject owes its development
largely to Bernoulli, Clausius, Maxwell, Joule, Vander waals and Jeams. You will
realise than Kinetic theory has great austhetic elegance. '

The classical statistical mechanics evolved out of the efforts of Boltzmann. He
supplemented purely stafistical methods (considerations of probabilityy by the laws |
of (classical) mechanics tor a large number ot particies making up the system. With
the advent of quantum mechanics, this subject got a new shape at the hands of Bose,
Einstein, Fermi, Dirac and Fowler. Many new phenomena, completely unknown to
the domain of classical statistical physics, could be satisfactorily explained. You will
learn it in Block 4 of this course

In its presgnt'state, thermodynamics and statistical mechanics is one of the most
fascinating courses taught to undergraduate physics students. It finds use in material
science, engineering, chemistry, quantum, atomic and molecular physics,
spectroscopy and beyond. It provides ample opportunities to develop-a sensibility
towards nature; the essential part of physics education. Therefore, while a simplistic
reading will enable you to understand the subject, more thoughrful study will bring
extra rewards!

One last word about how to study the course material.

Study Guide

The best way to learn a subject is to solve problems. We have given many solved
examples, self assessment questions, and terminal questions. Some of these are -
intended to check your progress while a few are quite chatlenging.-Answers to SAQs
- and TQs are given at t]]ie end of each-unit. But you are advised not to read through
these answers. Do them yourself because only self-doing leads to creativity,-
enjoyment and apprecnatlon of the subject.

“Thisis a 4—credlt course which means that you have to put in 120 hours of work. Of
these, you should spend about B0 hours to study course material and solve SAQs and
TQs. The remaining time isintended for assessment, counselling sessions, audio and
video programmes. We hope that vou will enjoy the subject.

We wish you success.
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BLOCK 1 THE ZEROTH LAW AND
THE FIRST LAW '

]

The first block of this course deals with the bas:c_concepts of thermodynamics, the
Zeroth law, measurement of temperature, and the first law of thermodynamics. From

§our school physics course, you are familiar with some of these concepts. But to make:

the block self-contained, we have included them yet again. In Unit 1 we have

* explained all the terms and basic concepts to be used in this course. This is followed

by the discussion of zeroth law of thermodynamics. You will also learn the basic
mathematical tools employed in the study of thermodynamics.

In Unit 2 we have dealt with measurement of temperature over a.wide range. You
will learn details of constant volunie gas thermometer, platinum resistance
thermometer, thermocouples and ﬁyrometers

We have discussed the thermodynamic concepts of heat and work'in Unit 3. (In this
process you will learn about the concept of internal energy of a system.) Then we
have established the first law of thermodynamics. The applications of this law to
diverse physical systems including adiabatic lapse rate and propagation of sound are
given in Unit 4.

The units are not of equal length. We are suggesting the followingestimate for the
study time required for each unit:

Unit 1 — 5 hours
Unit2 .— 6 hours
Unit 3 — 6 hours
Unit4 — : 5hours

Your actual study time will, of course, depend on yopr sincerity as well as academic
background. If you have passed class XII examination recently, you will find the
mathematics used in these units quite simple. However, if you passed class XII or
equivalent examination a few years back, you may have to brush up your knowledge.
of calculus. For this you may go through the class XII (NCERT) book on
mathematics. It will be available at your Study Centre.

Some of the abbreviations used in the text are Fig. for Figure, Sec. for Section, Eq.
for Equation, SAQ for self assessment questions and TQ for terminal questions. For
example Fig. X.Y refers 1o the Yth Flgure of Unit X. That is, Fig. 1.4 is the fourth
figure'in Unit 1. Similarly Sec. 2.7 is the seventh section in Unil 2 and Eq. (3.6) is
the sixth equation in Unit 3
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UNIT 1 BASIC CONCEPTS OF

THERMODYNAMICS

Structure

1.1 Introduction

Objectives

-1.2 Thermodynamic Systems

Classification of Systems
" Classification of Boundaries
1,3 Thermodynamic State of a S}'slem and Thermodynamic Variables
Intensive and Extensive Variables
Thermodynamic Equilibrium
1.4 Thermodynamic Processes
Reversible and Irmeversible Process
Quasistatic Process
. Representation of a Process on an Indicator Diagram . :
1.5 The Zeroth Law of Thermodynamics .
1.6 The Equation of State
_ Deductions from the Equation or Siate
[.7 Summary
1.8 Terminal Questions
1.9 Solutions and Answers

1.1 INTRODUCTION | ' .

=

In your daily life you might have observed that when you use a bicycle pump to inflate
the tyre, the pump gets hot. Similarly when you rub your hands together you get the
feeling of warmth. In these examples, the heating is not caused in the conventional
way by putting a flame or something hot underneath the pump or the hand. But it
arises as a result of the mechanical work done in compressing the gas in the purnp or
forcing the hand to move against friction. These examples show that there is a relation
between mechanical and thermal effects. The study of the relationships between
merhanical and thermal encrgy is known as thermodynamics,

The s.udy of thermodynamics is based on four cmplncal laws, that is, thermodynamics
is a phenomienological science. This means that the laws are derived from experience
and they need no proof. These laws find application in design of internal combustion
engines, refrigeration and air condilioning systems, power stations etc. With the help
of these laws one can determine the efficiency of all types of mechanical devices such
1s steam engines, electric power plants and automobiles. These laws are also used to
analyse energy transform itiors in bio-chemical and geological systems.

In this unit we will discuss the basic concepts which will be used in the study of
thermodynamics. We will also introduce the concept of temperature through the
zeroth law of thermodynamics. Finally, you will learn to use the equation of state for -
demmg mathematical relations between quantities such as coefficient of volume
expansion, compressibilities, elasticity, eic.

In the next unit_you will read about the principles ‘of measurement of temperature.

Objectives

After studying this unit, you should be able to

® identjfy several thermodynamic systems with its surroundings and boundaries

& explain what are thermodynamic variables and identify these variables for severai
systems -
expldin thermal, mechanical and chemical equilibria

distinguish between a reversible and an irreversible process

ifitlerstand the importance of a quasistatic process




"‘The Zooth Law and the

Fig. 1.1 : System, surroundings .
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® identify and represent different kinds of thermodynamic processes

® explain the concept of temperature using the zeroth law of thermodynamics

® apply the equation of state of a system to solve problems in thermodynamics.
. ¥ N

1.2 THERMODYNAMIC SYSTEMS \

Whenever we read a biography our attention gets drawn towards an individual., We
get to know about his achievements, how he has interacted with other individuals and

" many such other things. To the reader’s mind this individual assumes the role of

someone who is distinct from others and around whom the biography develops almost

‘like a story. Likewise, for any kind of study in thermodynamics we need to set aside
- @ certain quantity of matter or a regjon of space which js considered distinct and

separated from everything else, which can influence it. We refer to this as
thermodynamic system or simply a system. Every such system is enclosed by an
arbitrary surface which is called its boundary. The boundary may be real or
imaginary, either in rest or in motion and may change its size or shape. The region
of space that lies outside the boundary of asystem is called its surroundings. Strictly
speaking everything other than the system is its surroundings. But in thermodynamics
we consider that portion as the effective surroundings of a system which can influence
it. In Unit 3, you will read about the different manners in which the surroundings
can influence a system. Any study in thermodynamics begins with the identification

.of the system, its boundary and its surroundings. These are schematically illustrated

in Fig. 1.1. Let us now take up some specific examples of systems with different kinds
of boundaries. ,

(b} ey

Fig. 1.2: Several thermodynamic systems and thelr boundaries. In each case the boundary is shown by
ineans of & dotted line, (a) The chair system, (b) Compressed gas in a cylinder, (c) Fiow of liquid througi
- & pipe.

For the chair system (Fig. 1.2a) the boundary is real and fixed. Everything other than
the chair constitules the surroymdings. For the system of a compressed gas in a
cylinder (Fig. 1.2b) the bounéary is real, It is movable as the inner surface of the
piston, which is a part of the boundary, can be moved. Everylhing outside the gas,
including the piston and the cylinder, is the surroundings. For the svstem of a ¢ertain

- mass of liquid flowing along a pipe as shown in Fig. 1.2¢ the boundary is imaginary.

The inside surface of the pipe may form a part of the boundary as it presents an
obstruction to the flow of liquid. But there is no real obstruction at th- .wo ends AB
and CD. So a real boundary does not exist. However, the dotted line is one possible
choice of a boundary, fixed in space. Such type of boundary is imaginary. Everything
lying outside this imaginary boundary is the surroundings,




A system may be simple, such as water in a vessel; or cofnplex like a Daniel cell,
which has Zn and Cu electrodes, dilute H,SO, electrolyte and CuSQ, depolariser.
A system may be completely uniform with respect to its chemical composition and
physical conditions (homogeneous) or otherwise (heterogeneous), For instance, air
"in a cylinder, air being a mixture of gases (N,, O,, CO,, etc.) is a homogeneous
systemn. This is because the constituent gases have the same composition throughout,
Whereas ice and water in a beaker form a heterogeneous systeril of a solid ard a
liquid.

" The classification of systems from the point of view of its interaction with its
surroundings is of more importance in thermodynamics. We shall do that now.

1.2,1 Classification of Systems

Closed System : A closed system consists of a fixed amount of mass. It is also known
as control mass. No mass can cross its boundary. But energy can cross the boundary
and the volume of such a system need not be fixed (Fig. 1.3).

For exampfe, let us again consider the case of the enclosed gas in a cylinder fitted
with a piston (Fig. 1.2b). In this case the gas is a system. The inner surfaces of the
piston and the surface of the cylinder form the boundary. As no mass can cross this

boundary it is a closed system. You must note that energy may cross the boundary.  Fg. 1.3 : Characteristics of a

. . closed
Open System: An open system is a properly selected region in space which has a fixed system

volume. It is also known as control volume. Both mass and energy can cross its
-boundary (Fig. 1.4}.

As an example of such a system let us consider the water heater shown in Fig. 1.5, =mm——
Suppose the water in the tank is heated in order to get a steady supply of stream of [
hot water. Since hot water will leave the tank and wiil get replaced by cold water, it

is not convenient to choose a fixed mass of water as our system. Instead we can direct System T
)
1 .
consider the hot and cold water streams as mass leaving and entering the control V = constant i

I

I

I

£

i

. . s

our attention on the volume formed by the inner surfaces of the tank. Then we can [
:

1

I

volume or the open system.

Isolated system : An isolated system is that for which there can be no interchange of

" energy with-the surroundings. The contents of an’ideally sealed thermos flask is an Fig. 1.4 : Characteristics of en

example of such a system, apen system

While reading about the classification of systems did you realise that the
characteristics of the boundary plays an important role in determining the nature-of
the system. So let us now study about the different kinds of boundary.

1.2.2 Classiﬁcation_of Boundaries

{i) Diathermal Boundary:.If the boundary is such that heat can flow between the Watcr
system and its surroundings, then we say (hat it is diathermal or thermaﬁy Heater
conducting and the system is in-thermal contact with the surroundings. A . control
metallic tea pot provides a diathermal boundary to its contents. . volume)

(i) Adiabatic Boundary : If the boundary is such that it docs not allow any. heat flow
across it, then we refer to it as an adiabatic boundary and the system is said to
be thermally isolated. The walls of an ideal thermos flask are adiabatic and a E

filled thermos is an example of a thermally isolated system.

(iil) Rigid Boundary : If the boundary is such that it cannot be moved, however greal  Fig. 1.5: An open system with one

an external force acting on it might be, we call it rigid. A system having such a intet and one exit
boundary can neither be compresséd nor expanded. Striclly speaking, an ideal

rigid boundary does not exist. The surface of a heavy spherical ball (used for

“shot put”) is a close approximation to a rigid boundary.

(iv) Permeable Boundary : If the boundary allows exchange of matter, we referto it
as' permeable.

(v) Semi-permeable Boundary : The boundary which permits some components 1o
pass through and stops others is known as semi-permeable. For example, hot
quartz allows helium to pass but siops other gases.

Now you may like to work out an SAQ based on what you have leamnt so far.

L
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The Zermth Law and Lhe SAQI_
First Law .
' a) Cite an example (different from what you have read just now) each for a system

_ with (i) a real fixed boundary, (ii) a real movable boundary, and (iii) an imaginary
Water in - boundary. - '
b) The schematic diagram of a car engine radiator is shown in Fig. 1.6. Should it be
modelled as a closed or an open system?

"¢) A bottle of soft drink at room temperature is put into the refrigerator so that it
can cool. Would you model the bottle of soft drink as a closed or an open system?

d) A rose plant in a garden is-an example of an open system. Comment.

e) Mention the nature of the system (i.e. open, closed or isolated) that is enclosed
by a (i) diathermal boundary, (ii) permeable boundary.

Water out

Fig. 1.6 : Car Engine Hadlator . . .
. * Now, you learnt what is meant by a system and its surroundings. For a particular

problem these must be properly defined as per its requirement and the boundary must
fulfil the conditions imposed by:.it.

As an illustration of the statement made above, suppose you want to assess the
performance of a refrigerator kept in your dining room. Here the refrigerator along
with its contents forms a system, its walls the boupdary and the room in which it is
placed constitutes its surroundings. However, if we consider the problem of air
conditioning of the same dining room, then the room itself becomes the system while

. its walls, roof, doors, windows etc. constitute the boundary and its neighbouring
rooms, verandah, etc. are its surroundings. - :

Thus you have learat to idenlify a thermodynamic system, its surroundings and its
boundary. Once we have selected a system for study, we must be able to describe it
irterms of precise numerical quantities. For example in mechanics we need to define
primarily the position and velocity of 2 particle in order to describe its motion. We
say that the variables viz. position and velocity spetify the mechanical state of the
particle. Likewise we define the thermodynamic state of a system about which you
will study now. ‘

o Dk 13 THERMODYNAMIC STATE OF A SYSTEMAND
LT RS THERMODYNAMIC VARIABLES

e e s Ll e
= | e e A

N " Int i i i ifying i i
Fig. 1.7 : Diferent sef of values of hermodynamics a system is described by _spemfymg its physical properties such as .
pressure and volume in () and o) PTESSUTE, volume, temperature, mass, density etc. For example, the state of a gas is
shows two differcnl states of the ~ Characterised by the value of its temperature, pressure and volume. The state of a
same syslem stretched wire is specified by its length and tension in it. These physical properties
or parameters are called thermodynamic variables. The value of a property, which

You know that the pressure of a  uniquely defines the state of a system, is always fixed. This value depends on the
gas can be related W the average  condition of the system at that particular instant at which the property is being

raie of change of momenium due . :

to the collision of the molecutes  casured. For example, the pressure and volume of a system of a gas kept in cylinder
made on a unit area of the wallof ~ N2ve fixed but different values in the two cqnc’:_iti(_)ns sh({wn in .F_ig. 1.7a and 1.7b.
the container in which it is kept, ~ Therefore, the state of a system means specitying those properties of the system
Higher Ihe rate of change of which ensure that it is uniquely defined.
momentum, higher the pressure.
Similarly, the temperature of a You must note that the properties mentioned above can be measured directly using
gas can be related to the aversge  calibrated devices. In other words they can be perceived by our senses. These
kinetic energy of translation of its " 1o, eryies which represent the gross characteristics of the system dre called

molecules. This mcans that the macro . perti
system can also be described in acroscopic properties.

terms of the properties of the There are two classes of thermodynamic variables — intensive and extensive. Let us
atems and molecules that - h T AL ¢ L d

capstitute the system. These study-the difference between them.

propertics are not directly
perceptible and are referred o 2s  1.3.1 Intensive and Extensive Variables
microscople properties. You will -

be required 1o deseribe a system Let us consider a system A4 as shown in Fig. 1.8. Suppose it is divided into two parts

in the above manner while A; and A; having equal masses. Now if you measure the terperature of system A
studying its thermodynamic and then of the systems A, and 4, you will find that its value is the same. But the
behavioor using statistical volume of the systems A, and A, is different from that of system A. Those variables

methods. You will do that in

| which have the same values when the system is sub-divided or multiplied in size are
Biock 4 of this course.

called Intensive and those variables for which values are altered arc called extensive.
10 : Here, pressure and temperature are intensive whereas mass and volume are

I T
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extensive. The intensive variables are independent of mass whereas the extensive

" variables are’dependent on mass. We have given below a list of systems 'along with Wm
intensive and extensive vanables describing them. Some places are kept vacant for
you to fill up. A
Tabte 1.1: Thermodynamic Variables
System Intensive variable(s) Extensive variable(s)
- - A
Gasin a cylinder pressure (p) mass (m) T
temperature {T) volume (V) N :'
density (p) A, : A,
Paramagnetic solid flux density (8) intensity of }
: snagnenisation (M) _.
- Fig. 1.8 : Dlustrating the
Stretched wire tension (F) _ . difference between Intenslve and
— tensi B
Surface film _ area (A) extensive varlables. .
Eleciric cell L o—— ~ —_——
SAQ 2

a) Fill in the gaps in Table 1.1.

b) “If f and g are two extensive variables, f/g is intensive.” Justify this statement with
the help of an example.

¢) What arec the thermodynamic variables required for specifying the following
systems :
(i) Air inside a bicycle pump i
(i) A dielectric substance placed in an electric ficld.

At times the state of a system may be completely identified even from a knowledge
of some of its properties. This is because the values of all remaining properties can
be obtained using the known properties. For example, say, we know the values of
pressure (p), volume (V) and the number of molecules (n) of an ideal gas. Then we
can obtain its temperature (7} by using the tdeal gas equation

pY = nRT (1.1)

An equation of the type (1.1) is called an equation of state. It is a relation between
the values of the variables p, V, n and 7, when the system has attained equilibrium.
In fact the properties of a system are truly defined only when it is in equilibrium. We
refer to this as thermodynamic equilibrium. Let us learn about this in some detail

1.3.2 Thermodynamic Equilibrium

Suppose you have some water at 60°C in a container. If the container filled with water
is left to itself it would finally attain the room temperature. This means that the water
in thé container interacts with the surroundings, and its temperature decreases with
time. When it attains the room temperature, i.e. a temperature equal to that of the

_.surroundings there occurs no further change in its temperature. We say'tha the water
in the container has attained thermal equilibrium with the surroundings.

If within the system, there are variations in pressure or elastic stress then parts of the
system may move or expand or contract. Eventually when these expansions or
contractions will cease, i.e. when there will be no unbalanced forces or torques acting
on the system, it will be in mechanical equilibrium. For example, during the
formation of the earth it was in a moiten state. So the centrifugal force due to the
axial rotation of the earth was greater than the cohesive force. Since the centrifugal
force is maximum at the equator and decreases with latitude becoming minimum at
the poles, the earth bulged out at the equator in the process of attaining mechanical
equilibrium, | '

. Finally, suppose that a system contains substances that can react chemically. After a
sufficient time when all possible chemical reactions will have taken place, the system -
is then said to be in chemical equilibrium. In other words, a mixture of substances’is

_in chemical equilibrium if there is n2 tendericy for a chemlcal reaction to occur.

A system which is in thermal, mechanical and chemical equilibrium is said to be in
thermodynamic equilibrium. Under this condition the macroscopic properties of a_

-

" Stricily speaking, in additinr-! to

thermal, mechanical and chemical

-equilibria, one must include the

aspect of phase equilibrium,
However we shall not consider
this now. You will get to know
about this in Unit 9, Block 2.

11,
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The Zeroth Law and the ‘system do not change with time. Thus, from now onward, by the phrase ‘state of a
Fist Law system” we will mean an equilibrium-state.

Now thit you have learnt about an equilibrium state, we shall now discuss how a
system goes from one equilibrium state to another.

1.4 THERMODYNAMIC PROCESS

Room Temperature s . ) . .
§ *§ When any of the thermodynamic variables associated with a system undergoes change
in its value while going from one equilibrium state to another the sysiem is said to
execute a thermodynamic process. Thus, a process §if gnifies change of a system from
one equilibrium state, called the initial state, to another equilibrium state, called the
final state. For example, the expansion of a gas in a cylinder at constant pressure due
§ When Cooled § to heating is a thermpdynamic process. Again suppose a wire is stretched taut -
== “ between two rigid sugports (Fig. 1.9a). It-has a certain tension and length. Now, if
Fig. 1.9 : Tenslon is developed In - yhis wire js allowed to coal it would shrink. Since the wire is not permitted to shrink,
the wire when it Isatlowed tocool. o i is developed in the wire to stretch it (Fig. 1.9b). So it will have a different

The wire Is sald to have executed a . . - : )
!h:n:odynnmjc process, tension and length, and will be said {6 have exccuted a thermodynamic process.

In the subsequent units, as you will see, our aim wiil be to analyse thermodynamic
processes. In order to do that, first we would like to represent a thermodynamic
process graphically. Suppose two variables x and y specify a system. Refer to Fig.
1.10. Here A is the initial equilibrium state represented by the coordinates (x4 ¥a)
and B is the final equilibrium state represented by the coordinates (x, yg). The
points A and B are joined. Such a graphical representation of the thermodynamic
process is called a path. Notice that you can join the points in several ways as shown
B in Fig. 1.10. But in whichever way you draw a path, you would like that the
intermediate points must also be defined by specific coordinates. What does this
imply? It implies that all the intermediate stages between A and B must be
equilibrium states. But is it possible in practice? To answer this question we shalil first
define two kinds of thermodynamic processes.

A

Fig. 1.10 : Graphical i
representation of several processes
occorring belween A gnd B

12

1.4.1 Reversible and Irreversible Processes

If a process is executed in a very slow and controlled manner so that all the
intermediate states between the initial and final one are in equilibrium and if
necessary the process may be executed back along the same equilibril,‘.lm states from
the final to the initial state then it is called reversible. If the above conditions are not
satisfied then it is called irreversible.

Now let us take an example to sce whether a reversible process can be executed in
practice or not. :

Suppose a cylinder containing gas is fitted with a piston (Fig. 1.11a). The volume
occupied by the gas is V. The weight W placed on the piston is such that on iis removal
the piston takes up the position A’B* and the volume of the gas becomes 2V. Now
suppose we want to increase the volume of the gas to 2V. If we do it just by removing
W, the process would be irreversible as it occurs quickly. (The volume of gas will
become 2V immediately on removing W.)

W2
%‘ ' Wi2T W/2
M
Al 4L 1B Aj___{__ 15 a4 B
c D Clemee__ D
A 8 A B A|l—————— B Al-———— B
v v

d;

Fig. 1.11: Demonstralion showing that a reversible prﬂ;;é;s"mnnol be achleved.jn prﬁﬂicc; it can only be
idealised '
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Now instead of having a single weight W, if we take two weights, each equal to W72 Basic Concepts of
{Fig. 1.11b), the situation is similar to that of Fig. 1.11a. Now, on removing one such Thermodynamics
weight the piston will take up a position CD midway between AB and A'B’ (Fig.

1.11c). Then on removing the riext weight it goes to A’B” (Fig. 1.11d). Thus we gel

one intermediate equilibrium state (denoted by CD) between the initial and final states.

Likewise by using three weights, each equal to W/3, we can generate two interriediate
equilibrium states. By using n equal weights, each equal to W/n, we can generate
(n—1) intermediate equilibrium states. But for Lhis expansion process to be reversible
all the infermediate states must be in equilibrium. For this n has to be infinity, which
is impossible. This indicates that a reversible process can only be idealised and cannot
be achieved in practice.- |

You must note that a system can be restored to its initial state either by a reversible

or an irreversible process. But, for a reversible process, this restoration is made
without leaving any net change in the surroundings, whereas for an irreversible
process, there occurs some change in the surroundings. For example suppose a
pendulum bob (Fig. 1.12) is released from the position A. It goes upto B and then
again comes to A, i.e. the initial state. In doing so the pendulum bob is restored to
its original state but there occurs a slight change in the temperature of the
surroundings because the bob has to overcome air resistance in course of its motion.
So the process is irreversible. Had the pendulum been set up in perfect vacuum, air

resistance would have been totally absent and hence there would have been no x
change in the temperature of the surroundings. Thus the process would have been A T Tm——m—7 B 3
reversible. But asyou know perfect vacuum can never be created. This '1gai|1 shows i
that a reversible process can only be idealised and never be achieved in practice. Fig. 1.12 : When the pendulum

bob swings from the posilion A 1o
Thus we understand that all natural processes are irreversible. B and then back to A, there is a

. . . slight chacge In the temperature o
This means that for such processes, the intermediate stages are not in equilibrium  the surroundings due |§ alr

and hence such processes cannot be reptesented by a path. If it cannot be represented  resistance shawing that the
by a path then its analysis from thermodynamlc point of view is not possible. This - Pprocess is irreversible.
raises a very vital question. Can we not at all analyse patural proccsses
thermodynamically? The answer lies in the description of a quasistatic process which
we shall study now.

1.4.2 Quasistatic Process

[f a process is so executed that it passes through states which are not equilibrium
states but deviates only infinitesimally from equilibrium, then it is called quasistatic,
Thus a quasistatic (i.e., almost static) process closely approximates a succession of _,
equilibrium statcs. If there arc finite departures from equilibrium, the process is
non-quasistatic. 1

Suppose we wish to increase the temperature of a system from an initial value T, to
a final value T,. The temperature could be increased by enclosing the system in a
diathermal boundary and maintaining the surroundings of the system at the
' temperature T,. But this process would not be quasistatic because the temperature
of the system near its boundary would increase more rapidly than at the internal -
points. To increase the temperature guasistatically, the temperature of the
surroundings be kept at the initial temperature 7, and then this temperature should
be increased sufficiently slowly so that at all times it is only infinitesimally greater
than that of the system.

Now, all actual processes are non-quasistatic because during the process, there always
exists a finite difference ol pressure, temperature, etc. between several parts of a
system. So for dealing with such a process we.shall visualise it as being cxccuted
quasistatically. "This wiil enable us to analyse the process. You will be able o~
appreciate the above statement when you solve actual problems.

You may now like to work out an SAQ on the concepts of reversible and irreversible
processes.

T SAQ 3
a) Classify the following processes as reversible or irreversible, '
(i) A gas enclosed in a cylinder provided with a frictionless piston is quickly
compressed {ii) Mixing of sugar in milk (iif) Oscillations of an ideal simple .
pendulum with a frictionless support. - - .13
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b): Energy is dissipated during an irreversible process—illustrate this statement with-
the help of an ?xample. ) . ol

Beiore moving on to next sub-section try to do an activity which will enable. you to
understand quasistatic process more clearly.

. Activity

Take any clock which has all the three hands. Observe the movement of the
second-hand. Compare its movement with the movement of minute and hour-hany.
Comment.

Now that you have learnt about a quasistatic process, we can discuss about the
representation of an actual process. _

1.4.3 Representation of a Process on an Indicator Diagram

You must have realised that the stages of a quasistatic process are a series of
approximately equilibrium states. As you have seen in Fig. 1.10, equilibrium states
can be indicated by a series of points in the xy-plane where x and y are two
thermodynamic variables. As you know, a curve through these points represents the
path of the process. Such a representation is known as an indicator diagram. Let us
now learn to represent an actual process on an indicator diagram.

Consider a gas contained in a cylinder C fitted with a frictionless piston P having
diathermal walls and immersed in a constant temperature water bath as shown in Fig.
1.13a.

-4 (v.p)

(Vflp!)

4

———— e (@) (b)

Fig. 1.13{a) : Arrangement for expunsioﬁ of a gas at conslani temperature. {b) p vs. ¥V diagram for a
quasistatlc Isothermal expansion of a gas. It I alse referred fo as on indicator dlagram.

Suppose that the initial state of the gas is defined by (p,, V;,T;). Now, we pull out
the piston very slowly so that the gas expands at constant temperature in such a way
that at any instant the external pressure on the piston differs from the gas pressure
by af infinitesimal amount dp. Let the final state of the gas be (pp V. T:). While
undergoing change from the initial state to the final state, the system is characterised
by.a series of values of p and V differing only infinitesimally from each other. The
plot of these successive values with V along the absgissa and p along the ordinate
gives us the required representation (Fig. 1.13b).

So far we'have classified processés on the basis of the pace of their execution, We .
can also classify processes, on the basis of the:fact that §dme property of the system
remains constant during thie process. That is, one of the variables of the system
remains constant."We specify these processes by using the prefix ‘iso’ before that
property. For example, in the abovesaid process, the gas has been expanded at
constant temperaturé. Thus, the above process is isothermal. }f a process takes place
at constant pressure, we label it as isobaric. A process taking place at.constant volume
is called isochoric or isovolumic or isovelumetric. A change of state (i.e. water to
steam or water to ice) takes place at constant temperature and pressure. This is an
example of isothermalyisobaric process.

Furthermore, if the system has adiabatic boundaries and the proceé's takes place
without any exchange of heat between the system and the surroundings, we refer 10 B
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it as an adiabatic precess. For example, a single stroke of the piston ur an internal Bisic' Concepts of
combustion engine is very nearly adiabatic. The reason is that the-duration of the : Thermodynamics
process is extremely small and no heat can flow in or out of the system during this

time.

If the transformation of the system is such that it returns to its original state covering
any path, then we say that it has uridergone a cyclic process. The working substances
of all heat engines and refrigerators go through several cycles of operation.

We have represented some of the above-mentioncd processes on the p-V diagrams
(Fig. 1.14) below: -

(a) ) ' { (4)

Fig. 1.14: (a) isobaric (b) isochorie (c) isathermal (d) cyclic

You may now like to work out an SAQ on the representation of processes.
SAQ 4
Draw V-T and p-T diagrams for a perfect gas undergeing following processcs.

(i) Isobaric expansion (i) Isochoric compression (iii) Isothermal compression.

Before proceeding further it would be worthwhile to know how, the concept of
temperature got introduced. Actually, we have been using the term temperature -
quite freely (since it is very familiar to you) but its basis lies in a law of -

- thermodynamics. Let us study this law which is known as the zeroth law.

1.5 THE ZEROTH LAW OF THERMODYNAMICS

The zeroth law of thermodynamics states :

“If two systems A; and A, are in thermal equilibrium independently with a third
system A,, then A; and A, are also in thermal equilibrium with each other.”

Let us discuss the meaning of this law. Refer to Fig. 1.15a.

7770222727707 ) P27 777
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S

NI s

Wm/é 72
(a) (b)

A

Fig. 1.15 : The Zerath law of thermodynamies (adinbatic wallg are denoted by shading and dlathermias walls
by solid lines) ; (a) A, and A; are in thermal contact with A,. (b) A, and Aj are in thermal conlact with ons
another. . )
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Here A, and A, are two systems separated by adiabatic walls. They are in thel"ma

- contact with another system .4;. Both 4, and A, individually will come in thermal

equilibrium.

equilibrium with 4. If now A, and A; are put'in thermal cohfact with each other
(Fig. 1.15b) then according to the zeroth law both A, and A; will be in thermal

All bodies in thermal equilibrium must have a common property, which has the same

~ value for all of them. This property is called the temperature. Thus the temperature

of a body is thie property which determines whether or not the body is in thermal
equilibrium with other bodies. The phenomenon-that two things in contact tend
towards 2 common temperature is so common that its importance has been
overlooked. When physicists finally did appreciate itsSignificance and fundamental
nature, it was decided to have it elevated to the status of a “Law of thermodynamics™
By that time the first and second laws were already enunciated. So in order to place

it ahead of these laws it is named as the zeroth law. '

Now we would like you to look at Eq. (1.1) and read once again the paragraph
following it. Eq. (1.1) is quite well known to you. Can such relations, exist for other
thermodynamic systems? In fact from the zeroth law it can be established
mathematically that a relation does exist between temperature and other
thermodynamic variables associated with a system. Such a relation as you know, is

called an equation of state. Let us study about it in some detail before rounding off
this unit, ' :

1.6_THE EQUATION OF STATE

" You know that the temperature of a system can be expressed as a function of any

other two thermodynamic parameters. If the two parameters are x and y then
mathematically it can be expressed as

T=7 %) (1.22)

Eq. (1.2a) can be solved for x in terms.of T and y and can even be solved for yin .
terms of T and x so that we have the relations )
x=f(T, ) : .(1.2b)
Y=hH(Tx) (1.2¢)

In other words Eqgs. (1.2a, b and cj can be expressed as
fix,y, Ty =0 ' (1.3)

/Eq. (1.3) is parametric as the form of fis not given. But the equation of state of an

ideal gas (Eq. 1.1) is exact. Likewise we may have equations of state for a real gas
or for several other systems. We will not aim to derive any such equation here. We
will only provide a few examples in Table 1.2.

Table 1.2
System {varinhles) - Equagilon of State
i Paramelric . i _Exa_cl
Ideal gas S f(p, V. T)=0 pV = RT, where R is the universal,
V. T gas constant -
! ) -
Real gas o, V. T =0 {p + L) (V-b) = RT, where
(.pl IVl TJ ) V '
aand b are constants
Paramagm:li-c solid fiM, B, =0 M= C,%. where M is the intensity
(M, 5.7) of magnetisation and B is the flux
density of the magnetic field in
which the solid is placed. Cisa
constant’ o
Stretched wire fLET)=40 L=L,1+pF+g(T-Tq) ]thre
{L,F,T) . . L and L, are the lengths of the wire
at tamperatures: 7 and Ty
respectively. Fis the tension in the
wire, g and g are constants.
Al -

-
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The parametric form of the equation of state may be used to study some typical
characteristics like coefficient of thermal expansion, elasticity, compressibility and so
on of any substance. We sHall do that now. This exercise will make you competent
to handle thermodynamic relations involving partial derivatives. You will encounter
several such relations, particularly in Block 2 of this course. '

- 1:6.1 Deductions from' Equation of State

Befoxe yomproceed to study the several characteristics using the equauon of state
youwil: i ed to legm a little about partial differentiation. You will find that it is an
exteusion of the idea of ordinary differentiation. We come across such differentiation
when a quantity is a function of more than.one variable and it is required to find the
change in the quantity when any one of tlie variables changes by a small amount. For
example the temperature of a gaseous system is a function of pressure and volume.
Now, we may like to obtain the rate of variation of temperature with respect to an
isochoric (volume = constant) variation of pressure. Likewise we may wish to obtain
the rate of variation of temperature with respect to an isobaric (pressure = constant)
variation of volume. In-the former case we are seeking the partial derivative of

Twith respect to p at constant V, denoted by (—‘% ) ., whereas in the laiter case

v

the partial derivative of T with respect to V, denoted by (FBVZ ) . Notice that imstead
P :

of using the symbol ‘d’ as in the case of ordinary differentiation ‘here we are using
the symbol °a" (pronounced *del’). We shall now work out mathematical relationship
between the partial derivatives involving any three variables. These will be very
useful in doing the relevant deductions from equation of state.

Let z be a function of x and v - )
. [,' - T = z(x, y) (14)

Then total differential dz is given by the following relation :

¥
5 _ {3 - a: _

Eq. (1.5) expresses the change in z which results from changes in x and y on which
z depends.

. Now if we take three variables as p, Vand T of a gaseous system then we may say that
V=V T)

‘Thus using Eq. (1.5) the volume difference dV between two neighbouring equilibrium
states may be expressed as :

= {3V 14
dV’— ( v )T dp + ( a:r)p dT | (1.62)
and similarly for the pressure difference dp as
= {_9 a3 .
dp = (—a%)r av + (—a%)v dT (1.6b)

Now, substituting Eq. (1.6b) in Eq. (1.6a), we get

_ (av\ [ (ap _ap- AN
av = (& ),; [(.aV)T‘W * (aT)VdT] ¥ (ar)p aT
o

or 0

Now, of the three variables p, V, and T only two are independent. Choosing V and
T as the independent variables,5q..(1.7) must be true for all sets of values of 2V and
dT. Thus for two states which are at the same temperature (d7 = b) but having
different volumes (dV # 0} we get fiom Eq. (1.7)

- T !
- () ()
- ap /. aV}T

L HL ) )y - (), (), () Jr o
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mzl.:m Law iind the . ®Ifz = z(x, y) then tota"l differential dz is expressed as
dz (Bx-)y dx + (ay).r y

This leads to two important mathematical relations: ,
(i) {8z _ ) (ii (32) (ﬁ) (ﬂ)=_1 .
\ ax (3x/3z), \Vax) \ay/ \ oz
¢ In the language of pamal derivatives the coefficient of isobaric coefficient of

voldme expansion (B), isothermal elasticity (E;) and isothermal compresmblhty
(k) are defined as follows .

_ F14
B} ' B (aT)
. P
o= v ()
r v/,
_ _ 1 {8V
K= V(ﬂp)T

1.8 TERMINAL QUESTIONS

1) a) Can asystem composed of 200 molecules be called a thermodynamic system?
Juslify your answer.

b) Prove that the specific value corresponding to an extensive variable is an
intensive property. (Hint : Specific value of any variable is its value per unit
mass. )

c¢) The welght of 2 m’of Hg at 0°C and 1 bar pressure at a place where
g=9.80ms?is 2.67 x 10° N. Give two extensive and five intensive variables
of this system.

2. Consider the following statements :
i) Speciﬁc gravity of\a substance is an intensive property but density is an
extensive property.
ii) Reversible processes are only an idealisation and all the natural processes are
irreversible.

iii) An isolated system is necessarily adiabatic.-Choose your answer.
(a) if only (i) and (ii) are correct. :
(b) if only (ii) and (iii) are correct.
(c) if only (i) and (jii) are correct.
(d) if all the statements are correct.

3) A certain stretch of railway track is laid without expansion joints in Thar desert
where day and mght temperatures differ by 25 K. The cross-sectional area of rail
is 3.6 X 107* m?. The Young’s modulus, ¥, of its matenal is2x 10" Nm~2and
its co-efficient of linear expansion, «, is 8 x 107° K. (a) If the length of the
track is kept constant, what is the- difference in the tensidh in the rails between:
day and night? (b) If the track is 15 km long, and is free to expand what is the
change in its length between day and night?

_ L {aF _ 1 /8L
(Hint: Use f(L, F, T) = 0 alongwith ¥ y (BL) and o =-1 ( ar)

whcre L, F and T denote Ienglh tension and temperature respectively.)

1.9 SOLUTIONS AND ‘ANSWERS

SAQs

1) (a) (i) A dice (Fig. 1. 163) (ii} A car (Flg 1.16b}) as its doors, bonnet and dickey
20 - .~ be opened (m) Smoke coming out of a chimney (Flg 1.16¢).
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2)

3)

4)

¥ig. 1.16 : Diagrams for answer to SAQ 1 (a), Tn each case the dotted line represents the boundary,

{b) The volume of the system is constant. Hence, it is an open system.
(c) This system has a constant mass so it is a closed system.

(d) When we consider a rose plant in a garden it is a system with other plants,
soil and atmosphere as surroundings. In day time it takes up sunlight (energy)
and CO, (matter) from the atmosphere and gives out O,. It also takes
nutrients (matter) from the soil and increases its own matter content, Thus,

exchange of energy and matter both takes place, which makes the rose plant
in a garden an open system. N

(e) (i) Closed (i) Open

a) Intensive : surface tension ‘(.s'), e.m.f. (F)

Extensive: length (L}, charge (g)
b) Let fbe mass and g be volume of a substance then fg is its density.

¢) (i) Pressure, volume, temperature, mass and density.
(ii) Intensity of polarisation, temperature, electric field intensity.

a) (i} and (i) irreversible (iii) reversible.

b) Letus consider the case of expansion of a £as contained in a cylinder. Suppose
this is done by pulling the piston outward. If there is a friction between piston
and the inner wall of the cylinder the process is definitely irreversible. In this
case a portion of mechanical energy provided by the pull goes in heating of
the piston and the wall of the cylinder. This illustrates that energy is dissipated
during an irreversible process.

Activity :
N = 27 -t m -1
Angular speed of second-hand &0 rads 30 rad s
= 337 X 107 rad s~
’ f . 8 = 2 -1 __ =& -1
Angular speed of minute-hand GOXED rad s TR00 rad s
: = 557 X 107 rad s
- i -l _ _ m ~1
. Angularspeed of hour-hand = TIRE60%ET rads™ = 1600 rad s

= 4.6m X 1075 rad 57!
[}

The movement of second-hand can be perceived. Angular speeds of minute
and hour-hand being small their movements cannot beperceived. Hence their
movement is quasistatic in pature.

Refer to Fig. 1.17. Here i and freprese;lls initial and final state respectively. Note
that in V-T diagram for (i) the extrapolated portion of the straight line must pass

through the origin as % = constant. The case of p-T diagram for (i) will be

similar.

5) a) Putting dV = 0 and dT # 0 in Eq. (1.7) we get

(52).(8), + () =

or
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2 RS S
—f—— = 7.35 x-107° m” k
2.72 x 10° . : B

(specific volume is defined as volume per unit ‘mass)

specific Volume =

2) (b)
3) a) Since, f(L, F, T) = 0, from Eq. (1.9) we get,

(), (), (), - -

Thus '

or

a_F) = — YAa
()

So, if the length of the track is kept constant, the difference in tension
corrgs;adnﬁxﬁg to a difference in temperature AT is given by

AF= -YAa AT
Here AT is negative when we consider the change from day to night.
Hence, AF = (2x 10" Nm™%) (3.6 x 107> m? (9 x 1075 K™") (25 K)
AF = 144 X 10°N

As the temperature changes from day to night, the track contracts. However, the
track is not permitted to contract because its length is being kept constant. Therefore,

a force would be required to expand the track and restore it to its original length and
hence AF is positive. :

b) f(LFET)=0
orL= L (F, T)

. = (oL oL
. dL = (F)r dF + ( aT)F dT

Putting dF = 0 (since the track is free to expand) and

a = % (g—%) » the difference in length L corresponding to a difference in
i :

temperature AT is given by
AL = alLAT
If we consider the change from day to night, AT = ~3K
VAL = (8x107°K) (15X 10°m) (~25K) = —3m
i.e. there is a decrease in-the length of the track by 3 m.
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UNIT 2 MEASUREMENT OF
TEMPERATURE

Structure
2.1 Introduction
Objectives -

22  Principle of Measurement of Temperature
* Physical Properties Considered for Measurement of Temperature
Scale of Temperature -
2.3 Gas Thermometer
Constant Volume Gas Thermometer
- Perfect Gas Temperature Scale
2.4 ° Resistance Thermometers
Platinum Resistance Thermometer
Thermistors :
2.5 Themocouples
Thermocouples and Thermaelectric Circuits-
Practical Thermocouples
2.6 Radiation Pyrometers
2.7 The International Practical Temperature Scale
2.8  Summary .
2.9 Temminal Questions
2.10 Solutions and Answers

2.1 INTRODUCTION

Would you like to remain outdoor on a hot summer afternoon? Preferably not.
Likewise you will not like to take bath in ordinary tap water during winter. As you
can realise that the above examples are related with the most important
thermodynamic variable temperature. You have learnt about the concept of
temperature in the previous unit. We can have a feeling of this thermodynamic
variable by way of our senses. But it has an element of difference from the senses of
smell andtaste. We do not go for quantifying these senses. In other words we would
never go-{e measure how much higher is the smell of a rose than that of a sunflower.
Nor we question how much is a curry tastier than a salad, whereas for temperature
vs: need to quantify. Everyday you get to know about the temperature of the
important cities from the newspaper. If someone has a prolonged fever a temperature
chart of his/her body is maintained. - :

The device used for measurement of temperature, as you know, is called
thermometer. For the above measurements we normally use a liquid-in-glass
thermometer with which you are familiar. It utilises the property of variation of the
volume of a liquid with temperature. However, the temperatures of our interest are

- not only restricted to that of a place or a man’s body. It ranges from as low as’
0.01 K, where helium solidifies, to 6000 K, the temperature of sun's surface. How do

* we measure these temperatures? Certainly not by liquid-in-glass thermometers. In
‘fact there-are many other kind of thermometers about which you will read in this unit.

The action of every kind of thermometer is based on the temperature-variation of

__some physical property: In this unit you will read how gas. thermometers, resistance
thermometers, thermocouples and radiation pyrometérs are used for the
easurement of temperature, ’

You will also learn how a scale is.developed for the measurement of temperature.

~We shall chiefly deal with the perfect gasscale. Finally we shall discuss briefly the

International Practical Scale of Temperature.

As you know the chanee in temperature of a body is brought-about by heat. But what
is the nature of heat? The answer to this question will lead us to the first law of
thermodyqamics. In the next unit you will read about that. ' N

|=1==a" -1y
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The Zeroth Law and the . . .
First Law Objectives

After studying this unil, you should be able to ‘ i
® state the principle of measurement of temperature,
o compare different types of methods of measurements ol temperature,

® dcscribe the working and relative merits as well as demerits of gas thermomeiers,
resistance thermometers, thermocouples and radiation pyrometers,

e outline the features of a perfect gas scale, - B

® compute temperature from the given values of a particular thermometric property,
and vice versa,

¢ sclect a thermometer for a specific use.

2.2 PRINCIPLE OF MEASUREMENT OF
TEMPERATURE

Measuring temperature is a very familiar experience. You must have seen a clinical
thermometer being inscrted under the tongue of a patient. What happens in that
case? The mercury column increases in length. We then determine the lemperature
of the bady of the paticnt by noting the reading of the mark upto which the mercury
column reaches. In other words, we utilise the properties of variation of the volume
of a liquid with tempcrature for the measurement of temperalure.

Incidentally we always measure lemperature by observing the variation of certain
property with temperature. Let us see what these properlies are.

2.2.1 Physical Properties Considered for Measurement of Temperature

Some properties which exhibit variation with small change in temperaturc are length
i of a liquid column in a capillary, votume of a fluid, pressure of a gas kept in a
container of fixed volume, clectrical resistance of a metal or a semiconduclor, e.m.f.
between the junclions of two dissimilar metals or alloy maintained at different
temperatures, and so on. We reler to these propertics as thermometric propertics.

Now, let us again come back to the case of the familiar clinical thermometer. You

must have seen that the graduation on it covers a range roughly between 94°F and

Y08°F. On the ather hand the same for a common laboratory thermometer normally —

. ranges between — 10°C and 110°C. In each case the range is equally divided into -
number of divistons. Selection of the range and its subsequent division is essential for
the measurement of temperature. We refer to this as preparing a-scale of
temperature. Let us learn about it in detadl now,

2.2.2 Scale of Temperature

In order (0 make a thermometer, we select a suitable substance having one ol the
thermonetric properlies and assign a set of numbers to the values of the property
during its variation in accordance with some rule to define the scale of temperature.
When we bring the thermometer inlo contact with a body and allow it to reach the
state of thermal equilibrium, the thermometric property attains a specific vaiue,
which we read in terms of the number assigred to it. Thus, we get a measure of the
temperature of the body. The scale developed will be simple if the thermometric
property, we have chosen, has a lincar dependence on temperatore.

Now suppose that we represent the value of thermomelric property by X, and the
temperature corresponding to it-by T{ X'). Assuming thc variation of X+ with
temperature as linear, we write

o X =aT(X) + b, . - BRVSY
where @ and b arc constants, We can determine & and b from the valuc of the -

thermometric property at two temperatures. For example, if we assign the values X,
and &y to the thermometric property at temperature 0°C and 100°C, then

Xe=ax0+b=25h ‘ 22
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"This gives us

X —~X
a = 00 (2.3)
so that ¥ - x b
=Ll(x. _py= 21" % . (24
T(X) = (X7 —b). X=X, 100 (2.4)

You must be familiar with the scale defined by Eq. '(2.4). It is the Celsius scale and
is a two-point scale because we have used value of X at.two fixed points, 0°C (ice
point) and 100°C (steam point) to determine @ and b.

Inc1dental1y, the freezing and boiling [emperatures are very sensilive to atmospheric
pressure, presence of dissolved impurities in the thermometric liquid, nature of the
glass used for-holding the liquid and so on. So it becomes difficult to reproduce the
fixed points. Secondly, the scale established in this method depends upon the physical
property and the malerial used.

The lalter problem can be solved by defining a scale in such a way that it does not
depend upon any particular property of any particular substance. There are two such
_theoretical scalcs

a) The perfect gas scale, which is based on the gas law

p—TEi“= a constant
{You will read more about this scale in Sec. 2.3.2.)

_b) Kelvin's thermodynamic scale basced on the working of a reversible heat enginc.

These above wo scales are ‘equivalent. You will learn the proof of this equivalence
after studying CarnoUs enginc and Carnot’s theorem in Block 2 of this course.

However, Lo remove the experimental uncertaintics. as regards the reproductivity of
the fixed points associated with a two-point scale, a one-point scale was developed
at'the Tenth Conference of Weights and Measures held at Paris in 1954. It was
decided that the triple point of water—the temperature at which ice, water and water
vapour are in equilibrium with each other, be taken as the fixed point. Its value i is
273.16 and the unit is called kelvin (represented by K). You will read about the
existence of triple point in Unit 7 of Block 2. On this scale. the ice point is 273.16 K
and the steam point is 373.16 K. Since it is not possible to attain a temperature Helow
0 K"t is referred to as the absolute zeroand the scalc is called absolute scale.
However, for practical purposes, we use the Celsius scale on which the triple point
of water is 0.01°C. Here, we represent temperature by ¢ and it is related to the
absolute temperature T(K) through the relation.

= T -273.15 (2.5)

If the.value'of the thermometric property-at the triple point be X, Lq. (2:1), with
b = 0, takes the form

X, = 273.16 a. . (2:6)

Now we can easily determine a from the known value.of X,,. Rewriting Eq. (2.1) i.c.
Xy = a T (X} and combining it with Eq. (2.6}, we pet -

CT{X) = 273.16 (X X,,).

- Thus, we can obtain’ 4 one-lo-one correspondence between temperature and a
thermometric property by multiplying the ratio of the observed value of the property
" te ils value at the {riple point by 273.16. Obviously, the scale so.obtained depends on

the value of X,.-!}L,,,- which, in general, is expected to be dilferent for different

properties of the same substance or same property of differcnt substarices. For
example, the ratio R,/R,, will be different for copper and nickel, where R represents
electrical resistance. You may now ask: Whal would happen if we consider i property
such as resistance or thermo-e.m.f. having a non-lincar dependence on temperature?
Such thermometers include resislance thermometer, lhermocouplc etc. and are

: somewhal complex to use.

{27

You may now like to work out an SAQ on the printiple of measurement of -
temneratire

:respectively. gt atmospheric

Measurementl of Temperalure

An easily reproducible stale of a
standard sysiem; chosen
arbilrarily, is called a fixed point.
The ice point and steam point are
the temperatures at which pure
water freezes and bails,

pressure at sea-leve] and 45°.
latitude.

PTG

From Eq. (2.7}, we note that the
main step in the development of a
thermometer is to determine X,
at the triple point of water, The
apparatus used for establishing
this temperature is ealled the
triple point cell. A labelled
diagram of this apparatus is
shown in Fig. 2.1. First water of
highest purity is distilled into the
vessel. When all air has been
removed, the vessel is scaled off.
Using a freezing mixture in the
inner well, @ layer of ice is made
1o be formed around it. On.
replacing the freezing mixture by
a thermometer bulb a thin layer of
ice gels melted near it. Thus, ice.
walter and waler vapour coexist in
equilibrium within the U-tube and
the device in equilibrium with
these iz at the triple point.
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The Zeroth Law and Lhe
Firsi Law

SAQ1I

a) Name lhree thermometric pmpemes which have linear dependence on
temperature.

_b) Atwhat temperature, thc absolute scale reading is (i) 1.5 times the Celsius scale
reading, and (ii) equal to the celsius scale reading?

.¢) Length of a mercury column in a capillary tube is 3.30 cm. at 0°C and 24.87 cm

at 100°C. What is the temperature of a body, in contact with which the column
length is found to be 18.53 cm?

Now, you know the basic principles of measurement of temperature. Let us’ now

’ study about the features of the one-point scale as applied to different methods

ernployed for measuring temperature.

“The commonly used thermometric properties are: length of liquid column in a

capillary; volume of a gas at constant pressure, pressure of a.gas at constarit volume,
resistance of a metal or a semiconductor and thermo-e.m.f. We name the
thermometers based on these properties accordingly and express Eq. (2.7) in terms
of corresponding symbols. Thus, for a liquid-in-glass thermometer, we write -

T (L) = 273.16 (L/L,,), ‘ (2.8)

where L trepresents the length of the liquid column; and in the case of a resistance
thermometer, we have

_ T(R) = 273.16 (RIR,,), : (2.9)
] where R represents the resistance of the material of the thermometer.

* You may now like-to-work out an SAQ on the above concept. For that you will have -

to recall from yourschool science courses the basic idea of a thermocouple.

s

SAQ2
Write down the relation corresponding to Egs. (2.8)-and (2.9) for a thermocouple.

Now we need to find out whether the value we obtain for the temperature of a system
depends on the choice of the thermometer we use to measure it. By defining the
one-point scale we have ensured that all the different kinds of thermometers agree
at the standard fixed point. But what happens at other points? Experiments show
that the value of X7/X,, at the same temperature for thermometers of different or
same kind but using different materials exhibits a significant variation. Hence, for

. obtaining a definite temperature scale, we must select one particular kind of

thermometer as standard. Experiments, however do show that the variation in X /X, e
values is smallest among the different constant-volume gas lhen'nometers This_
suggests that'a gas can be a standard thermoGmetric substance.

It is seen that as the amount of gas used in such a thermometer is reduced (which
means that its pressure is reduced), the variation in readings between gas
thermometers using different kinds of gas is also reduced. This indicates that there is
something fundamental about the behaviour of this kind of thermometér if the
pressure of the gas is low. We use such a thermometer as a refirence to calibrate
other thermometers with respect to its scale. So let us study about -hat.

'2.3 GAS THERMOMETERS

Here we use the tcmpcraturc dependence of volume atconsiant ressure and that of

. pressure at constant volume as thé thermometric properties. Both tyoes of expansion -

are highly uniform over a wide range of temperature. However, a constant-pressure
gas thermometer has a relatively complicated construction and dees r- it gwe
consistent results. Therefore, the constant-volume thermometer is- more in use and
better suited as a standard device. Conseq uently, we du.cuss only ti¢ constant volume
gas thermometer.
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2.3.1 CﬁnStant Volume Gas Thermometer

The details of construction of constant volume gas thermometer with regard to its
dimensions, shape, materials used, etc. differ from one laboratory to another.

owever, we have shown the important features of its construction and principle of

bise in Fig. 2.2. ' -

The level of mercury in M
is adjusted by raiting or
lowering this reservoir till

it touches the pointer, Thud
the volume of the gas

. Temains constant

' Bulb containing gas, |
preferably hydrogen
or helium :

Fig. 2.2: The constant volume gas thermomgiter

When the thermometer 1s in contacr with a hot body, the'gas expands due to rise in

its temperatiire and'pushes mercury down in the tube M. The level of mercury in M
becomes stationary when equilibrivm is attained. The heigllt‘h' of the mercury level
in M’ with respect to P is measured accurately. In contrast, if we use the thermometer
to measure the temperature of a cold body, the gas contracts and we have to be
careful’that mercury is not sucked into the bulb, Otherwise, we adjust the level of
mercury in a similar way. o

Suppose that the height of ﬁwrcury in M above (below) p is * . Then, pressure of
the gas in G is given by

P.= pa % hpg, o . (2.10)
where p, is the atmospheric pressure, p is density of mercury at ambient temperature
and g is local value of acceleration due to gravity. In this casc, Eq. (2.7) becomes

T(p) = 273.16 (pip,). _ . o @11

It may be remarked that before using Eq. (2.11) we have to apply corrections to the
value of p or p,, due to the following factors : :

i} the temperature gradient along the capillary

if) the gas pressure in M above P

iii) the change in volumes of the bulb and the capillary with change in temperature
- and-pressure _ : o T o o
iv) change in the density of -mercury with temperature -

v) adsorption or deadsorption of the gas by the walls of the bulb and the capillary.
Otcourse, some of these can be taken care'of by proper choice oFmaterials and the
design. :

The temperature range, of gas thermometers with- proper design varies from about

10 K t0.1900-K. Although these are sensitive and accugate, they suffer from the. .. ) - ..

drawbacks of large size and slowness in attaining the equilibrium-with the system. -
Therefore, these are not practical thermometers. We only use these as standards to
-alibrate other thermometers. We may also add that the results obtairied. with the .
‘hermometers containing different gases yield the same result if p,, is very small<To
Jbtain this situation, we plot p/p,, versus p,, graph (Fig. 2.3), determine Plppfor pe,
ending to 0 and then use Eq. (2.11). . '

.o - _p};
Fig.2.3: p/p,, vs. Prp Braph for
dilferert pases A, B, C, D and E,
OP is the extrapolated value of
p!pw furpfpm — 0.
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The Zervih Law ond the
First Law

You may like to work out an SAQ on the above concept.

e

SAQ3 . -

If constant-volume gas thermometers containing different gasesin varymg quantities

are used to determine the normal boiling point of water, the extrapolated curves for

the ratio of the gas pressure at the steam point to that at the triple point intersect the
‘ratio axis at 1,36604. Evaluate the steam point.

" Now that you have become familiar with Eq. (2.11), we shall work out an example

to discuss the use of a constant volume hydrogen thermometer. After that you will
work out an SAQ on gas thermometer.

Example 1

A constant-volume hydrogen thermometer is brought into thermal contact with a
triple point cell and then with a body whose temperature is to be determined. The
heights of mercury column in the two cases are noted as —22.0 cm-and —15.0 ¢m,
respecuvcly What is the temperature of the body" Given, atmospheric pressure =

1 bar, acceleration due to gravity = 9.81 m s~ and density of mercury =
13.59 x 10° kg m™

Solution
I is given that the atmosph sric pressure is 1 bar, i.e.
' pa = lbar = 10°Nm™2

Using Eq. (2.10), we get the values of pressure of the gas at the triple point and the
body temperature as

Pp = (10°~0.22x 13.59 x 10° X 9.81)Nm ™2 = 7.07 x 10°N m~2

(10‘—015x13s9x10‘x981)Nm 2=300x10°Nm2

Substituting thesc valucs in Eq (2.11}), -we get
T = 273.16 K x (8.00 x 10° Nm™)/(7.07 x 10° Nm™) = 309 K

SAQ 4

Consider five constant volume gas thermometers, three of which are filled with He
at 100 m bar, 50 m bar and 25 m bar and two with N at 20 m bar and 5 m bar at
the triple point. Answer the following questions.

i)  Will these thermometers yield the same value of remperature for a body?
i) Will the three He filled thermometers give the same value of temperature?
iif) Which thermometer will give the value closest to the actual one?

iv) How will you determine the actual value of temperature using the three He filled
temperatures?

We have already mentioned about the perfect gas lemperalure: scale in Sec. 2.2. You
will now see how such a scale can be made to develop through Eq. (2.11).

2.3.2 Perfect Gas Temperature Scale

We have pointed out earlier that all the constant- volume gas lhurmomcturs give same
results if the pressure of the gas filled art the triple point is extremely small. In fact,

this idca is used to define the perfect gas lemperature scale, which-is universal, We -
know that when the pressure of a gas’is very low, the-number of molecules per unit. .

volume becomes very small, Hence the interactions between the molccules can be-
neglected. Moreover, the actual volume occupied by them can be ncglected as
compared 10 the-volume of the bulb. So the gas behaves as a perfect gas. Thus the

temperature scale, which Tollows#rom-this concept is-referred (o as-the perfect gas -

temperature scale. You may recall from Sec. 2.2.1 that with the help of this scale,
one can cobtain the thermoedynamic temperature. It is defined as

T(p) = Lim [273.16 (p/p,) ] o (2.12)
P U . .

and is also referred to as the perfect gas temperature.




From Eq. (2.12), we observe that T — 0 when p — 0, i.e. the zero of this scale is
the temperature for which the pressure exerted by the gas is zero. However, at low
temperatures, close to 0 K the intermolecular interactions cannot be ignored and aII
the gases get liquified. Nonetheless, if we plot p as function of 7'in the temperature .’
range where the variation is linear, the curves for all the gases pass through the origin.

. However, the temperature T = 0 remains as yet unaltainable.

You may recall from Sec. 2.2.1 that the kelvin temperature scale, which is
independent of the properties of any particular substance, is equivalent to the perfect
gas scale. In view of this we usc the symbol K after a perfect gas temperature.

You may now work out a simple SAQ on the perfect gas scale.

SAQS5
Some workers used to define the perfecl gas temperature scale with the help of the
expression
= pp (1 + ar), .
where tis temperalure in °C and @ = 3.661 x 1072 °C™". Show that this definition

is consistent with Eq. (2 12). Furthermore, obtain the value of the temperature for
which p, = 0.~

You have learnt that a constant volume gas thermometer is not a practical
thermometer. You will now study about practical thermometers, We will not discuss
liquid-in-glass thermometers as you have read in details about thent in your school
science courses. We shall start with resistance thermomeler,

2.4 RESISTANCE THERMOMETERS

In these thermometers, we make use of the fact that the resistance of a metallic sample
increascs and that of a semiconductor decreases with increase in temperature. First we
shall study about the Platinum resistance thermomctcr where the property of a metal
is used.

2.4.1 Platinum Resistance Thermometer

We can represent the variation in the resistance of a metal or .m alloy over a limited
range of (cmperature, by the relation

R, = Ro(1 + ar + by {2.13)

where R, and R; are the resistances at °C and the ice point respectively; and a and
b are Tharacieristic constants. We gencrally usc platinum for the construction of a
resistance thermometer because of the following reasons.

i) 1t can be easily purified.

ii) Tt has a high melting point (1772 °C),

iii) It shows significant variation in resistance with temperalure.

iv) Being a noble metal it is lcss prone to get oxidised. For pure Pt,

a =394 % 107°C! )

ard
b= —58x 1077°C2

over the temperalure range —200 °C to 1200 °C,

Ml

-~ To construer a Pr-resistance thermometer, we take a suitable length of pure Pt wire,
Ttis thenwound in a non-inductive manner (Fig: 2.4) evera thin frame of mica. Thm
is then placed suitably in a cylindrical tube of ebonite. The resistance of the wire is
jaccurately detcrmined by passing a known constant current through it and measuring
|the potential difference across it with the help of a highly sensitive potentiometer

- (Fig. 2:5). The currens-is hcid constant by adjusting a“rheostat so” that the potential -

differenre across a standard resistor in series with the thermometer as observed with
the help of a monitoring potentiometer, remains constant. The main advantage of
Lthe potentiometric method for the measurement of resistaice over those using

bridges is that we ae-not nave o hother about the resistance offered by the leads.

Mensurement of Temperalure

v \\ﬁ

Fig. 2.4: Non-induetive winding.
1t is done for minimising the se!f -

inductance of the wire, The wire Is
doubled back on ilself before belng *
coiled up.
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The Zeroth Law and (he
First Law

A particular type of Wheutslb:ec
bridge, known as the Calendar
and Griffith's bridge is also used
for measurement of resistance of
thermometer.

