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COURSE INTRODUCTION

We are able to adore the wonders of nature and ils creations by perceiving light
through one of our sense organs. In a way, light sustains life on our planet. Though
we see objects it illuminates, we cannot see light! The study of interaction of light .
with matter constitutes what we call optics. It is one of the most fascinatin g courses
taught to undergraduate scicnce students. Optical studies have contributed
significantly to human linderslanding of the laws of nature. While studying this
course you will realise that there is explosive growth of this subject due to the
realisation of some well known physical principles for technical applications. This
is why optics occupies a prominent place in pure and a pplied sciences.

The subject of optics emerged as a result of the fundamental work done b y
scientists of eminence such as Galileo, Abbe, Newton, Huygens, Young, Fresnel,
Fraunhofer, Grimaldi, Arago and Bartholims. Maxwell provided a sound
mathematical basis to classical optics. Hentz qualified his work successfully. In
India, Sir J.C. Bose and Sir C.V. Raman made significant contributions.

This course begins with nature of light. It is intended to establish the transverse

- electromagnetic nature of light. The phenomena of Interference and Diffraction
which reveal the wave behaviour of light are discussed in two subsequent blocks.
The mathematical treatment has been kept as simple as possible. For instance,
without introducing Fresnel integrals, we have tried 1o provide insight inlo what is
most essential in the theory of diffraction by using Fresnel zones. Similarly, we have
refrained from entering inlo technical details of methods of abservation or
instrumental appliances. The development of lasers, fibre oplics, holography and , d
the progress made in optical communication, optical storage and optical computing
with applications in space, defence and medicine have led 1o an explosive growth of

- optics in recent years. You will get a glimpse of some of these topics in the last block.

One last word about how 10 study the course material.

Study Guide _

This is a four credil course and you have to put in 120 hours of work. Of these, you
should spend about 90-hours 1o study course materials and solve SAQs and TQs.
Some of the SAQs are quite revealing and answering these will bring joy. Answers

to all questions are given-at the end of each unit. But you are advised to do them
yourself. We hope that you wiil enjoy the subject.

We wish you success.
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BLOCK1 INTRODUCING LIGHT-‘

* This block is intended to introduce light From your previous physics courses, you
may be familiar with some of the topics included here. But we have done'so tor
make the block self- contained. In Unit 1 we have shown that light is a rénsverse.
electromagnetic wave. The wave equations for E and’B are derived from Maxwell’s
field equations. In Unit 2 we have discussed reflection and refraction of e:m. waves.
You will also learn that all laws of geometrical optics are inherent in Fermat'
principle.

Perception of light by humans is discussed in Unit 3. You will learn that human
vision involves a mix of physical and physiological processes. The role of eye as an
image forming device is discussed in detail. Theories of colour vision are also Biven
in brief. Unit 4 discusses three polarisation states of light. You will learn that light
can be polarised by reflection, refraction and selective absorption. Light
propagation in anisotropic crystals and phenomenon of birefringence are discussed
in detail. . -

These units are not of equal length. We are suggesling tentative time budget for
study time for each unit: -

Unit 1 4 hours
Unit 2 5 hours
Unit 3 4 hours
Unit 4 { 7 hours

waever, the actual study time will depend on your flair for basic mathematics. If
you had opted for PHE-04 and PHE-07 courses, you will find this block rather easy
to comprehend. :
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UNIT1 NATURE OF LIGHT

Structure
11 Ihﬁ'bduclioﬁ
Objectives

1.2  The Corpuscular Model
1.3 The Wave Model
14  Light as an Electromagnetic Wave

Energy Teansfer: The Poynting Vector
The Electromagnetic Spectrum

1.5 Summary
1.6 -Terminal Questions
1.7 Solutions and Answers

1.1 INTRODUCTION

You all know that light is responsible for our intimate contact with the universe
through one of our sense organs. We are able to admiré-the wonders of the world

-and appreciate the beauty of nature only when there is light. The reds of the sun or

the ruby, the greens of the grass or emerald and the biues of the sky or sapphire
involve light. In a way light plays a vital role.in sustaining life on earth. Even so, we.
are strangely unaware of its presence. We see not light but objects, (shapes, colours,

_ textures and motion) as constructed by the brain from information received by-it.

Have you ever thought : What is light ? How light behaves when it reaches our

eyes ? And so on. These questions proved very difficult even for the genius of the
class of Newton and Einstein. In fact, search for answers to these gave birth to a
new branch of physics: Opties, which is extremely relevant to the modem world. It
occupies a prominent place in various branches of science, engineering and technology.
Optical studies have contributed to our understanding of the laws of nature. With the
development of lasers, fibre optics, holography, optical communication and
computation, optics has emerged as a fertile area of practical applications. It is therefore
important for you to understand the language and vocabulory of optics very thoroughly.

. In this unit you wiil learn some imporl;nt facts and developments which were made

to unfold the nature of light. However, before you do so you should revise second
block of PHE-02 course and fourth block of PHE-07 course. In Sec. 1.2 you will
learn about corpuscular (particle) model of light. In Sec. 1.4 we have discussed the
wave model of light, with particular reference to electromagnetic waves. You may
now be tempied to ask: Does light behave like a particle or a Wave ? You will learn

that it is like neither!

Objectives

_Afier going through this unit yon should be able 1o -

¢ name phenomena distinguishing corpuscular and wave models of'light

¢ _ derive an expression for the velocity of electromagnetic waves

» specify the frequency ranges of different portions of electromagnetic
spectrum, and

* explain the importance of Poynting Vector.
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" Introducing Light

You must have read in your
school physics course that
corpuscular model is due to
Newton. Conrtrary lo this
popular belief, the credit should
be given to Descartes, although
the earliest speculations about

light are attributed to Pythagoras.

The speed of propagalion of
light has been measured by a
variely of means. The earliest
measurement made by Roemer
in 1676 made use of
observations of the motion of
the moens of Jupiter and
apparent variations in the
periods of their orbils resulling
{rom the finite speed of
propagation of light from J upiter
1o earth. The first completely
terresitial measurement of the
speed of light was made by
Fizeau in 1849,

Spend
S min
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1.2 THE CORPUSCULAR MODEL

The corpuscelar model is perhaps the simplest of the models of light. According to
it, light consists of minute invisible stream of particles called corpuscles, A
luminous body sends corpuscles out in all directions. These particles travel without
being affected by earth’s gravitation. Newton emphasized that corpuscles of
different sizes stimulate sensation of different colours at the ratina of our eye.

In your physics courses at school you must have learnt about evidences in favour of this
model. Can you recall them? The two most important experimental evidences are:

(i) Light travels in straight lines. This reclilinear propagation of light is
responsible for formation of sharp (perfectly dark) shadows. If we illumiriate a
" barrier in front of a white screen, the region of screen behind the barrier is
completely dark and the region outside the barrier is completely lit. This
suggests that light does not go around comers. Or does it?

(ii) Light can propagate through vacuum, i.c., light does not require any material
medium, as does sound, for propagation.

We can also predict the correct form of the laws of reflection and refraction using
the corpuscular model. However, a serious flaw in this theory is encountered in
respect of the speed of light. Corpuscular model predicts that Jight travels faster in a
denser medium. This, as you now recognise, contradicts the experimental findings
of Fizeau. Do you expect the speed of light to depend on the nature of the source or
the medium in which lighi propagate? Obviously, it is a property of the medium. -

. This means that the speed of light has a definite value for each medium. The other

serious flaw in the ¢orpuscular model came in the form of experimental
observations like interference (re-distribution of energy in the form of dark and
bright or coloured fringes), diffraction (bending around sharp edges) and -
polarization.

You may now like to answer an SAQ.

SAQ 1

Grimaldi observed thal Lhe shadow ol a very small circular obstacle placed in the
path of light is smaller than its actual size. Discuss how it contradicls corpuscular
model.

In the experiment described in SAQ 1, Grimaldi also observed coloured fringes
around the shadow. This, as we now know, is a necessary consequence of the -
wavelike character of light. It is interesting to observe that even though Newton had
some wavelike conception of light, he continued to emphasize Lhe particle nature.
You will learn about the wave mode! of light in the following section.

1.3 THE WAVE MODEL

The earliest systematic theory of light was put forward by a contemporary of
Newton, Christian Huygens. You have learnt about it in PHE-02. Using the wave
model, Buygens was able to explain the laws of relleclion and refraction. However,
the authority and eminence of Newton was so great that no one reposed {aith in
Huygens’ proposition. In fact, wave model was revived and shaped by Young
through his interference experiments.

_ Young showed that the wavelength of visible light lies in the range 4000 A t0 7000 A

(Typical values of wavelength for sound range from 15 cm for a high- pitched
whistle to 3 m for a deep male voice.) This explains why the wave character of light
goes unnoticed (on a human scale). Interference fringes can be seen only when the

spacing between two light sources is of the order of the wavelength of light. Thatis ~—
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also why diffraction effects are small and light is said to approximately travelin . Nature of Light - .

straight lines. (A ray is defined as the path of energy propagation in the limit of
A— 0). A satisfactory explanation of diffraction of light was given by Fresnel on
the basis of the wave model. An important part in establishing wave model was
played by polarisation- a subtle property of light. Tt established that light is a
transverse wave; the oscillations are perpendicular to the path of propagation. But
‘what is it that.oscillates? The answer was provided by Maxwell who provided real
physical significance and sound pedestal to the wave theory. Maxwell identified
light with electromagnetic waves. A light wave is associated with changing electric
and magneuc fields. You will learn these details now.

1.4- LIGHT AS AN ELECTROMAGNETIC WAVE

From the PHE-07 course on Electric and Magnetlic Phenomena you will recall that a
varying electric field gives rise to a time and spa® varying magnetic field and
vice-versa. This interplay of coupled electric and magnetic fields results in the
propagation of three-dimensional electromagnetic waves.To show this, we first
recall Maxwell’s field equations:

V.Dwp  (L1a)
V.B =0 (1.1b)
vxE+ 3B .o , - (19
Y -
and VxH=J+ aa_l? : | (1.1d)

where p and J denote the free charge density and the conduction current density,
respectively. E, D, B, and H respectively represent the eleclric field, electric
displacement, magnetic induction and the magnetic field. These are connected
through the following constitutive relations:

D=¢E (1.2a)

B=pH _ (1.2b)
and :

J=0cE (1.2c)

where €, p and orespectively denote the (dielectric) permittivity, magnetic
permeability and the electrical conductivity of the medium.

For simplicity, we consider the field equations in vacuum sothatp = 0 and
J = O. Then, if we use connecting relations [Eqgs. {1.2a—)}, Eq. (1.1a-d) reduce to

V.E=20 (1.3a)
V.H=0 - (1.3b)
VxEu—u.gaH (1.3¢c) -
and
ai
=3
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Introducing Light

The 3-D wave equation has the

: form

J'la'tp
M i 2

where 1 is a physical quantity
which propagates wavelike with
gpeed v.

Spend
5 min

where o and eg are the magnetic permeability and permittivity of free space.
Taking the curl of Eq. (1.3c), we get _
VxVxXEw- wVx (dH/atY

=_M%(V>¢H) - (L4)

" since i_ is independent of V x operation.

at
To simplify the left hand side of this equation, we use the vector identity

VxVxE = V(V.E)-V2E
Since V.E = 0 inview of Eq.(1.3a), we find that Eq. (1.4) reduoesto

.

2 <
- VK= _\&"ar(vmc H)

k!
On substituting the value of V x H from E‘.q. {1.3d), we get

V2E = Ygeg azE (1.5)
a2
You can similarly show that
FH
V' H = (16),
i Y

:I' ) ' ) { -
SAQ2 -
Prove Eq. (1.6)

Do you recognise Egs.(1.5) and (1.6)? These are identical in form 1o 3-D wave
equation derived in Unit 6 of the Oscillations and Waves course (PHE-02). This
means that each component of E and H satisfies a wavelike equation. The speed of
propagation of an electromagnetic wave in free space is given by

1
My (L7

This remarkably simple result shows that the speed of an electromagnetic wave
depends only on pg and €o. This suggests that ail e.m, waves should, irrespective

of frequency or amplitude, share this speed while propagating in free space. We can
easily calculate the magnitude of v by noting that for free space”

o = 8.8542 x 10 2N tm?

and

up = 41 x 100’ Ns2C' 2

1.
[(38542“0'1"0214‘ m‘z)x(4x1,0" Ns c )]"'2 '

- 299794 x 108

This is precisely the speed of Tight! It is worthwhile to mention hiere that using the
then best known value of e, Maxwell found that electromagnetic waves should
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travel at a speed of 3.1074 x 10° ms™. This, to his amusement, was very close to
the speed of light measured by Fizeau (3.14858 x 10° ms'l). Based on these
numbers, Maxwell proposed the electromagnetic theory of light. In his own words

"This velocity is so neariy that of light, that it seems we have strong reason t¢

believe that light itself is an electromagnetic.disturbance in the form of waves

propagated through the electromagnetic field according to electromagnetic

" laws.” _

We cannot help but wonder at such pure gold having come out of his researches on
electric and magnetic phenomena. It was a rare moment of unveiled exuberance - a
classic example of the unification of knowledge towards which science is ever -
striving. With this one calculation, Maxwell brought the entire science of optics
inder the umbrella of electromagetism. lis significance is profound because it
identifies light with structures consisting of electric and magnetic fields travelling
freely through free space.
The direct experimental evidence for electromagnetic waves came through a series
of brilliant experiments by Hertz . He found that he could detect the effect of
electromagnetic induction at considerable distances from his apparatus. His
apparatus is shown in Fig. 1.1. By measuring the wavelength and frequency of
electromagnetic waves, Hertz calculated their speed. He found it to be precisely
equal to the speed of light. He also demonstrated properties like reflection.
refraction, interference, etc and demonstrated conclusively that light is an

eleciromagnetic wave.

_) L

a
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Fig.1.1: Hertz's apparatus for the generation'and detection of éleelmmagneﬁc waves .

You now know that electromagnetic waves are generated by time varying electric
and magnetic fields. So these are described by the amplitudes and pliases of these
fields. The simplest electromagnetic wave is the plane wave, You may recall that in r
a plane wave the phases of all points on a plane normal 1o the direction of : C
propagation are same. And for d plane electromagnetic waye propagating along the
+ z— direction, the phase is (kz - w ¢ ), where kis the wave number and w is the
_-angular frequency of electrommagnetic plane wave. And the scalar electricand

magnetic fields can be expressed as .

 E = B exp [i(kz=on)]

TEA pllrtm-

H = Hy exp [i(kz-01)]

where Eg and Hp are amplitudes of E and H. o




Introduéing Light

To atrive at Egs. (1.9 a,b), we
write the z-components of Eqgs.

{13c¢)and(1.3d) as

O 2k, ai:
dx ay Ae

and

Ay _aH. _ oE
dx dy ar

Since E and H are independent

ofx and y, 1he LHS will be
identically equal to zero.

10

2. Since

For a wave propagating along the + z-dl:ecnon, the field vectors E and H are
independent of x and y. Then Eqs. (1.3a) and (1.3b) reduce to

- 8k

= (1.82)

and

5, =0 , (1.8b)

By the same argument you will find that the time variation of E; and H; can be -
expressed as

' What do these equations convey? Physically, these imply that the components of E

and H along the direction of propagation of an electromagnetic wave {+z-direction
in this case) does not depend upon time and the space coordinate z. So we must
have :

ng =0 =H, (1.10)

You should convince yoursclf why any Other constant value of E, and H, would not
represent a wave. We can now draw the following conclusions:

1. Plane eleclromaguehc waves have no longltudmal component. That is, they are
transverse. This implies that if electric field is along the x- axis, the magnehc
field will be along the y-axis so that we may write

E = xEoe;(kz—tN)
and

H = yHye (kz-0n) (1.11)

You may now ask: Are £y and Hy conr.ected? If so, what is the relation between
them? To discover answer 10 this question you have to solve TQ2:

k
Hy = mEo

" is a real number, the electric and magnelic vectors should be in
Fo ’

phase. Thus if E becomes zero (maximum) at some instant, H must also
necessarily be zero (maximum) and so on. This also shows that neither electric
nor magnetic wave can exist without the other. An electric field varying in

Fig.1.2: The electric and magnatic flelds assoclated with a plane electromagnetic wave

9E _, | (1.92) -

=0 . (1.9b)
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time sets up a space-time varying magnetic field, which, in turn, produces an
electric field varying in space and time, and so on. You cannot separate them.
This mutually supporting role results in the generation of electromagnetic
waves. The pictorial representation of fields of a plane electroma gnetic waves
(propagating along the + z- direction) is shown in Fig. 1.2. You will note that
electric and magnetic fields are oriented at right angles to one another and to
the direction of wave motion. Moreover, the variation in the spacing of the
field lines and their reversal from one region of densely spaced lines to another
reflect the spatial sinusoidal dependence of the wave fields. .

1.4.1 Energy Transfer: The Poynting Vector

From Unit 6 of PHE-02 course you will recall that a general characteristic of wave
motion is: Wave carries energy, not matter. Is it true even for electromagnetic
‘waves? To know the answer, you should again consider the two field veclors

(E and H)) and calculate the divergence of their cross product. You can express it as

V.(ExH) =H.(VxE)-E.(Vx H) (1.12)

If you now substitute for the cross products on the right-hand side from Maxwell’s
third an_d fourth equations respectively for free space, you will get

. dH dE
VI(Ex H) = - H.yoﬁ'_— E'Eo.a_t

The time derivatives on the right-hand side can be wrilten as

oH dH 1 3

H'-uo7=ﬂ-mx % = zMy (_H-H,)
and
oE . dE _®0 3
wE. 5 =aE. 55 =5 5 (E-E)
soll_aal

V.(E x H) = - % (E.E+ poH.H)  (113)

1
2
Do you recognise Eq. (1.13)? I so, can you identify it with some known cqualion in
physics? This equation resembles the equation of conlinuity in hydrostatics. To

discover the physical significance of Eq. (1.13), you should integrate it over volume
V bound by the surface S and use Gauss” theorem. This yields

/ fv.(Ex' H)dV = - %f%,(eoﬂm up H.H) dv
1%
1%

or -

: 1
f (Ex H).dA= - if 2 (B E+ poH.H)dvV
ot 2
S : |4
“The integrand on the 1 ight hand side refers to the time rate of flow of
electromagnelic energy in [ree space. You will note that both E and H contribute 10
it equally. The vector

- - - - - §uExH S T C B L

is called the Poynting Vector. 1t is obvious that S, E and H are mutually

orthogonal. Physically il implies that S points in the direction of propagation of the

Nature of ]_,'lgh-t. o :

Recall the identity V.(A x B) =
B.(VxA)-A .(VxB)from
unit 2 of PHE-04 course on
Mathemalical Methods in
Physics-1.

Gauss’ divergence theorem
relates the surface imcgral ol a
veclor function to the velume
integral of e divergence of this
same {unclion:

J;D.d:\ -£V.de

The surface integral is laken
over the closed surface,
5 bounding the volume, V.

T | W e
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Fig. 1.3: The Poyhting Vector
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. Intreducing Light
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‘Between two radio waves and visible light lies the m[raredreglonBeyondlhe ;

wave since electromagnetic waves are transverse. This is illustrated in Fig. 1.3,

You may now like to know the time-airerage of energy carried by electromagnetic
waves (light) per unit area. If you substitute for E and H in Eq. (1.14) and average
over time, you will obtain '

-

A k .
(S)-zzuomE% : .(1'1-5)

Before you proceed, you should convince yourself about the validity of this result.
To ensure this we wish you to solve SAQ 3.

SAQ3
Prove Eq.(1.15),

1.4.2 The Electromagnetic Spectrum

Soon after Hertz demonstrated the existence of eleciromagnetic waves in 1888,
intense interest and activity got generated, In 1895, J.C. Bose, working at Calcutta,
produced electromagnetic waves of wavelengths in the range 25 mm 1o 5 m. (In
1901, Marconi succeded in transmitting electromagnetic waves across the Atlantic
Ocean. This created public sensation. In fact, this pioneering work marked the
beginning of the era of communication using electroma gnetic waves.) X-rays,
discovered in 1898 by Roentgen, were shown in 1906 to be e.m. waves of
wavelength much smaller than the wavelength of light waves. Qur knowledge of-
e.m. waves of various wavelengths has grown continuously since then. The e.m.
specirum, as we know it loday, is shown in Fig. 1.4.

[

The range of wavelengths (and their ai:plications in modern technologies) is very
wide. However, the boundaries of various regions are not sharply defined. The
visible light is confined to a very limited portion of the spectrum from about

10 o™ " i 10° 11z
Frequency i ) ! ' ! ' ! ' T
um:lil Microwave Broadeasl
X-rayn
thort wave
Heed  Son o
Infrared Rudar
O
Y-rop i ™
Chimmery ' -
—~—Herwzisnwoveae
_l-u X I c | 1 1 I L l
wavelength 107y 10 T e~ ] Lo* m
Violet Rod lem

1A
Fig.1.4: The electromagnetic spectrum

4000 A to 7000 A. As you know, different wavelengths correspond to different
colours. The red is at the long wavelength-end of visible region and the violet at the
short wavelength -end. For centuries our only information about the universe
beyond earth has come from visible light. All electromagnetic waves from 1 m to
10 % m are referred to as radiowaves. These are used in transmission of radio and -
television signals. The ordinary AM radio corresponds lo waves with A ‘= 100m , .
whereas FM radio corresponds to 1m. The microwaves are used for radar and

satellite communications ( A~0.5m ~ 10" m ).

visible region we encounter the ultraviolet rays, X-rays and gamma rays. You must ‘
convince yourself that all phenomena from radio waves to gamma rays are

3 TWMATE FFRrETY
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essentially the same; they are all electromagnetlc waves which differ only in ' Nature of Light
wavelength {or frequency). You may now be tempted to enquire: Why do we

attribute different nomenclature to different portions of the electromagnetic

spectrum? The distinction is 2 mere convenience while identifying their practical

applications.

DLAR SPECTRUM

Fig. 1.5: The solar spectrom received on the earth

In our solar system, the sun is the major source of e.m. waves. If you closely
‘examine the solar spectrum received on the earth, you will observe broad
continuous spectrum crossed by Fraunhofer dark absorption lines (F1g 1.5).

Let us'now sum up what you have learnt in this unit.

1.5 SUMMARY

_* Light is an electromagnetic wave.
» The electric and magnetic fields constituting an electromagnetic wave sausfy the

equatlons
FE
" VE = ppeg—-
HoR0 52

and
FH
V’H =

boro7

" For a plane electromagnetic wave propagating a]ong the + z- direction, the electric
and magnetic fields can be expressed as

E= ;Eo exp [{(fz - wt}]

and

N
LEEOIL YT

H= yHp exp [i(kz- wi)]

. Th; -leclromagnencwaves are transverse.

 The pointing vector § = E x H defines the dlrechon of propagauon of an _ i
eleciromagnetic wave.

The visible light is confined to a very limited portion (4000 A - 7000 A) of
electromagnetic spectrum.
13.
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Introducing Light 1.6 TERMINAL QUESTIONS

1. Derive the wave equation for the propagation of eIccl.rdmagnétic waves in a
conducting medium.

-2.  Starting from Egs. (1.3c) and (1.3d) show that
k
HO = E'(__D-Eo

3. The energy radiated by the sun per second is approxmately 4.0x 10% Js7.

Assuming the sun to be a sphere of radius 7 x 10°m, calculate the value of

Poynting vector at its surface. How much of it is mcndenl on the earth? The
average dlslance belween the sun and earth i 1.5 x 10 m

e P R T e —-pi~ - - e b!'-'. R L L
ol 3N .

—

aaﬁ{’\lﬂ .'.-SOLUTIONS, AND. -'ANSWERS- S

SAQs "

1. According to the corpuscular model, light travels in straight lines. As a result,
the size of the shadow should be equal to the size of the object. Grimaldi’s
observation - the size of the shadow is smaller than the size of the obstacle -
indicates that light bends around edges, contradicting corpuscular model.

2. Taking the curl of Eq. (1.3d), we get

i '
V:-EVXH=80V:<(@)
‘ at

3
= F.g"a—r(v x E)

Using the vector identity
curl curl H = grad divH - V2 H

we have

, a({ oM
V(V.H)- V*H =
(V.H)- V'H “”anz( ot )

Since V.H = 0, we get
& H
ar -

3. FromEq. (1.14), we have for Poynting vector
S=ExH

VPH = ppegZam

Taking only the real part of Eq. (1.11), the electric and magnetic field vectors -

can be represented as
E = xEo cos (kz- wt)
H = yHy cos(kz~ wt)
=§LEQCOS(ICZ— o) ('.'H0=l—"—'E0)
uom . Mo plom - -

So

_ Aoac ko '
ExH (xxy)quEgcosUz—mt)

| ———




or Nature of Light

Sm EﬁaEﬁ cost (kz — wt)

Thls gives the amount of energy crossing a unit area perpendicular to z-axis
per umt time. Typical frequency for an optical beam is of the order of

10" s™ and the ‘cosine term will fluctuate rapidly. Therefore, any measuring
dev1ce placed in the path would record only an average value. The time
average of the cosine term, as you know, is 1/2. Hence

TQs
1. While deriving the wave-equation for electromagneltic waves in free.space, we
assumed that the electric cuurrent density is zéro:

J=|0'E=

This is because the conductivity (o) of the free space was laken lo be zero
However in case of conducting medium, < is non-zero. Hence

J = cE

and
D=c¢E .
B=pH

where symbols have their usual meaning.

With the kelp of above relations, Maxwell’s relations in a conducling medium
can be wrilten as

V.E=0 ' - (1a)
V.B =0 _ (1b)
. B
VKE=— a;‘_ (].C)
‘and
JE
VxB=np [0E+E_31_) _ (1d) -

“Taking curl of équation (1c), we get

Vx Ve E= Vx [— Q)
at

Using the identily Vx Vx A = graddivA - v ?A, we have
graddivE- V’Ew — % (Vx B)

Using (1a) and (1d) in lhi;.; expression, we get

2p._ 2 oE
V'E‘ ar[p.{oE+e Fy }]
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Introducing Light which impl ies that
CV2E - polE_ , PE
- V°E Lo T LE Py
or
2 dE PE _ 2)
V‘E—uoa‘ p.salz—O (2)

- This is the wave equation for the propagation of the electromagnelic waves in
a conducling medium,

2. If we write Egs. (1.3c) and (1.3d) in component form, we get

16

0E, 4dE, d H, (a)
ay oz ot
0E, OE, d H, b
oz ax M ®)
dE, OE a H
5 B ©
x dy at
and _
" H, 3 H, dE
(oH, _oH,  OE @
ay d zr at
dH, 9H, ok, :
- . €
dz 0x 0 ot ©
dH, d H, dE, ®
ax - @ y - ot
Now let us lake x-axis along the eleclric field vector E. Then
E, =0 (8)
From Eq. (1.10) it follows for electromagnetic wave travelling along the x-axis that
E,=0=H (h)
On using these results in Eq. (a) o (f), we get
3 H, d H, QE .
- i — Y g 1
s =0 R 3z Y @
IE, 3 H, a H,
-y — i - m
3z "0t 0) 5z =0 (m)
0E 0 H. af, a H, :
3y =M k) ZF=—" ()
¥ at dx oy

The plane wave representation of the electric and. magnelic field vectors is given as . ..

E =Epexp [i(kz- wt)]

H=_Hg exp [i(kz—- wt)]

I
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Substituting these in Eq. (j), we get
K
Ko @

ikEoHi[.Lou)Hg=>HD= Ey

3. ' 'We know that Poynting vector denotes the rate at which energy is radiated per
unit area. So we can write the total average energy radiated from the surface of

sun per unit time as
or
E = (S8)x 4nR®

E__ 4.0x 1081571
dmR® 4> 31416 x (7x 10°m )

(8) =

=6.5% 100Im 27!

To calciilate the energy- incident on the earth, we should know the average Poynting
vector { Sg } at the surface of earth. To do so, we denote the distance between the
surface of earth and centre of the sun as Rg = Rgs + R and note that

s

(Sg)amRg = (S)x anR?

so thal

(Ss) - (f—]z (s

2

8

- (——1_75" lfol‘ln ] x (6.5 107 ?s71)
. x m

= 1.42x 10°Im~%s L
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UNIT 2 REFLECTION AND
REFRACTION OF LIGHT

Structure

2.1 Introduction -
Objectives i
2.2  Electromagnetic Waves at the Interfacc Separating Two Media

Normal Incidence
Oblique Inctdence

2.3 Idealization of Waves as Light Rays

24  Fermat's Principle

2.5 Summary
2.6 Terminal Questions
2.7 Solutions and Answers

2.1 INTRODUCTION

In the previous unit you have leamt that light is an electromagnetic wave. It is made
up of mutually supporting electric and magnetic fields, which vary continuously in
space and time. An interesting question related to e.m. waves is: What happens to
these fields when such a wave is incident on the boundary separating two optically
different media? From Unit 7 of PHE-02 Course you may recall that when a wave
passes from air to water or air to glass, we get a reflected wave and a refracted
wave. Reflection of light from a silveréd surface, a looking mirror say, is the most
common optical effect. Reflection of ¢.m. waves governs the working of a radar.
Reflection of radiowaves by the ionosphere makes signal transmission possible and
is so crucial in the area of communication.

In your earlier school years you have learnt that refraction explains the working of
lenses and is responsible for seeing; our contact with surroundings. Even'the grand
spectacle of sun-set or a rainbow can be explained in terms of refraction of light.
Refraclion of e. m. waves forms the basis of one of the greatest technological
applications in signal transmission. In fact, electro-optics has seen tremendous
growth via optical fibres for a variety of applications.

In Unit 7 of PHE-02 course on Oscillations and Waves, you learnt o explain
reflection and refraction of waves on the basis of Huygens” wave model. Now the
question arises: Can we extend this analysis to eleciromagnetic waves, which include
visible light, radiowaves, microwaves and X-rays? In Sec. 2.2 you will learn to derive
Lthe equations for reflected and transmitted fields (E and-B) when an e.m. wave is
incident normally as well as obliquely on the boundary of two media.

You are aware that many physical systems behave according to optimisation
principle. In PHE-06 course you have learnt that-when several fluid$ at different
temperatures are mixed, the heat exchange takes place so that the total entropy of
the sysiem is maximum. A ball rolling on an undulating surface comes to rest at the
lowesl poinl. The profoundness of such situations and scientific laws governing
them led Fermal Lo speculale: Does light also obey some optimization principle?
And he concluded: Ray of light chooses a path of extremum between two polnts,
This is known as Fermat's principle. Implicil in it are Lthe assumptions

(i) Light travels at a finite speed, and

(i) The speed of light is lower in a denser medium.

In Sec. 2.4 you will leamn about Fermat’s principle. We have shown that all laws of
geometrical optics are contained in it.

|memgny rea
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Objectives

- After 'studying‘t-his‘unit you should be able 10

_e explain reflection and refraction of e.m. waves incident normally and
_obliquely on the interfacc separating two optically different media

.» apply Fermat’s pnnmple 10 explain the reﬂecuon and re[racllon of light,

and

e solve problems based on reflection and refraction of ¢.m. waves.

2.2 ELECTROMAGNETIC WAVES AT THE -
. INTERFACE SEPARATING TWO MEDIA

Consider a plane electromagnchc wave lhal is incident on a boundary between two
linear media. That is, D and H are proportional to E and B, respectively, and the
constants of proporl:onahl.y are independent of position and direction. You can ,
visualise it as light passing from air (medium 1) to glass (medium 2). Let us assume

that there are no free charges or currents in the materials.

Fig. 2.1 shows a plane boundary between two media havmg different permittivity

" Incident

E

_Reﬂected
B

R

Medium 1& p,

Medium 2 ¢ p,

Fig.2.1: A unlform plane wave Is incldent normally on a plane bﬁundnry The reflected and
refracted (transmitted) waves are also shown The a.ngle of Incldence is ¢ and angle ol

- refraction is p.

and permeability: &, w) for medium 1 and ez, uz for medium 2. A uniform plane
~ wave travelling to the right in medium 1 is incident on the interface normal to the
_boundary. As in the case of waves on a string, we expect a reflected wave

, propagating back into the medium and a transmitted (or refracted) wave travelling
in the second medium. We wish (i) to derive expressions for the fields associated
... with reflected and refracted waves in terms of the field associated withi the incident .

wave and (if) know the fraction of the incident energy that is reflected and }

transmitted. To do so we need to know the boundary conditions satisfied by these
waves at the interface separating the two media. We obtain these conditions by,

Reflectlon and Re[mcuon of

Light

S




Introducing Light

e O O

Flg.2.2 A slnusoldal plnne
em. wave Incldent normally at
the boundary of two optically
transparent medla

2

- stipulating that Maxwell’s equations must be satisfied at the boundary between

these media. We first state the appropriate conditions. Their proof is given in-the

appendix Lo this Unit.

Boundary Conditions b

You learnt to derive the boundary conditions from Maxwell’s equations for a
medium [ree of charges and currenls in Unit 15 of the PHE-07 course on electric
and magnetic phenomena. For your convenience, we rewrite appropriate mlcgral
form of these equations:

F-J;E ds = 0 (2.1a)
'J;B.a’S =0 (2.1b)
E.dl -‘-i*fB ds '
AR (2.10)
and
16B-a..2 f '
" CB. dl edt SE.dS ', (2'1d)_

where S is a surface bound by the closed loop C.

The electric field can oscillate either parallel or normal Lo the plane of incidence.

* The magnetic field B will then be normal or parallel to the plane of incidence. Wc

will denote these with subscripts |l (parallel) and L (normal). The boundary
conditions for normal and parallel components of electric and magnetic ficlds take
the form (Appendix-A).

ey Ey - 60aEz =0 (2.2a)

Bu_— BzJ_ = 0 (22b)

Elu - Ezh =0 (22(.‘.')
and

1 1 :

” Bu—_ga_ﬁ'zn =0 (2:2d)

We shall now use the boundary conditions expressed by Egs. -(2.23- d) to study
reflection and relraction (transmission) al normal as well as oblique incidence.

2. 2.1 Normal Incidence

Reler (o Fig. 2.2. The yz-plaue (x = 0) forms the interface of two optically
transparent (non-absorbing) media (refractive indices #; and n;). A sinusoidal plane
wave of frequency o travelling in x-direction is incident from the left. From Unit 7

of the Oscillations and Waves course you will fecall Lhiat progiessive wavesdre ™~

partially reflccled and partially refracted at the boundary separaling two physically
different media. However, the cnergy of the reflected or transmitted e.m. waves
depends upon their refractive indices. -

-

——
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The appropﬁate magnetic fields to be associated with electric fields are obtained
from the equation
aB ~
VxE~- Py )

Let us suppose that the electric field is along the y-direction. Then the electric and
magnetlc fields associated with the incident wave are given by

E;(x,t)=Emj exp[:(k;x— wte)] (2.3a)
and
B;(x,:)-vﬂﬁexp[i(k,x- wt)] (2.3b)
1, )

The reflected wave propagates back into the first medium and can be represenled by
the following fields:

Er(x,t) = Exgj exp [ - i(kjx+ wt)] (2.42)
and |

BR(x,r)=-€;:Rﬁex15 [- i{fgx+ wt)] (2.4b)

The minus sign in the exponents in Eqs. (2.4a,b) indicates that propagation of the
wave is in the -x direction. But the negative sign with the amplitude in Eq. (2.4b)
arises because of transverse nature of e.m. waves and that the electric and magnetic
field vectors should obey the relation

Bn=viltﬁlen>

where rq is unit vector along the direction of incidence.

If you visualise Eqs. (2.3) and (2.4) diagramatically, you will note that the electric
vectors have been kept fixed in the same direction but the magnetic field vectors
have been oriented. The orientation of the magnetic field vector ensures that the
flow of energy is always along the direction of propagation of the wave (Poynting
theoremy).

The electric and magnetic fields of the transmitted wave, which travels to the right
in medium Z, are given by .

Er(x,t) = Ejrj exp [i(wrt+ krx)] (2.52)
and
Br(xr) = viz[ kr x Er(x )] (2:5b)

The phenomenon of reflection and refraciion is usually analysed in two parts:

(1) To determine the relations between the field vectors of the reflected and
réfracted waves in terms of that of the incident wave. These relations
detetmine the reflection and the transmission coefficients. In this derivation,
we match the E and B fields in the two media at the interface with the help of
appropriate boundary conditions there.

“(ii) To establish relations between the angle of incidence and the angles of

reflection and refraction we may emphasize that so far as the laws of reflection

and refraction are concerned, explicit use of any boundary condition is not
required.

—_— e

Reflection and Refraction of

2

TR

! .
e | ey Y

IR TRT.]




Introducing Light

7

‘Fresnel’s Amplitude Relations

To derive expressions for the amplitudes of the reflected and the refracted'waves in
terms of the amplitude of the incident wave, we apply boundary conditions given by
Eq. (2.2a-d) at every point on the interface at all times. At x = 0, the combined

field to the left (E; + Eg and By and By) must join the fields to the right (Er and By).

For normal incidence, there are no normal field components (perpendicular to the
interface). But why? This is because neither E rior B field is in the x-direction. This
means that Eqs. (2.2a,b) arc trivial and only tangential components of the electric
and magnetic fields should be matched at the plane x = 0. Thus

Eo + Egp = Eor (263)

and

1 1
2 (Bor+ Bog) = —B
!-'-1( or + Bor) g Do

or

1( Ey _Eor)_ 1 Eu
Wi w1 Vi Ko V2.

. which, on simplification yields

Egp - Egg = G.EQT (26b)

where :
(
a = Hive (& W% - (2.6¢)

Mz V2 BoE - Mam

Solving Eqs. (2.62) and (2.6b) for ine retlected and transmitted electric field
amplitudes in terms of the incident amplitude, you will find that

Eog = ( 1- “)Em C (@2.79).

1+«
and

(2.7b)

2
Eor = E
0T = 77 oW

For mosl optical media, the permeabilities are close lo (heir values in vacuum

(1= p2= po). Insuch cases @ = :%land we have

E e )
OR = V2+V1 af

and

2w

Eor = Ly S (2.8)

Vi V)

This suggesls that when v > vy, the reflected wave will be in phase with the
incident wave and for vz < vy, the reflected and incident waves will be out of phase.
This is illustrated in Fig. 2.3.

1
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Fig.2.3: The phase relationship between reflected wave and the Incident wave
. . e -
In erms of the index of refraction # L= " ), we can rewrite Eq. (2.8) as \
- N
Eor = E
0R H+ H2 or
and
2m - y
Egyg = —— (2.9
7= T Eyy (2.9)

When an e.m. wave passes trom a rarer medium to a denser medium (m < n2), the
ratio E;.R will be negative. Physically, it means that the reflecled wave is 180° out
or

of phase with the incident wave. You have already learnt it in case of reflection of
sound waves in the course on Oscillations and Waves. When an e.m. wave is
incident from a denser medium on the interface separating it from a rarer medium

(n1 > m), the ratio 'E% is positive and no such phase change occurs.

We can now easily calculate the reflection and the transmission coefficients,
which respectively measure the fraction of incident energy that is reflected and
transmilted. The first step in this calculation is to recall that

Ir
k=1
and
IT
T=2
I ,

where I, I7and Iy respecuvely denote Lhe reflected, transmitied and incident wave

intensity. Intensity is defined as the average power per uait area, (1/2) v E*. So you
can readily show that

2 o LIErUn

Faile e AT

R ("1_‘"2_] * (2.10) 3
Iy m+ n .
-and.. - o - . o A ' O ._._-.._E
| I Y\
T T_ "_2(_"_1_] . (2.10b)
I ntm
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.

You can convince yourself that R +7 = 1. For air (n = 1) - glass (2 = 1.5)

interface, the R and T coefficients have the values R = 0.04 and 7 = 0.96. There is
no energy stored (or absorbed) at the interface and you can now realise why most of
the light is transmitted. '

We will now repeat this exercise for the case of oblique incidence.

2.2.2 Oblique Incidence

Refer to Fig. 2.4. A plane clectromagnetic wave is incident at an angle Or. Lelthe .
angles of reflection and refraction be 8 and ©7. We can represent the fields
associated with these three plane electromagnetic waves as

Incident Wave
. E[ = Eo] exXp [— I':(CIJ;.I.'—- k].l‘)]
1,a
Br= 7 (kax Ey) : (2.11a)
Refiected Wave
Eg = Eor exp [- i(wgt- kr.1))
Bp= —(Rgx E
R= - (Kex Eg) (2.11b)
i
o
Transmitted Wave (

Er= Egr exp [- i{wort— kr.r)]

1
Br= g(ﬁT" Er) - _‘(2_11(_-,)\

You may recall that the boundary conditions must hold at every point on the
interface al all times. If the boundary conditions hold at a point and at sometime,
they will hold at all poinls in space for all subsequent times only if the exponential
parts in above expressions for each wave are the same, i.e.

wrt— Kp.r = wgt— kg.r= wrf~ Kr.r
at the interface. This implies that for equality of phases at all times we must have
W = wp= Wy~ & (say) (2.12a)

That is, the frequency of an e.m. wave does not change when it undergoes reflection
and refraction: all waves have the same frequency. Since the fields must salisfy
Maxwell’s equations, we must have for the wave vectors

K1 .

il Al W1 (2.13a)
koo
.1, (2.13b)
UJ2 'c'f 2 W2 ST
K1
Al (2.13¢)

R ]




- Further, let Ay, kry and &y; represent the x, .y and z components of k1. We can use Reflection and Refraction of

‘similar notation for ky and kg. For the continuity conditions to be satisfied at all Light
points on the interface, we must have
kyy = kry = kgy ' (2.14a)
and
ki, =kr; = kg, .. (214b)
EI
el
xm .
X
. B! k) I"'l
g, 1 yI >z
N E BB 10 N,
] - EI
! e

Flg.2.4: The reflection of a plane wave with Its electric veclor parallel to Lhe plane of incidence

Let us choose the y-axis such that
k=0
(i.e. we assume ki to lie-in the x-z plane - see Fig. 2.4). Consequently

kry = kRy =0 (2.14¢c)

This result implies that the vectors ky, ky and kg will lie in the same plane.
Further, from Eq. (2.14b) we get

k; sinB; = kg sinBr = kg sinfg (2.15)

Since [k | = | Ky | (see Eq.2.13a and c), we must have
8 = O (2.16)
That is, the angle of incidence is equal to the angle of reflection, which is the law of
reflection. Further, - : . o

Sine; _kl @YV E K2 : . ) -
sinbr k& wvYewm o

or
2
sin 6; TR T TR
= 2 12 —-t
- = /22 17 :
sin 6y N (2.17)

_ If we denole the speeds of propagation of the waves inmedia 1and2by

1 1 .
) ( Vv ) and v, ( = Vit ) we [ind that Eq. (2.17) can be rewrilien as
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sing v m - - (2.18)

¢ c
whcrcn1=v—-cfsl|.u and nz=;z—-= r:\/azpz.
yr )

represent the refractive indices of media 1 and 2 respectively. Do you recogmse .
Eq. (2.18)? It is the well known Snell’s Iaw.

Egs. (2.16) and (2.18) constitute the laws of reflection and refraction in optics.

You can now derive Fresnel’s amplitude relations following the procedure outlined
for the case of normal incidence, For brevity, we just quote the results without
going into details. (You will not be examined for the same in the term-end
examination.) When E oscillates parailel to the plane of incidence, we have

Epp tan(6-67) o (2.19a).

Eg  tan(6;+ 0;)

E__Tﬂ 2cos 6; sin 83- ‘ (Zlgb)
"Ep " sin(8; + Or)cos (6 — 67)

When E oscillates norma! to the plane of incidence, we have

{Er. _ sin (6 - 67)
“Efy sin {(9; + 6;-) (2203)
E 2 si 8 .
71  2sin Bz cos B; (2.200)

Ep sin (6 + 67)

You can easily verify that for normal incidence these equations reduce to Eq. (2.9).

The cone.;:.ponding expi‘essions for reflections and transmission coefficients for
normal and parallel oscillations of E when a plane wave is incident obliquely are

tan® (8, — 67) ' (2:213)

R =
b= tan? (o, + 67)

sin 26, sin 287 (2.21b)
sin® (8 + Or) cos® ( 6; — 67)

Tj =
sin” (6 - 87) | - (2210
sin® (8; + O7) '
and

T o S
1" sin? (8 + 87)

- As before, you can easily show that for normal incidence these equations-reduce o~

Eq. (2.10a, b).

sin 28;sin 267 - _ " (2.214d) -

= A mInE T
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23 IDEALIZATION OF WAVES AS LIGHT RAYS

So far.you have learnt to explain reflection and refraction of plane electromagnetic
' waves at a plane interface. This signifies a relatively simple situation where the
solutions of Maxwell’s equations give the laws of propagalion of light. It is not true
in general and we invariably seek approximations to describe a phenomenon well.

" One such approximation makes use of smallness of wavelength of light. You know

‘that the wavelength of light is very small ( ~10° Tm). It is orders of magnitude less

YyYyYYY

Fig.2.5: Ray representation of a plane, diverglng spherical and converglng
spherical wavelronts moving from left to right

than the dimensions of oplical instruments such as telescopes and microscopes. In
such cases, the passage of light is most easily shown by geometrical rays. A ray is
the path of propagation of energy in the zero wavelength limit ( A — 0 ). The way
in which rays may represent the propagation of wavelronts for some familiar
situations is shown in Fig. 2.5. You will note that a plane wavefront corresponds to

_parallel rays and spherical wavefronts correspond to rays diverging from 2 point or
converging 1o a point. You will agree that all paris of the wavefront 1ake the same
lime 10 travel {from Lhe source.