=32

To mom‘loﬁng '
"“"—"'} potentomeier |

"1 Tomain
— —+J potenliometer

Fig. 2.5: The Pt-reslstance thermometer In a potentiometric circuit for the measurement of resistance,

Now take a look at Eq,'(2.13) again. It shows that variation of R, with 7is non-linear.
Therefore, every thermomeler is provided with a R, versus ¢ graph obtained by its

actual comparison with a standard'gas thermometer and can be used for direct
reading of temperature. o

We shall now work ou( an example to illustrate the determination of temperature by
a platinum resistance thermometer. :

Example 2
For a Pt-wire, the co-efficients for variation off resistance with temperature are
a=390x107*C  and b = —5.7 x 10~ 7°C2

A thermometer is constructed using this wire with Ry = 10.00 Q. Determine the .
temperature of 2 heat bath, in contact with which the resistance of the wire is found
to be 13,12 Q. )

Solution

If temperature of the bath is r°C, resist{g‘hce of the thermometer wire is given by
R, = Ry (1l + at + b8). '
Here,

Il

R, = 13.120,R, = 10,000, a = 390 x 1073°C™!
and

b= —57x10""C"2
so that we have

13.120@ = 10.00Q (1 + 3.90 x 10~ r — 5.7 x 1~ )
or. 1+390x 107" -57x 107 =1312

or 571007 -39 x 1077 ¢+ 0.312 = 0.

Solving this quadratic in 4, we get
t = 81°C : . :

the second root of the quadratic comes out to be 6.8 X 10*°C, which we have rejected -

on physical grounds.- : - .

The principal merits of a Pt-resistance thermometer are that

i) it can be used from —200°C to 1200°C, with an accuracy of 0.02°C from 0°C to

" 600°C .and of 0.1°C for higher temperatures,
i) it is very convenient for ordinary use,
iii) its calibration is so reliable that even this can be used as standard.

The main drawbacks of this thérmometer are that itsithérmal capacity-is very high so
that the system under study is affected and it takes longer time to attain the
equilibium and.also to measurc the resistance. So can we use i to record
continuously varying temperatures as in the experiements on dependence of chemical
reaction rate on temperature? The answer is no. For that we require a different kind
of resistance thermometer. This is called thermistor: . ‘

!
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2.4.2 Thermistors _ ) ‘

‘A thermistor is essentially a crystalline semiconductor. The resistance vs.
temperature curve for such a substance is shown in Fig. 2.6. The resistance decreases

* very steeply with temperature. In other words they have a negative temperature
coefficient of resistance. The temperature variation of resistance may be expressed as _

Ry = Aexp (BIT) (2.14)

where A and B are constants. B is called the characteristic temperature and it lies
between 2000 K and 4000 K.

Now let the resistance of a thermistor be R, at temperature Ty then from Eq. (2.14),
we get ) )

Ry = Aexp (BITy)

R '
) T _ B _ _B
or _Ro P exp(hr _To)
Rr = Ryex [B(—I ——l) } 2.15
T_ | 1) p T Tu ( )

The materialgiwhich we generally use for this purpose are oxides of Mn, Co, Ni, Cu,
etc. and ordinary carbon resistances. These thermometers are useful over the
temperature range 1K to 600 K and yield results with an accuracy of about 107° K
at few K and 107 * K at room temperature and above. The carbon resistor is highly
useful below 20 K. In addition to high sensitivity, these thermometers have the
advantage of small sizc. But it has a serious disadvantage. Its resistance is unstable
In other words its resistance corresponding to a particular temperature does not
remain [lixed. :

You may now like to work out an SAQ on resistance thermometers.

SAQ 6

a) Fill in the blanks in the following sentences:

i) Platinum is used for construction of resistance thermometers because its
e e varies significantly with .............c...ceeeeiienn.

i)} Pt-resistance thermometer can be used as standard because its
........................ is very rcliable. '

iif) Pt-resistance thermometer ...................... be used in an experiment on
dependence of ratc of evaporation of a liquid on temperature,

iv} The temperature coelficient of resistance of & thermistoris «...ooovveeeeeeerrrennn,

b) Suppuse Eq. (2.14) is used to define a.temperature scale. Establish the relation
between this scale and the perfect gas scale.

Now that you have learnt about resistance thermometry, you realise that it provides
us with a very sensitive method for measuring temperature. Now suppose you want
to determine the temperature coefficient of resistance of a metal. And for that you
have taken a platc made out of that metal. Now you cannot use a Pt-resistance
thermometer for this purpose because of its size. The size of a thermistor is small,
but it cannot be fixed to the plate. For this purpose we use another kind of
thermometer which makes use of-an electrical property. It is thc thermocouple. Let
us now study that.

2.5~ THERMOCOUPLES -~
These are essentially thermoelectric thermometers and are based on Scebeck's {1826)
discovery lhgt an emf is developed between the Jjunctions of two dissimilar metals or
“alloys mainitaified at different tempeératures (Fig. 2.7). We can express the dependence
of thermo-emf ( £) on temperature difference (1) between the (wo junctions as
E = Cit + Cyr? ' (2.16)

where C, and C, are thermuelectric constants for the pair of metals or alloys used.
The rate of change of E with ¢ is called the thermoclectric power (TEP) of the

~

Mensnrement of Tmpenlm

100000
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0 w0 200 23p0.
0o
Fig. 2.6: The variation of

resistance with temperature for a
Lhermistor.

meal-A -
B -
I o - - 1 ewperriary
Iw< -
| E . | Lou g SR, S,
- modB .

Fig. 2.7: The Seebeck or.
thermoelectric effect. The armuws
show the direction of carrent.
Here the meta! B is ahead of metal
4 in the thermoclectric series.
Such a dreult Is called @ -
thermoelectric circult.
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. Interpolation is a process used to
¢stimate an intermediate value of
one {dependent) variable which is
a function of a second
(Independent) variable when
values of the dependent variable
corresponding to several discrete
values of the independent
variable are known,

-thermocouple. Suppose that the TEP of a thermocouple is 40 nV°C™ . This means
that 1 pV corresponds to (1/40)°C i.e. 0.025°C. So if the least count of a voltmeter
or any arrangement for the measurement of potential difference is I WV, then 'with
the help of the above thermocouple, a minimum possible temperature, equal to
0.025°C, can be measured. Thus TEP is 2 measure of the sensitivity of the ~
thermocouple. It depends on the values of C, and C,.

Let us now study about the construction of -a thermocouple and how thermoelectric
circuits are made.

"

2.5.1'Thermocouples and Thermoelectric Circuits

To construct a junction of a thermocouple, say of copper and iron, we take wires of
copper and iron, and join together one end of both using gas or arc welding. This
end forms a junction and we may keep it as such or seal in a tube of quartz, porcelain
or hard glass to protect it from any contamination. The system whose temperature is
required should ideally surround the thermocouple junction. For measuring the
temperature of a metallic plate such a junction is attached to it using a soft solder
made of a zinc-tin alloy. A particular kind of paste is also used to attach the junction.

A thermiocouple may be used in the three ways shown in Fig. 2.7 {(a, b and ¢). The
emf developed between the two junctions is measured with a milli or micro-voltmeter,
or with the help of a very sensitive potentiometric arrangement. i}

Fm—==~==n o ————— 7 ro-mmeT N == —===-q

higher | )

} lower -Icmpumg\
A
|hql='mn 3 1
we B H
e _— - / Vl.—_—-——..__l'

Fig. 2.B: Three ways of using a thermocouple. {8) A basic thermoelectric clreult; (B, (c} Alternative ways

of connecting the voltmeler [n a thermoelectric clrcult.

Now that you have learnt about the thermoelectric circuits; let us discuss about some
practical thermocouples, N

2.5.2 Pfactﬁal Thermocouples

The temperature range covered by a thermocouple and its sensitivity depend on the

~material of the wires. uséd, which we Iist"tZr- some common cases-in-Table 2.1, - -

Tnb-l: 2.1 : Comparison of thermocouple cheracteristics

. o — [

Thermocouple Temperature range °C | TEPpvC™' -
Iron-constantan T 2000760 0 - T ss T
Platinum-—Platigum v | Det00 (7-12)

{10-13%) rhodidm alloy -

Chromt:l-all.in}cl —270t0 [3[[] - 4 for e 0°C .

T T T -rvl
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From Table 2.1, we note that the thermocouples have nearly same temperature range
asthat of a Pt-resistance thermometer: However, their main merits are low cost, small
size and quick equilibrium with the system under study. Consequently, we cen use
thermocouples to stirdy rapid temperature variations aiso.

The principal limit\:}‘l_ions of thennocouplc;s are the follo'w_i-ng:

1) These need sensitive voltage measuring devices.

. ii) Théy require correction for the emf arising from the temperature gradient along
a wire {Thomson emf) and the difference in the amounts of heat absorbed and
liberated at the two junctions (Peltier effect).

iti) Their sensitivity is highly affected by the purity of the metals or alloys used.

To reduce the errors due to the last two factors and to take care of the nonliﬁéarity
" of variation of E with ¢, each thermocouple is provided with a calibration curve
between temperature and thermo-emf.

Let us now work oul an example illustrating the measurement of temperature by a
thermocouple.

Example 3 -

Compute the temperature of the hol junction of an ifdn-constantan thermocouple (C,
=548 uV°C~?* = 0.05 rV°C~ %) ifits cold junction is maintained at the ice point and
the thermo emf is 13 pV. ‘

Solution

Since the cold junction is maintained at 0°C, we write down the emf in terms of the
hut junction temperature as

E = le + szz

Here, we are given that C, = 54.8 x 107*V°C~!, ¢, = 0.05 x 107V °C~2 and
E=13.0x10"%Vv, Substituting these values, we have

13x107% = 54.8 x 107%¢ + 0.05 x 1076 /2
or 0.05/°+548r-13.0%x10>=0
Two roots of this quadratic equation are

t = —1.30 x 10* and 201.

Since we cannot have a lemperature of — 1.30 x 10*°C we i'ejecl the former and find
that the temperature of the hot junction is 201 °C,

You may now like to answer the SAQ on thermocouples.

SAQ7
Complete the following sentences using appropriate words to fill in the blanks:
i) Thermocouples are quite popular for measuring temperature in research

laboratories because of ...................... ) errerr e ‘and attainment of
- ii) Each thermocouple is provided,witha Calibration curve because ................ does’
not vary linearty with ....................... and its values as well as variation depend

on nature of the wires used.

A thenﬁocouple makes use of two melals. In your school science course on thermal
expansion of solids you must. have read about a device, made of two metals, which
can be used as a thermometer. Can you recall that? It is the bimelallic strip about

-which you will-briefly study-now. S Tt
Bimetallic Strip . 5

This makes use of the different expersion of two metals. Strips of two different metals
are joined together as skuwn in Fig. 2.9a. When théy are allowed to expand freely,
they do so by different extents for a given change of temperature. Now, by-way of

Measuremhen! of Temperaiure

)

Fig. 2.9 (&,b}: A bimetallic strip at

two different temperatures (¢) A
thermometer made of & ciled
bimetallie strip.
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- The Zeroth Law and Lhe

e T construction these are constrained to be of the same length at their common Surface

Hence, a temperature change forces the strip to bend into a circular arc (Fig. 2.9b):
If one end of the strip is fixed, the temperature change.can be calibrated in terms of
the deflection of the other end. In order to be used as a thermometer, such strips are
made in the shape of spiral and a pointer is attached to its free end (Fig. 2.9¢).

It is desirable to have an appreciable. difference between the coefficients of linear
expansion of the two metals in a bimetallic strip. This causes the strip to bend
significantly for a given rise in temperature, thereby increasing its sensitivity. For this
reason, one of the metals used is invar, which has a very low coefficient of linear
expansion.

So far you have studied about several thermometers. For all of them a physical

. contact between the temperature sensor and the test object is necessary. But suppose
we want to determine the temperature of the sun. How do we do that? This is done
bya device called radiation pyrometer. It allows us to measure temperature without
making any contact between the test object and the sensor. Let us study briefly about
that now.

2.6 RADIATION PYROMETERS

These thermometers work by way of detecting the infrared radiation given\off by the
test object. You must note that infrared radiations are emitled not only by ‘hot
objecis’. Any object whose temperalure is above 0 K emits radiation, The amount of
radiation depends upon the temperature. So by measuring this amount the
temperalure of the object can be determined.

You know from your school science course that the best emitters of radiation at any
temperature are the black bodies. You will learn in Unit 8 of Block 2 of this course

. that the radiation emitted by a black body depends on its temperature only. The total
power per unit area of the emitted radiation is given by the relation

- T M= oT* - (2.17)
where o is known as the Stefan’s constant. Its value is given by

=567 x10 Nm K™
Let us work out an example to illustrate Eq. (2.17)

Example 4

The surface area of the filament of a 60 W bulb is 13 mm?. Estimate the tempcralure
of the illuminated fitament assuming that the radiation emitied by it is close to that
by a black body. ) :

Solution _
From Eq. (2.17) we know that
1
(MY
r={)
Here M= ___6..(_]_.....W.__.__
13 x 107° B . .
- | OW )'h
- 13 x 10% m?x 567 x 10" Wm™* K™
="30%10°K.
The pyrometers that work on the basis of Eq. (2.17) are called ‘total radiation
pyrometers’.

There is-another kind of pyromcter called the obtical pyrométcr' which takes.care
of the measurcment of energy emitted:in a particular portion of the spectrum. It is -
given by Planck'’s radiation law (about which will read in Blmk 4 of this course) as

Ly = — r . @)
36 . Nlexp (C/AAT) = 1] . )
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where u, is the energy emitted per unit time and unit area per unit wavelength and  Measurement “of Temperatare
\ is the wavelength, ‘

C,=374%107"%Wm? C, = 144 x 1072 m K

The schematic diagram of a radiation pyrometer is shown in Fig. 2:10. ' ) ' -
: P .

hot .
object lens b pil K H

Ry

Fig. 2.10: A shematic dlagram of a radlatlon pyrometer. Part of (he thermal radiation emltted by & hot

object Is intercepted by a lens and focussed onto a thermoplle, which is a eolléction of thermocouples. The

resultant heallng of the thermoplle causes It 1o penerate an elecirical Signal {proportional to the thermal B
- radlatlon} which can be displayed on a recorder. ; '

Radiation pyrometers have the advantagé that they can be used to measure any
temperature however high that may be and that too irrespective of the location of
the test object. The pyrometer need not be raised to the temperature of the test .
object. But, it has a serious drawback. In principle it can measure the temperature
of black bodies only.

However, a pyrometer is generally used to measure the temperature of any hot
source. It then gives the temperature at which the intensity of emission of a perfectly
black body would. be the same as that of the source. This temperature is known as
the black body temperature of the substance. This temperature is less than the actual
temperature of the substance. Can you tell why? This is because the emitting power
of a black body at a particular temperature is higher than that of any other body at
the same temperature. So you can realise that always an error will be involved in
determining the tlemperature. Higher the departure from perfect blackness of the
body, greater will be the error. Keeping in view this error, the lower practical limit
of temperature to be easured by radiation pyrometers is about 1000 K.

You have now learnt about different kinds of thermometers and scales for measuring
temperature. You niust have noted that none of the properties of materials used for
.- temperature sensing varies strictly linearly with temperature. This poses a problem
for the makers of the thermometers as regards their calibration. In order to get rid

of this difficulty a practical temperature scale was adopted by the International
"Committee of Weights arid Measures and it is known as the International Practical
Temperature Scale. We sha\ksludy very briefly about it before roundingoff this unit.

2.7 THE INTERNATIONAL PRACTICAL
TEMPERATURE SCALE - o

This scale enables us to use a specific thermometer over a spéciﬁc range and get them
calibrated in terms of the kelvin or celsius scale. Some temperatures of interest and
the different kinds of thermometers along with their corresponding ranges have been.
shown schematically in Fig. 2.11. A is a linear scale and B is a legarithmic scale.

~The international practical temperature scale was adopted in 1968 and is referred to -
as JPTS-68. The features of this scale are that-it: t

a) Selects a set of eleven__rct_‘er_gncp points and assigns to these points values of
77 theriodynamic temperature in' the light of best available measureni@nts.-
b) Selects a set of thermometers for interpolation between the reference points, afd

¢} Agrees on the interpolation procedures to be used.
Thest reference points with théir assigned temperaturcs, together with the Sﬁééfﬁed I:';-V?l::r::"“':fizh:alstuﬁﬁtlbm'y
thermometers :zmc_l interpolation proce(_iures,_establish an empirical scale, which 1§ tem;m“rcsis o
arranged to coincide as closely as possible with thermodynamic temperature. The measurement of very low
values of the temperature along with the names of the standard thermomelters arc  temperatures.

shown in Table 2.2. The suffix 68 with T and f indicates that the scale was adopted -

in 1968. . 37
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Fig. 2.11 : Some temperature of interest and useful ranges of different kinds of thermonieter

. . .
Table 2.2 ; The Internatlonal Practical Temperature Scale (IPTS-68)

No. Fixed Point © Assigned temperature Standard
thermometer
- Tes (K) 168 {°C)
optical pyrometer
. (above [337.58 K)
1 Freezing point of gold | 1337.58 ' 1064.43
2. Freezing point of silver 1235:08 961,93 thermocouple
- , . (%03.89-1337.58 K)
a, - Freczing point of zinc - 692,73 - | 419,58 :
’ RS Boiling poinfo[waler 373.15 100
5. Triple point of warer * 27306 0.0t
6. Boiling point of oxygen 50.188 —~182.962 .
7. Tripte point of oxygen 54,361 T.218.789 . platinum resistance
) : e St F(I3B1903.89 K)
8. Boiling point of neon 27.102. -246.048
9. Boiling point of equilibrium -
hydrogen 20.28 -252.87
19, Equilibriam between the
. liquid and vapour phases
. - of equilibrium hydrogen .
el L ‘T atd3a30.6NmL wo|17042. 0 0 | 2s6des - .. 7 . -
' 12. Triple point of cquilibrium
hydrogen . 13.81 S| 25934
[ -

Let us now sum-up what we have read in this Gnit.

: 28 SUMMARY - - -

L

& A thermometer'is a device which is employed t6 determine the temperature of a
system or an object by bringing this into thermal equilibrium with it, without
«altering-its thermodynamic state. )
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In the one-point temperature scale, called absolute temperature scale,'lhe‘
temperature of the system is obtained by multiplying the ratio of the observed -
value of a thermometric property and its value at the triple point of water by -

. 273:16.

The ijroblem of dependence of one-point scale on the thermometric property

(being used) is solved by using the constant—volume gas thermometers containing

gas at extremely low pressures, as standard. The temperature scale 5o obrained is
called the perfect gas scale. ’

. Temperature on the absolute scale is 'rglated to that on the celsius scale throﬁgh

T =1+ 27315 - R _

The gas thermometers are very sensitive and accurate but they are bulky and take
lime to attain equilibrium. Therefore, these are not used for routine measurements.

A Pt-resistance thermometer is based on the fact that the resistance of a Pt-wire’
increases with temperature as ’ ' .

R, = Ro (1 + at + be%).

A thermistor makes use of decrease of resistance of semiconductors with
temperature as exp (B/T). ' '

A thermocouple uses the variation of thermo—emf between two junction of
dissimilar metals maintained at different temperatures. The variation of E vs. ¢ is -
given by : . - -
. ' E = le + szz .
A radiation pyrometer is used for measuring extremely high temperatures. It
works by measuring the amount of radiation from the body whose temperature is

to be measured. It is not necessary to establish a physical contact between the body
and the sensor.

0

In the IPTS-68, various fixed points have been precisely defined so that any
thermometer can be accurately calibrated.

2

.9  TERMINAL QUESTIONS

1) Suppose the triple pointof water was assigned the value 491.69 degree instead of

2)

273.16 degree. Writc down the expression for T {X) in terms of property X of
the substance assumed to be varying in direct proportionality with temperature.
How is this scale related to the kelvin scale? Hence calculate the values of the ice
point and the steam point on the new scale.

(Note : The new scale is called Rankine and 1°R is equal to I°F.)

What is the thermo—emf across the two junctions_of a thermocouple with C, =

40.pVeC ' and C; = ~0.01 wV°C~? when jts hot junction is at 700°C with
respect to the cold junction? .

3} Which thermometer(s) will you like to use for measuring the temperature given

‘below?

(i) 60K (i) 250K (iii) 1000K (iv) 5000 K

" 4) Complete the following statements by filling in the blanks with abpropl;iate words :

-

‘1) Thermometers generally used as standard for calibration of other
- -thermemeters are _ _ o o . )
A L VR . } ST e e,
ii) Thermometers which cannot be used for measurement of continuously
varying temperature are

) NS A

However, such a temperature can be found using

© ... e P
() )

iii) The difference between the coefficients of linear expansion of the metals used
in a bimetallic strip should be as .......... Crheseeseer as possible.

Messarement of Temperninre
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_First Law

!

The Zevoth: ‘Law and the . W) A e e e ettt aans T.. 08 a thermomeler with

the help of which the temperature of an obyject can be measured without -
bringing the test object in contact witl the sensor. -

2.10 SOLUTIONS AND ANSWERS

1) a) Length of a liquid column. volume of a block, pressure of a 2as in a vessel of
) constant volume.

b} (i) Since absolute temperature scale reading T is 1.5 times the Celsius scale
reading t, we have ' ‘
T = 1.5t = 1t + 273.15.

1

Sblving this, we get -
{ = 546.30°C

and ‘
T = 819.45 K.

. | b) (i) This can never happen.

€) Here, length of the mercury column is the thermometric pré)perty. Thus, we
- have

Ao = 330cm, X, = 24.87 cm, X, = [8.53 cm,
Using Eq. (2.4), we get )
_ 18.53~3.30 o _ o i
2) T(E) = 273.16 (EIE,),

where E represents the thermo-emf of the thérmocouple, whose hot junction is

kept at the temperature to be measured and the cold junction is maintained at the
triple point of water.

3) A constant volume thermometer gives most reliable data if gas filled in it has p,,
close to zero. Here, itis given that pip,, vilue corresponding Lo P.p close to zero
is 1.36604. Now, for a constant volume gas thermometer

T = 273.16 (pip,,)
Substituting the given values, we get

T = (273.16 x 1.36604) K = 373.15 K.

s

4) (i) ~No
{ii) No
(iii)  Thermometer filled with N; at 3 mbar will give the value closest to the
: actual one. - - oo - - - o s oo e e o

(iv)  Weshall record pip,, for all the threc thermometers, plot graph between
these and p,,. The intercept of pip,, {or p,, = 0 gives actual value of pfp,,
which on multiplication with 273:16 will yield actual temperature.

5) It is given that
L . Py =..p!p(1_+qr) o
so that _
(= (Vo) (-2 -1)
o P )

-S-ubstltulin-g for o, we gt

_ 1 P P _
r = —1] = 21315 (2 —1)
3.661 x 1073 * Pip ! , j

ort + 273.15 = T =.273.15 (plp,,)

This is consistent with Eq. (2.12).cxcept that the multiplier is 273.15 instcad of -
273.16. .
_ Moreover, p, = 0 when
I'+ar =0 . .

40 ‘ - or = ~lla=-273.15°C.

|
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6) a) (i) resistance, temperature ' _ Meamrenent of Temperaimie
(i) calibration - '
(iii) cannot
(iv) negative
b) Writing resistance of semiconductor as R, we have

T .= 273.16 (R7R,)) .
= 1 _ Ly,
= 273.16exp [B( T T, )1
= 73.16exp[B(L - 1))
, - N T 27316
- ) low cost, small size, quick equilibrium.
(ii) thermo emf, temperature ' -

* Terminal Questions .

1) Assuming a property X of the substance to vary in direct proportionality with
temperature, we have

X =aT(X)
At the triple point T (X)) = 491.69° so that value of X at this tcmperature is given
by

X,p = 491.69 a.

' Using symbol R for this scale, we have
TR =X = 491,69 (x1X,,)

In order to determine its relationship with kelvin scale, we note that
TK = 273.16 (X/X,;)

Obviously,
' T°R _ _491.69 _
| TK ~ 27316 - M0
Ice point on the -new scale = (273.15 x 1.8000)°R = 491.67°R ‘ - i

Steam point on the new scale = (373.15 x 1.8000)°R = 671.67°R

2} Temperature dependence of thermo-emf for a thermocouple is given by
E=Cu+ Cf
Substltulmg the gwen values, we get
= (40 x 107% % 700 — 0.01 x 107 % x 700%)V = 2.3 x 10~V
3) (i) Constant-volume gas thermometer, Thermistor, Chromel-alumel
thcrmocouple

(i) Constant-volume gas thermometer, Pt-resistance lhermomeler
-Thermistor, Thermocouple Ce - < -

(iii) Constant-volume gas thermometer, Pt-resistance thermometer,
Thermocouple

(iv) Pyrometer
4) (i) (a) Constant-volume gas thermometer
(b). Pt-resistance thermometer

(u) {a) Constant-volume gas thermometer
. (b) Pt-resistance thermometer
(c) Thermistor
'(d) Thermocouple

(iii) large

(iv) radiation pyromecter
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UNIT 3 THE FIRST LAW OF
' THERMODYNAMICS

Structure
3.1 Introduction

Objectives
3.2 “'Heat i

‘Nature of Heat
3.3 - Work

Internal and External Work
3.4 Expressions for Work

- .A Gaseous System
Other Systems -
. 3.5  Path Dependence of Work and Heat

3.6 Internal Energy
3.7 The First Law of Thermodynamics

Differential foom of the First Law
3.8 Summafy
3.9  Terminal Questions -
3.10° Solutions and Answers
3.1 INTRODUCTION
In the previous unit yot;\:ave read about measurement of temperature. As you-Know,
the change of temperature of a system is an effect caused by way of exchange of heat.
Now, what is the nature of heat? This question puzzled many a mind for a long time.

- The answer to.this and many other related questions are contained in the first law of

thermodynamics, about which we will study in this unit. '
Energy reigns over everything that has been occurring around us, since time
immemorial. When ancient people had shot arrows or lighted fire they were unaware
that energy was being expended in different forms. Now we'know that these are
elastic potential energy and chemical energy, respectively. Since then we have come.
a long way. With the discovery of the principle of conservation of energy we have
realised the importance of energy in human life. The frst law of thermodynamics is
only an extension of this principle.
In the beginning of this unit we shali discuss about the nature of heat. Then you will -k

- -read about work from the thermodynamic point of view. You will see that work is
done when a gas is compressed or expanded or when a wire is under tension or when
a paramagnetic material is magnetised. B
Then we will establish that work and heat are interconvertible, and hepce equivalent
forms of energy. This aspect is responsible for the operation of all kinds of engines
on which we depénd so much. The first law of thermodynamics originates from this
idea of equivalence of work and heat. However, in addition to work and heat you
_will learn about another important function. Itis the internal energy of a body. The
“definition of this function will lead us to the formal statement of the first law of .
- thermodynamics’ We shall illustrate this law-with the help of a few simple-examples. -~~~ —
Finally, you will learn about its basic significance.
In the next unit we will discuss important applications of thé first law of -
thermodynantics. - R o e T

Objectives ' ' ' ' N
After studying this unit, you should be able to
® explain the nature of heat '

® explain the thermodynamic concept of work

-~

® compute work for several thermodynamic systems
® define internal energy and appreciate that it is a function of the state of the system
® understand the significance of the first law of thermodynamics.
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3.2 WEAT " - T e

We know.from experience that a glass of ice-cold water left on a table on a hot'

.Summer day ev- ntnally warms up whereas a cup of hot tea on-the same table cooIs

down. It mezns that when the temperature of the system, water or tea in this case,
ant its surrouzings are different, energy is exchanged between the system and the

._ surrounding medi.m, until thermal equilibrium is established. That is, energy

transfer continues till the body and the surrounding medium are at the same
temperature. We also know that in the case of cold water, energy flows from the.
environment to the glass, whereas 1n the case ot hot tea energy flows om the cup .
to the environment. In other words, the direction of eriergy transfer is always from
the body at higher temperature towards that at lower temperature. You may now
ask: In what form is energy being transferred? In the above cases energy is said to
be transferred in the form of heat. So; We can say that heat is the form of energy
transferred between two (or more) systems or a system and its surroundings by virtue
of temperature difference. The system at higher temperature is called source and the
one at lower temperature is called sink. But what is the very nature of this form of
energy? Let us discuss briefly-about that now. ’ :

3.2.1 Nature of Heat

Till the beginning of the nineteenth century, predominant view was that heat exists

iin every body in the form of a material substance, called caloric. It was believed that

a body at higher temperature contained more caloric than a body at a lower

* temperature. When a hot body was placed in contact with a cold body, the caloric

was believed to flow spontanecusly from the hotler to the colder body untll they

" attained thermal equilibrium.

However some observations of Count Rumford and Sir Humphrey Davy did not
agree with this idea. Davy rubbed two pieces of ice to get water. Now, how can you
explain this on the basis of the caloric concept? Ice must contain less caloric than
water and the process of rubbing leads to further squeezing of caloric out of the solid.
Thus the water formed due to the friction should contain less caloric than ice. This

contradicts the caloric theory.

Thus a negd for replacing the caloric theory was felt. [t was finally achieved in 1840
lhrough Joule’s work on the equivalence of heat and mechanjcal work. In Joule’s
experiment heat was produced by churning water contained in a cylinder by means
of brass paddles. This means that the mechanical energy of the paddles is converted
into heat. Now, how is this heat produced? It is by way of the chaotic motion of the
water molecules. Thus it could be established that some kind of molecular motion is
associated with heat.

In this connection you must note that in our daily life we often say that 2 cup of hot

_.heat are_two _different things. You will learn about the difference.in this_unit itself. . R [
’ . B o
' - - N . : - —-L-—..Q
Since heat is a directional quantity we adopt a sign convention to represent it. Heat ' s !
transferred to a system is positive while heat taken, from-a system is negalwe (Flg : A
* 3.1). However-you may recall from Sec. 1.4.3, that heat transfer for a process may ! O R
be such-that it is neither positive nor negative i.c.-it is zero. Such a process is called L _______t-_—_:-——-.“-
adlabatlc
Let us now take uﬁ an_exaraple based on the ideas discussed so far. . ~ Fig. .1: Sign conventien for hent.
l : . " §Is the system. For A, heat fiaws
’ into § ond it [s posilive. For B,
Example |1 . heat flaws out of 5 and It s
. e . - . N B . . negalive.
A potato Is initially at room temperature (30°C). It is baked in an oven maintained :
at 200°C. Considering the potato to be the system of interest, explain whether any
heat is transferred-during the process. . ' 13

coffee has heat, or there is tremendous heat in the sun. But henceforth we will use.
the word *heat’ only when il crosses the boundary of a system. Heat is an energy in
transit. It is wrong to say heat in a body. In Sec. 3.6 you will learn that when we
speak of heat in a body we essentially mean its internal energy. Inlernal energy and

o ——— L R o . T
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' The Zeroth Law and the Solution . o i
First Law v .

) The skin of the potato may be considered as the system boundary. Now owing to the

difference of temperature between the oven and the potato a part of the energy of

the oven will pass through the skin to the potato, in the form of heat.

You.may now like to answer the-following SAQ:
5AQ1 .

A well insultated furnace Fis being heated by means of its heating element H shown

in Fig. 3.2. Taking the entire furnace, including the heating element, 10 be a system,
. can you say if a heat transfer takes place?

From the answer to SAQ 1, you mist have realised that energy transfer can take

. place through the system boundary in a form other than heat. This form of energy is
called work. You will study it now. ’

Flg- 3.2 3.3 WORK
If energy crosses the boundary of a system and it is not in the form of heat, it must
be work. If the cause of transfer of cnergy is a temperature difference between the
system and the surroundings, then that form of energy is heat. So we can say that if

- the cnergy interaction is not caused by a temperature difference between the system
and the surroundings, it is work.

You may recall from your school science courses that from the point of view of -
mechanics work is said 10 be done when the point of application of a force moves. It
is measured by the product of the magnitude of the force and the projection.of the
displacement of the point of application in the direction of the force. As you know
it is given by (see Fig. 3.3) .

' W=F:s = Fscos®b.
We follow the same logic in thermodynamics. But here we make a classification of
work as follows.

Fig. 3.3: Work done =F scosd

3.3.1 Internal and External Work

If a system as a whole exerts a force on its surroundings so that a displacement takes
place, the work that is done either by or on the system is called external work. If gas
contained in a cylinder at uniform pressure expands it imparts motion to the piston
and does external work on its surroundings. On the other hand, the work done by a
part of the sysleni on another part is called internal work.

Internal work is of no consequence in thermodynamics. In thermodynamics by work
we essentially mean external work. Let ustake an example.. Suppose a rat climbs a

‘staircase. In principlc it performs some work. You must have noted that in this case
it utilises its own biochemical energy to perform this work. So it is an internal work. "
In other words, accordingto thermodynamics it does not perform any work. Similarly

- 1f a slorage battery is not in operation then the changes that take place in the cell,

* such as inter-diffusion of chemicals are not accompanicd by the performance of work.

If, however, the cell is connected to an external circuit, a current wil! flow in that
S circuit and-may cause a bulb to glow. Sv in-order that an-electric cell performs work = " ¢

it must be connected to an external circuit. .

4 The production of work by a system is considered as a desirablé effect and the
- - consumption-of work-is considered undesirable. Accordingly, the follawing™ ™ ~~ 77
_ convention is adopted. The work done by a system is positive and the work done on
——5 a system is negative. According to this convention, the work produced by car engines
————————— i or gas turbines is positive. And the work consumed by COMPressors oF mixers is
negative. . o S e e e

" Fig. 3.4: §is the system of Interest. . . E )
Aheatinput isllke adeposit. And ~ We can represent the convention.of sign for heat Q and work W in a schematic .-
work output js llke a withdrawal, diagram '(Fig_ 3.4).

There are n{any types of forces thai can do work on a system. Belore you study these,-
you may like to work out an SAQ. (Please do not get scared by the length of the
44 SAQ. It is indeed easy!), ' - : ’

T T
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" SAQ 2
a} Choose proper words from the parentheses to fill in the blanks in the statement
- given below.

. (displacement, force, inertia, negative, positive, work) .............. is said to be
done by a system and taken to be ........... vl ifitexerts anet ..l
on the surroundings, which causes a ..........c.........oeees )

b) Explain whether any work is done or not in the following processes:

{i) A magnet is brought near an electrical circuit carrying current. A change in
magnetisation takes place by way of realignment of the weber elements within
the magnet.

.(ii) A galvanometer coil is set into motion by sending a curreat through it.

c) What are the signs of work (i) we get from a steam engine (ii) done on an clectric
motor attached to a pump. - .

3.4 EXPRESSIONS FOR WORK

In thermodynamics, we express the work in terms of the state variables of the system,
This is done because it makes the analysis simple mathematically. To achieve this.
we have to ensure that the system is always near an equilibrium state, i.e., the process
“involved is quasistatic in"hature. With this in mind, we now proceed to determine
expressions for work done in various systems. -

3.4.1 A-Gaseous System -

Suppose we have mass M of a gas filled in a cylinder fitted with a frictionles:piston
on which both the system and the surroundings can act (Fig. 3.5). Let the area of the
cross-scction of the piston be A. If at any instant, the pressure exerted by the system
on the piston is p, the force on it is pA. This force pushes the piston outward. If the
piston moyes in the direction of the force through dx, we can write down the work
done by the -system as

8W = pA dx
You will note that Adx is the increase in volume of the system caused by the outward
movement of the piston. Writing Adx = dV, we have

BW = pdV. (3.1)

Now go back to Sec. 1.4.2 and read its third paragraph. You will realise that we have
to assume that the system expands quasistatically, say from volume V; to V. In other
words, V; and V,are the initial and final volumes, respectively. Then the total work
done by the gaseous system on its surroundings is given by
) Y ~
AWr =-fpdv ' (3-2)
v - . . -
‘Now, for evaluating the integral in-Eq. (3.2) we need to know how p depends on V.
This s given by the nature of the process. N

You would recall from Sec. 1.4.3, that at any instant we can showp and V as a point
‘on the indicator diagram. The line joining thESé'poiht's"inves the path of the expansion
process (Fig. 3.6). The exact shape of this line depends on the nature of the variation
of p with V. Refer to Fig. 3.6. You would note that pdV represents the arca of the

"shaded strip. Categorically, AW, is the sum of the area of the strips obtained for all .
" ‘thé infinitesimal changes from the initial to the final state. Thisis simply the area under
the p—V diagram of the system énclosed by the V-axis and the values of p

corresponding o the initial and final states.
G | )
‘Letus now calculate the work done by a gaseous system for an isothermal expansion

{or compression) of an ideal gas. You would recall that this system obeys the equation
of state

pVY = nuRT,
where the symbols have their usual meanings. R

IR

! Flg. 3.5: Work done during

expansion of a’gaseous system. i
and fstand respectively for the
Initlal and final states.

A Convenlion .

You will learn that quantitics like
work { W) and heat ((2) arc not
functions of the state, whereas
internal energy (U) is a function
of the state. An infinitesimal
change in the value of a quantity,
which is not a state function, is
indicated by putting the symbol &
on the left side of the quantity. of
interest. Some texts use the
symbol " The infinitesimal .
change in 2 quantity, which is a
state function, is indicated by
putting the symbol d on the leit
side of the concerned quantity.
Hence an infinitesimal work is 8W
or ar infinitesimal heat given 1o a
system is Q. whereas an
infinitesimal change in interal

energy isdl/. - - —
5 TEY is

NPV

Fig. 3.6; p-V diagram for a
gaseous system undergoing
expanslon.
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The Zerpth Law and (he

/ * -
Substituting for p in Eq. (3.1) and using subscript T to indicate

cbnstancy of

. it Law temperature (isothermal change), we get . ‘
- ‘ L ) 8Wr = (hRTIV) dV , (3.3)
Hence, using Eq. (3.2) we get, - .
. AWT = nRTIn (VP"V;) i (3.4)
p _ = 2.303 nRT log (V,/V,)
This equation tells us that when a given quantity of gas undergoes isothermal_
expansion, the work done by it depends on the temperature T and the expansion ratio
of final to initial volumes, (V¢/ V). During expansion Vi> V,, 50 that A Wy is
positive and it is shown by the shaded area in Fig. 3.7. On the other hand when the
gas is compressed, V, < V, and AWy is negative implying that work is done on the
system. This too will be given by the area of the same shaded portion.
Vi Vi V' Next, suppose that the gas has undergone an isochoric process. In this case, dV =0

- o S0 that 8W = pdV = 0, i.e., no work is done in an isochoric process.
* Fig. 3.7: Work done by an ideal’
- gas [n ispthermal expansion.

To enable you to grasp this conééjfsts, let us work out an example.
- ' Example 2 ' '

Two moles of-a perfect gas at standard temper'ature and pressure are first expanded
isothermally to 3 times its original volume. Then it is compressed isochorically till its
pressure attains the starting value. Calculate the total work done, given
R=83JK 'mol™!,
Solution .
Work done by the gas during isothermal expansion = aRT In (V,/V,)
Here V;él{',- = 3. Hence, .
AWr=2(mol) x 83JK 'mol™") x (273K) In 3 = 5.0 x 10 }
Work done during isochoric process = 0
Hence, total work done by the gas = 5.0 x 10 J.
You mafy now like to work out an SAQ before we discuss work done in several other
systems. -
- SAQ 3
a) Show that Eq. (3.9)
AWr =-nRT In (p;ipy)
b) A gaseous system expands from volume V), to V, under isobaric conditions.
Calculate the work done in this process. Also show it on an indicator diagram.

ey

3.4.2 Other Systems

-Suppose we have a-wire whose one end is fixed and'thé other end issubjected toan
instantaneous tension F.-This tension causes the length of the wire to change from L
to L + dL. Then the work done is given by -

L iy SWr = FdL (3.5)
The minus sign signifies that dZ indicates an extension of the wire for which work

must be deone on the wire. . o L

If the change fr_z r-f-re lengih of the wire is from L; to L; in a quasistatic manner, the
_total work done on the wire is given by
© AWg = fF dL (3.6)
. LJ' ) .
- Analogous to'Eqs. (3.1) and (3.5) we can have the expressions of work done for the
following cases: (i) by an electric cell during a transfer of charge dg, (iiona
paramagnetic material placed‘in a magréric field in increasing its magnetisation by
dM. :
For _éa_r,e (i), we have )
8Wg = — Edg, " (3.7
46 where E is the e.m.f. of the cell T
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i :
For case (i), we have . Thiermody namics

| 8Wy = — VB,dM, - (3.8) .
where B is the applled magnetic field and V is the volume of the material. ’

‘We shall now 1Ilustrate the above expressions with 2 couple of numencal examples. .

Example 3
A steel wire of length 2.5 m and area of cross-section 2.5 X 10~ m? is suspended

- from a'torsion head. Its length is increased by hanging a weight of 5 kg with the free

end. Detemmine the work done on the wire. Young’ smoduius of steel is

2 x 10“ -2, ' _ .

B4

Solution
We know that the Iongitudinal strain produced in a wire is given by
longitudinal strain = longitudinal stresszoung s modulus. . -

dL _ Fia
or L Y
Subshtutmg various values, we get _ , _
5% 9.8N 2.5 - The valie of 4L has to be
dl, = % = { - 82 ) % ( ml)[ = roundgﬁiﬂ' 1o two significant
: (25%107°m?) x (2 x 10! Nm ) . digits. Here we have a special case
— 4 as the digit to be discarded s 5.
=245x107"m =24%x107"m * By convention, we hdve rounded

. ] off to the nearest even number.
Hence, the work done by the wire on being stretched is given by

8Wrp = —FdL = —(5 X 9.8 N) X (2.4 X 10™% m)
= —-12x10727J.
Negative sign shows that work is done on the wire.

Example '4, - - A paramagnetic substance when

Magnetic susceptibility of a paramagnetic substance varies with temperature as, Placed in an ¢xternal magnetic

x ='C/T, whiere C is a constant (Curie’s law). Show that the work done on a ﬁl?ld '1;5_3 ‘E"dgf“’? to Sﬂf?}’;akly -
aljgned 1n the direction of the

paramagneu:: material during a quasistatic isothermal change in magnetisation from external field. The susceptibility

M; to M is given by of such a substance is given by

_ M
- B2) Zﬂﬂ,_g/(Mz Mz)r X="H-"
where H is the magnetising Reld

and M is the intensity of
magnetisation. It has a very low

Use this result to evaluate the work done on a sample having

x=90x10"*NA " "m 'T " at 2.1 K and volume 2 x 10~ m® when it is (positive) value.
magnetised by increasing the applied flux density slowly from 0.7 Tto 1.2 T
maintaining temperature at 2.1 K. - ) ' The notation T is used for
(np = 12.57 x 1077 NA™Y) , temperature in kelvin scale. Its
. unit is kelvie (K). In Example- 4
.- Solution - - .. .. AR - : - T stands for tesla which is the unlf”

of magnetic induction or flux '

"Work done by a paramagnetlc sample of volume V in developing magneﬂsahon dM  encity and is equivalent 16

' B,
Here, M = xB, rfp.o = ( Q) T‘ so that under 1sothermal conditions

in the applied flux density B, = pyH is given by
Wy = —V B, dM

weberm™ %y = %, where M is

the magnetic moment per umnit
volume. Unit of magneu'b

T/ ng _.moment is equivalent ta that of
~dM = (Clpg T) dB, When B,is ehanged from B,,; to Ba , the work done by the —lorque
sample is magnetic '|_ndu_ctmn

Hence it is Nm T )
AWy = -V _ _ ,S-oumloEMrstx m e -
' B, MT _ Nm7*T7 and the bt of
HisAm™
= - _C.V_ 2 _ -
“'0 (B B I) Sothe ul'ntn::f;».:151-"-"ZL1
: Am
. . Y RPN
. cv ».T ie NA- 'm'T
—“_—{( Mf)z_ (_'E-_Mi)z] ' )
) During demagnetisation (A4 > M)
. b TV ) " work is done by the substance,
=~ ¢ (Mp-m) a7
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Flrsi Law

NA™'m ™' T~ T
NA™?

= ATm?

w A {weber)

A V-5"

={As) (V)

. = coloumnb veolt

= joule

. dog .
:‘=7?-.1.e. dg = idi

Negative sign shows that work is done on the material during magnetisation
(M;> M,). Note thiut we started with the expression for work done by the material
and ended up with the-negative sign. So the required expression for work done on

the sample is
AWy =S¥ (2 ~ p2y _BTV (M2~ M3
M 2 T T of al 2C ! i’ -
Now, in the given nunwerleal problem,
x= % =90x10NA" m b, V=2x10"*m

Buy=0.7T, By=12Tandpy=12.57x10"7 N A2
Therefore, work done on the sample is given by

Aw. - €V
AW =—F 55 (85— B

—dpad ]
= OX10NA" m ! T x (2 X 10~ *m’) X (122 - 0.7%) T2
681, : CX 1257 x 10 NA-D) - -

You may now like to work out a simple SAQ to understand thejlandling of the
expressions for work done.

S5AQ 4

Determine the work done by a Lcclarnche colt of emf 1.40 V., which supplies a
constant current of 150 mA for 1 minute.

Jn the following tahle, we have given for your ready reference the expressions for
work done for several systems. Symbols have their usual meanings.

Table 3.1: Expreasions of work for several systems

S0, now, you are abl¢ 1o determine work done during several thermodynamic
processes. Let us now examine whether work and heat are dependent on the p- .h o.
a process or not. :

3.5 PATH DEPENDENCE OF WORK AND HEAT

You have come to know from Sec. 3.4.1 that the work done by a gaseous system can
be represented by the area under the p-V diagram of the system from the initial to

System + lufiniresinral Work done during e process
P owark (BIV) (AW) )
- _ "
Gaseous pV Expansion from volume Vto V,: AW, = [pd v
. - VB, dM Increase in magnetisation from
Paramagnetic o
substance ’
- M,toM;:AWM=-V£B,,dM
: )
-sd4 - Increase tn surface area from
Surface Film a
I
A;lOA!: &W,z - JS{_’A_ _
—rFdiL Increase in length of a wire from
Streiched .
Wire !
LiytoLp: AWp=— IFdL
. _Edy. . Possage ol a current i through an electrie céll during the — | - -
Elcctric . : ;
Cell . ff
interval of time 10 4p: AW, = — jEf‘dr
B . LA

______




the final state. Now refer to Fig. 3.8. The work done for the process ACS is equal
to the area ACBFG, and that during the processes ADB and AEB are the arcas
DBFG and AEF’G:espectively. Since these areas are not equal, the work done during
these processes are not.spme..So work done depends on the path taken, i.c. work
does not depend only on the initial and final state variables of a process. In other
words, work ig not a function of the state. Is the same true about heat? To understand

this let us take a simple example. - - : -
or

.Suppose you have milk at 30°C in a glass and you wish to' faise.ils temperature by
5°C. This can be done by adding heat te it, or churning it vigorously, or.ky, doing a
combination of heating and churning, However, in all cases we ultimately arrive at a
state which can be defined as milk at 35°C. And in all cases the initial state can be
defined as milk at 30°C. The processes connecting these states were different and the
quantities of heat given to the system for the three processes were not the same. So
we can say that heat given to a system is dependent on the process. So it is dependent
on the path taken between the initial and final states and is hence not a function of

. the state of the systenr,

You must have observed that in the preceding example work done on the system was
also not the same in all cases. This is not unexpected as we have already established
that work is not a function of the state. Now, can therc be any function whose value
changes by the same amouat during these processes, so that itis independent of the
path between the states? Yes, such a function does exist. It is known as internal
energy. Let us now discuss it in some detail.

3.6 INTERNAL ENERGY

The internal energy of a system is the sum of the cnergies of the individual
components of the system. This includes their kinetic encrgy due to random motion
and their potential energies due to interactions amongst themselves. For example,
the internal energy of a metallic rod is made up of the kinetic energies of the
conduction electrons, the potential energies of atoms of the metal and the vibrational
energies about their equilibrium positions (Fig. 3.9).

Fig. 3.9: The internnl energy of a meltallic red which I_ncludes kinelic encrgles of the conduction electrons
(¢7) and the vibrational energies of the atoms of the metal.

~Internal energy is a state function. It depends only on the state variables like
temperature, pressure and volume. You may say that work done in a £aseous system
also depends on these variables. But work done is not a state function. For this you

- read-the second sentence of this paragraph again. The €rmiphasis thefe is on the word
‘only’. Work done depends on the path ajso. To understand this concepl better let
.us refer back to the example we had considered in Sec. 3.4. By incrcasing the
temperature of milk by 5°C, the movément of the molecules comprising the milk is

. made more vigorous. In other words, its internal cnergy is raised. Since in each casc -
the temperature increases by the same amount, the changes in internal éncrgy arc
also the same. So whatever might the heat and work input be to raise the temperature
of milk by 5°C, the change in internal energy is always the same. This suggests that
internal energy is a function of the state of the system. You may now like to work-
out an SAQ on this concept. ’

The First Law of
Thermody namics
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Fig. 3.8: The polnts A and B, are
connccled by several paths. The
path ACH indlcates a peneral
process. The path ADB is'the
combination of an isobarlc and an
isochoric process, wherens the .
path AEB is the cambination of an
Isochoric and an Isobare Process,
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.-be exprissed as 4200 We sav that .

The Zeroth Law ond Lhe
First Law

p

D
A

v

Fig. 3.10 : A exclic process

Whenever heat is converted into
any ather form of enerpy (us in a
steim cnging) or vice versi (us in

" an electrical heater) in each form

il is equivalent. If a quantity of
heat, ( is completely converted
inlo work, 1%, then W iy
cquivalent to @ and

W .

—. = u constant is known as the
@ . _

- mechanical equivalent of heas: 11is
deaaled by S and ity vadue s
approximately vyual to 4.2 joules
cal™ '._Thus I ealerie of heat cun

I cal. of hear cxpressed in work
umit is 4 2J: [Likewise work can he
expressed in hueil units, In our
blocks. while discussing a
partivular_prolilem, we shull .
express work and heat in the saise
unils, t.e. either both in work
units or both in heat units.
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So far we have seen that heat and work in

. be AW so that the work donc on the system is — AW,

-8AQ S5

a) From the kinetic theory of gases we know that there is no intermolecular force
between the mofecules of an ideal gas. Use this idea to prove that the internal
energy of an ideal gas depends on temperature only.

b} Show that the change in internal coergy during a cyclic process (Fig. 3.10) is zere.,

puts into a system cause its internal energy
th.c system or some work is done by the
Fig. 3.11 we have shown schematically the

(o rise. Likewise, if heat is taken out of

case of Fig. 3.11cis referred to as diffusive interaction. It will not be of much interest

for systems we shall be dealing with in this block. So we shal] not touch upon it

DR

AN

¥ig. .11 : The three k;nds of processes lhrnugl{ which the internal energy of # system may be char]gud.
{a) Adding heat energy (b} Daing work on it and (c) Adding particles (¢ it

We shall now invoke the good old principle of conservation of encrgy to analyse the
aspect of change of intcrnal cnergy and in the process we shall arrive at the first law
of thermodynamics.

3.7 THE FIRST LAW OF THERMODYNAMICS

The principle of conservation of energy states that *Energy can neither be created
nor destroyed; it can be transformed [rom one form to another, the 1otal amount of
energy (in this universe) remaining constant.” Now according 1o this principle. we
cannot get energy out of nowhere. Il‘ener"gy of a system increases, there nuglit to have
been an equivalent ¢snenditure of energy. o Tt e

Let vs again consider the example of raising the temperature of milk. You can say
that internal energy of the milk can be increased in three ways (i) only by way of heat
input, (ii) only by way of work input and {iii) a combination of heat and work inpul,
For (i), let the heat absorbed by the system be AQ'. The work done on the system
is zero and so the work done by the systemis also zero. For (ii) the heat absorbed is

‘zero! Lét the work done by the'sysiém be AW’ so that the work done on the system ™~

is — AW’ For (iii} et the heat absorbed be A Q and let the work done by the system .

We Know that the. changé in'internal énergy is same-in all cases, Let that he A (/.
Here all the quantities are expressed in heat units. Now. from the principle of
conservation of ¢nergy, we must have :

Increase in-internal energy =_(Heat, qbsorb_cd)lll- (work done on the system)
i.e. AU = AQ = -AW = AQ + (- AW)
or AU = AQ - AW. -

Eq. (3.9} can be considered as the mathematical 1ormn of the first law of
thermodynamics when diffusive interaction is neglected. Unless otherwise stated, we

(3.9)
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shall assume that diffusive interaction is absent. The formal statement of the first law

is us follows: ‘Internal energy of a system is a function of the state of the system and,

its change during a thermodynamic process is equal to the sum of the heat given to the

system and the work done on the system.’ Thus, according to this law, we can say that

for thermodynamic processes taking place between two particular states, the

difference between the heat absorbed and the work done by the system is always a
- constant and is equal to the change in internal energy of the system.

Now look at Fig. 3.12 and read its caption carefully to understand an illustration of
the first law of thermodynamics. -

(compress)

AQ =0; AW > 0;

N

aw =680 %o, B2

. (b)

Fig. 3.12: Hlustrstion pr two quite dilferer t paihs for gelting from the same inilia! state to the same final

state. {a) The iron bar is put into the clamp and then compressed. In this process, work is done on the iron
bar, but no heat encrpy is added or removed. (AW + 0; AQ = 0). (b) The iron bar may frst be cooled
50 that il controcts and cnn be slipped into the clamp thal has been olready adjusted for the desired fnal
length. Then heat can be added to bring the tempersture up io the desired final temperature. In doing thls,
the bar expands and gels stuck in the clamp. In tiils process, no work is done on the bor, bt there s
spme net heat transfer. (AW=0; AQ # 0. In both processes the iron bar ends up at the same final
lemperature and pressure.

~ Letus now take _t\;m numerical exa:ﬁples to illustrate the first law of thermodynamics.

In the first example you will have to apply the idea that the change ininternal energy -

betwcen two smes is mdependent of the path conmecling the states.

LY

Example 5

" Referto Flg 3.13 when asystem'is taken from state f lo state f along the path iaf, il
is found that AQ = 45 cal and AW = 20 cal. Along the path :bf AQ = 30 cal.
- 2} what is AW along the path ibf?
b) AW = =13 cal for the curved return path. ff, whatis AQ fcu this path"
c) Taking U; = 10 cal, what is U;?
&Iy, = 21 cal, what are_ AQ' s for the processcs ib arid bf"

Solulion ] )
a) "We kinow that, U, ~ U; = a constant indepéndent of the path joining { and f.
For iaf, AQ = 45 cal, AW = 20 cal. So from Eq. (3.9), we get
= (45-20) cal = 25 cal.
Uy~ U; =25 cal.

The Flrat {aw of
Thermodynamies

¥ig. 3.13
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The Zeroth Law and ihe
Flrst Law -

Fig. 3.15

Eq. (3.12) is called the differential form of the first law. Let us illustrate this with an

~ example.

Example 7

a) Using the symbols used in the text. write*down the’ dlfferentlal form of the first
law of thermodynamics for the followmyg systems :
(i) A gas in a cylinder filled with'a piston
(ii) A wire under tension

b) A sample of a perfect gas is subjected to a series of quasistatic changes shown in
the p-V diagram (Fig. 3.15) and explained below :

(i) along AB: isothermal, (ii) along BC: isochoric, (iii) along CD: adiabatic
Let dV, dp, dT, and dU, respectively be the changes in volume, pressure,
temperature and internal energy, and let 3W and 80, respectively be the work done

by and heat added to the system. Complete the following Table (3.2) with 0, — or +
in the blanks to indicate no change, decrease or increase in the appropriate quantity.

Tabte 3.2
Path av dp T sW 30 du
AB |
BC
cD
Solution

a) () 8Q = dU + pdV
i) 8Q = dU + FdL

b) i) Path AB: Along this path the gas is compressed isothermally so that 4T is 0.
Again as [Jis a function of T only for a perfect gas, dU is also 0, dp is + and
dV as well as 8W are —. Clearly, 8Q ( = 8W) is also —.

i) Path BC: Along this path pressure increases at the same volume so that 4V
= 0 and dp is +. Also 8W = pdV = 0. Now, pressure can be increased
isochorically only by heating the gas so that 8Q is +, which makes dT + and
from dU = 80 — 8W, dU/ is also +.

iii) Path CD: This being the path for an adiabatic expansion of the gas, dVis +,
dp/is — and W is + whil€ 802 = 0. Heat given to the system is zero and
moreover, work is done by the system. So, energy flows out of the system
boundary. This causes cooling of the gas so that ¢T is — and dU s also —.

The complete Table (3.3) will hence be as follows

" Table3.3
Path d¥ dp d™~ i1 8¢ duU
AB - + 0 - - 0
BC . 0 £ 0 + +
Ccu. . + - - + . 0. -

You rna:,r now work out an SAQ on the above concept The SAQ may appear tobe

lengthy. Bt do not get scared by lhat It is very simple.”

SAQ 7

a) Write down the mathematical form for the first law of tHermodynamlcs applied
to a thermally insulated system and comment on the nature of change in its
internal energy.

Ib) Usmg the symbo]s cmployed in the text, write down the mathematical form of the

first law of thermodynamics for the following systems.

v e
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(i) A paramagnetic substance in.a region of magnetic flux density B,., (ii) An
electric cell, and (iii) a perfect gas expanding into vacuum under isothermal
conditions.

¢) Fill in the blanks 1n the following sentence: -
A PrOCESS i5 «...ooevreunnn,.. if 8Q = dU,............ ifdU = —8W.and ............. if

30 = s8W..
d) Suppose youplace a tray filled with water in a freezer. What will be the signs of
5W, 82 and dU for the contents of the tray? Justify your answer.

We shall now wind up this unit. But befure we_do so let us see what are the
significances of the first law. ’ .

The first law is not a new law. It is an extersion of the principle of conservation of
energy. If a machine could have been built so- that it would have been able to do
work without any input of energy then it c6:1d have run perpetually. For making it
work, it would have just been required to gl ¢ it a start. Such a machine is called a
perpetual motion machine of the first kind. . he first law rules out such a machine.
The fact that it has not yet been possibie tt‘.'_Btiild such a machine, forms an '
experimental basis of the first law. .

However, the first law takes into account a function of state of the system, i.c.
intcrnal energy. Tt shows that the difference of two inexact differentials of heat and
work is equal to an exact differential, that of internat cnergy.

In this unit we have introduced the {irst law and have studied a few illustrations. You
will learn about a wide variety of applications of this taw in the next unit.

3.8 SUMMARY

¢ Heat is the form of encrgy that is transferred between systems or a system and its
surroundings by virtue of temperature difference.

® Heat added to a system is considered positive and heat taken away is considered
negative, '

-# Ilan energy interaction between a systern and its surroundings lakes place not by

way of difference of temperature then it is called work.

® Work donc by a thermodynamic system is 1aken to be positive and that done on
il as negative,’ .

® A thermodynamic system of constant mass that exerts pressure on its surroundings - -
is called a chemical system.

® The following are the expressions for work done in different systems, which have

undergone a finite change. )
: v

' f
Expansion of a guseous system : AW, = _[pdV.

T

Isothermal expansion of a perfect gas : AW, = nRT In (V,iv)).

s
r
JAowire under tension . W = —--J-Fa’L.
’ T L
i
My
Paramagnetic substance placed . 2 region of flux density B, : AWy = — VfBa dM
M,
An electric cell supplying currcnt { at constant emf E: AWy = —f Eide

%

@ Work done by or on the system during a process or heat absorbed or evolved by

asystem during a process are path dependent. Work and heat are not functions of
the state of the system. ' '

The First Law of
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The Zeroth Law and the
First Law
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¢ The internal.energy of a system is the sum of the energies of the individual -

¢lements of the.system. It is-a function of the state of the system.

® First law of thermodynamics states that when a system undergoes a process, its
. internal energy changes by an amount equal to the difference in the quantity of

heat transferred to and the work done by it and the change in internal energy is
the same for all process connecting the same initial and final states.

® The differential form of the first law is given by

82 = dU + 8W

3.9 TERMINAL QUESTIONS

1.

Use the definition of heat learnt inSec. 3.2 to definé a source of heat a
temperature 7', and a sink of heat at temperature T>. '

. Twomoles of a Eerfec;t gas occupy a volume of 0.050 m* and exert a pressure of
2.6 X 10° N m™* Itis compressed isobarically to 0.035 m?® Determine the work
done by the gas and the fall in its temperature. (Given R = 8.3 ] K~! mol™ .

A perfect gas at 300 K occupies a volume of 0.2 m® at a pressure of

5% 10° N m~2 It is allowed to expand isothermally until its volume is 0.5 m”.
Next, the gas is compressed isobarically upto its original volume. Finally, the
pressure is increased isochorically until the gas returns to its initial state. Plot the
process on the indicator diagram and determine the work done during the cycle.

For normal growth of a child, internal energy must increasc. Comment on
this statement, ) . .

Suppose yoir have 500 g of water in a perfectly insulated container and stir it
gently. Assuming it to be a thermodynamic system, fill in the blanks in the
followine sentences by choosing appropriate word(s) from the bracket after each
statement. '

) Heat.....ococvvrviiinnnnnn. from or to the system (flows, does not flow)

i) Workisdone .........ooooeeeeeeennnenn.o., the system {(on, by)

iii) Temperature of the system ........................c.o.. (rises, falls)

iv) Change ininternal energy of the systemis .................... eereraen, v
{(positive, negative).

A system is subjected to four types of processes depicted in the Table 3.4.

Fill-up the blanks for each process if the entries already made are in joules. -

Table 3.4

T

Process

Heat added
[ """BQ R

Work done |
e gW e o e
1 . Initial Final
U; Uf

Internal energy hany

internal
' energy dU/

Changein |

.-.-.-1I.|| fn T AN T

1

I — 30 ' 30 R—

1
I

0 0 — )

— 0 —
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1310 _SOLUTIONS AND ANSWERS

SAQs - -

1. For this problem the interior surfaces of the oven form the system boundary. The

energy content of the oven inéreases as-evidenced by rise in'its temperature.
This energy transfer to the furnace is not caused due to a° temperature difference

_between the furnace and the surrounding air. So the enerpy transfer is not heat.

Here, the energy transfer is caused by the flow of electrons along the. heating-
element and this takes place across the system boundary. So this is an energy
transfer of a different kind. - :

b ol




2. a) Work, positive, foree, displacement.

b) i) Here the system of iriterest is the magner. 1n this case some internal
adjustments take place within the magpet, So no work is done.
if) In this case current flows into the coil from its surroundings-4nd the coil is
set into rotation. So work is done.

0 @) .+, (i) —.

. a) For an ideal gas undergoing isothermal procéss from state (p;, V;) 1o state

(pp Vy) we have pV, = p,V, Therefore, Vi /Vy = p;iprand this,f;on
substitution into Eq. (3.4) yields |
AWT-= nRT In (p;lpf) -

b) Since the system expands from volume V', to V;, at constant pressure, we have

VZ V‘Z .
AW, = [sW = [pav = p (V2= V) = pav
. V:I VI
On the indicator diagram, the path is a straight line parallel 1o the V-axis and
the work done by the system is indicated by the shaded area in Fig. 3.16.

K

. Weknow that current is given by i = g or dg_ = idt. Hence, the work done by

dt
an electric cell of emf E in supplying constant current i from time f to Ipis

Ir
AW = —fE:'dr = —Ei(4—1;)
I

Substituting differcnt‘values, we get
AW = —140V X 0.15A x60s = 12.6 1.

- a) Uis a function of state, and is in general a function of p, ‘P;, T. We have'to

prove that for an ideal gas U depends on T only. I U/ depends on V, then on
increasing the volume of the system, U should change. Now on increasing the
volume, the intermolecular spacing increases. Had there been an attractive
intermolecular force, this increase of spacing would have led to work: being
done against that force and the internal energy of the system would have
increased. Had there been a repulsive intermoledular force, U would have
decreased. But since there is no force, {/ will not change at all. Hence.t/ does
not depend on V. Similarly, it can be proved that U does not depend on p. So
it depends on 7 only.

b) Referto Fig. 3.17. It is the replica of Fig. 3.10. During the process ACB, the
- change in internal energy is (Up — U,) and that during the process BDA is
(U4 — Ug). So the overall change during the cyclic process ACBDA is given

. The-diet consumed is like heat supplied and energy spentis the work done by the

system. Thus, ‘
5Q = 10" J per day
" 8W = 1.2 x 10* J per-day
Therefore, change in internal energy per day is given by
dU = 8Q ~ sW
= (1.0 x 10* — 1.2 x 10%) )
= —-20x10°]J

This decrease corresponds to loss of sucrose. Therefore, sucrose lost per day

= 2.0x10
1.6 x 104
=.0.125 kg,

il

kg

Hence, number of days required for the loss of 1 kg = Ti35 1125 = 8.

. a) For a thermally insulated or adiabatic system 8Q = 0so that kq. (3.12)

becomes dU = — 8W. Thus, decrease in internal energy of a thermally isolated
system is equal to the work done by the system and the increase in internal
energy is equal to work done on the system. Moreover, since d{/ depends onlj_;

e

Fig. 3.16

(volt) (ampere) (sec)
= (volt} {coulomb)
= joule
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. UNIT 4 APPLICATIONS OF THE FIRST
LAW OF THERMODYNAMICS

Structure

4.1 Introduction
Objectives
4.2 Difference of Heat Capacities of a Gas
4.3 Equation of State for Adiabatic Processes
The Adiabatic Lapse Rate: Convective Equilibrium . -
The Speed of Sound
Adiabatic and Isathermal Elasticities
4.4 The Enthalpy -
4.4.1 Enthalpy and Chemical Processas
4.4.2 Standard Enthalpy Changes
4.4.3 Enthalpy of Reaction
4.5 HessfsI szlw
4.6 Summary
4.7 ‘Terminal Questions
4.8 'Solutions and Answers

4.1 INTRODUCTION

In Unit 3 you have learnt the first law of thermodynamics. It is essentially an
extension of the principle of conservation of energy for thermodynamic processes. It
tells us thiat heat and other forms of energy are equivalent. Do you know that much
of our world works because of this equivalence? Mosl of the electrical energy that
lights our houses, operates machines and runs trajns originates in heat. This heat is
released in burning of coal, oil; gas or fissioning of uranium.

i

In a sense, this law is universal and explains phencniena observed in nature as well
- @sin a laboratory. The fall in temperature as we-move upward in outer atmosphere
" —a very large scale phenomenon — is explained rather well. Using this law we can

also explain the pressure oscillations in a sound wave. Its application to flow processes

and chemical reactions is also very interesting. In spitc of its wide ulility, this law has
inherent limitations, It gives us no information about the direction ot flow of heat.

This information is contained in the second law of thermodynamics, which you wil

study in Block 2.of this course.

In this unit you will learn to apply the first law to diverse thermodynamic systems.- -
In Sec. 4.2'we start by computing the heat capacities at constant pressure and constant
volume for an ideal gas. For any substance, this difference can be related to
measurable quantities like volume expansion coefficient and bulk modulus of
elasticity. In Sec. 4.3 we have used this law to derive the equation of state for
adiabatic processes. Using this equation, we have computed an expression for the
adiabatic lapse rate. In Sec. 4.4 we have introduced the concept of enthalpy —a
function of state. It is useful in discussing-production of low’ temperatures and
regenerative cooling as well as chemical reactions. You will learn more about

enthalpy in the next block.
Objectives-
After studying this unit, you will be able o

® compute the difference between heat capacities at constant pressure and at
constant volume :

derive the equation of state for an adiabatic process
® cxplain adiabatic lapse rate

® compute expressions for velocity of sound in air

® define enthalpy and usc it to study chemical reactions
® State Hess's Law. | '
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InUnit 3 you learnt to establish the first law of thermodynamics and compute changes
in internal energy when a substance undergoes a change of state. In th's unit we will

"apply this law to diverse physical systems. Let us first consider a gaseous system. You
would recall that the heat capacity of ideal gases is independent of the nature of the
gas. But physical conditions under which heat is given change the value of heat
capacity of a gas. Is the same true for liquids and solids? To discover the answer to
ihis question let us calculate the difference between heat capacities of gases at
constant pressure and at constant volume.

4.2 DIFFERENCE OF HEAT CAPACITIES OF A GAS

!

From Unit 3:you would recall that in the absence of diffusive interactions, the first
law of thermodynamics for a gaseous system has the form

80 = dU + pdV . . (4.1)

This means that heat 80 given to a system at constant pressure (i:obaric process).
changes its internal energy by dU and volume by 4V.

Let us assume that one mole of a'gas is contained in a cylinder fitted with a piston.
In Unit 1 you learnt that the state of a gas can be described in terms of any two -
thermodynamic coordinates out of P, Vand T. Let uschoose Tand V as independent
variables. Since internal energy is a function of state, we can write

['= U(T, V)
Then the’ diff zrential of U can be writte:l'n as

s

dU = 3”) dT + (ﬂ) av (4.2)
v T

aT v
ine symbol 3 is pronounced as del. It denotes a partial derivative.

On combining Egs. (4.1) and (4.2), you can write
= (AU} 4 22U -
5Q = (aT)V 4T + [p + (av)r] dv (4.3

You can now imagine that the piston is tightly clamped. As we heat the gas, it cannot
expand, i.e. it cannot do any work and all the heat goes to raise its internal energy
and hence temperature. The heat required fo raise the temperature of one mole of a
gas through one degree when its volume is kept constant is termed as molar heat
capacity at constant volume, It is denoted by the svmbol C and is generally expressed
in J mol ~2 K™, For such a system Eaq. (4.3) reduces to . - '

- SQ) ( al ) '
wy = (_ = | . (4.4)
T/, T/,

The diff+ .ent symbols have been used to depict changes in Heat and temperature. We
-have done so because heat is not a function of state. -

Now suppose that the piston is allowed to move in or out so that the gas is kept at
constant pressure. The gas does work on the piston and some of the heat ends up as
rhechanical energy of the surroundings. So to achieve a given change in temperature,
more heat has to be supplied to the gas in a constant pressure process. The molar

. heat capacity of a gas.at constant pressure is deflned as the amount of heat required
to raise the température of one mole of gas by one degree. It is denoted by the symbol
Cp- Mathematically, we can write '

_ (3 .
C, = (?f)p . o . (4.5)
On combining Egs. (4.3) and (4.5), you will get
=TaU 124 oV
Co "ra?‘)v + [ (59) + r} ()
A T P

Using Eq. (4.4) we find that -

comco= [ (38), + 7 (39

Appilcations of the First .Law of
Thermodynamies

Since heat is not a state variable,
we have put b before (2'to denote
changes in heat content of a
system,

You may recall that heat capacity
varies from substancgé-to
substance. [t varies with
temperature and amount of the
substance as well, The latter is
measared In'kg or by the numbey:
of moles, The ‘corresponding
measures of heat capacity are
specilic heal and molar heat
capacity. The spetific heat is the
heat capacity per kilogram and
molar heat capacity is the heat

capacily per mole. ?} constant
volume the sﬁecifr{s" cat is
denoted by small letter ¢, :

C

& s = Vv
where /m is the number of
kilograms per mole in the
substance with molar heat
capacity C,- at constant volume,
‘The specific heat capacity is -
mensured in cal g~' K™, When
heat is measured in joules
(1 cal = 4.184 J), molar heat
capacity is measured in
Ymol™* KT,

61
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The Zeroth Law and the
First Law

SAQ2

Show that the first law of thermodynamics can also be wriuen as.
8Q = CpdT + pdV p

and

8Q = C,dT — Vdp

Let us pause for some time and ask: What have we achieved so far? Do we distinguish ~
heat capacities at constant volume and constant pressure for solids and liquids as

- well? For these substances such a distinction is less significant because they are

incompressible. That is, their coefficient of volume expansion is much less compared
to that for gases. In fact, for solids and liquids, measured values are quoted at
constant pressure.

So far you have learnt to compute the difference between heat capacities at constant
pressure and constant, volume. Let us now consider a process in which no heat is
exchanged between the system and surroundings. You may have experienced -
sometimes that if you let air out of a tyre, you feel that the air is coo!l. Blow on the
back of your hand with your mouth wide open. You will feel that your breath is warm.
Now close your lips into a small opening and blow again. Your breath now fgels cool.
Does this mean that your body temperature is different in the two cases or do the
‘conditions induce this apparent change? It happens because in the latter case, air
undergoes adiabatic expansion. From Unit 1 you know of many adiabatic processes
occurring around you. But in this unit we will consider the particuiar cases of the
propagation of sound in air and expansion of air as it rises.in ttre troposphere. In a
physics laboratory, you can realise an adiabatic transformation by expanding or
compressing a gas in a cylinder hiving non-conducting walls and fitted with an

“insulated piston. Let us now derive the equation of state for an adiabatic process

using the first law of thermodynamics.

4.3 EQUATION OF STATE FOR AN ADIABATIC
PROCESS

In an adiabatic process, the system and the surroundings are not in thermal contact.
That is, no heat exchange takes place and 8Q = 0. Then the first law of
thermodynamics tells us that

dU + 8W = 0 : . (4.9)

This shows that in an adiabatic expansion, internal energy decreases. Since U/ is a
function of 7, a fall in internal energy implies drop in’temperature, i.e. the system
cools. What happens in an adiabatic compression? We cxpect that the temperature

. will increase as work is done on the system. From this you may conclude that -

In gencral, the heat capacity at
constant volume changes with
temperature. But this is
significant only wher the change
in’temperature is very large .
(~ 1000K). So for processes under
‘cansideration €y may be assumed
to be independent of temperature.

adiabatic expansion produces cooling and adiabatic compression produces heating.
"This finds an important application in the production of low temperatures. You will
leamn its details in Unit 8 of Block 2.

Suppose that one mole of a perfect gas is subject to a quasistatic adiabatic expansion.
From SAQ 2 you can write

CydT + pdV = 0 - o ' (4.10)
During the expansion, the gas passes through an infinite number of equilibrium
states. This means that the equation of state (pV = RT) will hild for each state. On
substituting p -= -RT/V and dividing throughout by CyT, you can arrange the
resulting expression in the form '

dT _ R _dV

T C, Vv (4.11a)

For a quasistatic process, V and T are well defiried for éach state. So if we assume
that Cy, is independent of temperature, we can readily integrale Eq. (4.11a) to obtain

nT =22 nv+nk (4.11b)
. Gy _ S :

where In X is constant of integration.

I
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Applications of Lhe First Law of

Taking antilog, we obtain Thermodysaml
L= ]

v = g

Using Egq. (4.8)Iwe can also ‘write
TV(C = CviiCy = g

-In your earlier physics classes you must have learnt that the rattio of heat capacity at
constant pressure to that at constant volume is usually denoted] by the greek symbol
gamma;y = C,/Cy. So we can rewrite the equation for an adliabali\c transformation
"as ‘
TVl =K o (4.12)
This relation tells us that as temperature increases volume clecreases,and vice versa
when a perfect gas undergoes a quasistatic adiabatic change. This is an important
result. Before procgediné‘fut:ther, let us pause for a minute and ask: Can, we similarly
relate pressure and temperature or pressure and volume? To discover an§wer to this
question, we-would like ‘y\o\iﬁ\to solve SAQ 3. : ' \

SAQ 3 ’ \
Starting from Eq. (4.12), show that \
T _ .
o = K, :(4.133)
pV' = K, © (4.13b)
where K, and K, are constants.
[Hint: Use Equations of state pV = RT)]

and

Eq. (4.13a) predicts that during an adiabatic process, increase/decrease in pressure is
accompanied by a corresponding increase/decrease in temperature. Can "you say the
same about Eq. (4.13b)? "

You will'note that Egs. (4.12) and (4.13) are equivalent forms of the so-called
adiabatic equation. This equation will hold provided \
i) t):lc initial and final states are equil‘i‘brium stares, . ﬁﬁt
(i) the perfect gas equation pV = RT is valid, and L
iii) the internal energy of the gas is proportional to temperature only. I’I

I'|
SAQ 4 ‘
Differentiate Eq. (4.13b) w.r.t. V and compute {dp/dV)s. Also calculate the
corresponding quantity for an isothermal change (pv = constant). What do you
conclude? - - - - S A RN o

Fig. 4.1 Plot of Eq. (4.13:b) .
Now refer to Fig. 4.1. It shows a plot of Eq. (4.13b) on a p — V.diagram. You .
will'observe that the adiabat is a part of hyperbolae. The slope of the adiabat is
v (7#V). (You must have seen it on working out SAQ 4.) Compare it with the slope
of an isotherm. You will note that the slope of an adiabat is v times the slope ot a1 _
isotherm. That is, an adiabat is steeper than an isotherm. This is because the gas loses
internal energy as it expands. This alsc implies that relative change in volume in ar
adiabatic process is less than that in an isothermal change. ' .65
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m B -
m’a:" Lxw and the Example 3

The nozzle of a bicyck is blocked. With no force on the handle, the pump contains
avolume V of air at 3QK and atmospheric pressure. The handie is pushed down with
a constant force F redcing the volume to half. No iir escapes from the pump.

Assume the change tobe adiabatic. Taking v for air to be 1.4, compute the final
temperaturé of air in he pump.

Solution ,
- Since the changf’ is adabatic, we can use Eq. (4.13b):
pf,ﬂ = constant
or ‘r'!
: / A
VY= Pf( ‘7)

“_rhere p;r is {:fi Pressure of the gas when the handle is in final equilibrium state. On
simplifying/his equation, we get

Pr=p; 2" = 2.64 Di .
Applyinghe perfect gas equation of state, you can write

7V p(VI2) .
T: Tf

! T
or

T;

| I
(3]
=
2k
s I

1.32 x (300 )
= 396K

Beware, thi:temperature is higher than the boj ling point of w;':lter! So you are advise.d

not to tcn;t:h l]_le nozzle of a blocked pump after you have used jt. Physically this
means lhll.'t adiabatic compression produces heating. - |

v oa-

1
SAQ S5 !

i .
The presure inside a scqoter tyre is 2 atm. at 300K. It burs(s sﬁdden]y. Regarding
the chalg_e to be ediabatic, compute thé final temperature. Use y = 1.4.

?l’ou n;:'y think that Eq._ (4.13)contradicts the ideal gas law. It is not so because the
ideal s law does not imply p¥ = constant except for an isothermal process. Since

a revfs_ibl.c process cannot be both adiabatic and isothermdl, there is no
cont[rdlcllon.

Exanile 4 -

qudcmical gaseous syslens, each containing 0.06 mol of ideal gas, are at 300K and
2,0 fm pressure. The ratio o heat capacities of the gas is 1.4. One of the gases is

mag to cxpand adiabatically wnd the other isothérmally uritil they are at normal
presure. Calculate the final vdumes in each case. '

Scution S

Tie initial volume of both gases nay be obtained from the ideal gas law;
Vo= nRT Solving for V, we get.

v = aRT _ (006 wol) x (8.3 K~ mol™ '(300K)
p (2-tatm) (1.0 x 10°Pa atm™1)
= 7.5 X 104m?

" For the isqthqm_a_l process, T !—e.njlain_s‘:_onsyapt at 300K. So when pressure drops to
half, the equaton pV = constant implieghat the volume doubles. So the final volume
should be 1.5 ¢ 107 m®. That is, Vo

—_ 13 -3 _3 X ’ ‘
V= 15x% 10 m | )

For the adiabati process, we have !

il

65 : pi " = constant = p,V
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Solving for V,, we get ' ' : Applications of the First Law of
; o ber

Iy - — . —
V= (_P_,_) V; : : I " .

Py

2.0 atm 1.4 4_.3
=(W&?ﬁ) X (7.5 x 1074 m?)

=12%x10"3m? (ii)

On comparing (i) and (i) you will note that the volume of the gas undergoing an
adiabatic expansion is less than that when it undergoes isothermal expansion.

An important manifestation of adiabatic process is found in the tréposphere. We
know that as we move up, the temperature gradually drops. This is referred to as
adiabatic lapse rate. Let us now understand the{:hysics involved in it.

4.3.1 The Adiabatic Lapse Rate : Convective Equilibrium

The heat from the sun, on being absorbed by the ground, heats up the air in
immediate contact. The heated air rises upward and a vertical density gradient is
established. This gives rise to convection currents which transport cooler air
downwards and hot air upwards. As hot air rises, it expands. Will it exchange heat
with its environment? It may not do so because air is a poor conductor of heat. This
means that in intermixing of air we have an adiabatic expansion.

To calculate the drop.in temperature with height, we assume that air behaves as a
perfect gas. That is, we ignore the presence of water vapour in atmosphere. This
means that we can use Eq. (4.13a). For one mole of the gas, Eq. (4.13a) in
logarithmic form becomes

Y InT~(y —Yinp = In K,

On differentiation, we get

4T _ y-1.dp _
T Yy P
which can be rearranged as
dp- v dT
; =TT (4.14)

Let us now pause for a minute and ask: What are we looking for? We wish to calculate
variation of temperature with height, i.e. dT/dh. To do so, we must relate pressure
with height. For this, we recall that as we go up, pressure decreases. Mathematically,

- this is expressed as ' :

4
dp. = ~pg-dh
where p is average density of air and g is acceleration due to gravity. The negative
sign signifies that\pressure,decreases as we move up.

Since we have assugﬁed thdt air behaves as perfect gas, we can use the equation of
state p = RT/V in'the above expression. This gives
dp_ _ Mg . S

? RT dh (4.15)
where M = pV ig the average molecular weight (=28.9u) of air. Oh combining
Eqs. (4.14) and (4.15), we get :

- & signifies atomic mass unit :

jf: = — 7; 1 ﬂég (4.16) 1= 1.673 x- 1077 kg,

This is the required expression for adiabatic lapse rate. The negative sign on the RHS

indicates-that temperature decreases as we move upwards. To obtain an cstimate of
the lapse rate, we would like you to solve the following SAQ.

-

'SAQ 6
Insert, appropriate values of M,g,R and p for air and compute the lapse rate.
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From Eq. (4.19) you would recall that

Es = vp
and while solving SAQ 7 'you must have proved that isothermal elasticity is
numerically equal to pressure. :

p=E, .
~ On combining these results, you can establish’th~ rreiired expression.

You may recall from Sec. 4.2 that Cyisa perfect differential of U. Now you may ask:
“Can we define a function of state which corresponds to C,? Alternatively, is there a
class of processes where U and pV are grouped togcther" This does happen=1h the
isobaric chemical reactions as well as flow processes. You will learn the detaits of
flow processes with particular reference to Joule-Thomson effect and regeneratjve
cooling in Unit 7. For the present, it is sufﬁc:ent to discover the function which
govemns these changeslprocesses

4.4 .THE ENTHALPY ,
‘Let' us express U as a fuaction of 7 and p:

U= U(T,p)
Then we can write

_ {3l ayU
du = (a?‘-‘)p dr + (ap )T dp

Substituting this in Eq.(4:4), we find that the first law of thermodynamics takes the
form' ' ’ .

aT ap-

Hence, heat capacity at constant pressure is given by

o= () - (), o{80),

which can be rewritten as-

80 = (BU) dT + (w), dp + pdVl @)

T

Cp === (U +pV) @29

The sum (U + pV) is represented by a new function, called enthalpy. It is denoted
by the symbol H. Thus )

H=U+pV _ - (#29)
so that ) o :
o-(B - e

We expect that enthalpy wlll also be a function of state"of the system. Moreover, it
is an extensive property of the system.

In the literature you may also encounter alternative nomenclature for enthalpy — the .
~ total\heat content and total cnergy. However, we will use the term ¢nthalpy.

4.4.1 Enthalpy and Chemical Processes

So far we have considered only physical processes, You may now ask: Is there any
other class of processes where the first law of thermedynamies is seen’in action? We
know that biological and chemical reactions also involve energy changes. For .
instance, we mmay need to know energy required to keep a cell alive. Similarly, energy
is evolved when magnesium is put in dilute hydrochloric acid. But energy is-absorbed
when hydrochloric acid ¢ombines with sodium hydroxide. The study of energy
changes that occur- diring chemical reactions is known as thermochemistry. Since
energy changestin a chemical reaction occur as heat, which is a function of path, it is
important to know how the reaction is carried out. For this reason, we usually discuss
energy changes in chemical reactions in terms of enthalpy — which is 3 state function.

I
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We will now discuss it briefly. The details are to be found is the course on Atoms
and Molecules CHE-01. Reactions for which AH > 0 are calléd endothermic or heat
absorbing, whereas those for which A H < 0 are called exothermic or heat releasing.
When a reaction takes place in an adiabatic container, an endothermic reaction
results in cooling, i.e. lowering of temperature and an exotherniic reaction results in
heating, i.e. rise of temperature. Common laboratory glassware like a test-tube or
beaker are poor heat insulators. As a result, in an exothermic reaction heat leaves
the system as soon as temperature rises above that of surroundings. But we can-
definitely say that as long as initial and final temperatures are same, heat leaves the
system in an exothermic reaction and enters the system in an endothermic reaction.
Itis important to note that an exothermic reaction results in products of lower energy
than the reactants. But this does noot mean that exothermic reactions can occur
spontaneously. On the other hand, endothermic reactions never occur on their own.

4.4.2 Standara Enthalpy Changes

The enthalpy change accompanying a reaction is called the reaction enthalpy. It is
denoted as A H. The standard enthalpy of reaction is the change of enthalpy when
reactants in their standard states, i.e. pure form at a pressure of 1 bar at 25°C, change
to products in their standard states. We often specify the physical state of the
substance (s for solids, / for liquids and g for gases), temperature and concentration
(by writing the number of moles). For example, the reactions for dissolution .of
gaseous hydrogen chloride in water for different concentrations are written as

HCl (g) + 10H,0 —— HCI(10H;0), AHy, = —69.5kJ mol™1

HCl (g} + 50H, 0O ——— HCI(50H,0); AHsy = —73.3k] mol™ L.

HCI (g) + 200H,0 —— HCI (200H,0); AHyy = —74.2k] mol™'.

You will note that as the solution is gradually diluted, enthalpy changes. The change
of enthalpy with dilution is referred to as enthalpy of dilution.

What is the enthalpy of dilution when water content is changed from 10 to 50 mole?
You can easily compute that it is —3.8kJ mol~ .

You will also note that enthalpy decreases as the solution is gradually diluted. When
dilution causes essentially no change in enthalpy, the solution is referred to as aquous
solution, Thermochemical equations for some aquous solutions are given below :

HCi(g) + ag—»HCl(aq); AH, = —74.9kJ mol™"
NaCi(s) + aq—NaCl(ag); AH, = 335k} mol™™.
AaNO: (s) + aq~»AqNO;(ag); AH, = 22.6kJ mol™'.

1.4.3 Enthalpy of Reaction

We know that in a chemical reaction,-one or more substances (reactanis) give rise to
:ntirely different substance(s) (products). THermodynamically, we say that the
:hemical system has undergone a change from.its inilial state 1o the final state subject-
0 external conditions. The change involves rearrangement of chemical bonds;
sreaking of existing bonds in reactants and formation of new ones in products. This
s invariably accompanied by evolution or absorption of energy in the form of heat.
Fhis is referred to as enthalpy of reaction. - '

_Enthalpy of reaction is the total energy absorbed.or given out.in the reaction
when the reactants have completely changed into products under given external
constraints. :

or a reaction taking place at a given temperature and volume, first law tells us that
t constant volume enthalpy of reaction is equal to the difference in the internal
nergies of products and reactants, i.e: -

. 8Qy, = dU = Up_'t_*"R' -
)n the dther hand, for a reaction carried out isobarically, the constant-pressure
nthalpy of reactions is equal to the difference in the enthalpies of the products and
1e reactants, i.e. ’ '

.8Q, = dH = H, - H,

Applicaticns of i First Law of
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Interpret the equation :
NaOH (s) + HCI (g) —» NaCl (s) + HZO (1); AH = —177.8k]J

Since enthalpy of a chemical reaction is essennally the energy involved in breaking
of bonds in reactants and formation of bonds in products, it is desirable to say
somcthmg about the enthalpy of-dissociation of a hond. The mean enthalpy change
in dissociation of all bonds of a particular type in 1 mole of the substance in gaseous
state is termed as bond enthalpy or bond energy. The enthalpies of dissoctation of
bonds’ for 'some typlcal cases are listed in Table 4.2,

Table 4.2 : Typlcn.l anues of Enth.alples of Dissoclatlon ol‘ Bonds

Bond- AH (k) mol™ ) Bond - AH (kY mol™ 1)
H—H ' 436.0 | c=cC 615.0
H—-CI ‘431.4 C=C 811.7
6—H 462.8 cC—0 351.5
0—0 . 138.9 C=0 728.0
0=0 497.3 C—N 291.6
C—H 413.4 C—Cl 326.4
c—C 347.7 cl—cl 2427

Example-5 :

Using the values of bond energies from Table 4.1. compute the enthalpy of the

reaction

CH,(g) + Cla(8) — CHLCL(g)

Solution

The above reaction can be expressed as

/c d., 0@ ——a—c-ci—a)

We note that in this reaction
i) a Cl— Cl bond breaks in Cly(g),
ii) a C = C bond breaks in C;H, while four C'— H bonds ar¢ unaffected, and
-ili) aC — € and two L — €l bonds-are tormed in-C;H,4 Ciy. -
Therefore, enthalpy of the reaction is

AH = Energy of formation of one U ~ C bond and two C — Cl bonds + Encrg‘ﬁ
of breakmg of 2 Cl — Cl bond and a C -"C bond

= (—347.7k) mol~') = 2 X (326.4kJ mol” “1y 4 (242.7KJ mol—) +
(615.0kJ mol™ ")

= —1428kI mol™ ",
Obviously, it is an exothermic reaction.

R LS

4.5. HESS’S LAW

Hess’s law is a corollary of the first law of thermodynamics. According to Hess’s law,
the total heat absorbed or given out/in a chemical change at constant volume or
constant pressure does not depend on the path followed for the process. This means
that when the evolution of a chemical system from the initial state to the final state
occurs in one step or a series of stages, the total enthalpy of the reaction remains the
72 ' same. To illustrate this, let us consider the formation (), gas. We can do so by

=T
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burriing graphite in oxygen directly as well as by Xidafion of carbon monoxide
produced first, The thermochemical reactions of interest are

Cfs) +0,8) —COyg); AH =-393.4 kimol™
Cfs) +'20:(g) -»CO(g); AH, =-110.5 kImol™
CG(g) +':0ug) — COxg); AHj = —283.2 kimol™

You will note that AH is almost equal, to the sum of AH, and :

AH,. This shows that Hess’s law enables us to add or subtract thermochemical
equations in the same way as we do with ordinary algebraic equations.

4.6 SUMMARY

® Forf one mole of a perfect gas, the ditference of heat capacities at constant pressure
and constant volume is equal to R; the molar gas constant: '
3 CP - Cy = R
® The equation of state for an adiabatic process in terms of temperature and volume
is -
TV ! = constant

In terms of temperature and pressure, we can rewrite it as -
Y i

¥y—1

In terms of pressure and volume, .we have

= constant

p VY = constant
® The adiabatic lapse rate in the stratosphere is brought about by convective
currents. It is given by
-dT .  y—1 Mg

dh v R

® The propagation of sound in air is an adiabatic process. The expression for the
velocity of sound is - ‘

N - [E . RT
p VM

where E_ is adiabatic elasticity and p denotes average density of air.
® The ratio of adiabatic to isothermal. elasticities of a substance is equal Lo y; the
_ ratio of heat capacities of a gas at constant pressure and constant volume:
E C ’

3

—_—

- @ The sum U-+ p V is-called enthalpy:
. H=1U+ pV
The enthalpy is a function of state.

® Enthalpy of a reaction is the total energy absorbed or given out when the reactants
have. completely changed into products under given external conditions.

" “® .For endothermic reactions AH < 0 whereas for exothermic reactions AH > 0.

47 TERMINAL QUESTIONS

1) Starting from the first law of thermodynamics, show that

(aU - C.pTCV _ i
v} Ve P _ .

auy _ i
P
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the First Law of
Thermodynamics

[E RN TS

1F T

ror

|

i




The Zeroth Law and the
First Law

o
~
1]
|
b
——
&
fh S—_
~
M

KT
14

— fRT_’
and v = _‘?F_g-

On substituting for p and p, we find that )

=pr

y = | 1.01X10°Nm—?
1.29kgm™3
= 280 ms~! ,
The difference between the values obtained by Laplace and Newton is
v = (331 — 280) ms~! = 51 ms™!

% difference with respectto = 1549,
the standard (Laplace's) value

;

8) From this we understand that one mole of solid NaOH reacts with one mole of
HCI at STP to give one mole of solid NaCl and one mole of liguid water. The
heat of reaction is —177.8 kJ. The negative sign implies that the reaction is
exothermic, )

LY

TQs
1) From Eq. (4.6) we recall that

-a () +7)(%)

By definition; the volume expansion coefficient a is given by

=1 {3V
“‘V(a:r)p

a3V

On re-arranging terms, we get the required result:

Hence, C, - Cy = [ (ﬁﬁ) + p] Ve
: T

(aV)T ST v F @
To prove the second resu]t,‘ we take { as a function of p and T, i.e.
U=U(pT)
Then
= {8U 1
du = (aP) dp + (aT) dT.
- T P
so that
= (28U g :174
50 = (BT) dr +.(6P) dp + pdV
P T
On dividing throughout by dT and keeping pressure constant, we find that
F = er (), ()
aiT} ; \OT) aT/,
Hence,
alf _ . - s
(??:) = CP — pV(! ! ) (].l)
P
- To know pressure variation of internal energy you have to rewrite (i) as
)=,
\op ) o) oV p i)

L P




By definition, isothermal elasticity

. T

vV
or
(_a&) T )
) N

Using this result in (iii), we get pressure variation of internal energy ;
(i[l) - Y _ ¢ -G
ap /. Er af,
2) For a pure paramagnetic substance
80 = dU - BdM
Taking U/ as a function of T and M, we can write
U=U(T, M) : —

- $0 that

dU=(a—U) dT+(_E‘Q) dM .
aT |, oM,

Substituting this in (i), we find that

50 = (%TQ)M dT + [(g—g)T —B]JM

Following the procedure used in arriving at Eq. (4.6), you can write

Co=Cu=[ (34) -] (%)

For a pure paramagnetic substance

'B_U)=0 '
()

50 that

From Curie’s law
— kB
M T
where & is a constant.
_. We can now write

(.@M) - kB
aT 5 T2

This result is useful in understanding the operating principle of production of fow
temperatures using adiabatic demagnetization. You will leamn to apply it in Unit 7.

3) For an ideal gas, the equation of state is

pV = RT
Hence
B, = _L(ﬂ) _ RT _ 1

result from Eq. (4.19). Similarly, for a van der Waals' gas

(p + —;2) (V- b) = RT

or

@iv)

RV,

(ii)

(iif)

(iv)

§0)

- (i)

That is, B+ is inverse of pressure for an ideal gas. You should have expected this -
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BLOCK INTRODUCTION - o

4

In Block 1, you have studied the basic concepts of thennodynamics, measurement of
temperature, the first law of thenmodynamics and its applications. Block 2 deals with
entropy, the second law of thermodyramic, thennodynamic poteulials, phase transitions,
produclion of low temperature and the third law of thermodynamics. In Unit 5, we have
introduced the concepl of entropy and ¢stablisbed its intimate connection with the second
law of thermodynamics. You will learn to derive expressions for change in entropy of an ideal
gas and efficiency of a reversible engine. In this unit, you will realise why soon aficr Clausius
introduced the concept of entropy, thenmodynamics became such a powerful science, This is
essenlially because it connects thermodynamics with statistical mechanics. That is, entropy
is a tool by which we can correlate the macroscopic > and microscopic behaviour of a system.

In Unit 6, we have discussed therinodynamic potentials whose knowledge is essential to
determine the general condition of thermodynamic equilibrium. You would eamn that they
are a treasure of information for all important thermodynamic relations. They are handy in
oblaining Maxwell's relations and can be used to study phase transitions and phys:r:. of ow
temperatures. You will study these in Units 7 and 8, respectively.

The units in this block are essentially of equal iengih. To facilitate your work, we arc
sugpesting the following estimates for the study time required for each unit:

Unit § 6h
Unit 6 6h
Unit 7 5h
Unit 8 6h

The mathematics used in these units is quite simple and you are advised not to memorise
relations. Our emphasis will be on the use of mnemonic diagrams for deriving a relation of
interest. Some illustrations 1o this effect are givea in the text. You will see many more in the
video programme entitled "Mnemonics in Thermodynamics”". We hopc that you will enjoy
the subject.

We wish you success.
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UNIT 5 ENTROPY AND THE SECOND =
LAW OF THERMODYNAMICS =

Structure ‘
5.1 Introduction ’ S -
Objeclives )
5.2 Whatis Entropy? '
5.3 The Second Law of Thermodynamics _ L |
5.4 Entropy Chéngé of an Ideal Gas . - -
o Entropy of Mixing
Entropy of Phase Transition
i.5 The Camot Cycle
Heat Engines
Refrigeralors
.6  Summary
i.7  Tenninal Questions

.8 Solutions and Answers

5.1 INTRODUCTION

t Block 1, you have leamnt that the first law of thermodynamics is essentially Lthe law ol
onservation of cunergy for thenmnodynamic systems. Though this law is universal in a semse,
 has some inherent limilations. Let us consider a cup of Lot tea. The first law 1ells us that
le tolal encrgy of the tea, cup and the surroundings is constanl. From experience we know
1al lea will lose energy (heat) to (he surroundings and get couled. But the first law does not
ale out the possibility of the surrdundings (at a lower lemperature) Iranslerring some of s
nergy to the lea (al a higher temperature). (If this were true, we could have generated energy
ith no fuel and avoided all accompanying hazards!) In spite of the fact that tota) cnersy
mains constant in both processes and (hat the first law is not violated, we all are convinced
1at heat dots not flow on its own [rom a body at lower femperature to a body ai higher
:mperature. But why? This is because cooling is a unidirectional natural process. You

1ay be familiar with many other unidirectional processes occurring in physically diverse
rstems. We may mention spontaneous expansion of a gas into fixed volume (free cxpansion),
ischarging of a battery when in operation (chemical process), and intermixing of two fluids
liffusion), among others, ’

Te you convinced why natural processes take place in a particular direction? The queslion . -
aw arises: What delermines the direction of a natural process? Can we give a quantitative
ermodynamic criterion which governs (his change? The answer to these and many other
ich questions was given by Clausius in 1850 when he introduced a new thermodynamic -
uction called entropy (from the Greek word trope). Clausius showed that for natural
‘ocesses, entropy of the universe can never decrease. That is, natural ]Jruccss'.es evolve in

¢ direction of increase of emiropy. But what is entropy? To seek answer to this question,

¢ begin this unit by defining eatropy with reference to a reversible process, though natural
‘acesses arce irreversible. How. do.we defiie entropy-and compute enlropy change

't irreversible processes? You will discover the answer to this qu'cslim_l'as you go through
is unit. In Sec. 5.3, we postulate the sccond law of thermodynamics in wnns ol entropy.
tpressions for change in entropy of an ideal gas are derived in Scc. 5.4. Next, we calculate
e efficiency of a reversible engine using 7-§ diagram. This discussion is followed by the
mventional slatements of the second law of thermodynamics and their cquivalence.

bjectives

fter going through this unit, you will be able 16
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The Second and the Third Laws of

Thermodynamies -

You should not
conluse § with specific
entropy

That is, when heat transfer is reversible, the changes in entropies of blocks A and B are
numcrically equal. But they have opposite signs. As a result, there is nto net change in
entropy and you can say that in a revessible process, tolal entropy is conserved.

iv), Eq. (5.4) bas been derived for a reversible process. What about natural processes like
frec expansion or heat flow? Refer to Fig. 5.1 and consider heat flow along the path
1C2. Itis an irreversible process. You would now like to know how 1o compute
entropy change for an imreversible process. To this end, we assume that heal is given in
infinitesimal steps so that irreversible process between states 1 and 2 can be replaced
by a reversible process through infinite quasistatic equilibrium states. Then we use
Eq. (5.4) 1o compute the entropy change for each quasistatic state. And we can say
{hat, between the same initial and final states, the change in entropy is given by the
same equation (Eq. (5.4)) for reversible as well as.irreversible processes. This is

because entropy is a property of siate and the entropy difference docs not depend on how a
system gol into that state. ‘

To clarily these ideas, we wish you to go through the following example carefully

Example 2

A block of copper weighing 1.5 kg is heated from 300K to 350K. Calculate the entropy

change of the block. The speciic heat capacity of copper is 389] kg'l K\ Assume that heat
is added irreversibly, :

Solution

Allhough the heat has been added irreversibly, we can calculate A S using Eq. (5.4):

150K '
L] AS = 6Qrw

L 0K T

The heat absorbed for an infinitesimal rise in temperalure is given by
8 = mxsxAT

where m is Ibe mass and s is the specific heat of the block. On inserting the given data, we
find 1hat

8Q,. = (1.5kg)x (389 kg 'K )x AT

so Lthat

SUK ! Iy =1
AS = (15kg}x (389 kg K )xAT
300K r .

= 583.5 In (9-52) K-

300

583.5 x 2.3 x logy ( 1.67 ) JK !
583.5 x 2.3 x 0,0671
= 90.0JK™!

, You may now like 1o work out an SAQ 1o check your progress,

SAQ1

10 g ol steam at 100°C aad 1 aun pressure eondense at the samé temperature and pressure,
Calculate the entropy change. Latent heat of steam = 2.238 x 10° J kg,

What is the physical significance of entropy? To discover this, let us recail as to what happens
when heal is added 10 ici.. You know thal cvery substance is made up of atems/malecules.
Addition of heat causes ice 1o meli. As e resull, molecuiar arrangement (in waler) is
somewhat loosened. If you add more heat, water changes into (he vapour state. In this siate,
Ir slecular molion is quite disordered. So we can say that addition of heat (or increase in
entropv) creates chaos or disorder . On the other band, when 4 gas condenses or a liquid
solidifies (giving out heat), the molecular amangement becomes more ordercd, That is,

IR,
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disorder decreascs when a gaseous substance changes into the solid state and vice versa. So Eﬂfmp!’ md the Sccond Law of
) : s of . , Thermodynamies
. you can say (hal entropy is a nieasure of disorder in the system.

So far we have introduced the concept of entropy and computed entropy change in a
reversible/ireversible process. How does such a change influence the syslem, ils surround-
ings and hence the universe? This study leads us to the second law of thermodynamics, )
which is a universal law. It applics 1o processes taking part in our body, to combustion of -
{ucl in an automeobile, an acroplanc and a rocket as well as working of refrigerators. It enables us
to specify the direction of evolution of all natural processes. We will now discuss it in detail.

53 THE SECOND LAW OF THERMODYNAMICS

Consider that an infinitesimal amount ofheat 2 flows from the surroundings al temperature
Taure 10 the system under consideration at temperature Tayy. The net changc in the entropies
of the system and surroundings is given by -

_ A 1 1 : (5.6)
AS = AS,, +AS., GQ(T’F—TM]EO .

You would note that the equality sign holds for reversible heat low, whereas greater than
siygn signifies irreversible beat flow. Since all natural processes are irreversible, you may be
temipled to conciude that entropy of Wie universe is continuously i increasing. 1f you think so,
you are on the right irack. This continvous increase of cnlropy in natural processes is known
as the principle of increase in entropy. And the second law of thermodynamics may be
slaled as [ollows:

* The second [aw has been slated in

The entropy of the univérse can never decrease. soptewbal different but essentiafly
equivalent forms by Kelvin-Planck
and Clausius. You will leam these
inSec. 5.5,

Consider the construction of a building from materials that were initially dispersed about the
carth. In this process, matter goes from a highly disorganised state 10 a very ordered state.
That is, the entrapy decreases. In Unit 3 of Block 1, you bave learnt that the internal energy ,
of a growing child or a plant increases. But the growth of a living organism from a random
wix of molecules is accompanicd b entropy decrease. This seeus lo contradict the first as
well as’the second law of thermodynamics. To understand that this is not so, you may
cnqmre What is respousible for life on the earth? We can retrace it to the energy generated
in sun’s core by nuclear fusion. For example, plants use solar encrgy for photosynthesis and
create food. Similarly, humans receive this energy via food chain. So lo answer the above )
qucslion, you have to consider the earth-sun system. If you do so, you will find that the
inagnitude of enlropy decrease associated with lifc on earth is less than the entropy increase
associated with nuclear fusion in the core of the sun, That is, the organisation of malter is
governed by a tendency towards greater disorder elsewhere (sun) in the universe. This
means thal entropy of the earih-sun system increases.

Thus a more formal statement of the second law in terms q[eul.ro;':y reads as follows:

When an isolated (closed) system undengoes a change, its
eniropy cannot decrease; it increases or remains constant

You may now ask: How long will entropy continue to increase? What is the future of the
natural world? We expect that entropy of the universe must have some upper limit,
marching towards a stagnant stage.

Y ou must llow be convinced that the first law ol thennodynamics is a statement of the law
of conservation of encrgy and the second law relates (available) energy to entropy. You can
use the integrated sratement of these laws 1o compute entropy dilference for any process.
Let us Jeamn to do so now.

The Entropy Form of the First Law

The first law of thenuodynamics establishes the existence of internal energy () as a function of
stale. Slmll.’irly, the sccond [a-x uumduceb entropy(S) as a state funclion. Now the question
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arises: Can we relale these fitictions? If 50, how? To discover the answer to this question,
you may recall from Unit 3 that for any change of state nol involving diffusive interactions,
the change in U is given by

dUu = 30 - oW ’ .‘ . o -(57)

For an infinilesimal reversible proccss belwcen two equilibrium slales the second law of
lhermodynam:(s tels us that

[

4 - 52 ' (58)
T
These equations may be coimbined to give v
‘ TdS = dU + 6W . (5.9)

" This is one of (he most impordant thermodynamic relations. In the next unit, you will use il

to derive any useful thermodynamic relations.

Proceeding [urther, we lote that for a pVT system, W = pdV so that Eq. (5.9) takes the -~

form . R
TdS = dU + pdV - o (5.10)

You will rct;oguisc that 1his equation relales all thermodynamic variables.

Following Eq. (4.13), we can wrile it in three cquivéicnl forms:

TdS = ncydT + pdV (5.11a)
TdS = nc,dT ~Vdp (5.11b)
: “
and

TdS = 3 [cupdV + ¢, Vdp) (5.11¢)

where ¢p and cvdcuole spuc:ﬁc beats per mole at constant pressure and constant volunu. )
respectively.

You can use Egs. (5.11a, b,c) to compule entropy changes for an ideal gas under different

physical conditions. Belore we do so, we wish that you should answer the following SAQ

SAQ 2

Write the combined mathematical forms of the first and second laws of thermodynanics
for

a) asireiched wire,
b) asurface tim, and

¢)  a paramagnelic substance.

5.4 ENTROPY CHANGE OF AN IDEAL GAS

Let us consider that # moles of an ideal gas al temperature T are contained in a cylinder.
Depending on the conditions, its state will be described by one cquation out of the set of
Egs.(5.11a, b, ¢). Let us first consider Eq (5. 11a). If you dwlde ibroughout by T and use the
cqualmn of state {pV = nRT), you will gel

df = "CV'E? + r:R% (5-12)
Hence, the change in eatropy.of an ideal gas between slates characterised by temperatures -
Tyand T2, and volumes ¥; and V2 is obtained by integrating this prrussmn 1fCvis
independent of winperature, you will find that
(5.13)

_ r) By - S
AS—ncplu(TI]+nR l“(V,J

which is the same as Eq. (5.2).

To learn 10 apply this equation, you should study the following example.

!
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Example 3

Calculale the increase in entropy of 1 g of hydrogen when its temperature is {aised romn
~173 °C 1o 27 °C and its volumne becomes four times, Given Cy = 2.43 cal g K%, N
R =201 cal mol™ K™ and My = 2.

Solution

For # moles ofan ideal gas, the entropy change is calculated from Eq.(5.13). Hox;vcvcr,
for 1 g of.lhe gas, you have to replace Rby r =R /Mel.weight:

-~ =] =1 1
r e 2.01 cal miol K= L.00S calg'] K-l

2g mol ™'

On inserting the given dalta, you will get

' ) V.
As = 2.303[c,,logm(1]:2J + (1005 cal g~ K l)loglo(-ﬁz”
1 L
= 2303 x [ (243 cal g™ K™ ) x logp 3 + ( 1.005 cal g K~ ) x logjg4]

2.303 [2.43 x 0.4771 + 1.005 x.0.6021 | cal g~' K~
(2.669 +1.393 ) cal g~ 'K

.4.062 cal g'l K™

Starting from Egs. (5.11b,¢), you can show that entropy change between states defined by
(T, p1) and (T, ps} is given by . )

. : 14
AS = ncplu(ﬁ]—ann (&) (5-14)
T, 41 )
If reference states are defined by (p1, V) and (p, V5), the entropy change is
Vs P . - - (5.15)
AS = e ln| ==+ ne,In| =
’ ( ¢ ] (Pl ) -

A gas mﬁy be made to expand or compress isothermally. When one mole of an ideal fas
undergoes an isolbennat change, Eqgs. (5.13) and (5.14) predict that entropy change is given by

v, P (5.16)
AS; = Rinf-2|=RIn[&L
, H(VIJ n(Pz] -

The subscript T in Aszsignifies thal temperature remains constant.

That is, when an ideal gus undcrgoes; an isothermal éxpansion (V, > Vl,p.l >pnT=

conslant), its eniropy increases, What change in enrtropy occurs when a gas undergoes
isothermal compression? We expect that entropy will decrease.

Example 4

One mole of an ideal gas expands isothermally 1o four times its initial volume, Calculate the
entropy change in terms of R, the gas constant.

Solution
From Eq. (5.16), we have

AST
R

In{Vo/¥y)

2.303 log 1o ( Vo'V )

Since Vo/V] = 4, the entropy change during isothennal expansion, in terms of R, is

A
= = 2303 logyo 4

= 2,303 % 0.6020
= 1.386

Entropy and the Secoud Law of
Thermodynaniics
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An indicator disgram depicis a
process in terms of p and V.
Similarly, a T-§ diagram
represents A process is lerms of
T and § variables.

14

As =
vap Tmp

- where Jtewyp is the molar enthalpy of vaporisation and Tevsp is (he boiling point.

In the following example, we have illustrated the use of some of these relations to compulc
enl.ropy changes,

Example ¢ )

The enthalpy of vaporisation of ethanot is 43.5kJ mol”! at its normal boiling point of
351.5K. Compute the entropy of vaporisation.

Solution _ '

From Eq. (5.23),

43500 J mol ™!

-1

To enable you to get an idea about the relative magmtudes of As,,and A SrusicaWe have
computed A 5y, also. The enthalpy of fusion of ethanol is 4.6kJ mol™ &l itg normal

melling point of 156K so that

4600 J mol™

ASrwm = W = 295] Knl mol -l

You will note thalt A s, is considerably greater than A sggoq - This difference implies that
enropy increases as a system becomes less restricted. When a solid melts, its atoms become
less ordered in their locations and motion. When a liquid vaporises, molecules find much
greater freedom of movement in the gaseous state.

- o 6.23)

SAQ 4

The melting point of water at 1 bar is 273.16K and the latent heat ofmellmg is334.4Jg7,
Calculate the entropy of solidification for one mole of water.

You now know that entropy is conserved in a cyclic reversible process. The simplest yet

most important reversible cycle which has great pracllcal utility is the Carnot cycle. Letus
now discuss it in some detail.

55 THE CARNOT WORD CYCLE

Refer to Fig. 5.3a. It is a schematic representation of the Carnot cycle on the indicator

T

h

vi V. A4 > s
(e o
Fig. 5.3: (a) Carnot c?'dc on p-V dingram, (b) Carnol cycle on T-5 dlagram
diagra\m._ You will note that this cycle consists of four reversible processes (steps):
i)  isothermal expansion
i) adiabatic expansion
iii) isothermal compression, and
iv) adiabaliccompfession.

In Fig. 5.3b, ve have depicted the Carnot cycle on a T-S diagram. (It is another way of
representing thermodynamic bebhaviour of a substance.) For an ideal gas, the isotherms are
straight lines of constanl 7 whereas the adiabatics are straight lines of constant

S5(8Q = 0 = 4S). To compule net entropy change in one cycle, letus take one mole of an
ideal gas enclosed in a cylinder.

L4
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Step 1 . LEntrupy snd the Second Law ul'
’ ’ Thermudynamics -
The gas absorbs heat Q) rcvcmlbly and is allowed 1o expand |snt].u.nnally fromn volume V)

to Vo. The pressure decreases from py to ps. Using Eq. (5.3), you can calculate the increase
in entropy of the gas. Thi result is

7 0 (5.24a)
] As 1 Tl . .
Step m
Now the gas in the cylinder is made to expand adiabatically (rom volume V2 1o V3. The pressure
falls from g2 to p3. '

From Unit 4, you would recall that in an adiabatic process, no lieat exchange takes place
between the system and ils sumroundings. The first law of thermodynaiics tells us thal in
such a case, intemal encigy of the system decreases and jts temperature falls. Let us assume that .
temperature drops from 7 and 7>, But since no heat trausfer occurs, entropy does not change, ie.,

As, =0 - h : S (5.24b)
Step 111 ‘ ) x .
The gas al temperature T3 is now compressed isothermally, till its volume is reduced to Va. In
this process, the gas rejects heal 2 to jts environment and the change in entropy is given by

Asy = -2 | (5.24¢)

Step IV

Finally, the gas is compressed adiabatically (o its original volume and pressure. As a resull,
its original teraperature is also restored but its entropy is conserved during the process:

Asy =0 ' (5.244)

Siuce the Carnot cycle is reversible, As = 0. That is, no ncl enlropy changc oceurs and

you can Wl'llt: :

In deriving the expression for
vTieivney, we have not followed
the lustorical development for

As; + Az + 553 +As; =0

On using Eqs. (5.24 a-d), you will get elognee and case. -
e @ ‘
=+ 0-=+0=20
You can rewrite il as
g.l. _ __?_'_1_ (5.25) -
2 T -

This result shows that the amount of heat absorbed (rejected) in a rcw.rmblc cycle is
proportional 10 the tlemperature of source (sink).

Heat Engines

From your school physics curriculum, you would recall that Q) —Q; = W is the maximum
lieat available for doing wbrk (measured i heat units). In a power plant (automobile or a
sleam enginel) we burn fuel for generaling € which, in tunt, resplts in Wihrough the notion
of a turbine (piston). The dilfercnce is released to surroundings (and is partly responsible for

thermal pollution and ecological disturbance). The ratio gcharaclcriscs the efficiency of a
1

machine which converts heat into work. A irachine responsible for conversion of heat into
work is called a hent engine. The efficiency of a machine operating between fixed Iunp:.ra-
tures 7y and Tz is givenw by :

WV _i-

1]=l-.—_=

]
Using Eq. (5.25), youcan wrile -

Gi—-02 _h-T4 .
Os - T,

P Hd g

= kg
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‘T, (5.26)

Eq. (5.26) shows that

i)  mdepends on 7y - T; grealer the iemperature difference, more will be 1 . In practice,
T2 is limited to the temperature of the surroundings and the only way 1o increasen is
(o mise T1. That is, heat is more useful when it is supplicd al a higher temperature.
This explains why saturaled steam at high pressure is a more efficient working
substance. Docs this not mean that when heat flows from hotter lo colder bodies, it is
degraded? Certainly, its usefulness is reduced.

ii} 1) is always less than one. This is a fundamental limitation imposed by the second law -
of thermodynamics. We know that maost of the electricity is generated in large fossil
(coal, oil, gas) or nuclear power plants. These are basically heal engines (where energy
is released in chemical or nuclear reactions). The working substance, water, is healed
in a boiler and converted into steam at high pressure. It expands adiabatically in a
turbine, which is coupled to a generator and converts mechanical cnergy into clectrical
energy. The maximum elficiciicy of a fossil fuel plant is about 50% whereas ihis
figure is 40% lor a nuclear plant. That is, only half of the heat generalted in a plant is
utilised in getting uscful work. You may now ask: What happens to the remaining
beal? TLis not available lor any usclul purpose. That is, a substantial amount of our
expeusive fuct ends up as waste hieal. It is released in the environment and causes
thermal pollution which is responsibie for various ecological problems. Today, it has
acquired menacing proportions leading to rise in earth’s temperature threalening our
survival on this plauet.

iii) 1 =0"For7; =TI Thal is, we cannot operate a cycle (and convert.lieat into work) if there is
no temperature differente. To understand this, you may imagine the following situation:

You take your motor boat to sea and run out of fuel. (If you are lucky, you may be
rescued by another boat.) The first law of thermodynamics permits your safe retum as
the ocean has a vast amonnt ol thermal energy. But the second law tells us that this
encrgy cannot be conveéried into uselul work becaise the ocean ts at a vniform
temperature, This fact is comained in Kclwu-Planck statement of the second law of
thermaodynamics:

It is mol possible to construct an engine, uo watler low jdeal,
which working in a cycle will transfonn entire heat into work,

iv) The efficiency of a Carnot engine is independent of the nature of the working
substance. You may expect that real engines will also be independent of the working
_ subslance. We may ask: Why are we thea so concerned abaut parlicular [uels? The
auswer 1o this question fies in ticir availability, economics, technological feasibility
and environmental factors. Thal is, (hermodynamic considerations alone cannol decide
between various methods of ha rnessmg CHCIEY SOUTCes.

Exanple 7

The cluster alnuclear power pl'mls at Tarapur produces 540 MW of clectric power. In llu._
reaclor core, energy is released {as heat) at the rate of 1600 MW. Steam produced in (he
reactor enters (he turbine at a temperature of 560K and leaves il at 350K, Calculate the -
efficiency of the power plant,

Solution
The thermodynamic elficiency is given by Eq. (5.26):
T 350K '

1) = 1‘—‘1,71' = ’l m =-0.375

=Iary
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That is, the system is only 37. 5% efficien, e e s T

The actual efficiency of a powar plant is. dcf"ned ac st sati0 OF electric power OUIP'-“ to the
thennal power produced: -
_ S40MW

1600 MW = 0.337

The waste heat of 1060 MW is normally discharged in a.river (or 2 sea). This is a huge
amount of energy. To reduce problems arising out of this, the, designers of tlie power
plaii at Narora (UP) have made use of cooling towers where expanding steam is cooled,
As a result, heat is released to the ahnosphere (air) rather than-to walter,

L4

Diesel engines used in vehicles constitute another example of beat engines. A typical
automobile engine operalcs at about 800K and rejects exhaust gases to thé environment
al about 300K. The maximum possible efficiency is then
300K

=1- 300K "~ 0.63
In praclice, the actual efficiency is inuch lower and emanating hot gases are responsible for
greenhouse eflect and pollution of environment. This has increased to alarming proportions,
particularly in cilies like Delhi, Calcutia, Bombay, Bangalore, Madras, Abmadabad, Kanpur,
clc. So to keep air clean, we should get our vehicles wuned regularly.

" SAQS

a)  In the tropics, the temperatures at the surface of (he ocean and at a depth of 300m are
25°C and 5°C, respectively. will you reconunend to tap this energy?

b) A Camot engine is made to work between ice point (273K) and nitrogen
temperature (77K). Calculat:. its efficiency. Is il possible to attain this figure in
actual practice? .

v)  You would note thal the thermeodynamic efficiency given by Eq. (5.26) is maximum.
This'is because all the processes involved in operation are reversible. This result is
known as Carnot’s theorem. It may be sialed as follows:

Of all heat engines working between same temperatures, the
teversible Carnol engine has the maximum efficiency.

Carmol’s theorem tells us that :

i) all reversible engines working between the same temperature limils bave the same
cfficiency, and

i)  the nature of the working substance is not important.

The beauty of Camot cycle lies in the fact that ail its stages are completely reversible. So if
you inverl the sequence of processes occurring in a keat engine, you will obtain a
refrigerator. Do you know that an air conditioner is also a refrigerator designed to cool a
room? Let us now know thie physics ol this device.

Refrigerator

On your TV set, you may have seen a penguin advcrllsmg for a refngcrator It
is the coolest one. Have you ever thought as to how cooling is.achieved'in a
rcfngera tor?-Thermodynamically, a refrigerator makes heat to llow in a direction |l
-does not spontaneously; go,:l:e’; Tron e 1ower lenperalure 16 8 Righer temperature.
You can feel it by putting your hand near the coils of the refrigerator. This observed
fact is contained in the stalement of second law of thermodynamics due to Clausms

It is impossible to make a refrigerator, operating in a cycle,
whose sole result is the transfer of heat from a cooler body
to a hotler body.

Thermodynamics

v upy smotne econd Law of
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- a_y':u.::'l' gm Third Lawsal At first, you may think thai the Clausius and Kelvin-Planck statements of the second law are

unrelated. BUt111s — mie, Both statements are equivalent and thieir consequénces are
identical. In fact, each staiement impiics we ather, If either of these statements is proved
false, the olher one will necessarily be not true. To understana wis, lat ug suppose that

Kelvin-Planck statement is not true. This means that you can completely convert a grven
amount of heat taken from a body into work. From experience, we know that this work
{order) can be changed into heat (chaos or disorder) through friction or other dissipative
mechanisms. In this process, you ean raise the temperature of a body. A continuous repetition
will enable you to raise the temperature indefinitely. The net result of this activity will be to

_ transfer heat from a body at Jower temperature to a body at higher temperature without any

exiernal cffort. Bul this violates the statement of second law dite to Clausius.

Similarly, you can argue that if Clausius statement is false, Kelvin-Planck statement will
necessarily be violaled. ' ‘ ' :

Having leamt the guiding principle of a relrigerator, you may ask: How is ils effectiveness

- measured? Itis usually expressed as coefficlent of performance (COP) or figure of merit.

Let us discuss it now. -

The coefficient o[perforfhénce of a refrigerator is defined as the ratio of total heat e)I:!mcted
at lower temperature to the amount of input work done. Mathematically, we can write it as
cop =% . & . 82D

L4 Q.fl - Qc
where Qe is heat extracted at lower temperature (cooler body) and Qy is heat rejected at
higher temperature (kitchen environment). Using Eq. (5.25), you can rewrite il as

T. (5.28)
To— T,

COP =

You can derive following conclusions from this result:

(i) COP is directly proportional to Te. That is, the coefficient of performance will be small
when T, is low. In fact, COP approaches zero as T, —» 0 . This means that more work
will have-to be done, i.e., more energy will be used up by the refrigerator for
transferring the same amount of heat as 7, decreases. So you can say that the quality of
beat is degraded at lower temperatures. If 7, = 0, infinite work will be required to
produce cooling. Is il possibie to attain this temperature?

(ii). COPis inversely proportional to Tj - T, i.e., lower the difference between hot and
cold bodies, greater will be the cocfficient of perfonmance. As T - T approaches zero,
COP approaches infinity. This means that a refrigerator will be most effective when
catables/chemicals placed inside are close to the lemperature of suroundings. So Lo conserve
energy, we should not pul eatables in the kitchen refrigerator while they are very hot.

Example 8

A typical home freezer operates between —18°C and 30°C. Calculate the maximum value of
COP of this refrigeralor. With this COP, how much elecirical energy would be required 10
freeze 0.5 kg of water, initially at O°C. Given latent heal of fusion = 334kJ kg’

Solution
The coelficient of performance is given by

T. 255K 255K
cop = T,-T, 303K-255K = 48K

=53

. To p:odﬁcc 0.5 kg of ice, you have lo extract heat ﬁom waler. It IS _g_i_ver_t_b_y )

Q'=mL
where L is Jatent heat of fusion. Hence
Ow (05kg)x (334 keg™) = 167 kI
Using Eq. (5.27), you can write |, '

Q. 167K
W= Zop = 5.3

=315 K

HIFE L ey et
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In actual practice, cop would be lower and the comresponding wurk mpul would be higher Entropy.and the Second Law ol
because of irreversible processes. Thermodynamics

Y ou would recall thai when we discussed termperature measurement-in Unit 2, we faced thie

. problem that no single method works for all temperatures. Ultimately, we recognised that

. gas thermometer is the best laboralory standard, But even a helium gas thermomeler fails to
work below aboul 1K. Does this mean that we caunot measure temperature below 1K? The
" operation of a reversible heat engine provides a way of measuring temperature, that
is, independent of the particular device and can be used for any value/range. Al that you
have to do is to operate any thennodynamic device through a completely reversible cycle. If
you are able to measure heats absorbed and rejected by the working substance, you can easily
calculate the ratio of two temperalures. Knowing one of these temperatures, you can
determine the other. As such, it may seem o be a rather obscure way 1o measure temperature.
But it is particularly uscful at very low temperatures. [u fact, it provides us an absolute way
of defining temperature. The temperature so defined is called the thermodynamic temperature
and the scale on which it is measured is called the absolute or thermodynamie temperature
scale. .

. Theimodynamically, the zero of the absolute scale—absolute -zero-fcprcscnls a slate of
" maximum order. [t coresponds to — 273°C. (It ineaus that ice point corresponds to 273.16K.)
The inagnitude of each degree on absolute scale is equal to Lhe size of one degree of celsius
scale,

Let us now sum up this unit.

5.6 SUMMARY

¢ Entropy is defined through the relation
_ %
“=7

L.
Eulropy is an extensive variable. Moreover, entropy is a state fuuction.

¢ Enfropy is a measure of disorder in the sysiem; morc chaotic the system, greater will be
ils entropy.

® The sccond law of themmodynamics is essentially the principle of increase of entropy. It
slales that, when a closed 3ystem undergoes a change, its entropy cannot decrease; it
cither increases or remains constanl, Mathematically, it may be'expressed as:

AS 20

e Two other equivalenl stalements of second law of thermodynamics are due to Kelvin and
Planck, and Clausius. The Kelvin-Planck slatement governs Lhe working of 2 heat engine.

Il states that we cannot construct an engine, no matter how ideal, which, working in a cycle,
will transform the entire heat into work. The efficiency of a heat engine is given by:

O, L}
- 1 —— ——
1 L0 1,
e The clficiency of Camot's engine is maximum. .