The laws of geometrical optics are incorporated in Fermat’s principle. We will now
discuss it in detail.

24 FERMAT’S PRINCIPLE

In its original form, Fermat’s principle may be stated as follows:

Any light ray travels between two end points along a line requiring the
minimum transit time.

If vis the speed of light at a given point in a medium, the time taken to cover the
distance dl is

Y

df = ifvi (2.22)

In your earlicr years you have learnt that the refractive index of a medium is defined
as the ratjo of the speed of light in vacuum to its speed in the medium, i.c.

c
H = -
v

- -Using this relation in Eq. (2.22), we get

d=Lnal
c

Reflectlon and Refraction of
Light

Huygens proposed that light
propagates as 2 wavelront (a
surface of conslant phase)
progresses ina medium
perpendicular to itself with the
speed of light. The zero
wavelength approximation of
wave oplics is known as
geomelrical oplcs.
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'Flg. 2.7 : Reflection of rays at
a plane interface

28

Hence, the time taken by light in covering the distance from point A to B is
B
T = lfn dl
c
A
The quantity

B
L - f n dl (2.23)
A

has the dimensions 6rlengl.h and is called the optical distance or optical path

- length between two given points. You must realise that optical distance is different

B
from the physical (geometrical) distance ( = f dl). However, in a homogeneous
A

medium, the optical distance is equal to the product of the geomeirical length and
the refractive index of the medium. Thus, we can write -
L

T =a —
c

This is Fermat’s prinCiple (of least time. Let us pause for a moment and ask: Is there
any exceplion to this law? Yes, there are cases where the optical path corresponds
Lo maximum time or il is neither 2 maximum nor a minimum, i.e. stationary. To
incorporate such situations, this principle is modified-as foilows:

Ovut of many paths connecting two given points, the light ray follows that path
for which the time required is an extremum. In other words, the optical path
length between any two points is a maximum, minimum, or stationary.

The essential point involved in Fermat’s principle is that slight variation in the
aclual path causes a second-order variation in the actual path. Let us consider that
light propagales from point A in the medium characterised by the refraclive index n
to the point B as shown in Fig. 2.6." According to this principle,

B
Sy n(x,y,z)dl =0 . 2.24)
L (

rFor a homogeneous medium, the rays are straight lines, since the shortest oplical
path between two points is along a straight liné.

In effect, Fermal’s principle prohibits the consideration of an isolated ray ofdight.
It tells us that a path is real only when we extend our examination to the paths in
immediate neighbourhood of the rays. To understand the meaning of this
statement, let s consider the case of finding the path of a ray from a pointA to a
point B when both of them lie on the same side of a mirror M (Fig. 2.7). L can be
seen that the ray can go directly from A 10 B without suffering any reflection. .
Alternatively, it can go along the path APB after su ffering a single reflection from
the mirror. If Fermat's principle had asked for, say, an absolute minimum, then the
path APB would be prohibited; but that is nol the actual case. The path APB is also
minimum in the neighbourhood involving paths like AQB. The phrase "immediate
neighbourhood of path” would mean those paths that lie near the path under

W T
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" consideration and afe similar to it. For example, the path AQB lies near APB and is
similar to it; along both paths the ray suffers one reflection at the mirror. Thus
Fermat’s principle requires an extremum in the immediate neighbourhood of the

. actual path, and in general, there may be more than one ray path connecting two
points. - -

All the laws of geometrical optics are incorporated in Fermat’s principle. We now
 illustrate Fermat's principle by applying it to reflection of light.

IExampl_e 1
Using Fermat’s principle, derive the laws of reflection.

Solution

Let us first consider the case of reflection. Refer to Fig, 2.8. Light from a point 4 is

reflected at a mirror MM towards a point B. A ray APB connecls A and B. 6y and 6z
are the angles of incidence and reflection, respectively. We have denoted the

vertical distances of A and B from the mirror MM by a and b. From the conslruction
in Fig. 2.8 and Pythagoras’ theorem, we find that the total path length / of this ray
from A to MM to B is

1=Va +5 + V6 + (d- x) (2.25)

where x is the disiance between the foot of the perpendicular from A and the point P
. at which the ray touches the mirror. o

According 1o Fermat’s principle, P will have a position such that the time of travel
of the light must be a minimumn (a maximum or stationary). Expressed in another
way, the total length / of the ray must be a minimum or maximum or stationary. In
other words, for Fermat’s principle to hold, the derivative of { with respect to x must
be zero, i.e. di/dx = 0. Hence, on differentiating Eq. {2.25) with respect 1o x, we get

%- %(02+ #)y (24 %[b3+ (d- sz]'m

x 2(d-x)(-1)= 0

(2.26)
which can be rewritten as
x _ d-x
(az+x2)|/z [b2+(d—x)2]m . (2.27)
By examining Fig. (2.8) you will note that this gives
sin 91 = Sin BR
or
6 =6 (2.28)

. -which is (part of) the law of reflection. You will also note thal the incident ray, the
reflected ray and the normal to MM lie in the same incidence plane.

- . In the above example time required or the optical path length can be secn to be

----minimum by calculating the second deviative and finding its value at-x for which
dljdx = 0. The 2nd derivative turns out to be positive, showing it to be minimum.
You can convince yourself by carrying out this simple caculation.

We now summarise what ydu have learnt in this unit.

Reflectlon and Refractlon of

Light
A k]
) B
a 3]
; ! 9/\1;
M LM
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Fig. 2.8 Derivation of the laws of

reflection using Fermar's principle. -
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25 SUMMARY.

®  When an'e.m. wave is incident normally on the interface separating two
optically different media, the reflected and transmitted electric field

amplitudes are given by
1-a
Eop = I+ a Eu
and
" E,
Eor 1+a ¥

where @ = Vi &,/ I &, and E,, is amplitude of incident electric field.

» The frequency of an e.m. wave is not affecied when it undergoes reflection
or refraction.

» Fermat’s principle states that a ray of light travels between two given
. points along that path for which the time required is an extremum:

B
3| n(x,y,2)dl=0
_l;(y

2.6 TERMINAL (QUESTIONS
1

Derive Snell’s law from Fermat’s grinciple.

2. A collimated beam is i‘llcideni,parallcl 10 the axis of a concave mirror. Itis
reflected into a converging beam. Using Fermat's principle show that the
mirror js parabolic.

2.7 SOLUTIONS AND ANSWERS

TQs

1. To prove the law of refraction from Fermal’s principle, consider Fig. 2.9,
which shows thai the points A and B are in two optically different media. (If
lhe refractive index on both sides of the boundary SS were the same, the path
from A to B would be a straight line, irrespective of the magnitude of the
refractive index. But the refractive indices are not the same and the ray APB is

. not a straight line.) Suppose that the velocities of light on the two sides of the
. boundary are v, and v,. Since v ={ /t, the time light takes to traverse the paths
AP and PB is

'\/151+x2 '\/b2+(d—x) f_|+fi
Vi L] vy ok

[ -

®

Usmg the relanon r=c/v, lhlS can be rewritten as

y ﬂl {1 + H-z 12 !
c c

where [ (=, I, + n, L) is the optical path length of the ray.The geometrical

path in this case is {, + I, If A is the wavelength of light in vacuum and A, iz a
medium of refractive index n, then A = n A . This shows that the optical path

length is equal to the length that the same number of waves would have if the
medium were a vacuum.
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_ Fig2.9: A ray from A passes to B alter refraction at P

Fermal’s principle requires that dl | dx = 0 for some values of x. The optical

path length
[ = 11 n + Izng
© oV (de2) + mV s (d- PR (1)
: d—x
sothal — =M —7 12 ! = =0
dx (az+ xz) [b2+(d-x)2‘
X d-x-
or RN =M Y (iti)
(a +x) {b+(d—x)‘l
As before, we can write il in terms of the angles of incidence and refraction as
nysin By = np sin Og S {(iv)

which is Snell’s law of refraction. It shows that when light passes from a’
medium of lower refractive index (rarer medium) lo a medium of higher refrac-
tive index (denser medium), it bends towards the surface normal.

: w
2 A
» E

v

A §

v

. Flg. 2.10: Reflcctlon of light Incident on a concave mirror

Fig. 2.10: depicls cross sectional view ol parallel rays corresponding toa plane -
wave WW incident on the mirror. The reflected rays converge on F. The optical
path lengths of all rays reaching F must be the same:

n;(AB + BF) = n;(EG + GF) =... 1 (XY + YF)

" Now let the line segmenis AB, EG, ... , XY be prolonged through the mirror to
points C, H, ..., Z such that

BC - BF, GH = GF,..,YZ =YF

.
LTI LT R L

egE s LI LT

_ The twa sets of equalities above imply that A5 + BC = EG + GH=.. . _ _ :
= XY + YZ, which tells us that the distance between WWand W Wthrough C, £, ..., z -
is constant. We have thus constructed a straight line W* W*such that the points of M
are equidistant from it and point £. By definition, then M is parabolic (with Focus F).

3




Introducing Light

BOUNADARY CONDITIONS ,
Let us first consider the components of E and B fields that are normal to the

boundary. We construct a thin Gaussian pill box - extending just a little bit
(hair-like) on either side of the boundary of the media, as shown in Fig. A.1

Ex
S

290
——

: E, .
Fig.A.1: The positive direction of § and E Is from medium 2 towards med{um £
Eq. (2.1a) implies that

eJE.as = 6 JB a5 + By a5 = 0
or
- ElEl.S - EzEz.S =0

In the limit thickness of the wafer goes to zero, the edges of the wafer do not
contribute. Thus, the components of the eleclric fields perpendicular to the interface
satisfy the condition

" B, -8B, -0 (A1)

-
That is, the normal component of electhic displacement is continuous across the
boundary. -

By a similar argument for normal components of magnetic fields we obtain the
following boundary condition from E4. (2.1b): -
By) -8B, =0 (A2)

It may be emphasized here that only the normal components of D and B are equal
on both sides of the boundary. Their total magnitudes may not be equal and their
directions need not be the same. In fact, these fields may well be reflected or
refracled and may also change direclions

We now consider the components of two fields parallei to the boundar); and apply

_Eq. (2.1c) to a thin Amperian loop across the surface. This yields

d dpp
EI.I—EZ.I——‘.d! Bdsa -2

where B is magnetic flux. As the width of the loop goes to zero, the magnetic flux
vanishes. Therefore,

(Ey-Ep).1=0

which implies thai

El” - E2i| = 0. B (A.3) L
- That is, the components of E parallel 1o the interface are conlinuous across the

boundary.

In the same way, from Eq. (2. 1d) we find that the parallel components of the
magnelic field are equal and continuous. Malhematically we write

1

1 .
—By = —B8 A
w0 = By (A4)
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3.1 INTRODUCTION

The sense of vision is one of our most prized possessions. It enables us to enjoy
splendours of naturé, stimulates our thinking and enriches our lives in many ways.
We become aware of the infinite variety of objects around us, especially their
shapes, colours, textures and mation etc only due to our ability to see them. But
have you ever thought: What makes us to see? It all begins with eyes but also
depends on what happens behind the eye. Every object viewed is seen with light.
Eye responds to illumination. We all know that all living species - from-one celled
amoeba 1o the great bald eagle - have developed special mechanisms for responding
to light. Human perception of light, i.e. vision is 2 more developed process. It takes
place almosl spontaneously without any one, other than the perceiver, knowing
what is happening: Perception of lighl involves formation of sharp images (in the
visual apparatus) and their interpretation. Vision begins in the eye, but light is
sensed by the brain. In fact, what we see is the world created by our visual
apparatus inside our head. So we can say (hat vision involves a mix of physical and
physiological phenomena, You are already familiar with some of the aspecls about
light and visual systems from your earlier classes. Therefore, you are advised to
glance through NCERT physics text book. In this unit we will develop on what you
already know. In Sec. 3.2 you will get an opportunity-to review internal eye
structute arid know kiow light is sensed. Sec. 3.3 is devoted to colour vision where
you will learn about dimensions of colour, the trichromatic and opponent-colour
theories. )

Objectives

After studying this unit, you should be able to
s explain the functions of different parts of the eye
¢ list common eye defects and suggesi remedial measures

‘s describe how list common eye defects and suggest remedial measurcs '
human eye responds to colour, and

* explain trichromatic and opponent-colour theories of colour vision.

The amoeba reacts only to
exireme changes in light
intensity such as light and
darkness. The earthworms react
lo light through light sensitive
cells present on their skin. This
ability (o sense only general
level of light intensity is lermed
pholosensitivity.

s




Intreducing Light

* Human vision also has a rich

relationship with other senses.
In fact, all our five senses
cooperite and augment each
.other.

In medicine, the study of
structure, funciions and diseases
of the eye is called
opthalmology.

Human eyes are very versatile
and highly accurate. Their

- overall visual horizon is broad,

But they are less acule than a
hawk’s eyes and less

wide-seeing than those of a deer.

Moreaver, human eyes are not
ideally suited for seeing
underwater, nor are they very
efficient at night. Even in
twilight, eyes lose all colour
perceptions.
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3.2 HUMAN VISION

'Vision involves a mix of physical phenomena and physiological processes. We can
understand how the image of an object is formed within the eye purely in terms of
physical principles and processes. But from image formation to its perceplion by the
brain, the process is physiological. Int this section our emphasis will be on the
physics of vision. We shall also discuss very briefly the physiology of vision. Let us
begin our study of human vision with the eyes - our windows to the external world,
Our eyes arc very versatile. They possess a staggering degree of adaptability and
precision. They are capable of extremely rapid movement. That is why we can
.instantaneously shift the focus from a book in hand to a distant star, adapt to bright .

 or dim light, distinguish colours, scan space, eslimate distance, size and direction of
movement. You may nowask: How vision begins in the eye? What is the internal
structure of the eye? How brain interprets images? The answers to such questions
have fascinated man for thousands of years. Physiologists say that human eye is an
image-making device. (In a way, human eye has striking similarities to a camera of
automatic intensity and focal control.) To know the details of mechanism of vision,
some knowledge of the visual apparatus is necessary. You will now learn about the
structure of eye and how it works as an optical instrument.

3.2.1 Viewing Apparatus: The Eye

Qur eyes, as you know, are located in the bony sockels and are cushioned in faity
connective tissue. The adult human eyc measures about 1.5 cm in diameter. Now
refer to Fig. 3.1. It shows a labelled diagram of human eye.

s '
4

Auterior cavily

Anlttior chamber
{aqweons humor)

Poslerior chambey
Cagal of Schiemm
Suwipensory ligament
Citiary body and muscic
Bulber conjunctiva

Posterior cavily
~ «(vitrecwshumor) - -

Retinal arteney and veins

Muculn

Optedise  dyic perve

Central foves (lind spat)

Fig.3.1: A schematlc |abelled dlagram of human eye
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The sclera or *white’ of the eyeball is an opaque, fibro-elastic capsule. It is t'ai'rlg';

. tough and gives shape to the eyeball, protects its inner parts and withstands the
" intraocular pressure in the eye. The muscle fibres which control eyeball movement

are inserted on the sclera. The cornea is a tough curved front membrane that covers

. the iris, the coloured circular curiain in the eye. The comea acts as transparent

window to the eye and is the major converging element.

~ The comea is followed by a chamber Filled with a transparent watery liquid, the

aqueous hunior, which is produced continuously in the eye. It is mainly
responsible for the maintenance of intraocular pressure. Besides this, aqueous
humor is the only link between the circulatory system and the eye-lens or comea.
(Neither the lens nor the cornea has blood vessels.) The intraccular pressure
maintains the shape of the eye, helps to keep the retina smoothly applied to the
choroid and form clear images. Near the rear of this chamber is the iris. The iris is
opaque but has a small central hole (aperture), calied pupil. In our common
observation, pupil appears more like a black solid screen. Why? This is because
behind the opening is the dark interior of the eye. The size of pupil in normal eye is
about 2 mm. The light enters the eye ball through this area. The iris is suspended
between the cornea and the lens. The principal function of the iris is to regulate the
intensity of light entering the eyeball. When the fight is bright, the iris contracts and
the size of the pupil decreases and vice versa.

Thread-like suspensory ligaments hold the biconvex crystalline eyé—lens, which is
just behind the pupil and iris. The muscle responsible for changes in the shape of

the lens for near as well as far vision is called tbe ciliary muscle. The cye-lens is an

elastic structure made of protein fibres arranged like the layers of an onion. It is

perfectly transparent and its focal length is about 3 cm. -

The cryslallihe lens is followed by a dark chamber, which is filled with vitreous

humor. It is a (ransparent jelly-like substance. It augments the functions of aqueous

humor and helps the eye hold its shape. The rear boundary of this chamber is’
retina, where Lhe image of the object is formed. Microscopic struclure of relina is
shown in Fig. 3.2(a). It consists of a nervous layer and a pigmented layer. Apart
from sensing the shape, and the movement of an object, the retina also senses its
colour. The retina consists of five types of neuronal cells: the photoreccptors,
bipolar, horizontal, amacrine and ganglion neurons. A magnified view of the
amrangement of neuronal cells in the retina is skown in Fig. 3.2(b).

Bipolar ncorons

Phplore ,
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nerve
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Flg.3.2: (a) Microscople structure of retlna (b) A Magolfled view of arrangement
of neuronal cells n the retlna ’
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" The intraocular pressure
maintains the shape of the eye; -
helps to keep the retina smoothly -
applied 1o the choroid and form
clear images.
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Introducing Light

Number of receptors
per square millimetre

The photorecepfor neurons are of two types: rods and cones, (This nomenclature is -

due to their geometrical shapes.) It is estimated that about 130 million rods and
congs are found lining the retina. Of these, about six million are cones and about
twenty times as many are rods. The light sensitive pigments of photoreceptors are
formed from vitamin A.

Blind spot

Rods
100000 '

60000

20000/

! Cones

0 1 1 I 1 L 1 1 L 1 1 1 T

70 60 50 40 30 20 10 0 10 20 30 40 50 60 70 80
Visual angle in degrees ‘

Fig. 3.3: Distributlon of rods and cones In the retina of human eye

At the very centre of the retina is a small yellowish depression, called fovea. This
small valley (of about Smm diameter) contains a large number (.. 110,000 ) of

cones and no rods. The (ﬂétribution of rods and cones across the humman retina is

- shown in Fig. 3.3. The horizontal axis shows the distances in degrees of visual

angle from the fovea located at 0°.

Rods are highly specialized for vision in dim light. They enable us to discriminate
between different shades of dark and light, see shapes and movements. That is, rods
provide a high sensitivity. Cones contain light sensitive pigments which make
colour vision and sharpness of vision (high visual acuity) possible. .

When light is absorbed by pholoreccptor-‘ci’.lls, the light sensitive pigments are
broken up by specific wavelengths of light. The bipolar nerve cells carry nerve
impulses generated by rods and cones to the ganglion cells. The axons of the .

ganglion cells converge on a small area of the retina. It is lateral 1o the fovea and is |

free from rods and cones. Can you say anything aboul ils ability for vision? Since
this area conlains only nerve fibres, no image is formed on it. That is, il is devoid of
vision. For this reason, it is called the blind spot. You may be templed to ask: [s
there a spot in the eye for maximum vision? Certainly yes, the fovea is the valley of
ihe sharpest vision. This remarkable perceptive abilily is provided by the cones.
Muscles for moving the eye spring.from the sclera. The conjunctiva - a supple

_ protective membrane - joins the front of the eye to the inside of the eyelids.

3.2.2 Image formation

Before stimulating rods and/or cones, light passes through the c'omea, aqueous
humor, pupil, eye-lens and vitreous bumor. For clear vision, the image formed on
the retina should be sharp, Ima ge formation on the retina involves refraction of
light, accommodation of eye-lens, constriction of pupil, and convergence of the

eyes. We will now discuss these.

. Refraction and Accommeodation

The light entering the éye through the transparent window - cornea - undergoes
refraction four times. This is because the eye has four optically different media:
cornea (n = 1.38), aqueous humor (1 = 1.33), eye-lens (n = 1.40), and vilreous
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humor (# = 1.34). Most of the refraction occurs at the air-cornea interface. Can you
say why? This is because the cornea has a considerably larger refractive index than
air (n = 1.0). Moreover, due to the curved shape, the cornea bends the light towards
the retina. Additional bending is provided by the eye-lens, which is surrounded on,
both sides by eye- fluids (Fig. 3.1). However, the power of the lens to refract light is
fess than that of the cornea. So the main function of lens is to make fine adjustments
in focussing. The focussing power of eye lens depends on the tension in the ciliary
muscle. When the ciliary muscle is relaxed, the lens is stretched and thinned. When
a visual object is 6m or more away from the eye,comea receives almost parailel
light rays. When the eye is focussing an object nearer than 6m, the ciliary muscles
contract. As a result, the lens shortens, thickens and bulges and its focussing power
increases. These features are illustrated in Fig. 3.4. The great value of the lens lies
in its unique ability to automatically change its focal control. This ability is called

Far sccommodalion Near accommodation

(x}

®

Fig. 3.4: Far and near accommodation (a) In the dlagram  on the left, the cliiary
muscle Is relaxed. This causes the eye-lens to curve lesy. In the other dlagram,

- the clllary muscle |s contracted. This causes the lens o curve more. - ’
(5) Accommodatton for far viston (6m or more away). (¢} Acommodation for

accommodation. Since accommodation means work for the muscles atached to the
eye lens, viewing an object nearer than 6m for a long time can cause eye- strain.

Constriction of Pupil

Constriction of the pupil means narrowing down of the diameter of the hole through

‘Pemptlon of Light

While a healthy cornea is
transparent, disease or injury

may resull in blindness. Buteye .

surgeons have now acguired
competence in replacing

damaged cornea with clear one

from human donors. Any

imperfection in the shape of the
comea may cause distortion in -

visual images.

The eye-lens of elderly people

tends to be less flexible and
loses ability to accommodate.
‘This condilion is called
prestyopla. For extra
focussing power, they use
glasses (spectacles or contact
lens).
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which light enters the eye. This action occurs simultaneously with accommodation
of the eye-lens and prevents the entry of light rays through the periphery of
eye-lens, which can result in blurred vision. The pupil also constricts in bright light
. to protect the retina from sudden or intense stimulation. (When the Ievel of
illumination is low, the pupil dilates so that the retina can receive enough light.)

Convergence

Human beings have single binocular vision. This signifies that both eyes focus on
only one set of objects. When we stare straight ahead at a distant object, the

" incoming light rays are directed at both pupils, get refracted and are focussed at
identical spots on the two retinas. Suppose that we move close to the object and
keep our attention on the same stationary objectl. Our common sense suggests that
even now images should form on the same points (in both retinas). It really does
happen and our eyes automatically make adjustments by radial movement of two
eyeballs. This is referred to as convergence.

Refer to Fig. 3.4 again. You will note that the' images formed on the retina are
inverted laterally as well as up-side-down. But in reality we do not see a topsy-turvj
world. You may now ask: How does this happen? The solution to this apparent -
riddle lies in the capacity of the brain which aatomatically processes visual images.
This suggests that though vision begins in the eye, perception takes place in our
brain. Its proof lies in that severe brain injury can blind a person completely and
permanently, even though eyes continue to funclion perfectly.

You may now like to reflect on what you have read. So you should answer the

following SAQ before you proceed.
: e

Spend . SAQ1

5 min

--------- ¢
' Pupil - [ Aperture—

Human beings are unable to see under water. Discuss why?

By now you must be convinced that mechanically speaking, human eye is an optical
instrument resembling a camera. (A better analogy exists between the eye and a
closed cirenit & ur TV system.) The eye-ball has a light focussin g system (cornea
and lens), apert " ¢ (iris) and a photographic screen (retina). This is shown in Fig.
3.5. There are 0.’ course very important differences between our eye and a camera.
The engineering sophistication of human eye is yet to be achieved even in the
coslliesl camera. The camera-man has to move the his camera lens for change of
focus, whereas the eye-lens has automatic intensity and focal control. (The brain
constantly analysis and perceives visual images. This is analogous to the
development of a photograph.) The image on the retina is not permanent but fades
away afler 1/20th of a second and overlaps with the next image. This gives the
impression of continuity. There is of course no film in the eye that records the
images permanently as a photo film does.

Retina

Iris diaphragm

————————— - i - —— —
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3.2.3 Information Processing

As soon as light impulses impinge on the retina (and an image is formed), these are
absorbed by rods and cones, which contain four kinds of photosensitive substances.
These visual pigment molecules undergo structural (chemical) changes. It is
believed that each rod celi contains about sevenly million molecules of a
purple-coloured photosensitive pigment, rhodopsin. Like rods, cones contain violet
- coloured photosensitive pigment, fodopsin. '
FEach pigment molecuie consists of two components: colourless protein, opsin,
and a coloured chromophore, retinene. Opsin is different for each of the four visual
pigments and determines the frequency of light to which each pigment responds.

Let us now understand as to what happens 10 rhodopsin in rods. (The same basic

Unltm"rnf
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Fiy. 3.7: The rhodopin cycle: Bleaching action

changes occur in the visual pigments in cones.) Refer to Fig. 3.7 which depicts the
rhodopsin cycle. The first step in this process is the absorption of photon by
rhodopsin, which then undergoes a chemical change. Its cis-retinenc portion
changes to all-trans-retinene On referring 10 Fig. 3.8 you will note the rotation hat
occurs around the carbon numbered 12. This change triggers decomposition of
rhodopsin (into scotopsin and all-trans-retinene) by a multi-slage process known as
bleaching action. The pigment loses colour and the visual excitory event is believed
to occur. Then rhodopsin is resynthesized in the presence of vilamin A. In this
process, an enzyme, retinene isomerase, plays the most vital role.
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Fig-3.8: Structures of cls-retinence and all-trans- retinence

!

Rhodopsin has a molecular
weight of about 4 x 10* daiton. -
It consists of the scotopsin

" protein and the chromophore

relinene, a derivative of vilamin
A inthe form called |
cis-retinene. Any deficiency of -
vitamin A causes .
nighi-bllndress. Fig. 3.6 shows
the absorption curve of

thedopsin.
000 5000 wooa™ MR
Fig. 3.6 The absorption curv
of chedopsin .
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Introducing Light

The rods respond even to poor illumination such as twilight. Rhodopsin is highly
sensitive 1o even small amounts of light. Their responses to light generate colourless
images and objects are seen only in shades of grey. It is for this reason that you see
a red flower black in the evening. On the other hand, the pigments of the cones are
much less sensitive to light and require bright illumination 1o initiate decomposition
of chromophore. Visual acuity or ability 1o seg clearly and to distinguish two points
close together is very high and their responses produce coloured images.

The information received in terms of light is converted into electrical signals in the
retina. The potential of the cell membranes of the photoreceptor cells undergoes a
change even on brief illumination. This occurs through a complex chemical process
involving a flow of calcium ions and sodium ions across the membrane. The change
in membrane potential, AVn, is governed by the following equations in time and
space

AVp (t) = I,R(1 - e™¥%) (3.1)
and -
AV, (x) = Voe ** ' (3.2)

where I, is the membrane current, R the membrane resistance, T is the membrane
-lime constant. Vg is the change in the membrane potential atx = 0 (x being the
distance away from the site of current injection) and L is the length constant. As can
be seen, the spread of AV, in space is governed by L {(whose values fall in the range
of about 0.1 to 1 mm). It is important to note that while slow potentials are
generated in most cells, action potentials are produced only in the ganglion cells.
The signals generated in the retina are further transmitted 1o the higher centres in -
the visual pathway of the brain such as lateral genicuiate nucleus and visual cortex.
In this way, precise information about the image projected on the retina is
conducted accurately to the brain. The transfer of visual information in a typical
retinal circuit is shown (Fig. 3.9).

Photoreceptorcell

Horizontal call

Bipolarcell

Amecrine cell

r __ ¢
@ Ganglion cefl
Optic (ﬁ)

necve

Fig39: Retinal circult showlné the electrical llnlé between cells of the refina: Action potential

We hope that now you have a reasonable idea of how we perceive the world around
us. You may now like to know the faciors that hamper vision.

ST o TR

Pl s m e sle] 1 e




3.2.4 Defects of Vision . . : : - Perception of Light

Sometimes the eye loses its power of accommodation. When this happens, we are
unable 1o see objects clearly and vision becomes blurred. These are corrected by
using contact lenses or spectacles.

YYYYY

l
\g a
difficult to sce objects at long distances. In such a (defective) eye, the image of . %

In one kind of such a defect, human beings can see nearby objects clearly but it is - (a)
distant objects is formed in front of the retina (Fig. 3.10a) rather than on the retina. >
This defect of the eye is known as shortsightedness or myopla. It is frequently - —

observed in children and its occurrence is fast increasing in our country. In " (b)
shortsightedness, the eyeball gets elongated. It can be corrected by using a concave

divergent) lens (Fig. 3.10b) of appropriale focal length which moves the image on Flg.3.10: (a) Short sightedness
Eollhcrfel:irl)a. e ) of pprop ¢ . g (b} its correction

In another eye defect, eyeball gets shortened. Though distant objects are seen
clearly, nearby objects look blurred. In this case the image is formed behind the
retina (Fig. 3.11a). This defect is known as longsightedness or hypermetropia. It (a)
is normally observed in-elderly people. It can be correcled by using a convex
(convergent) lens of appropriate focal length (Fig. 3.11b).

-
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Somelimes 2 persdn may suffer from botk myopia and hypermetropia. Such peopie

often use bifocat lenses, in which one part of the lens acts as a concave lens and the (b)

other part as a convex lens. The third type of defécl of vision is called astigmatism,  Fip. 3.11: (a) Long sightedress
wherein distored images are formed. The corrective lenses are used lo restore (b) ils correctlon

proper vision. )

Y

3.3 COLOUR VISION

You all know that human beings have remarkable sense to adore the varied
creations of nature. This is particulary because colour is an automatic part of our
perception. In fact, the phenomenon of colour vision has added real charm in life. ]
Can you now realize what vision is like without colour? You will learn that the
colour is a perceptual experience; a creation of the eye and the mind. -

- e ——

One of the earliest observations about colour perception was made in 1825 by .
Purkinje. He observed that at twilight, blue blossoms on flowers in his garden i
appeared more brilliant than the red. To understand this you must know the jf'
mechanism of colour vision. The process ol colour perceplion is influenced by the -
physiology of the eye and the psychology of the person. Before we plunge into

" these details, it is imporiant to know the dimensions of colour, i.c., the pdramelers
with which colour may be defined.

3.3.1 The Dimensions of Colour

The most important physical dimension of colour is the wavelength of light. For
most light sources, what we perceive is the dominant colour, which we call the hue.
It is hue to which we give the names like red, blue or greenish yellow. In fact, the
terms colour and hue are frequently vsed interchangeably. You may therefore
conclude that hue is the perceptual correlate for variations in wavelength.

The second dimension relevant (o colour vision is illuminance, which refers to the
amount of light reaching the eye directly from the source. Itluminance, therefore,
characterizes the perceived brightness of a coloured light. This relationship
(between illuminance and brightness) is fairly complex because perceptual
sensitivity varies with the wavelength of light. Every individial with normal eye -
possesses-maximum sensitivity to light between he green and yellow parts of the

. spectrum (500nm - 600 nm). And the sensitivity to predominantly blue light
(400 - 500 nm)} is rather low.
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" . Introduéing Light -

Intensity is defined as the
emount of energy reaching a
receiver of given cross-

- sectional area every second.

42
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Ariother physical dimension associated with coloﬁr is the‘deg.ree of purity of

- spectral composition. That is, purity characterises the extent to which a colour (hue)

appears 10 be mixed with white light. This is responsible for variations in the
perceived saturations of the colour. For example, when we add white lightin a
spectrally pure blue, the lighl begins to look sky- blue. On progressive addition of
white light you may eventually observe it as white.

We may therefore conclude that

Colour, as a perceptual phenomenon, is three dimensional and is °
characterised by hue, saturation and brightness.

Thinking logically, you may now ask: Is there any other alternative expression for
Lhe dimensions of colour ? The answer to this question is: Yes, there is. It is based
on the observation that colour depends on intensity of light. Let us now learn about
it in some detail,

Trichromacg

You must have realised sometimes that when intensity of light is low, we see no
colours. You also know that by varying the wavelengths and/or intensities of lights
of different colours, it is possible to produce light of a desired colour. In your
school you must have learnt that all the colours of the visible spectrum can be
produced by mixing lights of just three different wavelengths: red, green and blue.
These are known as primary colours, The explanation for this trichromacy lies in
the mechanism for colour yision. You will learn about it in the next sub- section.

Another important phenomenon associated with colour vision is com plemantarity
of colours i.e. pairs of colours, when mixed, seem to annihilate one another. For
example, when we mix suitable proportion of a monochromatic blue light (A~ 470
mm} with a monochromatic yellow light { A~ 575 nm ), we obtain a colourless grey.

Reflecting on this observation, Hering suggested that complementary pairing is an
indicator for pairing in the mechanisms responsible for signalling colour in the
visual system. The complementary relationships among pairs of colours can be well
represented as shown in Fig. 3.12. To locate the complementary colour in this
figure all that you have 10 do is 10 choose any point and draw a line passing through
the centre of the circle. A suilably adjusted mixture of two complementary colours
will appear grey.

Fig. 3.12; The complementary colour clrele
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Before you proceed further, we-want you to pause for awhile and answer the . Perception of Light
following SAQ. : '

SAQ2 ' , Spend
.o . - : ' 5 min
How would you indicate brightness and saturation in Fig. 3.12?

Note the presence of ‘purple’ bues. You may recall that dispcréion of white light by
a prism does not reveal this hue. Then the question arises: What is their significance in
the colour circle? The complementary circle will remain incomplete without them.

You may also note that though colour circle represents colours as a continuum,
primary colours are perceptually quite distinct. The phenomena of primary colours -
and trichromacy led Young to propose three different types of receptors (cones) for
colour vision. You will learn the details as you proceed.

Colour Blindness

You now know that a single monochromatic light can be produced by combining
two primary colours. The measurements made to know the amounts of these
colours required to match a given monochromatic calour gave fairly standard
results. That is, when we ask a group of people to match a test colour, experience
tells that they mix the same proportions of primary colours. But colour-mixing
requirements for some individual may be anomalous. In fact, some individuals may
need only two, rather than three, primary colours to match all the monachromalic . ¢
hues. These anomalies are indicative of varying degrees of colour blindness.
People who show anomalous colour-matching requirement do riot see the same
colours as individuals having normal vision. The most common defect is in the
proportions of red and green lights required to match a monochromatic yellow. The
manifestation of this in everyday life is a limited ability to distinguish between red
and green. : '

~
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3.3.2 Colour Receptors

In the above paragraphs you have learnt that trichromatic theory led Young to e IR
propose that eye possesses three types of cones, each containing a different

pigment. And three types of pigments in the cones correspond to three primary 2ﬁtlzrsmm :::e
colours (three- dimensional colour vision). The absorption curves for these pigments

pigments are shown in Fig. 3.13. You will note that the curves show substantial
averlap. Moreover, the blue mechanism is markedly less sensitive than the other
‘twa.

The argument leading to this conclusion is rather subtle and needs closer analysis.
To understand this, let us asi:: How do humans distinguish such a large number of
colours? Do we need a different type of receptor Lo discriminate each colour? Since
the colours are numerous, the number of receptors available for a particular colour
willbe a small fraction of the total number of colour receptors. When monochromatic
light reaches our eye, only the corresponding class of receptors will respond. And
since the lotal number of responding receptors is comparatively small, the ability to
see a monochromatic light will be much less than the ability to see white light. But
in practice, this is not true. This led Young to,conclude that only a féw different

. types-of receptors are present, which by working in combination give rise t0.all the T
different colours we perceive. His experience with colour mixing led him to corclade IR
that the number of receptor types is only three. -

Te—D

This theory was proposed even before very little was known about the physiology
of the visual system. The outputs from the three types of receptors are transmitled
separately to the brain which combines the information and constructs certain
abstractions to which we give names like hue, saturation, yellow, blue etc.
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Introducing Light
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Spend
5 min

We all know that yellow gives a sensation independent of red, blue and green, i.e. it
seems as much of a primary colotir. But no coding system is postulated for yellow
in the trichfomatic theory. Such feelings, though subjective, led Hering to propose
an alternative theory of colour based on four colours: red, yellow, green and blue,
This is known as opponent-colour theory. These colours are associated in pairs:
red-green and blue-yellow. The members of a pair are thought to act in opposition
adding upto white. Hering also specified a third pair of black and white to represent
the varying brightness and saturation of colours. (The perception of brightness of
the colour also depends on the mood of the perceiver.) You must appreciate that the
most important difference between this theory and the trichromatic theory liesmot
in the number of postulated receptor types, but in the way their outputs are signalled
to the brain. Fig. 3.14 depicts a simple version of the opponent-process theory.
Three basic receptor types are indicated by X; ¥ and Z. Mixture of Yand Z is
perceived as yellow. White is obtained by mixing X, Yand Z.

- + - + +

Blue [—{Yellow Green Red White — Black

FigJ.14: Opponent-process theory based on Hering’s pastulate. A, YandZ

denote baslc receptor types.
According to the model shown in Fig, 3.14, three different receptor types are each
sensitive to a range of wavelengths. The mode of operation is such that the activity
level increases in response lo a predominant input about one colour. You may ask:
What happens in response to the input-about the complementary colour? We expect
it to decrease. To illustrate it, let us consider that the input to the blue-yellow
system is predominantly in the yellow region of the spectrum. Then, there is an
increase in activily (over a spontaneous level) about yellow colour. On the other
hand, if the input is predominantly blue, there is a decrease in activity. Activity in
the black-white mechanism is based on outputs from all three receplor Lypes,

Even though trichromatic theory and the opponent- process theories appear
conflicting, recent studies show evidences thal they are compaltible. Researches at
the Johns Hopkins University (US) provide evidence in favour of trichromatic
theory. However, the cones do not send “color signals” directly (o the brain. Cone
signals pass through a series of néurons which are colour specific. _
Vision is ar endlessly fascinating area . We here conclude saying: Eye is not merely
an instrument for survival; il is a means for enrichment of life.

We will now like you to answer the following SAQ.
SAQ3

* Namc the regions of retina specialized for (a) colour and detailed vision at high

levels of illuminalion and (b) non-colour vision at low levels of illumination.
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34 SUMMARY

o Perception of light involves formation of sharp images in the eye and their

interpretation in the brain. That is, vision involves a mix of physical and
physiological phenomena. :

o Human eyes are image making devices. They have striking similarities to a

camera of automatic intensity and focal control. There are however
differences in details.

e Comea is the major converging element in the eye.

neuronal cells: photoreceptors, bipolar, horizontal, acrine and ganglion
neurons.

s The photoreceptor neurons are of two types: rods and cones. Rods are

specially suited for vision in dim light and provide high-sensitivity. Colour

vision and sharpness are possible due to.cones.

e Image formation on the retina involves refraction of light, accommodation

of eye-lens, constriction of pupil and convergence of the eyes.

o [Information processing involves structural changes in photosensitive
pigment thoddpsin by bleaching action.

e Two common defects of eye are Myopia (short sightedness) and

hypermetropia (long sightedness). These are corrected by.using a concave

and a convex lens respectively.

s Colour, as a perceptial phenomenon, is three dimensional: hue,
illuminance and purity. -

o According to Yourg’s trichromacy theory, colour vision requires three
types of receptors (cones) for three primary colours.

e According to Hering’s opponent - colour theory, colours are associated in

pairs: red-green, blue-yellow and add up to white. The brightness and
saturation are determined by a black-white pair.

_The image of an object is formed on the retina. It consists of five types of

3.5 TERMINAL QUESTIONS

List the differences between the human visual system and a camera.

When we enter a dark room, we feel blinded. Gradually we become dark
adapted. The dark adaptation curve shown here shows a kink. Can you
suggest an explanation in terms of rod and cone-adaptation ?

3.6 SOLUTIONS AND ANSWERS

SAQs

1.

The refractive indices of water and cornea are 1.33 and 1.38, respectively. Due
1o small difference in these valucs, cornea is unable to bend light towards the

retina. This is why humans are unable to see under water: - -

An arrow originaling at the centre and directed towards the tircumference

would indicate increasing colour saturation. Brightness does not depend on hue
‘and satration. So a line drawn normally out of the page (lpwarq,s_ygp)‘?x_;(oul_d

represent increasing brightness.

The first description applies to the fovea whereas the second dcscriptioh
applies to the peripheral regions.

Perception of Light




Introducing Light TQ’s

1. Some of the main differences are tabulated below. You can add more if you’

bave thought of others.
Camera Eye
Lens is responsible for focussing. Comea as well as lens is involved in

focussing; lens is responsible for fine
adjustments

Lens is rigid and fixed. Fine focus is achieved
by changing lens and/or by changing distance
between Jens and film.

Lens is soft and flexible. Fine focus is
achieved by alterations in convexity of lens.

Ouly sophisticaled cameras have automatic
aperture adjustmments.

Pupil adjustment is an aulomatic response.

The brightness of a photograph depends
directly on the level of iHumination.

The brightness of a perceived scene depends
on prevailing ilumination as also the lighting
leve] 10 which the eye has been previously

exposed.,

Light-sensitive substances do not regenerate
once film has been exposed. .

Light-sensitive substances are constantly
regeneraling.

Image is fixed.

Image is in constant motion (owing io eye
movements). .

Information stored in photographic form is
not immedijately transmitted.

Information on retina is automatically
processed and the results are immediately
transmitted to the brain. ’

2.  The principal mechanism for dark adaptation is regeneration of bleached visnal
pigments, in partcular rhodopsin. So, the first part of the curve signifies the
foveal adaptation, due to cone cells. It levels off at the kink. And the second
part of the curve represents the contribution of rods.
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UNIT4 POLARISATION OF LIGHT

Structure
. 4.1 Introduction
Objectives

42 Whatlis Polarjsation?
43 Simple States of Polarised Light

Linear Polarisation
Circular Polarisation
Elliptical Polarisation
4.4 Principles of Producing Linearly Polarised Light
: Ideal Polariser: Malus’ Law
Polarisation by Reflection: Brewster's Law
Polarisalion by Double Relraction
Selective Absorption: Dichroism
45 Wave plates: Gircular and Elliptic Polarisers

4¢  Summary
4.7 Terminal Questions
. 4.8 Solutions And Answers

4.1° INTRODUCTION

In Unit 1 of this block, you learnt that light is a transverse electromagnetic wave. In
your school physics curriculum you have learnt that while every wave exhibits
interference and diffraction, polarisation is peculiar only to transverse waves. You
may even be familiar with basics of polarisation like: What distinguishes the
polarised light from unpolarised light? Is light from an ordinary (or natural) source
polarised? How do we get polarised light? and so on. In this unit we propose 10
build upon your this preliminary knowledge. -

You must have seen people using antiglare goggles as also antiglare windshields for
their cars. Do you know. that polarisation of light has something to do with these?
Polarisation of light also plays a vital role in designing sky light filtcrs for cameras
and numerous optical instruments, including the polarising microscope and
polarimeter. You may get opportunity o handle some of these devices if you opt for
physics laboratory courses PHE-08(L) and PHE-12(L).

In Sec. 4.2 we have discussed as to what is polarisation. In Scc. 4.3, you will learn
about simple states of polarised light. Sec. 4.4 is devoted to ideal polarisers and
Malus’ law. In this section you will also learn about double refraction or optical
birefringence - a property of materials helpful in producing polarised light. In Sec. 45,
you will learn about some techniques of producing circularly and elliptically
polarised light. ‘

Objectives
After going through this unit you should be able to

. explain what is lincarly, circularly or eliptically polarised state of light
e describe how can light be polarised by reflection

_ & solve simple problems based on Malus' law and Brewster’s law
» explain how oplical birefringence helps in production of polarised light, and
»  explain the production of linearly polarised light by dichroism.

47
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Introduéing Light

4.2 WHAT IS POLARISATION?

What is polarisation? Why light, not sound, waves are known to polarise? These are
some of the basic questions to which we must address ourselves. Polarisation is
related to the orientation (oscillations) of associated fields (particles). Refer.to Fig.
4.1 which depicts a mechanical wave (travelling along a string). From Fig. 4.1(a)
you will note that the string vibrates only in the vertical plane. And vibrations of
medium particles are confined to just one single plane. Such a wave is said to be
(plane) polarised. How would you classify waves shown in Fig. 4.1(b) and (c)? The
wave shown in Fig. 4.1(b) is plane polarised since vibrations are confined {o the
horizontal plane. But the wave in Fig. 4. 1(c) is unpolarised because simultaneous
vibrations in more than one plane are present. However, it can be polarised by
Placing a slit in its path as in Fig. 4.1(d). When the first slit is oriented verlically,
horizontal vibrations are cnt off. This means that only vertical vibrations are
allowed to pass so that the wave is linearly polarised. What happens when a
horizontal slit is placed beyond the vertical slit in the path of propagation of the
wave? Horizontal as well as vertical components (of the incident wave) will be

- blocked. And the wave amplitude will reduce to zero.

Let us now consider visible light. The light from a source (bulb) is made to pass
through a polaroid ( P ), which is just like slit one in Fig. 4.1. The intensity of light
is seen to come down to about 50%. Rotating P in its own plane introduces no

>\/
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Fig. 4.1: (8) A vertically plane polarised wave on a string (b) A horizontally plane
polarised wave (c) an onpolarised wave. (g} The wave in (c) becomes plane
polarised after passing through slit ane; the wave amplitude reduer to zero If
another slit orfented perpendicular to slit one is introduced.
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further change in light intensity. Now if a second identical polaroid (4") is introduced Polarisation of Light

in the path of light so that it is parallal to P, the intensity of light from the bulb
remains unaffected. But rotating A in its own plane hasa dramatic effect! For 50°
rotation, the light is nearly cut-off.