® The Clausius statement of second law govems the working of a refrigerator. It inay be
stated as: It is impossible to make a refrigerator operate in a cycle so that its sole result is.
" thie transfet of heaf from a cooler body to a hotter body. -

The coclficient of performance ol a refrigeralor is given by:

O, 7. , -
On— Qr Ty-T. o o

COP =

® The entropy change of an ideal gas can be calculated using the relations

19
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S - ney ln(ﬁ)+nﬂ In (._2.)
- " Tl 1

V
V.
=nc, In (%)+ncy In (ﬁ)

= nec, In (To/T)—nR In {p./p, )

5.7 TERMINAL QUESTIONS

1) A huge copper block at 1000K is joined to another huge copper block at S00K bya

copper rod. The rate of heat conduction is 10* Js*.. Calculate the increase in cnlropy of
the universe due to this process. '

.
o

2)  Eddington proposed that entropy is the arrow of time. Comment.

3} mgramof walter at temperature T} are mixed with an equal mass of waler at temperature

T;. Show that the change in entropy is 2m Cp In Ta,/Tl T),where T, = IL;-ZZ -

5.8 SOLUTIONS AND ANSWERS
" SAQ’s .
1. 80 = mi

= 107 kg x 2238 x 10%) kg™!
2.238x10% ]

Heauce

80 2238x10%7J
AS =T =S T5x

‘= 60JK™

2. a) TdS = dU - Fdi
b) TdS = dU — odA
¢) TdS = dU — BdM

T.
3-- Asy = ncy, In (?:)

“CVlnz

Sincecy = %R, we [ind thai

3 _‘ T
Asy 2x(8.314 JK™ 1ol )1112

= 864K

4. Aspg = ?_i_l
. melt

L 18gx3344 3!
273.16 K

. 601921 ' _
273.16 K ‘

= 221K
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- 278 . . Entropy and the Second Law of

=1 ~208 - The'rmodyumﬂns
J2
298
= 0.07 _
a 7%, . -
This is a highly inefficient system and it is not advisable 1o tap this source of energy.
b) na=1- % - ;ng- _
e =072
= 72%
It is too hjgh to be attainable in practice.
TQ's

1. . By carrying out the heat transfer reversibly, we can calculate that ]
AS = (g/T))—(g/Ty) = 10* Js™' [(1/500 K}~ (1/1000 K )] = 10T K15
Thus, (he entropy of the universe increases by 10J K! per second.

2. The statement is justified. If you calculate entropy of the universe at two different
limes, the point of hightr entropy would correspond to the point of later time. This
statement is further justified by the fact that the universe has been expanding
uniformly ever since its creation. Even if one obscrves the motion of galaxies, these
are found receding with respect to any point of observation. This means that the
entropy of the universe is increasing continuously; as does time.

3. Since the masses of water being mixed are equal, the temperature of the mixture will
be the arithmetic mean of T and T2 '

Tl + Tz
Toix = 2 To

——

Since Whe process is isobaric, the change in entropy of water sample whose temperature rises
[rom T} 10 Ty is given by

ASIHGQ

. :
=mC,ln| == )
e (n) 4
Similarly, the chan\ge in entropy of water sample whose temperature falls from TL10T,is
7, (i)
AS; = mC, In ( —T‘?-) _
Hence, the net change in entropy is
' AS = A5 +AS,
o T, Gii)
=mC, ln(f)+mcp In(}-z—J _ .
Sincelig+Inb = In (ab), you can rewrite it as
To
T,

AS = mCP ln[

.T 2
ngpln(m)

-=2mCP]n( Lo )

incelnx” = p In x. -

(iv)

2!
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6.2 THE THERMODYNAMIC_POTENTIAL FUNCTIONS

Consider a gas contained in a cylinder fitted with frictiontess piston. You would agree thal the
behaviour of this gas can be described in terms of any two variables amongst p, V and 7. The
third one is antomatically fixed in view of the equation of state. Such a system is said to be a two
coordinate system. But even for such a sysiem, we need a much greater number of funclions of
state: p, V, 7. 8, Uand H. (Of these, U and A have dimensions of energy-) In principle, we can .
construct several functions of state by combining these functions. However, all such Runctions
may not have physical significance but some do have. In particular, we define Helmholtz and
Gibbs functions by adding a combination of p, V, T and S having dimensions of cnergy,
to internal energy or cnthalpy. As you proceed, you will learn that a2 knowledge of the
bebaviour of a two-coordinate systemn can be obtained from either of the four thennodynamic

potentials. With reference 1o a system subject to work by pressure only, these functions
are defined as

s intemal energy U ]

o enthalpy : He=Us+pV

¢ Helmholiz poleﬁ:ial .t F=U-TSa H-pV_7Ts _ (6.1
¢ Gibbs potential P G =U-TIS+pV = Fepy —J

The Helmholtz potential is particularly important as it provides 2 vital conncction between
thermodynamics and statistical mechanics. That is, it provides a bridge between macroscopic
and microscopic viewpoints. You will know facse details in Block 4 of this course. Gibbs

potential finds wide applications in the study of phase tansitions, which you will study in
the next unil. :

LY
~

For systeins which c:;nnol be described by p and V, these potentials are defined by replacing
~p and V by a suitable pair of variables out of o, A, F and, L (see Table 3.1). '

The physical significance of the potential functions becomes clearer from their diffarored
L. LU US JCATN ADOUL LACSE now.

The Differentials of Potential Functions

Let us consider a gaseous system undergoing an infinitesimal reversible process. From
Eq. (5. 10), you would recall that change in internal energy can be expressed as

dU = TdS—pdV (6.22)

Also, a small change in enthalpy, defined as & = U + PV, can be writlen in tenns of changes
in intermal energy, volume and pressure as

dH = dU +pdV+Vdp
On combining this with Eg. (6.2a), you can write

dH = TdS+Vdp (6.2b)
Liiccwise you can show Lhat -

dF = —SdT-pdV (6.2¢)
and dG = -§5dT+Vdp ' (6.2d)

Each of the Egs.(6.2a) 1o (6.2d) bas two terms on the right hand side. And each term
consisls of a pair of thermodynamic variabies such hat their product has dimeusions of energy.
Moreover, each potential has a different pair of natural variables :
U=U(SV);H=H(Sp),F= F(TV) and G = G(T,p}

SAQ
Prove Egs. (6.2¢) and (6.2d).

Proceeding further, let us suppose that only one of the polentials is known explicitly. Now
the question arises: Is il sufficient 10 gel complete information aboul the system? To
discover answer fo this question, we have 1o calculate paramncters of slate from that function. We
illustrate this by tonsidering the Helmholiz potential.
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The natural variables associateqd with F, as you have scen, are T and V. If F is The Thermedymamic Pelentiuls
explicitly known in terms of these, Eq. (6.2¢) can be used to calculate S and p using
the relations '

-

oF o
S = —(E)V | | o (6.3a)
and . . .
aF - ‘
p= -(W)r . | | (6.3b)

As entropy of a substance is a positive definite quantity, we can say from Eq. (6.3a) thal
Helmholiz polential decreases as temperature rises. Moreover, the rte of decrease will be
greater for a substance having higher entropy. This explains why gases show maximum loss
in F. And Eq. {(6.3b) shows that Helmholiz function decreases as the system expands, i.e.,
volume of the system increases.

The expressions for U, H and G can also be rewritlen in terms of F starting from their
definitions. For example, by substituting for § [rom Eq. (6 3a), the internal energy can
be expressed as

U= F+TS = Fm r("’*‘) rz[ ( )] [J@ (6.4)

aT a(1/T) |,
d {1 1
since dT( ) = - p dT.

_ This is known as the Gibbs - Helmheltz equation. It finds great use in (herinochemistry.
Similarly, on substituting for S and p from Egs. (6.3a) and (6.3b) respectively, you can

wrile

aF oF
= 6.5
H=F+TS+pV = F- T(BT] V{av)r . {6.5)

and .
R,
[ aviv r

Eqgs.(6.4), (6.8) and (6.6) clearly show that tke entire inforination about a thermodynamic
system can be oblained once we know Helmhboltz potential. You may now logically ask:
Can we say the same for other thermodynamic potentials? Definitely, yes To convince
yoursclf, you should solve the following SAQ.

SAQ2
a)  Obtain first order derivatives of H and G which justily the following statemients:

oF
G =F+pV=F- V(WJ

i} Atconstant entropy,the rate of increase of enthalpy with pressure is greater for a
gas than that for a solid.

if) Under isothermal conditions, the Gibbs energy increases more rapidly with -
pressure for a gas than (or a liquid or a solid. ’

b) Prove that
' , auy . (as
> o5 7(w)
OVT E)Vr

.. B {(G/T)
iy H= [ a(1/T)

Cdii) Fo= [—-E-—B(G/ )]
a(1/py |,
You have learnt how thermodynamic potentials can be used to get inforiation aboul basic
properties of a system. One of the basic facts about every system is that it exchanges energy
will its surroundings and has inherent tezdency to approach equilibrium. We are invariably
interested in deriving propuucs of the system without refercnce (o the surroundings. You

f——-
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The Second and the Third Lawsof  since T is constant. Thus, at conslant volume and temperature, Eq. (6.10) takes the form
Thermodynamles
d(U-T8)=dF =0

4] {4 ¢ r =y =y g

That is, the Helntholiz polential governs the cquilibrium state of a system for changes al
conslant T and V. There is another way'of looking at (his relation. The change dF is less
than the change dU' by the amount T4$, which is the non-available energy arising from ]
entropy changes in the sysiem. Thus, the energy that we can extract from a system.is always a
less than the intemal encrgy. For Lhis reason, F is also called the free energy. For changes at
coustant Vand T, the appropriate conditions of thermodynamic equilibrium are

[

dlT =0, dV=0 dF =0 (6.14)
d) Thermally conducting-Isoharic System

As in case (¢), we must bave 4T = 0. Similarly, {ollowing the argument of case (b), K
cquilibrium requi':cs p=pyordp=0. T k-

Thus, Eq. (6.10) now reduces to

dA = dU~-TdS+pdV = dU-d(TS)+d(pV) = 0 3

since Tand p are conslant. We can rewrile it as i
Cd(U-T8+pV) =dG = 0

That is, Gibbs potential remains unchanged in equilibrium al constant p and 7. Just like

Helmboltz potential, the maximum work that a systein can perform at constant T and p is F!;
equal to the change in entbalpy minus the unavailable energy T dS. (For an ireversible R
process, the available energy will be still Iess.) The non-availability of therinal cnergy is
associated with the random nature of licat.
The appropriate conditions for such a system are
df =0, dp =0, dG =10 (6.15)
Thus, (be four sets of conditions for thermodynamic equilibrium are:
ds =10, dV=0 dU=0
dS =0, dp=0, dH=0 (6.16)
dar =0, dv=0 dF=20
df =0, dp=0, dG=20
You must note thal each, potential appears with its natural set of variables. These four sels of
conditions are enlirely equivalent in the sense that they Jead 10 identical physical results, g
The use of a particular set is entirely a matter of convenicuce. For example, if a system is
keptal constant lemperamure and pressure, the obvious elioice is (o minimise the Gibbs §
polential sinee its accompanying conditions are antematically tulfilied. Er
The nature ol the conditions implied by Eq. (6.16) are easily identified by reference 1o E
Eq. (6.8) and the basic definitions of respective potentials. For example, let us consider the £
third condition. F is defined by (he equation ' E
FeU-TS [
: ' {
In general, an infinitesimal cbange in F is given by }
dF = dU -SdT-TdS = dU-SdT -TydS (' T.= Ty) B
On combining=this result with Eq. {6.10), we find that . . :
dA = dF +SdT + pydV E

Frow 1his, we note that for given-values of T and V, 4 will be minimumit £ is minimum.
Stnilarly, when F and T are given, V mustbe minimum for A 1o be mininmm, When will A
be minimum i€ F and V are given? [ can happen only when 7 is minimuin,




In this way, we can list twelve conditions in all for a system to be in equilibrium. These are
given in Table 6.1. -

Table 6.1 : Conditions for Stable Thermodynamiec Equillhrfum

Variables specified ) Equilibrium condition
) u 14 A TR > maximum
Oftenused T P G ——————> minimum
' T V F > minimum
S Vv U —————> minitnum
S j hl" ——————> mikimum
v s V ————=> minimum
Rarely uscful . H s p ———— > maximum
s H P S —— > naximum
F T V ————> minimum
" F 14 T = > minimun
G T p —-———> maximum
G P T —— > minimum

All these conditions supplement the law of increase of entropy. Yet each one of these conditions
represents Lhe simplest way of applying the law under given conditions.

Before you go over lo the next section, you should work out the following SAQ.
SAQ3

Suppose that a flask having chemical reactants is heated at atmospheric pressure. Reaction
begins to lake place at some temperature. Which potential will govern the change? Juslify
your answer. '

Now that you have leamt about themodynamic potentials (F, G, H and U ),you can use
these 1o get several thermoedynamic relations. We [first illustrate it by deriving Maxwell's
relations. As you proceed, you will learn that usefulness of these relalions stems from the
fact that they frequendy relate quantities which apparently seem unrelated. The actual
beauty of Maxwell's relations lies in that they simplify thermodynamic analysis.

64 MAXWELL'S RELATIONS

You have read about exact differentials in Unit 3 of Block 1. We will now use this concept
for deriving Maxwell’s relations. You may recall from Scc. 3.7 (hat for a funclion of two
variables

Z=Z(xy)
the exaclt differential can be written as
.dZ = Mdc+Ndy

where M= (z) and ¥ = (ﬁJ
dr 5 oy 2

- chcc, (he ratc of change of M with respect to y at constant x is given by

My _[afez))] _ 8z
Loy ) c':iya:r,”-r dy ax

Similarly, you can write (he rate of change of N with respect lo.x as

Ny _[2foz)] _ &% . '
axy axay” ax gy \

The Thermodynapic Potentials
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The Second and the Third Laws of
Thermodynamics .

‘Solution

For one mole, we bave

- @ '
Tds = ¢, dT + T(M.] dv

where s, ¢, and v are the molar entropy, molar heat capacity at constant volume, aud molar
volume respectively of the gas.
The van der Waals’ gas is said lo.obcy the following equation of slate:

) RT a '

v—>5© vz
From (his; you can casily wrile
Py R
ar] v-b.
Using this result in the first TdS-cquation, we gel

dv
v-—b

Tds = ¢, dT + RT

Since the gas undergoes an isothermal expansion, 47 = 0. Also, as Lhe process is reversible,
the heat iransferred g = T ds

¥f
. RTf _dv
Vi " =

'l’,'—b

5= RT In [ﬂ]

You can obtain two olhier TdS equations by laking
S =S(T,p) and S =S(p, V)

and following the proccdu-rc used in arriviug at Eq. (6.19a):

TdS = ne, dT - T( g;] dp (6.19b)
or oT
TdS = m:v( = )F dp + nc, (av ); dp (6.19¢c)

You will note that T'dS équalions enable us to relate entropy, which is not physically
measurable, to directly m- asurable quantities like heat capacities, temperature, pressure and
volume. However, the knowledge of the equation of stale is a must for extracting any useful
infonnation from thesc equations.

You may now like to work out an SAQ on T dS-equalions.

SAQ4

Prove Eqs. (6.19b) and {6.19c).

Use Eq. (6.19b) to calculate the hea transfer if the pressure on 0.015 litre of mercury at0°C
is increased reversibly and isothermally {rom zero lo 1000 atm. It is given that B for

mercury = 178 x 107 K.'1 Take 1 aim = 105 Nm2 (Assumc that ¥ and ﬂ remain constant .
during the process.) -

6.5.2 ‘Energy Equations

Just as Maxwell's relalions enable us to compuie heat transfer, we can also study
how internal energy changes with volume, lemperature or pressure, The resulting relations-

are known as energy equations. To derive first of these, we divide Eq. (6.2a) by dV. Thls
gives

0T
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You may consider each of U; S and p as a function of Tand V. IfT is held conslant, the
* derivatives in the above equation will have to be treated as partial derivatives, so that you

can wrile
' aU). (as]
A = T2 -p
(8VT GVT

~ Using Eq. (6.18c), we gel

(%g) - T(‘g%) ~p (6.202)

Eq. (6.20a) is the so-called first energy equation. To illustrate ils use, we consider a simple
.example. For an ideal gas, wi know that -

_ mRT gy _ mR
P ="y and (ar)‘, 7

Substituting this in Eq. (6.20a), we have

-

wy mr
av) v TP T

whichl indjcates that the internal energy of an ideal gas is independeni of its volume. So we
may say (hat for an ideal gas U depends on T only. But, in general, U is a function of both T
and V. You will understand this by solving the (ollowing SAQ.

SAQS5

i

Using Eq. (6.20a), show that for one mole of a van der Waals’ gas, (g%j =2
g _ , T

2

The pressure dependence of internal energy can be obtained by dividing Eq. (6.2a) by dp
and following the procedure used above. The resull is the so-called second energy
equation: :

au av (avy
(}E]T._T(E-flhp(g)r - (6.200)

Before we derive heat capacity equations, we would like you to work out an SAQ.

SAQ6

Prove Eq; (6.20b). . "

In Unit 4, you learnt to compute the relation involving (he difference of heat capacities for a

gas. The gencral result applicable to any subslance was just quoted. We will now prove it
using Maxwell's relations.

6.53 Heat Capacity Equations : Difference of Heat Capacities

- To derive heat capacity equations, let us 1ake S as a funclian of 7and V¥
S=S(T,V) /

50 that

The Thermodynamic Potentials
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The Second and the Third Laws of
Thermodynamics .
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Now, starting from the above equation write for a magnelic system K
ey e four Maxwell’s relations -
. by I.hc. second T dS-cquation
2) A gasobeys the elqlllationp (v—b) = RT, wherc b is coustant. Show that
a) u isa function of T only

b) ¥ is constant

- ¢) p(v—-b)" =constant for the gas undergoing a reversible adiabatic process.

6.8 SOLUTIONS AND ANSWERS

SAQs

1, F=U-TS
An infinitesimal change in F can be expressed as

dF = dU-TdS-5dT

We know from Eq. (6.2a) that dU = T'dS —p 4V or dU—TdS = —-pdV
" dF = —S§dT—pdV, which is Eq. (6.2¢). :

Similarly,
G=U-TS+pV = F+pV
dG = dF +pdV+Vdp = ~SdT pdV+pdV+Vdp
or dG = —SdT + Vdp, which is Eq. {6.2d).
(i) From Eq. (6.2b), we have

y- (&
c’!ps

For a fixed inass, V is greater in the case 6f a gas than that for a solid. So, at constant
entropy, the rate of increase of H with p is greater for a gas than a solid,

2.a

S

(ii) From Eq. (6.2d), we have
va[E
»p ).

Now, owing Io reasons as stated in the case of (i), we can say that at constant temperature,
& increases with p more rapidiy for a gas (tan that for a liquid or a solid.

b}  From Eq. (6.2¢), we know that

- )
. v .

'On substituting for F, we set
.8 ot a5
pP=- —(U-TS)J =-(—-) +T(—-—)
[aV _ r av | av |

This relation signifies that pressure arises out of two contributions. These are duc 1o
the isothermal variations of interial crergy with volume and the entropy with volume.
The first term is dominant in the case of solids and the secosid in the case of elastic
polymers such as rubber.

The variation of entropy of a system with volume may also contribute [0 pressure

when its energy remains constant, This is exactly what happens in the case of an ideal -

8as at constant temperalure.

€) Weknow thalG = H—T5 and_.s;-_(%)_
P

Therefore, we can invert this relation 1o write
G

H= G-T(_E]_f_‘)
P
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st 2( 1 1 (G/T
" [ar(r)] STy [a(lxr)]

3. G=U-T5+pV
~dG a dU-~-TdS-SdT+pdV+Vdp
Now T = Ty, andp = py. Then, we have
dG = dU —TodS-SdT+pydV+Vdp '
or dU+pydV ~TydS = dG +SdT-Vdp
or dA'= dG+5dT-Vdp

As T and p are given, d7 = 0 = dp. So we have dA = dG. Henée, for A to be
minimum, G mus( be a minimum. :

43y S =S8(T,p)

a5 as /
| dT+|—| dp

(6T)p (E}p)r .

Multiplying throughovt by 7 and using Eq. (G.ISd), we gel

Tds = ncpdT—T[g—;) dp, which is Eq. (6.19b).
i .

Next, we choose entropy to be a function ofpand ¥, ie.,

S = S(p, V) :
as as
“dS = |=| dp + ( ) dav
(ap Jv av A
oo Tds=T{EY ap+7([5E) av
ap ), av
f ]
You can rewrite it as -

as aT as ir
““T(ar) (o) 7(5), ()«

or TdS 5 ney dp + nc o7 dV, which is Eq. (6.19¢).
ap P c'JV

. v

b)Since the process is reversible and isolhermal dr = 0), we have from Eq. (6.19b)

8Q = TdS = T(g;) dp = TVBdp

@ = -fﬂ/ﬁdp = -TfVde (‘T isaconstant) .

Since V and B remain constant during the process, we have

Q- “Wﬁf-dp = -TVB(p-pi) - S

where p; and pyare the initial aud the final prmurcs

On substituting the values

T = (0+273)K = 273K, V = 0.015 litre, f = 178 x 10°K",
Fr = 1000 aim, and p; = 0 aun, we find thal

@ = =(273K)x (0.015 lire ) x (178 x 10K x (1000 atn )
= —0. 729 litre ann

e . - The ﬁmuody'i)mnilc Potentiuls
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The Sccond and the Third Lawsal  jfj) We know from Eqs. (6.19a and b) that
Thermodynamics ,

- ®.
' Tds 'c"dT+T(6TJVdV,

and _

'
:
2

Tds = c,dr-r(g—;) dp
) ’

For a reversible adiabatic process, Tds = 0

* 2 — —aE a_v‘
. ¢, dT _T(ar]vdv and ¢, dT = T(&TL dp

or e, dl = — RT

RT
v—bdv and c,dTl = 3 dp

Hence,

RT 4
@dl P % " v bdp
&dl  RT dv p dv
v-b

41 1P TIEIC T

-

mrTRE-ArE e

1o == s Teey TR




UNIT 7 PHASE TRANSITIONS

Structure

7.1 Introduction
Objectives
7.2 Phase Equilibrivin
Condition for Equilibrium between Phases

Phase Diagrams

7.3 First Order Phase Transitions

N Latent Heat E:qualions

7.4 Higher Order Phase Transitions ~ ~ \
7.5 Gibbs Phasc Rule -

7.6 Summary

7.7 ‘Teminal Questions

7.8 Solutions and Auswers

7.1 INTRODUCTION

Matter exists in three distinct phases—solid, liquid and gas—around us. Most substances in our
enviromuent can be mnade to undengo change in phase by varying temperalure and/or pressure.
The melting of ice to form water and evaporation of water to fonn water vapour are (he best
known examples of phase transitions. The phase change from solid to liquid is marked by a dis-
continuous change in their strength to withstand a deforning force, The transition from
liquid 1o gaseous phase involves a discontinuous change in dcnsily. Some phase (ransitions are
accompanicd by discontinuous changes in electrical conductivity. The most important examples
. include wansition from normal conductor 1o supcrmllduclor,\whcrc a substance loses all
resistance to fow of currenl, and gas to plasma— the fourih state of matter. Yel sonic other
phasé transitions exhibit change in maguetism (paramagnetism fo ferromaguetism) and
viscosity/heal capacity (normal hielium to superBuid hielium). Thus, we can say that a phase
transition always brings nbout an abrupt change in some physical property.

You may like to know: What is good about phase transitions? First of ali, they occur
{requently around us. Morcover, many phase transitions aré technologically important and
physically interesting. The recent discovery ol high tempemture superconducting phase
trausition in the mnge 35-120K bolds great promise in areas of infonnation technology (computers,
space salellites, eic); surface transport as well as electronics. I is, thercfore, important to know the
physics of a phase ransition. You have an opportunity to study it in this unil.

1t you have been 1o a hill station like Manali and Darjeeling, particularly in rainy season or
winler, you must have seen clouds accumulating around snow-capped peaks. This significs
cocxistence ol solid and vapour phiases. You may now ask: What parameters detennine Wis

- toexislence? Why and how does it happen like (hat? You will lcamn answers to these questions

in Sec. 7.2, The equation goveming first order phase transitions is given in Sce. 7.3. Higher order .

phase transitions are discussed in Sec. 7.4. In this'study, you will use the knowledge ol the previous

il There[ore, you should ensure that you arc therough with that. If the system ol inlcrest consists -

of more than one chemical substance and vach constilnent can ¢xist in :.wcral phascs, their
co-exislence is described by G|bhs phase rule. We have discussed its applications in Sec.7.5.

Ay

Objectives

After studying this unil, you will be able to

® dcfine the term phase equilibrium '

-
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The Second and the Third Laws

of Th_emlodynamll.‘.s

From 1his you may be tempted to conclude that every substance that can exist in
different phases necessarily has a triple point. This is not always true, Can you name a
subslance which exists in different phases but does not possess a triple poim? In Block

. 4, you'will learn that helium can exisl in three different phases. But it bas no

triple point. This is because solid phase is obtained only under a pressure of
about 25 atm.

P laimg

an

Pa
okd e So6d quid
1
1
a5m (... \O
-] ! 1. vapour
: “vap ; .
' ,r : : - » T {0
Tir w5880 fi Tir =00075C

tig. 7.2 Phase diugram of CO3 Fig 7.3 Phase diagram of water

Again refer 1o Fig. 7.2. You will note that :

1)

2)

3)

4)

Higher pressures favour the denser phase. Physically, this implics that (ke melting and
boiling points of most substances increase with pressure. This explains why pressure
cookers cook food faster and it is difficult to make a good hot cup of tea or coffee at
higher altitudcs.

‘The lines dividing solid-gascous, solid-liquid and liquid-gaseous phases tend 1o slope
upward to the right,

If you compare this diagram with phase diagram for water shown in Fig. 7.3, you will
note that in case of water solid-liquid boundary has a negative slope. It signifies that
waler expands on freezing and increased pressure melts ice. This is the reason why,
unlike other solids, ice becomes slippery when pressure is applied and makes skating
possible. '

You will note that the line separating the gaseous and liquid phase does not

. continue indefinitely. In fact, beyond the critical point, defined by T and pc ,

there is no clear distinction between liquid and gaseous plases for any subslance,
It means that there is no change in density, i.c., o phase change occurs in this
region. -

Lel us now learn about familiar phase transitions like melting, vaporisation and
sublimation. These are characterised by disconiinuous changes in entropy and
volume al a parlicular temperature and ‘are called first-order phase transitions, -

73

FIRST ORDER PHASE TRANSITIONS,

You know that to melt 1g of ice at 0°C, you requirc 80 cal of heat. This suggests ihat
entropy will show a discontinuous change: Also you know thal'the specific volumes of
ice and waler are different. That is, we observe a discontinuous change in volune as
weli. Such a change is an example of first order phase transition characterised by constant
T and p. Mathematically, the condition for co-existence of two or more phases is

govemed by Gibbs potentlal. For one-coiiiponiént system, which cain exisi in two phases,

from Eq.(6.2d), you can express specilic Gibbs potcntial g = % where mr is mass of”

either phase as

dg = —sdT +vdp (7.5}
S v - - .
where 5 = o and v = o Are the specific entropy and specific velume respectively.
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Phase Teansilions
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Fia rov: Plol of (a) Gibbs function (by) entropy (c) volume and (d) €, u5 2 function of lemperature for & first
order phase transition

Thesc can readily be expressed as the first order derivatives of g:

- 2&) _(ES.J
5 = and v =
(arp apr

Fig. 7.4 sc;hcmalically depicts variation of G, S, V and Cp with temperature for a first order
phase transition. .

The behaviour of Cp depicted in Fig. 7.4d is patticularly significant. During a phase

transition, temperature remains constant aud, hence, ¢ = ), Buz C"p = T(?J — x,

. f2
Let us consider that water at 100°C boils-under atmospheric pressure and two phascs — liquid
and vapour — are in equilibrium. Is it posible for us to predict the boiling point if pressure were
reduced? Or could we predict the pressure under which the boailing point may be lowered or
raised? To answer these questions, you should know how changes in temperature and pressure
arc inter-related when two bhascs coexist in equilibrium. This information is contained in (he
Clausius-Clapyron latent heat cquation. Let us now leam io derive i,

7.3.1  The First Latent Heat Equation

You know tiiat thennadynamic behaviour of any subslance is normally specified by two
thermodynamic variables, which are independent of cacl other, You may choose pressure

and temperature as independent variabtes. But when water is in equilibrivm with iis vapour,

reduced below the cquilibrium value, the liquid will evaporate. To relaic the changes A p
and A T, we use the fact ihal the specific Gibbs potentials (or chemical polentials) of two phases

‘must always be equal for their co-exisience: .

&1 =8 - : _ (7.6)
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The Sccond and the Third Laws

Since specific volume is the same in both phases, ++e can wrile
of Thermodynanics .

EI%AT—vB,Ap = E?‘;’-AT—vBZAp-

oF Ap __cp—6 i (7.12a)
AT  Tv(By-B) ' ’

This is known as Ehrenfest’s equation. It describes the dependence of pressure on
temperature during a second order phase transition.

Since a second order phase transition is characterised by equalities of specific volumes as

well, you must expect another Ebrenfest equation which defines Lhe ratio Ap/AT. If you
start with -

v = v

as the ncé:cssary'condition for the co-cxistence of phases and follow the steps oullined
above, you will oblain

Ap _ Ba~By (7.12b)
AT K1, —Kr,

where x; = —% ( g—;) denotes jsothermal compressibility.
' T

There is anothier interesting higher otder phase trausition. It is called the Iainbda transition.
It is characterised by the [ollowing:

i) T, p and G remain constant
i) § and V(also U, H and F) are conslants

iii) ¢p, and xrare inGnite,

Now refer to Fig. 7.5. It depicls plots of ¢, vs. T for first order, second order and lambda

First Order ) Second Order Lambda

L 4
-]

]
|

v

te) 0] i)
Fig.7.5 Comparison of lemperature vatialion of heat capacity for first order, second order and lambda (ransilions.

Iransitions. Can you dislinguish the. three types of transilions by examining these graphs?
The shape of the graph in Fig. 7.5¢ resembles the Greek letier lambda (A ). (That is why
this transition is called a lambda transition.) Imporant cxamples of a A- transilion are:

(i) the transition from ferromagnetism 1o paramagnetism at the Curie point, and (i) the
superfluid transition i liquid heliun. '

Having leamt the details of first order, second order and lambda transitions for olte-component
system, let us enquire: How can we delermine ihe co-existence of a number of phases in a
mulli-component system? How thermodynamic variables influence such a syst¢m? The
answer to these question is contained in a relation known as the Gibbs Phase Rile. We
“shall quote the relation without going into details. However, its applications to specific
systems will be considered to enable you to grasp the idea. : B

7.5 GIBBS PHASE RULE

We assume (hat equilibrivm between varions phases ol a multi-component system is
inlluenced by temperature, pressure and concentration ratler than extemal factors, such as

gravilational, clectric or magnetic field. Then, the number of degrecs of freedom F of the
syslem is connected to the componenis C and phases P by the relation

F1p g Mg P T e e T T d [T TN e SRR TE rre A [T TR CL DA Irﬂ‘.
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FaC-pP+2

or F+P=C+2 {7.13)
-To illustrate this rule, let us first consider the existence of triple point of water. As you
know, this point signifies co-existence of ice, water and vapour. Here C = 1 because ice,
walcer and vapour have the same’composition (H2O0)and p = 3.S0F = 1-34+2 =0
That is, there is no freedom. This means that the values of temperalure and pressure are
fixed at the triple point of water. Moreover, this system canuot exist in more than three
phases. You have scen this in Sec. 7.3,

Let us consider another example, which has three parls, We shall discuss only two parts.
The third one kas been left as an SAQ for you.

iy  Abelljaris placed over a waler beaker. The air under the jar gets saturated with water
vapour. Here € =2 (Hz0 and air), P = 2 ( liquid water and air-vapour mixture). So
F =2-2+2 = 2 Itmeans that you can vary two variables without affecting the
system. The variables may be temperature and pressure. The latter can be varied by
connecting the bell jar to a pump. .

ii) Ifin (i), the air is kept at atmospheric pressure, and alcohol is added to water then
€' = 3 (H20, alcobol and air), P = 2 (water-alcobol mixture, and air-vapour mixture).
SoF = 3-2+2 = 3. The variables can be lemperature, pressure and the
concentration of alcohol in water,

SAQ3

Suppose that some ice is in equilibrium with the water and alcohol mixture in (ii) above.
Compute F and identify thé possible variables.

We now sum up what you have leamt in this unit

7.6 SUMMARY

® The condition for equilibrium between two phases is given by

EL =8

* The characteristics of first and second order'phase Iransitions are listed below:

Order Discontinuitly appears ia

Differenials of g Corresponding

_ experimental quantities

First s g s v
Second o vy

or aT

s ° < g K
(%), (%)
% T ap T

¢ The cquation goveniing temperalure variation of pressure when phase transition of first
order exists is

Ap 1
AT = T(vov)

. The co-existence of phases in a secorid-order phase transition is governed by the
equations . : S -

8p _cpme,
AT  Tuv(B-p;)

and

Ap _ Ba-B
AT Kn——lcn

Phase Trapsilions

The degrees of freedom of a system
is the number of independent
varinbles, such as temperature,
pressure and concentration, cic,
which mus1 be specified in order 1o
deline the system compleiely. In
other words, il is the number of
varinbles which can be varicd
independently wilbou! aitering the
number of phases,
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The Second and the Third Laws - . .
of Thermndynamics ¢ When the-equilibrium between various phases is.influenced by temperature, pressure and

conceniration ralher than gravitational, magnetic or clectric fields, the number of degrees
of freedom F of the system is related to the components C and phases Pby the Gibbs
phase rule:

F=CiP+2

7.7 TERMINAL QUESTIONS

1)  You know that in a second order phase transition 5| = 53, and v = vz at a particular

temperature and pressure where 1 and 2 denole lhe initial and the final phases,
respectively, Show that, for such a trapsition

ap _ 1 cu=6 _ BB
AT Iv B—B  x—K

C1f v 1 ov "
whercﬁ-v(ar)p 'K__v(ap]r and‘vlnvz-‘-v.

2)  Salt (NaCl) is gradually added to a beaker (by using some mechanisin) containing ice
and water in cquilibrium under a bell-jar. (The jar contains air at atmospheric
pressure.) Compute F and identify the possible variables when

- i) all ihe salt goes into solution

ii} some salt remains undissolved. |

7.8 SOLUTIONS AND- ANSWERS

SAQ's
1. myw+rizv, = constant
‘ d (mvi+my) =0
of mydv,+mydvy+vidmy+vadmy = 0 . ’ ' 0]
Since
F=mfi+mf;
and the condition of equilibrium is dF = 0, you can write
iy dfy + my dfy + fy dmy + fy dmp = O - (i)
Now multiplying (i) by p and adding to ji), we get
(fi+pvy)dmy +(fo + ply ) dmy + my (dfy + p vy Y+ ms (dfy+ pdvy ) = O
We know that :
"\ df = —sdT—pdv -

so that ; . .
df+pdv = —sdT a 0, for a reversible isothermal change. Hence
dfy+pdv, = d+pdvy = 0 o

So, we have
Ch+pv ) dmy+(fp+pve) dmy = 0

it, g dm+gydm =0 (fepv = g)

Butdm, = —-dm, = 0 = gy—g, =0
‘2. 2) You know that the specific volume of ice is greater than that of water. So, when ice
melts, we have v < vy, Le;, ¥3—V; is negalive. It implies that %% is negalive.

Hence, when pressure increases ( A p positive), A T'is negative implying 1hat mel liué
point is lowered.
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b) /= 356calsg™ = 35.6x42)g T = (80+273)K = 353K Phase Trassitions

vz — v =-0.146 em? g! = 0.146 x 10~ mag'l,Ap = 1 atm = 10° Nm™

Hence , - .
TAp{va-w) _ (353K )= (10° Nm?)x (0.146 x 10™° m’g™")
{ 35.6x4.2 Jg! :

AT =

= 0345K
That is, the increase in 1nclti1ig,poinl per atmospheric pressure is 0.345C.

3. Here C =3 (Hz0, alcohol and air); P = 3 (ice, water-alcahol mixiure and air-vapour
mixture). So F =3 -3 + 2 = 2, One of the variables is p, the atmospheric pressuie. The
other variable, which determines 7 is, therefore, alcohiol concentration. This means
that temperature is not an independent variable in this case.

TQ's
1. vav(pT)
or . : s
o Jv av
Ave|—| AT +{=| Ap
(aT'Jp (ap)r
Ay = eist AT + id] Ap = v,BIAT—i-lxlAp
ar ; ap T
and ) '
Avy = Wy AT + e Ap a v AT-1rusA
2 T ] op |, P 2 P2 2824p

Butv; = v, and Av, = Av,
S BT -k Ap = B AT— K3 Ap
or (Kz—xl)ﬁpf(ﬁz—ﬂl)ﬂ?‘ )

Ap B:-By
AT Ko —K)

Agains = 5(p, T)
: ds s
“ As = — Ap+(—-) AT
(ap )r . or A
Using Maxwell's relation, you can write

Asa _(ﬁl] Ap+£-g AT
[

T T :
. , H
=_u5Ap+5; AT :
where B is volume expansion coefficient. Hence, : : \ - ' !
As) = —nBAp +E§l AT
and Asy = —vBAp +E:?- AT
But Asy=As; and v =wvy=p
V(B2~B1) AP = T (cu-c,) AT

AT = Tv(f-By) |

2d) €=3 (H20, NaCl and air), P = 3 (solid, liquid solution of NaCl in water and ;
air-vapour mixiure). -. F=3-3+2=2 The variables which will determine :

temperature are pressure and the concentration of the salt in the solutjon. ' i

il) C =3, as before. P =4, the additional phz.asc beiny that of solid salt.
" F m3-44+2 =1, Ifwelake pressure as the variable, the concentration of
- solution aud temperature get fixed. This happens with a freezing mixture.
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UNIT 8 PRODUCTION OF LOW
TEMPERATURES AND THE
THIRD LAW

Structure
8.1 Introduction )
' Objectives

8.2 Ordinary Methods of Cooling
8.3 Joule-Thomson Effect
Liquefaclion of Gases
.8.4 Adiabalic Demagnetization
8.5 The Third Law of Thermodynamics
‘Consequences of the Third Law
Unatrainability of Absolute Z:Iro

8.6 Summary
8.7 Terminal Questions

8.8 Solutions and Answers

8.1 INTRODUCTION

During summer you often feel thirsty. To quench your thirst you mnay either take a glass of
cold pilcher waler or a cold drink. Do you know that water is cooled in a pitcher by evaporatiorn
But by this method you cannot go below about 20°C. In a refrigerator you can attain oC.
You must have seen some vendors preparing jce-cream by putting a vessel {filled with
sweetened milk and other ingredients) in a box containing 2 freezing mixture of ice and
common sali. This arrangement enables them to attain temperature as Jow as -21°C, In fact,
adding various salts (NH4Cl, NaNO3;, CaCly, KCH, elc) to ice is the oldest method of
producing sub-zero temperatures. This method was used by Faraday to liquefy many gases
ifcluding Clz, HoS, NO3, cte. As you may recall from Unit 7, many important phenomena
are observed at temperatures of the order of a few kelvin. In this unit, you will learn
methods 1o produce such low temperatures, In particular, we will discuss Joule-Thomson
nethod of regeneralive cooliug and adiabatic demagnetisation in detail. This study has
given birth to a new brasch of physics called Low Temperawre Physics or Cryogenics.

We begin by discussing the usc of evaporation and adiabatic cooling technigues to prodice low
temperatures, Next we discuss the physics of Joule-Thomson effect. Its use for liquefaction
of gases is also illustrated in this Section. The adiabatic demagnetisation method is
discussed in Sec. 8.4,

In the course of discussion you will realisc that il becomes progressively difficult to achieve
lower lemperatures. This fact is postulated as the third law of thermodynamics. The iLiird
law and its consequences are discussed in Sec. 8.5.

Objectives .

Alier going through this unit, you should be able to :
* explain the method of adiabalic cooling

* obtain expression for Joule-Thomson coefficient

® define inversion temperature
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¢ explain the principle of adiabatic demaguetization and describe the ¢xperimental
arrangement, and

® siate the consequences of the third law of thermodynamics.

8.2 ORDINARY METHODS OF -COOLING .

We live in an environment whose temperature is around 30°C. Quite often we need lo cool
things by a few degrees below this value. For this we need to exiract heat from the body, we
intend to cool. This is why an ice-cream vendor puts a freezing mixture around the box
conlaining the ice-creams. In the household refrigerator also, beat is exiracted from eatables
kept inside. Bul these lechniques cannot be used to cool things off much below 0°C,

Another method employed for cooling is evaporation. This fact is used to cool water in earthen
pots. Simnilarly, if you apply ether on your body, you will have a cooling sensation. In general,
the extent of cooling depends on the nature of the liquid and the rate of evaporation. We can increase
the rate of. evaporation by: (i} usiug high speed suction pumps, (ii) allowing the vapour to be
.absorbed by another liquid, and (iii) executing the process in a low pressure atmosphere; If we
putliquid N2, Hz or He at extremely low temperatures in partial vacuum, some of the liquid
vaporizes very quickly and ceols the rest. Kammerlingh Onnes achieved a temperature of
0.82 K when he allowed liquid He to boil (7= 4.2 K) ata pressure of 0.013 mm. of Hg.

Yet another method commonly used to accomplish cooling is that of adiabatic cooling,

It is illustrated schematically in Fig. 8.1. —

—
N
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Fig. 8,1: {a) First the gas is brought into termal equilibrium with (he coldest thing around. (b) It is then
insulated and aliowed to expand agsinst a maving piston, Tn doing the work, it cools still further. -

A gas is [irst compressed. Néxt it is cooled as far as possible. It is then insulated and made
to expand (against the movable piston). In 1kis pracess it does some work, say, A W,

From Unit 4 you would recall that this work is done at the cost of internal energy which
results in drop in temperature. B

This method fails in practice because the insulation is not always proper. Morcover, the heat
capacily ol the containers is much greater than that of the gas and a iot of energy expended
in the expansion of the gas is returned to it by the walls of the container. As a result, the
purpose of expanding the gas gets defeated. Therefore, we need an expansion process where
the walls of the confainer do ot give heat to the gas inside. This is accomplished by
_.adiabatle throttling in the Joule-Thomson experiments Let-us now leam aboutit, -

8.3 JOULE-THOMSON EFFECT

Joule and Thownson performed a series of experinients in which a gas was allowed to pass
through a porous plug from a pressure P1 lo pressure p; ( < p,) under adiabatic conditions
{Fig. 8.2). (We usé cotton wool and silk woo! as porous malerials.} Such a process induces a
" change in the temperatre of the gas: This is known as Joule-Thomson effect.

Productlon of Low Temperatures
and the Third Law

From the frst law of
Thamodynamics
8 - JUv oW

Here 80 = 0 because of the
insulalion.

odU = —8W

The egative sign indicares that
there is a loss of internal energy.
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The Second and the Third Laws . , . v h
of Thermodynamles
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Flg. 8.2t The elements of Joule-Thomson experiment,

_ Referto Fig. 8.2 again. The pores in the porous plug placed between the regions of high and

low pressures provide a large number of narrow and long orifices for the passage.of the gas.
This, in turn, ensures that '

i)  The gas expands slowly. (A quick expansion would résult in dissipation of energy.)
ii) During their passage through the orifices, the gas molecules are gradually drawn apart.

That is, the gas is partially obstructed by the pores. We refer to this type of flow as throttling. )
(The porous plug is termed as throttling valve.) Since this process takes place in a thermally
insulated region, it constitutes adiabatic throttling of gases.

The Joule-Thomson cxperiment has been carried out with a very large mimber of gases at
different pressures p; and p and various initie] temperatures (7). The final temperature 7>
is always different from T, We refer to the change in temperature AT (=T, ~ T, ) as
Joule-Thomson effect. It is measured in terms of change in temperature per unit change in
pressure across the porous plug: 1 « AT/Ap = (T,-T,)/ (p2—-p; ) nis called

- Joule-Thomson cocfficient. Since p, < p,, signof is opposite to that of T. Physically, it
means'that a gas heats up when v is negative and vice versa.

You may now like to check your progress. To facilitate this, we have given an SAQ.

SAQ1

a) Complete the following statement by filling the blank with appropriale words chosen
from thosc given in the brackets. Adiabatic throttling of a gasisits ... expansion

from a region of .... high pressure to thatof ....... low pressure through a .......
(constant, fast, porous plug, slow). . :

b) Draw a labelled graph showing variation of pressure along the length of the pipe in
Joule-Thomson experiment.

1T VR

c}. IsJoule-Thomson experiment a reversible or an ireversible process? Juslify your answer.
Theory ' ‘

You now know that Joule-Thomson effect is an irreversible process. However, we can apply
the laws of thermodynamics to the gas before and afier throttling as these are equilibrium

A B, . ' A B, 3
- y/ 77 //‘/ //" t{/ /;f // 7; y 1
TIZ7A CTTTA TZITA |
. A _ A [ g A A: A %
277 27 A 7 < < 5
’ AV, o Ny ) g AT g - H
! ’: '/r// . - A ;, i :
oy} = o -0 L D, [ (1T t
- — |z ]t —»- l_ :"i L —> He /J -+ ‘
p , o[ ], P
.p| ‘}.,;‘ p{ ‘ 1 / I_:.’, 5‘ F! - ,,;'I.‘ ;

‘e

1
V22" A o700 U

{8 ) L] {o}
Fig, 8.3: Schematics of (a) initlal equilibrium state () throitling In progress (¢} final equilibrium stale
' during Joule-Thomson expansion.




. lube (shown shaded), porous plug and two frictionless pistons (Fig 8.3).

states, For this purpose, we consider its schematic representation consisting of an adiabatic - Production of Low Temperatures

Suppose that we have n moles of a gas between a frictionless piston at 4; and the poroﬁs

~ plug PP placed in 2 nonconducting-cylinder. Su ppose that the thermodynamic parameters of

- the gas in 1bis siate are p1, V1 and 7. Consider (hat the second piston is at B;. We slowly
_ push the [irst piston and gradually pull the second so Ihal they éxperience conslant pressures

prand pa, respectively, In this way we gradually force the gas through the porous plug from
a region of constant pressure p to a region of constant pressure p2. We assume (hat the
movement of Ihe gas is so slow that kinelic energy of its flow can be ignored.

When (he whole gas has been throtiled, the two pistons reach the positions As (in contact
with PP ) and By, respectively. Let the volume and temperature of the gas between PP and
Brbe V3 and T>. Since the pistons are frictioniess and walls of the cylinder are thermally -
insulated, we can regard the process 1o be quasistatic adiabatic in nature. Therefore, from
the first law of thennodynamics, you can write

AU + AW =20 : T @1

Here, AU = U, - U,, where Uy and U3 are internal encrgics of the pas in initial and Gnal

' cquilibrivinstates. Furthermore, A W is the net work done by the gas on Lhe pistons and we

can write il as
AW = (Work done by the gas in expanding against constant pressure p2)

— (Work donce on the gas in compressing it at constant pressure p)

= sz dv, —fP1 dv, = szfﬂ’z _Plfdvl (" p1 and p; are constants )
=PVa-p (8.2)

Substifuting the values of A U/ and A W in Eq. (8.1), we get

Uz~ Uy +pVo—piVy = 0
or

Ui+plV) = Us+prV, (8.3)
Since H = U+ pV, we find thal -

H = H,. (8.9)
‘T'hat is, the initial and (he Gnal enthalpics are equal and Joule-Thomson ¢xpansion is an

isoenthalpic process. However, you must note that when throtding is laking place, the gas is
not in equilibrium and enthalpy is uol defined.

From Sec. 6.2, you would reeall that 'cmhalpy is a function of‘lempcratur_c and pressure. So
we can write

' ol oH : X
a —— + _—
= () iy (%) o ©9
P .
In Joulch-Thomsnn cxperiment, H is constant and d4 = 0. Therctore,
oH ) aH
o dSF de.':*(_) dpy - ot
‘( aT R ap .
The sufflix & indicales that cuthalpy is constant, On slight re-arrangemeat, we can write
(%)
aTy _ \®P ) (8.6)
P |y o

and the Third Law
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The Second and the Third Laws

Differentiating both sides with respecl to T at constant p, we get

of Thermodynamics
_2a (VY . R _ AT gq
AT ] v vileT) V-b (v-b) :
V-b [ 2a_ AT
['V'*(V—b)’ . [.2a, _RT av . _R
vo AT 1 TV (vopy? . V-b
V-b RT 1- (V-b)* 'Za
(V-b) v! From Eq. (7.8b), we have
vapy [y (¥mb)2a] - 1| RT 1 _
v "’["’ v rr| Y b Ve 2a, rT 7V .
o {l=x)' = 1 +x whenxisvery - VS (V=b)
small. ) L 720
(V=b)'2a = — [ == _ : 8.9
;[Hm" V' RT C, (RT b) . | 89
V— 2a
- 1-’-!’-'-1"‘1',—“‘t RT Eq. (8.9) gives us the value of Joule-Thomison coeflicient fora van der Waa]s gas whose

2a r )
"-R-T"b[ (Veb) =V,

as bissmall compared 1o V
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initial temperature is 7. Since the sign of AT is opposnc 1o that of i, adiabatic throlting of a
van der Waals’ gas produces . -

; . . 24 RT _a
7 = > — <= -
i) cooling{p > Q) if Rb T or 2 <3
i} , 24 RT ,-a )
ii) healmg(u'«: 0) for Rb <Tor?>5-
iif) neither heating nor cooling (1 = 0), when
2 RT _ a
T Ty
V)  defines inversion tempcrature in terms of van der Waals® parameters a and b:
=2 - o (8.10)
' Rb

You can now explaiu; (i) the existence of inversion temperature, and (ii) the observation of
cooling/healing elfect when temperature of the gas is below/above inversion temperature as
au interplay of van der Waals” constants. Combining Egs. (8.9) and (8.10), we have
)
== |- -

G\ 1

It shows that magnitude of Joule-Thomson coefficient depends upon the value of initial
temperature { T ) and its differcnce from the inversion temperature. Physically, we Can say
that a rareficd bul strongly interacting gas will show cooling and vice versa.

To illustrate these ideas, we now work out a numerical example on Joule-Thomson « 1k ch.

Example 1

Helium gas at initial pressure of 31 atm and temperature of 77.3 K is forced through a
porous plug at constant pressure into a region of 1 atni. Calculate the changc in :ls
lemperalure assuming it lo be a van der Waals' gas with a = 3. 4%107 atm m® mol? anu

b=23.7% 10" m* mol™., Also comment on the resull obtained in the. light ol the value of inversnm -

5R

' temperature determined from the given data (Cp = = R = 82x10"m® am™).

Solution
From Equ. (8.9), we have

- B_T nLlﬁhb
“Ne), T, T

Therelore,

=1 - 2 {28
AT_E‘:(E"?]AP SR(RT b)Ap




= - - - . ituti Prodoction of Low Temperat
Here, T=773Kand Ap = (1-31) am 30 atm . Substituting these valllles, we gt_et e Lom ures
2
- (5x82x107 m? atm mol! K

2x34 x10°% am m® mol?
' [((az x 107 m® am mol~! K?)x TI3K
L, =+19K.
Thus, the gas is heated up by 1.9 K )
We know that inversion temperartirc of a van der Waals™ gas is givén by
2a

%" re

—'(23.7 x10~°% m* mol")x(‘.'nﬂaun ) |

2x34x10"% atn m® mol~* _
(82 x10™ m® atn mol ™ K™) x (237 x 10 m? mol ")
= 35 K _ ’

For helinm

Sinc.;c initial lemperature of the gas is 77.3 K, which is higher than its inversion temperature,
adiabatic throtlling of (he gas will warm it up.

You should now answer a simple SAQ.
SAQ 2

Choose appropriate words from the bracket to [ill in the blanks in the following comparing
quasistalic adiabatic expansion and Joule-Thomson expansion (consianl, cooling, higher,
inversion, irreversible, lower, perfect, real, reversible, variable).

Quasistatic adiabatic cxpaiision ' Joule-Thomson expansion

1) Gas expands againsia ....... pressure i) Gas cxpands against a........ pressure,

i) The process is ........... i) The process is ..........

iii} Ttalways produces .......... effecl. iif) Coolig or heating is produced depending

upon whether the initial femperature is
........ of ...... than the ...... lemperature.

iv) Cooling is produced whether the gas is iv) Joule-Thomson effect is observed only
Y, | G in ..... gascs.

We close this section by making the following remarks about Joule-Thomson effect,
i)  This experiment played an important role in the study of real gases. )
i) Cooling produced in this experiment provided a means of liquefying gascs.

iii) The successful theorctical explanation of this effect encouraged physicists (o devefop
thermodynamic concepls related lo the distinguishing features of idcal and real gases.

You will now study another method which can be uscd for production of low temperatures.

8.4 ADIABATIC DEMAGNETISATION

In 1926, Debye and Giauque independently suggesied that very low temperatures can be
produced by adiabalic demaguetisation of a paramagucetic sall. Do you know what a
paramaguetic sall is ? From your previous knowledge, you would recall that it is a salt of
iransiliont metals or rare earths like chrome alum. Now we may ask: How does paramagnetism
arise? When a paramagnetic salt is placed in a maguetic field, it experiences a weak atiraction. -
From the microscopic view-point, you can trace its origin 1o the orbital motion and spin of
electrons. These electrons behave like a current loop which is equivalent 1o 2 magnetic
moumeit. (The direction of the moment is nommat to the planc of the orbit.) The atoms of rare
earths have penmanent magnetic moment. Let us consider a solid containing ¥ atoms each
of which has a magnetic moment m. The interactions between these moments is very weak
and you can regard them to be independent of each other. When there is na magnetic field,
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The Second and the Third Laws
of Thermodynamics

The susceptibility, % ol a
paramagnetic subsiance varies’
inversely with temperature.
Mashematically

c
X T ¥

where C is called the Curie
constant. A1 T = T (Curie
temperature), a ransition lakes
place from para to
faromaguetism. So below T, the
atomic magnels have a greater
tendency 1o get aligned slong the
applied magnetic ficld.
Alignment occurs even in zeto
field due 1o spontaneous
magnelisation.
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these moments are oriented randomly. (This is because of thermal energy of atoms ata
finite temperature.) In the presence of magnetic field, the magnetic moments tend to orient

- along the field. (This is, however, opposed by the thermal motion of atoms.) At a given

temperature, more and more moments orient themselves along the field as field strength is
gradually increased. The relation between magnetisation M, which is defined as the tota)
magnetic moment per unit volume, field and temperature is given by Curie's law:
B
. L] k —
M=kT
Thus, for a solid to be paramagnetic, it is neces3ary for some of its constitueiit atoms to
possess a magnetic moment.

Thermodynamically, we can consider it in two ways:

. i} ~The internal energy of the paramagnetic saltis made to do work at its expense. As a

resuls, the temperature will fall.

ii) Atany temperature, the spins of atoms in a paramagnelic substince are randomly oriented.
When these magnets are aligned parallel to one another [Fig. 8.5a(i)), their posilional order
is more than when they are randomly oriented [Fig. 8.5a(ii}]. This means that entropy in

- case (i) is less than that in case (ji). That is, when a paramagnetic substance is placed in a
magnelic field, it is accompanied by decrease in entropy. |
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Fig.8.5(a)t A schemetic representalion of order and disorder among the siomlc magoets of A paramagnelic
salt, (i) All (he four magnets are aligned in the dicection of the wpplied magnelic [ield B. {if) Six
different arrangemenls having two atomlc magnets pointing up and two pololing down, (b} The

variation of eutropy of » parmmagoelic salt with temperature and magnetic fidd.

Refer to Fig. 8.5b. It shows the varialion of entropy with temperature and magnetic field for

- a typical paramagnetic salt. When there is no ficld, the fall in entropy at the Curie temperature

T comresponds to the onset of spontaneous ordering. (At kigher temperatures, the entropy may
always be reduced by applying a magnetic field.) The salt is [irst magnetised by applying 2
field B) at an initial temperature 71. (Usually this temperature is attained by evaporating ~
liquid *He or liguid He under reduced pressure.) The heat evolved during magnetisation is
conducted away (o a helium bath, and the entropy falls. The salt then goes from state @ to
state b. The specimen is lhen isolated thermally and demagnetised. In other words, the field
is switched off so that it is demagnetised adiabatically and its temperature falls. This is
known as the magneto—caloric effect. If the field is reduced to zero, the final state of the
salt will be at ¢, with temperature 7%, The lowest temperature 1o which the salt can be conled
by demagncti§ation is efeclively the Curie lemperature,

You may now work out an SAQ on the principle of adiabatic demagnetisalion.

SAQI e e e e e

* Write down the 7 dS-equation for the processes a — band b — ¢ . Explain why heat is -

evolved during @ -+ b and temperature falls during b — ¢.
[Hint: Use the result of TQ 1(b) of Unit 6. You may considér Cg = 0 duringae — b |

Now that you have worked out SAQ 3, you must have understood very clearly the process
of cooling by adiabatic demagnetisation. We may now obtain an expression for drop in
temperature. While solving SAQ 3, you have derived that
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Using Curie's law, you can write

m o= —=

where k is a constant

am'\ _ kB
aTB Tz,

IfCpis given by
Cy = DT -

where £ is a constant, we can wrile

Pruduction of Low Temperalures
and the Tlird Law

where 4 = E.E
Hy

ar - kBB
DT
or T%r = £ pap
D
so that
+ According to Debye's T - [aw,
2 P 0 we have in the vicinity of
_’Jr"d'r=-5f B dB T=2o
T B,
S5k
R PR R ~5581°
. 5k 8.14
. or T‘z:(ﬁ——ZBB:]z)VS ( )

Knowing &, D, B) and T;, you can easily compute T using Eq. (8.14).

It has beer observed thatdemperatures uplo 107 K can be obtained using adiabalic
demaguelisalion, provided the following conditions are satisficd.

i) The paramagnelic salt used has large Curie constant and small heat capacity al
constant magnetic lux density,

if)  The applied flux density B is high ( >1 tesla).

fii) The'intial ©emperature of the sample is as low as possible.

We shall now gy'(ve a brief description of the amrangement used to perform adiabatic
demagnetization.

The experimental set-up

Refer o Fig. 8.6. It depicts schema tically the arrangement used for adiabatic demagnetization.
Clis a glass or metal cylinder surrounded by a bath of liquid He. This, in wm, js placed in a
bail containing liquid Ha or No. We place Ihe complete assembly between the poles ofa
strong electromagel. The Yiquid helium bath is connccted o 8 dif{usion pump so that'it can
be boiled under low pressure to produce an initial tempesature of about 1 K.

A paramagnetic matcrial (such as copper potassium suiphate, titanium cesium alum,
iron ammonium alum, gadolinium sulphate, elc) in the form of a sphere or a spheroid is
suspended by a silk or nylon thread in cylinder C. It is then evacuated and Gilied witl He gas at jow
pressure. Next, we switch on the clectromaguel so that the samnple is magnetised. The heat of
magnetisation is conducted by He gas (o the surmounding fiquid He bath and, thus, we cool

the sample to about 1 K. {In view of conduction of heat by He gas, we cail it exchange gas.)
Now, we connect C to & vacuum pumnp 1o create vacuum of high order so that the sampie is
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The Sccond and the Third ans
of Thermodynamics

8.5.1 ) Consequences of the Third Law
i)  Behaviovur of thermodynamic potentials

Weknow lbatG=H-7T5 and F=U-TS. Now,as T — 0 S —» 0 so that the product
TS — 0. That is, as temperature is close (o absolute zcro, Gibbs polential becomes equal

to enthalpy and Helinholtz potential equals internal encrgy, Physically, it means that there is
perfect order and all enerpy is avaijlable for work.

ii) . Isothermul volume and pressure expansion coefficient

The entropy change of a system due to small changes of pressure during a process near 0 K
may be expressed as

AS “'f & dr
dp T
But asT — 0, AS — 0. Sowe cansay that

Lt £ -0
T=n P )L

| o5\ __(av
But from Eq. (6.14d), ( op )T ( oT )p

-

L (%] =0 ‘ .17
TF—0 S

_17av
But B ?(E)‘u.Sowchavc

L (8.18)

Similarly, you may show that

3
Lt —E) =0 : (8.19)
T—0 (37 v

iiiy Heat capacities near 0 K

.- 1(2)

Hence, al constant pressure

Cpdl
T

You know that,

ds =

On integrating, we gel
.
8.20
S(Tl)—S(T)=f _L_C;T (8.20)
T

In the imit T —» 0, the third law implies that the integral on the right hand side of
Eq. (8.20) must be finite. Thal is, it should not diverge as T > 0. Thus, we have

L C,=0 ' _ _ {8.21)
=0 ° ) . 7

Similarly, it can be shown that

Lt Cy=0 ' (8.22)
T—=0 .

It shows that Cp, — Cy — Qin the limit T — 0. This prediction is borne out by
experiments.

You may now work out an SAQ on the consequences of the third law.
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SAQS o

a)

_b) Using Eq. (6.17a), show that C,>»CpasT— 0.
Before rounding of this scclion, we touch upon the aspect of unattainability

8.

Prove Eq. (8.19)

R - 4

5.2 Non-attainability of Absolute Zero

To show that absolule zero cannot be attained by a fnite series of mechanical sieps, we
frame the following hypothesis. We consider a Carnot engine operating between two
reservoirs; one of which is aintained at absolute zero and the other at some [inite lemperature

T.

Is this hypothesis wrong? To prove so, we represent the Camot cycle ina T— S diagram

(Fig. 8.8). For a eyclic process, you know that

- 82 .
AS{F—?—O

We know that

And A .5'12" = %?— where Q is the heal absorbed at temiperature T, Since 2 — 3and4 — 1

AS_=-A312 + ASy + ASy + A Sy

are adiabats, AS;; = AS; = 0and by the third law, we have A S3; = 0. Hence

53:9&%?_:6512’0

Bul this contradicls the second law of thermodynamics. So our hypothesis must be wrong.

In

other words, we cannot bave a Camnot engine operating between reservoirs one of which

‘is at a finite temperature and the other at absolute zero. The lemperatures of these reservoirs
have 10 be non-zero. This means (hat absolute zero is unattainable. )

Let us now summarise what we have leamt in this uni.

of absolule zero

8.

6 SUMMARY

Joule-Thomson effect signifies the change in temperature of a gas on being throttled
through a porous plug from a region of constant high pressure to that of constant low .
pressure under adiabatic conditions. This process does not involve any change in
enthalpy ol the system.

Joule-Thomson coefficient is the change in temperature per unit change in pressure

across the porous plug. It is given byp = (g—T] ’
P i

Sigu of W is opposite 1o that of the change in lemperalure.

The locus of the maxima of isénlhalps on the T—p diagram of a real gas is called the
inversion curve. The point wliere this curve meets the T - axis is known as' lbe inversion

" tempemture,

On being subjécted to adiabalic throtiling, a gas is wamed or cooled depending upon
whetber jis initial temperature is higher or lower than the inversion temperature.

Adiabalic demagnetisation of a parainaguclic substanve-produces cooling much below
1 K The cffect is large if the sampie has Iarge Curie constant, small heat capacily and is
subjected to high niagnetic flux densily at a low lemperature:

By o finite series of process is Ihe absolute zero atlainable.

The cquilibrium cuiropies of all sysleins and the entropy changes in all reversible

- “isothermal processes tend (o zero as lemperalure approaches absolute zero.

Production of Low Temsperutures
and the Third Law E

4 3

Fig. 8.8: TS diagram of a Carnot
cycle
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BLOCK 3 ELEMENTARY KINETIC
THEORY ‘_ -

In Block 1 and 2 you have studied the subject of thermodynamics, which is cssentially an
empirical science. You leamnt to relate thermic propertics of materials such as heat
capacities, compressibilities clc without any reference to-the nature of the substance. Though
thermodynaimics is a very powerful tool, it has some limitations. For instance, from thermodynamic
considerations alone, it is not possible even to derive the cquation of state of a substance
(Unit 1). We can, however, overcome this and some other limitations by making bypothescs
régarding the nature of matter.

The most fruitful, and one of the oldest, bypoiheses is that matter is made up of molecules.
This idea was first conceived by an Indian Philosopher and saint, Kanada, in BC 600. He
named these parmanu. (About a cenlury later, a Greek philosopher Democritus visualised
atoms as the minutest invisible particles of matier.) The credit for providing kinetic view
point the modern outlook goes to Daniel Benoulli. In 1738 he proposed the mechanical
picture of gascuit. state and siudied varialions in pressure and volume at constant (cmperature.
However, there was little progress for several decades. Towards the end of 18th century,
Dalton estat » 2 th iaw of partial pressures and explained the Jaws of chemical combination.
This work ; *o» :d 1such needed impetus. In 1811 came Avogadro's hypothesis. But il was
fot until 1859, solu'n Maxwell showed that this result can be derived from kinetic theory,
(hat physicists placed their confidence in this theory. Subsequent growth is duc to pioneers
like Joule, Clausius, Jeans and van der waals. .

Molecules can exist in free state and possess all the basic properties of a substance. That is,
maller is nol continuous in structure. And whether a given stale isa solid, a }iquid or a gas is
determined by the interplay of thernal energy and intcemtolecular forces. This gave birth to
the molecular theory, which when supplemented by the laws of mechanics for individual
molecules leads to Kinetic theory. This is the subject matter ol this block. You will leam
that macroscopic properties of gases,such as pressure and lemperature can be related w0 ils
microscopic properlies such as speed and mass of its constiluent atoms/ molecules.

In Unit 9 we have reviewed the basic concepts of the kinetic theory of gases with particular
reference to ideal gases. You will learn to derive an expression for pressurc excrted by the
molecules on the walls of the container, and predict various gas laws from it. You may be
familiar with some of these cxpressions but we have included them yet again fo make the
block self-conlained. As a consequence of random motjon of molecules, non-cquilibrdum

Loy

conditions make gaseous substance lo undergo transporl processes. You will teamn to derive __

expressions for mean free path, cocfhicient of viscosity, thermal conductivity and diffusion

=

cocfficicnt in Unit 10.

Although the Kinetic theory of gases received an impeius because of its suecessful predictions
about the vertical particle density gradient in our aumosphere, direct experimental evidence
of molecular motion, which provided this theory a sound pedestal; came in the form of
Brownian motion. Einstein analysed it from physical considerations and gave a satislactory
theoretical analysis. You will learn the theory of Brownian motion, and its connection with
random motion in Unit 11, Physical examples of Brownian molion are also discussed. In
Unit 12 we have discussed imperfect behaviour of real gases. van der waals’ equalion of state is
discussed in detail.

Afler going Lhrough this biock you will realisc that kinetic theory has great aesthetic appeal.
Very clegant laws goveming the gaseous behaviour emerge out of chaolic motion of a large
number of molecules. Recently, it has found application in the domain of cold-neutrons

_ whicl hiolds gréat technolngical promisc. This means that even today (his theory finds
applications in the frontier arcas of physics. We, thercfore, urge upon you to read the block
carefully and work out SAQ’s as well as TQ's. Only then you will enjoy it.
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UNIT 9 IDEAL GASES .

Structure
9.1 Inwroduction
Objectives - _
9.2  Assumptions of Kinetic Theory
9.3 Pressure Exerted by a Gas
Kinetic Interpretalion of Temperature
Molecular Speeds
Deduction of Gas Laws
Equipartition of Energy
9.4 Heat Capacities of Gases
9.5 Summary
9.6 '_I'crminal Questions

9.7 Solutions and Answers

9.1 INTRODUCT 10N

From your school science curriculum you would recall that matter is made vp of molecules,
which can exist in a free state and retain all the characteristic properties of the substance whose
part they are. This hypothesis supplemented by the Jaws of mechanics for individual molecules
gave birth 10 a new area of knowledge—the kinetic theory of matter. It has been used
successfully to explain physical phenomena like different states of matier, compressibilities
and evaporation. You are all familiar with H;0. It can exist as ice (solid), waler (liquid) and
vapour (gas). The question togically arises : What determines the state of a substance? From
Unit 7 of Block 2 you can idenlify temperaturc and pressurc as two factors for

determining the state of a substance. You may now ask: Is there any other [actor also? Of
course, yes. We know that the molecules of a substance are held together by intermolecular
forces. In fact, the interplay of thermal agitation and intermolecular forces determines the
state of a substance. In solids, cobesive forces (intermolccular forces) are much stronger than
the effect of thermal agitation. This explains why solids have a definiic shape even at
considerably high temperatures. On the other hand, in gascs, thermal agitation
outplays the eflcct of intermolccular forces; gas molecules [y apart randomly and tend
to occupy maximum space available. ' ' '

Another hypothesis that triggered off sustained and coberent development of Kinetic Weory
is based on [he work of Joule. He conclusively established that heat is intimately connected
wilh motion. We may therefore conclude that kinetic theory of gases is based on two
postulates: (i) maller is madc up of molecules and (ji) heat can be identified with molccular
motion. .

‘Bascd on these postulaies, ninicteenth century physicists, particularly Maxwell and Clausius, ~
proposed a set of assumptions about the nature-of molecules and their movement. (These
___assimptions are supplemented by the laws.of mechanics.) From these follow 1he clegant

laws govemning the behaviour of ideal gases in equilibrivm. I this wAtl you wiit leamthe - - - .

‘molecular interpretation of bulk propertics of ideal gases, deduce gas laws and the law of
cquipartition of energy.

Objéctives
After studying this unit you will be able to

e state the assumpiions of kinelic theory of gascs

-
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Elementary Kinetic Theory

® defive expressions tor macroscopic quantitics like pressure and temperature in terms of

microscopic properties of constiluent molecules
Ak

® derive gas laws from the equation pV = -;-mN V2, and

¢ apply (he Jaw of equipartilion ofcnergy to obuin ¢xpressions for heat cai:acilics.

9.2 ASSUMPTIONS OF KINETIC THEORY

1. Agas consists of a very large number of identical molecules. This assumption is
Justified by eXperimental evidences. For instance, 1 mm®of 2 gas at STP contains

3x10% molecules. (This number is almost a million times bigger than the populalion

of the world loday.)

2. The gas molecules can be Tegarded as point masscs, Experiments reveal that the
diameter of a molecule is about 2Aor2x 107"%n whercas the distance between them

in a gas is nearly ten times larger. This incans that thejr size is much less than the
average distance between them, -

3. Thewmolecules are in 4 Slate of constant random motion, (Il bears analogy with the.

motion of honeybees disturbed from their hive). That is, all directions and positions

are equally probable (Fig. 9.1). The justification for this assumplion came from (he
work of Robert Brown. .

N

; ——
' -~

Fig. 9.1: The molicn of (the molecules of a gas

4. The molecules of a gas do not expericnee any force excepi during collisions. This )
15 that the intermolecular forces (of mutuaj atiraction) or between the molecnles
and the walls of the container are negligible. The molecules of a £as can be thought of

as moving about relatively frecly and their energy is wholly kinetic, i.e., polential
CULIgY iS Zero.

The £as molecules are considered perfectly kard elasiic sphieres, This means that
molecules do 1ot deform when they collide. (You can imagine (ke mechanjcal-

equivalence as collisibns,bel'\\ft_:cn glass marbles, popularly. known as Kanchas.): |

_Mor ‘?'!3‘3’_0_!'_Tl)_ei!ﬁi‘;i:.'hkc::}in@&oii_ ision iseghigivle ompared with thi: lime between
“Sucecsive collisions. This assumpion implies that euergy and mnomentum before and
after a collision are the same, :

In the absence of an extemal force (field), (he directios of molecular velocitics are
distribuieqd uniformly, i.c. are isotropic. In practice, there is always some randomness
in the direction of the velocilies because of (he irregularitics in the walls,

All molecuies do ot move with the same speed, i.c. there is a spread of speeds

between come lower ang upper bounds. Fig 9.2 shows the disiribution of molecules
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Idesl Gases

Fig. 9.2 : Distribulion of velocitics al a given lemperalure

miodel will be applicable 10 all gases. Bul you
t be true always. You willgetan

the theory is applied to rcal systems
ed phenomena.

These assumptions ensure that kinetic theory
must realise tkat some of these assumplions may no
opportunity (o discuss these limitations as soon as
like liquefied gascs or its domain is extended to observ

93 PRESSURE EXERTED BY A GAS

5 in a cubical container of side L. Suppose there are N molecules,
cules are in random motion and possess dilferent velocilies, as

ce of an external field, these molecules cxhibit complete

f the conltainer. Let us consider a molecule m oving with

¢ mutuzlly orthogonal componcits vy, ¥y and v; atong

Consider onc mole of a ga
each of mass /. The mole
shown in Fig. 9.3(a). In the absen
chaos and collide with the walls o
velocity v. We can tesolve il into thre

4{T7) .

Fig. 9.3 : (a)} Schematics of a gas in u container (b} Resolution of velodity of 2 molecule into its components

the x-, y- and z- axes, as shown in Fig 9.3(b). Then you can write
Ve vele Vy2+ v? ‘ ¢
Je, Assumplions 3 and 6 suggest that il should be
direction. Let us first consider the motion of the
molecule along the x- aXis. We kniow thal x -axis is normal 1o the faces A, and Az of the cube.
Before colliding with Ay, it will have momentum M vy normal to this [ace. After it collides
elastically with the face A; alx = L, Assumption 5 implies that the molecule rebounds with the
momentum —m \{,;_.Thcrefore, for each collision the change in the romentum of the molecule at
x =Lismve—(-mvg) = 2mv,. You may ask: How much momentum is imparted to he face
A, in this collision? Since total momentum has to be conserved, the momentum imparted t0 A
- will bo2mv. Afier rebounding, this solocule il wivel a distance 2. L actoss the ciibe before it
strikes A1, This means that the molecule has to travel a distance 2 L before it strikes the same -
face of the cube and the time interval between any two collisibns with A will be Af = 2L/v.
That is, a molecule makes v,/2L collisions per second. The question may logically arise: What
- will be the momentum imparted to the wall A, in unit time interval? The momentum imparied to
the face Ay per second by the molecule is 2mvy/At = mve /L. -
otion, (he ate of change of momentum is force. So
lecute on the face A while moving along x- axis

Since all three directions are equally probab
sufficient to consider motion along any onc

According to Newton’s second law ofm
we find that the force exeried by one mo

will be

SIS

N AT R X Tr I

=T

N

LWITRF T R L

UL LRI T TTT R




Elementary Kinctic Theory -

‘Since pressure-exerted by a gas is same in all tke dircctions

Six  mvd
pen e

If the total number of molecules in the cube is ¥, Assumption 7 tells us that there will bea
spread in velocities (or specds). That is, differcnt molecules move wiih different veloejijes;
And the total pressure is the sum of pressures due to each molecule striking the face. Therefore,
the pressure exerted by all the molccules on the face Ay will be '

m 2
P; = L‘?("fx"‘ V%ri- Vig"’ - I.-'N;)
To write it in 2 more compact form, we introduce the sumination notation :
m ¥ W2
P = 3 2 i d
L&

quE (9.2)

where V = ° signifies the volume of the container and E is the average value of vf for all.
ke ¥ molecules: : .

(9.3)

From Eq. (9.1) we knowthaty? = v+ vﬁ +v2.0n éveraging over all the malecules, we can show that

vEe v 4E = 2 ;

Sinct the molecules move entirely at randosm, when the 835 is in equilibrium, all directions .
of velocily will be equally probable, :

That is, since the velocitics are distributed Isotropically, their propr,;nies must not vary with

direclion. Physically Pmeans that the gas molecules do not have any preference for any
face of the cube. So we can write

v,r=v_;2"—'|"3

It readily follows that each one of these is one third of the averaged square velocity:

— - — 1-_
VEHV_‘Z-=IPE=EVZ

' Using this result in Eq. (9.2), we get

_1m .
A akd

, the average pressure exerted by
itin any direction is saine and W can wrile :

'p=%m93._- L S (9.4

where n = N/V is the number density. This is an important result. You will note that it
relates macroscopic properties (p and V') with the microscopic properties (m and v) of:
individual molecules making up the system,

You will note that we bave derived th

is resuit by considering a cubical box. Since only V
occurs in Eq. (9.4), the shape of the

contzinerplays no role in determining the magnitude of
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pressure exerted on its sides. That is, Eq. (9.4) is valid for any general shape of the container.  Ideal Gases
Before we proceed to obizin deductions from Eq.(9.4), we wish that you should go through
the following example.
Example 1
One mole of oxygen is contained in a hollow cube of side 10 cm. If the translational speed
of the molecules, each of mass 5 x 10°% kg, is 500 ms'l, calculate Lhe pressure exerted by
the gas on the sides of the cube.
Solution . *
The change in the mementum of
a gas molecule = 2mvy = 2% (5% 107 kg) x (500ms™ )
= 5x 102 kg ms™
_ = 5% 107Ns
The time interval between sucessive collisions on the same face
L 2x0Im g
Vr 500 ms
Hence the rate of change of momentum
-23
of one molecule = SLIQ-—_F—S = 1.25x 10'1‘J N
C4x107s
~, The total force experienced due
1o all molecules = (1.25 % 107 N) x (6 x 10%)
= 7.50x 10°N
Average pressure conununijcated
5 .
1o the walls of the conlainer = M = 2.5 x 10° Nm™
3x107°m
You would recall thal one atmospheric pressure is 1 x 10° Nin™\. So one mole of
oxygen contained in a cube of side 0.1 m exerts pressure nearly 25 almosphere on ils
sides
You may now like to answer following SAQ
- SAQL :
a) We ignored the intermolecular collisions in the above derivation. Will their inclusion
affect Eq. (9.4)? )
b) Rewrile Eq. (9.4) in terms of the density of the gas.
You will agree that we started from a purely mechanical picture of gas as a collection of _
randomly moving-molecules. And we have been able to derive an expression for pressure in
terms of the microscopic properties of individual molecules. It is therefore instuctive to
know the kinetic interpretation of pressure and its predictions about gas laws. Now we will
discuss these aspects.
9.3.1 Kinetic Interpretation of Temperature
To seek Kinetic interpretation of temperature we first rewrite Eq.(9.4) as
—Zn(Llan?
pY = 3 N(zmv )
©.5)

' O - - -
where g = 5 mv* is (he average translational kinetic energy of a molecule. We expect the

molion of gas molecules 1o become more lively as lemperature increases. So il we connecl
the average Kinelic energy ol a molectie to temperature so thal

IR
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Elementary Kinetic Theory

10

3 9.6
£ = EkBT i ( )

Eq. (9.5) becomes
pV = NkoT - (9.7

where kg is Boltziann constant. Its value is 1.38 x 10~ 27K ., By delinition, the number of
molccules N is the product of (he Avogadro sumber ¥, and the mole fraction p, i’e.
N = pNa. Then you can wrile

PV = p(Nakp} T
If we identify the product N kp with R, the gas constant, we [ind that
pV = uRT (5.8)

Do you recognise this result? It is the equation of state for a perfect gas. You must
have learnt it in your school science curriculum . Before we discuss the implications of
this resull, we may miention that from cxperiments the gas constant is known 1o be
8314 kJmol L K! and the Avogadro number is 6.02 x 10% kmol™ so that the Bolizmann
conslant kg is 1.38 x 1072 JK!. You musl have realised that in arriving at the ideal gas
cquation we have connected a purely mechanical quanltity — the average Kinetic energy
of a molecule — to teperature. This is 2 big step as it refates the molecular (microscopic)
and macroscopic viewpoinis through Boltzmann constant. (In Unit 13 you will lcarn
lhat Bolizmann conslant bridges the statistical and thermodynamic viewpoints as well.)
This assigns a completely new and decper meaning to temperature; it is linearly
proportional to the average kinetic encrgy of molecules. It implies that at a given
tempcerature, the kinetic energy of molecules of all gases, irrespective of the differences
in their masses, will be the same. And for a given gas, higher the temperature, more will
be ils kinetic energy. In particular, at T = 0, e = 0. That is, at absolute zero of lemperature,
the gas molecules will be devoid of all motion. Or molecular theory predicis that at
absolute zero, there is no chaos; all molecules will be frozen in space and perfect order
should prevail. For actual systems this is not true indicaling that ideal belaviour should
not be expecied under all conditions. '

To understand the use of Eq. (9.5) you should solve the following SAQ.
S5AQ2 ’
Calculate the average kinctic energy of air inolecules at 300 K. Given kp = 1.38 x 1072 JK™.

We have now developed a detailed reliable model of gascous state. As a first chéek of this
model we have leamt how it leads us to experimentally verifiable result like ideal gas
equalion. Let us now usc (Lis model 1o calculate some nuntbers of physical juterest. One
such quantity is molecular speed, Let us leam about i now.

9.3.2 Molecular Speeds

To know lhow fast the molecules in a gas move, we use the relation

R
kn—m

in Eq. (9.6). This gives

T

tI| W

1 3 R
Emv_ =_Ek_31_" = E

or

2 3kaT  3RT

=

m M

where M = miN4 is thic molecular weight. The squarc root of average mean square speed,
called root mean square speed, is given by

=_2-£Z - ; 9.9
Vimns A Av . . , (5:9)
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rsely proportional to the molecular weight of a gas. Seata given Ideal Gases
ve faster. For a few gases of interest, the values of
fact that lighter molecules move faster has an

life on the carth. From your elementary mechanics
rd velociiy more than 11.2 km s~

That is, Vema is inve
lemperature, lighter gas molecules mo
Vis at STP are given in Table 9.1. The
inleresting consequence for existence of
course you will recall that an object having radially outwa
can escape [rom the influence of gravity of the earth.

Table 9.1: Values of vins for" Different Gas Molecules at STP

Gas Ve (ms™)
H: 1838
87 461
N2 493
CO: 393
Air 485
H.Q 615

V2gR, where R is radius of the carih.) This means that gas molecules with speed
have a chance of escaping from (he carth. In fact, it is for this reéason that
elium, carbon dioxide and water vapour are, found in upper parts

whereas oxygen is available near earih’s surface {and sustains
hich bas a much lighter pull, has no

(ve =
greater than v,
gases like hydrogen, h

‘of earth’s atmosphere,
life on our planet). This also explains why the moon, W
atmosphere. This cormrect prediction of vertical density distribution of gases in our -

atmosphere proved an indirect evidence in favour of kinetic theory and boosted the

confidence of earlicr workers in it.

You will recall the assumption that not all molecules move with the same speed. S0 you
may now logically ask: What is the distribution of moleculzar speeds? The answer 1o

this interesting question was provided by Maxwell. We will quote his result without going
into details. He showed that the number of particies having speeds between v and v+ 4dvis

given by
{9.10)

372 vz
m 2 m
= 4nN - e
dny = 4 (ann'f] Y “p( ZkBT) Y
You will get an opportunity to discuss this in detail in the next block.

The plot of Eq. (9.10) for three different temperatures is given in Fig. 9.4. You will note that
as temperature increases, the curve becomes broader and flattencd. Physically it imiplics tbat

the fraction of molecules having higher cnergy increascs with temperature.

" dNy
dv

1\

- T
L>TL>T

= o

Fig. 9.4: A_p_I;Ji of Maxweilian distribution at (hrec different lemperaturds

LI =

e

LT o1
AT -1 A TUT OO0 O RN T T e ey e K

AT ey

SR R e

11




Elementary Kinetic Theory

12

Let us now leamn to deduce gas laws.

9.3.3 Deduction of Gas Laws
All gas laws ca:; be deduced [rom Eq (9-5). Let us begin with Boyle's law.

Boyle's law : From Egq. (9.5) we note that for 2 given mass of a gas ~,
Y = %N )

Sinee kinelic energy remains constant at a fixed temperature, we nole that

PV = conslant.

Tt means that the pressure cxerted by a given mass of a gas varies inversely with its volume, when
femperature remains constant. This is Boyle's law, as you will recall from your earier knowledge,

Charles’ Law : When presstire remains constant, Eq. (9.5) implics that the volume of a given
mass of a gas increases linearly with Kinetic energy, i.c. temperature. This is Charle’s law.

Avogadre’s Law : This law stales that at constant temperature and pressure, equal volume
of all gases contains the samne rumber of molecules. To obtain it from kinetic theory
arguments, let us consider two different gases at the same temperalure and pressure. Then,
cquality of pressure implies fliat '
1 = 1 =3 : '
P=—tmmy = — Mtz v% {(9.11)
3 3
where v and v; are respectively the mean squared velocitics of molecules of two gases.
I( the temperalure is constanl, their mean kinetic energics should be cqual. So we can write

1 i

MV =~ 9.12

5 m v 2 vz ( )
Dividing Eq. (9:11) by Eq. (9.12) we gel

n = n ' ' (9.13)

This is mathematical statement of Avogadro’s law. From your school science curriculum
you would recall that Avogadro put forward this hypothesis while studying weights and
proportions. That is, it had nothiug to do with the motion of molecules. But the fact that the
same result has been obtained from the theory of molecular motion, you will agree, is a
significant success for kinctic theory.

To get a feel of these results you shiould go through the following example.

Exumple 2
Calculate the number density of oxygenatTatm = 1.013 x 10° Nm™2and T= 300 K.

Solution

From Eq. (9.4) we recall that

p= %mns—-i

=nkpT
so that
' p/ksT

On Inserting the numerical values, we find that

n

i - 1.013x 10°Nm=  _.
(1.38 x 1073 JK™Y) x (300K)

26 -
= ———_l 'Olj :41q m> = 2447 x 105 m™>

TRt
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You may now like to solve an SAQ to check your progress. Idcal Gases

. SAQ3
Prove Dalion’s law of partial pressures for an ideal gas.
The remarkable chance in accounting for the perfect gas laws brings out the acsthetic appeal of
molecular theory. This is because chaotic motions of extremely large motecules obey elegant -
laws which can be confirmed by experiments uplo a fairly reasonable degree of correciness.
This success proved an important silestone in the growth of (he molecular theory. As the next
check, this theory was put o an acid test when its predicl jons about heat capacities were 1o be
verified experimentally. In (act, it proved a highly conlentious issue. And before we go into its
details, it is worthwhilc to reflect on what is called the cquiparlition of energy. ’

'9.3.4 Equipartition of Energy ,
In Sec. 9.3.1 we have shown hat the translational kinetic energy of a molccule is

1 =5 3

g==mvt="kpT
2 2
Bul we know that
Y U Y.

and since all three directions are equivalent, we can write
— — 1 —
S 4

The mean kinetic energy of a molecule associated with any one component of veloeity, say
v, is therefore

kn T (9.14)

1 21,7
Elﬂl’x—smvz— 2

This means that tbe translational kinctic energy associated with each component of velocity
is cqual to kg 7/2; just one third of the total translational kinelic energy. In other words, we
can say that in (his case energy is equally partitioned among the three components ol
velocity. This is the principle of equipartition of energy for a monatomic gas. This s an
important result of classical physics. And 1o discuss il in detail, we introduce the concept of
degree of freedom (d.f.)

Depree of Freedom

The degree of freedom of a molecule is defined as the rumber of independent coordinales
required (o specily its position. A house fly moviig on a streiched string has only one d.L.
Do you know why? This is because we require only one coordinate lo specify its position.

However, when it moves on the floor, it has 2 d.[. whereas when it Qics, it bas 3 d.f. How
. . . . \ The number of d.[. can alse be
many d.f. a randomly moving molecule of a monatomic gas (like belium, argon, or keypton ) defined as the total number of
has? It has only three translational d.f. Before we generalise this discussion, we wish thal independent squared ferms

- A - . .
you should answer the following SAQ. , appearing in the expression of

- encrgy ol a sysicm.  ~

SAQ4 -

A point moving along a curved path has only one d.t. Comment.

In addition to translational d.[., a di—or poly—atomic molecule has a lendency Lo rotate (about
fixcd axes) because of intenmolecular collisions as well as the collision with the walls ol the
container. From PHE-01 course you would recalt that we can resolve the angular velocity of a
rotating wolcaule sloag thiee muwally pempendicutar cogrdinate aves, So you lnay expect that a
rigid diatomic molecule will have three rotational d.f. But tere cannot be any rolation abont e
line joining the atoms and, in general, a linear diatomic molecule has 2 d.f, of rotation. That is,
there are in ali five d.L. for a lincar (diatomic) molccule. (A non-linear molecule like H;0 has 3
rotational d.£.) Further, since these molecules do not have a perfecdy rigid structure, they may
vibrate as a result of intermolecular collisions. The number of d.[. { f ) of a system canbe
detennined from the gencral result

f=3-c

where p is the number of particles constituting the system and ¢ is the total nunber of constraints. -

13
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You can verify that for a single atom, p=1andc =0 (since the motion is rndom} so tha f = 3,

Similary, for a diatomic molecule, p =2 and ¢ = 1 because (e distance between the aloms is a
fixed quantity. So f=5,

In the case of translational energy we have secn that the encrgy associated with each
degree of freedom s a quadratic function of the variable specifying it and the mean
value of the corresponding energy is equal to kg7/2. For rotation, kinetjc CREFgY s
T0%/2 and we expect that the mean rotational energy will be ks7/2. From PHE-Q2 course

- .- - L
Let us now discuss the classical theory of heat capacities

£ ., e S

of gases,

9.4  Heat Capacities of Gases

Cousider one molc of 3 gas. s total kinetic energy is given by

i = Npe
If (e number of degrees of freedom of a Syslem s f, we can write

-u = %ﬁka = %RT (.15)

This cquation implies that molar heat capacity, defined as the cnergy required to raise (he
temperature of one mole of an jdeal £as by one kelvin, at constant volunie is

¢ éﬂ | (9.16)

From Block 1 of this Course, you know thal ¢, = €y + R so that we can write molar hcat
Capacity at conslant pressure as

c,,=( ;2)3 | -(9.17)

and the ratio of heat capacities . -
- € +2 9.18
y= 2 [*2 (9.18)
cr f

You will recall that we could only get an expression for the difference ¢, — ¢y between. the

heat capacitics from-thermodynamic considerations. Bul molecular thcory predicts their
absolute values as well as thejr raljo in terms of d.f. and (Le gas constant,

For monatomic gases, f=3 so thai

3 5 5
cy = 2R,cp = ZRand}v =3-= 1.67
That is, the value of cy (or ¢,) is same For all Inonatomic gases. This is fairly well borne out

by experiments. Is it true ¢ven for diatomic molecules? To discover the answer (his
queslion, we note that for these inolecules, f= Ssothal -

Tl - - .5 PR 7 _— e - ..7 ,- -
Cy = _Z.R'C‘P = -i-ﬁ'and?,-: g = 1.4

heat capacities and ihcir ratio are independent of lemperature. This result of molecular
theory is fairly borne out by experimenis. However, ifwe insert the measurcd values of y in
Eq. (9.18) and solve for £, the result is not, jn general, exactly an integer. This is physically
meaningless and raises serjons doubts aboui equiparlition of cnergy as well as kinetie
theory.

Lin i |

L I L L A T TR B T TR TITIO T - Y1 e (T AR




Table 9.2: Molar Heat Cal;acities at Room Temperature

Gas /R cv/R Cp—Cv Y
R

He 2.50 1.51 0.99 1.66

Ne 2.50 1.52 0.98 1.64

A 2.51 1.51 1.00 1.67

Hs 3.47 2.47 1.00 1.40

O 3.53 252 1.01 1.40

Cl 4.07 3.00 1.07 1.36

COa 4.47 3.47 1.00 1.29
NH; 4.41 332 1.10 133
CHa 4.30 3.30 1.00 1.30

Air 3.50 . 2.50 1.00 1.40

* mcasured values

The disagreement between theory and cxperiment becomes apparcnt when we examine the
temperaturc variation of heat capacilies of diatomic gascs. For hydrogen we find that at a

. . 7 .
temperature of 20K, ¢, decreases 1o %R, whereas at 1000K, it increases 1o -,;R. This

means that at higher lemperatures rotational as well as vibrational modes contribute to the
cnergy of hydrogen molecules. But at Jower temperatures thesc modes scem Lo ’
disappear. The correct explanation of temperature variation of heat capacilies came
from quantum statistics. You will learn it in Block 4.

Let us now sum up what you have learnt in this block.

9.5 SUMMARY

e Kinetic theory is bascd on two postulales: matter is made up of molecules which are
in a stale of constant random motion and heat can be identified with molecular
motion. :

e The pressure excried by the gas molecules on the walls of a container is given by

p= %mnv‘z.

o Al absoclute zero of temperature, gas molecules are devoid of all motion, i.e., average
Kkinelic energy of a gas reduces lo Zero.

e Encrgy is equally divided amongst varjous active degrees of freedom of a molecule and
its magnitude is kpT/2.

& Kinctic theory cnables determination of heat capacitics of a gas in terms of degrees
of freedom. It predicts that these are independent of temperature and are same for all
.gases.

96 TERMINAL QUESTIONS

1.  Ealculate v, for helium atoms at 300K. At what iemperature will oxygen molccules
" have the same value of v,,,? Take ny. = 6.67 x 107 kg,

2. A cubical box of sidc 0.1 m contains 3 x 102 molecules of oxygen at 300K, Computé
the average pressure exerted by it on the walls of the cube. '

_ Ideal Gases
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UNIT 10 TRANSPORT PHENOMENA

Structure
10.1 Introduction
Objectives
10.2 Mecan Free Path I -
Elementary Derivalion
Distribution of Free Paths
Experimental D=ierminalion
10.3 Transport Phenoniena
Viscosity: Transport of Momentum -
Thermal Conductivity: Transport of Energy
Diffusion: Tr.lnsport-ul" Matter
10.4 Summary
10.5 Terminal Questions

10.6 Solutions and Answers - _

10.1° INTRODUCTION

We have seen that ideal gases can be considered as consisting of point molecules which
move randomly. Even al room temperature, the molecules of 2 £4s, say oXygen, move with
very lange speeds; i = 480 ms™'. We should expect that when molecules are movii'lg
witl such enormous specds, the gascous mass conained in a vessel should disappear inno
time. But this docs not happen leading to an apparent paradox. A simple way oul was
suggested by Clausius. According to him, the gas inolecules have finite size, and as they
move, they collide with one another. As a result, it takes them much larger time to ditfuse.
You may now like lo ask: What is the average distance travelled by a molecule between
succesive collisions? Whal is (he mechanisut of these collisions? To answer these questions we
introduce the concepl of mean free path. We will derive an expression for mean tree path
in Section 10.2. The distribution of free paths afd the cxperimental determination of mean
free path is also discussed in this scetion.

When a gas is endowed with mass motion and has a velocity, temperature or density
gradient, thermal motion of molecules leads 1o trausport of momentum, energy, or mass,
respectively. We can charagierise these by the coellicients of viscosity, thermal
conductivity and diffusion. Thesc processes, collectively referred to as transport
phenomena, arc discussed in Sec. 10.3. i

In the next unit you will learn the theory of Brownian Motion, which provided direct
evidence in favour of molecular theory.

Objectives

Alter studying this wnit, you should be able 1o
# derive an expression for mean tree path
® deseribe the law of free paibs and apply it to determine mean {ree path experimemally

& derive expressions for the coefficients of viscosity, thermal conductivity and
sclf-dilfusion, and ;

¢ solve numerical problems.
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Transport Phenomena

10.2 MEAN FREE PATH

In deriving an expression for the pressure exerted by the molecules of a perlect gas, we
regarded gas molecules as point masses and ignored intermolecular collisions. But Clausius
pointed out that every gas molecule necessarily collides with every olber molecule and
undergoes frequent changes in direction. This resulls ina series of zig-zag paths of unequal
length for each molecule. These are called free paths. The trajectory af a molecule moving

with average speed v is shown in Fig. 10.1.

kig. 10.1: The trujectory of a molecule moving in a gas

To visualise it, consider the following sitnation: You go fo sce a football match. During the
" play, leam A (East Beugal) scores 2 goal, whicl is contested by team B({CT). ICT .
supporters start throwing chairs, and boitles on the <round. To restore order, the police
decides 1o burst tear gas shells. Everybody runs for safety. In the course of relreal, you are
bound to collide with others and change your direction randomly. A trace of your molion
will resemble the motion of a gas molecule. ] : .
If you closely examine Fig. 10.1, you will note that some of the (ree paths are short while
others are long. The average lengths of these free paths are referred to as mean frec path.
Thus, mean free path is the mean distance travelled by a molecule between two
successive collisions. We denote it by the symbol A

I Ay, A2, A3, .., Ay are the succesive [ree paths traversed in time £ and N is the tolal number
ol collisions, then ’

} _ }\.1+7\.2+)s.3+...+1,-.r
T N

_ _ lotal distance travelled
total number of collisions

IV is the average speed of a molecule, then you can wrile
vt (10.1)
A=
N -
~ Ift (= r}’N) denotes the mean lime between two successive collisions, then you can write
— v (10.2)
l = = —
VT = o .
where P, = (t7}) denoles the collision frequency, which is a measure of the average
number of collisions per second.
You may now ask : How is A rclated to microscopic properties of agas ? Todiscover the
answer to this question, we shall make an clementary calculation.

10.2.1 Elementary Derivation -

Consider a gas consisting of a large number of molecules, cach of mass m and diameter 4. We
assume that the collisions are taking place at random. Mathematically speaking, the probability
that a molecule undergoes a collision in a small interval of time dt is independemt of the history
of past collisions. This has a simple analogy in that il you throw a dice, the probability of getting
_asix docs not depend on the prezcding tirow where a six may or may nol have appeared.

19 |
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- discover the answer Io this question in the following example.

To derive an expression for A, we note from Eg. (10.2) that we must know to calculate P..
We shall make this caiculation for two cases. First we consider a typothetical case and
assume (hat one molecule, labelled as 1, moves in a sea ot'other molecules (hat can be
treated as though they are at rest. I will ¢collide with a stationary molecule when the -
cenlre 1o centre distance is equal 10 o, the diameter of gas molecules. The trajectory of this
molecule will appear like that shown in Fig. 10.1..The centre to centre dislance will also

(b)

Fig. [0.2:.(a) Collision between a moving molecule and a siafionary molecule
{b)~ Equivalent representation of collision belween two molecules

be d if the stationary molecules were shrunk 1o geometrical points and the moving
molecules 1o be taken of radius o. This is illustrated in Fig. 10.2. Ttis as if the moving
molecule carries with it a circular disc of radius 4. Therefore, the moving molecule can
be thought of sweeping out a cylinder of cross-seclional area =d® and li:nglh V¢in time 1.
This is tltustrated in Fig. 10.3. During this time, it will collide with all other molccules
“whose centres lics within this volume ( = :rd?Ff). If the number of molecules is n, the
number of molecules contained in tiis volume is equal 1o £ d° V1 . This is also’equal 1o the
number of collisions sulfered by the moving molecale in thne r. The collision frequency,

Big. 10.3 :Cyligdricol urea mapped by a moving mulecule

whicl is defined as the nuinber of collisions per second, is given by
P. = ad*nv ' : (10.3)
Substituting this result in Eq. (10.2) we get

hoEo_ 1 1 (10.4)
2 nd% on

where @ = 7d? is kiown as collision cross section. It plays a very important role i scallering
thcory, which is a livelv researcharéa (oday.” = =

Let us pausc for a moment and ask; What js good about the relation contained in Eq. (10.4)?
Whal are its implications? To answer these questions, we note that our anal ysis is over
simplified and predicts that mean free path is inversely praportional-to number density-as
well as collision cross scction. Therefore, the mean free path will be less for a denser and/or
a heavier gas. This is in perfect agreement with our observations and lends support to the
basic tenets of kinctic theory. o :

You inay now logically ask: What is the typical magnitude of the mean free path? You will
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Transport Phenomeia
Example 1 .o
The mean speed of hydrog'cn molecules is 1690'ms™". The radius of a hydrogen molecule is

- 137x107%m. Calculate (i) the total collision cross section, (ii) collision [requency, {iii) mean
free path and (iv)mean frec time. Take # = 3% 108 m™ '

Solution

Sincen = 3 x- 107 m™> we find that

() o =nd® = (1377107 m* = 23.6x 10w

(i) P, = nd*nv = nvo =(3x 10% ™) x (1.69 x 10° ms™) x (23.6 x 107° m?)
| - 12x10%s" ‘

1 1 i
(i) A = T s = 14x10°m = 1400 A
(3x 107 m™) x (23.6 x 107" m?)

s = 83x107"s

(W’) T

The number of collisions per second is of the order of 10'°, which is a very large number.
The path of molecule is thus made up of so many kinks and zig-zags that we can never
follow its trajeclory even speaking classically.

You will also note that A is large compared to intermolccular distances, which are about a
fcw Angslroms. :

For an ideal gas, lc pressue p is given by

A= —
ap
This tclls s that the mean frec path is inversely proportional to pressure. This raises a very
interesting question, Suppose we reduce p 1o a very small value using a vacum pump. Whal
value will  take ? Will the value approach o? It cannot increase indelinitely. At the most the
value of the mean free path becomes equal to the dimensions of e container. This finds an
interesting application in getting well directed molecular beams for research purposes.

p = nk? (10.5)
On substituting for » [rom this equation, Eq. (10.4) takes the form
ful o . (106)

To check your progress, we give you an SAQ.

SAQ1

_The mean speed of oxygen molecules is 450 s, §( the radius of an oxygen molccule is
18 A, calculatc o, P, A, and ©. Taken = 3 x 105 m™,

You will agree that in deriving Eq. (10.5), we lhave made.a rather artificial assumption
that only one molecule moves while other moleculcs are at rest, In actual practice, all
molecules move abownt randomly with all possible velocities. For simplicily we assume
that all molecules have the same average speed ¥. Then, collision frequency is given by

P. = nvo o (10.7)
where ¥, denotes the mean relative velocity of one molecule with respect 1o all others. Loy

-us consider any two molecules and labei then 1 and 2. The relative velocity o melecule 1 o
- with respect to molecule 2 is given by ( Fig. 10.4)

-

where O is the angle between (he two velocity vectors.

Since all directions for OB are equally probabl:, ve can easily show (TQ 1) thal the
(raction of molecules moviug in directions lyivg between 0 and O + dB with respect to OA s
{1/2) sin0 d0. Hence,

_ =3 - 7 =2 J ’ T - . Fig. 10.4 ; Relsiive velocity of.. 7
v = v (VY + (V) —2V) {cos 0) . molecule I moving along 04

0 (10 8) with respect to another molecule

= VZv(l - 72 _ omsin — ) . moving along O8. The velocily
V(1 -cosB) _21’51“_2 I 4 ) veclors are inclined at an angle 8,
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The general integral

ard .
Isin'xms'x dr has the valoe .

fm-1)(m~3).. (n~1}{n -3)...

(m+m)(m+n-2)(m+n =dy...

Ifboth m and m are even, this result
is muliiplicd by n/2,

2.

s

_—_lx . __:T. . .U_ _‘T_Zg 2
v, = 2{\{,511:0(!9 = v{.smﬂsmzde ZV{SIIII 2(:052(1’9

To evaluate this integral, we intoduce a change of variable and w;ilc'—za- = xsothatdd = 2 gy

and the limits of integration change 10 0 to /2, Then above cxpression takes the form
a2
Vr.= 4 Ffsiu"'.r cosx dx
—_ 1] I

This integral can be casily evaluated to yicld

Ve ='£31';'- . (10.9)

On inserting this result in Eq. (10.7), we get

Pe=3nov ' (10.10)
and
_ 3 01 .o
dncy no :

This result is due to Clausius (1857). You will note that the collision frequency increases
when all the molecules are jn molion. This, of course, is expected physically since a
molecule is more likely to suffer collision when all of them are in motion than in
collection of molecules at rest in their respective positions.

If we 1ake the Maxwellian distribution of velocities into account, the expression for mean
free paths gets modified to :

1

) ) 1 (10.12)
har = V2 no. (0.767) no

"so that % = 0.94. That is, the correction is only 6%. Thus in most cascs, replacing the
T .

Maxweli’s distribution by a uniform speed model is a Fairly good ﬁppmxjmaliun. You will
also uole that for point molecules (d — 0), o~>0and A — w, .

To test your understanding you may like Lo allc.mpl the following SAQ.

SAQ2

The mean free path of ke molecules of 2 gas al a temperature of 15°C is 6.28 x 107%m. If
the radivs of the molccule is 1.88 A » €aleulate the pressure exerted by the gas. Also
calculate the number of collisions suffered by & molecule in traversiiig a distance of oge
metre. Take by = 1.38 x 10°2 K., -

distribution of free paths. This we prepose (o do in the following sub-sectjon.

10.2.2 . Distribution of Free Paths

~

Consider a man shooting aimlessely in a thick forest. Every bullet will cventually hita tree,
bul some will travel farther. than dthers, This situation js anaioges (o 'the flights of-the gas-

* molecules. We now wisk W kuow: By what equation can we describe the free paths? To
discover the answer, et us comsider a molecule at the start of jis Journey at the point 0. We

L 4

Fig 10.5 : A molecule travels from O 104 withowt g coltivion and t'rwerses the distance AB in time dt

I
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v
assume that (he past history of the molecule docs ot influence its subscquent motion. Suppose that
moving with average speed v, it travels a distance OA = x without suffering any collision. The
probability of this event will be a [unction of x. Let us denote it by f(x). The probability that this
molecule will make a collision in going from A © B in time dr = P.dr where P is the

collision frequency. Since dr = Vdr, we can rewrite using Eq. (10.2) as

) dye d
Pdt=P.—n —E
v A
where A is Ihe mean free path, Henee, the probability that the molecule traverses a distanée

. dr
dx without a collision is'1 - £
Since the passage from O to A and from A 1o B arc independent evenls, we can say thal the

probability of this molecule completing its journey from ¢ 10 B wilhout making any

collision is equal to f{x) ( 1 —%) Hence, we must have

[+ d) = j'(x)(l—%} (10.13)

Using Taylor series cxpansion we can wrile

where we have ignored second and higher order lenms in (he expansion. On simplilication,
we ¢an wrile

diy) _ _f
dv A

You can easiljr integratc it 1o obtain
fix) = Aexp(—x/}) ' (10.14)

The constamt of integration A can be casily evaluated using the fact that f(0) = 1. This gives
A = 1. Hence, Eq. (10.14) becomes ’

Jix) = exp (—x/A) (10.15)

This is the law of distribution of free paths. In probability theory, it is known as the.
exponential distribution. It suggests that the probability of a molecule describing very large

frec paths is vanishingly small.

If we have a sample ol Mo malecules 10 starl with, only Ny exp {~ x/R)of these will survive
a collision in traversing a distance x. Let {his number be denoted by N. Then we have

N = Nocxp(—i}

This is known as the survival equation. Similar equations arise in other areas of physics.
For example, radicactive decay obeys the equation N = No exp (- M), where N is the
number of atoms which survive after time £ and A is (he disintegration constant. (You should
not confuse it with mean free path.) Similarly in optics, Biot’s law describing ke intensily
of aw incident beam after it has traversed a distance ¥ in a medium exhibits exponential
characier. Eq. (10.16) is plotted in Fig. 10.6.

(10.16)

The Craction of molceules with free paths larger than A s only e =037

- ' 1 * - i - L)
If we take the Maxwellian distribution ol speeds into accowt!, the calculations become
slightty more_involved., We just quotc the result which js due 1o Jeans: '

fix) = exp (-104x/8) : o -('10‘.-1'7)

We now solve an example to enable you lo fix up your ideas.

Example 2

In a sample of 10° molecules, each molecule is moving with the same vetocity. What is the
nuwber of molecules that will travel undeflected alter traversing dislances of 0.4,05,1, 2,
and 10 times the mean free path?

Transpori Phenomena

fix),

037

—t=X{

i
1

Fig. 10.6: The plot of the survival
cquation

fix) is not a probabilily density in
the scnse that the area upd:r the

curve y = flx). i.e, ‘_f}tx) dx has oot

been normalised o unity.
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Elementary Kinctie Theory

Solulin_n

For -{- = (L4, we haie

N = 10°¢% = 6703

For olher values ol.x/2, we have tabujated the values of & below -

0.5 ’ o1 : 2 ' 10

I 6065 | 3680 1353 | 0.4540 |

Y ou wii] note that-for.v/) = 10, essentially no molecule will be spared of a collision.

Z e

You may now like ta solve an SAQ 10 assess your understanding,

SAQ3

The mean tree path ol molecules ol g B, T pis a2 x 1078 Calenlate the
probabilitics that under il condiions £) { p, 27 ), (it} { 2p, 27, {iii) (3p. T) a molecule
can travel a distance 104 1t " mwnhour waking a collisjon.

You may now be tem pred o im0 how we ¢ cheek the aceurey of (he supvivai CquElion.-

- Born put.the 1aw of [tew paths i < wilyg e suggested o method lor dhe ¢
| i Ly

Xperimental
dvtermination of mean free Path. Lo Ces nowe know about i,

10,23 Experimgntal Determination

The method described here for the experunental delermmation ol the mean free patl is due
to Born (1920). His appratusis skelehod Fig [0,7.

. To Pressure

Gavge — - |~ To Pump

Te Knudsen
Manomerer a——

C
@®

- Fig 10,7 Born's opparatus for the defermination of 3.

B
&)
)

i 5

Gr

The idea is to make silver aloms move through air. Wiken tihe pressure is low, the collisiag
Tate also decreases and these aloms can iravel reasonably large distances witkont making
collision. Silver is heated at the lower end of the quartz fube, On evaporation, the silver
vipour passes through 1he tarrow slit §. 8y, B, 83, B4 are four brass dises, cacly having a
circular holé and carrying a glass quadrant G such thay the apex of each quadrant ficg the- -
cenlre of the hale. They areacparated throwgl a distance of 1 em, Tite evaporated silver
-comlittues ifs onward Journey through these holes, Each quadrant is orienicd in such g wily
that it is displaced through 90° relative to the preceding one, This armngemnent ensures that
cach quadrant recejves one-fourth of the incident beayn, The pressure can be changed 10 any
desired value using a vacuum pump. - : o
The experiment is Started by cooling the discs using a cooling mixture (M), All 1he

pumped out using a vacuum pump. Thew mean free park equals the Je
The amount of sjlver deposiled on a given quadrant is detenmined b

Let the deusity ot the deposil be denoted by dho. Next we introduce the a8 and defermine 1he
deansity on fhe same quadrant, Let it bey,. Ther, using the law of free paths, we can wrire

s is
neth of the chamber.
Y photometric mcthods,

|
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d1=d10cxp(—%) ' ' o ' (10.18) .

-~

where x1 is the distance of the quadrant from S. Similarly, for any other quadrant _
da = daexp ( -%] : (10.19% _ ' L

Eqgs. (10.18) and (10.19) may be cpmtgjnéd lo give

_ _(o-x) : .
) - o)

dz dy

+ In the present arrangement (x2 —x1) = 1 cm. So once we kiiow the density of the deposits, ' i
we can easily determine the value of mean free path at a given temperature and pressure.
Bom'’s results are given below : '

p{mm) Mem)
58x107 17
45%107 2.4

atmospheric pressure 1.3 x 107

You will note that ibe product g A turns out to be constant, as predicted by theory. This also
serves lo verily the law of distribution of free paths.

103 TRANSPORT PHENOMENA

We now know that each gas molecule bas a finite mass and is characterised by random

molecular velocity. Therefore, it posscsses momentum and encrgy. So while moving from 3
one part of the conlainer to anolker, it is a carrier of these physical quantitics. You may now

ask: When a gas is in equilibrium, why is there no net transport of matter, momentum or - :
encrgy? This is because the rate‘of transport.across a given plane is exacily balanced by an
cqual amount in the opposite direction. However, wiien a gas, in addition, is endowed with
macroscopic velocity, i.c., the entire gas or a part of it is moving as a whole in a particular
dircction, the following three cases may occur singly or jointly:

1. The different parts of the gas may be moving with different velocitics resulting in
~felative motion betwee-adjacent layers-of the gas. In suchra case, the faster moving
layers will lose momentum fo the slower moving layers. Therefore, across an .
imaginary plane there will be a net transport of momentwn in the preferential direction
of motion. This gives risc lo frictional force which can be characterized by Lhe )
cocfficient of viscosity. Itis important to realisc that the viscosily in gases ariscs due ' -
10 the mandom thennal motion of molecules ratlhier than any frictional force between the .
layers, as in the case of liquids. You can visualise it with the following analogy: B

Imagine two trains running on paraflei tracks at slightly different speeds, and 5

passengers are juaping from one irain to the other. As a resull, the fasier train may E‘

lose momentum and the slower train may gain mowmentum. On the other hand, in ) o . *

casc of liquids, we ay iiiagine that the passéngers find themselves caught by the :

coat lajl. They make a deterinined effort lo delach themselves bit fait to do so. ;
2. Ifthe different parls of the gas are at different temperatures, the molecules of the gas ;

will carry thermal energy from regions of higher temperature [0 regions of lower
" “remperature (aid tend [o attain cquilibrium). This gives rise to the phenomenon of
thennal conduction.
3. Ifthe dilferent parts of gas have different concellrations, the molecules from
regions of higher concentration will migrale Lo the *gions of lower concentration,
This results in the transport of mass (matier) giving rise to the phenomenon of
diffusion. e :
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(10.24)
Tha is, on an average cach molecule would make its Jast collision at the height equal to two thirds
of the mean frec path above or below the surface xr’ before crossing it. At a height (2/3)A. above the
plane xx’, the flow velocity of the gas molecules will be 1 + (2/3) 0 %,

the plane xx’. The momentum transported by a molecule moving with this velogity is
2. du -
m ( 3 A dy )

So, the total momentum in the direction of the flow carried across the surface per unit area
per unit time by all the molecules crossing the surface xx’ (rom above is

where 1 is Dow velocity at

e Lo (2 du
P —4nvm(u+3ldy)

Similarly, the tolal momentum carried across the surface xx’ per unit area per unit time by
the molecules crossing it in the upward direction from below is

- 1 . 2. du
P —4nvm(u—3ldy]

Hence, the ret rate of iransport of momentum across xx’ in the direction of mass motion per
unil area per unit lime, which is equal to the viscous force per unit area, is given by

p_pra L, o du
P=pP_p ~3 mny ) dy (10.25)

On comparing Egs. (10.21) and (10.25) we find thal the coefTicient of viscosity of a gas is given by
n=3mavA - %pn : " (10.26)

On substituting the expression for A from Eq. (10.12), we get
. Ly

1737 5

This is a remarkable result based on clementary kinetic theory. It enables us to estimate the

molecular diameter since'r) is a dircclly measurable quantity. From Eq. (10.27) we note that

the viscosity of the gas is direcily proportional to v. That is nol?and is independent of n

{or pressure). Both these conclusions are in conformity with experiments. For instance, for

pressures from a few mm of mercury upto several aumospheres, the coefficient of viscosity
of a gas is found to be independent of pressure. However, at very low or very high pressures,

1 (10.27)

-this docs not hold. At very low-pressure, ihe intermolecular collisions arc rare and mean free

path becomes comparable with the dimensions of the apparalus. But the number density
decreasces continuously as pressure is lowered. Consequently, the coefficient of viscosity
decreases as pressue decreases. This fact was cxpertmentally verified by Crookes.

Warburg and von Babo showed that at very high pressures, the coeflficient of viscosity
increases as pressure increascs. This is due 1o the fact that at such high pressures, mean free
path becomes comparable with the molecular size. .

Example 3

The coefficients ol viscosity of argon and helium are 22 x 10-% By and 19 x 10~ ° P, respectively.
Calculate the mean free paths for these gases if they are kept under identical conditions.

Solution

'We have from Eq. (10.26)

(A _ m(A) FA) A(A)
n(He)  m (He) v (He) A(He)

_ -" [ m(A)  A(A)
B m(He) k(He)

i ma LRI
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In writing the last step we have made use of thé fact (hal at conslant lemperalure, Transport Phenomena

E = %m{Hc)?(He) = %m(A)?(A)

Hence, on re-arra ngement we find that

. MAY _ 4/ m(He) m(A)
A (He) m(A) m (He)

_{2x 10751 4
19%x10°5p1 | | 399

= 0.368

172

Example 4 ' ’ R

The molecules of helium move with an average speed of 1200 ms™ Ify) = 19 x 107 P,
calculate ) for hefium. . N

Solution .
We know that in terms of 1], we can express mecan-free path as

A= 31]_ _ 31]2'

mnyv My

where M is molecular weight and V is volume occupied by onc mole. On inserling the given
numerical valucs, we get

-6 . ’
_ 3 (19 x 10" P1) x-(122.4 lig _ 2591 A

4% (1200 ms™)

A

You should now atlempt the following SAQ.

‘SAQ4
Calculate the radius of an oxygen melecule, if its coetticient of viscosily is 19.6 x 107 ¢ i
at15°Candv = 436 ms™.
As mentioned earlier, Eq. (10.27) implies that
’ na 03 L

In aciual practice, the increase is taster than.vT. The departure from the value 0.5
provides us an opportuuily lo get an insight into the naturé of inlermolecular forces. In
fact, 0 is independent of T only {or rigid hard spheres. The long range atiractive par
-of the Force-increases the scatiering probabilily of a malecule. Al lower
temperatures, the molecules have lower velocities and can casily be scatlered. If we

denote the repulsive part of the polcntiai by V{¢) = is , it tumns out that  a T " with
r

. 1 2 D‘.
- H=—+
s-—-1

28

For rigid hard spheres,s = o ,sothatn = 0.5. From experimental observations made on 1)
at different temperatures, we can deduce the valuc of 5. Some representative vajues are
given below: ) '

Gas _.;-
H2 11.3
He 14.6
Ch 5.0
HCI 497 .

You may recall from your carlicr classes that for liquids 1} decreases with 7. Can you reason qul
why? A

29
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takes place from regions of higier temperature to regions of lower tempezature, The anel rafe
of energy (beat) fransported across any surface per unit area is given by

dar _ {10.2+,
R

where K is thermal conductivity. (You should not confuse it with the symbol for kelvin, ihe
unit of temperature. } . .

To obtain an expression for thermal conductivity, we require, as before, the expressions for
the average number of molecules. crossing any layer and the average height at which a
molecule makes its last collision before crossing it. These are exaclly the same as in the case
of coeflicient of viscosity. However, you have to Keep in mind that the averzge encrgy

possessed by a gas molecule js 'gknT, where f is the number of degrees of freedom, You
can readily show that

K = énnkg | ' (10.30y

It actual Practice, X increases somewhat more rapidly suggesiing that intermolecular forces
- do influence energy transporl,

When we closely examine cxpressions for1) and K, we ex pect some connection between
them. It is justructive to discover it as both these quantitics are physically measurable.
Therefore, we dividve Eq. (10.30) by Eq. (10.26) to get

K_[h

n 2m
[hkNs JR
2. M T3y
. _

since m = o where M is molecular weight of the substance,
A -

From Unit 9 you will recall that molar heat capacity

-/
Ce 5 R
so (hat
K _ Gy
N M
or
M ‘ ' (10.31)
nCv :

That s, our elementary theory predicts thal the tatio KM/ Cvris cqual (o one for ajl gases.
But experiments show that this fatio is grealer than one. There can be several reasons for his

increased energy (ransport, cnbancing thc ratio KMm Cy.

A more rigorous calewlation duc to Chapwmar and Enskog showed (haf therate of energy -~
transport is 1.5 to 2.5 times Iastcr than W given by our clementary weatment, This suggests
that the hard sphere model of 2 molecule is not adequate. )

We will now like you 10 work oul an SAQ,
SAQS
Calculate the thermaj condu'clivi(y of helivm al STP using the following dala:

N =19x% '10*f Nsmn~? Cv = 125%10% ) kol L g—! amdM = 4kg mol™,

ETIE LA™ rr-?rwnur.

A =

e




- 10.3.3 Diffusion: Transport of Matter

Consider two gases, say hydrogen and oxygen, contained in the glass jars. The hydrogen jar .
is inverted over (he oxygen jar and the lids are removed. As such, in either direction there
will be no large scale movement of Ihese gases, which are at the same temperature and
pressure. But after some time one finds that the two gases mix with one another. (Oxygen
molecules bave moved against gravity.) This gradual inter-mixing of gases is called

diffusion. It is responsible for the el of flowers reaching us. Similarly, due to diffusion
'prncess only sitting in your study room you ca i find what is being cooked in the Kitchen . It
is a direct consequence of random molecular mnotion when there are inequalities in concentralion.
Molecules diffuse from regions of bigher concentration towards rcgions of lower
concentration Fig. 10.10(a) schematically shows the dillusion of like molecules. Dilfusion

of unlike molecules is shown in Fig. 11.10(b).

N o DR L
r_‘:’(//f \.J,/‘.flr ..r""o « 0 . ... .
A D20 I R R [ ARt
— : :\\t ot - ... ’
fi/;f. I/".l ._:-' P {a. .. ’.--.._:
I:‘- it B 2 A ;‘. e e s k0 R
(=) . ()

Fig 10.10a : Sclf-dilTusivn: Two ideuticul suuples of n gasio a container are separated by a barrier. As soou
us e barrier is removed, they difTuse inlo one another.(b)Diflusien of unlike molecules,

We can describe intermixing of gases in terms of {he coclficient of diffusion, D. If the
molecular concentration along a horizontal plane xa’ is n and there is positive concentration
gradicnt dn/dy in he vertical plane, the number of particles crossing the given surface per
unit area per unit lime is given by ’ .

dn : _ (10.32)

For the gencral case, (e calculation of the diffusion cocflicicnt is complicated duc to the
(act that the rates of the two gases may nol be the same. We can simplify this problem and
still bring oul the essenlial idcas by considering the diffusion of like molecules, i.c.,
self-diffusion. The diffusion of 1be isotopes of the same clement (say By ang 8 U} is an
example of this type.

Self diffusion finds very important usc in fnucicar power genciation via urenium enrichment.
For (his we convert urattium info uranium hexaflouride (UFe) gas and make it o difTusc
through a porous barricr. Normally it is a ceramic malerial which consists of fine capillary
pores. Since 2°U has slightly smaller mass than 23535 jits rate of diffusion is more. As a resull,

_the Sutcoming gas is richer in 23511 coatent. Repetition of this process several hundred times
results in the desired level of enrichment. In India we have nuclear power plants at Tamapur,- -
Mahamshtra where enriched (2 — 3 %)uranium is made to fission by thenmal neutrons. (If this
process goes unconurolled, it can lead to untold destruction.) Unfortunatety such an innocent
process has been misuscd for destruction of humanity. You st have read that during the
second World War, atom bombs werc dropped at Hiroshima and Nagasaki by Allied forces
led by the U.S. Uranium enriched upto 909 in 2°U was used in these bombs.

To proceed with the calculation of D, we nole (hat, 8s belore cach moli:cule makes jis last
collision before crossing he reference plane at a perpendicuiar distance of /A fnmpis
the _concel_urminn of gas molecules at tbe reference planc, the number density al a distance

{(373)X. above or bélow xx’ will be n” = n.;:%h‘:,—;.- R

From Eq. (10.23) you will recall thal the pumber of molecules crossing the given surface
per unit arca per second is equal to (1/4) # V. Hence, you cant casily show that the nct

- number of molecules-transferred upward across the given surface per unit area per second
is given by s ’

T=-ocv—

1_.dn (10.33)
3 dy .

Transport Phenomena

Natural uranium has two iselopcs
34T and U whosc concentralions
are 99215 and 0.71% respectively.
OF thesc, ™U isotope is more
important as it is it fissile, From
physical arguments is desirable to
increase its amount above ils eatural
conceniration. [n thal case we say
thal tke uraninm has been enriched.
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On comparing Egs. (10.32) and (10.33), we gel
D= %n‘ ' (10.34)

Forairat STP, A = 100 o, and v = 450 ms™' so that coellicient of diffusion is of the
order of 107> @242 SinceAa (T/plandva TVZ,'Eq. (10.34) implies that the diffusion
cocflicient will vary mversely as p and directly as 72 Tpe predicted variation with

D
ne .
The obfserved value of E varies between 1.3 and 1.5, A rigorous theoretical analysis by
Chapman and Enskog yiclds & = 1.2 for hard spheres and & = 1.543 for the intcrmolecular
potential V(r) = i
i

uE:l

So far we have been talking about self-diffusion. in actual measurements of D for this
Process, there must be some way to follow the diffusing molecules. In other words,
molecules must be labelled or lagged somchow. For instance, we can induce radioactivity
on the nuclei of some molecules and their diffusjon may be followed by a Geiger counler.
However the sizes of the radioactive and the 1on-radioactive molecules may not be
identical. Morcover, in practice we are interested in the diffusjon of one gas (labelled 1,
concentration nj, average molecular velacily F;) through another (labelled 2, concentration
12, average molecular velacity v2). For this general case of diffusion, we can show that the
diffusion coefficient is given by

p o 1M m+Aaiim | . (10.35)
3 ny+m

variation of D with the composition of the mixture js quite interesting. We denote D as Do

when << msand as Doy when ny << ny. Do will be proportional to Yriz/my and Dy,
will be proportional to vmy/ms.

Experimental investigations show variations amongst the observed vajucs as well as the
depadrture rom theoretical predictions, This brings out the limitations of strch an clementary

lrcatinent. A rigorous analysis, however, shows a fairly good agreement. But its discussion
is beyond the scope of your study.

Now you may like to solye an SAQ.
%
SAQ¢

Consider a cylindrical vesscl of cross-sectional area A contzining a simafl quantity of the -
liquid at the bottom. The vessel is full of air and diffusing vapour. The top end of the vessel

is apen and is 7 cold surlace on which tite va pour condenses. Derive an expression for Dy,
the diffusion coefficient of vapour through air.

“Let us now summarise whay you have learnt in this uni.