You can analyse this result in terms of electromagnetic theory, which demands
complete description of associated electric vector and the way it oscillates with
respect to the direction of propagation. For the arrangement shown in Fig. 4.2, the
electric vector at the source has all orientations in the yz planc. The wave
 propagates as such till it reaches the polaroid P, which allows esséntially
unhindered passage of electric vectlor oriented parallel 10 its transmission axis. If the
transmission axis is along y-axis, the electric field along y-direction (E,) passes
through it unaffected. In addition, the y-components of electric field vectors
inclined to y-axis can also pass through P. Thus, after passing through the polaroid
P, the electric vectors oriented only along y-axis will be present. When electric
vector oscillates along a straight line in a plane perpendicular to the direction
of propagation, the light is said to be plane polarised. The plane polarised wave
further travels to the polaroid A, which is identical to P. When A is at 90° with ;
respect to P, it can allow only the z-components of E to pass. Since only y-componenis
" of E are present in the wave incident on A, no light is wransmilled by A. .

We may now conclude that

1. No polarisation of longitudinal waves occurs as the vibrations are along the
line of transmission only.

5 The transverse nature of light is responsible for their polarisation.

An important menifestation of this result arises in TV reception. You may have
seen that the TV antenna on your roof-tops are fixed in horizontal posilion. Have
you ever thought about it? This iz becausé the TV signal transmission in our
country is through horizontally oriented (ransmilting antenna. The explanation for
this lies in the observation that the pick up by the receiving antenna is maximum
when it is oriented paraliel to the transmitting antenna. This is illustrated in Fig. 4.3
for a vertical (dipole) ransmitting antenna.

Transmitting - Receiving
antenna antenna

| Position 1

|h ‘ | Wave molion
!7/'1’1 'l J.!"’I/.r; ¥/ l.l| v .f,. '

774
V/ \“‘W’ ’
i}

Flg. 4.3: Polarisation of an clectromagnetlc wave, The antenna responds to the
vertical electric fleld strength of the wave. Receptlon Is maximum in Posilion 1
and minlmum in Positlon 2.

You may now like 1o know: Do natural (or ordinary) light sources cmit polarised
light? Answer to this question is ‘yes’ as well as ‘no’! Is this answer not funny? L
You know that emission of light involves a large number of randomly oriented '
- atomic (or molecular) emitters, Every. individual excited atom radiales polarised
waves for about 10~ ¥ s. These waves form a resultant wave of given polarisalion
which persists for the lifetime of the excited atom. Al the same lime, other aloms
(molecules) also emit waves, whose resultant states of polarisation may be quite

.49
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Introducing Light

In a right handed coordinate
system if a right handed screw is
umed so that it rolates the
x-axis towards the y-axis, the
direction of advance of the
screw represents the positive
Z-BXiS.

The yz-plare (orx = 0 plane) in
Fig. 4.4 is the plane of
polarisation of the wave. We can
identify other states of
polarisation by looking at the
-trajectories of the lp of the
eleciric fleld veclor as the wave
passes through the reference
plane. You should always look
at the reference plane from the
side away from the source
(looking back at the source) for
the definitions to be unique,

Reference
plane

X

different. Because of this randomness, every orientation of electric vector in space
is equally probable. That is, electric vectors associated with light waves from a
source are oriented in all directions in space and thus there is a completely
unpredictable change in the overall polarisation. Moreover, due Lo such rapid
changes, individual resultant polarisation states become almost indiscernible. The
light is then said to be unpolarised.

In practice, visible light does not correspond (o either of these extremes. The
oscillations of electric field vectors are neither compietely regular nor completely
irregular. That is, light from any source is partially polarised. We ascribe a degree
of polarisation to partially polarised light. The degree of polarisation is one for
completely polarised light and zero for unpolarised light.

The next logical step perhaps would be to know various types of polaﬁsed light, Leit
us learn about this aspect now. '

4.3 SIMPLE STATES OF POLARISED LIGHT

You now know that in e.m. theory, light propagation is depicled as evolulion of
electric field vector in a plane perpendicular to the direction of transmission. For
unpolarised light, spatial varialion of electric field at any given time is more or less
irregular. For plane polarised light, the tip of electric vector oscillates up and down
in a straight line in the same plane. The space variation of E for linearly polarised
wave is shown in Fig. 4.4 (a). The diagram on the left shows the path followed by

. the tip of the eleclric.vector as time passes. You will know that the lip of E executes

one full cycle as one [ull wave length passes through a reference plane. There are
two other states of polarisation: circular polarisation and elliptical polarisation. The
path followed by the tip of E, as the time passes, for thesé is shown in Fig. 4.4 (b)
and (c), respectively. : ' :

s o
b

{ ai

(c) _

Flg. 4.4: Spatial variation of electric fleld vector for (a) linenrly polarised Light,
The diagram on the left show the path taken by the Hp of the clectric vector s
time veries. (b) and (c) show the path taken by the tip of the electrie vector for
¢lrcularly and elliptically polarised light.
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* Let us now mathematically analyse how superposition of two plane pdlarised light
waves of same frequency moving in the same direction givesrise to linearly,
circularly or elliptically polarised light. :

- 4.3.1 Linear Polarisation

Suppose that two light waves are moving along the z-difection. Let their electric
field vectors be mutually perpendicular, i.e. we choose these along the x and y axes
and can represent them respectively in the form

. P
E1(z1) = ex Egy cos { kz— wt) ¢ > 0and vice-versa, .-

4.1 Ez2(z t)lagsEy(z¢t) for

and

Ex(z,t) = e,Eq cos (kz— wt+ ¢) (4.2)
Here éx and 3, are unit vectors along the x and y-axes respectively. (These are also
called polarisation vectors.) ¢ is the phase difference between the two waves.”

We expect that the nature of the resultant wave will be determined by the phase
difference between them and the value of the ratio Epz/Eo1. Mathematically, we can

write the vector sum of these as Resoltant Amplitude
E(Z,I)HEI(Z,f)+E2(Z,I) = V(Ep) +({Eo)
= V2 Ep
m & Eqj cos (ke i)+ & Eppcos (k2 -t +9) ™ .
e Eo
tan 8 EoL - Eo 1
: (4.3) °
Let us first take the simplest case where ¢ is zero or an integral multiple of = 2s. - tan 45
That is, when in - phase waves are superposed, Eq. (4.3) takes the form or
E(z¢) = (exEo + ¢, En) cos (kz-ot) (4.4) 8 =45

The amplitude VES + Eoz and the electric field oscillations in the reference frame -

make an angle = tan™ Y ( Epp/Eq ) with the x-axis.

For the special case of in-phase waves of equal amplitude (Egy = Egz = Eyp), the
_resultant wave has amplitude equal to V2 Eg and the associated electric vector is

oriented at 45° with the x- axis. So we may conclude that when two in-phase
linearly polarised light waves are superposed, the resultant wave has fixed

-~

(a}

Flg. 4.5: Schematle representation of o plane polarised light yaove
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orientation as well as amplitude, That is , it too is linearly polarised, as depicted in
Fig. 4.5 (a). In the plane of observation, you will see a single resultant E oscillating
cosinusoidally in time along an inclined line (Fig. 4.5 (b) ). The E - field progresses
through one complete cycle as the wave advances along the z- axis through one
wavelength,

If we reverse this process, we can say that any kinearly polarised light can be
visualised as a combination of two linearly polarised lights with planes of
Polarisation parallel to x = 0 and y = o planes. (This is similar to resolving a
vector in a plane along two mutually perpendicular directions.) In the subsequent
seclions, you will use this result frequently.

If the phase difference between two plane polarised light waves is an odd integral
multiple of + .z, the resultant wave will again be linearly polarised:

E(z,1) = (&xEo - & Eyp Jcos (kz - wt ) (4.5)

What is the orientation of the resultant electric vector in the reference plane? To
know the answer of this question, work-out the following SAQ.

SAQ1

. Depict the orientation of electric veetor defined by Eq. (4.5) in the reference

(observation) plane.

4.3.2 Circvlar Polarisation

W_é now investigate the nature of the resultant wave' arisiﬁg due to superposition of
two plane polarised waves whose amplitudes are equal (Eo1 = Em = Eo) but phases

differ by m /2, i.e. their relative phase difference ¢ =2n - IzE; n= 0,+ 1,+ 2,...For

1 =0, we can rewrite Egs. (4.1) and (4.2) as

Ei(zt) = & Eycos (kz - t) (4.6a)

Ex(zt) = € Egsin (/- wt) (4.6b)

The resullant wave is given by
E(z1t) = Eg[axcos(kz—mt)+3ysin(.kz-wt)] (4.7)

You may note that the scalar amplitude of E is constant (= Ep ) but iits orientation
varies with lime. To determine the trajactory along which the tip of E moves, we
can readily combine Eqs.(4.6a) and (4.6b) to yield

pA 2
£y E :
(—E—O-) +(E—GJ =1 (4.8)

which is the equation of a circle. That is, the orientation of resuitant electric vector
changes continuously and its tip moves along a circle as the wave propagates {time
passes). This means that E is nol restricted to a single plane. The question now
arises: What is the direction of rotation? Obviously there are two possibilities:
Clockwise and counterclockwise. To know which of these is relevant here, you
should tabulate E al different space points at a given time, ¢ = 0 say:
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Polrisation of Light
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These are depicted in Fig. 4.6. If you position yourself in the reference plane and

observe the evolution of E from z = A 10 2 = 0 (backward lowards source), you will

find that the tip of E rotates clockwise. Such a light wave is said to be right Alterntively, we may fix an
circular wave, The electric field makes one complete Totation as the wave advances ~ Uroifrry point z = z0 end .

nbserve evolution of E as lime
through one wavelength. . passes. The Gigare below

. depicis what is happening at

In case the phase difference ¢ =2n+ Jwithn=0, = 1, = 2,..., Eq. (4.7)is some arbilrary point zo on the
"axis.

modified to

E(zt) = Ep| excos (kz—wi )~ ey sin{kz—wt) (4.9)

y
Lapht
Source
ALY Y

1
!
!

T

Fig. 4.6: Rotation of the eleclic vector In a right-cirvlar wave. For conslslency,
we have used a right handed syslem.

It shows thal the E-vector rolates counter-clockwise in the reference frame. (Belore
proceeding further you should convince yourself by tabulating the values of Eatt=0
for different space point.) such a wave is referred to as left-circular wave.

Can you now guess as to what will happen if two opposilely polarised circular
waves of equal amplitude are superposed? Mathemalically, you should add Eqs.
(4.8) and (4.9). Then you will find that

L .

E=ZE||e;cos(kz—w!) | (4.10)

This equation is similar to Eq.(4.1) which represenfs a linearly polarised light wave.
Thus, we may conclude Lhat superposition of two oppositely polarised circular
waves (of snme amplitude) results in a linearly or plane polarised light wave.
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Fig 4.7: Schemalics of -

elliplically polarised light
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4.3.3 Elliptical Polarisation

Let us now consider the most general case where two orthogonal linearly polarised
light waves of unequal amplitudes and having an arbitrary phase difference ¢ are
superposed. Physically we expect that beside its rotation, even the magnitude of
resultant eleciric field vector will change. This means that the tip of E should trace
out an ¢llipse in the reference plane as the wave propagates. To analyse this
mathematically, we write the scalar part of Eq.(4.2) in expanded form:

r

-—El = ¢0s (kz— wt)cos ¢ - sin (k- wr)sin

Epy
On combining it with Eq. (4.1) we find that
E‘: El
Eop = o —cos ¢ - sin (kz- m!)smtp
or
E
22 _L ——cos® =~ — sin ( kz— wr ) sin ¢ (4.11)
Ep Ep

It follows from Eq.(4.1) that

i
sin (kz—wt) = [1 -(E/Ey P ]2

so that Eq. (4.11) can be rewritten as
B E >
_ ) 5 .
Eon 501 —cos ¢ [1 (E/Ey ) ] sing

On squaring both sides and re-arranging terms, we have

2 2
£y E\Y B\ E _in?
( E—m] + ( E_cu) 2( Ecz_J ( E—m) cos ¢ =sin“ § (4.12)

Do you recognise this equation? It defines an ellipse whose principal axis is
inclined with the (E;, Ez) coordinate sysiem (Fig. 4.7). The angle of inclination,
say a, is given by

2Eq E
tan 2q = Lo fwmcos¢ (4.13)
E§y - By

For a=0orequivalently ¢ = + 7/2, =+ 3 n/2,..., Eq. (4.12) reduces to

2 2
HY . (2). 4.14
(Em) +(Em] 1 (4.14)

which defines an ellipse whose pnnmpal axes are aligned wilh 1he coordinate axes.
We would now ljke you lo soive an SAQ.

SAQ2

Starting from Eq. (4.12} show that linear dnd circular polarisation states are special
cases of clliptical polarisation,

Now that you understand what polarised light is, the next logical step is to know
techniques used to get polarised light. You will learn some of these now.
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4.4 PRINCIPLES OF PRODUCING LINEARLY
POLARISED LIGHT

The most imporant optical device in any polarised light producing arrangement is a
polariser. It changes (input) natural light to some form of polarised light (output).
Polarisers are available in several configurations. An ideal polariser is one which
reduces the intensity of an incident unpolarised light beam by cxactly 50 percent.
When unpolarised light is incident on an ideal polariser, the outgoing light is-in a
definite polarisation state (P-state) with an orientation paralle! to the transmission axis
of the polariser. That is, the polariser somehow discards all except one particular
polarisation state. How do we determine whether or not a device is a linear polariser?
The law which provides us necessary tool is Malus’ law. Let us learn about it now.

)l .
y
¥
i, \ ¥4 x
Ecos x

Natural Lig‘hl

Polarizer

Analyser

. Flg. 4.8: A linear polariser
4.4.1 Ideal Polariser: Malus’ Law

Refer to Fig. 4.8. Unpolarised light is incident on an ideal polariser, whose
transmission axis makes an angle 8 with y-axis. For this arrangement, only a P-state
parallel to the transmission axis of the polariser will be transmitied. This light is
incident on an identical ideal polariser, called analyser, whose transmission axis is
vertical. Suppose that there is no absorption of light. Then, if E is the electric field
transmilted by the polariser, only its component Ecos 6 parallel to the transmission
axis of the analyser would pass through. The intensity of the polarised light
reaching the deteclor is given by

1(0) = I{0)cos® 8 (4.15)

where 0 is the angle between the transmission axes of the polariser and the analyser.
The maximum intensity I(0) occurs when the transmission axis of the polariser and
the analyser are parallel. '

. Eq. (4.15) constitutes what is known as Malus’ law. To usc it to check whether an
optical device is an ideal linear polariser or not, you may like to solve an SAQ.

SAQ 3.

Unpolarised light falls on wo polarising sheets placed one over another. What must
be the angle between their transmission axes if the intensity of light transmitted '

» finally is one-third the intensity of the incident light? Assume that each polarising
sheet acts as an ideal polariser. -

Spend
5 min

So far we have confined to a linear ideal polariser. Polarisers are available in
several configurations. (We can have circular or elliptical polarisers as well.) They
are based on one of the following physical mechanisms: reflection, birefringencc or
double refraction, scattering and dichroism or selective absorption. You will now
learn about some of these in detail. '

Polarisation of Light
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This effect was studied by
: Malus. One evening he was
examining a calcite crystal while
standing at the window of his
house. The image of the Sun
wes reflecled towards him from
the windows of Luxembourg
Palace. When he looked at the
image through the calcite
crystel, he was amused al
disappearance of one of the
double images as he roated the

crystal.

'4.4.2 Polarisation by Reflection: Brewster’s Law

Reflection of light from a dielectric like plastic or glass is one of the most common
methods of oblaining polarised light. You may have noticed the glare across a
window pane or the sheen on the surface of a billiard ball or book jacket. It is due to
reflection at the surface and the light is partially polarised. To understand its
theoretical basis we will consider laboratory situations.

Suppose that an uﬂpolarised light wave is incident on an interface between two
different media at an angle 6; as shown in Fig. 4.9, ’

The reflection coefficients when the electric vector of the incident wave is
perpendicular to the plane of incidence or when it Jies in the plane of incidence are

[ Raflony

' e p:
-

T 1 + T 17T

"7 Fig.4.10: Varistion of

reflectance with angle of
[ncldence -

R * P $ 6 R
/ ) . 6z »
By My ~57°| ~57°
8
Air A, Airp
0 Glass : 0 80°  Glass
8, n, 5 ny
T .
T
@ b)
Flg. 4.9: (a) Polarisation by reflectlon: the ﬁnpqlarised light beam has been
represcoted as «-*— which Indleate two electric field vibrations. '** Indleates
electric field vibration perpendlenlar to the page (P)) and *<" Indicates electric
fleld vibration in the plane of the paper { A }. (b) At Brewsfer’s angle, the
_reflected light ls plane polarised. .
given by Fresnel’s equations (Eqs. (2.21a) and (2.21c)):
2 P
Ry = % (&% -6/) (14.16a)
lan“ ( 6; + B, )
and
sin (§; - 8,)
R = —2—1——'— (14.16b)

sin“(8; +6,)

where ©, is the angle of refraction. These equations show that whereas R, can
. X S
never be zero, R will become zero when 6; + 6, = 5 (The case 8; = 6, is trivial

as it implies continuity of optically identical media.) That is, there will be no
reflected light beam with E paraliel to the plane of incidence, The angle of incidence
for which light is completely transmitted is called Brewster's angle, Lel us deaote it by
8p . A plot of R: and Ry versus 8g'is shown in Fig. 4.10 for the particular case of
air-glass interface.

We can represent an incoming unpolarised light as made up o1 two orthogonal,
equal amplitude P-states with eleclric field vector parallel and perpendicular to the
plane of incidence. Therefore, when the unpolarised wave is incident on an
interface s:nd the angle of incidence is equal to Brewster’s angle, the reflecled wave
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- will be ﬁ.ﬁearly polarised with E normal (o the incidece plane: This provides us with
one of the most convenient methods for production of polarised light. To elaborate,
we recall from Snell’s law that . :

n;sin 8 = nzsin 6,
where 1y and 1, are the refractive indices of the media at whose interface light
®
2

nisin Og = nz cos Bp

undergoes reflection. Since 8, = - B, it readily follows that

ar

tan g = — (14.17)

That is, the tangent of Brewster angle is equal to the ratio of the refractive indices of
the media at whose interface incident light is reflected. When Lhe incident beam is
in air (# = 1) and the transmitling medium is glass (n2 = 1.5), the Brewster angle is
nearly 56 . Similarly, 8 for air-waler interface, like surface of a pond or a lake is
53°, This means that when the sun is 37 above the horizontal, the light reflected
by a calm pond or lake should be complelely linearly polarised.

We, however, encounter some problems in ulilizing this phenornendn 1o construct
an effective polariser on account of two reasons:

(i) The reflected beam , although completely polarised, is weak.-
(ii) The transmilted beam, although strong, is only partially polarised.

These shortcomings are overcome using a pile of plate polarisers. You can
fabricate such a device with glass plaies for the visible, silver chloride plates for the
infrared, and quartz for the ultraviolet region. It is an easy malter.to construct a
crude arrangement of this-sort with a dozen or so microscope slides (Fig. 4.11).The
beautiful colours that appear when the slides are in contact is due to interference,
which you will study in the next block.

~ You may now like to solve an SAQ.

SAQ4

A plate of flint glass is immersed in water. Calculate the Brewster angles for
internal as well as external reflection at an interface.

Having studied as to how reflection of light can be used to produce polarised light,
you may be tempted to know whether or not the phenomenon of refraction can also
be used for the same? Refraction of light in isotropic crystals like NaCl or non-
crystalline substances like glass, water or air does not lead to polarisation of light.
However, refraction in crystalline substances like calcite or cellophane is optically
anisolropic becouse it leads to what is known as double refraction or birefringence.
- This is because anisotropic crystals display two distinct principal indices of
refraction, which correspond to the E-oscillations parallel and perpendicular to the
optic axis. Let us now learn how birefringence can be used to produce polarised

"light.
4.4.3 Polarisation by Double Refraction

Mark a black dot on a piece of paper and observe it through a glass plate. You will

~-ste only onedot: Now use a calcite crystal. You will be surprised at the remarkabte -

observation: instead of one, two grey dots appear, as shown in Fig. 4.12. Further,
rolation of the crystal will cause one of the dots Lo remain stalioitary while the other
"appears to move in a circle about it. Similarly, if you place a calcite crystal on your

Polarisation of Light

Fig. 4.11: Polarisation of light
by a plle of plates
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Calcite
" cyrstal

Fig. 4.12; Double refraction of
a light beam by ealelte arystal,

In some of the text books, you
may find that ordinary and
extraordinery rays are being
denoted by bold lefters O and E.
We have used small letters (o-
and e-) to avoid confusjon with

the notation for the electric field.

———————— M e

A Optic gain

Fig. 4.13: A Calkelte crystal.
The line AA' shows the
direction of the optlc axls. For
the calcite crysisl, the
direction of the optle axls Is
determined by jolnlng the two
blunt corners of the erystal.
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book, you will see two images of each letter . It is because the calcite crystal splits
the incident light beam into two beams. This phenomenon of splitting of a light
beam into two is kiiown as double refraction or birefringence. Materials
exhibiting this property are said to be birefringent. We bring you the excitement of
Bartholinus, who discovered birefringentce, in his words: .

Greatly prized by all men is the diamond, and many are the joys which similar
treasures bring, such as precious stenes and pearls ... but he, who, on the other
hand, prefers the knowledge of unusual phenomena to these del ights, he will, |
hope, have no less joy in a new sort of body, namely, a transparent crystal,

~ recently brought 10 us from Iceland, which perhaps is one of the greatest
wonders that nature has produced. As my investigation of this crystal
proceeded there showed itself a wonderful and extraordinary phenomenon:
objects which are looked at through the crystal do not show, as in the case of
other transparent bodies, a single refracted image, but they appear double,

Before we discuss polarisation of light by double refraction in detail, you should
familiarise yourself with some of the concepts related to this phenomenon. The twi
refracted beams into which incident light splits have different angles of refraction.
The distinguishing feature of these two refracted light beams is that one of these
obeys the Snell’s law. It is called the ordinary ray (o-ray) in accordance with the
nomenclature given by Bartholinus. The other beam does not obey Snell’s law abd
is called the extraordinary ray (e-ray). That is, a birefringent crystal displays two
distinet indices of refranction. Another important concept is thal of optic axis,
which signifies some special direction in a birefringent crystal along which two
refractive indices are equal (i. e. both o-and e-rays traval in the same direction with
Lhe same velocity), When unpolarised light is incident perpendicular to these special
directions, both the o-and th e-rays travel in the same direction with different
velacities. You may now like to know: Does optic axis refer o 2n y particular line
through the crystal? The unswer to this question is: It refers 1o a direction. This
means that for any given point in the crystal, an oplic axis may be drawn which will
be parallel to that for any other point. For example, A A’ and broken lines parallel to
A A" show the optic axis for a calcite crystal as shown in Fig. 4.13.

Birefringent crystals which posses only one optic axis are called uniaxial erystals,
Similarly, crystals having two optic axes are called biaxial crystals. Calcite, quartz
and ice are examples of uniaxial crystals and mica is a biaxial crystal. Most of the
polarisation devices are made of uniaxial crystals. Further, the uniaxial crystal for
which the refractive index o-ray ( n, ) is more than the refractive index for the e-ray
( n. ) is called nigative uniaxial crystal. On the other hand, if n. > 1, we have a
positive unfaxial erystal, Values of n, and 5, for some of the birefringent crystals
are given in Table 4.1. The difference A 1 = i, - n, is a measure of birefringence.

4,1: Refractive indices of some uniaxlal birelringent crystals
| for light of wavelength 5893 A

Crystal Ho e
Tourmaline 1,669 1.638
Calcite 1.6584 1.4864
Quartz 1,5443 1.5534
Sodium Nitrate 1.5854 1.3368
Ice - L1309 1.313

Let-us now enquire how unpolarised light incident on uniaxial crystal gets
polarised? We know that when unpolarised light beam enters a calcite crystal, it
splits into the o-and the e-rays. The electric field vector of c-ray vibrates in the
plane containing the optic axis and the electric field vector of o - ray vibrates
perpendicular 1o it, as shown in Fig. 4.14. We may, therefore, concude that due to -
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Optic axis

Polarisation of Light

e-ray
1%
bhe ﬂ
veYey oo
109°
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h o-18Y
Laptic axis
@ ' o

Fig. 4.14: (a) ABCD s one of the principal sections of the calclie crystal; l-t

contalns the optle axls and is normal to the cleavage faces BECF and AHDG. (b)

Unpolarised light beam passing through a prinlcipal section of the calclte crystal.
double refraction, the unpolarised light beam splits into two components which are
plane polarised.

Huygens explaindd many aspects of double refraction in calcite on the basis of
wave theory. Since the o-ray obeys Snell’s law, it propagates with uniform velocity
in all directions in the crystal. As a result, the wave surfaces are spherical. However,
the e-ray propagates with different velocities in different directions in the crystal
and hence the resuiting wave surface is an ellipsoid of revolution, i. . a spheroid.

- Further, to reconcile with the fact that both the o-and e-rays travel with the same
velocity along the optic axis, both the wave surfaces ware assumed to touch each
other at the two extremities of the optic axis. These features are depicted.in Fig.
4.15. You may now like to know the nature of wave surfaces for o-and e-waves in
positive uniaxial crystals. This is subject matter of TQ 1.

From the above discussion it follows that in double refraction, an unpolarised light
wave splits into o-and e-components with their E-vibrations perpendicular to each
other. By selective absorption of one of the P-states, we can produce linearly
polarised light. This is readily done by a device, called Nicol prism, by removing
the o-ray through total internal reflection. It was designed by William Nicol in
1828. You will learn about it now.

Nicol prism

Nicol prism is made from a naturally occurring crystal of calcite. The length of the
crystal is three times its width and the smaller faces PQ and RS and ground from
71° to a more acute angle of 68° (Fig. 4.16). The crystal is then cut along PSby a
plane passing through P and S and perpendicular to the principal section PQSR. The
cut surfaces are polished lo optical flatness and then cemented together with a layer
of (nonrefringent material) Canada balsam.

Can you guess why Canada balsam is used as cementing material? Well, for sodium
light, refractive index of Canada balsam is 1.552, which is midway between
refractive indices for o-ray (#, = 1.658) and the e-ray (1. = 1.486} in calcite. Thus, it
_ is an optically rarer medium with respect to crdinary ray and denser for cxtraordinary
" ray. The critical angle for total internal reflection of o-ray is si - % = 69°.
So, when incident unpolarised light splils into two rays inside the crystal, the o-ray
_ gets totally reflected at the canada balsam surface when it is incident on it at an
angle of 69°, (It is for this reason that the end faces of the crystal are ground so as to
make the angles 68° from '71°.) The emergent light will, therefore, be made up only
of plane polarised e-component. ' )

Some of the limitations of Nicol prism as polariser are:
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Flg. 4.15: o-and e-wave
surfaces In negative vniaxial
crysial (calclte).”

Layer of Canxda balipm
¢ .

Klg. 4.16: Nicol Prism
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Fig.4.17: The Wire-grid
Polariser

6()

It can be used for polarisation of visible light oniy.

2. e-ray also can get totally reflected by the Canada balsam surface if it is
travelling along the optic axis. Why? It is so because in this situation the.
refractive index for e-ray will be same as for o-ray (i. e. greater than the
refractive index for Canada balsam). '

b ) .
With time, a number of modifications have been incorporated in the basic design of
the Nicol prism to overcome some of these limitations. However. we will not go
into these details.

So far you have studied about production of linearly polarised light by reflection
and double refraction. Other methods employed Lo produce linearly polarised light

- are selective absorption (or dichroism) and scattering. We will here discuss only

dichroism and that too in brief.

4.4.4. Selective Absorption: Dichroism

" As you know, unpolarised light wave can be regarded as made up of two orthogonal,
linearly polarised waves. Many naturally occuring and man made materials have the

property of selective absorption of one of these; the other passes through without
much attenuation. This property is known as dichroism. Materials exhibiting this
property are said to be dichroic materials. The net result of passing an unpolarised

light through dichroic material is the production of linearly polarised light beam. A _

particularly simple dichroic device is the so-called Wire—Grid polariser. You will
learn about it now.

The Wire—=Grid Polariser

The wire-grid polariser constists of a grid of parallel conducting wires, as shown in
Fig. 4.17. Suppose that unpolarised light is incident on the grid from the right. It can
be thought as made up of two orthogonal P-states: P, and P, in the reference plane
R;, The y~component of the electric field drives the electrons of each wire and
generates a current. It produces (Joule) heating of the wire. The net result is that
energy is transferred from the field to the wire grid. In addition, electrons accelerating
along the y—direction radijate in the forward as well as backward directions. The
incident wave tends to be cancelled by the wave re—radiated in the forward
direction. As a result, transmission of y-component of field is almost blocked.
However, the x—component of field is essentially unaltered as it propagetes through
the grid and the light coming out of the wire—grid is linearly polarised. The
wire—grid polariser almost completely attenuates the Py component when the
spacing betwen the wires js less than or equal to the wavelength of the incident
wave. You must realise that this restriction is rather stringent for the fabrication of a
wire~grid polariser for visible light { A ~ 5x 10'm ). '

An easy way out of this difficulty in the fabrication of the grid polariser is to
emolov long chain polymer molecules made up of atoms which provide high
electrical conductivity along the length of the chain, These chains of polymer
molecules behave similar 1o the wires in the wire—grid polariser. The alignment of .
these chains are almost parallel to each other. Because of high electrical
conductivity, the electric vector of unpolarised light parallel to the chain gets

-absorbed. And the P-state perpendicular to these chains passes through, These
chemically synthesized polarisers are fabricated in the form of plastic sheets and are -

known as polarefds. Since the spacing between these molecular chains in a polaroid is

small compared to the optical wavelength, such polaroids are extremely effective in .

producing linearly polarised light. -
Dichroic Crystals

“Some naturally occurring crystalline materials are inherently dichroic due to

anisolropy in their structure, One of the best known dichroic materials is tourmaline, a
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precious stone often used in jewellery. Tourmalines are essentially boron silicates
of differing chemical composition.The component of E perpendicular to the
principal axis is strongly absorbed by the sample. Thicker the crystal, more
complete will be the absorption. A plate cut from a tourmaline crystal parallel to its
oplic axis acts as a linear polariser. This is illustrated in Fig. 4.18.

We shall now consider a class of optical elements known as wave plates which
serve to change the polarisation of the incident wave. A wave plate introduces a
phase lag between the two P—states by a predetermined amount. That is, the relative
phase of the two emerging components is different from its initial value. This
‘concept can be used tg convert a given polarisation state into any other and in so
doing it is possible even to produce circular or elliptic polarisation as well. This is
the égbjecl. maiter of the.next section.

4.5 WAVE PLATES: CIRCULAR AND ELLIPTIC
POLARISERS

i

Consider a plane wave incident on a calcite crystal. It splits in 0-and e- waves.
Since calcite is a negative uniaxial crystal, no > n . and v, (velocity of e~wave) > v |
(velocity of o-wave) implying thal the e—ray travels faster than the o—ray. After
traversing the calcite crystal of thickness d, the path difference between them is

given by
A= d(”o-"c)

_ ‘and the relative phase difference between o—and e—1ays is

25 2% )
= S-A = FT(n-n.)d (4.18)

though while entering both the components were in phase.

The stote of polarisation of emerging light depends on §, apart from the
amplitudes of incoming orthogonal field components. Let us now consider some

specific cases:

(i) When the phase difference, & = 2mic where m is an integer, the ralative path
difference is m A A device which induces a path difference between the two
orthogonal field vibrations in integral multiples of A is called the full wave

. plate, It introduces no observable ef fect:on the polarisation of the incident
beam. That is, the field vibrations of the emergent light willbe identical with
the field vibrations of the incident light. ,

(ii) Whea & = (2m+1)m, the relative path difference will be (m + %2 ) A. Such
" crystals are called half-wave plates.

(ifif) When 8 = (2my 1) % the relative path difference will be { m + % ) % Such

a birefringent sheet is called quarter—wave plate. When linearly polarised
light traverses a quarter—wave plate, the emergent light will, in general, be
elliptical and the axes of the ellipse will coincide with the previleged directions
of the thin plate. However, half-wave or full-wave plate leave the state of
polarisation unchanged.

Thus, we may conclude that the path difference between the o— and e-waves in &

birefringent device depends on its thickness.
You should now solve the following SAQ.

Polarisation of Light

Flg. 4.18; Tourmallne crystal

- polariser -

In case of positive uniexial
crystals, n > no and hence the
path difference will be

d ( ne — no ). In fact the general
expressiopn for the path
difference is d (| no = nel )
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Spend
5 min

SAQS

Caiculate the thickness of a quarter wave—plate for light of wavelength 5890 A. The
refractive indices for o —and ¢ —rays are 1.55 and 1.50 respeclively.

We now summarise what you have learnt in this unit.

4.6 SUMMARY

* Visible light can be linearly, circularly or elliptically polarised. All these
polarisalion states arise on superposition of two linearly (or plane)
polarised light waves characterised by different amplitudes and phases.

*® The eleclric field vectors of two linearly polarised light beams propagating
along z-axis can be represented as

Ex(zt) = exEoy cos (kz- wt)

Exz¢t) = aonzcos(Az—quJ)

where E, and E, are the amplitudes of the two waves and ¢ is the phase

difference between them. Superposition of these two polarised waves will
result in

Linearly polarised light if ¢ = 0 or an integral multiple of + 2%
Circularly polarised lightif¢ = w/2and E,, = E,,

Elliptically polarised light if ¢ = x/2and Ey; = E,,

® According to Malus, when the transmission axes of polariser and the
analyser are at an angle 8, the intensity of the polarised light reaching the
detector is givenby I ( 8 ) = I ( 0 ) cos® 8 where, 7 ( 0 ) is the intensity of
the polarised light when 0 = 0.

® When natural light sirikes an interface at Brewster’s angle

Bg = tan™! (ny/n, ), where n; and n, are the refractive indices of medium
of incidence and transmission, the reflected light is.linearly polarised.

¢ When light falis on a calcite crystal, it splits into two. The phenomenon is
known as double refraction or birefringence. These two refracted beams
are known as o—and e-rays. Snell’s law holds for o—rays (ordinary rays).

* Inabirefringent material, the o—and the erays travel in the same
 direction with same velocity along the oplic axis. However, in a direction
perpendicular o the optic axis, they travels with dilferent velocities. The
electric field vibrations for o~ and the e-rays are mutually perpendicular.

¢ The phenomenon of double refraction produces linea rly polarised light.
Nicol prism works on this principle. In the Nicol prism, the o—ray undergo
total internal reffection at the inferface and (he transmitted beam consists
of only elcctric [feld vibrations corresponding to e~ray and hence the
lransmitted beam is linearly polarised.

® Seleclive absorption (or dichroism) of the electric ficld component with

parlicular orientations by material can also be used for producing linearly
polarised light. Tourmaline is an example ofdichroic material.

¢ For a calcite crystal of thickness d the path difference between o— and
e—rays is givenby A = dn,-n,|
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The Corresponding phase difference
2t .- 2n
) 6-7\.-:&-?(;(1"0._"4')
When the phase difference 8 = 2mx where nt is an integer,the relative path

difference between the o—and e—rays will be mA. Such crystals are called -
full-wave plate. When 8 = (2m+ 1) =, path difference will be A/2 and

: A
such crystals act as full-wave plate. And whend = (2m+1 ) > path

difference will be A/4 (for m = (") and such crystals are called
quarter—wave plate. .

4.7 TERMINAL QUESTIONS

1. In sub-section 4.4.3, you studied aboul propagation of o—and e—waves ina
negative uniaxial crystal (calcite). Draw a diagram and describe the
propagation of o—and e-waves in a positive uniaxial crystal (quartz) for

normal incidence. _
2. Foracenaincrystal,n, = 1.5442and n, = 1.5533 for light of wavelength

6 x 10~ m. Calculate the least thickness of a quarter—wave plate made from
the crystal for use with light of this wavelength. .

4.8 SOLUTIONS AND ANSWERS

SAQs
1. The plane of vibration of the electric veclor defined by Eq. (4.5) is rotated with
respect to that shown in the Fig. 4.5. This is signified by the ncgative sign

before :3, in the parentheses and is depicted below

2. We know from Eq. (4. 1i) that
(B (EY BB g st @
(2] &) () @)oo

If we choose ¢ = win (1), we get

(2] -(2)#)-

" which canbe wrilten in a compdct form:

2
B _E£) _,
Ep En-
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lnlradudxig ﬂg.hl : or
E-22F (i)
ol .

This defines a stfajght line (y =px} with slope E,/E,,. In other words,
elliptically polarised light reduces to linearly polarised light for
p=nn(n=0=x12..)
Whend = 1/2and E; = E, = E;, Eq, (4.12) reduces to

,

2 (&) -

which defines a circle { P y2 - a ) of radius E,

3.  Since both polarising sheets are ideal, thé intensityof the incident unpolarised
beam, 7, will reduce to half after passing throught one of them as shown in the
Fig.4.19. After passing through the second polarising sheet, we are told that the
intensity reduces to one third of original value.

¥ ) AR

I/’2 /’ L i/3
/7
/

Incident beam

ot
L

e

-
g

First polariser - Second polariser

Flg. 4.19: Unpolarised light beam of Intensily I passing through two polarisers
From Malus’ Law we know that

I1(8) =7I(0) cos’
HereI(8) = I/3 and 7(0) = 1/2. Therefore
cos’B = (2/3) = 0.666
or .
8 = cos™ ! (.666 )2
=353
That is, the angle between the transmissio axes of two polarisers is about 35~
4. For external reflection

. n 1..67
anip = 7<= 153

. [ 167)
= g = fan (1.33)

or ig = 51.47

Fro internal reflection

ig = 38.53
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5. The path difference produced between the o— and e~ rays of birefringent Polarlsatlon of Light .

crystal of thiickness d is
A=d(|ng-n)

And corf&pohding relaltive phase difference is given by

' 2n
6-7\'6

- %d(lno;ncl)

The phase difference produced bya quarler-wave plate
d = /2 o ' '8

On comparing the above expressions for the phase difference, we have

d = 2(n,-n)

5890 A
4

(1.55-150)

73.63 A

n

= 74 A

TQs )
1. In case of negative uniaxial crystal (calcite), e-ray travels faster than the o—ray
and hence n, > n,. Therefore, when a light beam is incident normally upon a

calcite crystal, whose optic axis is parallel to the refracting surface and lies in
the plane of incidence, o-wave has a spherical wavefronl and the e-wave has
an spheroidal wavefront.

Ingidenc
light bcam
h
A - N
A1 A -
K\ -//opli:.l" | :
et ]
E \ E'
o o
¥

(a} o}

Fig. 4.20: (a) a-and e-wave surfaces in a positive vnlaxisal erysial (quartz): (b)
Propagatlon of o-and e-waves In quariz.

In case of positive uniaxial crystals like quartz, lhe e—ray travels slower than
the o—ray. Therefore, the spherical wavelront corresponding 1o o—fay willbe
outside the spheroidal wavefront corresponding 1o e-fay (Fig. 4.20a). Since the
optical properties of birefringent crystal are symmetrical with respect to its

" optic axis, the axis of revolution of the sphroid-must coincide with the optic - : e e —m
axis of the crystal. When a light beam falls on a positive uniaxial crystal, wilh
its optic axis in the plane of incidence and parallel 1o the refracling surface, the
wavefront for 0— and e-waves is shown in Fig. 4.20b.
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in the above mentioned case, E £’ and O O ' are the refracted wave-fronts for
¢—and o-rays respectively at the same instant of time. They are parallel to
each other and travel in the same direction which is perpendicular to the
refracting surfacee AN.. These two wavefronts, however, will travel with
different velocities. As a result, a path difference will be introduced betweéen
the o—and the e—ray on emergence, but there is no separation between the two

beams. In principle, we can consiructs quartier—wave plate, half<wave plate etc.

using positive uniaxial crystal as well.

In the birefringent crystal of thickness d, the path difference between the o~
and e—~aysisd|n,—n,|.

In this problem, n_> n_, so that we can write A = d{(n,_-n_)and the
corresponding relative phase difference

6=%d(n;—no)

For constructing a quarter wave-plate, the path difference should be A/4,
which corresponds to phase difference of x/2. Thus, from above equation, we

- must have, for a quarter wave plate

%d(nc—no)=w2

or
A

" 4(n.-n,)
We have
n, = 1.5442,n, = 1.5533,and A = 6 x 10" " m.
Hence,

6x10" 'm
T 4x(1.5533 - 1.5442)

6x10"1m
0.0367

= 1.65x 107 m.

That is, the quarter-wave plate should be 1.65 x 10™* m thick.
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BLOCK 2 INTERFERENCE

In Block 1 you studied the nature of light. There you studied that Light is a wave
motion. A very important characteristic of wave motion is the phenomenon of
mtcrference. .

The term interference refers to the phenomencn that waves, under certain conditions,
intensify or weaken each other, The phenomenon of interference is inseparably tied to
that of diffraction. In fact, diffraction is more inclusive; it'contains interference a.nd ina
sense, even refraction and reflection. It is only because diffraction is mathematically
more complex that we treat interference and diffraction in separate Blocks, and discoss
interference. first.

The prerequisite of all mterference is the superposition of waves. If light from a source
is divided by suitable apparatus into two beams and then superposed, the intensity in the
region of superposition is found to vary from point to point between maxima, which
exceed the sum of the intensities in the beams, and minima, which may be zero. This
phenomenon is called interference.

There are two general methods of obtaining beams from a single beam of light, and
these provide a basis of classifying the arrangements used to produce interference. In
one method, the beam is divided by passage through apertures placed side by side. This
method, which is also called division of wave front, is useful only with the sufficiently
small sources, Alternatively, the beam is divided at one or more partially reflecting
surfaces, at each of which, part of the light is reflecied and part transmitted. This
method is called division of amplitude. It can be used with extended sources, and so
effects may be of greater intensity than with the division of the wavefront. In either
case, it is convenient to consider separately the effécts which result from the
superposition of more than two beams {multiple beam interference).

Unit 5 begins with the study of wave motion. Being familiar to most smdents from their
study of Oscillations and Waves, it will serve primarily as a review. With the help of
the principle of superposition, we have explained the phenomenon of interference. In
this vnit, we discuss in detail the phenomenon of jnterference produced by the division
of the wavefront of light wave. This unit would involve your seven hours of work.

In Unit 6, we will consider the formation of interference paltern by the division of
amplitude. Such studies have _many practical applications. Finally we briefly mention
these applications, The study time required for this unit is about six hours.

Unit 7 is devoted to interferometry. It deals with Michelson interferometer, which is an
example of two beam interference and Fabry-Perot interferometer which is an example
of multiple beam interference. Finally, an appendix given at the end of the unit provides
- a brief introduction to complex amplitudes. You might like to read it to enrich your
kmowledge. However, yon will not be examined on it. You should aim to finish this unit
in about S hours,
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UNIT 5 INTERFERENCE BY DIVISION
" OF WAVEFRONT

Structure

5.1 Introduction :
Objectives

32  'Wave Motion
5.3  Principle of Superposition
54  Young's Double-slit Experiment
White Light Fringes
Displacement of Fringes
5.5  Fresnel's Biprism _
3.6  Some Other Arrangement for Producing Interference by Division of Wavefront
5.7 Summary
5.8  Terminal Questions

59  Solutions and Answers

5.1 INTRODUCTION

Anyone with a pan of water can see how the water surface is disturbed in a variety of
characteristic patlems, which is due to interference between water waves. Similarly,
interference occurs between sound waves as a result of which two people who hum
fairly pure tones, slightly different in frequency, hear beats. But if we shine light from
two torches or flashlights at the same place on a screen, there is no evidence of
interference. The region of overlap is merely uniformly bright. Does it mean that there
is no interference of light waves? The answer is ‘No'. :

The interference in light is as real an effect as interference in water or sound waves, and -
~ there is one example of it familiar to everybody — the bright colours of a thin film of
- oil spread ont on a water surface. There are two reason why the interference of light is

observed'in some cases and not in others? Firstly, {ight waves have very short wave-

lengths — the visible part of the spectrum extends only from 400 mm for violet light to

700 mm for red light. Secondly, every nawral source of light emits light waves only as

short trains of random pulses, so that any interference that occurs is averaged out during

the period of observation by the eye, unless special procedures are used.

Like standing waves and beats, the phenomenon of interference depends on the
superposition of two or more individual waves under rather strict conditions that will
soon be clarified. When interest lies primarily in the effects of enhancement or
dimination of Light waves, these effects are usually said to be due to the interference of
light. When enhancement {or constructive interference) and diminution (or destructive

_ interference) conditions altemnate in a spatial display, the interference is said to produce
- ---a.pauem of fringes-as in-the double slil interference patern. The same condition may

~ lead to enhancement of one colour at the expense of the other colour, producing
interference colours as in the case of oil slicks and soap film about which youn will study
in next unit. , '

In this unit, we will consider the interference pattern produced by waves originating

from two point sources. However, in case of light waves, one cannot observe

interference between the waves from two independent sources, although the interference

does take place. Thus, one iries to derive the interfering waves from a single wave so

that.the constant phase difference is maintained between the interfering waves. This can

be achieved by two methods. In the first method a beam is allowed to fall on two 5
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Interference

closely spaced holes and the two beam emanating from the holcs interfere, This method

is known as division of wavefront and will be discussed in detail in this unit. In the
other method, known as division of amplitude, a beam is divided at two or more
reflecting surfaces, and the reflected beams interfere. This will be discussed in the next
unit, '

‘As the phenomenon of interference can be successfully explained by treating light as a

wave motion, it is necessary 1o understand the fundamentals of wave motion. Although
you have leamnt about this in your class XII and also in the PHE-02 course
“Oscillations and Waves”, we will begin this unit with study of wave motion which
will serve as a recapitulation.