104 SUMMARY

¢ The mean frec path is the average distance travelled by a molecule between successive
collisions. The exact cxpressions for A is given by e :

hyy =
" VT o

where 1 is the molecular number density and o is the collisiox cross-section. For a sphere
of diametred, ¢ = 54 - : o

¢ When we have a sample of No molecules, the number ol molecules whicl travel a
distance x, without taking any collision is given by the survival equation:
' N = Npexp (- x/h) T

\
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» When a gas is endowed with mass motion, random molecular motion may result in
. transport of energy, momentum or mass ‘depending on the physical conditions.

¢ The coefficient of viscosity, 1), for gases is given by
1N = L mnvh
1= - I

where m is the molecular mass and ¥ is the average speed ol a molccule.

At a given temperature, 1} is independent of pressure. This result is valid so long as
‘d < <A< <L, where L is a measure of the linear dimensions of the container.

e The coefficient of thermal conductivity, K is given by
K= %n viks

where fis the number of degrees of [reedom.

¢ K and 1] are conmected by the relation

KM
nCy

CED |

e The coellicient of diffusion D is given by

¥ 03% (D)
b=3r="5" "pvm

e D and 1 are related through the relation

Dp _,
n

Transport Phenomena

10.5 TERMINAL QUESTIONS

Molccules of 2 gas move randomly. Show that lhe fractions ol molecules moving in

1.
dircctions lying between 8 and 6 + 48 is given by %sinﬂ d0.
2. Calculate the radivs of the nitrogen molccule using the following data :
K = 237 %107 W K, Gy = 20.9 % 10* T mol™ K™ a10°C
3. Calculate the mean free path for hydrogen molecules at STP. The diameter of a

hydrogen molecule = 2.9 A

10.6 SOLUTIONS AND ANSWERS

SAQs
1.  Webave
o = 4’ = (1.8 % 107%m)y* = 40.7 x 10728 1’
P, =oanv = (d40.7x 1072 mY) x (3 x 102 m™) x (450 ms™)

5.49 % 10" 5™

1= Pl=18x 107
and

P = 819A
G x 107 m ™) x (40.7 x 10 m?)

2. o =dxa = 40188 x10%m) = 4.4x10°nw°

We know that

33
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so that
_ kT (1.38 x 102 JK™) x (288 K) -
P VRS " 100w vz (6.28 x 10 m)
= 101 x10° Nm™

Number of molecules suffered by a molecule per melre of the path
= 1105w
6.28x10"m

a1 kT
V2o p
Ap, ) =52x108m . ' N
O XMp.2D =20 (p,7) = 104x107%m
Required probability e~ < 0.37
(i) M2p,27) = Mp, T} = 5.2%10%m
Required probability = ¢2 = (.14

i) AGp. D) = 2np, D) = 5:'5—23-: 0% = 1.7x10%m

Required probability = ¢~¢ = 2.5 x 10~ -

!

M= = 533 10% kg )
M.= Lmn)\.i"
-3
or )
1 B 1 mv

N=gmivo—— = —— 2L
L= 3y s = 33 xd
On re-arrangement, we can write

d2 M (533%10% ke ) x (436 ms™) 1620 &2
3nv2 n IxvVZ x(19.6 x IO-GNsm_Z)

Hence,

172

- (_SM_G__) ;\=2.98A

3xvZx196
andr = 1.49 A

"From Egq. (10.31) we know (hat

nCy
X ="—M

On inserting the given values, we get

ko (86 x 107 Nsm ) x (12.5 x 10° J kmol~! K1)
. _ dkgmel™t . T T
= 581x10* I m s K-!
Just above the liquid surface, the Vapour is at ils saluration vapour pressure. At the

cold surfarce, the vapour condenses so that # is very nearly zero. In the steady-state,
there can be no accumalation ol vapour molecules in any section.-In other words,

dn _n

dy h

The mass of vapour transferred and condensed on the cold surface per unjt thme is
given by

TTNIE AT T N Y v e TR AT S T
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m' = Dle i"h?‘l = DlgA E-:'m
dy I

or
m'h m'h
Dr = Amn  Ap

wthiere p is the mass density of the saturated vapour.

TQs
1. The fraction of molecules which are moving in a direction lying within an clement 4
of the solid angle = %
_ sin0dBde N
B 4
Hence the required fraction is given by
4

1. 1.
E51119d8{d¢=551119d9

2. We have from Eq. (10.31)

_1nCy _ —_
K="
0376 '
(5D e
Hence,
N 2 _ {0.376) {(kpT) Cy
g =4xr° = -——-————K NV
or

;o QIO Cy g
41KV
(0 376) (138 x 102 JK™ x (273K) x (209 10° T mol™! K“) x 107 A

dnx (237 % 10‘3 Im~l s K x (6 x 10%) x (28.02kg)

=12
3 A= \fflno
Aud ’
o =nd’ = ::(29)(10"0) m? = 26.42 x 1070 m?
_ no=3x108m™ S Ce e
Hence, i

1
CVIx(3x 1'0?5 m™) x (26.42 x 102 m?)

= 892x10 %m
= 8924
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UNIT 11 BROWNIAN MOTION

11.1 Introduction
Objectives
11.2 Brownian Motijon Revisited
113 One-dimensiona] Random Walk
11.4 Theoretical Analysis of Brownian Motion
Einsicin’s Derivation
Lzngevin’s Analysis
115 Examples of Brownian Motion
11.6 Deiermination of Avogadro’s Number
11.7 Summary
11.8 Tenmina) Questions

11.9 Solutions and Answers

11.1 INTRODUCTION

Inthe preceding units you have seen how kinetic theory successfully explains many observed
properties of gases, The theory is based on the lundamenial observatjon thal malter is not
COMinuous; it is made ol molecules, which are itt continuous random motion. Yau will apree
that in a sense, kinetjc theory has 2 great acsihetic appeal; well defined laws can be used lo

- deseribe chaotic motion, hiroduction of the concept of intermolecular collisions [urther _
curich iijs theory, Apart from overcoming apparent contradictions, it enables us 1o derive quan.

titative expressions for coellicients characterising transport phenomeng, Although the
agrcement of theoretically predicted bebavior witl experiments furnishes indirect evidence in
favour of molecular theory, it is desirable tor z sound basis to establish the existence of
molecules and their motion by experimentation, It js instructive to point out that in thte initial
stages of the development of molecular theory, even prominent scientists were retuctnt luaccept
the realities of the atoms and molecules. The German physicist Wilhelm Ostwald regarded the
#loms as a merely hypothetical coneeption ihat ailords a VEry convenient picture ol mairer.
Similarly, Erust Mach maintained that atomg aid molecules must be treated as convenient Lictions,

The first experimental cvidence for the existence of molecules and their molion Wiy
provided by Robert Browa whije lie was observing the randou]_(_'p_l!r_sc_p_fa_parliclc
suspended in a fuid. This remarkable phendinetion is called the Brownian motion, In view
olits importance, in Sec. 11.2 we review what led to Brownian molion,

molecules of the fuid, The Suspended particles can be Jikened 1o A lleet of buoys

charling thejr course through a turbulent sca of molecules. Thc course ol a suspended
particle is similar [o e LIOERY steps of drunken man who starts walking from a lam) post
on 4 cily square. This analagy belween Browuian motion and mndom walk rens oul to he
very fruitful and is discussed iy Sec 11.3,

You will be surprised to krow thay Albert Einstein predicred this phenomenon on thearetival
£roumds in 1905, alibough he was nnaware ol its ohservation by Brown as carly as 1828, He
related the mean square displacement of suspended particles and the diffusion voctlicient,
This made experimental determination of Avogadro's number and the mass ol a molecule
possible. Sec. 11.4 deals with e theoretical analysis of Brownian motion.

Several efforts have been made 1o givea lilnfhclllalicnlly more salisfying theory of
Brownian motion. This has given birth 1o maiy new maitbematical tlechniques for handling
rfandom phenomena. Here we shall conline ourselves Lo a discussion ol Einsicin's and
Langevin’s theorics, Examples of Brownijan motion are described in Sec., 11.5,

We have discussed the cxperimental determination of Avogadro’s mumber in Sec. 11.6. Tt is
due to Perrin, who made 2 dedailed study of Brownian motion, .o
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Objectives Brownian Motion
Afler studying this unit you should be able to
e explain the significance of random walk

e derive an expression for the mean squared displacement using Einstein’s and Langevin’s theories

e siate examples of Brownian motiou, and

o describe the importance of Perrin's experiments.

11.2 BROWNIAN MOTION REVISITED

Brownian motion has been holding unending charm for matiematicians as well as scientisis
ever since its discovery. It was discovered by Robert Brown, a botanist, while making
observations on pollen grains suspended in water using a high power microscope. He
observed an irregular dancing motion that never ceased. This irregular motion is cxhibited
by any small particle suspended in a viscous medium. -

The first dynamical theory of the Brownian motion proposed that the particles were alive. Tt was
argued that vitality is retained by (he molecules of a plani for long afier its death. However
experiments by Brown and others proved conclusively that the motion is not due to auy biolegi-
cal or chemical factors. In fact, Brown made observatious on a drop ol waler trapped in a chunk
of igneous rock as the rock cools from its melt. By focusing a microscope on the drop he saw
scorcs of tiny particles suspended in the drop execuling a random danee. Careful experiments by
Guy Williams and others supported the kinetic theory. It was found that :

(i) Smaller particles are more agilated than the bigger ones.
(ii) The motion is more in a less viscous fluid.
(iii) It becomes more pronounced as the femperature is increased.

Boltzmann and Gibbs had made great progress in applying statistical laws 1o physical systens.
Bui it required the genius of Einstcin to work out a detailed theory of Brownian motivn in lenns
of the effect of collisions between molecules. He realized that this could provide cvidence in
favour of the Kinetic theory. Einstein’s predictions were found to be precisely correct by the
beautiful experiments of Perrin. This also paved (he way for accurate detenmination ol molecular
masses. This work conviniced everyoue, including the sceptics, of the reality ol the molecular
nature of matter and launched the subject 1o attain wider horizons.

Browniau motion has now become a paradigm for a Jarge class of random phenomena. It opened
very fertile channcls of research. As a result, very sophisticated mathematical technigues have becn
developed to describe the motion ol a Brownian particle. However, these details, though beyond
_ the scope ol your prescnt study, have been included in a simplificd manner lo CONVince you
regarding the significance of Brownian motion, pariicularly in reference o Kinetic theory.

113 ONE-DIMENSIONAL RANDOM WALK

From your school science curriculum you are familiar with the process of diffusion. In the
.preceding unit we derived an expression for diffusion coclficient when one gas mixes willl - -
the other. You now know that it signifies transport of mass ila gas is endowed wilb mnass
motion. And random molecular molicn acts as the carricr. ln probability theory, it can be
- characterised as the evolution of a system in time and space through random discrete steps,
cach of which is independent of the preceding or sueceeding steps. The study of such a mo-
tion is referred to as random walk problem.

You can realise a simple random wa]k'prublcm by coin lossing at regular intervals. We

- move a step to the right if head appears and to the left il 1ail shows up. Qur pusilion at any
time will depend on the sequence of heads or tails. Another very simple example of mudom
walk problem is the motion of drunks who begin their stroll from a single lightpost, but are so
intoxicated that each step may be in randomn direction and of a rauge of different lengths.

In addition o diffusion, random walk provides medels for numerous apptications in physics.
These include (i) Brownian motion, (i) wrbulence in fluids, (iii) neutron dilfusion,
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f.r' exp(-x)dr {:f:--])

>

is, by definition, gamma function of .

order {(n+1). And
Fln+1) =« aT(n)
with

rery=-1

F(1/2)y « vx

" Slne) = Ve cxp(—zr TJ

1 e . - (11.7)
VaxDr S\ - ap | o

where D = r%/21 is known as diffusion coelficient. This cquation gives the probability that
the particle is at a distance x at time &. I represents a gaussian distribution curve (Fog. 11.2),

fix,zt)

t=4s

0 - X

Fig 112 Pt ol By, (11.7)
Let us now caleulate the mean square displacement of a Brownian particle defined as

w

(.r:) =f.1'3f(x,rjd.r

-@

If you substitute for f(x, t) from Eq. {(11.7), you will get

2 1 3 X ]
(t’ Y= Zm_l;cxp(—aJdl

You will note that il we replace x by — x, the value of the integral remains unchanged. Sucly
an integral is said 1o be Symunetric and we can rewrite the above expression for meau squarce
displacement as :

- ) 11.8)
Ny oL ro X ¢
{x°) = \f;D_r-!;'l cxp(-4Df)dr

To evaluate this integral, we iniroduce a new variable by defining

-

so that B
v = 4 (D)2 "2 dy

On substituting this result in Eq. (11.8) we find that

-]

4D
(x?) - =t e (-pay
Lo

4D
=- r
Va1 372)

where ' (x ) s gawma function. Since I‘(J,I"'Z) = \/'?/2, we get
(x%) = 2Dy (11.9)

You will learn in the nex scction that this result js the same as derived by Einstein from
considerations of the molecular conceniralion gradicnt. You can also abtain it by mlegriing
the ditfusion equation, This has been posed as SAQ. '

S5AQ1
Obtain Eq. (11.9) by integrating the diffusion equation

T T Ty




an(xt) . @n(xt)
ot =D a_rz

On solving this SAQ you may be templed to conclude (hat the diffusion process can be
modelled by random walk problem. If you think so, you are not wrong. In fact, essentially
this line of argument was used by Einstein to work out theoretical analysis of this

" phenomenon. You will leam about it in the following scction.

11.4 THEORETICAL ANALYSIS OF BROWNIAN
MOTION ,

In 1905, Einstein gave a systemalic mathematical theory of Brownian motion. His
arguments were based on physical processes (hat lake place inside a colloidal solution- In
1908, Langevin rederived Einstein's formula by considering the equation of motion of
suspended particles. Let us first discuss Einstein’s derivation.

11.4.1 Einstein’s Derivation

Einstein gave an exact description of Brownian motion in terms of the cifects of random collisions
between the molecules of the liquid and the suspended particles. He was the first person to
recognise that the existence of atoms/molecules can be revealed (hrough the motion of
suspended particles in a fluid. He quantified this problem by relating the diffusion of suspended
particles to the properties of the molecules responsible for coltisions. That is, he calculated the
diffusion coefficient from the ematic motion of panticles arising from molecular bombardment.

We also know (hat the molecules of a solute dissclved in a dilute solution exert osmotic
pressure between different parts of the soluiion. This causes the suspended particles to
diffuse. Einstein used van't Hoff’s law te calculate D by considering the molion of the
suspended particles under the influence of the osmolic pressure difference. He then
equated these expressions to calculate mean squared displacement of a Brownian particle.
We now give a simple derivation of D based on random molecular motion.

Calculation_ of D from random molecular motion -

We know that random molecular motion causes Brownian paricles to dilluse and their
motion is tolally erratic. For simplicity, we confine ourselves lo one-dimensicnal Brownian
motion and assume that, on an average, each particle is displaced through a distance s in
lime T. Let us imagine a cylinder of cross-sectional area A and length s with its axis parallel
to the x-axis. Its end faces are denoted by Q) and @5 in Fig. 11.3. Let the molecular
concentration of Brownian particles at ) be n; and that at Q5 be n1; such thal p2) > n; That
is, there exists a molecular concendration gradicnt die/dy, where #7 is mican concentration
along the cylinder. This makes the suspended particles o diffuse. Then the number of

particles crossing Q7 to the riglt in time T is equal to %“SA.-T]JI: (actor (1/2) arises because

only half of ihe particles cotained in a cylinder of volume £A sitvated 1o the lefl of @) will
cross it in this time. Similarly, the nuiiber of particles entering &2 and moving in the negative

s
2

plane R at the centre of ihe cylinder in the positive x- direction in lime T is given by

x- direction in lime T is equal to —= 4. So the excess number of particles crossing the vertical

Q R
. . L - e
’ dn _ [m {
0 dx R R S
. \\7-+
k- 5 — xa!

Brownian Molien ]

4
— _;___.

Osmatic pressure of a solution is the
pressure required 10 previent osmosis
when the solution is scparaled from
pure salvent by a semi-permeable
membrane.
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The general solution of an
inhemogeneous ODE consists of the
- parlicular-and complementary
soluiions. The particular sshition js
obtained by nating thar

um L ZhT t - T
1) m fd v o ror
E [i’--u] - lz&ujﬁ ra
N 2T

(&
On the olber hand, the
complementary solutjon isobrained
" by equating the RHS ol Liq.(11.18)
£qual 1o zero. The resulting cquation
can readily be integrated 1o gel

= A exp{-c®y)
where A is constant of integration.
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terms of x? To do s0, we multiply Eq. (11.14) throughout by x. This gives
mx¥e -Cxx+xF, ~ (1L15)

Proceeding further we note that

d . - 14
E(xz)nm:x;=5-a?(.rz) -
and
d*, , . - .2
Zz(.r )= 2tx+2(x)
or

- _1dt 5 L,
ry = E;,;z(-t )-(x)
On substituting these resulls in Eg. (11.15), we find that
d? .2 Cd;
Zol D -m(? e -S4y, g

This equation is valid for cach suspended particle. If we average it over a large number of
particles, we get

T2
%(i;(—“zn—m((i)z) ?H%(d%(xz))+(x}~'x) (11.16)

where ( ... ) denotes the average over all suspended particles,

Since both x and £, vary randomly, the product {xF.) appearing in Eq. (11.16) will be
Zero. Further, Brownian particles are in thermal equilibrium with Quid molecules and it
follows from the cquipartition theorem that their mean kinetic erergy (associated with cach
degrec of freedom) is kg 7/2. That is,

m{((2)) = by T
Using Lhese results in Eq. (11.16), we [inally obtain

m, d> 2 C,d, =

or

a4

2 |
RN+ ai(G () < 2ol (17

where a? C/m.

To solve this equation we make use of the fact thal the operations of averaging and differentiation
arc commutative, i.e., these can be performed in any order. Then, we can write

(FOD) = L) e

and
d* 4, , .
;s(x M= ;T;((r )y =u
Then, Eq.'(ll.l?) becomes
i+aly = 2T -(11.18)
m

This is a first order inhomogeneous ordinary differential equation (ODE). You have leamnt
to soive such equations in Block | of PHE-05 coursc. Iis most general solution is

0= gg—T+A cxp(—azf) (11.1I9)




Al =0, x =0 ='u =0sothatA = - 2){5 T/C. Inserling this result in Eq. (11.19), we Brownian Molion

can write’

w= () = 221 e (0]

Integrating again, we have

o T
3
(x| = Zp T [:+lz- e < ’]
c a
i) o
or
U T 1 I 11.20
<x3>—<:%>=—g—{t——z(1-e“ )] 1.2
o
There are two special cases of interest:
(i) When<t c<a foralt<<l, e'xp(—uz'l:) = l—azt-t:%(az-c)z—... , and
Eq (11.20) becomes ‘
(2Y-{x) = ZpT ‘:——-1-5 1-(1-a’= slat?o)
C o . 2
kyTo' kT 2 (11.21)
= — = —T
C m .
That is, the suspended particle behaves like a free particle moving with constant thermal
T ’
speed m

(i) Whent>>a 2 or a’t>>1, exp (—a?t ) — 0,and Eq. (11.20) lakes a compact form :

Uy T aP1-1
()-8 - 22T £

L YT (11.22)
=p- 8

On substituting for C, we find that the mean of the squares of the projections of actual
displacements on the x-axis is given by
kT RT 1 (1123
()= (B) = 72 . (1)

T ==
3wnry Ny 3ann

_ “This result is same as given by Eq. (11.12).

You should realise that A { ( x>) ) is in no sense the actual displacement of Brownian parlicles.
It tells us that we must take a snapshol of the suspension at time ¢ = 0 and again al lime

¢ = . Then we should measure the conponent of displacement along any arbitrarily chosen
direction, say x-axis and determine A (xg) for cach particle. A sum over all the A (xz) and

_ division by the number of pafticles gives A { (x2)). In his cxperiments, Perrin worked with
100 different particles of known size. And, if we closely re-examine Fig. 11.3 we find that
the motion is so complex that an experimentalist may find il inconvenient to work with such
a large number. However, we can make use of the facl that if one particle is followed [or N
successive inlervals of lime (when A is a large number,), the motion is almosl equivalent to

" lie miotion of NV parlicles during asingle time interval. (This cortesponds to the assumption tal

differentiation apd averaging are commutative.)

11.5. EXAMPLES OF BROWNIAN MOTION

We have just now scen that colloidal suspensions in a fluid exhibit Brownian motion. We come
across many other interesting examples of Brownian motion. These include sedimentation,
diffusion of poliutants in cur atmosphere or smoke particles in air, motion.of a galvanomeler
mirror and Johnson noise in amplifiers (clectrical appliances). We will discuss thesc now.
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This suggests 1hay durhig‘scdimematioﬁ, the particle concentration decreases
with height. 1

1. Sedimentation

We know that if we take sandy water in a beaker, the sand sciiles down al the bottom. This
process is known g sedimentation. It js responsible for clearing rain water stored in ponds
and lakes, T sedimentation, the distribution of partioles is determined by the influence of

Fig 1141 X shallow box of depth A: uud cross.
and lower faces are P+Apandp, respeclively,

gravity and diffusion, Whereas gravily tends 1o sertje them, diffusjon brings about
homogeaisation. (The same is truc of pollutants in oyr aunosphere.y To calculate the
number of particles at 4 given height, we consider a shallow box of thickness A Zenclosing
layers of particles bounded at heights zand z + Az Letpbe the pressure on (he lower face
and p + Ap be the Pressure at the opper face, as shown in Fig. 11.4.

sectional ares A, The Bressures on the upper

We consider the cquilibrium of unit area, Ifpand g respeclively denote the

deusity of
pariicles and acceleration, then for equilibrivm we must have

Ap = -gpaz

ingle

Ap = —mng Az
_ meN
== ‘
Ifwe assume that Brownian particles obey gas laws, then on feplacing Vby RT/p, we find that
Lo mgN
P HWRT

where p denotes e Itber of moles,
This may be inlegrated o obiajn

pemen(-Zh Gz
wiicre p = py atz < g,

We know that p = jl.nm v 250 that we can rewrite Eq. (11.244)

n = rrocxp.(—i%%z) ' (11.24b)

€xpontenliaily
ILpractice, the supended panticles expericnce-y pward bouyaiit Torce due 1o
diiference in the desisitios ol the solute p and the solvent p’. As g result, the

ellective mass
of the suspended particles is reduced (o

4z , '
mye Ee-erh (11200

conveniently dcl_t:nninc_Awgndrq‘s iitmber. Perrin worked with emulsions of gamboge and mastic
and oblained 3 value very close to the bresendly accepted value obuained by other sophisticated
Incthods. This suggess thal fine particles in thenng] equilibrium behave {ike gas nolecules,
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We will discuss Perrin’s work in detail a lile later.

Example 1

In his experiment on water suspension of gamboge at 20°C, Perrin observed an average of
49 particles per cm? in a layer at one level and 14 partic]es per cm? in a layer 60 microns
higher (1 micron = 10°° m). If the density of gamboge is1.194 g cm™* and radivs of cach
particle is 0.212 micron, calculate Avogadro’s number.

Solution
From Eq (11.24), we have

3RT nn
Nay = - In|—
anr(p-plgz \ "

On substitulting the values of various quantilies, we get

_ 3x (831 Jmol” K') X
4x314%(0212x10%m)*x (1.194-1.0) x 10% kgm™)

X (203K ). — I 2
(9.81115"1:-:(60!10'6111) .14

3x8.31x293 % 1.25 21 -1
3 - x 10" mol
4 x 3.14 % (0.212) x 0.194 x 9.8 x 60

Na

6.7 x 102 mol ™!

2. Galvanometer mirror

In Block 1 of PHE-02 course, you have lcamt that a suspended type galvanomeler carries a
mirror which focuses light from a source on a scale. When some current is made to pass
through it in an electric circuit, we find 1hat it jiggles all the time, i.c., it undergoes small
randoin osciltations. The net result is thal the galvanometer reading Quctuates, and the
syslem shows an unsteady position. Do you know why it bappens? It arises due to collisions
of air molecules with the suspended system. :

The Brownian fluctuations of the galvanometcr mirror are expressed in lerms ol root mean
square angular deflection, 8, To calculate this, we note that the mirror has a single degree
of oscillation aboul ils axis so that the thennal energy associated with root mecan squarc

angular defleclion <0 is kg T/2,i.c,,

Lo g2, o KT
2C<9>— )

so that

Bmwnil;n Motion

.o

ke T ky T :
— . (11.25)

B = _— =
e C Twg

where C is couple per unil 1wist or torsional rigidilyhf[hc galvanomeler suspension, / is ihe

moment of inertia and wa is the angular velocity. .

This implics that smaller the value ol C, larger will be 8. Thal is, fluctuations will be

ore in a niore sensitive galvanometer. For a (e quartz fibre, C ~ 10" Nm rad™ ! so that

“ar 300K - - ]
O = 2 X 10" rad

“If the Jamp and scale ammngement is at a distance of 1m from the galvanometer mirror, fluctuatioft
of 2 ¥ 10~ rad comresponds to an rms fluctuation of the light spot of 4 x 107 m (0.4 mn). This
is shown in Fig.11.5. :

SAQ2
Suppose (hat the tempcrature and pressure of air are reduced below normal. Can we
climinate random fluctuations in 6 completely?

q
4

0 -

Fig.11.5: Brownian mulien of a
galvanomeler mirror
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Elementary Kinetic Theory

3. Johnson Noise

Ve = [4RkBT([3—f1J]m . ' . (11.26) -

Where (fo—f, Vis the frequency bandwidil; over which the measurements are made,

feeble compared 10 the randomn elecirical noise, reception will not improve with awplilication,

In the domain of economics, the variation in stock prices under cerlain conditions, can be
modelled to follow the Browaian cquation of motjon,

SAQ3
) Consider an RL series ac circuit, The cquation of motion of charge g is

2
Lft—z‘?ug% - £()

for Physics in 1926, In his fanous book Les Atomes (Atoms), be wrote, "The atemic theory
has triumphed, Untii recently, stil] numerous, jts adversarics, at Jas; overcome, now

Tenounce one afier another their Inisgivings, which were, for so long, both legitimate and
undenjably usefu.”

Let us now know in bricf about Perrin’s cxperiments, -
11.6 - DETERMINATION OF AVOGADRO'’S NUMBER
To determiipe Avogndro_’s mumber, we have 1o neasure < 2

displacement of 2 Browaian particie, Perrin observed the motion of a singlc Bamboge grain
suspended in water at intervals ol thirty seconds with the help of a microscope using the
camerit lucida. To locate tlye particles, the nticroscope had in jts field of view a series of

« FR e —
e 1
- 5~ h
/, N
N k
- ATALNY, R
j’
TP
i -(rvrrn et

nittually berpendicular lines, as shown op 2 graph paper in Fig, 11.6, with {6 divisions _
being equal to 5 x 1073 . The projections of the Succesive displacements along the x- axis

Btve a sel of values of ¥ from which 1 can be caleulated. You nay ask: How could Perriy
make such wonderful obscrvations wvith a simple arrangement? The physical basis of his

- - N . ] -
work is very sound. Perrin derived hig argument from the fact thay Vems = 2x 107 ms™!

TP R T by

A T - —— T
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10” times the mass of the Hz O molecule). This combination of slow speeds and large size
was exploited by Perrin to observe the molion of suspended particles. It justifies the popular
beliel that Nalure likes simplicity. And all natural laws have been unfolded using very
simple arguments. Our own Sir C.V.Raman cxplained the scatiering of light using a very
maodest apparalus.

Itshould be realised thal the straight line segments in Fig. 11.6 are in no way a representation of
the actual path of the particle. The particle is bit millions of times in a second,and hence, its-
' trajectory has a jagged and irregular structure. For example, if we magnify the part AB of
the trajectory say 100 times, it will appear as shown in Fig. 11.7.

) <iH\ 4B

o

Fig.11.7 : The path AR aficr mepnification

From his mcasurements, Perrin oblained N equal 10 6.85 x 1026 motecules kmol ™.
Waeslgren obtained the value 6.05 x 102 which differs from the standard value by just 1%.
From this value of Avogadro's number, you can estimate the mass of a molecule. For example,
one kilo mole of nilogen gas has a mass of 14 kg. Hence,mass of a nitrogen molecule

Ry, = ﬂg—% = 231 x 107 kg, -
. 6.05x10
Pervin is, therefore, said to be the first person to have weighed the atom and kinetic theory is the tool.

Other features of Eq. (11.24) have been brllllanlly confirmed by the work of Perrin,
Westgren, Svedberg and others. -

The motion of a galvanometer mirmror can alse be used to dclcnn‘mc Na. This was first shown by
Keppler in 1931. With / = 4.552 x 107 g cm’rad™! and vp = 1379 s~ we find that

C = 432[ 9.443 x 107 gcm s rad™!

7]
“The abserved value of < 0%> was 4178 x 10~ rad 2 at T = 287.1 K. Using Eq. (11.25), e find that
kp = 1374 % 1078 erg K

and

|
_ £ _ 8.31 x 10’ eigij,ﬁmol }C = 6.06 x 102 mol-!
ky 1374 x 107 erg K™ : :

Na

which is almost identical with the value obtained by Wesigren.

_Let us now sum up what you have leamt in this unit.

11.7 SUMMARY

¢ The probability of finding the particle ai x = a1 aller N sleps is given by

) N! N

W('n_r,'N) - (N+m)!(u]!(%]

2 2

Brownian Motion -

49

s

"_,rsfl-w,

A T N ST

SR i e TR =i = R leny TR IO LR T T O o IR o




Elementary Kinetic Theory

50

. Forlarge A,

. 2,.
W{imN) = v ﬁ exp (—%) .

® The probability that after N steps, the particle js between x and x + dr is given by

; 1 x?
f(e,N) = mocxl’ _ZJ'?

with 0% = Nr?

Interms of the diffusion coefficient b, -

(x%) = 2D¢

® The Einsteins relation for mean square displacement of a Brownian particle is

2y _RT 1
(%) C Ny 3mun

T

11.8 TERMINAL QUESTIONS

1.

W. Pospisil observed the otion of soot particles of radius 0.4 x 107 %em in a
waler-glycerine solution withn = 0.0278 poise at T = 292K The observed value of

(x*) was 3.3 x 105 cm? for ¢ = 10s. Use this information to calculate Ny
The following table gives the results of an actual observation made on the Brownian

molion of a spherical particle of radjus 0.4 U The 403 values of x, observed after
succesive intervals of 2 s each, were distributed as follows:_

Displacement x ( inp ) Frequency of occtrrence.
r<-55 - 0
~55<x «-45 1
~45<x <=-35 5
-35<y <-25 15
-25<v «-15 32
-15<x <-05 ' 95
-05<xr <« 05 111
U.Sc.t< 1.5.‘ . . 87 -« -
15<x < 25 47
2.5 <.r. < 35 8
35<x < 45 5
45<x < 53 0
x> 55 0

The viscosity of the fluid medium, water, was 1073 Plat 7 = 300 K.

. Ca’gulﬂl[‘(l’z}lp’ alld..‘.'ﬂ . R P - - o -—-

119 SOLUTIONS AND ANSWERS

SAQs

We have
rJn(x,t):Dazn(x,r) B
or -
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‘Multiplying both sides by x*and inlegraling with respect to x {roin — e (o ®, wWe obiain
) J.wxz‘an!x,f):waazn!I,f);dr
.2 ot S A
(@

el [ Ny
The lefi hand Sld,..— af__szn(x,t)dr N al!(.r )

The right hand side

zan S an
[ -2__|;xaxd:

Using the condition . .

a—“—!-0.'as‘..lc—'»:t:or:b
ax

we find that the {irst term drops out. Hence
RES= -2 [ x L
fo &

Integrating apgain by parts, we find hat

RHS = —2D[..rn(x)]l+20fmn(x)dr =_2DN (i)

since n(x) -0, as x—»=zxwm,

Therefore, from (i) and (ii), we get
22y =2

or
(x?) = 2D«

where we have assumed that {xZ),.g = 0.

2. Even at the lowest pressurc possible in the laboratory, there are a very large number of
air molccules present. When the pressure is high, the number of collisions is very large
and hence the natural oscillation of the system is heavily damped. At smaller valucs of
p, damping becomes smaller and the tms amplitude remains the same.

" 3. - By comparing the'given equdtion with the- Langt:vm equation, we fix can the following
correspondence:

Lemxeq Ft)+«E(t),and C =R
Making these substitution in Eq. (11.22) we find thal

2y = ZpT,
R

alq
It bas been assumed that { g £ (1)} = 0 and the mean magnehccncrgy 1 (r* ) —kB T.
The resull is mdt.pcndcnt of L for (> % -

TQs
1. Wehave

(x?) = kg T

3angn

T

On rearrangement, we can write.

Brownian Motion
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=3n1]rg 2 .
kn T (x7)

37 x (0.0278 poise ) x (0.4 x 10~ cm ) x 3.3 x 107
(292K)x(10s)

118 x 10™F g K
This yiclds

. 7 =1 11
N = R _831x10 crimol {(_ = 7.04 x 102 mol™!
kn | 118x10” ergKC

Wchave’
(x) = (5x1)+(-4x2)+(3x15)+(-2x32) +(-1x95)
+(B7x1)+(47x2)+(8x3)+(5x4)

. 403
=£§=0.02=0
(x? _ (52 x 1)+ (4% 2) + (3 x 15) + (22 x 32) + (12 x 95)
rs 403
+ (lzx87)+(22x47)+(32x8)+(42x5)
’ _ 403 _
= j;—§= 2.[)9':-:10_3cm2
2 -8 2
p=&1)_ 200x1077em’ 522% 107 % em? 5!
21 45
-3 -6
kB_—_Jn)(“U Pi)x(04x10 m)x2.09x10'12m2

(300K )= 2
1.3t x 1072 ) k!

It is instructive to plot the frequency distribution and see that it [its 2 normnal distribution
fairly well.
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UNIT 12 REAL GASES

12,1 Intreduction
Objeclives

12.2 Deviations [rom Ideal Gas Behaviour

12.3 van der Waals” Equalion of State
Comparison wilth Experimental Resuls
Limitations

12.4 Other Equations of State

12.5 Summary

12.6 Terminal Questions .

12.7 Solulions and Answers

12.1 INTRODUCTION

Iir this block so far you have studied the behaviour of ideal gases, which obey the cquation
ofstate : pV = p RT. This equation is remarkably simple. It relates the quantity of gas, its
temperature, pressure and volume. It implies that at a given temperature, the product pV
will be constant. So a plot of pV as a function of p should be a straight line parallel to the
pressure axis. Similarly,if we vary pressure as a [unclion of volume, the curve, calied an
isotherm, is part of a rectangular hyperbola. For a sel of lemperatures, these isolherms forin
a family-of paralicl curves. You may now ask : Do all gases obey this cquation of state or
show any deviation [rom this behaviour under any condition ? Certainly gases show
deviation. Experimental investigations of Boyle, Regnaull, Andrews, Amagat, Onnes and
several otbers revealed that in actval practice, the behaviour of a gas may not resemble the
perfect gas bebaviour even at room temperature. In fact, you should have expected such a
behaviour as some of our assumptions leading to idea] gas laws are not very realisuc.
Then the question arises : How to describe the behaviour of a real gas ? This posed a great
challenge to nincteenth century phys icists. Many equations were proposed Lo describe the
behaviour bf real gascs. Some of these were purely empirical. However, the best
explanation came from van der Waals. He made allowance [or the finite size of gas
molecules as well as intermolecular forces. In this unit you will learn the bebaviour of .
real gases and sec how van-der Waals explained it.

Objectives

" “Afler studying this unit you should be able to -

¢ discuss the nature of isotherms of COa

e cstablish van der Waals® equation of state for a real gas

e discuss determination vaap der Waals® constants and-relate them o critical constanis
_» obtain reduced equation of state and discuss the law of corresponding siates

S -disdu.-s_s limjiations 0[-““ der Wazls” equation of state, and

e write other equalions of slale.

122 DEVIATIONS FROM IDEAL GAS BEHAVIOUR

You now know that ideal gas model is simple but widely applicable. Yet it does not hold
universally. As pointed oul in the introduction to this unit, the concept of ideal gas breaks®

-
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down for common gases at hi

equation does not apply in such situations. Two other m
have been discovered. These include its inability to

gl pressures and Jow temperatures. Thal is, the ideal gas .
ajor drawbacks of idea] gas model
predict processes such as

liquefaction-and adsorption, which are techuologically im

were differences in detail (Fig. 12.1). .
P
A
‘ 1
i
1 —
L}
\
‘ ’
A
\‘ »
\
\
Nee—— ideal gas behaviour
\\ (Boyle's law)

g Y

Fig 12.1: A plot of van Marum’s results on amnionia

Ala pressurc of about seven almospheres, he observed that volume decreases even as

Pressure remains constant. This was due (o the formation of liquid ammonija—a phencinenon
unknown to the Contemporari

2. Regnault’s Experiments :
hydrogen, oxygen, nitrogen and carbon dioxide. He a
temperature was varied in (he range 0-100° C. His m

Regnault carried om very careful investigations on

pplied pressurcs uplo about 30 atm and
ain resulls are shown iy Fig. 12.2,

'l"ig. 12.2: Variation of pV versus p for hydrogen, oxygen, nitropen and caibon dioyide ut low pressores
{€-1 an1) and high pressure (0 — 1000 8tim). The dotted horizonial ljnes indjicate the values for g ideal pas,
where we have plotted pV as a function of p. On closely ¢xamining these grapls, you will
note that: - T

(i) For hydrogen (Hz ) the product PVincreases with

£ but in case of nitrogen (N ),
oxygen (O, ), and carbion dioxide (. CO,),

it first decreases and then increases,
(ii) The curves are straight lines inclincd to p-axis.

: o Lo 7
3 y - 5 m -r—f:_(lﬂ Pa) _

-

B e EREHRL
TR e T T W N T f Y 8

R T R




You will agree that thesc observations are a pointer lo the imperfect nature of real

£ascs.
ws carried oul detailed experiments on the compressibility

3. Andrews’ Experiments : Andre

of gages while trying to liquely them. Ina sensc, he repeated van Marum’s work at different but
constant temperatures. For carbon dioxide his fesults are shown on an indicator diagram in
Fig. 12.3. You can draw the following conclusions: :

(i) Above 323 K, the behaviour of CO2 resembles that of a perfect gas.

(ii) As the temperature is lowered, isotherms are distorted.

(iii) At304 K, a kink appears in the isotherm. It significs that CO5 gas has begun 1o
condense. '

(iv) Atabout 2945 K, the kink spreads into a horizontal line. It represents liquid- gas
coexistence. Physically, it signifies a discontinuous change in the density of e
material for a cerlain range of values ol pressure and temperature. (Experimentally, it

jmplics a meta-stable state.)

T s

Fig.123: Andrews" curves for CO»

The set of valucs of temperature { T, ) and pressurc ( p.) at which a gas just begins to
condense consiitutes the critical point, You may cnquire : Are the gascous and liquid phases
identical at this point? To quote Andrews : ‘JC anyone asks whether the system is now in the
gascous or int the liquid statc, the guestion does nol, I belicve, adit of a positive reply’. The
Table 12.1 You will nole that cach

values of 7, and p, for some common gases are given in
gas has ils characteristic critical values of T, and p,. Furthermore, the pressure required for

liquefaction is less for a gas having lower value of critical temperature.

Table 12.1 Critical temperature and pressure for some common £Aascs

Gas T.(K) . ....p,(lﬂs.Pa)_—..l_ _
He 5.2 - 23 ﬁ
A 151 49
H, 33 13
0. 155 51
NH. 405 113
0, 304 w1 L

Real Gases

Coexistence line

— T

1t is important to emphasize here that :
y if it is cooled upto or below its characteristic critical

clear that the upward rise in pV for hydrogen obscrved by
re is much befow ihe room

(i} A-pgascanbe liqueflied on
temperature. It is therefore
Regnault (Fig. 12.2) arises because its critical temperatu
lemperature.

There exists a continuity of liquid and gascous states. Thal is, these are two distinct
stages of a continuous physical phenomenon: To undersland this, refer to Fig. 12.4,

(i)

Fig. 12.4 : Liguid-gus coexistence
graph [or a typical substance
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Elemcatary Kinetic Theory which depicts liquid-gas socxistence for a typical substance, The cotxistence line

marks the pressure and Iemperature conditions at which density of a substance cxhibits

discontinuous change. You will nole that the difference in densities decreases as we
move to higher temperatures and pressure until at the critical point if disappears

completely. (In (erms of p — V graph (Fig. 12.3), itamounts 10 moving (o other
isotherms.) This means that the boundary js fircomplete and we can bypass the

. " coexistence line. That is, it is possible 10 move [rom the gas (o the liquid phase withou!

passing through any point at which we can distinguish two phases.

You may now pose the question : Is it necessary to refer to hvo dis(
because we do sec two phases along the coexistence Iime for many

You may now answer (he following SAQ.

inet phases? Yes it is,
natural systems,

SAQ1 - : '

In Table 12.1 we have given values of 7, and Pe

for some connnon gases. Which of these
. Bases cannot be liquefied by Compression at room temperature 7

4. Amagat’s Experiments Amagat mvestigaled the behaviour of several gases at

various temperatures and upto very high pressures (300 almospheres). This wark lent
* support to the findings of Regnault and Andrews. His results for CO- are shown in Fig. 125,

Fig. 12.5: Amagat's isolherms for CO,
We stimarise the main conclusions:

(1)  For T < T, isolkerms have a Straight line portion which js paraliel 1o the pV -axis.

That is, beloiv the criticat temperature, volume increases evey though pressure

remains constant. This corresponds o the condensatjon of e gas (as in the
horizontal part in Fig. 12.3). ’

{i1) The curvanure of 1he isotherms decreases as temperature inereases. At ihe critical
lemperature; the straigh( line pari collapses to a point.

(iii} As temperature increases, the minimum of an.isotherm
"~ [rom the &7igin towards the right. After a particular temperature, it shifis

parabolic, ’

(iv) The parabola cuis the p = Caxis atsome lcntperature, called the Boyle’s lemperature,
Tp. For T > Ty, the value of pV steadily increases.

We may now conclude that

The compression promofes liquetaction,

Lower the temperature, easicr it is 1o liguely a gas.
No liquefaction can occur above critical lemprrature, how high the pressurc
may be. -

5AQ2 | T

A fixed mass of CO, is compressed to 70 atin at 25°C. It is suddenly releascd to atinospheric
pressure. What is the physicai staic of CO, before and after being releascd ?
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Real Gases

12.3 VAN DER WAALS' EQUATION OF STATE

You will now agree that the perfect gas equation fails to explain the observed results on
CO, and other gases. This is particularly truc when pressure is high ( p > p. ) and
temperature is low ( T < T, ). A salisfactory explanation of these results posed a real .
challange to theoretical physicists. You may now like to know : How reasonable are the
assumplions of the ideal gas model? And how can we modify these? Several scientists
put forward equations of state to describe the behaviour of real gases. But the most elegant
effort in this direction was made by van der Waals. In fact, his work provided a silver
lining in an otherwise ambiguous horizon at that time. You must now be anxious to know:
How did van der Waals modify the ideal gas equation? He made some reasonable assumptons .
regarding the size of gas molecules and intermolecular forces. By so doing, he oblained a
remarkable equation of slate, which is still jn usc. It is therefore now pertinent to know the
assumptions made by him.

Assumptions

1.  Gas molecules have finite size. They cannot be regarded as point masses.

2. Gas molecules attract one another with a weak force which depends on the distance between
them. (This implies that molecnles of a real gas Bave both kinetic and potential energics.)
Only nearesl neighbour interaclions are imﬁorlanl.

4. The number of collisons with the wails of the container remain (he same [or point and
finite size molecules. '

Derivation

A) Correction for finite size : Consider one mole of a gas contained in a vessel of volume
V. If we think of the gas molecules as point masses, all the space will be available to them

 for free mtion. But if molecular size is finite and gas molecuies behave as incompressible
rigid spheres, some volume will be lost as far as their free motion is concerned. Letus
denote this loss by b. Then, the total volume available for frec movement to molecules will
be V —b. Therefore, for one mole of the gas, we can wrile '

p(V-b)=RT S (12.1)

You may now ask: What is the magnitude of b? For one mole of a gas, b is equal to four -
times the total volume of all its molecules pul together. Let us discover tbis result now.

Suppose (hat the radius of each molecule is 7. If we consider any two molecules at the
instant of collision, Lheir centre-to-centre distance will be d = 2r, as shown in Fig. 12.6.

This means that around any molecule, spherical volume V; = ‘;_Eda will be denied o other

Fig. 12.6 : Collision of two
maolecules of radius &

molecules.{Ths volume is called the sphere of exclusion and js cight times the volumc of a
molecule, V,, = i;-f- 3 Thatis, V, = 8V,.)

Let us now imagine that the container is filled with molecules onc ai a time, starting from
(he perfect vacuum condition. Then you can readily imagine thal

(i) The volume accessible to the first molecule for free movement =V
(ii) The volume accessible to the second molecule for [ree movement
=V-V, = V-(2-1) V¥,

(iii) The volume accessible to the third molecule = V~(3-1) Vs andsoon.

Since one male of each gas contains N, molecules, where Ny denotes A;.rogadro’s number,
- -we-can write by indugtion. - - - - . - o o

.The volume available to Nyth molecule = V- (N, 1) V; '

The average volume available to each molecule is obtained by taking the arithmelic mean. The sum of a ﬁm‘: ?;r,] is'lc; ntaining ¥

Hence terms is equal Lo —
Va(VoVe) 4+ (V=2Vy) 4. [ V=(Na—1) V5] S

: A

?:

V—-Vi[l +24+3 4. +(Ny-1)]
Ny .
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Since the sum within the square brackets is equal to EA—%A_—IA we can wrile
Vave &'aéil v,

Since N, >> 1, this expression takes a compact form:

Va V—%V,

= V4N, Vs

. Where we have used the fact that volume of sphere of exclusion is eight times the volume of

a molecule. If we now put = 4 Np Vi, we find that average volume available 10 any
molecule for free movement js given by

VavV-p (12.2)

You will agree that b signifies the loss in accessible volume due to finite molecular size.
This is shared by all molecules and js called co-volume. It depends on the nature of the
gas. )

You can now arguc: What is the implication of this result vis-a- vis the equalion of siate for
a perfect gas? 11 tells us 1hat the perfect gas behaviour can be reproduced if we use corrected
volume, i.e., replace V by V— 4 in the equation of state.

You can now logically enquire: Will there be a pressure correclion also? Following van der
Waals, we may argue (hat correction in pressure arises due to intermolecular attraction. Lel
us ntow consider it in detail.

B) Correlation betweer pressure correction and Intermolecular attraction : Referio
Fig. 12.7 which depicis the physical picture of a gas. You will note that the local environineit of
a molecule changes as it moves towards the wall and leaves other molecules bekind.

Fig. 12.7 : Physical piclure of a gus in 4 contuiner : Correlation hetween pressure <. __.
. =nd intermolecular aftraction ™ - .
Physically, a molecule in (he interior of the gas 1s, on an average, altracted cqually in all
directions. Therefore, it will not experience any net force. That is, a gas molecule in the
body of a gas may behave as if intermolecular interactions were abscnf. However, this is not
true for a molecule near a wall. In fact, as a molecule approaches the wall, it has neighbours
only on the side away from the wall. It experiences 2 pull back into the body of gas. For
simplicity, we ignore adhesive forces between the molecules of the gas and the wall. Then
you can resolve the force on the Eas molecule along the wall and in a direction nonmal to it
Then, you will find that a molecule experiences net inward force away fromn the wall. As a
result, intermolecular attractions slow down the molecule as it approaches the wall.
Consequently; the pressure communicated to the walls of the container will be diferent
from that in the body of the gas.

We know thal majority of molecules are in the body of gas rather than near the walls,
Therefore, the pressure term in the equalion of state should correspond lo the bulk of £as,
though it is measured at the walls, For the equatior of state to be wrilten in terms of
Ineasured pressure and 1o describe the bulk of the gas, it is recessary to modily the pressure
term. Obviously, this correction arises because of intermolccular atlraction. From the
viewpoint of physics, this correclion resuls in decrease in pressure, The drop is known as
cohesive pressure,

~
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re we note that the retarding force experienced by any Real Gases

of moleculers pulling it backward and hence the
is is true for all molecules striking the wall. If the
second is N, the decrease in

To calculale the cohesive pressu
molecule is proportional to the number

_aumber density ( N4/V ) of the gas. Th
number of molecules striking unit area of the wall per
pressure due to intermolecular forces is

Na
ApaN ( v )
Since N is also proportional 1o the number density, we can write
Na Y’ '
A
Apa ( v ]
a'Ny a
- = : (12.3)

where 2 = @’ N % a' being constant of proportionality.

ative, in fact, heuristic argument and lacks sound
rises only from the success of van der Waals’® equalion in

explaining observed results. Inserting ppee = Pobst T’% and Vo = ( V --b) in the perfect

You may think that this is a qualil
theoretical basis. Its justification a

gas equation pp,., 1»;,:,,r = RT, we find that

(p+%](V—b) = RT (12.4)

where we have dropped the subscripl obs appearing wilh p.
r Waals’ equation of state. The constanis &

Their values are assumed to depend only on
listed values of van der Waals” con-

This remarkable equation is known as van de
and b are known as van der Waals' constants.
the nature of the gas. For some common gases; We have

stants in Table 12.2.

Tableé 12.2: van der Waals’ Constants i‘ﬁr Some Common Gases

Gas a % 10° (atm m® mol2) |5 10° (m®mol™)
H, 0.244 26.6
He 0.034 237
N, 1.39 -394
Op - 136 . . 318
A 1.35 322
NH; 4.17 371
CO, 3.59 427
CH, 2.25 428

SAQ3
Write dowm van der Waals' equation for g moles of a gas.

For a rarcfied gas, p > » _VEE and V> > b. Then, van der Waals' equation reduces to the

equation of state for an ideal gas. For a given temperature, plot of Eq. (12.4) on the inciicalor .
diegram is shown in Fig. 12.8. The contribution-of self-attracling term is also shown.

To enable you to get an idea about the magnitude of these lerms, we have given a solved
example. You should go through it carefully.

59

oy

IERITET LY C———
LELE. - TIEN R e ——
T T I 2T =

ey ——




platmy

Fig. 12.9 : Theoretical isotherms for CO;

simultancously. This comesponds 1o a collapsible state, which is wnnatural and Cin never
* realised in practice. We thus find that a propur interpretation of van der Waals® curves
#oes 2 long way in resolving the apparcut discrepancy with observed results.

The equation of the locus of the maxima and minima, shown by the dotted curve in
Fig. 12.9 cau be oblained by pulting ( dp/aVv) requal to zero. Henee, on differentialing
Eq. (12.6) with respect to V, we gel

(éz) e RT 2
Wi (v-p)? v?

On cquating it 1o zero and solving for T, we find that

2a(V=b)> '
r=2L7-0) (12.11)
RV:
Eliminating 7 between Egs. (125)yand (1‘2.11), we get
V-2b ) 12.12
p= ) | (12.12)

V3

It significs the equation for (he curve passing throught the maxima and minima puints. We
now know that below 7., a gas can be liquelicd by changing pressure alone. For the cTilical
isotherm, these two points coalesee juto one. Similarly, from Fig. 12.9 we note that below P
all isotherms have maxima and minina but above P no isothenn exhibits wave-like paltern,
For this reason, the poiml P is referred to as the critleal point. The isotherm passing through
P is the critical isotherm.

For Pto be the point of inflexion; we-differentiate Eq: (12.12) with respeet to V and equate

the resultant expression to zero. This gives

a 3a(V-2b) :

V=0

or . _
Ve =3b ] - (12.13)

Using this result in Egs. (12.1 1) and (12.12), we bave

- 8a

T. = 27 Rb : (12.14)

“and _
I} )
= 12,15

Pe = 52 ( )
On combining these results, you can write

RT. 8

P C. = 3 : (12.16)
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That is, van der Waals® equation predicts thal the critical coellicient is equal to 8/3 and is Real Gases

1he same for all gases, irrespective of (heir nature. (For an idcal gas, C,. = 1.) The observed
values of the critical coefficient for common gases vary between 3.28 and 3.48, Therefore;
we find that van der Waals’ equation predicts a lower value of (he critical coefficient.
Moreover, it varies [rom gas 10 gas and appears lo depend upon the molecular structure

of a gas.

e

SAQ4 N
Al the critical point, all Ihree rools of van der Waals’ equation arc equal. Use this resull with
. Eq. (12.6) and verify expressions for critical constants. /

v

- Exomple 2
Calculate (e critical temperature of helium if the critical pressure is 2.26 atm and critical
“densily is 0.069 g em™, '

Solution
From Eq. (12.16) we note that the critical coefficient is given by
- RI. &
pVe 3
50 Lhat .
8 p Ve
T = 3 R

Here, p. = 226atm = 2.26 % 1.013 x 10° Nin 2 and p. = 69kg m~ so that the critical
volume for 1 kg of the gas is ( 1./69) w’. Henee, the critical volume per kmo! of the gas is
(4/69 ) w3, ie. Ve = (4/69 ) m" fanol.

On substituting the values of various physical quantitics, we get

_ 8 %(226x1.013% 10° N m2) x (4/69 ) m® kmol ™
3 8.31 x 10°J kmol " K

T.

= 426K

This explain why it is so difficult lo liquefy helium gas.

Example 3
. - .Calculate van der Waals® constants for helium using the data T = 5.3K, p, = 2.25 atn
andR = 831 Jmol™? K. . i, a

Solution-
To calculate a, we combine Egs. (12.14) and (12.15). This gives

27TR2 T,

- 64 p
On substituting the values of various quantilies, we get
 27x(831Jmo KT Y x (53K %
64 x ( 2.25 x 1.013 x 10° Nm™?)

= 3.59 x 1072 Nm* mol ™

To calculate the second van der Waals’ constant, we use the expression for crilical

coefficient and write
RT.
7
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=

since b = 3- Hence,
p = (831Tmal™ Ky x (5.3K)
8% (225 1.013 x 10° Nm™?)
= 242 %107 1} mo| ™! i
SAQS

Assuni (hal van der Waals' equation is valid for ncon. Calculate the diameter of ncon aom.
Given, Te = 44.75K, p, = 26.86 atn and &y = 1.36 x 10-™ atm n? K,

12.3.2 Limitations

1 ) .

You may be convinced now that van der Waals' equation satisfactorily explains the general
features of the behaviour of real gases. However, it fails to explain the quantitative details.
Some of its limitations are listed below:

1)  van der Waals’ isotherms : A part of van der Waals® isollterms consists ol wave like
paltern, which cannot be observed cxperimenlaily.

2)  Values of g and & : van der Waals assumed that for any gas, « and b are constan,
However, experiments reveal that they depend on temperature. This is because we can

make any isotherm agree closely with the equation by suitably choosing the values of
a and b. But the same values do not give good agreement with other isothersns.

3) Critical volume : From Eq. (12.13) we note that the critical volume V. = 3p for all

gases, independent of their patyre. However, experiments show that V. varies fromn
1.4 b for argon 10 2.8 b for bydrogen. This implics that van der Waals’ equation is not

followed exacily by any gas.near s critical pojnt. .
4)  Critical coeflicient : Theory predicts thal the critical coellicient RT./p_ V., = 8/3 for

all gases. In practice, it is different for different gases with values ranging from 3.28
for hydrogen to 3.48 for CO-.

In spite of these defects, van der Waals’ equation is commonly used even today because of
its inherent simplicity.

124 OTHER EQUATIONS OF STATE

To overcome the shortcomings of van der Waals® equation, a number of other cquations
bave been proposed. Some of these are based on rigorous theoretjcal considerations while
others consist of adding ore empirical constants which can be-suitably-chosen: We will-
first mention some of the latier type.

1. Onnes' equation : Onnes proposed an empirical equation of the form
C PV = A+Bp+Cple .. (12.17)

where 4, B, C, are called virial cocfficients, These are chiaracteristic of a gas al a fixed
lemperature and may vary wilh-temperature in a complex manner,

Eq. (12.17) reduces 1o 1hat for perfect gas for p — 0, That is, the first virial coefficient is
cqual to RT for one mole of the gas. The second virial coefficient is of special interes(

Pecause it determiacs departure-from idcal gas'bebaviour. Atvery low temperatures it has
negalive value, As lemperature increases, jt shows.a gradual rise through zero and becontes
positive. At roomn temperature, B < 0 for oxygen, nitorgen and carbon dioxide, whereas

B > 0 for hydrogen and helium. For all gases, B = 0 at the Boyle temperalure, . At
moderate pressures, Eq.(12.17) huplies thatat 7 = 7 T

pV =4

and

iﬂgl =B=0 ' .(12.18)
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The constant C is always posilive but very small.

In his studies, Onnes bad to use twenty five constants for best representation of cxperimental
results. Later, Holborn and Otto found that it is‘sufficient ot retain only four virial
cocflicients. The empirical equation of Onnes lacked physical basis. Moreover its
mathematical form as a series expansion is not very convenient for handling rapid

variations in gascous behaviour.
Let us now express B in terms of van der Waals® constants. Al nol too high pressﬁrcs, we
find that Eq. (12.4) can be written as ‘
a—RTbY  ab
pV = RT- ( —V—] + ?
In terms of p, we can express il as

ab
(RTY

1]

pv = RT+(b——T)p+

pz
Comparing it with Eq. (12.17) we find that
A = RT

a
B‘b'RT'

ab
_ 12.19
¢ W ¢ )

At the Boyle temperature, B = 0. Hence,

a
b_RTB =0
or

“ (12.20) _

TB:E

You can readily correlate Ty lo critical temperalure and show that

Ty = 3.375 7, (12.21)

2. Berthelot’s equation : Berthelot also proposcd an empirical equat ion of the form

_ (p+}:-i.—2](‘lf—b)‘= RT ' : (12.22)

__where van der Waals® conslanl a has been modified lo a'/T.
[1 gives better agreement with experiments than van der Waals* equation over a wider range
of pressures. However, near the critical poinl, it fails as badly as van der Waals” equalion.

3. Dieterici’s equation : By assuming that the munber density near the walls of the
container is smaller than that in the interior, Dieterici deduced the following equation for

pressure exerted by a gas -
: RT - a ’ .
P=y_p cxp(—R—) (12.23)
It is instructive lo note that al Jow pressures, Lhis equation redices to van ﬂer Waais’

T Teguation if bV, 0 T T T ot o e
How do we i-l_llel'pl'el the changes in thé ideal £as equalion introduced by Dieterici? You will
note that the correction in (he volume term is the same-as in the van der Waals” equation.

_ But the exponential faclor is reminiscent of the pressure variation wilh height in earth’s
atmosphere. It signifies thal the potential encrgy of moving molecules changes contifuously
in going from Wie body of the gas (o the walls.

Tu general, this cquation is morc accurate than van der Waals’ equation. It gives

a . fi
= —_— V = m
T. = zrp Ve = 20iPe 4b’ o*

Real Gases
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and
RT./p. Ve = 3.695 . .

4.  Sahaand Bose's equation : From Uiermodynamic considerations aud the theory of
probability, Saha and Bose derived the following equation of state: .

RT a V_2b\ .
= e w— . — —— . il
P b cxp( RTV] In ( v ) (12.24)

This equation predicts that the critical coeflficient RT/p_ V. = 3.53, which is in much
better agreement with observed values for conunon gases.

Various other equations have been proposed bul none of them explains the bebaviour of all
gases for all temperatures and pressures. For this reasou, one generally evaluaies the virial
coefficicats from theoretical considerations and compares them with the observed values.

Let us now sum up what you have leanit in this unit.

12.5 SUMMARY

* Liquefaction is promoted by compression and cooling. A gas cannol be liquefied by
pressurc alone for T> T, .

® Critical temperature ( 7. ) of a gas is the temperature above which it camot be liquefied by
applying pressure. The minimum pressure which just liquefies a gas at T, is called critical
pressure and the volunic corresponding 1o critical values of pand T is known as critical
volume ( V. }. The quantity RT,./p, V.. is referred 1o as crilical coefficient of the Bas.

® van der Waals® equation of state for one mole of a real gas is
pr——(V-b) = RT
.V

Here a/V? arises [rom the intermolecular interaction and is called cohesive pressure. b is
known as co-volume and arises [rom the finite size of the gas molecules.

* Critical constants of a van der Waals’ gas are given by

V, = 3b,p. = a/27b%and T, = 8a/27Rb.

12.6 TERMINAL QUESTIONS

1. 210 g of N2 gas at 8 atm oceupics 24 x 1072 m? of volume. Assuming ihal the gas -

“obeys van der Waals® equation of state (@ = 1.39 x 107% atn m® mol =, -
b = 39.1 % 10" % w* mol™ ), calculate its lemperalurc.

2. Using the values ol critical constants for NH3 [rom Table 121, calculate van der Waals’
conslants. ’

3. Using the vatues of a and b listed in Table 12.2 determine the teinperalure to which
cach of the following gases must-be cooled for liquefaction by applying pressure alone:

(i) He (i) Ho (i) A . and(v) Cla

Also determine the corresponding critical pressures.

4. The van der Waals' constants depend on the nature of gas. Eliminate thesé and write

the cquation in a form which applics to all gascs.

127 SOLUTIONS AND ANSWERS - -

SAQs

1. Weknow thata gas can be liquefied by comprcssibn when its temperaturc is below its critical
temperature. So we cannot liquefy helium, argon, hydrogen and oxygen at rooin temperature.,

! .
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2. When the gas is suddenly released from 70 atm to 1 atm, it undergoes adiabatic

Real Gases

expansion. Therefore, its final temperature can be computed using the relation
1=

) T
T)r = (%}] T.‘

" Oninserting the given data, we get

or

03

13
; -'(——73:1::‘) x298 K

= 12K

container of volume V, the average volume

When we have p moles of a real gas ina
V - b where v is the volume occupied by

available to a molecule s p (v, —b) =

—_—

. a 2,2
one mole of gas. Similarly, Ap = + au’/V % Hence, van der Waals
v vy _

- equation for p moles has the form
2
a
(pq%-] (V-pb) = RT

At the crilical point, three rools are equal. i.c., V, =V, = V3 = V. This means

that .
(V-V.)? =10

Vi3V, vie3vAV-V =0 (i)
Let us now consider Eq. (12.6): ‘
Vi (pb+RT)V?+a(V=b) =0
Dividing through out by p, we can rewrjte it as
V"-(mﬂ] v .Sy % g
- P P p
T = T.and V = V,al the crilical point, we find that for a critical isolherm

vi{pa R y2, Ly 22 _ g - (if)
£ pf Pf -

Since

- On comparing the cocflicient ol each power of ¥V, we [ind that

’ 3"}:%5;'}??‘?" ’ T R

3
a

2= 2
Pc

and
v} - ab ' i
P
. You can readily selve these 1o obtain the required result, -
We know that foy a van der Waals' gas, the co-volume is given by’

3
b= 4NV, = 4N,\%z(%) = %Nﬂ&

where g is diameler of lhe atom. Therelore,
’ 1/3

o (2L
27 N

Bul from Exélllple 3, we recall that

"V ety

ol

A
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BRI, NakoT,

b =
SPe Spc

where kg is Boltzmann constant, Thus,

13
oof3 Kl
lon p,

) _28 3.1 173
- 3x1.36x 107" amm’ K ' x 4.75 K
16 x 3.14 x 26.86 atm

= 0.238x10"°m = 0.24 ym

TQs .
1. Since mass of the gas taken is 210 g and its molecular weight is 28, number of moles
is 20g =75

28g
Volume of the gas V = 24 x 10~ m?
External pressure p = 8 aun

Now, van der Waals’ equation of state for 1 moles rcads
2
(p+-—J (V—nb) = nRT -
|4
Subslituting various values, we get N
2
T = 1(p+Vf](V nb)

= 1 - (Satm+

7.5 % (8.21 x 107%atm m* mol™! K7Y) (24 x 107 m?)?

(24x 107 m’ - 7.5 x 39.1 m® x 10 m? mot™)

{75 )% x (1.39 x 10~° atm m® mol™?) J

= 313.2K
2. Critical constants [or NH 3 are
T = 405.5K, p. = 1122 a1m, V. = 72.02 x 10™ m® mol™!_

Therefore,

L ORT 27 x (821 x 10~ aun m® mol™' K1 x ( 405.5 K)?

B4 " p, T (64 x112.2atm )

= 4.17 x 107 aun m® mol?

and

p - BT _ (821x10° aunmmorix")x(zmssm
" 8p, 8x(1122atm) -

= 371 x 10" % m* mol™!

3. We know that 2 gas-can be- liguefied by applying pressure alone'if jts” temperature.j I'i
less than or equal to its critical temperature T,. For a van der Waals' gas. y

T, = Ba/27Rb

-and critical pressure is given by

Pe = a/27°
(i) For He,z = 3.4 % 10% amm m® mol2

and b = 23.7%10°° m? mo1™?

JET
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Thercfore, Real Gases

-8 -2
T, - 58x34x10 1am1lm mol™ - 52K
7x(821x10' atm m® mol™ K1) x (23.7 X 107 mmol 1y

and

34x 10'8 alm m® mol2
27x(23.7 x 10° m* mol™ ¥?

P = = 2.24 atm

(ii) ForHa
a =244x 10~ atm m® mol™?
b = 26.6x 10"¢ m? mol™

Therefore,

8x244 = 107 atm m® mol ™ 33.1K
T = 5 3 11 53 adly o
27 x (:8.21 x 107 atm m” mol™ K" ) x (26.6 x 10° m" mol™ )

and

-7 6 2
244 x 10" ' aum in” mol - 128 am

Pe = (266 % 105 m* mol™ )?
(iii} For argon

a = 1.35x 107% aun m® mol ™

=322x 107° m? mol™?
Therefore,
6 6_ 12
T.= 58 x 1.335 10 1a|.rr:§n mol — — 1513K
27 % (8.21 x 107 atm m” mol™ K~ Y% (32.2x 107 m” mol™ )

and

-5 6 -2
_ 1.35 x 10~ atm m" mol _ - 48.2 am

27x (322 x10° m* mal™)

Pe

(iv) ForCh

= 6.49 % 107 am m°® mol

and
b = 562x10°m? n;oi'f o
Therefore,
-5 6, 12
T.= _58 x 6.42 x 10_1 au:: m" mol - 4168 K
27 x (8.21 x 107 atm m° mol™ K™ } x { 56.2 % 107 m® mol™ )
. and

649x10"5almm mol™>
~ 5 = 76.1am
2’?x(562>: 10 m* mol™ )

[

4) We introduce dimensionless variables

P Toav =Y
pr _Pr, Tf Tcan Vr ] Vc

where p, V and T arc the actual pressure, volume and temperature of a gas. On introducing
these in the equation )

69
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BLOCK INTRODUCTION.

So far you have learnt {o describe the properties of matter on the basis of
thermodynamics and kinetic theory of gases. You must have realised that
thermodynamics is essentially an empirical science based on everyday experiences.
You will agree that these laws give us no information about the processes at work at
the microscopic level. But the kinetic theory of gases, discussed in the preceding
block, was the first attempt to understand the properties of macroscopic systems from
the microscopic view point. Very elegant laws stem out of the molecular chaocs.

Statistical mechanics is a more profound and realistic approach to understand the
observed behaviour of matter (or radiation). The laws of mechanics are coupled with
slatistical metheds. So 10 enable you to master the techniques of statistical mechanics,
we have discnssed key probabilistic concepts in Unit 13. The concept of phase space,
the Boltzman relation, expression for classical distribution function and the concept of
partition function have also been introduced here. A serious drawback of classical
statisties is that it regards all particles a$ distinguishable. This leads to Gibbs paradox.
The Sackur-Tewrode equation discussed in Unit 14 is a way out of it. You will leamn to
evaluate rolational and vibrational partition functions with particular reference to heat
capacity of hydrogen. You will rcalise that partition function is a very convenient
mathematical device; there is nothing physical about it. The classical statistics fails to
explain the behaviour of an assembly of phoions, liquid helium and conduction
electrons in metals. In particular, the exislence of zero point energy and Bose-Einstein
condensation—iwo remarkable phenomena—are completely unknown in the tenets of
classical physics. These are quantum effects and 1o satisfactorily explain these, we
require quantum statistics. Geniuses like Bose, Einstein, Fermi, Dirac, Fowler and
Planck have immensely coniributed to its growth. You will leam these details in

Unit 15. '

The units in this block are not of equal length. To enable you to plan your study, we
are suggesting estimates for the study time for each unit:

Unit 13 7h .
Unit 14 ‘ 6h
Unit 15 9h

We hope that you will enjoy studying this block.
We wish you success.
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UNIT 13 BASIC CONCEPTS OF

STATISTICAL MECHANICS

Structure
13.1 Inroduction
Objeclives .
13.2 Elcmeﬁtai‘y Probability Theory
Basic Termn i.l:lull:lgy ’
Elemcntary Combinatorics
Random Vuriables
133  ‘Description of a System in Equilibrium
Basic Cuncepts
Bridging Microscopic and Macroscopic Vicw-points®
13.4 The Distribution Funclion
13.5 . Summary
13.6  Terminal Questions

137 Solutions and Answers

13.1 INTRODUCTION

In the previous block, you have learnt Lo describe (he propertics of matter on (he basis
of kinetic theory of gases. The kinetic theory of gases was the first attempt 1o
.understand the propertics of macroscopic sysiems from the microscopic view point.
Statistical mechanics aims to-derive the obscerved (bulk) propertics of mater (or
radiation) from the laws of mechanics applied 1© Hs constiluent pants. For example,
supposc we have a gas in a container, eccupying a volume V at a temperature 7,
Given the nature of jnicrmolccular forecs, statistical mechanics cnables us 1o derive a
rclation between (hg pressure and the volume — the so-called cquation of state.
However, the obsefved/predicted propertics arc essentially average values. The
deviations (fluctuations), which are always present in every system, provide us insight
about many phenomena. In this study, we have 1o use the methods of statistics. So,
we would like you o master the key probabilistic concepls. It is possible that you
may be familiar with some or all of these concepts frem your school curriculum. Or
you may have opled [for the Mathematical Methods in Physics Course (PHE-04).
Howcver, we have discussed these in Sce. 13.2 for complelencss and 1o make the unit
sclt-conmaincd.

The basic concepls of phase space, micre- and macro- stales, the thermodynamic
probabilitics, cic., are introduced in Scc. 13.3. These help us to describe the behaviour

of a system of large number of particles clegantly. In this section, you will also lcarn

to cslablish the Boltzmann relaten which brideee the thermodynamic and elatistical
view-points. We know that the equilibrium slate of a systemn is a slale of maximum
cnopy. Slatistically speaking, it is the most probable state of an isolatcd system. To
describe the cquilibrivm slate, we usc the Boltzmann relation (o derive an expression
for classical distribution function, which contains two unknown constants. When we
determing these constanis, we perform sum over all stales. This inroduces what we
call the purtition function, Z. There is nothing physical about partition function; it is
a usclul mathematical device because we can cxpress all thermodynamic funclions in
terms of Z. You will learn to cvaluaie the partition function for some simple systems
in the next unif, ’
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Elements of Stalistical Mechanles

Objectives
Afler studying this unit, you should be able to:

e understand the significance of the terms sample space, event and probability of an
event

compute the average of a random variable
derive the conneclion between entropy and thermodynamic probability
& derive the distribution function for-a system obeying classical siatislics.

"13.2 ELEMENTARY PROBABILITY THEORY

In staustical mechanics, we invariably compule the averages of physical quantities of
interest. We then establish connection between these vaues and the experimentally
observed values. So, it is essenlial 10 know the basic concepts of probability theory.

13.2.1 Basic Terminology )
Suppose we'toss lwo coins. The possible oulcomes can be listed as follows:
Coinl & H T T
Coin2 H T H T
That is, therc are four outcomes of this stalistical cxperiment, which may be listed as:
= {(H,H),(H,T),(T,1),(T,T)) (13.1a)
This sct of outcomes is called the sample space of the experiment. For a single coin

= (H,T) ) (13.1b)

The clements of £ arc known as sample points. Thus in Eq. (13.18), we have four
sample points and in Eq. {13.1b), we have only two. This number is catled thc
cardinality of Q and is dcnoted by n (),

Thus for (13.1a) and (13.1b), we have
aQ)=4 and n{Q) = 2

Next we introduce the concepl of an event. An event is a subset of Q. Let us
consider the sample space of (13.1a). The cvent

Eq = “two heads appear” \‘
is given by the subset
£y = (1, H)}

while Ez = (({{, T), (T, ), (T, T)} describes the event “al lcast onc tail appears’.
Similarly,

E3 = ((T.T)), Es = {(I1, T)), and Es = (T, 1))
signify other ¢vents, Can you name these ? _
The complcment of an event with respect to € also denotes an event. For example,
~ E§ = "two tails do not appcar
S, LT, (T,
Ef = {(H,H)}

An cvent which contains only one sample point is called a simple event; e.g., Ey,
E5, E3 are simple cvents.:

The total number of subsets of a sct of cardinality n is 27. For Eq. (13.1b), the
possibie number of events are

E = (II},E,=(T),E,={H,T)=Q, E;=¢

T

T3 T T
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Ey is (he event that a head or a il appears. This is calied the sure event and is Basle Coucepts of
equal 1o © itsclf. E4 is called the impossible or null event, denoied by ¢. It is the Stutlstieal Mechanles
complement of Q : d = QF. The ceriain cvent contains all the simple events and the

null event contains none.

You may now like lo solve an SAQ.

™ .
| saQ1
i) An unbiased die is rollcd. Wrije down the sample space for the experiment.
ii) n coins arc tossed. What is the sample space?

jii) List all possible cvenis for the sample space Q given by (13.1a). -

LR o
We introduce the basic operations of union and intersection, which can be uscd (o
- define new cvents:
E, U E, —Either Ey or E3 occurs, or both occur (at least one of £; or
Eq occurs)

E, " E, - Both E, and L2 occur

If there arc no sample points common to £y and Ep, then £y nEz = ¢ and the cvents
arc said 1o be disjeint or mutually exclusive. Diagramatically, we have shown these in

Fig. 13.1.

(a) {b) - {e)
Flg. 13.1: (a) The shaded portiob represents E; U E3, (b) The shaded portion represents Hy o Fa
and {¢) There ks no overlap belween £ und Ep.
For (13.1b}), we have
Q= El U Ez
and’ for (13.1a) -

Q=F UE3WUE;ULs
In general, il the distinct simple events are B , ..., Ep, we have

n:mu@mua=ga (13.2)

Having introduced the concept of a sample space, we now lurn 0 define the
probabitity of an event. It is sufficient for our purpose to consider the simple casc in
which © has a finitc number of poinis and all the outcomes arc cqually likely. Let A
be any subsct of €. Then we define the probability of the cvent A 1o be

_n(A) : ,
P(A}Y= __n(Q) (13.3)

To [ix your idcas, we wish that you should go through the following example carclully.

E.\'a-mple 1

Two coins are tossed, What is the probability that (2) two heads appear, (b} al lcast
one tail appears i

Solution

We have n (Q) = 4. n (E3) = 1, n (E2) = 3. Henee, () P(E3} = 144, (b) P(E2) = 3/4.
Tt is casy Lo verily that:

D OSP(A)ST i) P =LP@®) =0, .
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Elements of Staustical Mechanics

E, and E; are called independent events if - ’ . - -
P(E\ " Ey) = P(E)P(E,) (13.4)

In words, if the probability of the simultancous occurrence of two cvents is the
product of their individual probabilitics, then they are independent events.

IExnmple 2 - .
Suppose three coins are tossed. Let E; be the event that a head appcars on the first coin

"and E» the event that a tail appears on the third throw. Are E; and £, indepcndcnl?

Solution

We have herc
Q = [{{HH, HHT, ITH, THII, HTT, THT, TTH, TTT)
Ey = (HIH, HIIT, UITH, HTT) n(Ey) = 4 P(Ey) = 1/2.
Ey = ({IHT, HTT, THT, TTT} n{Ep) = 4; P(E5) = 112

Clearly, (13.4) is satisficd. Hence, £y and Ez are independent.,

In solving problems in probability theory, we frequently need to use simple resulis
from combinatorial analysis, We shall summarise these for ready relerence!

13.2.2 Elementary Combinatorics
We begin by slating the multiplication rule.
Moultiplication rule _

I{ there are m ways in which an event U can lake place, and » ways in which an
independent cvent V can occur, then there are mn ways in which the two events can
occur joinly. An alternative formulation of this result is that if an operation can be
perlormed in m ways and, aficr it is performed in any onc of these ways, a second
indcpendent operation can be performed in ways, then the two operations can be
performed jointly in mn ways. '

. Example 3

Four coins arc flipped in succession. Find the total number of possible ouicomes.
Solution

These are (wo possible outco:ﬁcs. head {(/f) or (il (T) for cach case. Hence, the 1o1al
number of possible oulcomes

=2X2x2%x2=16

When we are dealing with a large collection of objects, it is often necessary to
compule the number of permutations and combinations of the objects.

Permutations
A permutation is any arrangement of a set of objects in a definite order. The

!
number of permutations of # elements taken r at a time is— - _ It is denoted by

(n—r)!
thie symbol “p,.
Combinations
A combination is a sclection of # distinct objccts without regard w order. The
o L, ! .
number combinalions of a element iken 7 at a time is— "")l - It is denoled by
. . T T (n=rytrt -

A ° .
"Cr or simply [r] These are just the binomial coefficients because they appear in
Newton’s binomial ¢xpansion
(xl + Iz)n = .rl + ﬂxr_] x2+"' + x;
A

-3

=0

n

X7 xg
r

where n is a posilive inlcger.

.
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- . . Basic Concepts of
Example 4 : i Stallstical Mechanics

Seven physnc:sis assembled for a meeting shuke hands with one another. How meny .
handshakes lake place?

Solution ) ) '
This is equal 10 the number of ways ol choosmg two phys:cms from a sel of seven, : : -

which is . ) : ’ -

)=z =

Having discussed the basic notions of sample space, events and probability of an
event, we will conclude this section by introducing the concept of a random variable.

13.2.3 Random Variables

Stated in simple language, a random variable (f.v} is a variablc which can be
associatcd wilh the outcomes of a statistical experiment. Recall the cxperimcnl of
tossing Lwo coins. Let X be the number of heads which appear. Thcn X is a random
variable with possible values 0, 1, 2. Also

P(0)=% , P(l)-=-;- , P(2)=~—

The towsl probability = 14 + 1/2 + 1/4 = 1, as it should be. In generad, let X take
values x,, x,, .... , x, with probabilitics f(x), f(x)), ..... , Le.,

PX=x)=f(x)i=1,2,..,n

f(x)) is called the Probability distribution ofx It satisfics the obvious propcrly

f(x;)= 0, and the normalisation condition Zf(x y=1.
i=1

The mean value or expectation value of X is defined as

X=<X>=32xf(x) ' " (13.5)
i=l .
The variance or dispersion of X is given by .
Var(X)=< (X- < X >)2 >=< X2>—|< X >* (13.6)

The square root of Var (Y) is called the standard deviation (S.D) of X. The standard
devialion is importanl because it gives us an estimate of the width of the distribution
f(x). Physically, it gives us some idea about {luctations around (average) obscrved -
valucs. This finds dircct use in stochaslic processes likc random walk problem, reactor
power [luctuations, rcgulated power supply and cnables us 10 relutc variance 10 some
thermic propertes of the sysiem,.

- It is instructive 10 interpret a probabilily distribution f(x) as a distribution of a unit
mass along the x — axis in a discrelc manner, so that f(x) is the fraction of mass
located at the point x, (Fig. 13.2).

A
TUf(x)

l;'ig. 13.2: [_)LSCI'l'l(‘.]‘JI'Ohﬂ"i”lj' density fix) ~ .9

Setiastion
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According to this picture, the average of X, given y (13.3), is the ceﬁlre of mas
this system. -

Continuous distribution

The probability disiribution described above is called a discrete probability
distribution and the associated random variable X is called a discrele random
variable (discrete r.v). In some cases, X can assume a continuurm of values. Then, it
is called a continuous r.v. £(x) is called a continuous probabilily distribution.

Consider a unit mass to be distributed continuously along the x-axis (Fig. 13.3). We
define lincar mass density f(x) by dm = f{x} dx where dm is the fraclion of the mass
lying between x and x + dx.

dNy

wima")

¢ o w0 @ W D
Fip. 133: Contlnuous probubillty denslty f(x)

By analogy, we define the probability that the r.v.X will have & value lying between
x and x + dx, 10 be equal to f(x)dx. Hence, '

Px S X <x+dx)= f(x)dx

The probability that X lies in the interval [a, ] is given by

PlasX<b)= [ fx) de B 3.7

This is represented by the shaded area of Fig. 13.3. It represents the fraction of mass
contained in the interval [a, b). The nommalisation condition becomces )

[" foode=1 (13.8)

The cquations corresponding to (13.5) and (13.6) are
#

< X »= Txf(x)dx (13.9)

Var (X)=0% = T(X— < X »)? f(x)dx (13.10)

Example 5
The simplest example of a continuous distribution is the uniform distribution. The
densily funcuon is given by
f)=Alasx<b
= 0 [ otherwise
where A is a constant. It is plotted in Fig. 13.4.
f(x)A a -

A._.-—'-—_

a b
Fig. 13.4: A uniform distributlon

The normalisation condition gives A= "
' —a
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Culculate the variance of a r.v. obeying the uniform distribulion.

: Having introduced the basic concepts of probabilil.y‘ theory, we shall now discuss how
.a sysicm in cquilibrium can be described mathematically.

13.3 DESCRIPTION OF A SYSTEM IN EQUILIBRIUM

You now know that thermodynamic description of physical systems is at the
macroscopic level without reference to the microscopic details, The kinelic theory of
gases is a step forward in our quest for understanding Lhe propertics of systems in
werms of their constiluents. But, we have 1o make many assumptions Lo achicve any
progress. This invariably restricls the scope of the theory severcly. A major advance
in this dircction was made by Gibbs (1839-1903). He coincd the name stafistical
mechanics for that branch of physics which deals statistically with systems consisting
of a largc numbcer of parlicles. . :

Let us consider a thirty-five years old man. It is impossible for us lo predict his exact
life-span. However, if we consider a large numbecr of such individuals, it is possible to
make some predictions about their average life-expectancy. Have you ever thought '
how lifc insurance companics {ix the premia to be paid by the policy-holders ? They
collect daia on the average life expectancy of different age-groups and [ix the premia
accordingly. :

Consider now a gas of N molecules occupying a volume V at a temperature 1.
Supposc thal, at a given instant of lime, we know the positions and velocilies of all
the particles. Then by solving Newton's equations of motion, it should be possible to
determing how the system evolves. But N is a very large number (~ 10% for a
kilomole). Hence, the calculations, though' possible in principle, will be extremely
cumbersome. Even the present day computing machines will take very long Lime to
solve then. Tt is in such difficuit sitvations that the methods of statistical mechanics
come Lo our rescuc. Instcad of looking at each individual molccule, we treat the
collcélion as a whole and ry (0 compute average propertics. -

We begin by discussing how this system can be described mathematically.

13.3.1 Basic Concepts

You know that the positien of an object in a planc, for cxample, an ant on a table,
can be specilicd completely by giving its coordinates (x, y) with respect 1o a sct of
Cartesian axes. It is like specilying the latilude and longiludg of a place on a map.
Similarly, the position of an object in space, like a bird flying in a garden can be
.described by the coordinate riple (x, y, 2).

Let us now consider the motion of a single particle along a linc. Iis position at any

given tine can be completely deseribed by specifying its position (g) and P
momentum(p). By solving the cquations of molion, we ¢an determing the values of

these quantilics at any Lime «. We can represent the situation geometrically by drawing .

a scl of Cariesian axcs, labelled g and p, as shown in Fig. 13.5. The statc of the )
particle is then gi¢en by a point A(g,p) in s two-dimensional space. This spacecis . A(q,p)

—

calicd the phasé space of the system and A is called a phase point. Can you draw
any analogy of phasc space with sample spaceQ? Certainly we can. The phase space

and phasc point correspond o sample space and sample point, respectively. - Fig. 13.5: Phase-space for a particle

In one dimension. 7
These considerations can be casily extended: 1o an N-particle system, like the

 molecnles of a gas, with the particle moving in space.-For a single particle, the slate

.at any instant ¢ is deseribed by the phasc POINL (7,0 4,0 Gy Pye Py Py iD 2 SIX- " You shoild not confusé p with

dimensional phase space, “You will realise that this space is just a mathemalical . pressure.
construction and does not corespond o anything real. If we now consider 2 collecticn

ol N particlcs, a state of the sysiem is given by a point (G1: @222 Q3 P1s P2v**" Pan)

-

in a 6N-dimensional phase space (Fig. 13.6).
SAQ 3 - . . ”-

. Suppose the particles have two rotational degrees ol freedom also. What will be the | ) 11

" dimansion of the phasc space ? .
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Flg. 13.6: Phase spuce for an N
parlicle system
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- we proceed as follows :

e e we e - —— e, — e ——

Suppose that this N-particle system is conlined to a volume V and let the total
internal energy of the system be U. By describing the sysiem in terms of the
macroscapic quantitics N, V, U, we are giving what is known as a coarse-graincd
description-of the system. In other words, the triple (V, V, U) defines a macrostate of
the sysiem. But in statistical mechanics, we intend to derive the macroscopic
properties from a knowledge of the constituents of the systcm To achieve this end,

Lc_L us divide the phase space inlo small elements or ‘cells® of volume

dTl' = dg dq, -+ dg;ydp,dp; -

ot
dpay = Il dg;dp, (13.11)

where the symbol I1 signifies product of all terms from i = 1 to | = 3N.

Since the product dg dp has dimensions of angular momentum, dI° = #¥, where the
constant h has the dimensions of angular momentum, and can be chosen as small as

we like. However, because of Heisenberg®s uncertainty principle, A cannot be smaller
than Planck’s constant (6.62 x 10-** Js) in quanium description. We will come back
to this point in Unit 15 and discuss its implications in detail.

For (he simple case of a single particle moving in a p].mc we have dI" = dg dp. This
is shown diagramatically in Fig. 13.7

,4 : ; _

1

- . et a—
Flp. 13.7: Two-dimensional phase space divided Into cells of ‘yolume® dq dp. e Is the
phase point representing a particle.

Imaginc the cells 10 be numbered 1, 2, .... and let n, n, .. denote the populations. of
the various cells. In other words, there are z, phasc pomts occupying ccll 1,-n,
occupy cell 2, and so on. Any phase point w|ll lie in one of the cells, If we spccll'y
the rumber of phasc points in each ccll, we define a macrostate of the system. But
specification of exactly which particles are in the various cells, defincs a microsiate.
Obviously, many differént microstates can corrcspond to the same macrosuaie. We
illustrate this by a simple example.

Example 6

Suppose there arc just three cells in phase space labelled 1, 2, 3, and (wo-particles, A

and B, Enumcnate the d:fl‘crcm macrostaies and the microstates corresponding to cach
of them,

Solution
The possible macrostales arc

_(i) (i) (iii) (iv) v) (vi)

A it o Ty v [P YT T et LT T TIIET | YT A ST TS Y S i T “"‘"“"‘T"‘—" TR

mo 2 o oo Lot 1.
n, | O 2 (0 1 o ] 1
oy 0 0 2 1 1 .0

Tor macrostale (i), there is only on¢ possible microstate, viz, |AB | | 1L 1
Similar remarks apply 1o (i) and (iii). Corresponding to (iv), wc nave the
microstates




(1 (&1 [B] = [} [B8] [a]
1 2 3 1 2 '3

Similarly, two microstales comespond (o cach_ of {v) and (vi}).

SAQ 4

Supposc there are two cells and four particles. Enumeraic the possible macrostates and
lhc comresponding mlcrocl.dlcs

In statistical mechanics, we always scck the number of microstates comesponding Lo a
given macrosiate (V, V, U). ILis called the thermodynamic probability or the
statistical weight of the macrosiate and is denoted by W (V, V, U). You will agree
that W can assume a very large value; the minimom value being one. The question
now arises: Is il rclated Lo any thermedynamic variable 7 In fact, yes and the variable
is cntropy. You will observe that the relation between the entropy S and the
thermodynamic probability W forms the basns of cntire stalistical analysis. We now
intend to introduce this rclation.

13.3.2 Bridging Microscopic and Macroscopic View-points

From Unil 5, you will recall that the second law of thermodynamics introduces a very
imporwant state function, the cnropy §. We also know that the state of equilibrium of
a thcrmally isolated system corresponds to the maximum cntropy. We can say that a
system in equilibrium is equally likely (o be in any of its accessible states, That is,
the cquilibrium state is the most probable onc in the sense that it has the largest
thermodynamic probability W. The larger the choice of microstates, the greater will be
the degree of unpredictability or disorder in the system. This suggest that S and W are
closcly connceted. We can explore this connection in a very simple manner as
follows :

Consider two systems 1 and 2 under-similar external conditions of temperature and
pressure. Let §yand 8, be their enwopies. Suppose that these systems are put in
thermg! contact. Then, the wotal enurepy of the combined system is given by

3= Si + Sz
This rclation is a statcment of the fact that the cnlropy is an cxtcnsive variable.

Let the statistical weights of thc states in 1 and 2 be W, and W,, respectively. Then
the statistical weight W of the combined system is

W = Wl 1"2 N (13.13)

We cxpress functional relation between cntropy and Lhermodynamic probability as
C S=f) ' (13.14)

Lgs. (13.]2) and (13.13) impose the following condition on f (IW):
FIW) + [(W2) = f(IMW,)
Diffcrentiating it with respect 1o W, we obtain
Wy} _ e (MW) _df W Wy)
dw, dw, aw

Since it readily follows from Fa (12123 thar

d d

v, L
dw, aw

‘Next, we.dilferentiate it with respect 1o W,. This gives

_dw) (W) d {4

dw dH’ aw

) 2
= (W) + W, W, d*f
Y dW?2

[ d
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where prime(s) denotes differentiation with respect Lo W. On integration, we get
Inf/(W)y=-lnW+Ink

where L is a constant. We can rowrite it as'

p -k . _ ,
frw)= W L (13.14)

" Integrating again, with respect to W, we obtain

SW)=kInW + W,

Using Eq. (13.14), we can wrile ‘ )
S=kinW+ W, ' 13.17

From the third law of thetrmodynamics, we know that the enmopy of a complelely
ordered state (W= 1) is zero. This implics that we can write the rclation betwecn
entropy and thermodynamic probability as

S=khnW T 13.18)

This is the famous Bolizmann relation connecling eniropy and probability. The
constant & is identilied with the Bolizmann constant, kj(= 1.38 X 10-2JK-1).

Eq. (13.18) provides a link between the macroscopic and microscopic view-points. It
opens the way for a more direct and elegant application of the techniques of
probability theory to siudy widely diverse sysiems.

It is known that Bollzmann never got the rccognition in his lifetime for this work.
This frustration sadly forced him to commit suicide in 1906. This relation is engraved
on his resting place in the central ccmetery of Vienna,

13.4 THE DISTRIBUTION FUNCTION

Consider an ideal monatomic gas made up of N particles enclosed in a volume V and
having total intcrnal energy U. The state of the system at any lime ¢ is represenied by
a point in a 6N-dimcnsional phase space. This means that cvery particle is associaled
with six dimensional phase space, also called the p. space. . stands for the first leutcr
of molecule). The pariicles arc moving independently of each other and the
coniributions of individual particles remain separate.

To give a microscopic description of the system, we divide the. p.-space into cells of
volume /7. Recall that in classical statistics, we can choose % as small as we like.
Each particle will be found to occupy a cell in this network. Suppose the cells are
numbered 1, 2, ... Let the energy of a particle in the ith cell be denoled by €; - Then,
we have

N=Yn | © (13.193)

and

e San e AT
.- _

The macrostate (N, V, U) can be realised in a number of different ways. In order to
proceed with our argument, we advence the hypothesis that all microstates are equally
probable, In other words, equal phiase elemerits in pliase space are associatcd with
equal probabilitics. It corresponds to the assumption that the faces of a dic are
equally probable. This hypothesis is known as the postulate of equal & priori
probabilities. ' '

The (hermodynamic probability W is simply the number of ways ol placing ¥
distinguishable objects in cells such that there arcn, objects in the first cell, ny in the
second and so on. This number is given by

=T e - p— [ - e r— - .

.
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i=1 N

We can casily prove this result by Inoﬁng that there arc (::1

choosing n, objccts that are to be placed in the first cpll.‘Thcn we will be left wilh
(N —n,) objects. Out of these (N — my) objects, there are (" ; "l)ways of choosing

: 2
r, objccts 1o be placcd in the sccond cell. We can continue in this fashion Ll all

number of ways of

objects are placed in given cells. Then the wtal nunber of ways

W= (N) (N - nl) (N -y - "2]...1
™ ) a3
. N! . (N —n)! (N —n — ny)! oo N
FIN-a)tm! (N -m—nn! (N —=m—ny—ny)ing! mtny! e

Symbolically, we write this as [n Nn )and call it 2 multinomial coefficient.
' Nz .

we know Lhat cquilibrium corresponds to maximum of the thermodynamic probability
W. Since S = kgln W, it is morc appropriate to look at in W rather than W itself,
(Since In W is a monotonically increasing function of W, its cxtreme points will
coincide with those of W). Then, Eq. (13.20) gives '

InW=IlnN!-Yna! (13.21)
For most systems of practical interest, N is a very large number. By the same

reasoning, most of the n,'s will be sufficiently large so that we can simplify this
relation using Stirling’s formula (Appendix A) :

Inxt=x{nx-1)

For small »;,Inn;! will be small and hence not of any conscquence. Proceeding further,
we inscrl Stirling’s formula in Eq. {13.21). The result is

InW=(NInN-N)-Z(nlnu-n)

=NInN-YnInn
i

since 2(:,- =N.
i

You would recall that we sct our goal o determine the set {n} which maxinizes
In W. The condition for maximum probability is
SmW =0

We now calcslate a smail change in In W and cquate it Lo zero, This gives

SInWw = '—-anﬁ tnn; -3 (In nYon; =0 (13.22)

This cxpression has been derived by assuming that N and ¢/ arc conslant :

SN = ZBRI. = 0 (1323[1)
B = g0~ © - . o _.(323h)

The first lerm on the R.HLS. of Eq. (13.22) is, therefore, equal Lo zero :
E,u;ﬁ(ln H;) = }_;ﬂ,'(] fﬂ;)aﬂi = ZBH" =0
Then Eq. (13.22) reduces Lo
Tlnn; on; =0 (13.24)

To accdinmodalc the conditions embodied in Eqs. (13.23a, b), we employ. the method — 15
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Elements of Stallstical Mechanles - of Lagrange multipliers (Appendix B). We muliiply Eq. (13:23a) by «, and Eq.
. {13:23b) by B. The result so obtained is added to Eq. (13. 24) This Ieads 1o

Z(lnn +0+Pe)on; =0 (13.25)

Since the variations bn; arc arbitrary, this relation will hold only if the cocfficient of
cach term vanishes. chcc w¢ must have

Inn;+o+Pe;=0

or

n; = e-o-Br = 1 ooy - (13.26)
. A .

where we have put A = ¢, (13.27)

' Eq (13.26) constitates what is called the Maxwell-Boltzmann distribution. You will
note that we wished to know the set (n;) which characterises the equilibriom state.

But we find that Eq. (13.26) conlains two ynknown Lagrange multipliers o and B.
We must-now evaluate them in terms of known quantities,

Evaluation of Lagrange Multipliers: The Partition Function

The constant A (or @) is determined using the normalisation condition. The probability
that the state with energy €; is occopied is given by Eq. (13.26) with A defined by
Eq. (13.27). Since), n; = N, we can wrile

Tri=N=LlYepu
i AT
or ﬁ)l;e'ﬂ"' =1

I we now define

Z=3ebu N . (1328
we can write the degeneracy parameter A as ’
z
A=% (13.29)
. N )

The sum ) exp(—Pe;) , denoted by Z, is called Lﬁe single-particle partition function.

It is also called the phase integral. The name partition function is due to Darwin
and Fowler (1922). It ariscs from the observation that when systems | and 2 are in-
thermal coniact, the partitioning of energy belween them is determined by the
corresponding parlition functions Z, and Z,. Planck (1921) catled ¥ e-Pei

Zusandssumme (sum over slales) and denoted iL by Z. We shall f;)llow Planck’'s
notauon here. It is important to remark that pariilion function occupies a pivotal
position in statistical mechanics because all thermodynamic functions can be wrilten
in ierms of Z, But before we do so, it is important 1o remark that the partition
funciion characterises a sum over discrete states. This is characteristic of a discrete
spectrum, Bul in classical physics, the.cnergy is taken to be continuous. However, if
the Ievels are very closcly spaced, even the discrete sum becomes 2 continuum and it
is possible Lo replace the summation by integration. This is illustrated in the
following example.

PP Remmers YT A ETCTANS § BEERTTE JCCPATAC ST T E T TS T “I Ll

Eﬁmple 7

Siarting from the distribution given by Eq. (13.26) with A = E, obtain Mazwell's

law of disiribution of velocities. N _ !
. Solution

We note from Egs. (13.26) and (13.29) that

_ n; _ exp(-PBe;)
16 : N Z




nit, we will show that for an ideal monoatomic was Baslc Concepts of
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v ~
Z= ’—3(2nmk,,T)3"2
! : )
Hence, using the normalisation condition
Zn,— fN=1, . . -
we pot '
1 P
= e i =1 )
2

If the encrgy states are very closely spaced, we can replace summation by integration:

S eBtix J'Jjjfg-ﬂtd;dydzdpxdpy‘bx
i P
-V -Be
= 211 fe-8%p, dp,dp,
, :

~ where we have replaced [ [ f dxdyds by the ratio of volume in the Caricsian space Lo
the volume of onc ccll { = A%). Morcover, il we assume azimuthal symmetry, we can
wrile
I[[dpdp,dp, = [anp*dp

I{CHCC.
1 V - 2 —_
.—:(h_;)‘*“f ﬂ‘ﬂtp dp =1

On substituting for Z, we get

- 4 .
— T ] 1) .
(2unk,, T)3? \ ®
where -
I = [exp(-Pe)pdp
1]

To evaluate this integral, we write p = nmv so that dp = m dv. Also we know that
e=(1/2) mv®. Hence

& 2
= m’fcxp (-iLJ v2dy
o 2k, T

Inscriing this in (i), we get

m 2o - 2 B
4n exp| 22 2y =1
[ms'rJ ! "( 21ch]”

Hence, the number of molecules having specds between v and v + dv is given by

32 2 Y
dN, = 4aN| -2 y2ay i
O (2nkBTJ ex.p[ 2T )" (i)

This 1s Maxwell’s law for distribution of spceds,

We now praceed to express thermodynamic variables in terms of partition funclion. ; ' ' '
To this cnd, we substitute for #; from Eq. (13.26) into Eq. (13.21). This gives

W =NN-Y r(InN - nZ-fe,)

=NhnZ+pu
%ﬁ‘gw use of Boltzmann relation gives C -

T

S = Ny In Z + Bk, U : (13.30)

We can use this relation 1o introduce the concepl of temperature by relating entropy
and internal encrgy of a system ; '

% - (_;%)v =_‘%A[%E_]v(%)v kB4 kg U(-;%)V | (331

[ AT mﬂ’ﬂ"ﬂr"rm
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az) _ 2 (13.33)
B ), N
'Combining it with Eq. (13.31), we get
[ a8 ) _ k; 3 a3
oU Jy )
(13.35)

From Eq. (13.28), we nole that

On combining Eqs. (13.23b) and (13.26), we get '
U= z_,ﬂ.ﬁi = %Zﬁs exp(-Pe;:)

Using this result in Eg. (13.32), we get

sothat B=D™?
You may now ask: Is this value of B unique? This is the subject of onc of the
icrminal questions. -

From Eq. (13.33), we have
(_E’A) =[a_f] (ﬂfé_) o1 [B_Z.J .Uz
arJv \ P Sy \dT Sy kgT?\ 0B Jy kyTZ N

U= Nk TIJ-(E’-—]
TR AT My

Hence,

p2 0
= Niky1 2—3?(ln Z) (13.36)

The Helmhollx. frce encrgy, F, defined as

F=U-75
b
is given by :
F=-NkgllnZ ‘ (13.37) £
since
U ey b
S=NkylnZ+ T | (13.38) :
The pressuro exerted by a clagsical gas is related 1o Helmhboltz frec energy through E
the rclation ;
p= _(a_F] '
v Jr
so hat
kg TN { 87 - (13.39)
p =—’-— —_— . —
zZ \oV )z L

We hove now scen that all the thermodynamic functions can be related to (he ;
parfiuon function Z. I means that once we evaluate Z, which, of course, may not !
alw.ys be casy, we can readily detcrmine a thermodynamic function of intercst. This }
is the sabject of disciission of the next unit. - Ll T §

v

13.5 SUMMARY

e The cntropy- and [hermodynamic probability arc connccted through the relation
S=kpln W '
This relation bridgss the gap belween thermodynamic and statistical view-points.

o The lcrmédynumic probability of distributing N parlicles inlo various energy stak




_(cells) so that ny are in first, n are in second and so on is given by

N
W= - NV
mhisns... ). mimt...m!t
=_N_
ITn,!

e The classical (Maxwell-Bolizmann} distribution is given by
n, = e o-Pei = L ,-se
A
with 4 = ¢™,
s Thc degencracy parameter A= % and B = (kg 7)™
o For discrele cnergy states, the single particle partition function is given by
Z= Ze'pc" -
e Fora coulim‘mus spccllrum, Z Lakes the form
Z =ﬁ.je—ﬂt(q.p1dr

e« The various lhcrmoclynamic functions arc related o Z:

U= Nknrz - (In 2)
S=NkpginZ+2<
F=_NkygTIhZ “

and

Z \V ),

13.6 TERMINAL QUESTIONS

1. Draw the phase space for a lincar harmonic oscillator, What will happen if we -
consider the same problem from the point of view of guanium theory?

2. Draw thc phase space [or a particle having energy E, constrained 1o move in one
dimension, -

3. Consider two systems having N and N* particles, respectively. Let them be
brought in thermal contact. Show that B is the same for Lthe two assemblies.

4. For a systcm in cquilibrium with a hecat bath at wmperatuee T, the probability for

 _being in the stafe £; is proportional o exp (—BE). Calculate Var (E) and l.he '
relative rool mean-square fluctuation of £.

5. Consider a system of N particles and a phase space consisting of only two cells

with cnergies () and € (e > 0}, respectively. Calculate the pariition function and .
tie intcrnal encrgy.

SAQs
1. (i} The samplé space is
§=1{1.2,3,4,56)

(i} The sample space is

Y (I H T

.
A cnlncs

S={1,. ..

A cplrics

(T,7,....,T)}

o,
a enlnes

Basie Concepts of
Suatlstical Mechanivs

19

IIEUIAT

L

PRI I I ——— -~

Fim e 4 m,




Elements of Statistical Mechanlcs the total number of sample points being 2°.

T 90

' jii) The possible events arc
o, (¢ ID), (|, D), (T.ID}, (T D), (U5 1), ¢, D},
([@r. 1y, (i), WL, .0}, (LT, (T}, (L1, (7,ND].
(r,m, n), (@m, @nd i), {ULm, iLn, @.1) ‘
(. D, & m, N, WL, i), D) Q.

2. Wc have

Var(X) =< X?> - < X >2

. Ib ,
<X>=‘|le(x)dx=A ‘[xdx—lqg.z__a
. a

b-a) 2
1
=—(a+b
2(6 ) |
o [t mn | shas - Lot
>= x)edx = x2dy = ———
smE A (b-a 3
_at+ab+b?
3

Hence,

2 2 2 2y _ 2
Var (X)=£.%_%(a+b)z= 4(a +ﬂb+?2) 3(a+b)

2
= L2 gap+pyy= =9

T 12 12

3. The tolal number of degrees of [reedom for cach particle is (3 + 2) = 5. Hence
~ the phase spuce will be 10N-dimensional

4, i} -The possible macrosiales arc
(i} 40, (ii)‘ 3-1, (i) 2-2, (iv) 1-3, (\‘r) 0.
The value of W for both (i} and (v} is one.
For (i), W =4, viz,, @ [Z]. |acd ”b | land J
[a]. Similarly, W3 = 6 and W, = 4.

iiy Thec possible macroslates arc

am | 2 l0ololo | i1 }o | 1o |o0

nz 0 2 0 0 1 |0 0 0 i 1

m | 0olo | 200|111} 031 |0

e ol o]l ot2 ool 1] 1|0 |1

- @ ) ) v ) () i) i) Gx) (%)
For (i) 1o (iv), W = 1. For (v), we have W=2,viz, S

Ilzllzland E]

Terminal Questions

1. The cquation of motion of a lincar harmonic oscillalor is
Lq _
dit

where k is_the spring conslant. The solulions of this cquation are of the form

_kq
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g = A cos (tor + ¢), (D
where A is the a_-np.liludc. @ =1’i .M being the mase and ¢ is the phase. The

. 1 - .
lotal cnergy £ = M @?A?

RBade Concepts of
Stutistlcal Mechantes

1\}-"‘)(
Also
p = mg = —mASsin (@ +¢) (i)
where dol over g significs its time derivaltive. .
‘_'1'
From (i) and (ii), wec have r
2 T
q P _
A mPetAr ! . -
Using (iii), we obtain . >
P
2 2mE
7 Flg. 13.8: Phesc space of a
o lincar hurmoenle escilalor
. . . _ 2K -\f_ _2nE ..
Hence, the phase space is an cllipse with arca = TE\? 2mE = o This is
shown in Fig. 13.8. In the quantum theory, the energy is quantized and the phasc
spacc consists of cqually spaced ellipses.
2. Let us consider a particle moving in one dimension within a box of length L.
Hence. g is confined 1o the intcrval (0, L]. The encrgy
p* '
" 2m
where p is the momenium, If E is fixed, p can have values N2mE and — A2 nE .
In practice, a sysiem is never complelely isolated. Hence, the cnergy may lic
between £ and £ + dE. Thas, p must lic in a small range around + JrmE
3. The stutes of the two sysiems will adjust themsclves so that they have a cominon
temperature 7. Let the scl of occupation numbers and energies be (ni}, (&), (7"
and {c’), respectively, for the two systems. Then we have
f
W= NI NI @
[n! Inaj
and
InW = NInN - mlnn + NN’ - z.u_} Innj (i)
i i
The constrainls are
Yon=N, Y nj=N", S (g +nEp=U (iii)
i ; i
Multiplying with Lagrange multipliers o, o and B, and adding to (ii), we get
> (Inn; + &+ Be)Sn, + S (nnj4 o+ BE})BH} =0
T i
_ Since 8, 81} are arbirary and independent, we obtain
n;=e @R nj= ¢y
Thus, P has the sane value for two sysims which are in thermal equilibrivm with
cach other. llence, § must be a Tunction of 7.
4. The mean valuc of cnergy is
Y E;eBE
..f}_. Y, 21
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Appendix B: A Bricf Note on the Method of Légrange Multiplicrs

You arc familiar with the problem of [inding the maxima and minima of functions,
Somctimes, however, we are required 1o find these extreme values subject to certain
condilions or constraints. We have already come across this problem in Scc 13.2,
where we had to maximise W, the thermodynamic probability, subject to the, conditions
that N and U are fixed. There is an clégant technique 1o solve such problems. It is
called the method of undetermined multipliers and is due 1o the French analyst
Lagrange, :

Suppose we want 1o find the cxu_'cma of the function £(x, y). We solve the lwo
cquations

¥ _ ¥ . )
E—Oanda—y—o (B.1)

simultancously. The resulting pair (or pairs) of values of x and y specify the point {or
poinis} al which f has a maximum, minimum, or point of infleciion. Now SUpPposc
that there is an auxiliary condition

gx, =0 (B2

In principle, we can climinatc one of the variables, However, in practice, this may not
always be possible. So we proceed as follows:

Eqgs. (B.1) gives us

af of _
[a],“”[ﬁ],“”"“ ®3)

From Eq. (B.2}, we have

dg Y , - |
() (3o

Multiplying Eq. (B.4) by A and udding 10 Eq. (B.3) yiclds

s ﬁ] AP/ P
[ax+lax dx + ay+lay dy=0

where we have dropped subscripts x and y.

Since x and y arc independent, we have -

CARYE AN

[ax]”(axj =0

) d -
103)-

These cquations have 10 be solved simultancously to determine the values of X, ¥, and
A

and
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"UNIT 14 THE PARTITION FUNCTION

Structure

14.1 Introduction
Objeclives

14.2  The Partition Function of an !dcal Monatomic Gas
Thermodynamic Functions
Gibbs Paradex

143  The Sackur-Tetrode Formula

144 Diawomic Gases
Rotational and Vibrational Partition Funclions
Heat Capacity of Hydrogen

14.5 Summary '

14.6 Terminal Questions

14.7 Solutions and Answers

14.1 INTRODUCTION

In the previous unit, we obtained the distribution function for a classical Maxwell-
Boltzmann ideal monatomic gas. Then we introduced the concepl of partition function and
learnt 1o express varions thermodynamic funclions in terms of the partition funcuon. It is,
therefore, important to know to compute the partition function for a thermodynamic
system of interest. In Sec. 14.2, you will learn to compute the partilion function of an ideal
monatomic gas, The expressions for thermodynamic functions will also be derived. Gibbs
showed thal the expression for entropy so derived suffers from a serious flaw; cntropy
fails to exhibit its extensive characler. You will learn to resolve this so-called Gibbs
paradox in Sec. 14.3, This leads us 1o the Sackur-Tetrode equation. From Unit 9 of Block
3, you would recall that unlike a monatomic gas, diatomic gases have rotalional and
vibrational degrees of frecdom. These contribule (o their total energy and hence heat
capacities. You will learn 10 evaluale rotalienal and vibrational partition functions with
particular reference to hydrogen.

Objectives
_ Afier siudying this unit, you should be able 1o :-

e compute the partition function of an ideal menatomic gas and work out all the
thermodynamic funclions

e point oul the [faw In the eipression for entropy
e derive the Sackur-Tetrode formula and resolve the Gibbs paradox

e calculate rotational and vibrational contributions to heat capacitics of diatomic gases

explain the chsorved tempermture variation of heat cepacity of hydrogen.

142 THE PARTITION FUNCTION OF AN IDEAL
MONATOMIC GAS

Consider an ideal monatomic gas consisting of N particles, each of mass m and eccupying
a volume V. This means that the caergy of the system is wholly translational. That is, the
potcntial enerpy s zere since intermolecular forces are absent.

P T AT TR

A R e PR Y T o




Elements of Statistlcal Mechanles

explanauon of molecular chaos lics in statistical arguments, whlch arc more profound.
The Helmholiz [ree energy expressed in terms of Z is
F=—NigTInZ

- ._NkB T Ln[-‘i,(zmk,, T)m] : (14.14)

- From the previous unit, you wouId recall thaL entropy and paruLIon function are connecled

by the relation

S=Niginz+ L
T .

~ On substituting for In Zand U {rom Eqs. (14.8) and (14.11), we gel -

S = NkgllaV = 3Inh 4 %ln(flr:mkg) + % InT]+ %ng

- : 32 ' : :
= ngln{%em} ‘ (14.15)

This is the classical expression for the entropy of an ideal monatomic gas. ' We will
consider it in detail a liule later. To get a little practice, you should solve the lollowing
SAQ.

SAQ 1L

- Obtain the entropy and pressure [rom Hélmhollz cneIgy

The degenéracy parameter A is given by

Z 2mmky TY?
a=Z. Qrmks T % ) (416

You will aote that at high temperatures and/or low densities, A will be ldrge. We can
relate it 1o the deBroglie wavelength A g3 and inter-panticle distance by noting that

lﬂ=ﬁ
.p

p?
with ~— = kg T . Hence,
2m

h .
Agp = ——= 14.1

Also, the mean inter-particle distance ry is given by
1/3
(%)

3
Ty
A= 14.18

) (%19
When A >> 1, we have X 5 << ry. Thatis, the thermal wavelength is very small
compared lo the inter-particle distance and classical results hold good at high
temperatures and/or low densities.

Hence,

The chemical potential W is given by

(14.19)

352
=kpTInA= kﬂ‘ln[m]

nh3

Let us now re-examine the expression for eniropy closcly.




14.2.2 Gibbs Paradox

From Egq. (14.15), we note that entropy of an idcal gas depends onV,Tand N. Moreovcr
the functional dependence on volume and iemperatare is the same as obla.med from
thermodynamic considerations. But we note thatas T — 0K, § — — o, This is not
physically meaningful and contradicts the third law of thermodynamics (which states that
§ — 0as T— 0).However, you should not be unduely concemed. In fact, youshould -
. have cxpected this result because classical statistics is a good description only at high
temperatures. The cxp]anauon has genesis in quanturm mechamcs You will lcam this in
detail in the next nit.

A more serious objection against Eq. (14.15) is its implication that entropy does not
behave as an extensive quantity. Let us increase both Vand N by a factor o Eq. (14.15)
~ contains a term N In V. Hence, § will not increase in the same proportion. This can be

" clearly understood by cons:denng intermixing of- lwo ideal gascs.

The entropy of a system of N particles occupymg a vqurng. V:s gwcn by
$ = NkgllnV —3lInk + E.m (2mmkg) + %m T1+ ENfc,;
= Nkg(inV + %m T + o] (14.20)
with
3. - 1,3
==hn2emkg)—-InhA~+ =
2 (2m mkg) >

2nmkp
hz

In [[ )mem] .

Lct us now consider two ideal pases contained in two chambers of volumes V, and V, and
separaicd by a rigid partition as shown in Fig. 14.1. Suppose that these gases are in
equilibrium at Temperature T. Then the entropy of each gas is given by

5= NykgllnV; + % InT + 0]

and

S, = Nzkn[ln1’2+%ln T + 5]

Ooooooo s @ o' DD.O . O
000 o® o8l e O...
%0 0 "o ™
o _o0.© e©® g0 o ® o |
OO OOD a0Og o ® g0 a
O OO [a] i =] +] ®
0% 00 oo 0°%e, 9
o - q © Q Q C e o

Fig. 14.1: a) The systemn divided by a partltion nto 1 and 2.
b} A system of N-partlcles in a volume V. .

So, the 1otal initial cntropy of Ihe:se gases is

S;i=8,+S = Niglhy +%lnT+01]

1

T ¢,l

TJ&ZLB Llll 72 1I '3

Now we remove the partition and these gases mix by diffusing into one another. We can
regard it as free cxpansmn of cach gas to volume V = V] + V. Then final cntropy of the
system is

Sy = leB[an+%lnT+0,]

+Nykg{lnV + —gsjn'f + G,]

You would recall that in thermodynamics

The Partitlon Functlon .

we chamcterize variables as intensive-and
extensive. Inlensive variables do not
depend on the namber of particles or the
sizz of the system. On the other hand,
extensive parameters depend’on the size of
the syslem, i.e gel multiplied by the facior
the size of the systam under consideration - '
increascs. ' o
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WO axes at nghl—angles 1o the line connecting m, and m; and pa;smg through the centre
of gravity C, is given by :

mmy 2

r =|.I.r‘2
my+ my

f’,:f'=f=

where

_ i ny
o+ Ry

is the reduccd mass of the molccule. The moment of inertia about the line joining the
molecules is taken o be equal to zero. The kinclic energy of the molccule is
1 2.1

E= L)+ E!,mf

= -;Tf(mi + 02) (14.26)
If the bonding is not perfectly rigid, these atoms can vibraic about their respective
equilibrium positions. The simplest assumption is that each alom executes simple
harmonic motion. From Unit 1, Block 1 of PHE-02 course, you may recall that the
motion of these atoms can be reduced 1o the harmonic vibration of 2 single point mass
aboul an equilibrium position. Thus, {or a diatomic molecule, we can have two
vibrational degrees of freedom, apart from Lranslaionat and rotational degrees of
freedom. The 1otal number of degrees of freedom

f =f.|'.ra.u +frul' +fw'b
=3+2+2=7 (14.27

Since each degree of freedom in classical physics is associated with energy (k:772), we
find that

=_1
E=—kgT
~ XB

so that heat capacily for the gas made of N-panticles is Cp = %R and Lhe ratio of heat
capacilies

2
7

It shows that heat capacily of a gas is constant; independent of temperature and same for
all gases. And vy for a diatomic gas is less than the value for a monoatomic gas. In Table
14.1, we have listed the values of 7y , obtaincd by measurements of the velocity of sound

at room temperature for some diatomic gases of interest,

Table 14.1: Values of ¥ from velocity of sound measurements for diatomlc pases

Gas ¥

H, 1410
O 1401
N; 1404
co 1.404
NO 1400

You will note that vy is close to 1.4 and agreement with theorcucal value is not very good.
However, if we 1ake f= 5, we find that




This suggests that around room temperature, either rotational or vibrational degrees of The Partltion Funetlop -

freedom, not both, contribute to mean energy. It is as if some degrees of freedom are
*frozen” and hence do not show up in experiments. This led Qommmﬁcld to remark that
. ‘Degrees of freedom should be weighted not counted .?

. 5AQ4
Calculate ¥ for a polyatomic gas having f degrees of freedom.

As the number of atoms increases, f also increases ani:l'y djeéreasesl This is well bome out
by experiments. In fact, v is found 1o satisfy the inequality ,

1<y< 167 ; : (14.29)

It may be remarked here (hat qualitative features of heat capacity of diatomic gases
predicied by theory are bome out by experiments. However, if we look at its temperature
variation, we find that the agrcement is very poor, In most cases, heat capacity increases
as temperature is raised and decreases as temperature is lowered. For example, the heat
capacity of hydrogen at 20K is just 2 R. That is, it behaves like a monoatomic gas and
rotational as well as vibrational degrees of freedom are effectively ‘frozen’. A cormrect
explanation is provided by quantum statistics. The basic argument is very simple and can
- be introduced without a delailed discussion of the basic features of quantum statistics.

In the quantum description of a system, we have a set of allowed discrete energy levels.
Let the separation of the levels around the mean energy be denoted by AE. If

AF << kyT (14.30)

the discrete natre of the sepetrum is not important and the cquij:arlit.ion theoremn should
be a good approximation. This is certainly true at sufficiently high temperatures. But, if

AE=jgT - . . (1431)

the discrete nature of the spectrum becomes 1mportanL If. we inroduce a characteristic
temperature, 9, delined by

-9 = AE ' : (14.32)
) kp . B i :
Eqs. (14.30) and (14.31) respectively take the form )
T>>0 andT=0 : (14.33)

‘We now turm 1o a calculation of rotational and vibrational partition functions.

14.4.1 Rotational and Vibrationa! Partition Functions

The rotational energy levels of a diatomic molecule are given by

2
E; = 8"21 T J=0,1,2,.. . (14.34)
Fis .

and each energy level is (27 + 1)-lold degenerate.

The partition function for rotational motion of a hetero-nuclear molecule — a molecule
consisting of two different kinds of atoms such as HCl— is given by

Zror = (27 + 1)ex ( M) - (i4.359)
..‘.Jo . - - T - . - R ......I
=1+3 exp(—%J + S‘exp(—'ﬁe—"") o (14.35b)
T T
- where
2
Orar = h a
8?1:2[ kB .

defines the characteristic rotational temperature. You will note that 6, is low for heavier
molecules. For example, 8, = 15.2 K for HCI, 2.1K for O, and 0.3K for Clo. On the . ] L
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other hand, 8,,, = 85.5K For hydrogen, When T << 6, , the thermal energy of the
system (- kgT) is not sufllicicnt to take the molecule to higher rotational levels. So it is
very likely that the hetcro-nuclear diatomic molecule is in its ground state of rotational
motion. When T >> 6, , the significant number of rotational states are cxcited and the
spacing between consccutive levels is much smaller compared to kpT. Then, encrgy can
be treated as continuous and we can replace the summauon in Eq (14.35a) by

. integration:

Zpyy = J'(zJ +1) exp[ J(J+1) 9""] d7 - (14.36)
To evaluate this 1nlcgral we introduce a change of va.nablc by defining

x=J{J+ 1)L e""

so that

' dx:%’f—'(21+l)d! '

Substituting these in the above cxpression, we get

T \%.- T _ 8mikpT
Zyy = e Yy = — = ———— (14.37)
el (erof) 'f[ erof kz

Hence,

10 Zyp = ln[s"h”‘f’)ﬂ aT

For T >> Bm,; the mean encrgy for rotational motion of a molecule is given by

Nk T2
Uy = NigT? (%] = o NkeT (14.38)
_ T Jvw T
- and
(Cyvrar - iurbr =1 (14.392)
R dr :

A somewhal more accurate expression for rolational, contribulion to heat capacity is
obtained by using Euler-Maclaurin formula in cvaloating the integral conunned in
Eq. (14.37). We will _]ust quote the result: :

(14.35b)

(CV)‘ml =14+ — 1 (eml )2+
- R 45

You willnote thatas T — =,(Cy),,; = R.

Since (Cy),,; must approach zero as T — 0, Eq. (14.39b) suggests that (Cy),,, versusT
curve should show a maximum.

Low Temperature Limit’

For low temperatures, the scrics in Eq. (14.35b) can be used directy to calculate (Cy )0
To do 50, we note thal

1

A7 {d 7N\ 68, Y ¥ .
= exXp| ——— +JUCX -—-——- Forue Tl
dar L 72 Jl PL J DL ) J
so that
) - 29,0,) ( ﬁe,',,,) :
- 30 —— | rrea
1 ﬁ"ﬁ = ian _ B 6cxp( T T e T
= rol — 2 29 . 69 ]
Zro: ﬂ- d:r T ] + 3cxp(_ Tfo )+ Scxp(_Tm)_'_".

. n.:wumm—urn—l..




Hence, mean rotational energy at low temperatures is The Partition Function
i _ , .
' 1 dZpy
Uyor = Nkp T? [Er:.r- Tr
[ 20, . - iom
6NkpOror| ™77 457 T 4o ]
= 20y 20701

1+3e 7 +5e T 4o

287ar
= 6NkpB,,,e¢ T . (14.40)
Hence, )
2 20 I ' .
(C;)rol = 12( 9;,, ) e T (1441)

Vibrational Partition Function

The vibrational partition funciion can be writlen as

1
Zvib = Ze_BE"’ = ze_BM(’H‘E)
A

n=0
= e-ﬂmrzie~ﬁnm
A=l -
Since
- - - 1
Mo lte T g s
,.E..‘Ee e =1
we find that
: - -1
eBorz Db Bvib
Zop = m‘; =g 2T l—-¢ T (14.42)
i

where 8, = 1—") defines the characteristic vibrational lemperature. For an HCL

molecule, 8, =B4130K. whereas {or Hp, 8, = 6140K. This show that vibrational states
of diatomic molecules are not exciled around room lemperature, '

We now extend Lhis discussion for the particolar case of hydrogen,

14.4.2 Heat Capacity of Hydrogen Gas

The heat capacity of hydrogen is found to be less than 3R even atroom temperature.
Eucken investigaled temperature dependence of Cy at low temperatures, He found that its

3R

value gradually falls down to > at about 60K. The observed variation of specific heat of

" hydrogen with temperature is shown in Flg 14.3. This su ggcsrs a dcpa.rmre from' lhe
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Ehrenfest attempted a general explanation of these curves by including the contribution
of rotational motion. But he failed to explain the obscrved behaviour. Then, Hori carried
out a complete rotational analysis of Lyman band of hydrogen. He found thai when he
substituted J = 0.467 x 10~ g cm™ in the expression for rotational partition function, he
was unable io explain the observed curves. This anomaly was successfully resolved by

. Denison. He pointed out that the contribution of nuclear spin to the partition function

should also be taken into account. We know thal hydrogen nuclei have spin 1/2. So in
the hydrogen molecule, the two nuclei may have their spins cither parallel or anti-
parallel. And the resnitant spin is either onc or zero. Thus, the hydrogen gas should be
regarded as consisting of two varielies of hydrogen: (1) an ortho-form for which /=1
and (ii) a para-form for which J = 0. The statistical weights of ortho—, and para—forms of
hydrogen are 3 and 1, respectively. That is, the hydrogen gas is a mixture of two distinel
gases in metasiable equilibrium and their relative proportions do nol alter during
experimentation.

It can be shown [rom Pauli's exclusion principle that the o]'lho-molcculcs can exist only
in the odd-valoed (7 = 1, 3, 5, ...) quantum siaies while the para-molecules can exist only

in the even-valued (J =0, 2, 4, ....) quanium states. So we have to consider two dilferent

rotational pariition functions (for ortho— and para-hydrogens). These are given by

~J I+ B;_‘"

(Zodorio = 2,2/ +D) €
J=1,3,5-
N 1280t Orar
T =30——=
=3¢ T 4707 41170 T 4o
and
: —rren e
(Zrol)pdra = z(zj +1)e T
~ J’=0.2.4---
Oror _gpBrot

=1+5e¢ T +9¢ T +.-. {14.44)

We know that “al room lemperature, the proporlion of ortho-molecules to para-molecules is
3:1. But as temperature decreases, the equilibrium proportion of para-molecules increases
gradually. It becomes nearly 100% at 20K. And even at lower temperatures, one generally
has a non-equilibrium mixture of ortho —and para —molecules in the ratio 3:1. Thus, we
must define

(C)res = 3 (C0Yerto + 5 (1) pam
We knowthat . '
<E>=NkBT2[a].an .
of Jyy
and

_Cv=a<E> K [ng zalan

o aT aT
Thus,
_ i- 2 a(lnzrol)pam 144
(Vg = | Moa 751 044
and . T
_ 9 za(lnzm)oruw] (14.46)
(CV)orl'.ﬁo = aT Nk T aT - ( " 6)

The calculaled values of (Co)para s (Clorthe and (Cy)y,; are shown in Fig. 14.4 by curves (a),
{b) and (c) respectively. The curve for {Cy)rr agrees favourably with the experimental
observations. '

Finally, we look at the contribulion [rom Ll_ie vibrational degrces of freedom, From
Eq. (14.42), we have
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Flg. 14.4: Temperature varialion of (Cylpam: (Cvdorno and (G

3 .
Uw' =N k T'Z_ l Z,-
b akp aT(l'l yib)

v
1 1
= R 2+ex h}—1
P T
Hence,
. Bv:b
exp[——)
(C ) (U} _ R % 2_..L
Vi ~\ar J, '\ T P
4 Brib
_ R f(%) ‘ (14.473)
\irherg -

{14.47b)

For T >> %, f (E;_i) —— 1 and we recover the classical result. Similar

considerations apply to polyatomic gases but the discussion is more involved. We will not
go into these details.