In the next unit we will study how mterference takes placé by division of amplitude of
light wave.

Objectives
After studying this unit, you should be able to

@ use the principle of superposition to interpret constructive and destructive
© interference,

distinguish between coherent and incoherent sources of light,

describe the origins of the interference pattern produced by double slit,
describe the imensity distribution in interference pattern,

express the fringe-width in terms of wavelength of light,

describe various arrangements for producing interference by division of wavefront,

appreciate the difference between Biprism and Lloyd’s mirror fringes.

5.2 WAVE MOTION

Study Comment

You may find it useful to go through the Unit 6 of PHE-02 course in “Oscillation and
Wave".

Simple Harmonic Motion

A simple harmonic motion is defined as the motion of a particle which moves back and
forth along a straight line such that its acceleration is directly proportional to its
displacement from a fixed point in the line, and is always directed towards that point.

The best and elementary way to represent a simple harmonic motien is to consider ihe
motion of a particle along a reference circle (See Fig. 5.1). Suppose a panicle P travels

in a circular path, coonterclockwise, at a uniform angular velocity @. The point N is the

nerpendicular projection of P on the diameter AOA” of the circle. When the particle P
is at point B, the perpendicular projection is at Q. As the particle P starts from B, and
moves round the circle, N moves from O 0 A, A to A’ and then returns to . This back
and forth motion of N is simple harmonic. Let us obtain expresstons for.displacement,
velocity and acceleration and define few terms.

»”
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" Flg. 5.1. Reference Circle (Leh) and Simple Bxrmonic Mo&oq (Right)
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Displacement ' : Interference by Divislon of

. Wavefront
Suppose the particle P staris from B and traces an angle 8 in time . Then its angular
velocity @ is
=2
[} . -

where the angle & is measured in radians. The displacement, y, of N from O at time 1, is

thus given by
y.= ON = OP sin NPO
=asin 8 . ['c ZNPO = ZP(OB = @)
But \ m:%.sothatﬂ:ax

[y=ashar] (5.1)

This is the equation of simple harmonic motion.

SAQ 1

See Fig. 5.1. If you have siudied the motion of the point M, which is the foor of the
perpendicular from the point P on the x-axis, then write down Lhe equation of simple
harmonic motion.

Velocity: The velocity of N is given by

. %ry- = A cos oX =  Ja - ¥ ' -(5.2)

Accgleratioﬁ': The acceleration of N is
iﬁ_ 245
=-@ asmar:-—ar’-y .-(5.3)

Periodic Time: The periodic time, T, of N is time taken by N to make one complete
vibration, Thus

2r
T= = ...(574)

Amplitde; Amplitude of vibration is equal to the radiuls_ of the reference circle i.e., a.

SAQ2

A particle is executing simple harmonic motion, with a period of 3s and an amplitude of
6 cm. One-half second after the particle has passed ihrough its equilibrium position,
what is its (a) displacement, (b) velocity, and (c} acceleration?

_Phase The phase of a vibrating parhcle represents its state as regards

'i) the amounl of displacement sufl'ered by the parucle wuh respect to its mean
position, and

. ii)__ the difrection in which the displacement has taxen place.

In Fig. 5.1, we had conveniently chosen ¢ = 0 as the time when P was on the x-axis, The
choice of the time ¢ = 0 is arbitrary, and we could have chosen time ¢ = 0 to be the
instant when P was at P’ (see Fig.5.2). If the angle P'OX o then the pro_|ecuon onthe Fig-52:Atc=0,the l"’l'lt Pls

at P’ and, therefore, the
y-a:us at any time ¢ would be given by . . mu.f phase umc'a
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Interference

y=asin‘(ax-|'-_9} . ...(5.5)

The quantity (ax + ) is known as the phase of the motion and 8 represents the initial
phase. It is obvious from the discussion that the value of @ is quite arbitrary, and
depends on the instant from which we start measuring time,

- We next consider two particles, P and 0 rotating on the circle with the same angular

velocity @ and P’ and Q’ are their respective positions at 7 = 0. Let the angle £P0X
and £Q ‘OX be 8and ¢ respectively (see Fig. 5.3).

Fig53: The polnts ¥ and N’ execute simple harmonic motion with the same frequency m. The inltial
phases of ¥ and N”are § and ¢ respectively.

Clearly at an arbitrary time ¢ the distance of the toot ot perpendiculars from the origin
would be

Yp = a sin (o + 8) ...(5.69)

Yo = a sin (X + ¢) | ...(5.6b)
The quantity ‘

(ax+6)— (x+¢)=6-¢ LD

represents the phase difference between the two simple harmonic motions and if 8- ¢=0
(or an even multiple of x) the motions are said to be in phase, and if 8~ ¢ = x (or an
odd multiple of ) the motions are said to be ont of phase. If we choose a different
origin of ime, the quantities @ and ¢ would change by the same additive constant;
consequently, the phase difference (8 — ¢) is independent of the choice of the instant ¢ = 00

Energy: A particle performing simple harmonic motion possesses both types of -
energies; potential and kinetic, It possesses potential energy on account of its
displacement from the equilibrium position and kinetic energy on account of its
velocity. These energies vary during oscillation, however, their sum is conserved
provided no dissipative forces are present. Since the acceleration of vibrating particle is
a7y, the force needed to keep a particle of mass m at a distance y from O is m a?y. If
the particle is to be displaced throogh a further distance dy, the work to be done will be
a* mydy. Now the potential energy of the particle at a displacement y-is equal 1o the
total work done to displace the particle from O through a distance y.

b
PE. ;_J @*my dy = % moy: _ (58 -
’ _ _
Using Eq. (5.2), the kinetic energy of the particle is given by -
S (Y 1 o s o : -
K.E._zm(m] =z mo’(@ i I .(5.9)

;I‘h_c to1al energy of the parﬁcle at any distance y from O is given bj;
Total energy = K.E. + PE,

= %md’(a? -+ %fnmzy’
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B . lnterferenc-e by Divislon of
q:mzaz _ «.(5.10) Wavefront

Nlt-

Therefore, otal energy (intensity) is proportional 3a (amplitude)?, and, since @ = 27, n
being the frequency, the energy is also proportional to (frequency)?,

If/ Tepresents the intensity associated with a light wave then

Iaa? |
where a represents the amplitude of the wave.
Wave-motion -

So far we considered a single particle, P, executing simple harmonic motion. Let us
consider a number of particles which make a continuous claslic medium. If any one
particle is set in vibration, each successive particle begins a similar vibration, but a
little Iater than the one before it, due to ineriia, Thus, the phase of vibration changes
from particle to particle untt] we reach a particle at which the disturbance arrives
exacily at the moment when the first particle has completed one vibration, This particle
then moves in the same phase as the first particle. This simultaneous vibrations of the
particles of the medium together make a wave. Such a wave can be represented graphi-
cally by means of a displacement curve drawn with the position of the particles as
abscissae and the corresponding displacement at that instant as ordinate. If the particles
execule simple harmonic motion, we obtain a sine curve as shown in Fig, 5.4, ’

Fig. 5.4. Graphlical representation of 2 wave

It will be seen that the wave originating at g repeates itself after reaching i, The distance
ai, after travelling which the wave-form repeats itself, is called the wavelength and is
denoted by A. It is also evident that during the time T, while the particle at a makes oné
vibration, the wave travels a distance 1. Hence the velocity v of the wave is given by

v==

T
If n is the frequency of vibmliondh-cn n=1/T.
Hence, we have .
v=ni _ ' L (5.11)
Particles in Same Phase ‘

Particles a and i have equal displacements (= zero) and both are tending to move
upwards. They are said to be in the same phase. The distance between them is one
wavelength. Hence, wavelength is the distance bétween two nearest particles vibrating
in the same phase. Two vibrating particles will alsa be in the same phase if the distance
between them is n 4, where n is an lnteger

Pnrhcle_s in Opposite Phase - _

“- Particles a-and ¢, both have the sime displacement (= zera), bat whilé a is tending o go
up, e is tendmg to move downwards. They are said to be in opposite phase The distance

- between them is g . The pamcles are out of phase if l.he d:stance betwaen them is -

-

(2n 1) whcre A is an mteger

'Equatlon of a Simple Harmonic Wave

“Fig. 55 sho;vs the wave &aveinng in the positive x-direction, The djsplace_ﬁlel_n. yof the
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5 e apreston
. S e
phase difference = -i_ (path
; - difference} can be obtained m a
77777 Jeny formal mamner by emember-
ing that a diffaence in phase of 2x
corresponds to & path difference of
one wevelength and caleulating the
required phase differeace by
proportion. o
10
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Fig. 55, A slmple hn.rmox:.ll;: wave travelling towards right.
particle at O at any time { is given by
j:asin o 5.1

Let v be the velocity of propagation of the wave. Then the wave starting from O would
reach at a point A, distant x from @ in x/v seconds. Hence the particle at A must have
started 1is vibration x/v seconds later than the particle at 0. Consequently, the

displacement at A at the time ¢ would be same as was at O at time %: seconds earlier i.e.

ar time ¢ — —‘E Substituting ¢ - % for t in Eq. (5.1) we obtain the displacement at A at

time ¢, which is given by

= gqi _XV
y—asmm(! v)

" Using the relation &= 27/T and v = 4 we get

T

2

y=asin ) (vi-x) o u(5.12)

This equation represents the displacement of a particle at a distance x from a fixed point

at a ume (. This is, therefore, the equation of the wave. The wave shown in Fig. 5.5 is
generated along a stretched string and in a rope. Such type of waves are called
ransverse waves. From Unit 4 of Block-1, you already know that light travels in the
form of transverse waves, therefore Eq. (5.12) represents a light wave,

Relation between Phase Difference and Path Difference

The equation of simple harmonic wave is given by Eq. (5.12). If there are two parlicles
Py and P, at distance x; and x, from the origin, then,

the phase angle of P, al a time ¢ = 2;‘.—” (vi-xp)

and the phase angle of P, at a time ¢ = 2% (vt - x3)
phase difference between P; and P,
2z 2z
= 7 (vt - x)) —-T (vt — x3)
2z )
=T .(J§z. .—_xl). :

But (xy — x;) is the path difference between P; and P,

<. Phase difference = 21—” k-(palh difference) :  E ...(5.-13")-- R

When two or more sets of waves are made 1o overlap in some region of space,
interesting effects are observed. For example, when two stones are dropped .
simultaneously in a quiet pool, two sets of waves are created. In the region of crossing,
there are places where the disturbance is almost zero, and others, where it is greater
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than that given by either wave alone. These effects can be explained using a very simple Interference by Division of
. law known as principle of superposition. We will use this principle in investigating the Wavefrons
disturbance in regions, where two or more light waves are superimposed. Let us now

briefly study this principle.

5.3 PRINCIPLE OF SUPERPOSITION

In any medmm two0 Or more waves can travel mmultaneously without affecting the
motion of each other. Therefore, at any instant the resultant displacement of each
particle of the medium js merely the vector sum of displacements due 10 each wave
separately. This principle is known as “principle of superposition™. It has been observed
that when two sets of waves are made to cross each other, then after the waves have
passed out of the region of crossing, they appear to have been entirely uninfluenced by
the other set of waves. Amplilude, frequency and all other characteristics of the waves
are as if they had crossed an undisturbed space.

" As a simple example, we consider a long stretched string AB (see Fig, 5.6). The end A
of the string is made to vibrate up and down. This vibration is handed down from
particle to particle of the string. Suppose the string is vibrating in the form of a
triangular pulse, which propagates to the right with a certain speed v. We next assume
that from the end B an identical pulse is generated which slarts moving to the left with
the same speed v,

Fig. 5.6(a) shows the position of puise at t = 0. At a little later time, each pulse moves
close to the other as shown in Fig. 5.6(b), without any interference, Fig. 5.6(c)
represents the position at an instant when the two pulses interfere; the dashed curves
represent the profile of the string, if each of the impulses were moving all by itself,
whereas the solid curve shows the resultant displacement obtained by algebraic addition

" of each displacement. Shortly later in Fig. 5.6(d) the two pulses overlap each other and
the resultant displacement is zero everywhere. At a much later time, the impulses cross
each other (Fig. 5.6(¢)) and move as if nothing had happened. This qould hold provided
the principle of superposition is Lme
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- Flg.5.6: The prnpa-gnunno!'twn uhnguhrpuj-.nsm;ppmlu;liredhminamwlng. The solld line
given the actusl shape of the string; (a), (b), (c), (d) and (¢} correspond to different Instants of time.

_Letus cdnsider the following case of superposition of waves,

Superposition of Two Waves of Same Frequency but havmg Constant Phase
Difference

Consider two waves of same frequency but having constant phase difference, say S.

Since they have same frequency, i.e. same angular velocity, we write 1
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Y1 =a sin o

“and Y2 = a3 sin (ax + &)

where a; and a, are two different amplitudes, and ® is common angular frequency of
the two waves, By the principle of superposition, the resuliant displacement is

y=n+y:
= a, sin oX + a; sin (ax + &)
= ay sin ax + @, sin.ax cos § + a, cos ax sin §
= sin ax(a, + a; cos & + cos wi{a; sin &)
Let us write |
a +a;cos 6=Acos 6 : - ...h(5.14a)
and . ay sin §= A sin 8 ...(5.14b)

‘where A and 6 are new constants, This gives

y = sin ax A cos 8+ cosax A sin 8-
ar y=Asin(ax + 8

Hence the resultam displacement is simple harmonic and of amplitude A, Squaring and
adding Eq. 5.14a and 5.14b, we get

A% c0s%0 + A? sin?@ = (a, + 4, c058)? + (a sin 5
or, A= a? +as? + 2a1 az cos8

Thus, the resuliant intensity J which is proportional (o the square of the resulumt
amplitude, is given as

! = A*= a;? + as* +.2a, a; cosé ‘ ) ...{(5.15)
(Here we have taken the constant of proportionality as 1, for simplicity).

Thus, we find that the resultant intensity is not equal to the sum of the intensities due to
separate waves i.e., (a;2+ a;%). Since the intensity of wave is proportional 10 square of
amplitude, /; & a,2 and I, & a,% as before, taking the proportionality constant as 1, we
can rewrite Eq, (5.15) as

In Example 1, see how Eq, (5.16) has been vsed to find the resuitant intensity.

Example 1

Consider interference due to two coﬁerem waves of same fréquency and constant phase
difference having intensities 7 and 4/, respectively. What is the resuliant intensity when
the phase difference between these two-waves is /2 and 7?7

Solution

According to Eq, (5. 16)
InI;+1=+2Mcos&

Gi\-;en; h=1 andlz 4I 50
I=5I+2I\Fcosd

wST+4lcosd

Hence Top =51 + 4 o8 90° = 5/

Ie=5l + 4l cos=1
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Thus there is a variation of intensity due 10 interference phenomenon,. Interference by l;;vhzro of
I avelront

Refer again to Eq. (5.16). The intensity f is maximum when cos § = + 1, that is, when
phase difference is given by

6= 2ns (even mulliple of #).
From Eq. (5.16)
Tma=h+L+2 (1,
The resultant intensity is, thus, greater than the sum of the two separate intensities, If
Iy =Iythen I, =4I,
The intensity 7 is minimum when cos 8= 1, i.c., when §is given by
8= (2n + 1) 7 (odd multiple of 7).
We have from Egq. (5.16) '

Im.in =Il+f2— 2 ‘\Hll fg

The resultant intensity is thus less than the sum of [wo separate intensities. If £, = I
then Iy, = 0, which means that there is no light.

SAQ 3

Two waves of same frequency and constant phases difference have intensities in the
ratio 81:1. They produce inlerference fringes. Deduce the ratio of the maximum to
minimum intensity.

In general, for the two waves of same intensity and having a constant phase difference
of 8, the resullant intensity is given by :

I=21 + 2, cosd (=)
=2 (1 +cos &)

= [}
= 41, cos? 7 .(5.17)

Therefore, we find that when two waves of the same frequency travel in approximately — Usually, when two light waves
the same direction and have a phase difference that remains constant with the passage of we made o interfere, we get
time, the resuleant intensity of light in not distributed uniformly in space. The non- slternate dark and bright bands of
uniform distribation of the light intensity due to the superposition of two waves is ;&":’:;L:‘L";‘:"P"
called interference, At some points the intensity is maximum and the interference at fringes, crenee

. these points is called constructive interference. At some other points the intensity is
minimum and the interference at these points is called destructive interference.

SAQ 4

Fig. 5.7 shows two situations where waves emanating from two sources, 4 and B, amive at
-point € and interfere. Which of the two situations indicate constructive interference and
destructive interference? Give reasons. (Eq. (5.13) will help you in answering this question.)
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Interference,

After solving the above SAQ one can infer that:

for construciive interference,

path difference = nd, where n = 0,1, 2, 3 ' ...(5.18)

for destruclive inlerference,

path difference = m—g-.whercm=1. 3,5,7 ...(5.19)

For the production of stationary interference patierns, i.e. definitc regions of
construclive and destructive interference, the interfering waves must have (1) the same
frequency, and (2) a constant phase difference (and they must be ravelling in the same
or nearly the same direction). If these conditions are satisfied, we say the wave sources
and the waves are coherent. Sources can readily be found with the same vibrating
frequency; however, the phase relationship between Lhe waves may vary with time. In
the case of light, the waves are radiated by the atoms of a source. Each atom contributes
only a small part (o the light cmitied from the source and the waves bear no particular
phase relationship to each other; the atoms randomly emit light, so the phase “constant™
of the to1al light wave varies with time. Hence, light waves brought together from
different light sources are coherent over very short periods of time and does not produce
stationary inlerference patterns. Light from two lasers (aboul this you will study in
Block 4) can be made to form stationary interference pattems, but the lasers must be
phase-locked by some means. How, then, was the wave nature of light originally
investigated, since lasers are a relatively recent development ? In the following sections
we will discuss the various arrangements, which provide coherent sources and enable us
lo obscrve interference phenomenon. Thomas Young had first demonstrated the
interference of light. In the next section we will describe the experiment done by him.

3.4 YOUNG’S DOUBLE-SLIT EXPERIMENT

One of the carliest demonstrations of such interference effect was first done by Young
in 1801, establishing the wave character of light. Young allowed sunllghl to fallon a
pinhole Sy, punched in a screen A as shown in Fig. 5.8. The emergent light spreads out
and falls on pinholes S, and §,, punched in the screen B. Pinholes §; and §; acl as
coherent sources. Again, two overlapping spherical waves expand into space to the right
of screen 8. Fig. 5.8 shows how Young produced an interference pattern by allowmg
the waves from pinholes §, and S, to overlap on screen C.

—_— S

Incidil:nl. éu!ﬂighl

‘Fig5.8: Young’s double slit experiment. The pinholes §, and 57 act as coherent sources and an

lnterference patiern Is observed on the screen C.
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Fig. 5.9 shows the section of the wavefronl on the plane containing Sg, S;, and S,. Since

the waves emanating from §, and §; are coherent, we will seeralternate bright and dark

- curves of fringes, called interference fringes. The interference patlemn is symmetrical
about a bright central fringe (also called maximum), and the bright fringes decrease in
intensity, the farther they are from the central fringe.

iTiex acoeen
gk
y duk
gt
) ) M &=
i LA o
dhark
light
Ao
Light

Flg. 5.9: Scctlons of the spherlcal wavefronts emanating from Sy, §, and S,

To analyze the interference pattern and investigate the spacing of the interference
fringes, consider the geometry in Fig. 5.10. Let § be a narrow slit illuminated by
monochromatic light, and §, and §; wwo parallel narrow slits very close to each other
and equidisiant from S. The light waves from § arrive aL S and 83 in the same phase.
Beyond S, and §, the waves proceed as if they started from §, and §; with the same
phase because the two slits are equidistant from §.

FIg.S 10: The geomelry of Young's experiment: The path dffference of the lighl. from the slits arriving
at P on the screen is  sin&

Ttis assumed that the waves start out at the same phase, because the (wo slits §; and 5,
are equidistant from S. Furthermore, the ampliludes are the same, because 5; and §, are

" the same size slits and very close to each other. (So the amplitude does not vary very
much.) Hence these waves produce an interference pattern on a screen placed parallel to
Sl and Sg.

To find-the intensity at a point P on the screen, we join §,P and S,P. The two waves
amive at P from §, and §, having traversed different paths §,P and SoP, Let us calculate
- this path difference S;P — §;P. Let,

y = distance of P from P, the central point on the screen

- d =-sepmaﬂ0n of two slits §, and S,

D = distance of slits from the sﬁreen.

The corresponding path difference is the distance S»A in Fig. 5,10, where the line SIIA
“has been drawn to make S, and 4 equidistant from P. As Young's experiment is usually
done with D >> d or y, the angle 8 and & are nearly same and they are small.

Hence, we may assume triangle $,4 S, as a right-angled triangle and $,4 = d sin & =
d sin 8 = d 1an#@, as for small &, sin@ = tan 8. As can be seen from the Fig.-5.10,
1an 8 = y/D.

Interference by Divislon of
Wavefront

15

' Tie
' Lo
LR P P




Interference

S5;P-§P=S,A= d% : .(5.20)

Now the intensity at the point P is a maximum or minimum according as the path
difference S;P — §\P is an integral multiple of wavelength or an odd multiple of half
wavelength (See Eq. 5.18 and Eq, 5.19). Hence, for bright fringes (maxima),

[

P -5P=2 20,420 34 =md

.where m=0, 1, 2.....
y=mD Aid  (bright fringes) -.(3.21)

The number m is called thé order of the fringe. Thus the fringes withm = 0, 1, 2, ....
etc. are called zero, first, second....etc. orders. The zeroth order fringe corresponds to
the central maximum, the first order fringe (m =1) corresponds Lo the first bright fringe
on either side of the central maximum, and so on. For dark fringes (minima},

¥4 _A 32 534 _( 1y
S)_P—-S]_fj'—D—z. 2, 2 ey = m+2 3.

where m=0, 1, 2, ...

y= (m + %J % (dark fringes) . (5.22)

Eq. (5.21} or Eq. {5.22) can be used to find out the distance y, of the nth order bright
{or dark) fringe. Try 1o solve the following SAQ. ]

SAQ S

Monochromatic light passes through two narrow slits 0.40 mm apan.. The third-order
bright fringe of the interference pattern, observed on a screen 1.0 meter from the slits, is
3.6 mm from the centre of the'central maximum. What is the wavelength of the light ?

Fringe Width
it j,. and y,,; denote the distances of nth and (n+l‘)lh'bn‘ght fringes, then
_D :
=gt
and y,.+|=%(n+l)l

The spacing between the ath and (r+1)th fringes (bright) is given by

Yol =W = %(ﬂ.+ Da- %uﬂ,:Dl!d
It is independent of n. Hence, the spacing between any two consecutive bright fringes is
the same. Similarly, it can be shown that the spacing betiveen two dark fringes is also
% A - The spacing between any two consecutive bright or dark fringes is called the

fringe-width, which is-denoted by . ’fhus

B=2a - A5.23)

One also finds; by experiment, that fringe-width
i) varies directly as D,
ii) varies directly as the wave-length of the light used, and

iii) inversely as the distance d between-the slits -

A emarpr g = e P — T -,




The fringe-widths are so fine that to see them, one usually uses magnifier or eye-picce..

Td 'make certain that you really understand the meaning of the fringe width, try the
following SAQs. _ : : :

SAQ 6

In a two-slit interference pattern with A= 6000 A, the zero order and tenth order
maxima fall at 12,34 mm and 14.73 mm respectively. Find the fringe width,

SAQ 7

If in the SAQ 6, A is changed 1o 5000 A, deduce the positions of the zero order and
twentieth order fringes, other arrangements remaining the same.

Shape of the Interference Fringes

In Fig. 5.11, suppose §, and S, represent the two coherent sources. At the point P, there
is maximum or minimum intensity according as -

SZP - S;P =nd
or
SzP—S].P = (ﬂ+ l]—’L
2/2 :
Thus for a given value of n, the locus of points of maximum or minimum intensity is given by
S2P — §)P = constant,

which is the equation of a hyperbola with S, and $; as foci. In space, the locus of points
of maximum or minimum intensity for a particular value of n will be a hyperboloid of
revolution, oblained by revolving the hyperbola about the line 8185,

In practice, fringes are observed on a screen XY in a plane normal to the plane of the figure
and parallel 1o the line joining §,S,. Hence the fringes that are observed are simply (he
sections of the hyperboloids by this plane, i.¢. they are hyperbolae. Since the wave-length
of light is extremely small (of the order of 10-5¢m), the value of (§2P - 5,P) is also of that
order. Hence these hyperbolae appear, more or less, as straight lines.

Intensity Distribution in the Fringe-System
To find the intensity, we rewrite Eq. (5.15), taking ay = ds, as follows
1=4A% =242 (1 + cos §)
—dn2 ez O
= 4a* cos 2
If the phase difference is such that § = 0, 2z, 4r......, this gives 4a? or 4 times the
intensity of either beam. If & = =, 37, 5x,...... » The intensity is zero,

In between the intensity varies as cos? §/2. Fig. 5.12 shows a plot of the iniens’ ., against

the phase difference. When the two beams of light arrive at a point oni-the screen, exactly-
ou} of phase, they interfere destruclively, and the resultant iniensity is zero. One may well
ask what becomes of the energy of the two beams, since the law of conservation of energy

x.

3
—

Fig. 5.11 : Shape of the fringes.
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tells us that it cannot be destroyed. The answer (o this question is that the energy, which -
apparently disappears at the minima, is actually still present at the maxima, where the
intensity is greater than would be produced by the two beams acting separately. In other
words, the energy is not destroyed, but merely redistributed in the interference patiern. The
average inlensity on the screen is exactly what would exist in the absence of interference.
Thus, as shown in Fig. 5.12, the intensity in the interference pattern varies between 442
and zero, Now each beam, acting separately, would contribute A?, and so, without
interference, we would have a uniform intensity of 242, as indicated by the broken line, Let
us obtain the average intensity on the screen for « fringes. We have

J’-;aa
1]

x ' 6
I [4;@!2 cos? —-—] dé
o 2
x
[
0
J- (2A% + 2A% c0s8) db
_ 4o

_[da
i}

_[2A% 5+ 2A% sin )
(515

.. = enc2 8
(. 1 + cos@ = cos 2)

L] L] L1 : L] L]
= Ax —dx -1x -2x -2 0 x Ix 315 4z & &x Tx

Flg. 5.12: Inensity distribution for the interference fringes from two waves of the same frequency.

Thus, the average intensity is equal to the sum of (he separate intensities. That is
whalever energy apparently disappears at the minima is actually present at the maxima There is
no viglation of the law of conservation of energy in the phenomenon of interference.

Till now we have considered interference patlern produced when a monochromatic light
from a narrow slit’ falls on two parallel slits. What happens if white light is used to

illuminate slits? Read the following sub-section.

5.4.1 White-Light Fringes

If white light is used to illuminate the slits we obain an. interference pallemn consisting
of a central *white’ frmge. havmg on both sides a few coloured frmges and theu a
general illumination. - -

A pair of white light coherent sources is equivalent to a number of pairs of
monochromatic sources, Each monochromatic pair produces its own system of fringes

with a different friige-width B, since J depenids o A (ﬁ; Qz‘:.).

At the centre of the panern, the path difference between the interfering waves is zero.
Therefore, the path difference is also zero for all wavelengths. Hence, all the different
coloured waves of the white light produce a bright fringe at the centre. This
superpositior of the different colours makes the central fringe *white”. This is the ‘zézo order
fringe’. ‘ :
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As we move on either side of the centre, the path difference gradually increases from Interference by Dlvislon of
zero. At a certain point it becomes equal to half the wavelength of the component Wavelront
having the smallest wave-length, i.e., violet. This is the position of the first dark fringe

of violet. Beyond this, we obtain the first minimum of blue, green, yellow and of red in

the last. The inner edge of the first dark fringe, which is the first minimum for violet,

receives sufficient intensity due to red, hence it is reddish. The outer edge of the first

dark fringe, which is minimum for red, receives sufficient intensity due to violet, and is

therefore, violet. The same applies to every other dark fringe. Hence, we obtain a few

coloured fringes on both sides of the central fringe.

As we move further away from the centre, the path difference becomes quite large.
Then, from the range 7500 - 4000 A, a large number of wavelengths (colours) will
produce maximum intensity at a given point, and an equally large number will produce
minimum inlensity at that point. For example, at any point P, we may have

=11 4; = 124, = 134, =...elc. {(maxima)
path difference

1 ’ 1 r 1 ’ ' b o
= (11 + 5) A= (12 + 5) A= (13 + E) A3 = ... etc. {minima)

Thus, at P, we shall have 11th, 12th, 13th, etc., bright fringes of 4;, A;, 43,...etc., and  For maxima, path difference
11th, 12th, 13th,... etc., dark fringes of 1/, 1%, 2%, ...etc. Hence, the resultant colour =" 4 wheren =0, 1,2,

at F' is very nearly white. This happens at all points, for which the path difference is g, minima, path difference
large. Hence, in the region of large path difference uniform white illumination is

obigined. =_(n+%)2:,wh=rcn=0.l.2....

SAQ8

Let ti1r; path difference §,P — §»P = 30 x 10-° ¢m. What are the A5 for which the point
P is a maximum?

In the usual interference pattern with a monochromatic source, a large number of - -
interference fringes are obtained, and it becomes extremely difficult to determine the
position of the central fringe. Hence, by using white light as a source the position of
central fringe can be easily delermined.

5.4.2 Displacement of Fringes

We will now discuss the change in the interference pattern produced when a thin
transparent plate, say of glass or mica,.is introduced in the path of one of the two
interfering beams, as shown in Fig. 5.13. It is observed that the entire fringe-pattern is
displaced 1o a point towards the beam in the path of which the plate is iniroduced. If the
displacement is measured, the thickness of the plate can be obtained provided the
refractive index of the plate and the wavelength of the light are known.

Suppose a-thin transparent plate of thickness ¢ and refractive index 1 is introduced in
the path of one of the constituent interfering beams of light (say in the path of §,P,
shown in Fig. 5.13). Now, light from S, travel parlly in air and partly in the plate. For

~ the light path from §, to P, the distance travelled in air is (S,P - ¢}, and that in the plate
is ¢. Suppose, ¢ and v be the velocities of light in the air and in the plate, respectively. If
the time taken by light beam to reach from S, to P is, T, then :

i Lt

c ¥

or, _ T=§l%_—'_+% _[-.-v=£J
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- Fig. 5.13: If a thin trun.rpurenl: sheet (of thickness ) is introduced |n one of the beams, the frimge

patlern gets shifted by a distance {(p-1) 1D/,

Thus the effective path in air from §; 10 P is [S,P + (¢ 1)), i.e., the air path S,P is
increased by an amount (12 —1)t, due to the introduction of the plate of material of
refractive index, .

Let O be the position of the central bright fringe in the absence of the plate, the optical
paths §,0 and S,0 being equal. On introducing the plate, the two optical paths become
unequal. Therefore, the central fringe is shifted to O, such thal at 0" the two optical
paths become equal. A similar argument applies to all the fringes. Now, at any point P,
the effeciive path difference is given by

= [S\P + (u-1)1]
P =GP =SiP) - (u-1p

From Eq. (5.20), S;P - §\P = %y

- Effective path difference at P =5y — (1 - D1

If the point P is to be the centre of the nth bright fringe, the effective path dj.t'ference
should be equal to nd i.e.,

d -

U

or --[m'l,+(p 1) ] ..(5.24)

|F'I.

In the absence of the plale {¢ = 0), the distance of the nth bright fringe from O is %— na.
. Displacement y, of the nth bright fringe is given by

}b=2[n1+cu—1):1—§-na

Jb-—(u )¢ . . (5.25)

The shll‘l is independent of the order of the fringe, showing that shift is the same for all
the bright fringes. Similarly, it can be shown that the displacement of any dark fringe is

also glven by Eq. (5 25) Thus, the entire mnge-system is d;splaced lhrough a dlstance Sy |

= (u - 1) ¢ towards the side on which the plate is placed. The fringe-width is given by:.

B= Vvt = o
E' (e i+ Q-11- % [nA+ (- 1)1] (see Bq. (5.24))
=ﬂ
d'

which is the same as before the introduction.of the plate.
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" Eq. tS .25) enables us to determine the thickness of extremely thin transparent sheets
(like that of mica) by measuring the shift of the Tringe system. o

Now, apply this sr:ategy- yourself to SAQ 9,

SAQ9

In a double slit interference arrangement one of the slits is covered by a thin micg sheet
whose refractive index is 1.58. The distances 5,5, and AQO (see Fig. 5.13) are 0.1 cm
and 50 cm, respectively. Duc to the introduction of the mica sheet, Lhe ceniral fringe
gets shifted by 0.2 cm. Determine the thickness of the mica sheet,

5.5 FRESNEL’S BIPRISM

With regard to Young's double-slit experiment, objection was raised that the bright
fringes observed by Young were probably due to some compiicated medification of the
light by the edges of the slits and not due to interference. Soon after, Fresnel devised a
series of arrangements to produce the interference of two beams of light which was not
subject to this criticism. One of the experimental arrangements, known as Fresnel's
Biprism arrangement, is shown in Fig. 5.14,

Fig. 5.14: Dlagram of Fresnel’s Blprism experiment.

S is a narrow vertical slit illuminated by monochromatic light. The Light from § is
allowed to fall symmelrically on the Biprism P, placed at a small distance from § and
having its refracting edges parallel to the slit. The light emerging from the upper and
lower halves of the prism appeers to start from two virtual images, S, and S; of §,
which act as coherent sources. The cones of light b5,e and aS,c, diverging from S; and
Sz, are superposed and the interference fringes are formed in the overlapping region be.

If screens M and N are placed, as shown in the Fig. 5.14, interference fringes are
observed only in the region bc. When the screen ae is replaced by a photographic plate,
a picture like the upper one, in Fig. 5.15, is obtained.

The closely spaced fringes in the centre of the photograph are due to interference, while
the wide fringes at the edge of the photograph are due to-diffraction. These wider bands
are due to the vertices of the two prisms, each of which act as a straight edge, givinga-
pattern-of diffraction (about this you will leamn in Block-3). ' When the screens M and N
are removed from the light path, the two beams overlap over the whole region ae. The
lower photograph in Fig. 515 shows for this case the equally spaced interference

 fringes superimposed ofl the’ diffraction paném, of a.wide aperture. ..

Interference by Division: of
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With such an experiment, Fresnel was able 10 show the interference effect without the
diffracted beams through the 1two slits. Just as in Young’s double slit experiment, this
arrangement can also be used to determine the wavelength of monochromatic light. The
light illuminates the slit § and interference fringes can be easily viewed through the eye--
piece. The fringe-width § can be determined by means of a micrometer attached to the
eye piece. If D is the distance between source and screen, and 4 the distance between

the virtual images Sy and S, the wave-length is given by

& 526 -
A= D ...(5.26)

The distances d and D can easily be determined by placing a convex lens between the
Biprism and the eyepiece. For a fixed position of the eyepiece, there will be two
positions of the lens, shown as L; and L, in Fig. 5.16 where the images of §; and §; can
be seen al the cyepiece. Let dy be the distance between the two images, when Lhe lens is

1
1
]
L
| PO S—
' -
| J D

Flg. 5.18: Fresnel's biprism arrangement. C and L represents the positlon of cross wires and the

eyeplece, respectively. In order to determine d a lens Is Introduced between the biprism and

cross wires. L, and L; represent the two positlons of the lens where the slils are clearly seen.

1
1
1
]
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L

al the position L, (at a distarice b, from the eyepiece). Let d; and 5, be the
corresponding distances, when the lens is at L. Then it can easily be shown that

= .Jfd, d, | «.{5.278)
and D= bl + by : .-.(5.27v)

Use Eq. (5.26) and (5.27) to solve the following SAQ,

SAQ 10

In a Fresnel’s Biprism experiment, the eyepiece is at a distance of 100 cm from the slit.
A convex lens inserted between the Biprism and the eyepiece gives two images of the
slit in two positions. In one case, the two images of the slit are 4.05 mm apart, and in
the other case 2.10 mm apart. If sodium light of wavelength 5893 A is used, find the
thickness of the interference fringes.

5.6 SOME OTHER ARRANGEMENT FOR PRODUCING
INTERFERENCE BY DIVISION OF WAVEFRONT

Two beams may be brought together in several other ways to produce interference. In
Fresnel’s two-mirror arrangement, light from a slit is reflected in two plane mirrors

slightly inclined to each other. The mirror produces two vmual images of the slit, ag

shown jd-Fig; 5.17.
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‘They are like the images in Fresnel's biprism, and interference fringes are observed in Interference by I;vlllon of
the region bc, where the reflected beams overlap: avefront

Even a simpler mirror method is available. This is known as Lloyd’s mirror. Here the  ,, grazing incidence, almost the

slit and its virtual image constitute the double source. entire incident light is reflecied so.
. that the direct and the reflected
Lloyd’s Mirror beamn have nearly equal
' emplitudes. Hence the fringes
It is a simple arrangement to obtain two coherent sources of light to produce a have good contras.

stationary interference pattern. It consists of a plane mirror MN (Fig. 5.18) polished on
the front surface and blackened at the back (to avoid muliiple reflection). §, is a narrow
slit, itluminated by monochromatic light, and placed with its length parallel to the
surface of the mirror. Light from §, falls on the mirror at nearly grazing incidence, and
the reflected beam appears to diverge from S, which is the virtual image of §;. Thus §,
and §; act as coherent sources. The direct cone of light AS,E and the reflected cone of -
light BS,C are superposed, and the interference l‘nnges are obtained in the overlapping
regmn BC on the screen,

Zero-Order Fringe

The central zero-order fringe, which is expected to lie at O (the perpendicular bisector
of §,8) is not usually seen since only the direct light, and not the reflected light,
reaches O. It can be seen by introducing 2 thin sheet of mica in the path of light from
§1. when the entire fringe system is displaced in the upward direction. (You could see
this yourself while solving SAQ 11.)

SAQ 11

Interference bands are oblained with a Lloyd’s miror with light of wavelength 545 x 10~ cm,
A thin plate of glass of refractive index 1.5 is then placed normally in the path of one of
the intecfering beams. The cenural dark band is found to move into the position
previously gccupied by the third dark band from the ¢entre, Calculate the thickness of
the glass plate.

With white light the central fringe is expected to be white, but actually it is found to be

‘dark’. This is because the light suffers a phase change of 7 or a path-differcnce of %
when reflected from the mimor. Therefore, the path difference between the interfering

rays at the position of zero-order fringe becomes -"-"2- (instead of zero), which is a
.condition for a minimum. Hence the fn'ngé is dark.
"Determination of Wavelength

- ‘Let dbe the dlstance berween the coherant sources $;and §,, and D the distance of the'
screen from the sources, The fringe-width is then given by

Thus, knowing 8, D and 4, the wavelength 2 can be delermined.

Acromatic Fringes and thelr Production by Lloyd’s Mu'ror

A system of white and dark Ermges. wuhout any colouts. obtmned by whne llght are

known as “achromatic fringes”. _ . B

LTI R, S PP B,




Interference

Ordinarily, with while light, we obtain a central white fringe, having on either side of it
a few coloured fringes (as yon have studied in subsection 5.4.1). This is because the

fringe-width § = _1::1_2, is different for different wavelengths (colours). If however, the

fringe-width is made the same for all wavelengths, the maxima of each order for all

wavelengths will coincide, resulting into achromatic fringes. That is, for achromatic
fringes, we must have

D
—— = cOnstant
d cQ
A _
or E— = COI‘ISI&_Z.I'I[

We can easily realise this condition with a Lloyd’s mirror by using a-slit illaminated by
a narrow spectrum of the white light as shown in Fig. 5.19. The narrow spectrum R, V,
is produced by a prism, or, preferably, by a plane diffraction grating, The Lloyd’s
mirror is placed with its surface close to the violet end of the spectrum and such that
Ry V) is perpendicular (o its plane.

£

s

Lloyd's Mirror

1.
Gruing . Ry

Fig. 5.19 : Achromatic fringes produced by Lloyd’s mirror.

R, V4, and its virtual image, R, V,, formed by the mirror act as coherent sources. They .
are equivalent to a number of pairs of sonrces of different colours, Thus, the pair #, R,
produces a sel of red fringes, and the pair ¥, V; a set of violet fringes. The intermediate

pairs produce the sets of fringes of intermediale colours. The red and violet fringes will
be of the same width if

% = constant
ie. -JL: = ﬂ'-!

d d,
ar ﬁ = ﬁ

d, A,

where d, is the distance R, R, and d, the distance v, V,.

Hence, the last expression Bives

RBE _ 4
Vl VZ )'v

Therefore, if the distance of the violet end V1 from the surface of the mirror is so
adjusted by displacing the mirror laterally that the above condition is satisfied, the red.
and violet fringes will have the same width, and will exactly be superposed on each
other. Since, in a grating spectrum, the dispersion is accurately propontional to the
wavelength, the condition (3/d) = constant is simultaneously. satisfied for all the

wavelengths. Thus; when:this adjusiment is made, fringes, of all colours are Superposed -

on one another. Hence, achromatic fringes are observed in the eyepiece.E placed in the
over-lapping region.

Difference between Biprism and Lloyd’s Mirror. Fringes -

The following are the main points of difference between the biprism and Lloyd's mirror
fringes.

1) Inbiprism, the complete pattern of fringes is obtained. In Lloyd’s mirror,
ordinarily, only a few:fringes on-one sidé of the central fringe are visible, the -
central fringe itself being invisible. : ST .
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2)  Inbiprism the central fringe is bright, while in Lloyd’s mirror it is dark.
3)  The central fringe in biprism is less sharp than that in Lloyd's mirror,

The coherent sources in the biprism are A, 8, and A, B, (Fig. 5.20a) the vinual images
of a slit AB. In Lloyd's mirror, the coherent sources are a slit Ay By itself and its virinal
image B3 A, (Fig. 5.20 b). In both cases, A, and A, form one extreme pair of coherent
point-sources, and B; and B, another extreme pair, In Lhe biprism, the zero-order fringes
corresponding t0 A, A; and B, B, are formed al Aq and By, which lic on the right
bisectors of A, A; and B, B, respectively. Hence, the zero-order fringe extends from

Ag 10 Bg. In Lloyd's mirror, on the other hand, all pair of coherent sources have a
common perpendicular bisector, so that zero-order fringes due (o all of these are formed
in one and the same position, Hence the zero-order fringe is sharp in this case,

;i:t;-—-A --------- J: :|___-;-_-____£u. |
ST

@)
. O]
Fig. 5.20 : Showlng the dlfference between biprism and Lloyd’s mirror frinpes.

4)  Inbiprism A, A, = By B, = d. Hence, the fringe-width § = 2;:. is the same for

all pail:s of coherent sources. In Lloyd’s mirror arrangement d is different for
dilferent pairs of coherent sources, e.g., A, A; > 8, B, Hence, the fringe-width is
different for different pairs of coherent sources,

5.6 SUMMARY

o The relationship between phase difference and path difference is:

phase difference = 215 (path difference)

® If two waves of same frequency and of amplitedes a, and a, and phase
difference & are superposed then, according 10 principle of superposition, the
amplitude A of the resultant wave is given by

A2 =qa? + a2 + 2a,a, cos &

® Two sources are said to be coherent if they emit light waves with no or constant
phase difference.

® When two waves of the same frequency iravel in approximately the same
direction and have a phase difference that remains constant with time, the
resultant intensity of light is not distributed uniformly in space. This non-uniform
distribution of the light intensity is due to the phenomenon of interference.

o For constructive interference
path difference = nd, wheren=0, 1, 2, ...

and for destructive interference

path difference = m—%—, wherem=1,3,5,7

® In an imerference pattern, the distance between any two consecutive maxima or
minima is given by ’
_Da
d

where f§ is called the fringe-width, 2 is the wavelength of light used, d is the
distance between the (wo coherent sources, and D is the distance between the
sources and the screen.

Interference by Division of
Wavefront
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Interference

When a thin transparent plate of thickness ¢ and refractive index # is introduced
in the path of one of the constituent interfering beams of light, the entire fringe

_ system is displaced through a distance _3_ -1

Just as in Young's double slit experiment, the wavelength of light can be
determined from measurement of fringe-width produced by the biprism by the
following relation:

a=B
D

" where d = \Jd|d; and D = b, + b,

d, is the distance between the two images, when the lens is at the position L, ata

distance &, from the eyepiece. dj and b; are the corresponding distances when
the lens is at L.

Some other devices for producing coherent sources are : Fresnel’s two mirror
arrangement and Lloyd’s mirror.

Lloyd's mirror pro&uccs achromatic fringes.

5.7

TERMINAL QUESTIONS

b

2)

3

Young's experiments is performed with light of the green mercury line. If the
fringes are measured with a micrometer eye-piece 80 cm behind the double slit,
il is found that 20 of them occupy a distance of 10.92 mm. Find the distance
between two slits, Given that the wavelength of green mercury line is 5460 A.

In a certain Young’s experiment, the slits are 0.2 mm apart. An interference
pattern is observed on a screen 0.5m away. The wavelength of light is 5000 A
Calculate the distance between the central maxima and the third minima on the screen.

A Lloyd’s mirror, of length § cm, is illuminated with monochromatic light

(A = 5460 A) from a narrow slit 0.1 cm from its plane, and 5 cm, measured in
that plane, from its near edge. Find the separation of the fringes at a distance of
120 cm from the slit, and the total width of the pattern observed. -

5.8

SOLUTIONS AND ANSWERS

SAQs
1)

2)

The distance OM is given by a cos 6. Hence the equation is x = g ¢cos 8
of X = @ cos ax.

¥y =a sin @f = a sin 2an
If we replace m by 180°, and pul @ =6 cin = 0.06 m, and T = 3 5, we gel

2x180°;
3 :

a) Thus displacemeny after 0.5 sec is,

2 :(_3‘180" %

y = (0.06) sin

y = 0.06 sin 05
= .06 sin 60°
=0052m

b) Velocity, v = aw cos ax

=0.06x27ﬁcosmx05

3
=0.06x27’:xc0360°

= 0,063 ms™L
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3

4) -

3)

Interference by Divisfon of

. 2 .
¢} Acceleration, = @2y = (—2-'—;,'—) asin ax . Wavefront
_(2x 2%
_(TJ xOOﬁxsm?:
=(_2_:r£) x006x 2 x 180° x 05
3 -3
= 0.228 ms-?.
We have -
2
I _ h+ D+ 2405 (Vi + JE)
Tin h+l, - 21“1!.2 (,Jﬁ_ .JE)Z
L 81 4h 9
Now %=1 _J_z-lor\ﬂ-; WE

OVE+B) _aopn
(0N -G} ®'h

The phase difference is related to the path difference by Eq. (S.IS)I as follows ;

Hence [ /iy =

_ 100 _25
64 16

phase difference = %il (AC - BO)

2
—T(4-3) i
=2r

This is the condition of maximum intensity. So the waves interfere,
constructively, in Fig. 5.7(a).

In case of Fig. 5.7(b)

phase difference = 21—" (AC - BC)

2z .
== GB3-295 2
=7
This is the condition of minimum intensity.
Here the waves are complelely out of phase and destructive interference occurs.

Given : d =040 mm, D = 10° mm, y = 3.6 mm, and m = 3, Using Eq. (521), we get

_ ¥ _ 66 ©40) 4 5
k—mp- 3x10"‘" 48 x10”° mm =4.8 x 10~ cm
Hence, the light is in the blue-green region of the visible specirum.

WithA = 6000 A, the distance between zero-order and tenth order fringe is
14.73 mm - 12,34 mm = 2.39mm, 30 that the fringe width is 2.39 mm/10 = 0.239 mm.

ﬂ=z—ﬂ'-'rherefom

B "Blaw _ 00A _6
Psow S000A 5

@so0 = % X (Bengo = % x 0239 = 0199 mm

27
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Interference

8)

9

10)

11)

TQs
1)

2)

Thus, with A= 5000 A, the zero-order fringe will still bé at 12.34 mm, while the

twenteth order fringe will be at
12.34 mm + (0.199 mm x 20) = 16.3Z mm
For maxima, the path difference = nd

or 30x 105 ¢cm=nd

-5
A= %cm

wheren=1,2,3,4

Yo=02cm;d=01cm; D=50cm

‘Hence (= —3% __ 01x02

D(u-1 50x058
=6.7x 189 cm

The fringe-width is given by

B= where d= ,fdl X dy
Here d) = 4.05 mm = 0.405 cm and d; = 2.10 mm = 0.210 cm.

= ~f0405 x 0210 = 0292 cm
Also D = 100 cm and A ='5893 A = 5893 x 10-3 ¢m.

100 x 5893 x 10~ '
= = 00202
=020 o
By inroducing a glass plate of thickness ¢ in one of the interfering beams, ¢ cm
of air (g2 = 1) are replaced by 1 cm of glass (g2 = 1.5). r cm of glass are optically
equivalent 1o g or 1.5 t cm of air. The, increase in the length of the path = s —¢
= 0.51. This produces a shift of 2 in the interference bands

0.51=231=2x545%x10"°

2 % 545 % 10-3
05

and 1= =218 x 1079 cm.

The fringe width fin Young's experiment is 8 = AD/d

Since 20 fringes occupy a distance of 10.92 mm, the fringe width B is
B = (10.92/20) mm = (10.92 x 10~°/20) m

Also D=80cm=08m,andA= 5.460-:-( 10°7m

5460 x 107 x 08 x 20
x
d= o m 207912 X 104 m

-=0.07912 mm - -
See Fig. (5.10). Suppose the required distance on the screen is ¥
Here. d = 2.x 10~ m (slit scparation)
A =5 x 107" m (wave length)
D =5 x 10! m (distance between slit Lo screen)

The minima is observed when the phase difference between the two waves 1s an
odd multiple of x, i.e., when

e,

N A e e -




8= 37,58, TR ccuvernn.
At the third minimum, &= 57,

From Eq. {5.13), path difference = Z;I._x d= z—f. (57)
But from Fig. 5.10, the path difference between the waves arriving at P is d sin 6.

Hence 57— 21—" (dsin 8)

ca A1 . S5mx5%.1077
or mo_erd(sn)_szZXIO"‘
=625 x 103

From Fig. 5.10, the required distance on the screen y = D tan 6
=Dsin0=5x10"x625% 10° ~~tan@msing
=31m

3 Let MM’, (Fig. 5.21) the Lioyd's mirror be 5 cm long. The source S, is as shown
in the figure. The interference pattem is observed in the region AB.

The fringe width B is given by 8= 4 D/d

Fig. 5.21,

Given A =5460 A = 5460 x 10-"m: D = 120 cm = 1.20 m and
d=02cm=2%x102m

§= 5460 x 107 x:120

P Ie M =3276X10"m

= (.3276 mm.
The total width of interference pattern is obviously AB. From Fig. (5.21),
" 1an 8 =0.1/5, and tan 8, = 0.1/10 -

Also from rt angled AAMC

ACMC =tan 8, or AC=115x tan 8,

=115x0.1/5=23 cm

From rt angled ABM'C

BC/MC =tan 8, =tan & or BC = 110 x (0.1/10) = 1 cm
AB=AC-BC=23-11=12cm=12x10%cm

Inlerference by Division of
Wavefront .
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UNIT 6 INTERFERENCE BY DIVISION OF-

AMPLITUDE

Structure

6.1 Introduction:
Objectives

6.2 Stokes’ Analysis of Phase Change on Reflection

63 Interference in Thin Films

6.4 Interference by a Wedge-shaped Film

6.5 Newlon’s Rings .

6.6 Applications of the Principle of Interference in Thin Films
6.7 Summary

6.8 Terminal Questions

69  Solutions and Answers

6.1 INTRODUCTION

We have all seen the marvellous rainbow colours that appear in soap bubbles and thin
oil films. When a soapy plate drains, coloured reflections often occur from it. A similar
effect occurs when light is reflected from wet pavements that has an oil slick on it.

Have you ever wondered what causes the chsplay of colours when light is reflected from
such thin oil film or soap bubble?

All these effects are due 1o interference of light reflected from the opposile surfaces of
the film, Thus the phenomenon owe its origin to a combination of refiection and
interference.

In the last unit, we discussed the interference of light, but there, the two interfering light
waves are produced by division of wavefront. For example, in Young's double slit
experiment, light coming out of a pin hole was-allowed to fall into two holes, and the
light waves emanating from these two holes interfered to produce the interference
pattern. But the interference of light waves, which is responsible for the colour of thin
films, involves two light beams derived from a single incident beam by division of
amplitude of the incident wave. When a light wave falls on a thin film, the wave
reflected from the upper sorface interferes with the wave reflecied from the lower
surface. This gives rise to beautiful colours. However, one must initially consider how
the phase of a light wave is affected when it is reflected.

In the last unit, you noted that in Lloyd's mirror, the interference takes place betwecn
waves coming direct from the source and those reflecled from an optically denser
mcdium. As a consequence of Lhis, the central [ringe is found to be ‘dark’ instead of
‘bright’. This-was explained by assuming the fact thal a phase change of & takes place
when light waves are reflected at the surface of a “denser” medium. We will begin this
unit by giving proof of the stalement made above; this preof will be based on the '
principle of reversibility of light.

It is also possible 1o observe interference using multiple beams. This is known as.
multiple beam interferometry, and-it will be discussed in the next unit. It will be shown
there that multiple beam interferometry offers some unique advantages over two beam
mterl’eromeu-y

Obj JecthES

After studying this unit, you should be able to-

e prove that when a light wave is reflected at the surface of an optically denser
medium, it suffers a phase change of 7. -
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® describe the origin of the inlerference patiern produced by a thin film, - Interference by ﬁl\'lslrn of
’ mplitude

@ describe the formation, shape and location of interference fringes oblained [rom a
thin wedge-shaped film,

e describe how Newton's rings are used to determine the wavelength of light,

® explain why a thin coating of a suitable substance minimizes the reflection of light
from a glass surface,.

e distinguish between [ringes of equal inclination and [ringes of equal thickness.

6.2 STOKES’ ANALYSIS OF PHASE CHANGE ON
REFLECTION

To investigale the phase change in the reficction of light at an interface between two
media, Sir G.C. Stokes used the principle of optical reversibility. This principle states
that a light ray, that is reflected or refracted, will retrace its original path, if its direction
is reversed, provided there is no absorption of light.

Fig. 6.1(a) shows the surface MN scparating media 1 and 2, the lower one being denser.
Suppose medium 1 is air and medium 2 is glass. :

[ o4

A

n . m

n

® - ®

Flg. 6.1: (a} A ray is reflected and refracied at on alr-glass Interface. (b) The optically reversed shuatlon;
the twa rays In the lower left must concel. In both cases, ny > 1y (i, and 1, are the refractive indices
‘ol the media).

An incident light wave, AB, is parily reflected. along BC and partly wransmitied
(refracted) along BD. Let a be the amplitude of the incident wave AB, r be the [raction
of the amplitude reflected, and ¢ be the fraction wansmitled when the wave is travelling
from mcdium 1 1o 2. Then the amplitudes along BC and BD are ar and ar, respectively..

Now, suppose the directions of the reflected and transmitted (refracted) waves are
reversed. As shown in Fig. 6.1(b), the wave BC, on reversal, gives a reflecied wave
along BA, and a transmilled (refracted) wave along BE. The amplitude of reflected wave
along BA is ar.r = ar? and the amplitede of transmitied wave along BE is art. Similarly,
the wave BD, on reversal, gives a transmitted wave along BA and a reflected beam
along BE. Let r”and ¢“ be the fractions of amplitude reflected and wransmitted when the
wave is travelling from medium 2 10 medium 1. Then the amplitude of the ransmitted
wave along BA is att” and the amplitude of reflected wave along BE is atr’. But, according
to principle of reversibility of light, the reflecied and iransmitted waves 8C and BD, when
reversed. should give the original ray of amplilude a along BA only. Hence, the
component a]ong BE should be zero and that along BA should be-equal to a. That is

art +atr' =0 ’ ' L{6.1)
and - - ar+ar=a L : (62
From Eas. (6.1) and (6.2), we get

r=-r _...(6.3)

and | w=1-p (64 3
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Interlerence

You must be aware that a
transverse wave in a spring
undergocs a 130° phase chanpe
vitien reflecled from a rigid
support. A similar phase change
occurs for the reflection of a
light wave from the boundary of
8 medium, having a greater
index of refraction. The optically
denser mediom corresponds to a
rigid suppon. A light wave
reflected from the boundary of a
mecdium whose index of
refraction is greater than that of
the medium in which the
incident wave travels undergocs
a 180° phase change.

32

Eqs. (6.3) and (6.4) are known as Slb-ﬁé’s-felalion_'s.

Now, observe carefully Eq. (6.3). Here r is the fraction of amplitude reflected when
incident wave is travelling from a rarer to denser medium, and r” when incident wave is
travelling from a denser 10 a rarer medium. The two fractions are numerically equal but
have opposite signs. Hence, these are exactly out of phase with each other, i.e., their
phase difference is ‘#’. If no phase change occurs when a light wave is reflecied by a
denser medium then there must be a phase changé of x when a light wave is reflected
by a rarer medinm—and conversely, if no phase change occurs when a light wave is
reflected by a rarer medium then there must be a phase change of 7 when a light wave
is reflected by a denser medium. Now, out of the two alternalives mentioned above
second one is correcl because it has been experimentally observed (See sec 5.6 in
conrection with Lloyd’s mirror) that the phase change of 7 occurs when the light strikes
the boundary {rom the side of rarer medium. Hence, light reflecied by a material of
higher refractive index' than the medium in which the rays are travelling undergoes a°
180° (or ) phase change.

Reflection by a material of lower refractive index than the medium in which the rays are
travelling causes no phase change.

The following SAQ will provide a useful check of your understanding of this section.

SAQ 1

In Fig. 6.2, we have illustrated four siteations. In the two exampies on the left, the
refractive index between the surfaces is higher than that outside; in the two examples on
the right, it is lower. This determines whether or not there is a phase change. In Fig.
6.2(a) and (b), we have indicated the phase change taking place at the points marked by
an arrow. Redraw the Fig. 6.2(c) and (d), indicating the phase change taking place at the
points marked by an arrow.

“;r:;f&\- \\ZZ MY
No phase \/\\\/
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Fig. 62

6.3 INTERFERENCE IN THIN FILMS

Suppose a ray of light from a source § strikes a thin film of soapy water, at 4, see Fig.
6.3(a) . Part of this will be reflected as ray (1) and part refracied in the direction AS5.
Upon arrival at B, part of the latter will be reflected to C; and pait refraétéd slong BT,, .
At C, the ray will again get partly reflected along CD and refracted as ray (2).along
CR;. A continuation of this process yields two sets of parallel rays, one on each side of
the film. In each of these sets, of course, the amplitude decreases rapidly from one ray
to the next. Considering only the first two reflected rays (1) and (2) we find that these
two rays are in a posilion to interfere. This is because, if we assume S 10 be a
monochromatic point source, the film serves as an amplitude-splitting device, so that ay
(1) and (2) may be considered as arising from two coherent virtual sources S”and §”
lying behind the film, that is, the two images of § formed by reflection at the top and
boutom surfaces of the film, as shown in Fig. 6.3 (b). If the set of parallel reflccted rays
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is now collected by a lens, and focussed at P, edch ray has travelled a different dislance, Interference by Division of
and the phase relationship between them may be such as to produce destructive or constructive Amplitude d
interference aL P. Tt is such interference that produces the colours of this film when seen by
naked eyes,
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n T Tg Ta Ty

5
(a) (b)

Fig. 6.3: (o} Muluple reflection in a soap fitm. (b) The Interference pattern produced due te rays (1}
and (2} [s approximately the snrne as would have been produced by two coherent point
sources S and §*

Now, we know that Lhe two rays reinforge each other, if the path difference beilween
them is an integral multiple of A, where 1-is the wavelength of light, which is being
used to illuminatc the film. Hence, let us first find out the path difference between the
re(lected rays (1) and (2). -

Path Difference in Reflected Li_ght

Suppose the ray of light falling on the thin film of soapy water at A be incident at an
angie {, as shown in Fig. 6.4. Let the thickness of the film be 1 and refractive index be
#(>1). ALA it is parly reflected along AR, giving the ray (1) and partly refracted along
AB aLan angle r. At B il is again partly reflected along BC and parly refracted along BT;.
Similar reflections and refractions occur at C. Since, the rays AR, and CR; i.e ray (1) and
ray (2) have been derived from the same incident ray, they are cohercnt and in a position lo
interfere. Let CN and BM be perpendiculars 1o AR, and AC, As the paths of the rays -

AR, and CR; beyond CN are cqual, the path difference between ray (1) and (2) is given by

(path ABC in film-path AN in air)

L LY

. path difference = p (AB + BC) — AN ...(6.5)
Here - AB=BC=2M _ _t_
COSr Cosr




- Interference

At A, the ray is reflected while
going from a rarer Lo a denser

. -medium and suffers a phase

change of . At B, the reflection
lakes place when the ray is going
from a denser to a rarer medium,
and there is no phase change.

and AN =ACsini

Now,  AC =AM+MC
=BMtanr + BMtanr
=2ftanr ‘

AN =2ttanrsini

=2 % (sin )

sinr .. sini _
=2¢ “osr (usinr) [ e ,u]
sin?r
= 2ne cosr

Substituting these values of AB, BC and AN in Eq, (6.5) we get,

t sin®r
L] 80T
cosr | cosr cosr

path différence =pu [

path difference =2 gtcosr ...{6.6)

However, we must take account of the fact that ray (1) undergoes a phase change of 7

.at reflection while ray (2) does not, since it is intemally reflected (See SAQ 1). The

phase change of 7 is equivalent 1o a path difference of % Hence, the effective path

difference between ray (1) and rays (2) i§

2ptcosr — -’3'2- ...(6.7
The sign of the phase cnange is immaterial. Here we have chosen Lhe negative sign to
make the equation a bit simpler in form.

As you know from Unit 5, if this path anierence is an odd multiple of % we might

expect rays (1) and {2) 1o be out ot' phase, and produce a minimum of intensity. Thus
the conditicn

2urcosr—i-(2n-l)— wheren=1,2,.

or ' 21 cosr=ni ...(6.8)
becomes a cundmon for destructive mterference as far as rays (1) and (2) are concemed.

Next, we examine the phases of the remaining rays, (3), (4), (5)...... Since the geometry -
is the same, the path difference between rays. (3) and (2) will also be given by Eq. (6.6).
But, here, only ‘internal reflections are involved, so the effective path difference will still
be given by Eq. (6.6). Hence, if the condition given by Eq. (6.8) is fulfilled, ray (3) will
be in the same phase as ray (2). The same holds true for all succeeding pairs; and so we’
conclude that, under the condition given by Eq. (6.8), rays (1) and (2) will be out of
phase, but rays (2), (3), (4),....., will be in phase with each other. Now, since ray (1) has
considerably greater amphtude than ray (2), we might think that they will not com-
pletely annul each other, that.is, the condition given by Eq (6.8) may not produce
complete darkness. But it is not so. We will now prove that the addition of rays (3), (4),
(5)...... which are all in phase with ray (2), will give a net amplitude, just sufficient to
make up the difference and to produce complele darkness. Fig. 6.5 shows the amplitde
of successive rays in multiple reflection.
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Interferenca by Division of
Amplitude

Pig. 6.5: Amplitude of successive rays in multiple reflectlon.

Adding the amplitudes of all the reflected rays but the first, on the upper side of the
film we obtain the resunltant amplitude:
A=art' +ar*t’ +ar’t +air’t’ +...
=atrt’ (1+r2+rt e rfe.)

Since r is, necessarily, less than 1, the geometrical series in parentheses has a finite sum
equal to 1/(1 - r?), giving

A= afﬂ" (l—lrg
But from Stoke’s wreatment, Eq. (6.4), 1t”= 1 - r%, we obtain
A=ar .(6.9)

This is just equal 10 the amplitude of the first reflected ray, hence, we conclude that under
the condition of Eq. (6.8), there will be complete destructive interference. On the other
hand, if the path difference given by Eq. (6.7) is an integral multiple of 4, i.e., when

2441 cosT — %: nd,where n = 0,1,2,... efc.

or 2utcosr=(2h + 1)% - . ...(6.10)

ther ray (1) and (2) will be in phase with each other and gives a condilion of
constructive interference. But rays (3), (5), (7).... will be out of phase with rays {2), (4),
(6)..... Since (2) is morc intense than (3), (4) is more intense than (5), elc., these pairs i
cannot cancel each other. As the stronger series combines with ray (1), the strongest of -
all, there will be maxinium of intensity. '

Thus, when a thin film is illuminated by monochromatic light, and seen in reflected

light, it appears bright or-dark according as 24 cos r is odd multiple of -’:"2- or integral

-multiple of 4, respectively. o : . e ..E
: - ot
: 3
2utcosr=(2n+ 1) % (condition of maxima) ..(6.113) §
. o Co . S s
2utcosr = pd (condilion of minima) .-.{6.11b)

]-mu kil

‘Before moving further, answer the following SAQ.

SAQ2
Using Eq (6.7), state whether the follow‘uig statement is true or false. Give reasons.

“An excessively thin film seen in reflected light appears perfecily black”. 3 P
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Now we are in a position tp know the reason of the production of colours in thin film of

" soap water.

Colours in Thin Films

The eye looking at the film receives rays of light reflected at the top and boltom
surfaces of the film. These rays are in a position 1o interfere. The path difference
between the interfering rays, given by Eq. (6.7), depends upon ¢ (thickness of the film)
and upon r, and, hence, upon inclination of the incident rays (the inclination is
determined by the position of the eye relative to-the region of the film, which is being
looked at). The sunlight consists of a continuous range of wavelengths (colours). At a
particular point of the film, and for a particular position of the eye (i.e., for a particular
t and a pariicular r}, the rays of only certain wavelengths will have a path difference
satisfying the condition of maxima. Hence, only these wavelengths (colours) will be present
with the maximum intensity. While some others, which satisfy the condition of the
minima will be missing. Hence, the point of the film being viewed will appear coloured.

We are working out an example so that the phenomenon of production of colours in thin
film is clear to you.

Example 1

A thin film of 4 x 10-5cm thickness is illuminated by white light normal to iis surface ¢ =
G°). Its refractive index is 1.5. Of what colour will the thin film appear in reflecied light?

Solution

The condition for construclive interference of light reflecied from a film is
2urcosr=02n+ 1) -32;, where n =0,1.2,....

Herc g =1.5;t=4 x 10~*cm and r = 0° (since light falls normally) so that cos r = L.

2x1.5x4x10'5=(2n+1).’12'_

or ;'L__:2><2><I.5><4x10"l
2n+1
A< 2Ax107%em _ 24000 1
2n+1 2n+1l
Takingn=0,1,2,3, ......... we get
A =24000 A, 8000 A, 48004, 3431A .........

These are the wavelengths reflected most strongly. OF these, the wavelength lying in the
visible region is 48004 (blue). .

" So far we have considered viewing of thin film in reflected light. Suppose the eye is

now situated on the lower side of the film, shown in Fig. 6.3 and Fig. 6.5. The rays
cmerging from the lower side of the film can alsa be brought together with a lens and
made 1o interfee. ' :

Let us find out what colours will erise, when the film is viewed in this position. For
this, we have to first calcuiate the path difference between the rays in transmitted light;

The path difference between the transmitted rays BT and DT; is given by Eq. (6.6}, i.e.,
(BC+CD)-BL=2utcosr

In this case, there is no phase change due 10 reflection at B or C, because in either case
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the light is travelling from denser 1o rarer medium (See SAQ 1). Hence, the effective
p Amplltude

path difference belween BT; and DT, is also 27 cosr,
The two rays BT, and DT, reinforce each other, if

2 utcosr=ni (condili-on of maxima) ..(6.12a})

where n=1, 2, 3.
In this case, the film will appear bright in the transmitted light.

The two rays will deswroy each other if

2prcosr={(2n+1) % (condition of minima) ' (6.12b)

where 1 =0, 1, 2,.... and the filin appears dark in ransmitted light:

A comparison of Egs. (6.11a), {(6.11b), (6.12a)-and (6.12b) shows that tne conditions for
the maxima and minima, in the reflected light are just the reverse of those in transmitted
light. Therefore, only those colours will be visible in transmitted light, which were
missed in reflected light. Hence, the film which appears bright in reflected light will
appear dark in transmiuted light and vice versa. In other words, the appearances of
colours in the two cases is complimentary to cach other,

Interference fringes produced by thin films can be classified into two: Fringes of equal
inclination and fringes of equal thickness.

Fringes of Equal Inclination

If the lens used in Fig. 6.3 to focus the rays has a'small aperture;, interference fringes
will appear on a small portion of the film. Only the rays leaving the point source that
are reflected directly into the lens will be seen (see Fig. 6.6a). For an extended source,
light will reach the lens from various directions, and the fringe pattern will spread out
over a large area of the film, as shown in Fig. 6.6b.

Euended source

Point —

S S8
&%
Vo __ \/

Flg.6.6: (a} Fringes seen in a small poriion of the flm. (b) Fringes seen on  large reglon of the flim.

The angle { or equivalently r, determined by Lhe position P, will, in turn, contro] the
path difference. The fringes appearing at points Py and P, in Fig. 6.7 are, accordingly,
known as fringes of equal inclination.

Naotice that as the film becomes thicker, Lhe separation-AC in Fig. 6.4 between ray (1)

and (2) also increases, since AC = 2¢ tan r. When only one of the two rays is able to

enter the pupil of the eye, the interference pattern will disappear. The larger lens of 2

telescope could then, be used to gather in both rays, making the pattern visible. The 37
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separation can aiso be reduced by redicing r, and, therefore, I, ie., by viewing the film
at nearly normal incidence. s

Fig. 6.7: All rays incllned ai the same angle arrlve at the same point.

The equal inclination fringes that are seen in (his manner for thick plates are known as
Haidinger fringes. With an extended source, the symmetry of the set up requires that
the interference patiern consists of a series of concentric circular bands centered on the
perpendicular drawn from the eye to the film, as shown in Fig. 6.8.

Black background

——

" Fig.6.8: Clrcular Haldlnger fringes centeréd on the lens axis,
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" Such fringes are formed at infinity, and are observed by a telescope focussed at infinity.
These fringes are observed in Michelson interferometer, about which we will study in
next unit.

Fringes of Equal Thickness

Interference fringes, for which thickness ¢ is the dominant parameter rather than r, are .
referred to as fringes of equal thickness. Each fringe is the locus of all poinis in the
film for which thickness is a constanl. Such fringes are localised on the film itself, and
are observed by a microscope focussed on the film. Fringes due 1o the wedge-shaped
film belong to this class of fringes, which you will study in the next section.

Fringes of equal thickness can be distinguished from the circular paucrn of Haidinger's
fringes by the manner in which the diameters of the rings vary with order n, The central
region in the Haidinger pattern corresponds to the maximum value of n, whereas just the
opposite applies lo fringes of equal inclination. :

6.4 INTERFERENCE BY A WEDGE-SHAPED FILM

So far, we have assumed the film to be of uniform thickness. We will now discuss the

_ interference pattern produced by a film of varying thickness, i.e., a fitm which is not
plane-parallel. Such a film may be produced by a wedge, which consists of two non-
panallel plane surfaces, as shown in Fig. 6.9a and 6.9b. Observe that the interfering rays-do
not enter the eyc parallel to cach other but appear to diverge from a point near the fiim.

F

el

(a) (b)
Fig. 6.9: Fringes of equal thickpess: {a) method of visugl observailons. (b) o parusel beam of light
incldent on & wedge.

Let us consider a thin wedge-shaped film of refractive index p, bounded by two plane
surfaces AB and CD, inclined at an angle 8 as shown in Fig. 6.9b. Let the film be
illuminated by a monochromatic source of light from a slit held parallel to the edge of
the wedge (the edge is the line passing through the point O and perpendicular to the .
plane of the paper). Interference occurs between the rays refieéted at the upper and
lower surfaces of the film. In this case the path difference for a given pair of rays is
practicaily that given by Eq. (6.6). Buu, if it is assumed that light is incident aimost
normally at a point P on.the film, the factor.cos r may be considered equal 1o 1. Thus,
the path difference between the rays reflected at the upper and lower surfacesis 2 4t

where 1 is the thickness of (e film at P. An additional path difference of -‘12'- is
introduced in the ray reflected from the upper surface. The effective path difference
between the two rays is o

A

Hence the condition for bright fringes becomes

A _
2}.!.!_—?—!1/1

Interference by Divislon of
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or 2pt=@nsns . | ..(6.14)
The condition ff:_r dark fringe is

2ur=nl ...(6.15)

It is clear that for a bright or dark fringe of a particular ordet, ¢ must remain constant,

. Since in the case of a wedge-shaped film, ¢ remains constant along lines parallel to the
thin edge of the wedge, the bright and dark fringes are straight lines parallel to the thin
edge of the wedge. Such fringes are commanly referred to as “fringes of equal

thickness”. Al the thin edge, where = 0, path difference = %"
minimum intensity. Hence, the edge of the film is dark, The resulting fringes resemble
the localized fringes ir the Michelson interferometer {this you will study in next ynit)
and appear to be formed in the film itself. '

which is a conditen for

Spacing between Two Consecutive Bright (or Dark) Fringes
For the nth dark fringe, we have
2pt=nd

Let this fringe be obtained at a distance x, from the thin edge. Then ¢ = x, tanf=x, 80

- (when 6is small and measured in’ radiafis).

20 x,0 = n2 . ...(6.16)

Similarly, if the (n + 1)}th dark [ringe is obtained at a distance Xq .+ from the thin edge,
then

20 xp B=(n+ 1) A . +..{6.17)
Subtracting Eq. (6.16) from Eq. (6.17), we get
2u8 (xyy —x) = A

Hence the fringe width §is
_ _ A
B=xpy-2x,= 20 ...(6.18)
where @ is measured in radians.

Similarly.. it can be shown that the spacing between two consecutive bright fringes

; . . A
fr. dth) is ==—,
(fringe width) is 200

SAQ 3
Using sodium lighl (A = 5893 A), interference fringes are formed by reflection from a

thin air wedge. When viewed perpendicularly, 10 fringes are observed in a distance of
1 cm. Calculate the angle of the wedge. :

If the fringes of equal thickness are produced in the air film between a convex surface
of a Iong-focus lens and a plane glass surface, the fringes will be circular in shape

- because the thickness of the air fitm remains constant on the circumference of 2 circle,

The ring-shaped fringes, thus produced, were studied by Newton. In the next section, we
will study Newton's ring.

6.5 NEWTON’S RINGS

When 2 plano-convex lens of large radius of curvature is placed with its convex surface
in contact with a plane glass plate, air-film is formed between the tower surface of the
lens (LOL’) and the upper surface of the plate (POQ), as shown in Fig, 6.10. The

T4m o OArg 7ML T
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- thickness of the air film is zero at the point of coniact O, and it increases as one moves '

away'from the point of contact. If monochromatic light is allowed to fall normally on
this film, reflection takes place at both the top and bottom of the film. As a result of
interference between the light waves reflected from the upper and lower surfaces of the

' air film, constructive or destructive interference takes place, depending upon the
thickness of the film. The thickness of the air film increases with distance from the
point of contact, Lherefore, the pattern of bri gfhl and dark fringe consists of concentric’
circles. In Fig. 6.10, 1 and 2, are the interfering rays corresponding to an incident ray
AB, As the rings are observed in reflected light, the effeclive path difference belween
the interfering rays 1 and 2 is practically that given by Eq. (6.13).

Klg.6.10: An arrangement for observing Newlon's rings.

As we have considered an air-film, # = 1. The condition for the bright ring which is
given by Eq. (6.14), is

2:=(2n-1)% . | | 46.19)

and the condition for the dark ring which is given by Eq. (6.15) is
21=nd ' ..{6.20)

Let us find out the relationship between the radii of the rings and the wavelength of the
light. Consider Fig. 6.11, where the lens LOL"is placed on the glass plate POQ. Let R
be the radius of curvature of the curved surface of the lens. Let r, be the radius of the
nth Newton’s ring corresponding to point P, where the film thickness is +. Draw pespen-
dicular PN, Then, from the propcrty of a circle, we have

PN2= ON x NE

or

p—r—

Fig. 6.11: r.representslhendhuofu:euth dlrkring,themamdsornlrMn(whmlheumdut-“
Ting is formed) 3 L,
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Since ¢ is small compared 10 R, we can neglect 2,

Hence, ,r'“2 =2Rt
rr
or 2= -};— ..(6.21)

The condition for a bright ring is .

A
2{:2_1_
(2n )2

But from Eq. (6.21), 21 = i

'2
ﬁ =(2n - 1) =
or r’=@2n-1) % (Bright ring)

If D, be the diameter of the ath bright ring, then D, =2r,6rr, = 22'1 Substituting this

in the last expression, we get

Dt =2(@2n-1)2R

or D, = 2AR ¥In =1
or D, o< +2n =1 {4 and R being constant) ...(6.22)

This shows that the radii of the rings vary as the square-root of odd natural numbers.
Thus the rings will be close 10 each other as the radius increases, as shown in Fig. 6,12,

" Flg. 6.125 Newlon's rligs i observed Tn veNlected ght.

Between 1He two bright rings there will be a dark ring whose radius will be proportional
to the square-root of the natural numbers. Atlempt the followmg SAQ and prove the .
above statement yourself. - . . -
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' Interference by Division of

Using Eqgs. (6.20) and (6.21), prove that the radius of the dark ring is proportional to the
square-root of the natural numbers.

The ring diamelers depend on wavelength, therefore, the monochromatic ligﬁt will
produce an extensive fringe system such as that shown in Fig. 6.12.

When the contact between lens and glass is perfect, the central spoi is black. This is
direct evidence of the relative phase change of 7 between the two types of reflection,
air-to-glass and glass-to-air, mentioned in Sec. 6.2. If there were no such phase
change, the rays reflected from the two Surfaces in contact should be in the same
phase, and produce a bright spot at the centre. However, the central spot can be
made bright due to slight modification. In an interesting modification of the experiment,
due to Thomas Young, if the lower plate is made to have a higher index of refraction.
than the lens, and the film in between is filled with an oil of intermediate index, then
both reflections are at “rare-to-dense” surfaces. In this siluation, no relative phase
change occurs, and the central fringe of the reflected system is bright.

If D, is the diameter of the nth bright ring, then
=2(2n - 1)AR .(6.23)
If D,,p is the diameter of the (n + p)th bright ring, then
D%, , =2(2(n+p) -11AR ' ...(6.24)

Sublracting Eq. (6.23) from Eq. (6.24), we gel

D}, ,-Di=2[2(n+p)-1]AR -2 (2n ~ 1)AR
=4pJ_R
_Dis-Dn ..(6.25)
4pR

It may be mentioned here, that the point of contact may not be perfect. As such the nth
. ring may nol be the ath fringe but Eq. (6.25) is almost always valid. On measuring the
diameters of the rings and the radius of curvature R, the wavelength 4 can be calculated
_ with the help of the Eq. (6.25). In taboratory, the radins of curvature can be accurately
measured with the help of a spherometer.,

:
o
E
1]

If a liquid of refraclive index g is introduced between the lens and the glass plate, then
the expression for path difference belween two interfering rays will also include 4. Then
the radii of the dark rings would be given by

”2 - -
= [E#ﬂ} ' o '...(6.'26)

Thus, when a liule.water is introduced between the lens and the plate, the rings conlract
accorclmg to the relation

dlamel.cr ofa rmg in water-nim 1 L (6.27)

diameter of Lhe same ring in air-film ~ fu

where t is the refractive index of water.. .

A ring sysicm is also observed in the light ransmitted by Newton's ring plates. There
are two differences in the reflected and transmitted systems of rings. (i) The rings

observed in transmitted light are exactly complementary to those seen in the reflected .
light, 50 that the ceritral spot is now bright. (i) The rings in transmitted llght are much =

poorer in contrast than those in reflected light. i3
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Fig. ¢.13:

A film coating on a
glass fens makes the
lens “non-reflecting”
when the fllm
thickness is /4 for
pormal Incldent The
total path difference

Before moving to the next section, solve the following SAQ.

SAQ 5

If in a Newton's ring experiment, the air in the interspace is replaced by a liquid of
refractive index 1.33, in what proportion would the diameters of the ring change?

6.6 APPLICATIONS OF THE PRINCIPLE OF
INTERFERENCE IN THIN FILM

1. An imporiant and simple application of the principle of interference within film is

in the produclion of coated surfaces. To accomplish this, the glass lens is coated with
the film of & transparent substance that has an index of refraction between the refraction
indices for air and glass (See Fig. 6.13). The thickness of the film is one quarter of the
wavelength of light in the film so that

A

= —

4uy

If we assume normal incidence, then the path dif_ferencé between the light wave

4eflected from the upper surface of the film and the light wave reflected from the lower

surface of the film is 2, ¢ = 2, % % = -’124 Both waves undergo a phase change of

) 1
180° as reflections at both surfaces are from “rare-to-dense”, Thus, the two reflected
waves are oul of phase because of path difference and, therefore, these interfere
destructively. Such a film is known as non-reflecting film, because it gives zero
reflection. However, this does not mean that a non-reflecting film destroys light, but it
merely redistributes light so that a decrease of reflection is accompanied bya
corresponding increase of transmission. :

The practical importance of these films is that by their use one can greatly reduce loss
of light by reflection at the various surfaces of lenses or prisms used in binoculars,
cameras, €ic. Usually, glass is coaled with a very thin layer of magnesium fluoride, the
refractive index of which (12 = 1.38) is intermediate belween those of glass and air.

2. Another important application of thin film interference phenomenon is the converse

of the reflected rays is of the procedure just discussed, viz., the glass surface is coated by a thin film of

then A/2, and the
waves interfere

destructively, L.e, the

suitable'material 1o increase the reflectivity. The film thickness is again A/4p;, where g
represents the refractive index of the film. The film is such that its refractive index is

incldent light {x totally 8reAter than that of the glass. This is because an abrupt phase change of x occurs only

transmltted,

al the air-film iriterface and the beams reflected from the air-film interface and the film-
glass interface constructively interfere.

3. The fringes obtain by a wedge-shaped film has important practical applications in
the testing of optical surfaces for flaness. An air-film is formed between a perfectly
plane surface and the surface under test. If the latter surface is plane, the fringes will be
straight and parallel, 'and, if not, these will be irregular in shape.” .

4. The dccuracy of the grinding of a lens surface can be tested by observing the shape
of Newlon's rings formed between it and an accurately flat glass surface;-using

monochromatic light. If the rings aré not perféctly circular, the grinding is imperfect. . .

You shoild-bé able to appl?-ﬁhﬁieﬁf you have learnt in this section ia_éol-véﬂl;l_'lé -
following SAQ. - oo n e ’
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6.7 SUMMARY

When the light wave is reflecied (rom a boundary, there is an abrupt change of
phase. When the light ray is reflecled while going from a rarer to a denser medium,
it suffers a phase change of . But there is no phase change when the light ray is
reflecied while going from a denser to a rarer medium.

Length / in a medium of relractive index u is optically equivalent to length pf in a
vacuum. p is called the optical patirlength of distance { in the medium.

For a thin fitm in reflected light, the conditions for constructive and destructive
interference are:

2prcosr=02n+ 1) -% {maxima)

2 Lrcosr=nd (minima)

where g is the refractive index of the film, ¢ is its thickness and r is the angle of
refraction in the film,

For a thin film in transmitted light, the conditions for constructive and destructive
interference are:

2 ptcos r=nd {maxima)
Zputcosr=(2r+ 1) %— {minima)

The basic formula for the path difference between the interfering rays, oblained
due 1o division of amplitude by a film of thickness f and refractive index g, is

2 pt cos r, where r is the inclingtion of ray inside the film. If the thickness of the
film is uniform, the path difference 2 y1 ¢ cos r varies-only with inclinalion r, and
gives rise 1o the “fringes of equal inglination”. On the other hand, if the thickness
of the film is rapidly varying, the path difference 2 y ¢ cos r changes mainly due to
changes in y. This gives rise to the “fringes of equal thickness".

The spacing B between two conseculive bright (or dark) fringes produced by
wedge-shaped film is given by

B= ﬂa‘
where 1 is the wavelength of light being used for illuminating the film, g2 the
refractive index of the film, and 6 (measured in radians) the angle between the two
plane surfaces, which form the wedge-shaped film,

The diameters of the bright rings are proportional o the square-roots of the odd
natural numbers, whereas the diameters of dark rings arc proporuonal to the square-
roots of natural numbers, provided the contact is perfect.

On measuring the diameters of Newton's rings and the radius of curvature R, the
wavelength can be calculated with the help of the following relation:
Ds+p - DE o

4pR
The phenomenan of interference is used in the testing of optical surfaces and

~ producing non-reftecting glasses of feflective coaungs.

6.8 TERMINAL QUESTIONS

1)

‘White light is reflected normally from a uniform oil film (2 =1.33). An
interference maximum for 6000 A and & minimum for 4500 A, with no minimum
in between, are observed. Calculate the thickness of the film.

Interlerence by Divislon of

Amplitude
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3)

4)

5)

Light (A = 6000 A) falls normally on a thin wedge-shaped film (# = 1.5). There
art ten bright and nine dark fringes over the length of the [ilm. By how much
does the film thickness change over this length?

Two glass plates 12 cm long touch at one end, and are separated by a wire
0.048 mm in diameter at the other. How many bright fringes will be observed
over the 12 em distance in the light (1 = 6800 A) reflected normally from the
plates?

Newton's rings are formed in reflected light of wavelength 5895 x 10-*cm with a
liquid beiween the plane and curved surfaces, The diameter of the fifth ring is
0.3 cm and the radius of curvalure of the curved surface is 100 cm. Calculate the
refractive index of the liquid, when the ring is (i) bright, (ii) dark.

A Newton’s rings arrangement is used with a source emitting two wave-lengths
. A =60x10%cmand 4, =4.5% 105 cm

and 1t is found that the nth dark ring due to A, coincides with the (n+1)th dark
ring due to A,. If the radius of curvature of the curved surface is 90 cm, find the
diameter of the nth dark ring for 4,

6.9

SOLUTIONS/ANSWERS

SAQs
1)

\ MV e
VA

Fig. 6.14

3

4)

46

See Fig. 6.14

According 10 Eq. (6.7) the path difference between the interfering rays in
reflected light is 2 it cos r — % When the film is excessively thin, ¢ is very
small, and 2 u ¢ cos r is almosi zero. Hence the path difference, in such a case
becames -’12; This is a condition of minimum intensity. Hence, the film will

appear black in the reflected light.

Lel & radian be the angle of the air-wedge. For normal incidence, the fringe-
width is given by

= A = i
B= 20 (. 1= 1{orair)
Here A=5893 x 108 ¢m and 8 = 1/10 cm.

6= A _ 5893 x10°®

———-————295>< 10~ radian.
2p % 1/10
According to Eq. (6.20), the condition for the dark ring is
2=ni
r2
But from Eq. (6.19), 2t = ?
2
L]
e
If D, be. the diameter of the nth dark ring, r, = %
2
D _ nd
4R
or D, = v/4nRA
or D, = 4R n

or .
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TQs
1)

Thus, the diameters of the dark rings are proponionai to the square root of the
natural number.

A u
(Dﬁ)ﬁquid
Diigui 1 1
it SN SR S
or SNy i 0867

The rings are contracted to 0.867 their previous diamelers.

In this case of interference in thin films, the siwation is somewhat different. The
reflections at both the upper and lower surfaces of the material (¢ =1.25) film
take place under similar ¢onditions, i.e., when light is going from a rarer to a
denser medium. Thus, there is a phase change of x at both reflections, which
means no phase difference due 1o reflection between the two interfering beams.

The path difference between the two interfering beams is 2 2 ¢ for normal
incidence, where ¢ is the thickness and y the refractive index of the film.

The two beams will destroy each other, if the palﬁ difference is an odd n{ulliple

of i, i..e, when
2

2ut =(2n-1) %;_where n=l,23,...

This is the condition of mintima.

Here ;= 1.25 and A = 6000 A,
2x 125X 1= (2n—1)x —60200 A

Hence the required thickness is given by

6000 A

t=@n -0 3555775

= (2n - 1) 1200A; where n = 1,2,73,...

The condition for an interference maximum in the light reflecied normally from
an oil film of thickness ¢ is

2= [n+%)l: where n=0,1,2,...

and that for an inlerference minimum is
2ut=nd; where n =1, 2, 3,........
Here u = 1.33. Now Lhere is a maximum for 4 = 6000A

© We can write’

- 1
2x]33xr—[n+2)6000A. (i)
2 x 1.33 x 1 = (n + 1) 4500A - (i) -

In view of eq. (i) we have taken the integer (r + 1) rather than a in ’
eq. (ii) Comparing eq. (i} and (ii}, we get

(n + %J 6000 = (n + 1) 4500

Interference by Divislon of
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-~ n=1,

Substituting n =1 in eq. (i), we get .

2)

3

4

2x1.33><r=%x6000A
_3X6000
t= = 3383A
2x2 %133
The condition of destructive inlerference in light reflecied from a film is
2utcosr=nd

Suppose the film thickness changes over this length by At. Let z be the order of

the dark fringe appearing al one end of the film. The order of the dark frmgc at
the other end will be (n + 9). We, therefore, have

2utcosr=ni,
and 2u(t+ancosr=(n+9A
Subtracting, we get

2u{Atycosr=91

__ 9%
2ucosr

If the fringes are seen normally, then cos r =1.

9 _ 9 x 6300 '
< =220 _ 18900 A
2u 2x15 200 .

=

=1.89.x 10~ cm. -

Let 1 be the thickness of the wire and / lhe length of lhe wedge, as shown in
Fig. 6.15. The wedge angle is

—

8 = - radian.

—

Now, [ringe-width ﬂ"ﬁ

Putting value of 8 from above we gel

_n .
ﬁ_ 21.

Since N fringes are seen; I =N §. Thus

g./:%
T

n
N=Z
1

But 4 = 68004 = 6800 x 10~ ¢m and ¢ = 0.048 mm = 0.0048 cm.

_ 2 x 0.0048
6800 x 10-8

i) The diameter D, of the ath bright ring is given by

2(2n - D-AR
n

=141

Df:

(LR T L TR R TR
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’ . ’ Interference-by Divislon of
_ 2(2n -1 AR ) ' . Amplitude

D -

Here n =5, A= 5895 x 10~%cm, R = 100 cm and D, = 0.3 cm

H

2 (10 — 1) x 5895 x 10-% x 100 _
= = 1.18

i1) The diameter of the ath dark ring is given by

_4nAR

Dfu

-8
p=4n§R=4XSX5895X210 XI00=1_3L
D ©3)
5} D! =4nR1

where D, = diameler of nth ring, R = the radius of curved surface and A = the
wavelength of light.

If D, and D,,, be two diamelers, .
DY =4nRA, ' , i)
D2, =4 (n+1) RA
But D, =D..