14.5 SUMMARY

e The partition Function of an ideal monoatomic gas is given by
Z~.= :T:r (2mmkg T)N/2

The internal encrgy U = %RT and

heat capacity Cp = %R

*  Theclassical expression for the entropy of an ideal monoatomic gas is

’ V(2umky TY/? -‘
S = Nkp In [_(ﬁha”—) 2

e The Sackur-tetrode formula accounts for indistinguishabiﬁty of molecules and is
given by

et e it muep emmeea memarm s eaa mmme M e mi—mme ma —em = —er mmiane % mwemr e o e, = — T
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| v (2nmipT
S = NkB IR[TV‘[T) es“'z:l

¢ Therotational partition function

z’”'—G T >> 0,
Yol
Brat Gror
-z =2k, 5| oL
=1+ 3e {7]+Se (T]+--- T << B,y
hﬁ
wherc 0, = —————
€ Fror SEkBI .

e The vitMational partition function

1

Zw-b=—-—
-
2sinh[ =2

sm (ZT]

where B, = Bo

ky
s  For hydrogen, the rolational heat capacity at conslant volume
_3 1
(CVJM; - 'Z(CV)ordw +'E(CF)pam

where ortho refers to the state with parallel nuclear spins and para refers to the slate
with anti-parallel nuclear-spins.

14.6 TERMINAL QUESTIONS

1. Consider a system of N classical linear harmonic oscillators. Calculate (i} the
partition function, (ii) the free encrgy, (iii) entropy, (iv) Cy and Cp.

2. Consider a classical ideal gas consisting of N particles, The energy € of a particies is
given by € = cp, where ¢ is a constant and p is thc magnitude of the momentum.
Calculate (i) the partition function of the sysiem, (ii} internal energy, and (iii} Cy.

3. Consider a classical linear oscillator with
2 .
P 4
£ =-+—+ bx?,
2m

where & is a constant. Assuming that the oscillator is in thermal equilibrium witha
heat reservoir at temperatre 7, calculate (i) the mcan kinetic energy, (ii) the mean
potential encrgy, and (iii) Gy for an assembly of N such oscillators.

4. Prove Eq. (14.39b).

14.7 SOLUTIONS AND ANSWERS

- BAQs
1. Wehave

(),

v 3
- M Gk T |+ Mo ()
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Similarly,

_ (BF') _NknT
T o\ov v

InW= —Zln nit = - (nlnn; - n)
=N-Y njlnp; . -0

From Egs. (13.26 ) and (13.29), we have

n;= %e‘pei S (i)
Substitation into (ii) yicld } ,
mw N ——Ee'B‘-[lnN InZ - Be; )

=N—NlnN+N1nZ+BU

Thercfore,
S =kg In W= Nig In Z + kg BU +N (1 —In N)kg (i)
IL differs from Eq. (14.20) by the factor N(1 ~ InN) kg. In other words,

Zn (i) -

(ZN)correcled = N1

We have

W 3
Si=Nn |lIn|] 2 [+=InT+o
1= IB[H[MJ ) o]
V. 3
= Nokg|In| =2 |+=InT
;s S2 2B|:n[N2]+2n +cn]

L5+ 8;,=8;=Nkgln A/s + Naokp In 143 +§Nk5 InT + Nkg Gy
Ny Ny | 2

On remowng the partition, there will be N pamclcs in space V. So final entropy of the
system is

Sf = NkB [ln (%)+0’0]

Hence, change in entropy §;—35; is

Vi+ V. v V.
Ny+ N In| —2——2 |- Nk A Nykg In | =2
65 = ka(+ a) "(Nl Nz] “”“[MJ Nzks (Nz

The densitics of the two samplcs must be equal if the gases are at the same temperature
and pressure:

i Y2 N
vi WV, V -P
Thus, we have
AS = kp [Nln[ ] Nlln[l) Nzln( )]
p
=0

The Partiion Functlon
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Elements of Statistleal Mechanics Thus, indistinguishability of particles of an ideal monoatomic gas is the key to the
resolution of Gibbs paradox. '

4. For a system with f degrees of freedom

_1L L
U—‘ o Ny T = - RT

U f

N f+2
_ s CV=(aT)V=?R, and CP=Cv+-R'—'

R

Hence,

E&:ﬁ:l.ki
Cy f f

Clearly y decreases as f increases.

. Y=

TQs .
1. The partition function is given by

1
Z=——
Brw

Assuming the oscillators to be indistinguishable, we have
Zy = (Bro)~

orY hw ks T
= - — = —Inl — 1=
Ay [BT]V ng[ n[kBT]+ ] Nkg I:ln [ ™ J+l]
v U=F+TS=NigT

Cy=Nky, p= -(a—F) =0
T

The frec energy F = —NkgTInZ = NkgThn [:m )

av

H=U4+pV=NigT. c,,=[%‘}’-) = Nig
P

2. Wehave
z=5 e ap, dp, ap,

In terms of spherical polar coordinates, we can rewrite the volume clement as

V.. . 8aV(kpT)3:
Z="dnlebrprgp= """ \ZBL)
P "’{"_ PP = oy
Hence,
_ [SnV(kB r)sr
N _ZN___fc!.-)3___ S L
. L 8 J ..
3 3 8V &2
~ U=NigT?*-Z-(In2) = Nk T2 -2 | tn| ——B InT
B ar( )} = Nkp 3T|: ( e J+3n :|
=3NkT
and
CV=3N)'CB




The Partition Function T

We have
i) Mean kinelic energy
2
“Pp¥rzm| P
. I e [ o }dp
- I e—ﬂpzf 2m dp
We have -

I= Te‘p”z"z"’dp

pp?

By putling
m

dp=m&dx '

so that

I=2Te
0

or

2mr

"=

Hence,

mean kinelic cnergy = —

_ JeP (bx%ydx
N je‘ﬂ""“ dx

E

—— = x, we find that
5 x, we find tha

- -_% In (Ie-ﬂfz’2"dp)

_,%J%dx

19
2 9B

[In 2mn=-InB] = k";

L
2p
= _% In (J'Ie-ﬁ""’ dr)

ks T
4

Taotal mean energy for N oscillators

1 1
U=|=kgT+—kgT
(2“ 4“)

We have
fixy=(012Qx+ l)cxp[—
50 that
1 1
Ef(o) =3

Stmilarly,

£10x) = 2exp( -

x(x+1)0,,

x(x+1)0,,
T

3
N==NkgT
4 kB

)

T

x(x+1)8,,

) +{(2x+1) _cxp(— T

)x

(-%)(2,: +1)
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» point out the inadequacics of the classical theory

o derive cxpressions for the Bose-Einstein and Fermi-Dirac distribution functions

. apply Bose-Einsicin statistics 1o an assembly of photons

e -explain the behaviour of liguid helium at low temperatures
e explain the concept of zero point energy
= explain temperature dependence of heat capacity of clectrons, and

e predict thermodynamic functions of degenerate B.E. and F.D. gases.'

15.2 TOWARDS QUANTUM STATISTICS

In classical physics we postulate thal it is possible to determine the position and

momentum coordinates of a gaseous molecule/atom simultaneously as precisely as we -

like. All that we have to do is to [ollow its trajeclory as it moves in spacé. This
means that these particles are distinguishable and can be labelled, Bul this is not true,
You will recall that Heisenberg’s uncertainty principle forbids determination of the
position {g) and the momentum {p) of a particle simultaneously with infinite
precision, If the uncerainties in Lthe measurements of ¢ and p are Ag and Ap,
respectively, we have. ’

I

Aqépzﬁ : {15.1)

where & (= 6.63 x 107 Js) is Planck’s constant. That is, the product AgAp cannot
be made less than A/4x. So it does not make much sense to lalk about the trajectory

of a particle. Morcover, the task of labelling particles is just impossible and when we
study the behaviour of an assembly of identical particles statistically, we should treat
it as a collection of indistingnishable particles. It is imporiant to remark here that
thongh Heisenberg enunciated this famous principle in 1924, the ramblings about the
hcalth of the classical theory became (0o loud o be ignored by 1900 iself. Lord
Kelvin spoke about two dark clouds on the horizon of classical physics; the heat
capacity of solids and the black-body radiation. This shock the edifice of classical
physics to ils very foundations. You may now like to know about these in some
detail, The paragraphis that follow are devoted to these two aspects.

Heat Capacity of Solids

You would recall from your school physics curriculum that solids behave as a
collection of independent harmonic osciltators, and cnergy associated with them is
cqual 1o 3NakeT, where Ny is Avogadro’s number. Hence, heat capacity at constant
volume is constant, equal to 3R regardless of Lhe subsiance:

Cy = (a—UJ = 3R =24.9Tmol ' K~ ) (15.2)
aT Jv . - .

This now famous Dulong and Petit’s law does not exhibil what experiments reveal

" about lemperature variation of heat capacity. The deviatons from this law, particularly

in the low temperature region are siriking, as shown in Fig. 15.1. As T decreases
below room temperature, Cy also decrcases and becores zero at abselute zero,

of - - -

INu,

1 I -
¢ 100 ) uetd

Fig. 15.1: Temperature variation of constant solume heat capacity of a solld
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A qualitative theorctical explanation was provided by Einstein, using Planck’s ideas on
guantisation of cnergy. You will learn these details in your PHE-11 course on Modem
Physics. The key to Einstein’s success was (hat he discarded the law of equipartition
of encrgy. The mean encrgy of a classma.l oscillator is given by € = knT In the
quantum mcory. we have .

'_!..{.____.._1 - . .
€= 2 - { s o) - as3)
-1
exp[kBTJ - )

where ?! = h{2m.
For a system of N osc:l]ators vibrating with Einstein freque.ncy mg, this gives

2 exp(hoe / kq -1

so that

3N, hege™rimT ( hog ]
Cy =

[exp(hog / kpT) - 1] 42 T2

- 3R( hivp ')2 ¢"oelkeT

kyT [eam.;ugr _ 1]2
_ap(8) T . (55 |
( T J [eesn' 1]2 : ) (55 |

whcrc we have introduced Einsicin temperature 8 = hwg./ kg. For copper, a plot of
this equation is shown in Fig. 15.2. You  will note that this relation reproduces all
the general features of the observed curve at least qualitatively. However, there-are

. disagreements in details, particularly near absolute zero.

) CV cul mude™' K7

/e -
© Flg. 15.2: Plot of Eq. (15.5) for copper

Debye (1912) subscqucnlly refined Einstein’s _theory and oblamed an excellent
" agreement with experiments.

" The heat capacily of metals also posed an interesting puzzle, in fact a challenge, o the
classical physicists. You know that every metal contains free elecirons. If we assume
that these electrons constilute a monoatomic gas, they should conwribate an amount

2 R0 Cy. Hence, the. heat capacily of a metal should be 3R + 3 R = 3 R. However
we experimentally {ind that metals obey the Dulong-Pelit’s law as good as do insulators,

This riises the question; Why do eleclrons not contribule (o thermal processes? The fact
is that we should not analyse this problem on classical arguments — electrons obey

" Fermi-Dirac stalistics. A satisfactory explanation was given by the German physicist

Sorrim;rfcld in 1928 an the basis of quanium slatistics.

_The problem of black-bedy radiation

We now consider the commonplacc phenomenon of black-body radiation. It desorvas a
unique place in physics because it gave birth (o the quantum-theory. You know that
when a body is heated, it emits electromagnetic waves (from its surface) in all -

1
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dircctions over a broad range of frequencics. The spectrum of radiaied frequencies
from O o wpeaks at a frequency which is proportional 10 the absolule lemperature of
the body. Suppose that such thermal radiation is contained inside a hollow cavity
whose walls are opaque to radiation and maintained at a constant temperature. The
radiation in the interior must, therefore, have cxactly the same spectral disiribulion as
that of black-body radiation. In gther words, the cnergy distribution over various
wavelengths becomes a function of lemperature, independent ol the shape and size of
the cavity (Fig. 15.3a). A small opening in oneof (he walls cnables us to study
experimentally the emerging radiation. Such' experiments were carricd out by a large
number of investigators in the period 1895-1900. We may make particular mention of
Rubens and Kurlbaum. The results of these experimments established beyond doubt the
inability of classical theories 1o reproduce experimental curves.

Let u, dv denote the energy density {encrgy per unit volume) between v and v + dv.

Fig. 15.3(b) shows the cxperimenlal curves for u, at two diflferenl iemperalores.

A
Abu: | | ——= Planc .
—-—-—Raylcigh Jesns

g A e

e 1 my

f-d
L]

j

a
-l
i
ES
-
a
e

)
|

- (b}

Fig. 15.3: (1) The electromagnetic radlation inside an oven is trealed as o photon pas in

equllibrium wlith the aven walls (b) Spectral distribution of energy In black-body
radintlon.
Lord Rayleigh studied the problem using ideas of classical physics and obtained an
expression for uy dv. Jeans discovered a numerical crror in his formula and
subsequently corrected it. This so-called Rayleigh-Jeans law is of the form

B2

Yy dv == dvE (15.0a)

C
where £ is the mean energy of an oscillator. Lord Rayleigh and Sir James Jeans used
the law of cquipartition of ¢nergy and used € = k7. Using this resull in the above
equalion, we obluin

8mv?

u, dv =——kp T dv (15.6b)
For small valucs of v, it reproduces the experimentul curve very well. However, lor
v — oo, Eq. (15.6b) has a serious [law; it prcdchs that the total cnergy density will

be inlinile:

u= ju dv = o ] . : (15.7)

L=

This unphysical situation was termed the ultraviolet catastrophe by P. Ehrenfest.
Wicn carricd out thermodynamic a.nalys:s of black body radiation spectruin and
showed that u, is of the form

n, dv = 1-3!-‘(;——.} (15.8)

You can easily vérily that this resull gives a finile u which varics as 7%, in
accordance with Stefan's law. Morcover, the [requency al which u, is nmmmum is
direcUy proportional 1o 7.

" SAQ I

Using F[%] = ¢~2!T where ¢, is a constant, calculle « from Eq. (15.8).
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Howcver, Wicn's law fails at small value of v. It means that somcthing is rcally
wrong with classical thcory. A look at Fig. 15.3 will convince you [hat the classical
theories fall between two stools and the two cnds of the spectrum remain disjoint.

It was at this stage that Max Planck proposed a remarkable idea. He arpucd that
encrgy is not a continuous variable; it is discrete, in fact quantized. That is, emission
and absorption of encrgy tukes place in integral multiples of hv, called quanta. Tt
means that cach oscillator can posscss only discrete energics; 0,Av,2Zhv ««- so that

£, = hhv (n=0123,..) (15.9a)

To caiculate the number of oscillators-of energy €, at a temperature T, Planck’
assumed thal Boltzmann statistics holds good. Then, it readily follows that

N, o e EalknT (15.9b)

Hence, the mean cnergy of an oscillator is given by

_ inhve'“""”ﬂr
N.ﬂ n =
eo ZMEn _ ash (15.10)

P A i g-mwieT
. n=0

You can casily perform thesc sums (o oblain
R LA— : (15.11)
“p[kiur )" 1
SAQ 2 =~

Verily Eq. -(15.11).
On ¢ombining Eqs. (15.6a) and {15.11) wec obtain

3
Sﬂi;v dv (15.12)
e - hy
expl — -1
This is Planck’s law of radiation. He announced it 10 the German Physical Socicty on

14th December, 1900, 1t reproduces the experimenial curves of Fig. 15.3 beautifully.
We will discuss important aspects of this faw in Sce. 15.3.

u,dy =

Nolwithstanding the cnormous success of his new law of radiation, Planck was quile.
uncasy about his quantum hypothesis. He himself (ook quite some lime to appreciate
the significance of his work, which had no counterparl in classical physics. It is
interesting to know what Jeans remarked while comparing his theory with that of
Planck:

“The methods of both are in offect the methods of statistical mechanics and the
theorem of cquipartition of encrgy but 1 carry the method further than Planck,
since Planck stops short of the step of puting £ = 0. Of course, I am awarc that
Planck’s Iaw is in good agreement with experiment if & is given a valuc other
than zero...."”

The resolution of Gibbs paradox led us to conclude that identical particles have (o be
treated as indistinguishable. Heisenberg's uncertainty principle tells us that the concept
of the wajectory of a pasticle is meaningless. Hence, particles cannot be labelied, The
detailed consequences of this concept can be undersicod [ully only after a thorough
understanding of the principles of quantum mechanics. You will know thesc in
PHE-11 course on Modem Physics. For the present it is sulTicicnt to note that:

a) A simulancous delcrmination of a posilion and momentim cannot be
accomplishad 1o infirite precision. Instead, uncertainitics Ap and Ag in these
quantitics arc subject 1o Ag Ap ~h. that is, the volume of a cell in phase space
cannot be arbitrarily small. In fact, the smallest volume of a ccll must now be
taken as /. A still [iner subdivision of the phase space is not allowed.

Quontum Statistics
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Pauli's exclusion principle statcs that
wvo particles having all the four
identical quantum nombers cannot
occupy the same state.

48

b} According'to Planck's hypothesis, energy is quantized, it is not a continuous
variable and can lake only discrete values, This has an important consequence in
that all integrals éppearing in {he theory have to be replaced by sums. This
is called the diffraction effect. Nevertheless in many situations we calculate the
sums by replacing them by suitable integrals. Some examples of this lcchmque .
will appear later in this uniL

¢} The basic feature of quantum statistics is the indistinguishability of identical
particles. In other words, permutation of particles does not Iead w a different
statc and should not be counted as such. This has profound consequences. All
known clementary particles can be classified into two categories on the basis of
-their spin.- You will recall from your school science curriculum thal spin is the
inrrinsic angular momentum of an elementary particle, quantized in units of 7,
Particles having integral spin (0, &, 52, ...... ) obey the Bose-Einstein stalistics

and are termed bosons. This applies to photons, pions, “He, elc. The number of

bosons thal can occupy a given quantum- -state has no restriction. Bosons love
company; they arc prepgarious!

HSR

272
Fermi-Dirac siatistics. Particles like elcctrons, protons, neutrons, muons, €ic.

belong to this category. The number of fermions in a quantum-state is
detertiined by Pauli’s exclusion pnnmple For example, there cannot be more
than 1wo electrons in the same quantum state. You are familiar with the
implicalions of this principle in electronic configuration of clements in the
Periodic Table. Fermions tend 1o avoid onc another! In general, the number of
fermions in a quantum state is limited w0 (25 + 1), where $# is the spin of the
fermion.

Particles with half-integral spin — . arc termed fermions and obey the

These features constitute the symmetry effects. You will lcamn in your third level
courses Lhat bosons and fermions are characlerized respectively by symmetric
wave-[unctions -(which do not- change even if the particles are permuled) and

antisymmetric wave-functions (which change sign on a permutation). (The [imit # — 0 is

usually called the classical limit.)

You should now Lest your qndérslanding by solving the following SAQ.

SAQ 3 ‘ _

Helium has two isotopes, viz., *He and “He. Classify these as fermions and bosons.
Justily your conclusion.

To illusirate the consequences of mdlsungulshablhly, ler us consider the following
simple example.

Suppose .we have a system consisting of only two particles A and B and three
quantum states, { = 1, 2, 3. According to classical statistics, these can be distributed
in nine ways, These are tabulated below:

Stales — 1 2 3
Distribulion
4
1 AD - -
2 - Al -
3 - - Al
4 A B -
5 B A -
6 A - B
7 n - - A
§ - A n
o] - B A
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" That is, we have 3% possibilities. It is straightforward to show that if we have N;
particles to be distributed among g; states, the total number of ways is g?'".
" In the case of quantum statistics, we cannot distinguish A from B. However, in

B.E distribution, there is no restriction on the number of particles that can occupy a
given state. So there are only six possibilities:

- States _y 1 2 ' 3
. Distribution r
1 AA - -
2 - an -
3 - - AA
4 A A -
5 A - A
(43 - A A

In éenem.l, the result is (N‘ +1ff - 1). This can be proved in several ways. We shall
I

do it using a simple, yct interesting method. (Another way to arrive at the same result
is the subject of TQ1.)

Suppose we wanl to distribute N; indistinguishable particles among g; cells. Imagine
the ¥; - particles, denoted by slars and arranged in a line, as shown in Fig. 15.4a. The
cell boundaries may be represcnted by (g; + 1) vertical bars. Far example, when gi=3

and N; = 10, a typical distribution is shown in Fig. 15, 4b. .

e B o ok o ok W ok WL |t|t-t”tt¢¢|*#|
(a) (b)

Fig. 15.4: (a) N, particles arranged along a llne. (b) A possible distribution for
N, =10 and g, = 5. :

There is one paricle in the first cell, three in the second, none in the third, four in the
fourth, and two in the fifth. The total number of stars and bars is (g: + 1+ N)). Since
the two end positions in such a diagram would always be occupied by bars, the
required number of distributions Q is equal 1o the number of ways of choosing N;
positions for the particles from (V; + g; + 1-2), i.e. (N; + g; - 1) positions. Hence

Q- (N,- +h§-'£ - 1) | . .(15.13)

S 4
If we now put Ni=2 and gi= 3, we gl Q = [ ] = 6, which reproduces the earlier
result 2

In the case of Fermi-Dirac statistics, there can, at best, be only one particle per cell
and we necessarily have #; < g;. Of course, for particles of spin s#, the number of
possibilities have to be multiplied by the factor (2s + 1). For the above-said system,
we have just three possibilities as shown below:

Stales -y 1 2 3
, Distribution -
1 .. A A -
2 A - A
. 3 = A

Qun.ntum Statistlcs
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If we now define a parameter r as

Probability that two particles are found
in the same state

r=. —=
Probability that the particles arc found
in different states ~

we have

rm=%=%,rnn=%=%,and rFD_—'O'
These values of r illustrate. a striking difference between these three statistics. You
should note that rgp = 0 because of the Pauli’s principle. On the other hand, rpg is
greater than rve. That is, bosons have a greater lendency 1o bunch together like
classical particles. This explains why the condition for realising a laser in actual
practice is statistically favourable. '

". We may now conclude (hat a remarkable feawre of quanlum stalistics is the presence

of correlations even in a non-inieracting system. We are now cquipped wilh the
necessary tools for a detailed discussion of quantum siatistics. Wc begin by
discussing an ideal Bose-Einstein gas.

153 IDEAL BOSE-EINSTEIN GAS

We shall first derive the Bose-Einstein distribution law, As we show, this paves the
way for Bose’s derivation of Planck’s law. In fact, when Planck was nol convinced
of the physical basis of his derivation, Bose proposed the correct method for treating

~ a system on the basis of quantum slatisLcs. Einstein exiended his ideas to the casc of .
material particles obeying Bose statistics. During his investigations, Einstein came (o

the remarkable conclusion that Bose-Einstein gas can tend 1o a highly ordered state.
This phenomenon, known as Bose-Einstein condensation, was invoked by F. London
to explain the superfluidity exhibited by liquid “He.

15.3.1 Bose-Einstein Distribution Function

" Consider a sysicm of N non-interacting bosons occupying a volume V and sharing a

given cnergy U. In the limit of large V, the cnergy levels of the system are very
closely spaced. Hence, we can brackel (he energy levels into groups, which may be
cilled the encrgy cells. This is known schematically in Fig. 15.5. '

2

| sl
cell

lﬂ

Flg.15.5: Enerpy levels of a system bracketed into cells

We assume, without any loss of generality, that the number of levels in the ith cell,

gi» is very much gréater than onc (g; >> 1}. It i§ stilf reasorable [6 talk about the = ~

encrgy of the levels in the ith cell as g;, since they are lying very closc to cach other.
Let Q; denote the number of ways in which N; parlicles can be distributed amongst

 the g; levels of the ith.cell. This.number is already available o us from Eq. (15.13).

We have :

C(Ne+g -0 _ @i+ N -1

Q""__( N; )“N.—!(g,.-l)! (15.14)
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Denoting by WV, Ny, ..., N, ..'..) = W ({N;]), the number of ways in which we can
put N particles in group g,, N particles in group g,, ...., N; particles in group g, we
have .

(g + N - D)}

NhHh=0nQ;=1 TR 15.1
WMD) = 0@ = Ty mi s (15.15)
We maximize W subject to the conditions
Y N.=N ‘ (15.163)
- :
and YN E=U : (15.16b)
- .

Then,‘Eq, (15.15) gives
W= Z[]n (g;' + N -Di-In (g,-—-l)!-;-ln N1

Using Stirling’s formula, we have

In W=Y[(g+N;-1) In (g +N; —1) - (g; + N; ~1)

~(g -1} In (g 1)+ (g ~1)— N; In N; + ;]

= [g +Ni) In (g; + Ni)- g In g — N; In N;)

= > [g;+Ni) In (g;+ Ni)—g; In g;~ Ni In Ni} : (15.17)

since Nj and g; >> 1.

The condilion for maximum probability is’
SlnW =0

on combining this with Eq. {15.17), we get

SlmW =Y [(g + Ni) N+ In(g; + Ni)EN;

1
(g + Ni)
-&Ni —a8NiInNi]=0

i ]
3 [In(g; + N;)~InN;J&N; = 0 (15.18)
Since N and U are fixed, we have from Egs. (15.162) and (15.16b)
8N =8N, =0 _ (15.192) °
ind - )
U =€ MNi=0 ' "~ (15.15b)
i

Jultplying Egs. (15.19a3) and-{lS.in) by G and -8, respectively. and adding to
2q. (15.18), we obtain _
Yn (g;+N)-In Ni+a—-Be;] 8Ni=0 (15.20)

. I
Since the variations EN,- are arBiLrary, the coefficicnt of each term in Eq. (15.20) must
qanish. Hence, we have

.+ N; Y
In [L] = —a+Bg
N; :

Quontum Statlstlcs
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or .
N _ 1 ' . .
e . 15.21)
As before, we put ¢ cqual to A. Then, Eq. (15.21) takes the form
Ny 1

e o (13:22)

Yet another way of rewriting Eq. (15.21) is to define a parameter called the l‘u.gacily as
2= e @ = pPh “ (15.23)
where W is the chemical potential. Eq. (15.22) becomes

N, 1 L
e (15.29)
eBlei-n) _ 1

LN ' . I .
It we treal energy as a continuous variable, the number of parlicles with encrgy € is
given by

N(e) _ 1 1
2(€) T eBe-p o A-leBc 1

(15.25)

This relation is known as the Bose-Einstein distribution. How il differs from Lhe
Maxwell-Bolizmann or a Fermi-Dirac distribution ? To discover this you should solve
the following SAQ..

SAQ 4

a) In classical siatistics, l@ic number of ways in which N; particles can be distribuled
among g; slates is g,-”" Divide this by N;! and obtin the Maxwell-Bolizmann
distribution. ‘

b) <Calculate the number of ways in which N; fermions can beé accommodaled in g;

cells if N; < g, - ave
A

Fermions

Flg. 15.6: Comparlson of BE, I'D and MB distributlons. Lvery system Is taken at lhe
same temperature and has the same number of particles

A plot of Eq. (15.25) is shown in Fig. 15.6. For comparison, MB and FD distribution
functions are alse shown. You will note thal the distribution of bosons is skewed
towards Iower encrgy states. That is, there is larger probability of finding bosons in
low level multipiy occupied states.-On the other hand, fermions arc skewed lowards

higher energry- states, We will now 1lluslmlc the statistical method of arriving at - -

Planck’s law of radiation.

15.3.2 Bose’s Derivation of Planck’s Law

Indian physicist S.N.-Bosc gave a very eleganl derivation of Planck’s law in 1924, ~
He communicated his work to Einsicin, who immediately recognised its significance.
He wanslated it into German and got it published. In a sense, this paper marked the
birth of quantum statistics.

We consider the cquilibrium propertics of clectromagnetic radiation cnclosed in a
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cavily of volume V at temperature 7. From your school physics course, you may
recall that the disiribution of cnergy among the various [requencics is independent of
the nature of the walls of the container; it is a function of T and V only. We now
wish 1o determine the form of this function. From a quantum mcchanical point of
view, the radiation in the cavity can be considered as a collection of photons of
different [requencics moving with speed of light completcly randomly. The photons of
the. samc frequency arc indistinguishable. This is a perfect cxample of a system of
non-interacting, indistinguishable particles. ’

The encrgy of a photon of frequency v is taken (o be Av. We should also remember
that photons are particles with zero rest mass and spin fi. Each photon can have two
kinds of polarization. Thesc are the wo transverse modes; their being no longiwdinal
photons. In other words, the propagation vector and the polarization vector (giving the
direclion of polurization of the cicctric ficld associated with Lhe photon) arc normal to.
each other. (This is a consequence of the trnsversality of the clectric field, ie.,

- =
V.E=0)

You would also appreciate the fact that atoms can cmil or absorb photons and the
total number of photons is not constant. In other words, we have only one constraint,
namely ¥/ = conslant. This csscntially means that in Eq. (15.25), we need only one

Lagrange multiplier B and o = 0 or A = 1. Then Eq. (15.25) reduces to

N
Ny 1 (15.26)

g, e™-1

Let g, dv denote the number of quantom states between v and v + dw. We can derive
an cxpression for this using Lhe principles of quantum mechanics. However, a simple
argument can be used to get the result. Let us first caleulate g dp, the number of
guantum states between p and p + dp. The volume of phasc space occupicd by a
parlicle in a box of volume V and with momcntum between p and p + dpis Vd°p.
Since d3p = p2dp sin0dOdd, integration over 8 and ¢ gives 4m. Since cach cell has

volume }:3, we have

4mp24,
g, dp = _“‘;:J—PV - (15.27)

From de Broglic’s relation
_h_ v
p= A€

and

pldp = (ﬁjzvz dv

c

Inserting this result in Eq. (15.27), we get

g, dv = 4-“3‘, vidy
€

Since photons can have two kinds of polarization, we have

g, dv = 811:;:/ v2 dv
c

50 that
TR -7 . LT T

N. = L Xl — - - - ’1-' Caly

¥ P >

Let E,dv denote the encrgy lying in the frequency range v and v + dv. Combining
Eqgs. (15.26) and (15.28), we obtain

SmhV p3dv
¢ P

We prefer (o speak of energy density rather than toal cnergy. Why? This is because
the total encigy of photons depends on the size of the oven but the cnergy density
- does notl. 1 we let i, represent enerpy densily, we have

EIJ' d‘l}' = N‘u hvdl’ =
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- 3
payo B0 _8mh Vi

v v - 3
- ¢ exp hv _1
kpT

(15.29)

-

It is important 1o note that Planck had derived the law by combining classical
electromagnetic theory and the gquantum hypothesis. On the other hand, Bose in a
manuscript to Einstein in 1924 treated electromagncetic radiation as.a system of
indistinguishable particles which have the same propertics as particles of light—what
we now call photons. Subsequent investigations Ied Einstein 1o the concept of
stimulaicd emission, which culminated in the development of masers and lasers—
devices finding use in medicine, industry, encrgy production in fusion reactors, and
military applications. Before we consider limiling cases of Planck’s law you should
lcarn to write it in other equivalent represcntalions., For this you should solve the
following SAQ.

SAQ 5 ' ' e

Rewrite Ey. (15.29) in terms of cnergy. Integrate the resulting cxprcssmn o compule
average number of photons int an enclosure,

Limiting Cases
Lct us now discuss Jimiting cascs of Planck’s radiation law. At short frequencies

(long wavclengihis) we note that il

<< 1, the exponenlial lerm

B .
BT = 1 4 hv
kg 1
so that
BT _ ] = fiv
ky T
Henee, Eqg. (15.29) reduces 10
wy dy = (‘Z—’;kﬂ 'r} 2 dy (15.30)

This is the Rayleigh-Jeans law

“hv . . . . .
For -!1-—- >> 1, we can neglect 1 in comparison with the exponential werm in the

1
denominator. Then we find that

e .-rr-..

BREEL LT o

8
C]-

u,dv =

e-heisT gy (1531

This is Wien’s law. It is siraighiforward 1o calculate the total area under the Planck

4
or the Wicn curve. These are given by %(5 6.49) and 6, respectively. Tl is .

obvious What the arca under the Rayleigh-Jeans curve, Eq.(15.30), will be infinite!
This, you wiJl recall, is Ehrcnfcsl’s ultraviolet catastrophe.

11 is also possible to rcLuc Siefan’s constant ¢ and Wien's constant & o Planck’s
‘constant. To illustraic this we calculate the ofal -cnergy densily, i, in the cavity. From

Eq. (15.29), wc have

= e -

—l——— 8 =R

_ _8mh [ Vv . ‘
u—_[u,, dv = gt .-[e"”o‘inT;_l ‘ {15.32)
0

To cvalule this integral, we change the variable of integration by delining

RV

ky T




ke TV ' .
so that v'dv = (—B};—) x?dx. Substituting this result in Eq. (15.32), we get

"= 8n (kg T)* -Jz 3

(ch)? pe -1
The integral occurring in {his t;xprcssion can be calculated using the method outlined ’
in Appendix 1. This has the valuc -
! o 3 4
j xx dr = T 4
0 € -1 15 i
50 that
' w= 8 (kg TV = al ' (15.33)
- 15(ch)?
where
8ntkg

a = ——8 = 7.56 %1078 Im K “
13h%c

If we consider the sun as black body whose interior consists of photon gas at constant
temperatute of 3 x 10°K, we find that cncrgy density

i = (.56 % 1076 Im 2K ) % (3 x 10°K)*
= 6.1%10%Im™
The total volume of the sun is nearly 1.4 X 10" m so that
U =gV = (6.1x10°7m ) x (1.4 x 107 m?) = 8.6 % 10371

I we assume that photons cffusc oul of a small holc in the black body (sun), the net
rate of fow of radiation per unit arca ' :

2WkR .4
R = —  —— .
4 e 15h%c2
= oT* _ : (15.34)
where
2 5p4
6= 3"‘1‘2 = 5.67x 1075 Tm s 'K
15h7¢

is Stefan-Bollzmann constant.

In your school physics curriculum you have studicd Wicn's displacement law A,T = b.
You can obtain this cxpression starting [rom Planck’s law. To convince yoursell, you
_ should solve the following SAQ.

SAQ 6 -
Express Eq. (15.29) in terms of A. Supposc . dh peaks at A =Ansuch thatA, T=b
By differentiating the expression S0 obtained; obtain an expression for b.

You have now secn Lhat Planck’s law of radiation incorporates all the classical laws

“and is the only comect law. Moreover, 1t has been verificd experimentally by several
workers. In the quantum picture, we regard radiation in a cavity as a gas of non-
interacting photons. You may, therefore, expect that all familiar results of the kinetic -
theory of gases should hold. Let us show it by deriving an expression for the pressure .
exerted by radiation on the walls of the enclosure,

15.3.3 Radiation Pressure and Entropy of Photons

We can wrile the parlition function for photons as (Eq. (15.26))
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Inz, = ._g' In [1 - exp(--Ba,,)]

We rcpla'cc the summation by imcgral.ion‘. This gives

InZ,, = —(%’;—) VTPZ In[1 - exp(~Bhu)]dy
1]

Hence, Helmholtz free energy is.given by
F=-kyThnZ,

8nkgTY = i
=( nc: )V{vzln [1 —exp(-Pi)ldy : -

To simplify this expression, we introduce a change of variable by defining

x = Bhv

2

50 that v2dy = Ezﬁ On substituling it in the above integral, we obtain
1

[~}

414
F:(—_snﬁ“f )ijzdx In(1-e¢7%)
: h'e s

On integrating by parts, we get

m 2 3,z
sz In(l—c“‘)dx:—-[—I X e_xdx
o 301—e
17 x*
= —-= dx
3;[e’—l

= -3 T4

= —w%745

Henee, the expression for Helmholiz free energy reduces 1o

8r3kj 1
F= |28 |y Ly
a5h°¢ 3

The radiation pressure, defined as

o= _(i)
l oV Jr .
is given by
_ Sn:sk;T“ _ u(T) ) (15.36)
ashic® . 3 ' ' ' i

It is interesting to note that for a photon gas, pv =“%. Can you recall the

corresponding expression for pressure excried by ideal gas 7 It is equal 1o -Z—E. So
we can draw a useful analogy LhaL_radialion behaves like particles. 3

You can now easily show that entropy .»f an assembly of photons is given by'

__(oF
§= [ar)v
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32n5kj 3
"= | —— | VT 15.3
[45!13.':3] ' - (_ K
and
)
Cy=T|=) =38 15.
Y ( a7 }v _ _ (139)

This shows that entropy of the sysiem is proportional to YT’
If radiation undergoces an adiabatic -change (§ = constant), we find that
v1® = Constant

In terms of pressure and velume, the equation for the adiabate of the system takes the
form

pV4 = Constant ' . {15.39)

From this you may be tempted Lo conclude that the ratio of specilic heats at constant
pressure Lo that at consiant volume for a photon gas is 4/3. Actually this ratio is
infinite !

Bosc siatistics finds vsefu! application in explaining the remarkable phenomena
~ exhibited by liquid hclium, parlicularly at low temperaturcs. We will now give its
brief account.

15.3.4 Liquid "He and Bose-Einstein Condensation

The {irst element in the Periodic Table, hydrogen, has contributed in a large measure
10 the development of new concepts and theories in physics. We discussed the
rcfinements with particular reference to temperature variation of heat capacity in Unit 14.
The second clement, helium, is' still more remarkable. Do you know that its existence
in the sun was discovered during a solar eclipse in India in 1868. (Ramsay could
produce it in the [aboratory almost thirty years later.) Helium derives its name from
the Greck word helios, which mcans the sun. Among all the elements, helium has the
unique distinction of not solidifying cven at the lowest altainable temperatures. It is
due 10 very weak florces between helium atoms. (Iis solid phase can be obtained only
under an external pressure of about 25 atmospheres.) The p-T diagram, shown in Fig.
15.7 indicates the abscnce of a triple-point. Al atmospheric pressure, helium condenses
ino a normal liquid at 4.2K. As the temperature js lowered further, liquid helium
exhibits another phasc transition at 2.18K. You may expect helium. to solidify. Instead,
it changes into another liquid of very surprising, in facl, unique properties. The new
phase is called liquid He II to distinguish it [rom the phase above 2.18K, which is
termed liquid He I. You may recall from Unit 7 of Block 2 of this course that helium
transition is a second. order phase iransition. The point at which the phase transition
occurs is called the A -point. This nomenclalure is used because the shape of heat
capacily curve rescmbles the Greek Ietter “lambda’,

cv
a0

1
14 1 18 )6 22 24 318 3E 230

I-‘_ig. 15.7:_(:1} p-T diagram of *He, () temperature varlation of heat capacity of
helium near X -paint '

A more dramaiic manifcstation of the unusual properties of liquid He 1I is its ability
to flow through very namrow channels with zero viscosity. This property is known as
superfuidity. A scries of beautiful experiments have been designed to illustrate the
canscquences of this property. Here, we shall discuss only one of them, viz. the
fountain effect.

1 I 1 1 L TiK) :
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-
Fip.1538: "Che fountain effect

We take a U-tube and immerse it in a bath of liquid He II, as shown in Fig. 15.8. ~
The lower portion of (he tube is filled with emery powder. On shining a beamn of
light on the powder, heat is absorbed and ihe superfluid tends 1o fow from the bath
10 the houer region. The motion is so violent that a jet of helium is forced up
through the vertical ube and emerges as a fountain, going as high as 30 cm.

F. London (1938) suggested that the A -transition should be identificd with Bose-
Einstein condensation. Einstein proposed a simple model that allows us 10 apply
BE statistics to Jiquid helium in order o' gain insight into ils peculiar behaviour.
Following him, we assume that the distribution of excited states accessible 1o the
atoms of liquid helium is that of a quantum gas and treal the ground state separately.
If there are N atoms in all, let Ny be in the ground state and N,; in the excited slate.
Then, :

N=Ng+Ne (15.40a)
or
= 172
N-Ng=CV jl—ﬁ-dL (15.40b)
o — EEH.'BT =1 .
where
R 1
Ns‘l = RERT _

and C = %(kan T)m.

-

To cvaluate this integral, we make the substitution £/ kp T = x. Then.

e"2de = (kg T)¥?x"2dx so that for a completely degenerate gas (A = 1), we get

w172
N-N, = CV(kBT)mj%
o €~

= CVikg T)¥2T(3/2)L(372) (15.41)

where T(3/ 2)=-—'J2£ is gamma function and { {3/ 2)= 2.612 is the Ricmann - Zet

function ol order {7 2).

-
-

it shows that number density of excited particles is a function of temperature. As

T > 0, Nee — 0 and N 5 N, i.e., 2l particles condense into ground state. This
phenomenon is referred (o as Bose-Einstein condensation. However, as T increases
N, also increases; it may become arbilrarily large. Bul N is finite and N has 1o be
necessarily less than (at best equal 10) N. We therefore postulate that Eq. (15.41)
holds only as along as Ny € N. If T, is the maximum temperature which satisfies i,
then -

CVL(312) (B/2)kaT)?lorT<T,

= N forT >, (15.42)

Nex

That is, at low emperatures, the number of aloms in cxcited states increases as 77
until all atoms arc in the exciled states al iemperature T.. SO we can wrila

N

CVT(3 L3/ 2 kg L)

or

il

213
. L N__
kg [ cvr(3f2)C(312)]

§2 N 2/3
2nmkg [2.6121./] " (15.43)
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T. is kpown as the Bose-Einstein condensation temperature.

In the framework of this model, we can wrile N, and N, in terms of M. To do so, we

note that
32
Nee _tT
N 1

or . . )
)
N, =n|EL .
(Tc] (15.44)
Hence, 7
N,
Ny=N-Ng =N|:1—?“]
e 2 -
T 3 _
T . (15.45)

It shows that at 7= 0, all particles condense into the lowest encrgy state. Fig. 159

¢I

N
shows how and -N~’— vary with temperature.

If youuse A / ¥ =2.2x10%mand m=6.65x10"" kg in the expression for Tz, you
will get . '

T,=3.13K

which is close 1o the obscrved value of 2.18K for the onsct of condensation in Liquid
helium. - .

- .-\l_l in excited states for T > T~

Fip. 159 ; Plot of N,; and ¥ as a function of temperature according to Elnsteln model

We can now say that helium II consists of two components, a normal {luid
component and a superfluid component, which is characlerised by remarkable
properucs’ like apparently zero viscosity and infinite thermal conductivity, This means
that irrespective of where you heat the liquid, it will cvaporale from the top surface.

~ (On the contrary, fluids such as walcr vaporise from wherever. the heat input is.) The

He 1 — He 1 phasc transition is visually characteriséd by thie disappearing of ‘bubbles
and boiling.

The 2.18K phase transition from He-I (o He-1I can be explained, atleast qualitatively,
using Bosc-Einstein statistics. It tells us that, condensation into the ground state is a
necessary condition for the occurrence of superfluid behaviour.

Having discussed the ideal B-E gas and some simple Boson systems, let us now
consider an ideal Fermi-Dirac gas.

g

Quonium Statlstics

- 59

WA —r

T

e




Elements of Statistlenl Mechanles

154 IDEAL FERMI-DIRAC GAS

-

We have secn that the wave Tunction of a system of indistinguishable particles
possesses definite symmeury properties. For bosons, the wave [unction is symmetric
whercas for fermions, which are subject 10 restrictions imposed by.the exclusion
principle, the wave function is asymmetric. You may now ask: Can it be a
combination of symmetric and antisymmetric wave functions? It can not be so. To
determine the thermodynamic properties of an ideat Fermi-Dirac gas, let us [irst
obtain the distribution function. '

15.4.1 Fermi-Direc Distribution Function

In Sec. 15.3.1 we derived B.E. distribution function. In the present case, the whole
exercise has to be repeated with appropriate changes. We know that fermions are
subject to Pauli's principle and not more than onc particle can occupy a state. Then,
from SAQ 4(b) you would recall that the number of ways in which we can distribuic

N;
ways whereby we can put N particles into the various levels are

N; particles into g; states (celis) of level i is given by (g, ) The total number of

P — 8i ). &
wn=11(£) T (15.46)

This distribuiion is subject to the conditions ‘that total number of pamclcs in the
system and the encrgy of the system remain constant. That is,

aN = - ESN[ = O . (15.4?3)
and :
U = ZbNe = 0 (15.47D)

As beforc we wish to know the most probable distribution by finding the set of
numbers which maximise W. We do this by maximising the logarithm of W, rather
than W itself, using the procedure followed for MB and BE distributions. Thus we set

dlnW=0 :
On taking logarithm of both sides of Eq '(15.46), we oblain

Y [ng!-In(g—N)!-InN;1] , (15.48)

Using Stirling’s apﬁmximaﬁon, we gel

MW = Ylglng-g-(g;-N)In(g-Ni}+(g;i- M)
=N InN; +N;].
= Dlg;Ing - (g;-N)ln(g,— Ni)— N; In N;]
Hence,
[ 1
W = N; - ) ———~(~8N; )+ 8N; In (g; ~ N;
);( 8 Gy SN+ N In g )]_
» HN;*&%SN;—IHN;SNI‘]

- 3ol

Equating $InW 10 zcro, we oblain

zm(——IJSN; =0 - : T (1549)

pp———




This expression is subject to the conditions given by Egs. (15.47a) and (15.47b). To
incorporate these and obtain a general expression we multiply Eq. (15.472) by a,
Eq. (15.47b) by - PB-and add 10 Eq. (15.49). This gives

Z[m(g' ]+a Br-:.-l av; =0
" N N‘ J
Since the 8N; are arbitrary and can be va.ned mdcpcndcmly, we can set the coefficient

ol cach 8N; equal to zero, This gwes

g
,IF(FI_ ]+a Be;=
or ’
Ni 1

g - e—a+|3+:,-+l

Using the same-notation as.in Sec. 15.3.1, we can rewrite it as
- oM__ 1 1
& AePEi 41 PEi-W 4

(15.50)

This defines the Fermi-Dirac distribution. For continuous distribution, the Fermi
function f(€) is dcfined by

f(e)= 1

(l: B} +1
Let us pause for a moment and compare it with expressions for BE and MB distributicn
functions:

© (15.51)

.
Sy = ePle-1)
_ 1
Juw = PlE-1) 1
; _ 1

A close ¢xamination of these expressions reveals that inspite of the great differences
in the assumplions used Lo arrive at these expressions, they have a similar appearance.
In fact, we can combine them inte just one expression:

where
-0 MEB distribution
K = 1 FD dist.n'buﬁon
-1 BE distribution

This logically raises the question: What are its manifesiations in describing the
behaviour of a system? To discover the enormous consequences of 'k, you should refer

back to Fig. 15.6. You will note that whereas BE distribotion is skewed towards

highly occupied low cnergy states, FD distribution is skewed to high energy statcs
compared with classical (MB) distribution. You will note that a1 T = 0 ( = =), the

exponent bccomes —we for e< |, whereas [or g >, the exponent becomes m.l'm:tc
so that = T

Ofore> p (15.52)

llore<
OES bty
Malhcmaﬁcally speaking. it defines a step-function. Physically, it implies that at
absolme zero, upto certain encrgy all levels are occupied and higher energy states are
empty. (Yeu can compare it with a partly filled glass of water.) This energy is known
as Fermi energy, € You will know about it in the following section. This is shown
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P}.lf-'meﬁts of Statistical Mechanics in Fig. 15.10(a). Fig 15.10(b) shows the effect of raising the temperature. The curve
o develops a tail, which is symmetrical about € =£p. Morcover, at this energy f (&) = 3.
flerd et

Lk

(s)
Flp. 15.10: (a) The Ferml function at T = 0: Complete Depeneracy (b) T = 0

(€ — L »>> I): Strong Depeneracy

For £ >> |1, B(e—) >> 1 and you can ignore one. Then (&) = e P~ and the
distribution behaves like a classical (vIB) distribution.

If the (emperature is [inite, above absolute zero, the fermions in region I shift to .
region II, bringing about deviations in the step function. It means that as we increase
temperature, fermions below the Fermi energy jump to energy states above Fermi
energy. However, the width of this region is of the order of kT . Normally deviations
from the slcp-funcuon (T = 0) are important only for those values of £ for which
{B(e — )] is of the order of one. For larger values, the exponential term will either
be zero or one. Thus a thermal reshuffling of the pamcles is confined to &y 7° around
£ =€g. That is, the number of clectrons which contribute to thermal proccsses is
proportional to 7. However, the major proportion of distribution is not influenced by
the rise in temperature.

15.4.2 Fermi Energy

Consider a system of N fermions enclosed in a volume V. We know that because of
Pauli’s principle, only one fermion can be accommeodated in a given state. You have
already leamt that the highest energy possessed by a fermion at T=0 is called the
Fermi energy, &r. Let us now derive an expression for r.

N . i .
We know that the numbcer of quantum states of a particle with momenwm in the

intcrval p and p + dp is 4:EV ptdp. We have to multiply this number by (25 + 1).
For clectrons, §= -E so that the required number of states is’ 811:1/ ptdp. Denoting ) ;
the highest momenwm by pg, we have =
h Pr - 1 3
8nV 2 8rnV Pr ;
N= dp = — — 15.53
3 {p PER (15.53)
This vields an expression for Fermi momentum, pg: Y
3N Y3
=[=——| # 15.54
Pr (BTI!V] I - ( )
and thc Fermi encrgy
2 273 .
Pe _H® ( 3N ]
Ep=——=— 15.3
F=2m 2m\8nv (1533)

If we draw a sphcrc with radius pg, all the particles will be found inside-Lhe sphere.
This is catled the Fermi surlace, Inthe case of the alkali and_the noble algms, the
surface is a sphere. Tn other cases, the shape can be guite complicated.

Trurpy Tan w——

We definc what is known as Fermi temperature, T, through the rcialion

Tr=-f - - (15.56)

The values of g fangc from about 2 eV to 15 ¢V 1L is the lowest [or Cs (1.58 eV)
and highest for Be (14.14 eV). The corresponding Fermi temperatures are of order

62 ) 10°K-10°K. To get exact ideas about these values, you should solve the following SAQ.




SAQ 6 ’ , Quontum Stotlstlcs

Calculate €f for copper, given density = 9 g cm—2, atomic weight = 63.5 and valency
_ equal lo one. :

The ground stalc energy is given by

~ P '
gnv T p* o, _8nV PE
B g 2m h* 10m
8nV

= 81V s
53 PEEF

Using Eq. (15.54), we obiain

Eu'r:

Ey = %NEF (15.5T)

The mean encrgy per fermion for a completely degencrate clectron gas is given by

= _ Eqg _3 '
€=—=TEr 155
N ST (15.58) .
For conduction electrons in copper )

£ = %X{?.OCV

) =4.2¢cV
This cnergy corresponds (o several thousand kelvin of lemperature 0 which an
clectron, il treated classically, would have to be raised. This shows that unlike a
classical particle, a fermion has appreciable energy even at absolule zero ! That is. a
fermion system s quile alive. This is a quantum effect arising out of the Pauli
principle and brings out the inadequacy of classical statistics in describing the
behaviour of syslems at extrcmely low emperatures.
Since CV=[S—E];) , Eq. (15.56) implics that heat capacity of a fermion sysiem drops

v

10 zero at absolute zero. Similarly- we can show that entropy of a F.D. system also
vanishes at 0 K. This is consistent with the third law of thermodynamics. Now you

may ask: Is it true for pressure also ? We know that p=%-% . So we find that

pressure cxerted by a fermion sysiem at 0K is equal 1o %(%)EF This shows that if

electrons in a metal were neutral, they would exert a pressure of almost 108
atmospheres! Does it make we cxperience this cnormaus pressure? If not, why? Do
elcctrons 10 cvaporate spontancously? Actually this pressurc is counter-balanced by
Coulgmb awraction of clecwrons by jons.

The Fermi encrgy is the kinetic energy of clectrons in the highest occupicd state. We
can relate it 10 the work function of a metal. Refer o Fig. 15.11. Tt shows a potential
well in which the electrons reside and the [illed states upto €. If the well depth is — —
ep=W — &. So once we know ¢ and W, we can get an estimate of £g. ’

We have so far considercd a FD system at absolute zero. To know tLhe behaviour of
its heat capacity and entropy, we must extend this study to températures above
absolute-zero. In paricular, we will confine ourscives Lo clectrons. However, it is
important Lo nole that for T° << T, the mean occupation number does not differ much

from The ‘valie at 0K. Suchi a lermiion system issaid 1o be strungly-dfgehersaie.v Wo - - T

know that for conduction clcctrons in metals, 7 is of the order of 107 o 10°K. This Fig.15.11: Relationship between

mecans that c‘o{lducu'on elcctrons are in extremely dégencrale condition cven under well depth Fermi energy, and work

normal conditions. Very few of these are irce. By [ar most of them are trapped in 1oW rynction for electrons in a metal.

fying staies with nowhere to go. Hor!zonta! Unes tndicate filled
‘enerpy levels.

We will not go into a detailed discussion of these propertics. Howgver, very simple
arguments can be used 1o understand the heat capacity of metais. This is the subject
of the following sub-scction. '
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Elements of Statistlcal Mechanles

15.4.3 Electronic Heat Capacity

You will recall from Sec 15.2 that comect explanation of hcal capacity or melals
remained a puzzle for a long Lime. Of course, it should be no surprise (o you that
classical statistics’ fails to give the right answer because an assembly of electrons
(electron gas) obeys F.D. statistics. We can easily show, using F.D. statistics, that
electronic heat capacity varies linearly with temperawre. Moreover, heat capacity of a

* metal at low temperatures is the sum of an electronic contribution which is

proporiional to 7, and the lattice contribution which is proportional to 13,

Experiments reveal that the conwribution of electronic heat capacily is about 1% of
the 101al. To show this we assume that only those electrons which occupy encrgy
states uplo kp7T of the Fermi level participate in thermal processes. Hence, the
fraction of particles thermally excited is proportional 10 &y T / €. Since the (hermal
energy per excited particle is 4gT

T NL2T2
U-(kBT)kB N = NesT

Ef Ep
Hence, .
NEET :
(Cv)y = (%%]VT”- = Nk.,[; ] | (15.59)
F F

That is;, for T << Ty, the electronic heat capacily of fermions varics lincarly with
temperature, AL room (emperature,

_ 300

T ~ 107 - 040
- *F

A more exact, but somewhat difficult, calculation gives the following result:

Nky n? ) i

(Cy)g = T=aT : (15.60)

F

where -

Nkyn?  NK3n2
2T 2e;

qa =

is known as the Sommerfeld constant.

The total heat capacity of a metal is made up of two parts. The elcctronic
contribution dominates at low temperatures. But around room temperature, the
clectronic contribution is a small [raction of the total.

(Cy)ro = aT + bT3 - (15.612)
or
(Cv])_nm - a+bT? (15.61b)

A plot of Eq. (15.61b) is shown in Fig.15,12 as a function of 77 for potassium, The
agreement is seen (o be excellent. The intercept gives the values of a. For potassium,
sodium and copper the typical values are 2.08, 1,38 and 0.695, respectively,

There are a variety of other F.D. sysiems which are of great interest. Examplcs arg.

the protons and neutrons-in nuclcar-maticr, clecirons in whiie dwarf stars, 2He; cic. ‘A

derailed discussion of these is beyond our scope. However, those of you who feel -
decply inferested should look up some other references available i in your study cenire.
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Flg.15.02: Piot of Eq. (15.61b) as u function of T 2

Let us now sum up what you have leamt in this unit.

f

15.5 SUMMARY

» The Bose-Einstein distribution function is given by

N; 1

g T explBle; —pi-1

For contunuous distribution, we can wrile

N(E) = g(e)
)= e -mi-1

¢ Planck’s law of black-body radiation tells us that the spectral encrgy density is

given by
3
exp| —— | -1
knT

In the limit hy << kT, we obtain the Rayleigh-Jeans law:

2
uydv= 852 (ky TYdy
c

On the other hand, Ay >> kg T, we obtain Wien's law:

gk hv
vd = [+ - d
Hydv L‘3 xp[ % TJ v

B

The total energy density

8]1:5 4
==L (kT
15(.:1:)3( » 1)
544
and Stefan’s constant o = 2 kg
o ] 15c2R3 R
e Radiation pressure
_._8n’ a_u
P= ey o TV =5

e Liquid %He undergoes a phase-transition, the so-called A-transition, at T, = 2.18K.

The phase below T, He I, cxhibits superfluidity. Some of its properties can be
cxplained on the basis of Bose-Einstein condensation '

Quentum Statistics
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e The Fermi-Dirac distribution function is given by-

N _ 1
g; explBlei-p)+1

For conlinuous distribulion, we can write

_ 1
S = e —m+1

2/3

2 L}

o The Fermi encrgy €p= zi— (%)
i )

e The pressurc excried by a FD. gasat T=0is

2
pr=3{F)er

e The elccironic contribution to the heat capacity of a melal is given by
(Cla=al
'" NkE 72
2ep

where the Sommerfeld constant a =

15.6 TERMINAL QUESTIONS

. Calculate the Fermi temperature for (i) liquid *He and (i) clectrons in a white
dwarf star using the known cxperimental data on the lwo systcms,

2. Calculate the cxacl cxpression for ¢lectronic contribution Lo heat capacity for a
F.D. system at finite temperatures. You may make usc of the fact that to first
order in T, p may be rcplaced by its. value L =egp at T = 0, in the expression for

f&).

157 SOLUTIONS AND ANSWERS

SAQs
1. u= _([u’F(%)dv = iv'—‘cxp[_ 2v]d’u
c
Let 22Y _x oor dv=—dx
T C3

q ]
_ T4Ie“x3dx— 64 4
(C'z_) I ' 52)
2. We know from Eq. (15.8) that
inhu e~"wita T B

:
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Put ""_=.r
P

Then we have

The denominator is

> exp(—nx) = l1+e*+e 2 o= 1

-x
n=0 l-e

Differentiating both sides wilh respect to x, we have- '

exp (—nx)( —n) = ~——
E;, (1-e5)?
or
_ -
g”" = ———
2 (1-e")?
Hence,
~x T
£ = xky T l-e™) =3
B (1 _;)2( ) x_]

hv

exp [_kth ] ~1
1]

which is idenucal with Eq. (15.9).

Generally, a particle consisting of an odd number of Fermi particles is a fermion
and a particic consisting of an cven number ol‘ Feemi particles is a boson, A
particle consisting of only bosons is a boson, *He consists of bwo protons, one
neutron, and Lwo ¢lectrons. Hence, it consists of {ive particles of spin 1/2, and is
a fermion. “Hc, on the other hand, consists of two protons, two neutrens and two
clecrons. Hence, it consists of six fermions and is a boson.

#)  We want to derive the Maxwell-Bolzmann distribution wllh the carrect
Bollzmann counting. We have

N,
and W({Nn-nn H% @)

Wc must maximise W sub_mct to

T Nj=N, G and SNiei=U (i)

Faom (i) we have, an using Stirling’s approximation

InW =3 [N;ilng;—InN;!1= 3 [N;Ing; — N; InN; + N;}

=3 [NiIng; - N; InN; + N;]

_ o 67
Hence, ’ fgs
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6R

SInW = ) [8N; In g; — 8N; — &N; In N; + 8N;]
i

=X [ng; - InN;J&N; = 0 ' (iv)
i .
Since ¥ and I are fixed, we can write
>N =0 . ' (%)
3
and
Y eiN; =0 - (vi)

Multiplying Eqgs. (v) and (vi) by & and -B, respeclivcly, and adding o (iv) we
have

S I(ng; - InN;) +a—-Pe;]dN; = 0

Since the &N /s are a.rbir.mfy, this relation should be true for cvery &, Hence,
we must have

Ing;-InN;+ o —Pe; =0

In[%) = o - Be;

which can bc rewriticn as

N; ] 1
—4 = = (vii)
g; cxp(-2+Be;) Acxp(Be;) .

ar

The B.E. distribution, given by
ﬁ = ;
g Acxp(Pe) -1
reduces o (vii) for A >>1. This limit (A >> 1) occurs for high temperatures and
low densitics, where the quantum conncctions arc known 1o be small,
b} In the casc of [ermions, no single level can accommodate mere than one

particle. Hence, N; << g; and

The required number of ways = number of ways in which A;
- objects-can be choscn out of g; -

=(¥) = =

It is equal 10 the number of ways in which g; levels can be divided inlo two sub-
groups, one consisting of N; levels, occupicd by one particle cach and the other
of {g; - N;) unoccupicd levels. '

We know that
8rh 3

3 hviky T-1 v

!h-dv =

From ¢ = vA, wehave v = % and

— C
dy = _-;\?dl

Also qudvl = Iuldk|. since J'u.,du = qudl

TR A T T
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hc
—RC _ 4 96
Ankp T
. ) : he
Putting A, T=6, we find that b= L, T = ———
uting ven 4.96kp
=0.290 AK
2 2i3
6. We have € = L[-&J :
: 2m\ 8V
Number density of copper atoms = 9/63.5 = 0.14 mol em™. Since valency of
copper is one, :
N__9 6.02 x 102 = 8.4 x 102 electrons cm™
vV 63.5
Using the standard values of A and m, we find that
ep = 11.3x102erg = 7.0V
TQs
. 2 2i3
1. We have Ty = Er _ J—'-(-g’i]
kB 2!?11‘3‘5 8nV
i) For liquid *He
% = 63A™ aom™ = 63 x 107 cmatom™
N _10% 7 ¢ 4
Sy /= B e AlOMCIM
v T M
m=5.01x10"%g
This yields, Tz = 4.9K
.1i) For white dwarfs p = 107 g cm™
n= % = 103 electrons cm™
This yields,
Tr = 10°K
2. AtT=0,the Ic\..rels upto € = ¢p are filled. As we raise the temperature, the

Hence,
uy dh = 811:?:: dh .
A hec '
exp -1
We note that u; is a maximum when A| cxp ch__1_1] is a minimum.
AkgT

Hence, we put

hefliy T

d a5
— X (e -1]1=0
oy IA( )
On simplilication, we have
1—e* =X with x= 1€ _
5 AkyT

You can solve this equation graphically and cblain x = 4.96. Hence, -

following processes take place.

Quantum Statlstics
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