4nRA, = 4 (n + 1)RA, .
or 4nR (2.1 - ZQ) = 4R;Lz
AR
m TR -
= _..?:_.2_
(A1- 42)

__45x%107° 4
645103

Puuting n =3 in (i)
' Di=4x3x90%6x105
=648 x 105 -
=2545% 102 ¢em.
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UNIT 7 INTERFEROMETRY

‘Structure

7.1  Introduction
Cbjectives
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Circular Fringes . )
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- Adjustment of the Michelson Interferometer
Applications '

7.3  Fabry-Perot Interferomeler
Intencity distribution :
Superiority over Michelson Interferometer .
74  Summary
7.5  Terminal Questions
7.6  Answers and Solutions

7.7  Appendix

7.1 INTRODUCTION

An instrument designed to exploit the interference of light and the fringe patterns that
result from optical path differences, in any of a variety of ways, is called an optical
interferometer. In this unit, we explain the functioning of the Michelson and the Febry-
Perot interferometers, and suggest only a few of their many applications,

In order to achieve interference between two coherent beams of light, an interferometer
divides an initial beam into two or more parts that trave! diverse optical paths and then
superpose to produce an interference paitern. One criterion for broadly ctassifying
interferometers distinguishes the manner in which the initial beam is separated.
Wavefront division interferometers sample portions of the same wavefront of a coherent
beam of light, as in the case of Young's double slit, Lloyd"s mirror or Fresnel’s biprism
arrangement. Amplitude-division interferometers, instead, use some type of beam-
splitter thal divides the initial beam into two parts. The Michelson interferometer is of
this type. Usually the beam splitling is managed by a semi-reflecting metallic film. In
this interferometer, the two interfering beams are widely separated, and the path
difference between them can be varied at will by moving the mirror or by introducing a
refracting material in one of the beams. Corresponding 10 these two ways of changing
the optical path, there are two important applications of this interferometer, which we
will study in this unit, ‘ '

There is yet another means of classification Umt.distinguishes between those
interferometers that function by the interference 6f two beams, as in the case of the

HETL T Perot interferometer. In this unit, we will show that the fringes so formed are sharper

- - than those formed by two beam interference. Therefore, the interferometers involving
multiple beam interference have a very high resolving power, and, hence, find
applications in high resolution spectroscopy. ’

Objectives

After studying this unit, you should be able to

, ®  understand how Michelson interferometer produces different types of fringes, viz.,
50 circular, localised (or straight) and white light fringes,

[HERAT FMFTT L7

- Michelson interferometer, and those that operate with mpltiple beams, as i the-Fabry- - - —




© @  describe few applications of Michelson interferometer,

e relate the intensity of the transmmed light to the reflectance of the plate surface i in
Fabry-Perot mlerferometcr and

A

e  undersiand the difference between Michelson interferometer and Fabry-Perot
_ interferometer.

7.2 MICHELSON INTERFEROMETER

It is an excellent device to obtain interference fringes of various shapeé which have a
number of applications in optics. It uuhzes the arrangements of mm'ors and beam
splitter.

Construction: Its configuration is illustrated in Fig. 7.1.

Flg. 7.1: Michelson Interferometer.

{is main optical parts are two plane mirrors M, and M, and 1wo similar optically-plane
parallel glass plates P, and P,. The plane mirrors M, and M, are silvered on their front
surfaces and are mounted vertically on two arms at right angles Lo each other. To obtain
* fringes, the mirrors M, and M, are made exacily perpendicular Lo each other by means
of screws shown on mirror M;. The mirror M5 is mounted on a carriage which can be
moved in the direction of the arrows. The plales P, and P, are mounted exaclly parallel
10 each other, and inclined alL 45° (o M, and M,. The surface of P, towards P, is
partially silvered. The plate P; is called beam splitter.

Working: An cxtended source (e.g., a diffusing ground glass plate illuminated by a
discharge lamp) emits lightwaves in different directions, part of which ravels to the
right and falls on P;. The light wave incident on P, is partly reflected and partly
ransmitted. Thus, the incident wave gets divided into two waves, viz., the transmitted
wave 1 and the reflected wave 2. These two waves travel to M, and M; respectively.
After reflection at M, and M, the two waves return to P). Part of the wave coming from
M, passes through P, going downward towards the telescope, and part of Lhe wave
coming from M, geis reflecied by P, toward Lhe telescope. Since the waves entering the
. - telescope are derived from the same incident wave, they are coherent, and, hence, in a
position o interfere, The interference fringes can be seen in the telescope.

You must be eager to know the pu.rpose uf Ihe plate P;, because till now we havc net
mentioned anything aboat P,. ;

-Function of the plate P,: Note that if reflection at P occurs al the rear surface at point

0, as shown in Fig. 7.1, the light reflected al M, will-pass through P; three times while
the light reflecied at My will pass through only once. Thus, the paths of waves 1 and 2

in glass are not equal Consequently, each wave will pass through the same thickness of '

glass only when a compensator plate P5, of the same thickness and inclination at Py, is
inserted in the path of wave 1. The compensator plate is an exact duplicale of P, with
the exception that it is not partially-silvered. With the compensator in place, any optical
path difference arises from the actual path difference.

Interferometry

In contrast o the Young double
slit experiment, which uses light
from two very namow sources,
the Michelson interferomneter uszy
ligh! frem u broad spreadout
source.
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Fﬁrm of fringes: The form of the fringes depends on the inclination of M, and M,. To
understand how fringes are formed, refer to the Fig. 7.2, where the physical components
are represented somewhat differently. An observer at the position of the telescope will,

* simultaneously, see both mirrors M, and M, alongwith the source L, formed by

reflection in the partially silvered surface of the glass plate Py. Accordingly, we can

redraw the interferometer as if all the elements were in a straight line. Here M;
comresponds to the image of mirror M, formed by refleclion at the silvered surface of
the glass plate Py 50 that OM, = O My Depending on the positions of the mirrors, image
My may be in front of, behind or exactly coincident with mirror M,. The surfaces L,
and L, are images of the source L in mirrors M, and M, respectively, If we consider a
single point § on the source L, emitting light in all directions, then on. reaching O, it
gets split, and thereafter its segments get reflected by M, and M,. In Fig 7.2, we
represent this by reflecting the ray off both M; and M,. Thus, the interference fringes

may be regarded to be formed by light reflected from the surface of M and M,. Here,
$1 and §, act as coherent point sources, because to an observer at D the two reflected
rays will appear to have come from the image points §; and-S,. The mirror M, and the
virtual image of M, play the same roles as the two surfaces of the thin-film, discussed in

unit 6, and the same sort of interferences fringes result from the light reflected by these
surfaces, }

LY

Now, let us discuss the various types of fringes, viz., circular fringes, localized fringes
and white light fringes. ’

Fig. 72: A conceptugl rearrangement of the Michelson Interferometer.
7.2.1 Circular Fringes

These fringes are observed when M, is exactly perpendicular to M,, In this situation, the
distance of the mirrors M, and M, from the plate P; can be varied.

Let us consider the various possible positions of the mirrors M, and M,, and, eventually,
see how it gives rise to circular fringes. (i) If the two mirrors have the same axial '
distance from the rear face of Py, and if they are perpendicular to each other, the image
M, is coincident with M,. At the coincidence position, the two paths are of equal length.
Thus, we expect the waves to reinforce each other and to form a maximum. But this is
not so, because of z phase change, which occurs on external (air-to-glass) reflection
only. No phase change occurs on internal (glass-to-air} reflection, and none occurs on
transmission or refraction. Look again at Fig. 7.1 and note that it is the light that comes

from M, and-goes-to the observer thal is-reflected, air-to-glass, at 0, and-undergoes-the- - -

7 change. This means that at the coincidence position there will be a minimum: the
centre of the iield will be dark. : , '

(ii) Now, we move one-of the mmo.rs[f the mirror IS mow_.re_d-:uu'_ough'é;qumer of -~

wavelength, d = A/4, the path tength (because if d is separation between M, and My,

then 2 is the separation between S, and $,) changes by A/2, the two waves getting out
of phase by 1809, the phase change compensates, and we have a maximum. Moving the
mirzor by another 4/4, gives minimum, another A/4 another rrmxi.rm}m and so on. Thus,

24 = mA, where m =0, 1,2, ' (1)
is the Michelson’s interferometer equation,

(iii) Next, assume that we lock oblitjuely into the interferometer and that our line of
sight makes an angle:a with the axis. Ordinarily, the two planes M, and M, arc at a-
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distance d apart, and the two virtual images, J and I* separated by 24. But for oblique Interferometry

incidence, as we see from Fig. 7.3, the path difference belween the two lines of sight
becomes less and instead of Eq. (7.1), we get

2dcos a=mh; wherem =0, 1,... .(1.2)

For a given mirror separation d, and a given order m, wavelength 4 and angle a is
constant. The maxima will lie in the form of circles about the foot of the perpendicular
from the eye to the mirrors. These circular fringes will look:like the ones shown in

Fig. 7.4. Fringes of this kind, where paralle] beams are brought to interfere with a phese
difference determined by the angle of inclination 8, are referred to as fringes of equal

Flg. 7.4: Fringes observed using (a) Michelson interferometer, (‘b} Fabry-Perot interferometer.

inclination. These fringes are also known as Haidinger fringes. They differ from the
fringes of equal inclination considered in Unit 6, only in that, here there are no multiple
reflections so that the intensity distribution is in accordance with Eq. (5.17) '

Flg. 7.5: Appearance of the varions types of fringes observed [n the Michelson Interferometer. Upper
row shovws circular fringes whereas lower row shows, iecalized I'rl.ngu. Path dﬂ'ferem

- increases outward, in both directions, from the cenlre.

The upper part of the Fig. 7.5 shows how the circular f_ringes lIook under different
conditions. When M, is few centimeters beyond M, the fringe system will have the
general appearance shown in (a) with the rings very closely spaced. If M5 is now moved
slowly toward M,, so that d is decreased, Eq. (7.2) shows that & given ring, _
characterized by a given value of the order m, must decrease its radius, because the
product 2d cos @ must remain constant. The rings, therefore, shrink and vanish at the
centre, a ring disappearing each time 2d decreases by A, or 4 by 4/2. This follows from
.. the fact at the centre cos 8 =1, so. that Eq. (7.2)becomes . . _ ... ... . . ... .. ... .

2U=mi

“To. change m by umty. d must change by 2}2 Now as Mz appmaches M;, lhe rmgs
become more widely spaced as indicated in Fig. (7.5b), until we reach a critical
position, where the central fringe has spread out to cover the whole Geld of view, &5

.- shown in Fig. 7.5 (c). This happens when M, and M, are exactly coincident, for it.is.. .
clear that under these conditions the path difference is zero for all angles of incidence.
If the mirror is moved still farther, it effectively passes throngh M, and new widely

_spaced fringes appear, growing out from the centre. These will gradually become more
closely spaced, when the path difference increases, as indicated in (d} and (e) of the
Fig. 7.5. )
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7.2.2 Localized Fringe.é (Straight Fringe's)

If the mirrors M, and M, are not exactly parallel, ﬁ1e air film between the mirrors is
wedge-shaped, as indicated in Fig. 7.6. .

L

Flg. 7.6: The formatlon of fringes with inclined mirrors In the Michelson Interferometer.

The two rays reaching the eye from point P on Lhe source are now no longer parallel, but
appear 1o diverge from poinl P’ near the mirrors. For various positions of P on the ’
exlended source, the path difference between the two rays remains constant, but the
distance of P’ from mirrors changes. If the angle between the mirrors is not 100 small, the
lauer distance is never great, and hence, in order to see these fringes clearly, the eye must
be focused on or near the rear mirror M. The localized fringes are, practically, straight,
because the variation of the path difference across the field of view is now due primarily 10
the variation of the thickness of the “air film” between the mirrors, With a wedge-shaped
film, the locus of point of equal thickness is a straight line, paralle! 10 the edge of the
wedge. The fringes are not exactly straight, if 4 has an appreciable value, because there is

also some variation of the path difference with angle. They are, in general, curved and are .

always convex toward the thin edge of the wedge. Thus, with a certain value of d, we
might observe fringes shaped like those of Fig..7.5(g). M could then be in position such as
& of Fig, 7.6. If the separation of the mirrors is decreased, the fringes will move to the left
across the field, a new Iringe crossing the centre each time d changes by A/2, As we
approach the zero path difference, the fringes become straighter until the point is reached
where M, actually intersects M, when they are perfectly straight, as in Fig. 7.5(h). Beyond
this point, they begin to curve in the opposite direction, as shown in Fig. 7.5 (i). The blank
fields shown in Fig. 7.5 (f) and (j) indicate that this type of fringe cannot be observed for
large path differences. As the principle variation of path difference resuits from a change of
the thickness d, these fringes have been termed Fringes of equal thickriess.

7.2.3 White Light Fringes

If a source of whilc light is used, no fringes will be seen at all excepl for a path difference
so small that it does not exceed a few wavelengths. In observing these fringes, the mirrors

are tilted slightly as for localized [ringes, and the position of M, is found where it

intersects M;. With white light there will then be observed a central dark fringe, bordered
on either side by 8 or 10 coloured fringes. This position is often rather troublesome 1o find,
using white light only. It is best located approximately before hand by finding the place
where the localized fringes in monochromatic light become straight. Then a very slow
mation of M, through this region, using white light, will bring these fringes into view.

T i




- The fact, that only a few fringes are observed with white light, is easily accounted for

* when we remember that such light contains all wavelengths between 400 and 750 mm. The

fringes for a given colour are more widely spaced, the greater the wavelength. Thus, the
fringes in different colours will only coincide for 4 = 0, as indicated in Fig. 7.7. The solid
curve represents the intensity distribution in the fringes for the green light, and the broken .

curve for the red light. Clearly, only the central fringe will be uncoloured, and the fringes -

of different colonrs will begin to separale at once on either side. After 8 or 10 fringes, so
many colours are present at a given point that the resultant colour is essentially white.
White light fringes are, particularly, important in the Michelson interferometer, where they
may be used 10 locate the position of zero path difference, as we shall see later.

7.24 Adjustment of the Michelson’s Interferometer-

i) For Localised fringes: The distance of the mirrors M, and M, from the silvered
surface of Py are first made as nearly equal as possible by moving the movable mirror
M,. A pin-hole is placed between the lens and the plate Py (Fig. 7.8). If M, is not
perpendicular to M, four images of the pin-hole are obtained, two by reflection al the
semi-silvered surface of P, and (he other two by reflection at the other surface of P,

2
3‘

Flg. 7.8: Adjustment of Michelson 1nterferometer.

The former pair is, naturally, brighter than the latter. The small screws at the back of
the mirror, M, are then adjusted until the two bright images appear to coincide. The
pin-hole is now removed. If the coincidence of the images was apparent, the air-film
between M; and M, would be wedge-shaped, and the localised fringes would appear.

ii) For White light Localised Fringes: First, the localised fringes with monochromatic
light are abtained. The mirror M, is then moved unlil the fringes become straight.
Monochromatic light is replaced by white light. M is further moved in the same
direction until the central achromatic fringe is obtained in the field of view..

iit) For Circular Fringes: After localised fringes are obtained, the screws of M, are

adjusted so that the spacing between these fringes increases. This happens when the

angle of the wedge decreases. If this adjustment be continued, at one stage, the angle of

the wedge will become zero, and the film will be of constant thickness. At this stage,

circular fringes will appear. Finer adjustment is made until on moving the eye side ways
- orup and down, the fringes do not expand or contract.

~--7.2.5 Applications

There are three principal types of measuremenl that can be made with Michelson
interferometer: (i) wavelengihs of light (ii} width.and fine structure of spectrum lines .

77 (i) refractive indices. As explained in the sub-seclion 7.2.3. when a certain spread of

wavelengths is present in the light source, the fringes become indistinct and, eventnally,
disappear as the path difference is increased. With while light they become invisible

- . when d is only a few wavelengths, whereas the circular fringes oblained with the hghl

-of single spectrum line ¢an still be seen after the mimror has been-moved several -
centimetérs. Therefore, for making these measurements with this in Lcrferorneler itis
adjusted for circular fringes.

-a). . Dete.rmmahon of Wavelength of Monochromatic Light

Afier having adjusted interferometer for circular fringes, adjust the position of M;'to

Interferometry
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obtain a bright spot at the centre of the field of view, If d be the lluckness of the film
and n the order of the spot obtained, we have .

2dcos a=n A ' (1.3)
But at the centre a=0; sothatcos ¢ =1, Therefore ‘
2d = i - 0

If now M; be moved away form Hl by A72, 2d increases by A. Therefore n + 1 replaces
n in Eq. (7.4). Hence, (n + I)th bright spot now appears at the centre (see sec. 7.2.1).

Thus, each time M, moves through a distance A/2, next bright spot appears at the centre:

Suppose, during the movement of M, through a distance x, N new fringes appear at the
centre of the field. Then we have

x—N‘I'
— — I I -
A 2x (1.5)

Thus, by measuring the distance x with the micrometer and counting the number N, the
value of 4 can be obiained.

The determination of 4 by this method is very accurate, because x can be measured o
an accuracy of 10*mm, and the value of N can be sufficienily mcrcased as the circular
fringes can be obtained up to large path dll’ferences

SAQ1

When the movable mirror of Michelson’s interferometer is shifted through 0.0589 mm,
a shift of 200 fringes is observed. What is the wavelength of light used? Give the
answer in Angsirom units.

“(b) 'Determination of difference in Wavelength : When the source of light has wo

wavelengths 3, and A, very close logel.her {like Dy and D, lines of sodium), each
wavelength produces its own system of rings. Lewd; > 4. When the thickness of the
film is small, the rings due to 2, and A, almogt coincide, since A, and 4, are nearly
equal. The mirror M, is moved away. Then, due to different spacing between the rings
of 4; and 4, the rings of 4, are gradually. scparated from those of A,. When the thickness
of the air-film becomes such that dark rings of 4, coincides with bright rings of 4, (due to
closeness of 4, and 4, the dark rings due 10 A; will practically coincide with bright rings
due 10 A/, in the entire freld of view), the rings have maximum indistinctness.

The mirror M, is moved further away through a distance, say, x until the rings, after
becoming most distinct, once again become most indistinct. Clearly, during this
movement, # fringes of 4, and {z + 1) fringes of 4, have appeared at the centre
(because then the dark rings of A; will again coincide with the bright rings of A;). Now,
since the movement of the mirror M; by A, resvlts in the appearance of one new fringe
at the centre, we have

A

x= n——(n+1)
or A == .
8 _n llimd(n_fl) lz.
e i &__-1
' 32 /11
or ...J&L‘.‘.‘l’ﬂ..=1
1]12
o C hia=dh
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. Since A, and A, are close together, A; A, can be replaced by 42 where A is the mean of Interferometry

2.1 B.I'Id 24;
2 - .
A= g -;Lx- : 1.6)

Thus if we measure the distance moved by M, between two consecutive positions of
disappearance of the fringe paitern and the mean wavelength is known, we can
determine the difference (2.1—24)

SAQ 2

In Michelson'’s interferometer, the reading for a pair of maximuh indistinciness were
found to be 0.6939 mm and 0.9884 mm. If the mean wavelength of the two components
of light be 5893A, deduce Lhe difference between the wavelengihs of the components.

)  Determination of Refractive Index of a Thin Plate

If a thickness ¢ of a substance having an index of refraction i is introduced into the path

of one of the interfering beams in the interferometer, the opucal path in this beam is
increased because of the fact that light travels more slowly in the substance, and
consequently, has a shorter wavelength. The optical path is now j¢ through the medium,
whereas it was practically ¢ through the corresponding thickness of air (1 = ). Thus,
the increase in the optical path due to insertion of the substance is (2 — 1)t

In practice, the insertion of a plate of glass in one of the beams produces a
discontinuous shift of the fringes so that the number of fringes cannot be counted. With
monochromatic fringes, it is impossible to tell which fringe in the dlsplaced set
corresponds to one in the original set. With white light, the displacement in the fringes

-of different colours is very different. This illustrates the necessity of adjusting the

interferometer to produce straight white light fringes. After having adjusted so, the
cross-wire is set on the achromatic fringe, which is perfecily straight. The given plate is
now inserted in the path of one of the interfering waves. This increases the optical path
of the beam by (12 — 1) ¢. Since the beam traverses the plate twice, an extra path
difference of 2 (4 - 1)t is introduced between the two interfering beams. The fringes
get shifted. The movable mimor M, is moved till the fringes are brought back to their
initia positions so that the achromatic fringe again coincides with the cross wire. If the
displacement of M is x, then

_ 2x=2(u-1)
or x= (-1 .7 h
Alternatively, if N be the number of fringes shifted then
2u-—1)1=NA .8
Thus, measuring x, I, may be calculated if j is known, or ¢t may be calculated if ¢ is

known.

This method can be used to find the refractive index of a gas. The gas is introduced into
an evacuated wbe-placed-along-the-axis of one of the-interfering beams, and the -
experiment is carried out as described above.

$AQ3 C .

A wransparenit film of glass of refractive index 1.50 is introduced normally in the path of
one of the interfering beams of a Michelson's interferometer, which is illuminated with
light of wavelength 4800A, This causes 500 dark fringes to sweep across this field.
Delermine the thickness of Lhe film.

There is yet another type of interferometer, called Fabry-Perot interferometer, which

produces fringes much sharper than those produced by Michelson interferometer. In the

next section, let us study this interferometer and see how it is used as a powerful

spectrometer. : - 57
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7.3 FABRY-PEROT INTERFEROMETER

It is based on the principle of multiple beam interference. It is a high resolving power
instrument, which makes use of the ‘fringes of constant inclination’ produced by the
transmitted light after multiple reflections between two paratle] and highly-reflecting
glass plates, ' -

It consists of Lwo optically-plane glass plates A and B (Fig. 7.9} with plane surfaces.
The inner surfaces are coated with partially transparent films of high reflectivity and
placed accurately parallel to each other. Screws are provided to secure parallélism if
disturbed. The two uncoated surfaces of each plate are made to have a slight angle
between them in order to avoid unwanted fringes formed due to multiple reflections in
the plate itself, :

One of the two plates is kept fixed, while the other can be moved 1o vary the separation
of the two plates. In this configuration, the instrument is called a Fabry-Perot
interferometer. Sometimes both the plates are at a fixed separation with the help of
spacers. The system with fixed spacing is known as Fabry-Perot etalon. The Fabry-Perot
interferometer (or etalon) is used to determine wavelengths precisely, to compare two

wavelengths, to calibrate the standard metre in terms of wavelength, etc.
5

Fig. 7.9: Fabry-Perot interferometer. S is part of an external light source.

S) is a broad source of monochromatic light and L, a convex lens which makes the
beam more collimated. An incident ray suffers a large number of internal reflections
successively at the two silvered surfaces, as shown. At each reflection a small fractional
part of the light is also transmitted. Thus, each incident ray produces a group of
coherent and parallel ransmitied rays with a constant path difference between any two
successive rays. A second convex lens, L,, brings these rays together at a point P in its
focat plane, where they interfere. Hence, the rays from all points of the source produce
an interference pattern on a screen S placed in the focal plane of L,.

Formation of the Fringes: Let d be the separation between the two silvered surfaces,
and @ the inclination of particuiar ray with the normal to the plates. Then the path
difference between any two successive transmitted rays corresponding to the incident
ray is 2d cos8. The medium between the two silvered surfaces-is usually air. As you
saw, while solving SAQ 1 in Unit 6, that & phase changes occur on both of these (air-
10-glass) surfaces, hence, the condition

2d cos@ = nd,
holds for maximum intensity.

Here, n is an integer, called the order-of interference, and A the wavelength of light. The
locus of points in the source which give rays of a constant inclination 8 is a circle.

- ‘Hence, with an-extended source, the interference pattern consists of a'system of bright -

concentric rings on a dark background, cach ring corresponding to a particular value of
8. Fig. 7.4(b) shows the fringes obtained using a Fabry-Perot interferometer. Also
shown, in the figure for comparison, are fringes obtained by using Michelson

interferometer (see Fig. 7.4a). It can readily be seen that the Fabry-Perot interferometer, -

which employs the principle of multiple beam interference, produces much sharper
fringes, and could, hence, be used 1o study hyperfine structure of spectral lines. The
intensity diswribution of the circular fringes of Fig. 7.4b is not in accordance with

‘Eq. (5.17). To determine how much light is reflected-and transmitted at the two

surfaces, let us read the following section,

7.3.1 Intensity Distribution

- Comment: You are advised to 8o through the Appendix carefully given at the end of
_-this unit.
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We retum now to the problem of reflections from a paraliel plate, already considered in Interferometry
a two-beam approximation in Unit 6. Fig. 7.10 shows the multiple reflections.and

" transmissions through a plane parallel plate of “air” enclosed between two glass-plates

of Fabry-Perot interferometer. Here, a’is the refractive index of glass plate and n the

refractive index of air enclosed. Suppose a wave is incident at an angle 8, as shown in

Fig. 7.10. This incident wave will suffer multiple reflections. Let the reflection and

transmission amplitude co-efficient be » and ¢ at an exlemal reflection and r”and (" at an

internal reflection.

If the amplitude of incident ray is expressed as a /%%, the successive transmitted rays -
can be expressed by appropriately modifying both the amplitude and phase of the initial
wave. Referring to Fig. 7.10, these are
A =t a) e’ : .
Ay =@ r? gy k-8 ' -
Ay=('r"* a) e and so on.

A little inspection of these equations shows that -
Ay =1’ P20 golem o-1H-18

The quantities r, r’, ¢, t’, are given in terms of », #” 6, 8 by the Fresnel formulae. For
our present purpose we do not need thess explicit expressions but only relations
between them. We have

=T - : «..7.9(a)

and rP=r*=R o190

where R and T, respectively are the :eﬂectwuy and ransmissivity of the plate surfaces.
Then, using Eq. 7.9, we Bave

Ay = gTe™
Az = aTRe(@ -8,
Ay = aTR’e"f“-”J,_ and so on.
By the principle of superposition, the resu]tam amplitde is given by
A =aT + aTRe® + aTR?€26 4 aTR*% +....

Here, we have ignored ¢, as it is of no importance in combining waves of the same
fmquency Hence,

A=aT (1 + Re® 4 R3c28 R3¢—3-6 +..)

The infinite geometric series in the parentheses has the common ratio Re'® and has a
finite sum because r2 < 1. Summing up the series, we obiain

A= GT-—-—E;—E-

The complex conjugatc of A is therefore

__.1...._.
1~ Re*'é

. Hence the resultant intensity /'is given by

A"=aT

T
fe AAY = E_az-rz . ' ' E
. Q-Re®)(1-Re*?) : :
. . . Fig 7.10: Muitiple reflection o 1
asz atr? andtr:lmid:;::n
“1-RE_2R(P +e®) “TYRE-2Rces d enclosed between the
2 2 two plates of Fabry-
T —— a'7? = - a T_ o o e Perot {nterferometer. N
(1 =R%) + 2R (1 - cos &) (I_Rz)+4Rsinz% :
N . 59
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__a1? 1 .
a-Rry 1+ﬁsm2 % C T a(710)

The intensity will be a maximum when sin? 8 _ 0,16 8= oz where n =0, 1, 2,. Thus
2

ZTZ
Joa = —2 ...(7.11
| a-R? | )
Similarly, the inténsity will be a minimum when sm2 =1, ie. & =(2n+ 1) zwhere
n=012,..Thus :
_ ettt 1 _ a2
Ny o’ ek vy (112
-R)?
Eq. (7.10) can now be written as’
f= ["""‘
1+ 2R _ G2 ﬁ .(7.13)
(1 - R)*
f
or I= —5-"‘“ {7.14)
1 + F sin? 5

Here, F= o 4RR)2 is called the coefficient of Finesse. Eq. (7.14) is the intensiry

expression for the Fabry-Perot fringes. .
If we plot I against 4 for different values of R (the reflectivity of the plates), a set of

curves is obtained (Fig. 7.11). They show that the larger the value of R, the more rapid
is the fall of iniensity on either side of a maximum. (That is, higher the reflectivity of

. the plates, sharper are the interference bright fringes.) Further, as Eq, (7.11) and (7.12)
- show, Jarger the value of R, greater is the difference between I,.., and /., In fact, we

obtain a system of sharp and bright rings against & wide dark background.

As mentioned in the beginning of the sec. 7.3, Fabry-Perot interferometer is a high

resolving power instrument. Iis resolving power ﬁ is given by

A__ 4mhcos rdF
Al 4147 A

where 4 is the thickness of the film enclosed between the two silvered surfaces, r is the
angle of refraction inside the ﬁlm A the wavelength of incident light and F is the
coefficient of'Fmesse

To have an idea of the numerical value of resolving power, let us consider a Fabry-
Perot etalon with & = 1cm and F = 80, The resolving power for normal incidence in the
wavelength region around 2 = 5000 A would be _

A __ 4n

= 542x10°
AL Sx10-°x 4147 %

~ that is, two wavelengths separated by 00092 A canbe resolved a1 A = S000A.

7.3.2 Superiority over Michelson’s Interferometer

When the light consists of two or more close wavelengths (such as D, and D, lines of
sodium), then in a Fabry-Perot interferometer each wavelength produces its own pattern,
and the rings of one pattern are clearly separated from the corresponding rings of the
other pattern. Hence the instrument is very suitable for the study of the fine structure of
spectral lines. In Michelson's instrumient separate patterns aré not produced. The
presence of two close wavelengths is judged by the alternate distinctness and
indistinctness of the rings when the optical path difference is increased.

(P T rm s YT T B
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7.4 SUMMARY
-® The Michelson interferometer uses an éxtended fnonochromatic source.

] When M, and M, are perpendicular to each other, i.¢., when M, and M, are
parallel, the fringes given by a monochromatic source are circular and localized
at mﬁmty

® When the mirrors of the interferometer are inclined with respect to each olher.
i.e., when M, and M, are not petpendlcular to 'each other, a patiern of straight

" parallel fringes are obtained.

° Whether M, and M, are parallel or mclmed any fringe shift seen in an
interferometer may be due to either a change in thickness or a change in
refractive index.

® ‘As the movablc mirror is displaced by ; ‘each fnnge w:ll move 1o the position
prcwously occupied by an adjacent fnnge If Nis the number of fringes that
have moved past a reference point, when the mirror is moved a distance x, then

x=N 2
2

® Michelson interferometer can be used in the measurement of two closely spaced
wavelengths. _

[ ] Fabry-Perot interferometer, which employs the principle of multiple bean,
interference, produces much sharper fringes than those produced by Mlchelson
interferometer.

® In the Fabry-Perot interferometer it is the fringe pattern formed by transmitted
light that is observed and as such that intensity distribution wonld be given by

[
I= mar
4R (]
1+ i-R? ~—— sin? 7
® Resolving power of Fabry-Perot inlerferometcr is given by
A__4mhcosrF
Al - 41472
7.5 TERMIN AL QUESTIONS
i) When one leg of a Michelson interferometer is lengthened slightly, 150 dark
fringes sweep th.rough the field of view. If the light used has A = 480 mm, how
far was the mirror in that leg moved?

2) Circular fringes are observed in a Michelson interferometer illuminated with

_ light of wavelength 5896 A. When the path difference between the mirrors M,
and M, is 0.3 cm, the central fringe is bright. Calculate the angular diameter of

“the T7th bright fnnge )
. SOLUTIONS AND. ANSWERS .
- SAQs _
n

'I'he distance, x, moved by the mirror when N fringes cross the field of view is
given by )

.‘I:=Ni
_ 2
=2
N

Interferometry
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.2)

3)

TOs
1

2)

Here, x = 0.00589 cm, and N =200,

A= % = 00000589 cm = 5890 A

If x be the chslancc moved by the movable mirror between two consecutive
positions of maximum indistinctness (or dlstmcmess). we have

Jhxdp a2,
A 2x 2x

. Where A is the average of 4, and 1. -

Here A = 58934 = 5893 x 10-%¢m and x = 0.9884 — 0.6939 = 0.2945 mm
= 0.02945 cm.

_ (5893%10-%2 _ -
PTTT = 5806 % 10~ %cm = sa%A ‘

Let ¢ be the thickness of the film. When it is put in the path of one of the

" interfering beams of the Michelson's interferometer, an additionat path difference

of 2(z - 1)¢ is introduced. If N be thé.number of fringes shifted, we have
2(u-1Dr=NA

NA
2@u-1)

Here N= 500; A = 4800 x 10%cm, i = 1.50.

500 x 4800 x 10-8
2 (150 - 1)

_ 500 x 4800 x 10-%
2 x 050

= 0024 cm.

:". =

Darkness is observed when the light beams from the two legs are 180° out of
phase. As the length of one leg is increased by Z- 3' . the path length increases by
A, and the field of view changes from dark to lmght to dark. When 150 fringes
pass, the leg is lengthened by an amount

(150) (‘%‘) = (150) (240 nm) = 36,000 nm = 0.036 mm
The expression for the bright circular fringe is
2dcosr=nd

At the centre r = 0, so that

2d=ed @

#-now stands for- lhe order of the central bnghl fringe. The order of fnnges
decreases as we move outwards from the centre. Thus the second bBright fringe is
of (n- l)l.h order,..., seventh bright fringe is of (» -—6)|h o:ﬂer chce if 9 be the
angular radius of 7th bright’ fringe, we have

2d cos 8 =(n -6)4 | (ii)
Eq. (i) and (ii) give '
2d (1- cos'0) = 62
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or cosf=1- %ﬁ_ . Interferometry

Palling the given values:

~ 6%(5896 x 10-%cm)
2x03cm .

=1 - 0.0005896 = 0.9994 -

cosf=1

8=tos "1 (0.9994) = 2°,
angular diameter = 4°,

7.7 APPENDIX

Method of Complex Amplitudes

In place of using the sine or the cosine to represent a simple harmonic wave, one may
write the equation in the exponential form as :

y = gefier) = ggian o-if

where § = kx is constant at a particular point in space and represents phase of the
wave. The presence of i = —1 in this equation makes the quantities complex, We can
nevertheless use this representation, and at the end of the problem take either the real
(cosine) or the imaginary (sine) part of the resulting expression. The time—varying factor
exp (i) is of no importance in combining waves of the same frequency, since the
amplitudes and relative phases are independent of time. The other factor, a exp (-id), is
called the complex amplitude. It is 2 complex number whose modulus a is the real
amplitude, and whose argument § gives the phase relative 1o some standard phase.
Negative sign merely indicates that the phase is behind the standard phase. In general,
the vector a is given by ' :

a=ae=x+iy=a(cos &+ isin §)

Then it will be seen that

- a:m. m6=%

- Thus, if a is represented as in Fig. (7.12), plotling horizontally its real part and
vertically its imaginary part, it will have the magnitude 2 and wilt make the-angle §

with the x axis, as we require for vector addition.
The advantage of using complex amplitudes lies in the fact that the vector addition of
real amplitudes can be written more easily in the form of an algebraic addition of

complex amplitudes. For example, consider the real parts of two waves that follow the
equations

Ay = Ajeferro
and N
o Ags Al _ . . .(1.15)
. -Adding these two equations gi\-rcs
A=Ap+ Ay = Aei@ 8D 4 4, pilor+ 82 .(1.16)
We can now (ake out l.he; COMMmOon exponent jox:

A =6l (46 + A,e'f2) eAy)
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The square of the resultanr.. Al is f0und by multiplying the cornplex terms by their
complex canjugates:

= (A e + A D) (A e + ’_1,2"_'-62) .
¥A12 + A2+ AAy &61-8D 4 o i1-6D .(7.18)
Then, from Euler's formula, . ]
¢l 4 8= cos & +i sin & + cosd —i sind = 2cos & ...{7.19)
ind therefore, Eq. (?;18) becomes
= A2 #4352 + 24,45 cos (8 — &) «.(7.20)

the same as Eq.-(5.15). y " (Imaginary axis)

L]

_ "(Rea! axis)
Flg. 7.12: Representation of & vector In the complex plane.

Thus, in obtaining the resullam intensity as proportional to the square of the real
amplitude, we rnuluply the resultant complex amplitude by its complex conjugate,
which is the same expression with i replaced by -i throughout.
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BLOCK INTRODUCTION

In Bolck 2 you learnt that when light from two coherent sources is made to
superpose, redistribution of energy manifests in'the formation of fringes. This
phenomenon, known as interference, was explained on the wave model of light.
What may puzzle you is the fact that light casts shadows of objects, i.e., light
appears to travel in straight lines rather than bending around obstlacles. This
apparenl contradiction was explained by Fresnel. You will learn that the ease with
which a wave bends around comers is determined by the size of the obstacle

relative to wavelength cf light. The wavelenglh of light is about 10" "m and the

obstacles used in ordinary experiments are about 10° times bigger. However, a large
number of obslacles, whose sizes are comparablc to the wavelength of light, do
exhibit diffraction ot' light. : |

The phenomenon of dlffracuon was first obscrved by Grimaldi and a systematic
explanation is due to Fresnel. According to him, in diffraction phenomenon,
interference takes place between secondary wavelets from different parts of the
same wavelronl. Diflraction is classified in two categories: Fresnel diffraction and
Fraunhofer diftraction. For Fresnel diflraction, discussed in Unit 8, (he
experimental arrangement is fairly simple. The source or the observation-screen or
both are at a finite distance [rom the obstacle. Bul theoretical analysis of Fresnel
diffraction, being essentially based on geometrical construction, is somewhai
cumbersome. Nevertheless, Fresnel diffraction is more general; it includes
Fraunhofer diffraclion as a special case.

[n Fraunhofer diffraction, the source of light and the observation screen (or human
eye) are effectively at infinite distance from the obslacle. The Fraunhofer
diffraction from a sin gle slil is of particular interest in respect of the general theory
of optical instruments, This is discussed in detail in Unit 9. You will learn that when
a narrow vertical slit is illuminated by 2 distant point source, the diffraction pattern
consists of a series of spots along a horizontal line and sitnated symmetrically about
1 central spot. For a circular aperture, Lhe diffraction paltern consists of concentric
rings with a bright central disc.

[n Unit 10 you will learn about double slit and N-slit diffraction patlerns. A distinct
feature of double slit pattern is that it consists of bright and dark fringes similar to
hose observed in interference experiments. The N-slit diffraction pattern shows
will-defined interference maximum. The sharpness of interference maximum
ncreases as N increases. For a sufficiently large value of ¥, interference maxima
r»ecome narrow lines. This is why diffraction gratings are an excellent 100l in
ipectral analysis.

LCNRUIER L TR T S TP s

An important poinl lo learn is that fringed (diffracted) image of a point source is not
i geomelrical point. And diffraction places an upper limit on the abilily of optical
levices to transmit perfect information about any object. That is, all opiical systems
wre diffraction limited. In Unit 11 you will learn 10 characterise the ability of an
»ptical instrument to distinguish two close but distincl diffraction images of two
»bjects or wavelengths based on Rayleigh criterion.
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UNIT 8 FRESNEL DIFFRACTION

Structure
8.1 Introduction
Objeclives
8.2  Observing Diffraction: Some Simple Experiments
8.3  Producing a Diffraction Pattern
Spatial Evoluotion of a Diffraclion Pattern: Transilion [rom Fresnel to Fraunhofer Class
8.4 Fresnel Construction )
Half-period Elements
Rectilincar Propagation
The Zone Plate
8.5 - Diffraction Pallemns of Simplc Obstacles
A Circular Aperiure
A Straight Edge
8.6 Summary
8.7 Terminal Queslions
- 8.8  Solutions and Answers

8.1 INTRODUCTION

We know from our day-lo-day experience thal we can hear persons talking in an
adjoining room whose door is open. This is due Lo the ability of sound waves to

- bend around the corners of obstacles in their way. You arc also familiar with the
abilily of water waves to propagale around obstacles. You may now ask: Does light,
which is an eleclromagnetic wave, also bend around comers of obstacles in ils path?
In the previous block you have learnl menifestation of wave nature of light in the
form of interference: Light from two coherent sources interferes to form [ringed
pattern. But what may puzzie you is the fact that light casls shadows of objects, i.c.
appears o travel in straight lines rather than bending around corners. This apparent
contradiclion was explained by Fresnel who showed that the casc with which a
wave bends around corners is strongly influenced by the size of 1he obstacle
(aperturc) relative to ils wavelength. Music and speech wavelengths lic in the range
1.7 cm to 17m. A door is about 1 m aperture so that long wavelength waves bend
more readily around the door way. On the other hand, wavelength of light is about

10”7 m and the obstacles used in ordinary experiments arc aboul 10° times bigger.
For this reason, light appears 1o travel along straight lines and casts shadows of
objects instead of bending around their corners. However, it does not mean that
light shows no bending, it docs so under suitable conditions where size of obstacles
is comparable with the wavelength of light. You can get a feel for this by closely
examining shadows cast by objects. You will observe that the cdges of shadows are
not sharp. The deviation of waves from their original direction due to an
-obstruction in their path is called diffraction.

The phenomenon of diffraction finds great usc in our daily life. The music from
Vividh Bhard —an AM station ~— comes via long waves (  ~500 kHz - 20MHz

and hence A from 10°m to 10rm). You will learn that diffraction places a
furidamental restriction on optical instruments including human eye, in respect of
resolution of objects. In this block you will learn a 1ot of good physics involved in
diffraction limited system.

The phenomenon of diffraction was first observed by Grimaldi, an Italian
mathematician. And a sysicmatic explanation of diffraction was given by Fresnel on

You may have seen TV ower in
Delhi. It 235m high and almost
three limes 1aller lhan Quinb
Minar. Have vou ever thought:
Why TV transmission is beamed
from a height? The TV
transmission involves shor
wavclengih signals, A ~lcm,
‘These are bilcked by hills,
buildings and the curvature ol
Earth. It is only to avoid
blockape that TV signals are
transmitted from high towers.
The radie signals are reflccied
by the ionospheric layers betore
reaching us. In conlrast w this,

“the TV signals, whicl: are

microwaves, do not get reflected
by ahe ionosphere, Their
Imnsmission 1akes place along
the line of sight. To get the TV
signals transmitted over long
distances, geostationary
satellites are cmployed, which
when placed al suitable height,
reflect Lhese signals.
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Diffraction

Fraunhofer diffraction and
frespel diffraction are also called
far field diffraction and near
field diffraction, respectively.

- see diffraction, careful observations have to be made. We will now familiarise you
. with some simple situations and experiments to observe diffraction of light. The -

3. Take a piece of fine cloth, say fine handkerchief or muslin cloth. Stretch it flat

the basis of Huygens’ principle. According to him, diffraction is attributed to
mutual interference of secondary wavelets from a single wave. (The interference
phenomencn involves two coherent wave trains.) This means that in diffraction
phenomenon, interference takes place between secondary wavelets from different
parts of the same wavefronL '

For mathematical convenience and ease in understanding, diffraction is classified in
two categories: Fraunhofer diffraction and Fresnel diffraction. In Fraunhofer class
of diffraction, the source of light and the observation screen (or human eye) are
elfectively at infinite distance from the obstacle. This can be done most
conveniently-using suitable lenses. It is of particular practical importance in respect
of the general theory of optical instruments. You will learn about it in the next unit.

In Fresnel class of diffraction, the source or the observation screen or both are at
finite distance from the obstacle. You will recognise that for Fresnel diflraction, the
experimental amrangement is fairly simple. But jts theoretical analysis is more
difficult than that of Fraunhofer diffraction. Also, Fresnel diffraction is more
general; it includes Fraunhofer diffraction as a special case. Moreover, it has
importance in historical perspective in that it led (o the development of wave model
of light. You will learn some of these details in this unit.

You may be aware of the preliminaries of diffraction phenomenon from your SCE]OO!
physics curriculum. Or you may have opted PHE-02 course on Oscillations and
Waves. In whatever sitvation you are placed, you should refresh your knowledge.

Objectives
After stu'dying this-unit you will be able to
¢ stale simple experime:fts which illustrate diffraction phenomenon
® describe an experimental set-up for diffraction at a circular aperture
® explain that Frauhhefer diffraction is a special case of Fresnel diffraction
¢ discuss the concept of Fresnel half-period zones and apply il to zone plale

*  discuss diffraction pattern due to a circular aperture and a straight edge, and

1~y T

* solve numerical problems.

8.2 OBSERVING DIFFRACTION: SOME SIMPLE
EXPERIMENTS

As you know, the wavelength of visible light is very small (about 10” 7 m). And to

prerequisits for these are: (i) a source of light, preferably narrow and
monochromatic, (ii) a sharp edged obstacle and (jii) an observation screen, which
could be human retina as well.

P T T TR ) T WIS S P TRt Tk

1. Look at a distant street light at night and squint. The light dppears 1o streak out
[rom the bulb. This is becausc light has bent around (he corners of your
cyclids.

[

2. Stand in a dark room and look al a distant light bulb in another room. Now
move slowly until the doorway blocks half of the fight bulb. The light appears i
1o streak out into the umbra region of the dark room due to diffraction around i
the doorway.

and keep it close 10 the eye. Now focus your eye on a distant lamp (atleast 100 -——
m away) through it. Do you observe an enlarged disc surrounded by a regular




pattern of spots arranged along a reciangle? On careful examination you will
note that the spots on the outer part of the paitern appear coloured. Now rotate
the handkerchief in ils own plane. Does the pattern rotate? You will be excited
1o sec that the patlemn rotales about the central disc. Moreover, the speed of
rotation of the pattern is same as that of the handkerchief. 3

Fresnel DlTractlon

We are now tempted to ask: Do you know why this pattq.'ﬁ-of spotsis”™
obtained? You will agree that the handkerchief is a megh {criss-€ross) of fine
threads in mutually perpendicular directions. Obvious V. the obcarved nattern

e Fe T T L i Lo e
STt AR PR NS A TE L TSNS St T B

. J. .
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was mounted on a movable sl,andtsb\iﬂ'{al its distance from the obstacle coum vy -2 2d.
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Diffraction

spherical obstacles. (As such, you should not attach much significance to the
exactness of these sizes.) These [our spheres were mounted on a glass plate, which
was kept at a dislance of about 2 m from the pinhole.

The pholograpliic plate was kept at distances of 5cm, 10cm, 20em, 40cm and
180¢m from the mounled glass plate (obstacle). For the last case, the diffraction
patierns obtained from these spheres are shown in Fig. 8.3 (a). These patterns
essentially characterize the distribution of light intensity in the region of
geomelrical shadow of the obstacles.

Fig. 8.4: Enlarpged view of
(ringe pattiern for the sphere
of radius 1,58mm

[ -]

Flg.3.3: Fresnel diffracilon patterns: Kaihvate experlments with (2) spheres and
(b) clrcular discs of four slzes

The diflraction patterns for circular discs of the same size are illustraled in
Fig.8.3(b).You will find that these paiterns are almost similar to those for spheres.
Morcover, the.diffraction patterns on the left half of this figure, which correspond to
bigger spheres and discs (radii 3.17mm and 2.37mm), show (he geometrical shadow
and a ceniral bright spol within it. On the other hand, in the diffraction pattern
corresponding to the smaller sphere (or disc) of radius 1.98mm, the gcometrical
imagc is recognizable but has fringes appearing on its edges. The [ringe pattern
around the central spot becomes markedly clearer for the sphere of radius 1.58mm.
An enlarged view of this pattern is shown in Fig. 8.4. The formation of the bright
central spot in the shadow and the rings around the central spot are the most definite
indicators of non-rectilinear propagation of light. Instead, light bends in some
special way around opaque obstacles. These deparlures from rectilinear propagation
come under the heading of difl'racl'ion phenomenon.

Let us pause for a mihute and ask: Are these diffraction patterns unique for a given
source and obslacle? The answer lo this question is: Fresnel patterns vary with the
distance of the source and screen from the obstacle. Let us now lean how this
transition evolves. -

8.3.1 Spatial Evolution of a Diffraction Pattern:Transition from
.Fresnel to Fraunhofer Class '

To observe transition in the Fresnel diffraction pattern With distance, we have to
introduce a small modification in Kathvate’s experimental arrangement, as shown
in Fig. 8.5 (a). The point source is now located at the focal point of a converging

“lens L. The spherical waves originating from the soutce O are changed into plane

waves by this lens and the wavefront is now parallel to the diffracting screen witha -
narrow opening in the form of a long narrow slit (Fig.8.5 (b)). These waves pass




ough the slit. The diffracted waves are also plane and may have an angular Fresnel Diffraction

read. You may now like to know the shape, size and intensity distribution in the
ffraction patlern on a distant screen. :
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'Fig. 8.5(a): Arrangement to observe transition in Fesnel diffraction pattern @®)
Cross-sectional vlew of the geometry shown in (a) above,

When the incident wavefront is strictly parallel to the diffracting screen, we get

a vertical patch of light when the screen is immediately behind the aperiure.

That is, a region A'B' of uniform illumination on the screen. The size of this

region is equal to the size of the slit both in width and height. The remaining A slit is a rectangular opening
portion of the screen is absolutely dark. A plot of this intensity distribution is whose width (0.1mm or 50} is
shown in Fig. 8.6 (a). From P to A, the intensity is zefo. AtA’, it abruptly rises  much smaller than ils length
to I, and remains constant from A'to B'. AL B, it again drops to zero. We can 1 con or more.

say that A'B’ represents the edges of the geometrical shadow (and the law of

rectilinear propagation holds).

As the screen is moved away from the aperture, a careful observation shows
that the patch of light seen in (1) above begins to lose sharpness. If the distance
between the obstacle and the observation screen is large compared to the width
of the slit, some [ringes start appearing at the edges of the patch of light. But
this patch resembles the shape of the slit. The intensity distribution shows
diffraction rippling effect somewhat like that shown in Fig. 8.6(b). From this
we can say that the intensity distribution in the pattern depends on the distance
at which the observation screen is placed.
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Fig. 8.6: Spatlal evolution of a diffraction pattern N
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3.  When d (~1m) is much greater than the Wi)\l.h of the slit (~0.1 mm), the fringes
seen in (2) above — close 1o edge of the patch — now spread out and the
geometrical image of the slit can no longer bé recognized. As distance is
increased further, diffraction effects become progressively more pronounced.

4. When dis very large, i.e. once we have moved into the Fraunhofer region,

ripples no longer change character. You can observe this pattern by putting a
convex lens after the slit. The observation screen should be arranged so that jt
is at the second focal plane of the lens. These variations in Fraunhofer
diffraction are shown in Fig. 8.6(c). '

From this we may conclude that Fresnel diffraction can change significantly as the
distance from the aperture is varied.

You must now be interested to understand physical basis of these observations . The
first systematic effort in this direction was made by Fresnel. Let us leamn about it
now, C

8.4 FRESNEL CONSTRUCTION

Let us consider a plane wave front represented by Wiw" propagating towards the
right, as shown in Fig. 8.7(a). We want to calculate the effect of this plane wavefront at
an external point F, on the screen at a distance d. Then we will introduce an obstacle

like a straight edge and see how intensity at B, changes.

We know that every point on the plane wavefront may be thought of as a source of
secondary wavelets, We wish 1o compute the resultant effect at R by applying
Huygens-Fresnel principle. One way would be to write down the equations of
vibrations at £ due to each wavelet and then add them together. This is a

" cumbersome proposition. The difficulty in mathematical calculation arises on two

counts: (i) There are an infinite number of points which act as sources of secondary
wavelets and (ii) Since the distance travelled by the secondary wavelets arriving at
Fyis different, they reach the point B, with different phases. To get over these
difficulties, Fresnel devised a simple geometrical method which provided useful
insight and beawtiful explanation of diffraction phenomenon from smail obstacles.
He argued that it is possible to locate a series of points situated at the same distance
from Fy so that all the secondary wavelets originating from them travel the same

distance. We can, in particular, find the locus of those points from where the

wavelets travel a distance b + %ab + % b+ 3—;’-: and so on.
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Fig.8.7: Fresnel mmi:ructlon {a} Propagation of a plane wavefront and (h)
divisfon of wavelront into annular spaces enclosed by concentric clrcles
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he Fresnel construction consists of dividing the wavefront into annular spaces
1closed by concentric circles (Fig. 8.7(b)). The net effect at B will be obtained by
imming contributions of wavelets from these annular spaces, called half period
lements. When an obstacle is inserted in between the wavefront WW' and the
sint P, some of these half period elements will be obstructed depending upon the
ze and shape of the obstacle. The wavelets from the unobstructed parts only will
:ach P, and their resultant can be calculated easily by Fresnel’s method. Let us
ow learn about Fresnel’s construction, half period elements and the method of
immation of the contributions of secondary wavelels.

4.1 Half Perlod Elements

‘o discuss the concept of Fresnel’s half-period elements we assume, for simplicity,
1at light comes from infinity so that the wavefront passing through the aperture is’
lane. Refer to Fig. 8.8. It shows a plane wavefront WW'F'F.of monochromatic

ight propagating along the z-direction. We wish to calculate the resultant amplitude
f the field at an arbitrary point B due to superposition of all the secondary
Iuygens’ wavelels originating from the wavefront at the aperture. To do so, we
ivide the wavefront into haif-period zones using the following construction: From

F . .
Flg. 8.8: Half-period zones on a plane wavefront: A schematic construction

the point B we drop a perpendicular R0 on the wavefront, which cuts itat O. The
point O is called the pole of the wavefront with respect to the point Pj. Suppose that
b is the distance between the foot-of the perpendicular to Py, i.e. OPy = b. Now with

B, as centre, we draw spheres of radii b + %u b+ 2—;’-; b+ %and'so on. You

can easily visualise that these spheres will intersect the plane wavefront in a series
of Concentric circles with centre O and ridii 0Qy, 0Q;, 0Q3, ... as shown in Fig.
8.8. This geometrical construction divides the wavefrontinto circular strips called
zones. The first zone is the space enclosed by the circle of radius O, the second
zone is the annular space between the circles of radii 0@, and 0Q,. The third zone
is annular space between the circles of radii 0Q; and 0Q, and so on. These
conceatric circles or annular rings are called Fresnel zones or half period
elements. This nomenclature has genesis in the fact that the path difference between

the wavelets reaching £ from corresponding points in successive zones is A/2.

Fresnel Dilfraction

11

S
care gl

ERCLILLIEL Y,

» -

[T EoTETS




12

To compute the resultant amplitude at K, due to all the secondary wavelets.

emanating from the entire wavefront, we first consider an infinitesimal area dS of
the wayefront. We assure that the amplitude at Fy due to dS is (i) directly

proporlional to the area 45 since it determines the number of secondary wavelets,
(ii) inversely proportional to the distance of 45 from R and (iii) directly

proportional to the obliquity factor (1 + cos 6 ), where 8 is the angle belween the
normal drawn to the wavefront at.dS and the line joining dS to B,. 9 is zero for the

central point 0. As we go away from O, the value of 0 increases until it becomes

"90° for a point at infinite distance on the wavefront (Fig. 8.9). Physically, it ensures
- that wavefront moves forward. That is, there is no reverse (or backward) wave.

'Flg. 8.9: The obliquity factor for Huygens' secondary wavelels

If we denote the resultant amplitudes at £ due to the first, second, (hird, fourth, ...,
nth zone by a,, a,, a5, a,, ..., then we can write

Ay '
4, = Consl x b—(l + cos8) (8.1)

where A, is the area of the nth zone and b, is the average distance of thé nth Zone
from B, ’

Eq. (8.1) shows that to know the amplilude of secondary wavelets arriving at P,
from any zone, we must know A . This in turn requires knowledge of the radii of
the circles defining the boundaries of the Fresnel zones. To calculale the radii of
various haif period zones in terms of known distances, let us denote 0Q,=ry,

0@, =1, 0Q3 = 13,..., 00, =r,. From pythagoras’ theorem we find that the radius
of the first circle (zone) is given by

172
r = [(b +%)z - b2] - Vea+ 12

4
= VHA

The approximation A < < b holds for practical sysiems using visible light.
Simtlarly, the radius of the nth circle (zone) is given by
: -- - 12

r, = [(b + 52 - b"]

172

2.2
=[nbi\.+n4l]

= Vnbh _ - 82y
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where we have neglected the term 2 in comparison to nb A . This approximation

holds for all diffraction préblems of interest to us here.

It readily follows from Eqgs. ‘(8. 1) and (8.2) that the radii of the circles are
proportional to the square root of natural numbers, ie V1,V2,V3,¥V4, ..
Therefore, if the first zone has radius ry, the successivé zones have radii 1.41ry,

1.73 r,, 2 and so on. For He-Ne laser light (A = 6328 A ). if we take B, to'be 30
cm away (b = 30 cm), the radius of the first zone will 0.436 mm..

Let us now calculate the area of each of the haif-period zones. For the first zone

Ay =nh =af(b+ 2V - F]

.2
=:|T.bl+z}\-

e ThA (8.3a)

The area of the second zone, i.¢. the annular region between the first and the second
circles is .

Fresnel Diffraction

_ Refer to figure sbovel and

n(r§ - rf) —a[(b+ A -b]-mb)r
w2nbh - nbh m nbA (8.3b)
Similarly, you can readily verify that the area of the nth zone
A, = n(rh-ri )anbh (8.3¢)

That is, all individual zones have the same area. The physical implication of the
equality of zone areas is that the secondary wavelets starting from every zone will
be very nearly equal. You must however remember that the result contained in
Eq.(8.3) is approximate and is valid for cases where b > > 1 A. A more r¢gorous
calculation shows that the area of a zone gradually increases with n:

An-n:?\.[b+(n-1)%] (8.3d)

However, the effect of this increase is almost balanced by the increase in the
average distance of the nth zone from F. That is, the ratio A /b, in Eq. (8.1) -
remains x A, which is a constant, independent of n. This means that {he amplitude
due to any zone will be influenced by the obliquity factor, which is actually
responsible for monotonic decrease in the amplitudes of higher zones
(ay > @y > ay, ... > a, )- Also, it is important for our computation to note that

- consecutive zones differ by one-halfof a wavelength. Therefore, the secondary
waves from any two corresponding points in successive zones {nth and (# -I)th or
(n + Uth] reach B, out of phase by x or haif of a period. ' '

Suppose that the contribution of ali the secondary wavelets in the nth zone at Bis
denoted by a,. Then, the contribution of (n-1)th zone a,, ;, will tend to annihilate the
effect of nth zone. Mathematically we write the resultant amplitude at Py due to the

whole wavefront as a sum of an infinite series whose terms are alternately positive
and negative but the magnitude of successive terms gradually diminishes:

consider the contributions from
the { 2 — 1 )th and ath zones.
Firstly, the areas of the two
annular regions are
approximately equal, i.e., the
secondary wavelels siarling
from both Lhe zones are equal.
Secondly, the points on the
innermos! circle of ( n —1 Jth
zone e.g. points like R are
siluated-at a distance of
d+(n-2)2/2from Lo
whereas the paints on the
inncrmost ciccle of nth zone e.g.
points like § are siluated at a
distanceof d +{n—- 1) A2
from Po. The difference in path
between the secondary wavelels
to reach Pg from R and S is A/2.
This means Lhat the waves
reaching Po are out of phase by
n and cancel each other.
Similarly for every point
between R and S in the

{ n -1 )th zone we have &
comesponding point between 3

and T'in the nth'zone with a path- -

diflerence of A/2 or phase
difference of & and hence cancel
each other. Since the areas of Lthe
rwo zones are Bpproximalely
equal, we amrive al the result (hat
for every polnt in the { # - 1 )th
zone we have a point in the
nth zone which Is out of phase
by 7 or haif of a perlod.

i3

. .
T A TR | O T T B

Do
I TIITY e

TCILNE T TR




Diffraction

. 8o far we have considered the

effect of a whole number of half
period elements at a given point.
The sum of the amplitudes due

" 1o all the secondary wavelels

starting from Lhe nth Zone was
represented by gn. But so far we
have not computed the
magnitude and phase of the
amplitude vector a,. An obvious
related probem is to calculate
Lhe effect al Py due to a fraclion
of agiven half period elemenl.
We can do this essily by lhe
following vector summation
method. We divide a Fresnel
Zone inlo a series of n sub-zones
of equal areas. Refer 1o figure
'below: It shows such a division
for the annular space between

{ n— 1 Jth and ath circles. Q is
taken as centre and circles of
slightly dilfering radi have been
drawn such that the annular
space between two consecutive
circles eacloses equal area. Now
within the area covered by a
sub-zone, we can peglect
variation in inclination factor.
Since all these sub-zones have
been drawn s0 that they have
equal areas, the amplitude a1 Po
due to Lhese small equal areas
will be the same. But the phases
will change continugusly-from
one sub-zane o the next
sub-zone by A/2x since the
phase difference between the
secondary wavelets starling
from the innermost sub-zonc of
eny one Fresnel half period zone

A
is = or . If we'make i very

. large, we will have infinitesi maily

small but equal areas and phases
of wavelets [rom these may be
tzken to vary continuously and
uniformly.

Thus vre hav:'._a sel of

- - disturb.ances of equal amplilude
. but'uniformly changing phase
_ such tf at the phase dilference

betwer n the two extreme

disturt ances is x. These extreme

vector. are represented by A4’

~ and BI" in the figure shown. We

know 1hal in such a case the
vecior diagram is a semicircle
and the: resultant of the

summ: lion of ampliludes is the
diemeler AB.

14

'_ have used three properties: (i) vectors representing ay, 4, ...

£33N

i - f2x
E=ay r e + a7 a4 L

—ata;-ag+ .. 1)"”0,,1....:.;—1(8.4)
There are several methods of arriving at this result. Here we will describe a simple
graphical construction. (The mathematical method is given as TQ). Let us denote

the amplitudes of resultant vectors AB, CD, EF, GH; ... respectively by

ay, az, a3, a,, ...due to the first, second, third, fourth, ... zone. (We know that

ay, a, 3, 4y, ... 4, are altemately positive and negative). These veclors are shiwn )
separately in Fig. 8.10(a) to show their magnitudes and positions. But their true positions are
along the same line, as shown in Fig. 8.10 (b). The resullant of the first two zonzs will be the
small vector AD. Bul the resultant of the first three zones is the large vector AF; of
the four zones the smaller vector AH and so on. Refer to Fig. 8.10(a) again. You

will note that the resultant of infinitely large number of zones is equal tv a,/2.

+ (-

If we consider a finite number of zones, say n, the resultant is gwgn by
4, % 8.5

where n is any number (odd or even).

e £
AR -[: :.l][n:.-l'-jjfwl_}‘l__,___.l' : E ______ i ’
(eSS ¥ ' l

Ty

Fig.8.10: Phasor diagram for Fresnel (hall-period) zones. Individual amplitudes

areshown [n (a). Actually all vectors are along a line. This [s shown [n (b). The

resultant amplitudedue ton (=2, 3, ... ) zones is shown In (c). _
To see this, you closely feexamine Fig. 8.10(b). You will note that all vuctors
representing a,, a,, a3, a, ... are line segments whose midpoint coincides with the
midpoint of a; (marked as — ). (You must convince yourseif about this ) In other -
words, the vector representing a,, is a line, half of which is above the horizontal line
passing through the midpoint of 4, and the other hatf is below this line. The
resultant of n zones is a vector joining A to the end of the veclor representing a,
When £ is odd, the end point of the vector representing @, will be above the
horizontal line by a,/2, which proves the required resuit.

If 1 is even, the end point will be below this horizontal line by a,/2. Adiled

- vectorially, we have the same result. We thus see that the resultant amplitude at £,

due to n zones is half the surh of amplitudes coatributed by the first and the last .
zone. § will be pumerically greater than a;/2 when n is odd and smalier than a,/2

when n is even. For example, the resuitant contribution due to 7 zones is AQ, which
NO 4 _P9

a
is equal to El- + - On the other-hand. for 8 zones, the resultant isAQ = 2" 2"

It may be emphasized that in this graphical method of summation of the series, we
are all along the same

e A L el i T
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straight line (ii) alternate vectors arcLOp;iositely directed and (iii) the magnitudes of
ay, a,, ... decrease gradually. '

* We now consider a simple example to illustrate these concepls.

Example 1

Consider a series with # = 100 in which each term is equal 1o the arithmetic mean of

the preceding and the following terms. Calculale the resultant.

Solution
As a special case, we can take the terms of the series as 100,99, 98, ... 3,2, 1.
L Em {100 -99) + (98 -97)+ (9% —95) +...{4 -3) +{(2-1)
-_1 + 1+ 1...50 terms

= 50

‘which is half of the first term. Now consider the relation

a 4

2 2°

and take different number of terms in this arithmatic series. If we have only one
term, a; = 100 we take the first term as 100 and also the last term as 100. Then we

get

'ﬂl‘ a,
§=2+2=100

Next we take two terms. Then

£ = (100 = 99) = 1

Also
4 4 100 99
2 2 . 2 2
=50 - 495 = 05

Forthree terms, & = (100 — 99) + 98 = 99

and A B _50+49-9
2 "2 _

For four terms, E=(100 - 99) + (98 - 97) = 2

and %l+%550|—485-1.5

- For five terms _E-(100—99)+(98—97)+96=98

and A5 50448 =08

' For six terms E = (100 — 99) + (98 —97) + (96 - 95) = 3
. and . a, % =50 =~ 475 = 25 |

2

¥ . . al an .
and so on. Thus we see that E is given by 5t -2—to a fairly good degree of

accuracy.

Fresnel Diffraction

Now we will compute
magpnilude and phase of the
resultaat AB. JEall the equal
disturbances from the sub-zones

"were il the same phase, the

resulta 3l would have been a line
along AA" and equal to \he
length of the arc of the

semici ‘cleAB( = 7 r ) of radius
r. But *ve find that the actual
resultait amplilude isAB = 2r.
Thus the resultant amplitude is

z - 2 times Lhe value which
EL |

would be obtained if all the
wavelt ts within a Fresnel hall
period element had the same
phase. Since the line AB is
paraltel lo the line MN, we see
that th:: resultant phase of vector
AB is the same as (hat of the
vector MN representing the
disturtance starling [rom the
middl¢ point (M) of the zone. [n
other vrords, AB is
peerpeadicutar to AA", That is, it
is a quarter-period behind the
wavelt I starling from lhe
innerm-osl sub-zone. We can
find, ir. a similar manner, the
results 11 contrbulion due to Lhe
next h: I-period zone, 1115 given
by CD and differs from A8 by n.
The resiultant of the sum of thses
two zones is Lhe small vector
AD. The magnitudes of vectlors
and the:ir phases for succeeding
zones nre shown in figure
below. The resultant curve is the
vibration spiral with gradually
smaller and smaller semicircles
unlil eventually it coincides wilh
Z. The tesultint whén all the

- halt-pcriod elements are- - - -
consid:red is AZ which is half of

that which would be produced

. by the first zone alone. Itis -

equil 153 x -f; - % ke thar

" which would be produced by all

the wa selets from the Bist zone
acting together in the same
phase.
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Dliffraciion

8.4.2 Rectilinear Propagation

Refer to Fig. 8.11. [t shows several collinear apertures A,8,C, ... Light originates
from a point source and propagates towards the right. Suppose thal the source is Im

. Saneen
Fig. 8:11: Fresnel eonstructlon and rectilinear propagation of light

away. We may take the spherical wave [alling on the obslacle as nearly a plane
wave. (The radius of curvature of the incident spherical wave will not qualitatively
change the argument.) Let us work out the sizes of Fresnel half period elements for
the typical case where the screen is 30 cm away from the aperture. Taking

AmS5x llfi'scm,\.'.n:gelrl - v‘iSOcmi\/x (5 x 10_5cm)

= 387 x 107 2 cm. This means that the diameter of the first zone is less than
1 mm. Let us consider the 100th zone. Iis radius Tioo = V30cm x 100 x 5 x

V 10'E em = 3.87 x 107! cm 50 that the diameter will be a little less than 1 cm,
Theretore, if the aperture is about 1 ¢m in diameter, the amplitude al P, due to the

- a apy _
whole wavefront is ?l + 'Too aygp Will be fairly small, so that the intensity is
essentially half of that due to the first half period zone, which is the intensity
expected at Py when the aperture is completely removed. We may say that light
travels to Py from a region nearly 0.4 mm in radjus around Q. That is, light travels

in a straight line.

Let us now understand the formation of shadows and illuminated regions due to an
obstacle (Fig. 8.12). Consider (he point P, whose pole is O,. If lhe distance between
O; and the edge A of the obstacle is nearly 1 cm, over 100 half period elements will
be accomodated in it. And as seen above, the intensity at P, will be nearly equal 10
4,
>
Py, which is taken 1 cm inside the geometrical edge of the shadow, over 100 half
period elements around O1 are obstructed and the intensity at P, will be less than
a _ :
_12(12’ which is almost negligible. This implies almost complete darkness at P.In
ather words, the obstacle has completely obstructed the light from the source and

In other words, the obstacle T will have no effect at the point P,. Similarly, at

O g
Abep e e e ],
L 1
&

A —— n

Flg. 8.12: Fresnel conatructlen and formation of shadows/llluminated reglons
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1¢ region around point P is in the shadow. Only around Py, which signifies the
eometrical edge of the shadow, we find fluctuations in intensity depending upon
ow many half period elements have been allowed to pass or have been obstructed.
his explains the observed rectilinear propagation of light since Fresnel zones are
bstructed or allowed through by obstacles of the size of a few mm for these typical
istances. : '

\ special optical device, designed to obstruct light from alternate half- period
lements is known as Zone plate. It provides experimental evidence in favour of
‘resnel’s theory. Let us learn about il now.

}.4.3 The Zone Plate

lhe zone plate is a special optical device designed to block light from every other
1alf-period zone. You can easily make a zone plate by drawing concentric circles

)n a white paper, with their radii proportional 1o the square rools of natural numbers
ind shading alternate zones. Fig. 8.13 shows two zone plates of several Fresnel
rones, where all even numbered or odd numbered zones are blacked out, Now
shotograph these pictures. The photographic transparency (negative) in reduced
size acts as a Fresnel zone plate. (Recently, Gabor has proposed a zone plate in

Fig. 8.13: Zone plates: (a) posilive (b) negatlve

which zones change ransmission according 10 2 sinusoidal wave.) Lord Rayleigh
made the first zone plate in 1871. Today zone plates are used 1o form images using
X-rays and microwaves for which conventional lenses do not work.

If you now pause for a while and lc)gically reflcct upon the possible properties ofa
Fresnel zone plate, you will arrive at the following conclusions:

1. A zone plate acts like a converging lens (see Example 2) and produces a very
bright spot. To understand the formation of the spot let us suppose that the first
ten odd Zones are exposed to light. Then, Eq.(8.4) tells us that the resuitant

amplitude at Py is given by

gzo - al + aa+ as + ...+ 019 (85)

If obliquity factor is not importanl, we may write 5 = 104, which means that the
amplitude for an aperture containing 20 zones is twenty times and intensity is 400
times that due 10 a completely uncbstructed wavefront.

ExampleZ
~ Show that a zone plate acls like a converging lens.
Solution -

Refer to Fig. 8.14. It shows the section of the zone plate perpendicular to the plane
?f the paper. S is a point source of light at a distance & from the zone plate. A bright
image is formed at P at a distance v from the plane of the zone plate.

»
-
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F]g. 8.14: Actlon of a Zone Plate as a converging lens

You can easily write

'sgz+QZP5=u+v+—22—3=
SQ,,+Q,,;!"0-:¢_+v+£’2l

By Pythagoras’ theorem we can write

50, = VSO* + 0Q?
= Vu2+ri a U+

N[

. where r, is the radius of the nth zone.

Similarly, you can convince yourself that
2

: P
QnPo=v+—2-;+...

2 2

' r r
If r,, << u or v, we can ignore lerms higher than -2-:: or 2—" Hence
Vv

2 2
r T HA
SQn+QnP0=u+§u1+v+-éiv=u+v+—2—
2

T :
If we identify f, ﬁ as the focal length of the zone plate, we find that

<=

¥

= -

nh
= —
rﬂ

o

which is identical to the lens equation.

2. The zonc plate has several foci. To understand this, we assime that the
" observation screen is at a distance of one focal length from the diffracting
aperture. Then it reaiily follows from the above example that the most intense

(first order) focal point is situated at fi < rf/?u. To give you a feel for
numerical values, let us calculate f1 for a zone plate with radii r, = 0.1¥n em

and illurinated by a monochromatic light of wavelength A" = 5500 A. You can
easily sec that ' -

1IER YT

(LR




A (0iem)
5 _h . <:ma
A 5500 x 107 em

To locate higher order focal points, we note from Eq. (8.2) that for r,, fixed, r
increases as b decreases, Thus for b =£,/2, n =2, That is, as P, moves. towards the

zone plate along the axis, the same zonal area of radius r encompasses more
half-period zones. At this point, each of the original zones covers two half-period
zones and all zones cancel. When b = f,/3, n = 3. Thal is, threc zones contribute
from the original zone of radius ry. Of these, wo cancel out but one is left to
contribute. Thus other maximum intensity points along the axis are situated a1

= 182 cm

2 . ' .
4\
- — : 8.9
£ -y for n odd (8.9)
For above numerical example, f = l%gcm, L= lg—zcm,f-; - l?},%cm and s0 on.

Between any two consecutive foci, there will be dark points.

8.5 DIFFRACTION PATTERNS OF SIMPLE
OBSTACLES '

From Sec. 8.3 you will recall that by utilizing Kathvate’s experimental arrangement,
the Fresnel diffraction pattern of various apertures and obstacles could be
photographed by varying distances between the source, the object and the
photographic plate. We will now use results derived in Sec. 8.4 to explain the
observed diffraction pattern of simple obstacles like circular aperture and straight
edge. :

We begin by studying the Fresnel diffraction pattern of a circular aperture.

8.5.1 A Circular Aperture

Refer to Fig. 8.15. It shows a sectional view of the experimental arrangement in
which a plane wave is incident on a thin- metallic sheel with a circular aperture. You
will note that the plane of the wavefront is parallel 10 the plane of the metal plate;
both being perpendicular to the plane of the paper.

Let us calculate the intensity at a point Fy lying along the line passing through the

centre of the circular aperture and perpendicular to the wavefront. Suppose that the
distance between the point Py and the circu lar aperture is b. As discussed earlier, the

intensity at the observation point due to the entire uninterrupted plane wavefront is

W

W

Fig.8.15: Diffractlon by a circular aperture: A cross-sectional view of the
experimental arrangement

Fresnel Diffraction
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given by Eq. (8.4) where ay, a5, ... etc. give the contribitions due to successive
Fresnel zones. Our problem here can be solved by constructing appropriate Fresnel

" zones and finding out as o how many of these half period elements are transmitled

by the aperture. However, it is important to note that for an aperture of a given size,
the number of half period clements transmitted may not always be the same. This is
because the radii of the Fresnel zoncs depend upon the distance of point Py from

O.(r, = YnAb ). Youcan easily convince yoursell that if the poinl Py is far away

from the aperture (b is very large), the radii of the first zone, equal to VA 5, may be

larger than the radius of the aperture. In such a situalion, all the secondary wavelets
starting even [rom the entire first zonc alonc may not be transmitied. That is, the
wavelels from a smail portion of the first Fresnel zone only are transmitled.

The next question we have lo address to is: How 1o calculate the amplitude at P,

when the aperture has transmitted only a fraction of the first Fresnel zone? As a first
approximation, we assume thal the wavelets arrive at Py in phase. (This is quite
juslified because the path difference between the extreme wavelets within an yone
half period elementsis A /2. Il only a fraction of the first zone transmits here, the
net phase difference will be correspondingly less.) Further, the inverse square law
for intensity tells us that the amplitude at Py will be inversely proportional to 5.

Her'lcé,-lhe effect at Py, which is al a large distance, will be small.

As the point P moves towards the :_;perlurc (b becomes smaller), the zone size

shrinks and a greater part of the central zone is transmitted. As a result, the intensily
increases gradually. As the observation point comes closer and closer, with the
shrinking of the sizes of zones, a stage may reach when the first zone exactly fills
the apérture. Then V& , the radius of the first zone is also the radius of the
aperture. We know that the first zone contributes a, to the amplitude at P,.

Compare it with the situation where the obslacle with circular aperture is not

a
present. The entire wavefront contribules but the amplitude at P is ?l Since

intensity is proportional 1o the square of amplitude, the intensitics at Py with and
3 .

4

without the aperture are respectively af and 2 . That is, the inlensity at a given

_poinl is four limes as large when the aperture js inserled in the path than when it is

completely removed. This surprising result is not apparent in the realm of everyday
experience dominated by reclilinear propagation of light.

As the obscrvation point Py comes still closer, the circular aperlure may transmit

first two zones. The amplitude will then be ( a) - a, ) which is expected Lo be very

small. The additional light produces practically zero amplitude, hence darkness, at
Py. Bringing the point P, gradually closer will cause the intensity to pass through

maxima and minima along the axis of the aperture depending on whether the

_number of zones transmilted is odd or even. If we continue to bring the point P,

closer 1o O, the number of Fresnel zones transmiltted by the aperture goes on

. ; . . .
increasing. The value 2 s Finally rcached when the point £y is so close that an
infinitely large number of zones contribute to the amplitude.

The same variation in intensity should be experienced if the point Py is kept fixed
and the radius of the aperture is varied continuously. This can be done
experimentally but is somewhat more difficult.

We have calculated the intensity at points on the axis but the above considerations
do nol give any information about the intensity at points off the axis. A detailed and
complex mathematical analysis which we shall not disciiss here, shows that Py is,

surrounded by a system of circular diffraction fringes. Photographs of these fringe

i vn - e ——




patterns have been taken by several workers and we referred to Kathvale's experiments
earlier in this unit.

We now illustrate the concepts developed here by solving an example.

Example 3

In an experiment a big plane melal sheel has a circular aperture of diameter 1 mm.

A beam of parallel light of wavelength A = 5000 A is incident upon it normally.
The shadow is casl on a screen whose distance can be varied continuously.
Calculate the distance at which the aperture will transmit 1,2,3,... Fresnel zones.

Solution

Let by, b, by ... b, be the distances at which 1,2,3,... n zones are transmitled by an
aperture of fixed radius r. From Eq. (8.2) we can wrile !

- 2

n bﬂ h = lr."
2
_ : 1
so that Ty
2
i _ _(05em)’
bl = I = _5 = 50 cm
5x 10 "cm
Similarly, we.find (hat d
2
Y .
by = 22 2 20CM _ o5 om, by = %gcm - 167 cm, by = 2%”“— - 125¢cm

= 2h 2
bs = 10 cm, bg = 8.3cm, by = 7.1cm, bg = 6.2cm.

The ampliiudcs corresponding to these dislances are plotied in Fig. 8.16.

Another conclusion of some historic interest follows if we-substitute the aperture by
a circular disc or a round obstacle just covering the first Fresnel zone. The light
reaching the point of abservation Py will be due 1o all zones except the first. The
second zone is thercfore the first contributing zone and the iniensity of light spot at
the centre of the shadow of the obstacle will be almost equally bright as when the
first zone was unobslructed.

You may now ask: Why is the bright spot at the centre only? This is because there
is no path difference and hence phase difference between waves reaching an axial
point. At any other off-axis point, waves will reach with different phases and may
tend to cancel mutually. The exisience of this spot was demonstrated by Arago,
though Poisson gave his theoretical arguments to disprove wave theory of light.

You may now like 1o answer an SAQ.

5AQ 1

A 25 paisé coin has a diameter of 2 cm. How many Fresncl zones does-it cut of if
‘the screen is 2 m away? Do you expect 1o see a bright spot at the centre? Ifwe

. "move the screen fo a distance of 4 m, how many zones wilt it cut off? Will the
bright spot now look brighter? Why? Take A =5 x 107 'm.

So far we have discussed diffraction patierns which had axial symmetry: the object
or aperture was circular and the plane wavefront originated from a point source. We
now wish to consider the case wherein source is a slit source. This source will emit -
cylindrical waves with the slit as axis. Let us now study the diffraction pattern ofa
straight edge: ' '
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The slit has a very small width
compared to ils length. Or we
may say thal in comparison to
its width, it hus an infinite Jength.

G T

8.5.2 A Stralght Edge

Let S be a slit source perpendicular to the plane of the paper. This sends a
cylindrical wavelront towards the obstacle which is a straight edge perpendicular to
the paper. You can take a thin metal sheet or a razor blade with the sharp edge
parallel to the slit: Fig. 8.17(a) shows a section perpendicular to the length of the
slit,

Flg. 8.17: (a} Cruss sectional view of Lhe geomelry to observe diffractlon due 1o a
stralght edge and (b) Fresncl constructon divides the cylindrical wavelront in
half period strips
The line jomning S and E, the point on the wavefront,when produced meets the
screen at Py,which is the geometrical boundary of the shadow. Consider any point P

on the screen. A line joining it 10 5 cuts the wavefront at R. We wish to know how
intensity varies on the screen. This calculation is somewhat complicated because we
now have a cylindrical wavelront. Moreover, the obstacle does not have an axial
symmelry. : :

For a plane wave and obslacles with axial symmetry yon know how to construct E
Fresnel zones. To construct balf period elements for a straight edge, we divide the
cylindrical wavefront into strips. As before, we make sure in the construction that
the amplitudes of the wavelets from these strips arrive at P, out of phase by & so

that alternale terms are positive and negalive, This is achieved by drawing a set of
circles with P as centre and radii b, b + %, b+ 22—)\', ... elc. cutting the circular
section of the cylindrical wave at poinis 0, AA’, BB, CC’, ... Fig. (8.17b). If lines
are drawn through 4, A', B, B etc. normal 1o the plane of the paper, the upper as
well as the lower half of the wavefront gets divided into a sct of halF-priod strips.
These half period strips streich along the wavefront perpendicular to the plane ol

the paper and have widths OA, AB, BC ... in the upper half and OA’, A’ B, B' C', ...
in the lower half. You may recall that Fresnel zones are of equal area, For hatf .
period strips, this does not hold. The areas of half--period strips arc proportional to -
their widths and these decrease rapidly as we go out along the wavelront from O.

A——

From the geomelry of the arrangement it is obvious that on the screen there will be
no intensity variation along Li€ difection parallel to thé léngth of the slit. Therefore,
the bright and dark fringes will be straight lines parallel to the edge.

A plotof theoretically calculated intensity distribution on the scréen is shown in
Fig. 8.18. You will note the following salient features:




(i) Aswe go from the point P’ decp inside the shadow tlowards the point O Fresnel Diffractlon

defining the edge of the shadow, the intensity rises gradually. At P, the
intensity is almost zero.

-(ii) At O, the intensity is one-fourth of what would have been the intensity on the
screen with the unobstructed wavefront.

(iii) On moving further towards P, the intensily rises sharply and goes through a 1
alternating series of maxima and minima of gradually decreasing magnitude

- and approach the value for the unobstructed wave. This is expecled since effect !

of the edge at [ar off distances will be almost negligible.

(iv) The intensity of first maxima 1s greater than the intensity of unobstructed

wave, i.e. it is greater than 4 times the intensity at O. Beyond these alternate ' S
maxima and minima, there is uniform illumination.

: Flg. 8.18: [ntensity distribution

(v) The diffraction [ringes are not of equal spacing (as in interference In the diffrnction patiern due to
experiments); the [ringes gradually come closer together as we move away _astraight edge CL,
from the point O. - _ ' .

You may now like Lo know atleast qualitative explanation of these results, To do'so,
we first consider the illumination at a point P outside the geomelrical shadow. The
line joining P and S cuts the wavefront at R so that the wavefront is divided in two
parts. The amplitude of light at P is due to the part WE of the wavefront, which is
completely unaffecied by the straight edge. The amplitude at P will be maximum if
RE contains odd number of half strips. This will happen if EP - RP = (21 + 1) A /2.
(When EP - RP = n ), the portion RE wiil contain even number of strips.) As
pointed out earlier, the amplitudes due to strips are alternately positive and negative. '
Therefore, as point P moves away from O, the jllumination on the screen will pass
allernately through maxima and minima when the number of half period strips in
REis1,2,34,...

It is worthwhile to ponder as to what patlern the geometry of the experimental
configurations throws ? We expect dark and bright bands parallel to the edge.
However, the dark bands will not be completely dark, since the upper half of the
wavefront RWalways contributes light to this parl of the screen.

Let us now consider the situation [or the point P' inside the gecometrical shadow.
Refer to Fig. 8.19. You will note that the corresponding point R is shifed below the
edge so that the illumination at P’ is due entirely lo the wavelets from the upper half  gg.8.19: The obscrvation
of the wavefront; the lower portion having becn blocked by the edge. Even the point is in the geametrical
upper half is exposed only in part. If the edge cuts off 7 strips of the upper half of shadow of the stralghl edge
the wavefront, the elfect at P’ will be due to (r + 1), (r + 2), (r + 3) etc. sirips which

may be taken to be equal to one-hall of that due to (r + 1)th strip. This will rapidly

diminish 1o zero as shown in Fig, 8.18, because the effectiveness of higher order

strips goes on decreasing.

ey

Let us now deduce the width of the diffraction bands. Again Refer lo Fig. 8.17(a).
Suppose that we have the nth dark band at P. Then

EP - RP=nh (8.6)
From the A EPQ, wc have
2172 :
EP = (B +217 wb|1+% ;
W
2 2
1x -1x
Eb[1+'2—b—2)=b+§'g (8.7)
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where we have retained only first two terms in the binomia! series.

From the A SPO, we can similarly write
2

1 x
SP-(a+b)+2(a+b)
Hence,
1 'xz
RP-S.FT-—SR=b+'2—(—"]‘+—b)' (8.8)
and EP-RP b+ 12 _ 12
- 2b 2a+b
2 2 2
1| x X X a .
'z(b -a+b)-'2b(a+b). &.9)
For the nth dark band, we get
i a
2b(a+b)_"l
or

X = Vn Maa'*—b)k h (8.10)

We therefore find that the distances of the dark bands from the edge of the geometrical
shadow are proportional to the square oot of natural numbers. Consequently the bands will
get closer together as we go out from the shadow. This fact distinguishes the diffraction
bands from the interference bands, which are equidistant.

To enable you to grasp these ideas, we now give a solved example.

Example 4

In the above experiment if 2 =30cm, 5=30cmand A=5x 10°° ¢m, calculate the
position of the 1st, 2nd, 3rd and 4th minima from the edge of the shadow.

Solution

From Eq. (8.10) we know that the distance of nth minima from the edge of the
shadow is given by

. \/"?b(a; b),

If we substitute given values of a, b and ) and take 2 = 1,2,3,4 we find that

2 x (30 60 _ 2
xl-[ x ( ;1:;;:( M)x(SxIOSCm)

- 7.75 x 10" 2cm
X = VZx =109 x 10" ' cm
X = V3x =134 x 10" cm

Xy = 23 = 155.x 10" em.




From these values we find that the distance between conseculive minima decreases Fresnel Diffraction -
continuously as we move away from the edge of the shadow. - '

You may now like to answer an SAQ.

SAQ2
. : . , Spend
Instead of the straight edge we keep a narrow. obstacle, say a wire of diameter 2 min
1 mm. What will be the intensity on the screen?
Let us now summarise what you have leamt in this unit.
8.6 SUMMARY

e When the distance between the source of light and the observation screen
or both from the diffracting aperture/obstacle is finite, the diffraction
pattern belongs to Fresnel class.

e When the screen is very close to the slit, the illumination on the screen is
governed by rectilinear propagation of light.

o The Fresnel diffraction pattern represents fringed images of the obstacle.

Depending on the distance, there can be an infinite number of Fresnel
diffraction patterns of a given obstacle/ aperture.

e When plane wavefronts are incident ona diffracting slit and the pattern is
observed on a screen effectively at an infinite distance, the diffraction
pattern belongs to Fraunhofer type. Unlike the Fresnel diffraction, there is
only one Fraunhofer diffraction pattern.

e Fresnel construction for the diffraction pattern from any obstacle on which
a plane wavefront is incident consists of dividing the wavefront into half
period zones. -

o The area of each Fresnel half-period Zone is equal to thi

e The resultant amplitude due to nth zone at any axial poinl is given by

Ay 8
a, = P, ( , + cos8)

e The magnitude of resultant amplitude AB due to the first half period - : _ -
element is ;2; times the value which would be obtained if all the wavelels :
within the half- period element had the same phase. '

& The phase of the resultant vector of the first half period zone is % be_hind
the phase of light from the centre of the zone.
" e A zone plate is an optical device in which alternate half-period Zones are I _:
_ blackened. ) . _ ]
. The diffraction pattérn due to a circular aperture consists of a central o o L
bright spot. - S ' I .

e The diffraction pattern of a straight edge consists of alternate bright and
dark bands. The spacing between minima (or maxima) decreases as we
move away from the edge of the shadow: S

L%y T
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Fig. 8.20: A cross-sectlonal
. view of the arrangement for
‘producing diffraction due to a
. ‘narrow obstacle .

8.7 TERMINAL QUESTIONS

1. Stanting from Eq. (8.4) establish Eqs. (8.6) and (8.7). Assume that the obliguity
factor is such that each term in Eq. (8.4) is less than the arithmetic mean of its
preceding and succeeding terms.)

2. The eighth boundary of a zone plate has a diameter of 6mm. Where is its
principal focal point located for light of wavelength 5000 A.

3. How many fresnel zones will be obstructed by a sphere of radius 1 mm if the

screen is 20cm away ? Take = 5000 A. If the distance of the screen is increased (o
200 cm, What will be the size of the sphere which will cut off 10 zones.

8.8 SOLUTIONS AND ANSWERS

SAQs

1. The radius of the coin is equal to 1 cm. To know the number of zones being
obstructed, we use the relation

Ty
YN
where 7, = 1cm,b=200cmand A = 5x 10" cm.

(1cm )’
(200cm ) x (5 x 107> em)

Hom

= 10

You should definitely expect to see a dim spot at the centre because eleventh zone
is the first contributing zone.

When the screen is 4 m away, the number of zones being obstructed is given by

(lqcm)2
(400cm) x (5 x 105 em )

H o

=35

That is, only five 2ones are obstructed now and the first contributing term in Eq. (8.4) is g,
which will contribute more than a,,. Therefore, the central spot is expected to be
brighter, Does it not contradict the inverse square law?

2. Referto Fig. 8.20. A point P, outside the geometrical shadow is similar to such
a point in the straight edge. So we will have unequally spaced bright and dark
fringes parallel to the wire on each side of the shadow. What is the intensity at -
@ inside the shadow ? It is simply half the effect of the first haif period strip on
either side of the thin wire. It will show equally spaced fringes inside the
shadow. '

TQs
1.  Werewrite Eq. (8.4) as

—ay =+ @)

=T
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: a, . - o . : :
When n is odd, the last term would be -21 We are told that the obliquity is such that
-each term is less than the arithmatic mean of its preceding and succeeding terms

Lia | + a,,, ) Then,the quantities in the parentheses in (i) will be
2 =1 n+1 P :

positive, So when r is odd, the minimum value of the amplitude of the fields .
produced by consecutive zones is given by

ie,a,>

a(P)>5(a va) | )

To obtain the upper limit, we rewrite Eq. (8.4) as

a & a5 9 6 G -1
a(Pg) =6 -5~ 5 ~ @+ 5 -5 Tt 5T T "2 t a,.

2 2

Following the argument used in obtaining the lower limit on the amplitude, we find
that the upper limit is

a
a(Po)cal—%— '"2_1 + a, (ii)

Since the amplitudes for any two adjacent zones are nearly eqilal, we can take
a, . = a, Within this approximation '

a, + a,

0“-30)‘:__-7— (iv)

The results contained in (i) and (iv) suggest that when » is odd, the resultant
amplitude at P, is given by - '

al‘l‘an
2

a(Py) = v)

Following the same method, you can readily show that if n were even, .

ﬂl—a

ﬂ(Po)- 2 - (Vi)

2. Dg=06cmsothatrg=03 cm,We know that

2
n
fa = nkh
rno 2
f = s (0.3cm)
8. g x (5x10°cm)

= 2,25 % lozcm

- 225cm

3.a) The radius of a Fresnel zone is given by

r, = Vehb

Fresnel Diffcaction
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DimcBGowstion

' Heréhwe are told thit 7 0.1 ciri, b= 20-ciitand k= 5%107 “em. 11

3

ol 10" em?orv
T 20em) x (5 x 10 em )

B 10

(b) (In thiis partiwerbavé:to calculate r; for given values.of n = 10,56=200cmand

A=B5x 107 %c‘h'l:llx'!n‘.

r,="V10/%:(200 &) x (5 x 10 Som ) -

= 0.32cm’ -
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9.1 Introduction
Objectives

9.2  Diffraction froma Single slit: Point Source:
Observed Pattem . .

Calculation of Intensity Distribution
9.3  Diffraction by Circular Aperture -
94 Summary
95 Terminal Questions
9.6 Solutions and Answers

9.1 INTRODUCTION

In the previous unit you studied Fresnel diffraction and learnt that the diffraction.:. :
pattern depends on the distance between aperture and screen as:well asithe sourcesic.
As the observation screen is moved away from the aperture, the diflractionipatiernt. . :
passes from the forms predicted in turn by geometrical optics, Fresnel-diffractiont.:
and Fraunhofer diffraction. When plane wavefront is incident at the: diffractingtio .
aperture, the transition from Fresnel t0.Fraunhofer pattermn is-determined by the ratio.uio
of the size of the diffracting obstacle to its distance:from:1he sourceand/ordhe thc
observation-screen.. You will now: learn about Fraunhoferdiffraction ndetaik il

In Sec. 9.2 we have desciibed the experimentat arrangement and salient feattires.of ol
the observed Fraunhofer diffraction:patternifromia:singleslit illurtinated by & pointoint
source: Thistisifollowed by 4 simple discuission-on theoretical andlysis of the the
observed results. Since we deal with-plane. wavefronts, you will\iddithal theoretical i. 1)
analysisis Fairly simple. In-Sec. 9.3 we have desctibed Frduniheférdiffra¢tiontbyay «
circular-aperture:because-of.its importance for optical devices: Youwillledrh that il
the diffraction patlem-consists of a céntral bright disc (called 'Aitydisc)surrounded dod
by concentric dark and bright rings. As a‘coroliary; you williséd that‘arandomiarrayre:v
of small and closely circular obstacles gives:overlapping diffraction ipattemns called!ici:
haios. You may have observed brilliant halos while deriving a.car. whosé:fogged....
window is illuininaled by molorcycle at the back. We shall discuss the. physieai:cis!
basis [or diffraction halos al the end of.this unit.

Objectives -

After going through his unit.you will be able to . .- -
* describe experimental arrangement for observing Fraunhofer.diffra¢tiontion

pattern from a narrow verlical slil and a circular aperture:.” -~~~

® explain observed irradiance on the basis oféirﬁple‘lhébrelicﬁ! analysns, 3

_‘ solve numerical problems, and

* .explain formation of diffraction halos. -

52 DIFFRACTION FROM A SINGLESLETZFOTRING -
CUSOURGE G vt e oo sl

From the previous unit,'you may recall that 1o.observe. Fratihhoféndif{rﬁélidmi-un )
pattern;we require:a point:source; whicki is far-away{almiost atsnfidity fromahe the

29
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-shown in Fig. 9.1. The source of light is placed in the focal plane of a converging

after passing lhrough:ilzt_: vertical slit, light spreads along a horizontal line. This —

C gt e gemmmen el el G e e

diffracting aperture (a single slit in the present discussion). The wavefronts of light
-approaching the diffracting aperture can be assumed to be essentially plane. The
observation screen should also be at infinite distance from the aperture. You may
now like to ask: Is it practical 1o put the source of light and the observation screen at -
infinite distance from the diffracting aperture? This definitely is not practical
because (i) the intensity of diffracted light reachin g the observation screen would be
reduced infinitesimally (inverse square law) and (i} we will require infinitely big
laboratory rooms. Do these limitations suggest that we cannol observe Fraunhofer
diffraction? These difficulties are readily overcome by using converging lenses in

an aclual experiment. : ‘

A
U
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Diffraciing \U
© Screen Observation

Screen

Fig. 9.1: Produclng Fraunhofer diffractlon paltern

The experimental arrangement for producing Fraunhofer diffraction pattern is

lens Ly, so that a plane wave is incident on a long narrow slit. Another convergent
lens L, is placed on the other side of the slit, The observation screen is placed at the
second focal point of this lens. Then light reaching any point on the observation
screen is due o parallel diffracted wavelets from different portions of the wavefront
at the slit. You must note that the observation screen and diffraction screen are kept
‘parallel. Moreover, both the screens are perpendicuiar to the common axis of L, and
L. The slitis so adjusted thal the common axis of these lenses is perpendicular to
the lenglh of the slit and passes through the middle of the slit both in height and
width.
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In a physics laboratory this arrangement is easily achieved by using an ordinary
speclronicter. We hope that you gol an opportunily to work with a spectrometer in
your second leve! laboratory course. To observe the diffraction from 4 point source,
the slit of the collimator should be replaced by a fine pinhole, which should be
carefully positioned at the focal point of the collimator lens. The observation screen
can be placed at the second focal plane in the back focal plane of the telescope,
Alternatively, we may observe the back focal plane of lens L, with an eyepiece. The
diffracting screen with slit aperture, is placed between the two lenses suitably on the
turn table. '

9.2.1 Observed Pattern

Let us pause for a minute and think how wonld diffraction pattern of the vertical slit
appear ? Or what would be the distribution of intensity in this patiern ? You may :
think that the diffraction pattern would be a single vertical line or a series of vertical |

- lines on the observation screen: This liné of thiought is wildly off-target. The actual !

diffraction pattern is astonishingly different; it consists of a horizontal streak of
light composed of bright elongated spots connected by faint streaks. In other words,




neans that diffraction pattern is along a line perperidicular to the length of the Fraunhofer Diffractlon -

fiffracling slit. You may interpret this horizontal diffraction as a spread out image
f the point scurce. The extent of horizontal spreading is controlled by the width of
he slit; as the width increases, the spreading decreases. And in the extreme case of
| very wide slit, the (horizontal) diffraction streak reduces 1o a bright point.
>hysically, very wide slit means that the slit has effectively been removed.
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Fig. 92: Observed Fraunholer dillcaction pattern of a diffracting slit

The salienl features of the observed Fraunhofer diffraction pattern of a single
vertical slit from a point source are shown in Fig. 9.2. These ar¢ summarised below:

ij The diffraction pattern consists of a horizontal sireak of light along a line
perpendicular to the length of the slit.

ii) The horizontal pattern is a series of bright spots. The spot at the central point
B, which lies at the intersection of the axis of L,and L, wilh the observation

screen, is the brightest. On either side of the brightest spot we observe many
more bright spols symmetrically situated with respect to &

iii) The intensity of the central spot is maximum. The peak intensilies of other The width of an image is -
“spots, on either side of the central spot, decrease rapidly as we move away specified by the dislance
.from B. The central maximum is called principal maxima and the others as between hwo conseculive

R minira.
secondary maxima.

iv) The width of the central spot is double of the width of other spos.

v) A careful examination of the diffraction pattern shows that the central peak is
symmetrical. But on either side of the central maximum, secondary maxima
are-asymmelrical. In fact, the positions of the maxima are slightly shifted
towards the observalion point B.

Let us now learn the thecretical basis of these results. -

9.2.2 Calculation of Intensity Ditribution

The first step in the calculation of intensity distribution is lo realise that the
observed-diffraction patiern is focussed on the observation screen-placed-at the back -
focal plane of lens Z,. We know that only parallel rays are brought to focus in the *
back focal plane of the lens. The beam of rays parallel to the axis of the lens are
focussed at the focal point. However, the beam inclined to-the axis of the len§ is
‘brought to focus on the back focal plane but away from the focal point:-We-canas - -
well describe this observation in terms of the wavefront; the two being

perpendicular 10 each other. Since diffraction pattern lies on a horizontal line

(which is at right angles to the common axis of L, and L), the diffracted wavefronts *
will be vertical planes perpendicular to the plane of the paper: That is, after passing -~ -

iar




L Diffraction

We take Lhe plane of the paper

.+« as horizontal The plane cf the
‘vuy~-paper is defined by the

i+ diffraction streak and Lhe axis of
" 1helens La.

: -~--'I‘wosourmarqsaid o be
v+ colerent if they emit in-phase
w v waves of the same requency,

- ivthrough the. vertical slit, the incident-plane waves are replaced by a system of

- vertical plane waveés which-proceed in different directions. Therefore for our
theoretical analysis it is sufficient to assume that when a plane wavefront falls on
the diffracting slit;icach point of the.aperture: stch:as A A Ay A,... B(Fig. 9.3)

- becomesa-source of secondary. wavelets, which;propagate'in the direction of the
point B under:consideration. These are diffracted plane waves. {You should realize

- that diffracted waves have no existence in the domain of geometrical optlics. The

* diffracted waves arise due to interaction between light and matter. In the present
case, the interaction is between light and the jaws of the slit.)

T

t . Fig8.3: Geometry of alngle slit diffraction

Refer to Fig. 9.3 which shows the geometry for the irradiance at the-point £ (on the

- distant screen) which makes an angle 8 with the axis. In order to sum up the
contributions of different wavelets at £, we must know their amplitudes and phases.

The amplitudes of the disturbances from A, A, Az, ... will be very nearly equal.
Do you know-why? This is because the distance of point P, from the diffracting

- sereen:is very large compared to the width. (b) of the aperture.

Now let us-consider the phases of the disturbances reaching the point Py. You will

- agree thatthe pointsA , Ay , Ay , Ay, ... Bwithin the aperture form a series of coherent

sources since they have criginated from the same point source. Also points 4, Ay , Ay ,... B

- -arg in-the same-phase since they lie on the same plane wavefront. The phase difference

- between different diffracted rays reaching £ arises due to.the difference ini path lengths

~travelled by:them to reach. this point.To know:the:phase difference, we draw.a plane

+* normal to:the:paialleldiffracted rays: The.trace of this.plane in the-plane of the:paper is

AD (Fig.'9.3). Though the disturbances are in phaseat points A , A, , 4, , ...-B when

- -they start; they resch the trace AD in-different phases:because:of the unequal path
~lengtls ravelled by théih: The optical pathsof diffricied wiaves from the plane AD.
' “tothe:focal point F-are équal: The opticil pathis of all rays bétween perpendicularly
" - intersecting planes-containing the parallelbeam.of light and the point where rays

- converge after traversing the:lens are equalsTherefore, the wavelets arrive aBwith
. the sante relative phasé difference as the ones existing-at the trace AD.

- Letus consider the aperture AB to.be divided into n «equal parts'so fﬁnb,AAl = A,Az =
. ‘AgAy= bjn = A It medns thatithe aumberof point:sources is-(n1.+1)i-Actually, the
- aperture contains-a-continuousdistribution-of points-from:A:to.B; and-therefore in

f
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.« the limiting case,n —».¢0 and A ~»0:such that RA — b :Consider two.raysstarting
+ fromtwo neighbouring pointsA' and'4;.. The path.difference: between:thern is A4,
; : sin® where 6 is the angle between the, dlfﬁ'acled -1ays and the:normalio the slu

I . Hence the corresponding phase difference.is given by

Jv AW e mdng2m (b Nix s
¢_,:I_ n—l- (AA&smB)—;_L ’T(,}rlesms)q-/_\%zxsmﬂ _ (2.1€9.1)

. Let the field-at Pg due to.the-disturbance originating:fromA.be 4y cos WicThen, the
field due to the disturbance from A, is @ cos (0t - ) Hereiwe have:assimed that
the amplitudes of disturbances from different points are.equal: The fields due to
dsunbanoa&unsumvepomm!z, As,...Bareaycos { wt,—2 Jyggcos (0¥ 3 ¢ )

.; @gcos ( w-£—.nd:),respectively. The magnitude ofiresultant field Eat-Pyjsequal

to the sum of these disturbances. Hence
E = agcos of + ag cos ( 0f - § ) + @y 005 { &f =20 ) + it ag cos:(-0hs-ind )

In Unit 2 of PHE-03 course on Oscillations and Waves, we,summed up thisseries
- .(Eq.(2.38)). We, will just quote the.result here: -

fra,’ém?i
E wa|

- TmiEy oos[m: - %) (9.292)

fox{s-2)

" where Ej is the amplitude-of the resultant field'at Py :
s ( 2

) (6.3(9.3
% sin( $72) 0363)

Eo-

In the limit # — © and A — 0, n A —b. Then from Eq. (9.1) we have

% ':%%Asme - l(mﬁn)smﬁ -iwbﬁmﬁ

sothaty = %— MWI be very,small-for.n.—/0. We;may therefore. write

n T y ip ,J;b\sme
Rk I-SIII[ 2) "2 ﬂ)\.
<:-Substitute thisresultin Eq2(9%:3). Onsimplification yow willifind that

D)y T

0 Eg ,sinf()q;/z) d?qv(cp/z "J"?Rbgnbes B)
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.- 1.-Where:we.have: written
A «Anein ay

£ cnuBrambiken Difcaction .
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"and . e

: -bsinB .
B=mxn Y . , (9.5)

You will note that for a given wavelength, f signifies half of the phase difference
between disturbances originati ng from the extreme points A and B. The expression
for resultant field at Py takes the form

Eg=A %ﬁcos (wr - B) (96)

The corresponding intensity distribution at Py is given by

Iy = A (S_Elﬁ)z (.7)

Let us pause for a while and ponder as to what have we achieved. This result
suggests that the intensity is maximum at 6 « 0, Thijs readily follows by noting that
when we substitute 8 = 0 we have both B and sin B equal to zero but

Jim 308 _ 4

f=eo ﬁ !
Therefore,

This result is expected on geometrical coﬁsideralions. In the limits of a distant
screen, the central point becomes equidistant from each point on the glit. All
diffracted waves arrive in phase at Py and inlerfere constructively. A ~ is then the

value of the maximum intensity at the centre of the pattern. This maximum is also
termed principal maximum.

For brevity we write Iy_o = Al - 1. Then intensity at any point at an angle ©
with the horizontal axis, is given by

il

Positlons of maxima and minima

A plot of Eq. (9.7) for intensity distribution is shown in Fig.9.4. You will note that
the intensity is maximum for 8= 0: f, _, = Iy =A". The intensity gradually falls on
either side of the principal maximum and becomes zero when Bu+norf =g
since sin (+ 7 ) is zero. This is the first minimum. So we can say-that the angular
haif width of principal maximum is from 0 to . The second minimum on either
side occurs at f = + 2 %, Thus we get the-minima when T

B==xox,+21m,+ 3x ...
=Mt .m=t1,x2 £3.., (5.8)
Note that the value m = 0 is excluded because it corresponds to the principal

maximum (for § = 0). Substituting the value of f from Eq. (9.8) in Eq. (9.5) we find
that the condition for minima is given by .

TiY b Rad g
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bsin® = £A, 27, 3 A ...

e miomex1,22,23,... (9.9)

You may now conclude that the angular width of the principal maximum (7 = 1) is

defined by bsin@ = Aor@ = %
That is © depends upon the wavelength of lfght and the slit width. For a given slit
~ width, the spread in diffraction pattern dcpends directly on the wavelength.

Accordingly you should expect that red light will be diffracted through a larger
angle than the blue or violet light.

You may now like 10 know: What will happen when white light illuminates a single
slit? We expect that each wavelength wili be diffracted independently. This gives
rise 10 a white central spot surrounded by coloured fringes. The outer part of this
pattern would tend to be reddish. You can easily observe this diffraction pattern by
looking through the tines of a dinner fork at a candle in a dimly illuminated room. -
On twisting the fork about its handle, you will observe the diffraction pattern as
soon as the cross-sectional area becomes small enough.

a2
The expression fg = I S—EE gives the diffraction intensity in different

directions. In order to determine the directions {and positions) of secondﬁry
maxima, we differentiate this equation with respect to p and equate the result to
zero. This gives

&' sinB\[ PcosP — sinf
ap 2’“(-&)[. 2

- 2'Iosinﬂ[%ﬁ— %E] -0

or _ sinp(p-tanf) = 0
From this we get the conditions sinf§ = Oandpf—-tanf = O

The condition sin p = 0 implies that § = = mm, where m is any integer. This is a
trivial condition as it signifies minima and is of no interest.

The condition B = tan P therefore gives the positions of secondary maxima. This is
a transcendental cquation. The roots of this equation can be found by a graphical
method. All you have to do is 10 recall lhal an angle equals its tangent at
intersections of the straight line

y=p
and the curve

y = tanf} | ' (9.10)

Plots of these curves are also shown in Fig. 9.4. The points of interseclion excluding
B = 0 (which corresponds to principal maximum) occur at B = 1.43 x, 2.46m,
3.47x ete. and give the position of the first, second, third maxima on either side of -
the central maximum. You shou!d note that these ma)gma do not fall midway
between the two minima. For instance, the first maximum occurs at 1.43 & rather
than 1.50 m. Similarly the second maxima occurs at 2:46 7 rather 2.50 x and so on.
This means that the intensity curves are asymmetrical. The plot clearly shows that
the positions of maxima are slightly shifted towards the centre of the pattern. You
may recall that this is observed experimentally as well.

_pamallel diffracted raysina

Fraunhofer Diffraction

A very clear idea of the single slit

paitern can be obtained from the .
following simple qualitative ~
argumcnt. The path difference
between waves diffracted by
exlrame poinis in the slitis BD = b
sind (sce figure below). I 8D is an
integral multiple of &, we will
show that the resultant intensily al
Pg will be zero. For m = 1, the
angle @ satisfies the equation b
sinf = A. We divide the slit into
two cqual halves AM and MB as
shown in the figure below.
Consider the waves starting [rom
the two point sources A and M. The
path difference between them is
AM sin@ = (bf2) 5in 8 = A/2, The
corresponding phase difference
will be x. Therefore the two waves
on superposilion lead to zero
intensity at P1.Similarly, fora point
A1, just below A, there will be a
comesponding point M jusi below
M such that the path difference
between distbrbances generated by
them is again A/2. On superposition,
this pair also leads lo zero intensity
at P;. We can-thus pair off all the
points in the upper half (AMf) with
corresponding points in the lower
half (MB) and the disturbances due
to upper half of the slit will be
cancelled by disturbances due lo
the lower half. So the resullant
intensity at P; will be zero. This
explains why we gel a minimum
intensity at.P; when the path
difference between Lhe mys [orm
extremes equal lo A

Lel us now consider the casem = 2
50 thal the path difference b sin@
between the extreme rays is equal
to 2A. You can now imagine that
the slir is divided into four equal
parts and by similar pairing show’

-that the first and sccond quarters

have a path difference of A /2 and
cancel each other. Third and fourth
quarters cance! each olhcr by (he
same argument so (hat the resuliant
intensity in the focal plane at Py is
again zero, For i = 3 the path
difference between the two
extreme rays b sinf = 3 A In this
case, the slil should be divided inlo
six equal parts 1o show similar
pairing and cancellation and then
leading lo zero intensity. By this
simple qualilalive argament, we
have shown thal when the path
difTerence bebween Ihe extreme

particular direction is an lnlegral
mulliple of A, the resullant
diffracted intensity in thal dircclion
is Zero.
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Diffraction

y = B is a straight line passing
through the origin. y = tanp is
represented by a family of

curves having for asymplotes

ﬂ'%l’ézs
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Fig.9.d: Amplitude and intensity conlours for Fraunhofer diifracticn of a slnglﬁ'l
slit showing positlons of maxima and minlma

Let us now calculate Lhe intensities at these positions of maxima. The intensity of
first maximum is given by

143 = 0.0496

2
( sin 1.43 :rs)
This means that the intensity of the first secondary peak (nearesl Lo the central peak)
is about 4.96% of the central peak. Similarly, you can calculate and convince
yourself that the intensities of the second and third maxima are about 1.68% and
0.83% of the central maximum. We call these maxima as secondary maxima.

The intensities of the secondary maxima can be calculated 1o a fairly close
approximation by finding the values of § a1 halfway positions i.e. at
B = u+2n:’ 2 +3n 3n+4n

3 2 T g ek The intensities al these positions are
7-i- A, 4 - 1 1 L. of the central maximum which are

o’ ’ 2552 ’ 4977 or 221°61.7 " 121°
very close to the above calculated values. From this you may conclude that most of
the light is concentrated in the central maximum. :

Another important characteristic of the principal maximum is that its width is
doubie of the width of secondary maximuni, We have lefl ils mathemalical proof as
an exercise for you. Before you proceed, you should solve SAQ 1.

SAQ1

Show thal the principal maximum is twice as wide as the secondary maxima.

To give_you a feel for numerical values and {ix up the ideas developed in this
section, we now give a few solved examples. You should go through these
carefully.

Example 1

In the experimental set up used to observe Fraunhofers diffraction of a vertical slit
(width 0.3mm), the focal length of lens L, is 30 cm. Calculate (a) the diffraction
angles and positions of the first, second and third minima, and (b) the positions of
the first, second and third maxima on either side of the cenlral spol. The slit is
illuminated with yellow sodium light which is a doublet. You may take:

A= 6000 A.

[




Solotion Fraunhofer Dlﬂ'racl]un ’

You have seen that the conditions for minima are given by bsin @ = mk.;
m = =1, %2, +3, ... For small values of 8, we may write sin 8 = 0. Then

8=m%

and the distance Py Py is f@ wherc fis the focal length. Therefore, the diffraction

angles 8y, B, 6; for the [irst, second and third minima are %, 2 %, and 3 %,

respectively.

On substituting the numerical values of A and & we {ind that

1%

_ 6000 x 10 cm

3 = 2x 107 rad
0.3x10 " cm

B, = 20, = 4x 10 rad

B; = 36, = 6x 107 rad

The distances 4,, da, d, of these minima from the central spot are

dy = f0, = (30cm)x2x 107 = 60x 1072 cm = 0.06 cm
d, =2f6, =2x006cm = 0.12cm

dy = 3f8, =m2x006cm = 0.18cm
You will nole that these minima are separated by a distance of 0.06 cm on the focal

planc of the lens. We know that the first three secondary maxima occur at Bp=143m,
2.46 7 and 3.47n, respectively. The corresponding diffraction angles for these three

maxima arc

(6] Jax = 1.43 %,(e2 Imax = 2.46%and(93 Ymax = 3.47—’5— j

(8 )par = (1.43)(2x107), (8, ), = (246)(2x107),

and )

(03 e = (347)(2 x 107%) L

- and the corresponding dislances from 1he central point (Pp)-are . S -

(VR )

dy = f(8),,, = (30cm) x 143 x 2 x 107° = 086 cm

d3n | dliaAn | ey

dy = f(8y),., = (30cm) x 2.46 x 2 x 10°° = 0.16 cm

dy = F(83)er = (30cm) x 347 x 2 x 1077 = 021 cm




Diffraction Example 2

In the above experiment, we change slit widths to 0.2mm, 0.1mm, and 0.6mm.
Calculate the positions of the first and second minima.

Solution

For slit width & = 0.2 mm, we have

6000 x 10~ cm

dl-.fel-(socm)'x — = 0.09 cm
: 02x10 "cm
Similarly
dy = f8, = 2x0.09cm = 0.18 cm
e . - These minima are separated by 0.09 cm. Recall that the corresponding value for a

slit of width 0.03 cm was 0.06 cm. This means that for a given wavelength, the
spread of secondary maximum increases as slit width decreases. This conclusion is
brought out in the following calculations as well.

For a slit of width b = 0.1 mm, we have

6000 x 10™ % cm
01x10" ' em

dy = (30cm)x

= (.18 cm

and

& = 2x0.18 cm = 0.36 cm
For slit width & = 0.06 mm, we have

6000 x 10” % cm

d = (30cm)x 1
0.6 x 10" "cm

= 0.3 cm

and

d, =2%x03cm = 0.6cm

We thus find that for slits of widths 0.3mm, 0.2mm 0.1mm, and 0.06mun, the first
minimum on either side of the principal maximum occurs at distances of 0,06 cm,

0.09 ¢m, 0.18 cm, and 0.3 cm. In these four cases, lhe corresponding principal
maximum extends over 0.12 ¢m, 0.18 cm, 0.36 cm, and 0.6 cm.

This shows (hat as the slit becomes narrower, the spread of ceniral maximum
-increases. Conversely, the wider the slit width, the narrower is the central
diffraction maximum.

We now consider an interesling case where width of the slit is varied in comparison
to the wavelength of light.

Example 3

Consider a slit.of width b = 10x', 5A and A Calculaie the spread of the ceniral .
maximum.

P — T, r————



Solution

From Eq. (9.9), we note that for a slit of width & = 10 A, the first minimum is
located at

10Asin B = A
or
sin® = 0.10
and
8 = 57°
For a slit of width 5k, ;ve have
Shsin® = A
or -
0 = 11.5°

That is, as the aperture of the slit changes from 10A to 5A, the diffraction pattern
spreads out about twice as far. Forb = A,

sinB = 1

or

0 = 90°

The first minimum falls at 90°. Thal is, the central maximum spreads out and the
diffraction pattern shows no ripple. These features are shown in Fig. 9.5.

You may now like to answer an SAQ.

SAQ 2

We illuminate the slit of Example 1 with violet light of wavelength 4358 A from a
merchry lamp. Show that the diffraction pattern shrinks correspondingly.

‘Diffraction Pattern of a Rectangular Aperture

So far we have described Fraunhofer diffraction pattern of a slit aperture. Let us

now consider as to what will happen if botk dimensions of the slil are made

comparable. We now have a rectangular aperture of width 5 and height g as shown

in Fig 9.6 (a). We expect that (he emergent wave will spread along the length as

‘well as the width of the slit. Can you depict the diffraction pattern? It is shown in
L o N !(_,sinl‘;[i!siﬂl2

Fig. 9.6 (b). Mathematically, the intensity is given by I = 2—[32

a

B = bnsinB/Aand o = ;wasin 8/A.

where

Slit Source

The experimental arrangement shown in Fig. 9.1 is modifed as shown in Fig. 9.7.
Here instead of the point source we use a slit source (Fig. 9.7(a)).

Fravnholer Diffraclion

. Fig.9.5: Single- sliL diffractlon

Irradiances as the slit width
varies
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Flg9.6: Single-slit diffraction.
Both dimenslons of the
rectangular aperture are smalj
and a two- dlmenstonal
dilfraction patiern is
discernible on the screen (b)
Diffractlon Image of & single
square aperture,
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Fig9.7: (a) Experimental arraogement for diffraction from a vertical narrow
slngle slit Iuminated by a slit source (b} Experimental arrangement in a physlcs
Inboratory,

As a matter of fact, the experimental arrangement, which is common ly employed in
most experiments, uses a spectrometer (Fig: 9.7(b)). The slit of the collimator arm is
illuminated so that each point of the slit source acts as an independent source. You
know that 2 point source gives a horizontal streak of light as the diffraction pattern
of a vertical slit. Now when we substjtute a slit as a source, we can imagine a series
of point sources 0,,0;,0;,, ... etc, one above the other to form the slit source

(Fig. 9.7(a)). Each point source wil give its own diffraction patiern since each point
is lo be regarded as an independent point source. With the same diffracting slit and
the same lenses L and L, the central diffraction maxiinum die to al] point sources
will lie above one another and give a central bright vertical fringe. Similarly from
secondary maxima and minima points, we will obtain a series of vertical fringes,
which will be situated at equal intervals on either side of the central fringe. The
resulting pattern arises by superposition of a series of horizontal diffraction streaks
stacked on each other ina vertical direction. The intensity along any horizontal line
will be the seme s in Fig. 9.2. We should note that each point of the slit source acts
as an independent and effectively as a non-coherent source,

You will observe that clear fringes are obtained only when the width of the source
slit is small. Suppose that the width of the source slit is gradually increased, This
will lead to an increase in the width of its image on the observation screen. A stage
will come when the width of the image, i.e, the fringe width, becomes comparable
with the distances between successive vertical fringes. This will gradually make the
vertical fringes less clear and indistinct. For a similar reason, we obtain clear fringes
only when the source slit is parallel to the diffraction slit.

9.3 DIFFRACTION BY A CIRCULAR APERTURE

Fraunhofer diffraction by a circular aperture is of particular interest because a lens
in an optical device (microscope, telescope, eye) can be regarded as a circular
aperture. For this case, the experimental arrangement is shown in Fig. 9.8(a). A

[plane wave is incident normally on the aperture and a lens whose diameter is much

larger than that of the aperture is placed close to it. The Fratnhofer diffraction
pattern is observed on the back focal plane of the lens. Because of the rotational
symmetry of the system,we expect that the diffraction pattern will consist of
concentric dark and bright rings. Fig. 9.8(b) shows the diffraction pattern which is

(RS I BT Y
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Fraunhofer Diffraction
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Fig98: (a) Experimental arrangement for observing the Fraunhofer diffvaction

pattern by & circular apertore. (b) The Alry pattern: The clrcle of light st the
center corresponds (o the zeroth order. (¢) The corresponding Intensity

distributon. .
known as the Airy pattern. The detailed derivation of the diffraction pattern for a
circular aperture involves complicated mathematics. So we just quote the final
result for the intensity distribution:

2
I-1 [M] ©.12)

where
y - !t-igsinﬁ (9.12)

Here D is the diameter of the aperture, A is the wavelength of light and 8 is the
angle of diffraction, J; is the intensily at 8 = 0 (which represents the central
maximum) ard J; (v ) is the Bessel function of the first order. (We know that you
are not very familiar with Bessel functions.) We may just mention that the variation
of J, (v ) is somewhat like a damped sine curve. Moreover, the intensity is
maximum at the centre of the pattern since

2J (_Y)
im

—+1
y=0 Y

similar to the relation

tim 28 _, 4
p—o B

Other zeros of J; (y) occur aty = 3.832, 5.136, 7.016,... which correspond to the
successive dark circles in the Airy pattern. Thus the first dark ring appears when

. 3.832) - 122 A
D D

sin 6 (9.13)

Let us compare this result with the analogous equation for the narrow slit. We find
that the angular half-width of the central disc, i.e. the angle between the central .
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maximum and the first minimum of the circular aperture, differs from that for the
slit pattern through the weird number 1.22. The intensity distribution of Eq. (5.11)
is plotted in Fig. 9.8(c). The pattern is similar to that for a slit, except that the

. pattern for circular apertures now has rotational symmetry about the optical axis.

The central maximum is consequently a circular disc of light, which may be
regarded as the diffracted "image" of the circular aperture. It is called the Airy disc.
It is surrounded by a series of alternate dark and bright fringes of decreasing
intensity. However, the pattern is riot sharply defined. If you consider any section

“through the circular aperture, intensity distribution is very much the same as

oblained from a point source with a single slit. Indeed, the circular aperture pattern
will be obtained if you rotate the single slit pattern about an axis in the directjon of
the light and passing through the central point of the principal maximum.

We now give an example to enable you to have a feel for the numerical values.

, Examp!e4 '

Plane waves from a helium-neon laser with wavelength 6300 A are incident on a
circular aperture of diameter 0.5 mm. What i the angular location of the first
minimum in the diffraction pattern? Also calculate the diameter of Airy disc on a
screen 10m behind the aperture., :

Solution
We know {rom Eq. (9.13) that
Dsin9 = 1,22

On substituting the given values, we get
(05%107°m)sin 6 = 1.22x 630 x 10" °m

or

_ 1.22x630% 10" °m
05x10 °m

sin 9

= 154 x 107
In the smalt angle approximation, sin © = 8 so that

0 = 1.54x 107 rad = 0.087°

On the screen placed 10m aw.'iy, the linear [ocation of the first minimum is

X w Dtan® = Dsin =« DG
Hence

X = (10m)x (154 %107 rad )

- 154%x107m = 1.54 cm

This value of x signifies the radius of the Airy disc so that the diameter is about 3

You can observe a white light circular diffraction pattern by making & small pinhole
in a sheet of aluminum foil. Then look through it at a distant light bulb or a candle
standing ina poorly illuminated (dark) room. '
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Another important result of above analysis is that the angular width of a beam is
diffraction-limited. When a perfectly plane wave from a distant point source is
incident on a diffracting aperture (of width or diameter 5), the angular width of the
diffracted beam is A /b, This is illustrated in Fig. 9.9. The angular width can be zero
_if b is infinite (1mm or so). At large distances from the diffracting aperture, beam
width W= L ( A/b). It has important implications for laser beams which are known
to be highly directional. To have an ideas about it, let us consider a diffraction-

limited lasér beam (A = 6000 A) of 2 mm diameter. The angular spread of the beam
is SR : '

-5
gt 6210 em . i0rad

5~ 02em e,

It means that in an auditorium (of lenght 15 m}, the spatial spread W= {(1500cm) x
(3x 10'4) = 5 mm, which is very small. For a typical penlight type flash light, the
transverse dimensions of the filament should be of the order of a micrometer, which
is really hard to make.

Imagine that a random array of smiall circular apertures is illuminated by plane
waves. from a white point source. We know that each aperture will generaté an Airy
type diffraction pattern. If the apertures are small and close together, the diffraction
patterns are large and overlap. The overlapping diffraction patterns produce a
readily visible hale, namely, a central white disc surrrounded by circular coloured
rings. Which colour do you expect to be at the outermost rim? Should it not be red?
Similar halos are also observed when the diffraction is due to a random array of
circular obstacles. ' : :

Suspended water (n = 1.33) droplets in air (n = 1.00) give rise to diffraction halos.
When observed through a light cloud cover around the sun or moon, these
diffraction halos are referred to as coronas. We can distinguish between diffraction
halos and ice crystal halos. Ice crystal halos are due to refraction and dlspersmn by
the ice crystals; they have red on the inside of the rings.

While driving a car at night, you may have seen brilliant halos through fogged up
car windows on which light of a motorcycle following you is incident. These are -
diffraction halos. You can easily produce such halos by breathing on the side of a
clear glass and then looking through the fogged area at a small sonrce (e.g., match,
penlight, or distant bulb). ' '

When the cornea swells (becomes edematous), small droplets of fluid form
randomly between the stromal fibers. These random droplets product a diffraction
halo that the person sees when looking at light. Such halos are one of the warning
signs of high ocular pressures. These halos can also be produced by epithelial
damage due to poorly fitting contact lenses. '

9.4 SUMMARY

¢ To observe Fraunhofer diffraction patiem, the distanoe‘éj};rlhc d_ifﬁacling screen
from the source and/or observation screen should be almost infinite.
Experimentally this condition is achieved by using convergent lenses.

¢ The diffraction pattern of a veriical slit consists of a horizontal streak of light.
This horizontal diffraction pattem may be regarded as a spreadout image of the
point source and consists of a series of diffraction spots symmeirically situated
with respect to the central point. -

® The central spot has a maximum intensity and its width is twice compared to
other spots which are of equal width. Their intensities decrease rapidly. In faet,
most of the light is concentrated in the ceniral maximum.

Fraunhofer Diffraction
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: Dim'actlon

The plane wavefront incident on the slit gives rise 10 a System of vertical plane
wavefronts which originate from each point of the diffracting aperture.
The intensity at any point P, on the screen is computed by taking the phase

difference between the successive diffracted waves into account. The intensity
at a point Py is given by

. 2
I - p(Sn8
p
b sin O o .
wheref = & Y and b is width of the slit.

If the path difference b sinB between waves diffracted by extreme ends of the
slit is an integral multiple of A, we obtain zero intensity.

The diffraction pattern of a thin slit source consists of a series of vertical
fringes. In this pattem, the central vertical fringe is the brightest and the
intensity of other fringes decreases rapidly. The width of central fringe is
double of that for other fringes.

‘The-diffraction pattern of a circular aperture consists of concentric rings with a

central bright disc. The first dark ring appears when sin® = 1.22 A/D.

9.5 TERMINAL QUESTIONS

1.

A single slit has a width of 0.03 mm. A parallel beam of light of wavelength

5500 A, is incident normally on it. A lens is mounted behind the slit and
focussed on a screen located in its focal plane, 100 cm away. Calculate the
distance of the third minimum from the centre of the diffraction pattern of the
slit.

A helium-neon laser emits a diffraction-limited beam (A = 6300 A ) of
diameter 2 mm. What diameter of light patch would the beam produce on the

surface of the moon at a distance of 376 x 10°km from the earth? You may
neglect scatlering in earth’s atmosphere.

9.6 SOLUTIONS AND ANSWERS

SAQs

i.

We know that angular spread of the central maximum is from

-1 A -1 A
B = sin (b)toﬁ--sm (3)

For small 6, we have sin® = 6 and we find that principal maximum is spread

A s
fromﬁ-btoe-—--g.

Similarly, you can show that the first secondary maximum on the positive side

extends from €, = % 106, = %and on the negative side from 9 = - %

100 —-—?—.

Thus we see that the central maximum is twice as wide as & secondary maxima.

We know that
dsinB;, = A

=t
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(0.3 107" cm )sinB, = 4358 x 10 cm Eraunhofer Diffraction

or

. sinG; = 1.45x 107

In the small aﬁgle approximation we can lake

6 = 1.45x 107 rad -

_ and

B, = 2.90 x 10~ rad

On comparing these values with those given in Example 1 for the first and second
minima you will note that violet light is diffracted about 27% less.

TQs
1. From Eq. (9.9) we know that the conditions for minima are given by

bsinG = ni n=+1,=2 ..

Here b = 0.03 mm = 3x10_3cm,n = 3 and A = 5500 A

—8
cng < "N o 3x(5500x_310 om) | ss, 107
b 3x 107 em

In the small angle approximation, sinf « 9 « tand

X = 55%x107*x (100 cm )

- 55% 10 2cm

2. Suppose that the light patch on the Moon is taken to be Airy disc of diameter x
of a diffraction limited beam of initial diameter 2 mm. Then using Eq. (9.13) , 1

we can write

122} _ 1.22x(6300x 10 cm)
D (0.2cm)

sind =

T 1w

= 3843x 107

In the small angle approximation, sin@ =0 = 384 x 10~ % rad. Since x = 2r
6, we find on substituting the numerical values that

x = 2x(376x 10’ km ) x (3843 x 10°°) i

= 289 km

Y
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UNIT 10 - DIFFRACTION GRATING

Structure

10.1 Introduction
Objectives
10.2 Observing Diffraction from Two Vertical Slits

10.3 Intensity Distribution in Double $lit Patttern
Positions of Minima and Maxima
Missing Ovders
Graphical Representation

10.4  Fraunhofer Pattern from A Identical Slits

Intensity Distribution

Positions of Principal Maxima

Minima and Secondary Maxima
Angular Half-width of Principal Maxima

10.5 Diffraction Grating

Formalion of Specira
Cbserving Graling Specira

10.6 Summary
10.7 Terminal Questions
10.8 Solutions and Answers

10.1 INTRODUCTION

You have learnt about Fraunhofer diffraction produced by a single slit aperture.
When a narrow vertical slit is illuminated by a distant point source, the Fraunhofer
diffraction pattern consists of a series of spots situated symmetrically about a
central spot, along a horizontal line. The intensity of the central spot is maximum
and it decreases rapidly as we move away from the central spot. For a circuiar
aperture, the diffraction pattern consists of concentric rings with a bright central
disc. You also learnt that diffraction phenomenon limits the ability of optical
devices to form sharp and distinct images of distinct objects. This restriction at one
time hampered the spectroscopic work particularly for substances whose spectrum

consisted of doublets. (Sodium doubiet wavelengths correspond to 5890 Aand 5896 A.
Because of their proximity, these wavelengths seem to overlap.) But you will recati that
diffraction pattern is sensitive to wavelength of light as well as the stit width. To take
advantage of these it was thought that the problem could be overcome by increasing the
number of diffracting slits. And the idea really worked. For simplicity, we have first
discussed diffraction pattem by a double slit.

In Sec. 10.2 we have listed qualitative features of the observed doiuble slit
diffraction pattern and compared these with those of a single slit pattern. A distinct
feature of double slit paitern is that it consists of bright and dark fringes similar to
those observed in interference experiments. In Sec. 10.3 we have derived the
equation for the resuitant intensity distribution. This mathematica! analysis is
extension of what you have already learnt for singie slit. You will learn that the
intensity of the central maximum is four times the intensity due to either slit at that
point. However, the interference maxima are diffused (broader). These resuits are
generalised for the case of N equally spaced, identical slits in Sec, 10.4.

You will observe that as the number of slits increases, interference maxima get
narrower (sharper). For sufficiently large value of N, interference maxima become
narrow lines. For this reason, diffraction gratings are an excellent tool in spectral
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analysis. The occurrence of diffraction grating effects in nature is surprisingly

" common. Do you know that the green on the neck of a male mallard duck, blue
~ appearance of wings of Morpho butterflies and the beautiful colours of the ‘eye’ of

the peacock’s feathers are also due to diffractior grating effects? The layered
structure in cat’s retina acts as reflection grating and is responsible for mettalic

- green reflection at night.

Objectives
After studying this unil, you should be able Lo
& state salient features of the double slit d:t‘fracuon pattem
- qualitatively compare single-slit diffraction
e pattern with double and N-slit pattems
¢ derive equation for the intensity distribution for the double slit patiem
o extend the double-slit calculation for N equally spaced slits. .
e describe the use of a diffraclion grating in spectral analysis, and

® solve numerical examples.

10.2 OBSERVING DIFFRACTION FROM TWO-

VERTICAL SLITS

Refer to Fig. 10.1. It shows the experimental arrangement for observing diffraction
from two vertical parallel slit - apertures in an opaque screen. Both the slits have
same width(b) and height(/). The width of the intervening opaque space between
the two slits is a. Therefore, the dislance between two similar points in these

Y
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Source Slit Double Observation
Dil'l'racting Slit ) . ’ Screen

Fig. 10.1: Experimental arrangment for obserﬂns dilfraction from {wo ldenllc:nl
vertical slits -

apertures d = b + a. Have you noticed that dlffraclmg apertur&s are dlummawd bya
slit source rather than a point source of light? We have used this arrangement
because this orresponds more nearly to the actual conditions under which an .
experiment i$ performed. That is, the diffraction patiern from 3 slit source is of
greater practical importance than from a point source. The ray geometry of Fig. 10.1
for observing Fraunhofer diffraction from a double slit illuminated by a slit source
is shown in Fig. 10.2. The length of the source slit in the arrangement should be-
adjusted to be paraliel to the lengths of the diffracting slits.

Suppose we block one of the diffracting slits, say slit 1, shdwn in Fig. 10.1 and

observe the diffraction pattern op the sczeen. Obviously, you shonld expect the

R
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Diffractiag Slit

Fig.10.2: Ray geometry of experlmental arrangentent shown in Flé. 10.1

- single slit diffraction pattern (due to slit number 2 which has not been blocked).

In a well corrected lens consider
parallel beams of light travelling
in a direction inclined to the axis
dilferent parts of the lens. They
are all brought to focus op the
back focal plane at a poit which
is located by the beam passing
though the oplical centre of the
lens. '

Next, uncover slit 1 and block the other. You should again expect single slit
diftraction pattern with exactly the same mlensuy distribution. But what may
surprise you al the first glance is that both diffraction patlerns are not only identical,
they are located at the same position. Were you not expecting these diffraction
palterns to be laterally displaced? These patierns are not laterally shifted with
respecl Lo one anolher because of the (well corrected) lens L,. This is true even {or
N identical vertical slits. The diffracted wavelronts originaling from any slit, and

‘travelling along the axis of lens L, are [ocussed at Py, which forms the peak of the .

central spot. The diffracted wavelels moving at an angle 8 are focussed at Py,

...m.............n........|lllll H.Iha......m-..........,.u....

Fig. 10.3; Observed double slit diffraction pattern

Now uncover both the slits so that each slit gives its own diffraction pattern. The
salient features of the resultant diffraction patiern, shown in Fig. 10.3, are
summarised below:

(i) The double slit diffraction pattern consists of a number of equally spaced
fringes similar to what is observed in interference experiments.

(i) The intensitics of ail fringes are not cqual The fringes are the brightest in the
central part of the pattern.

(iif) Aswe move away on either side of the central fringe, the intensity graduaily
falls off to zero.

(iv) The fringes reappear wilh reduced lntensuy lhree or four times and become oo
faint to observe thereafier,

(v) Thei iniensity at the maximum of double slit patiern is greater than the mlcnsny
of principal maximum in single slit pattern:
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What is responsible for this pattern? How bright are double slit fringes compared to Diffraction Gratings

those in the single slit pattern? You will discover answers to these and other related -
questions in the following section.

10.3 INTENSITY DISTRIBUTION IN DOUBLE SLIT
PATTERN '

For calculating the intensity distribution for the arrangement shown in Fig. 10.1 itis
sufficient for us to consider a point source. This is because a point source gives the
intensity distribution along a section perpendicular to the vertical fringes formed
from a slit source. For deriving the cquation for intensity of double slit pattern, we
extend the procedure used [or the single slit (Unit 9). Slit 1 acls as a source of
diffracled plane wavefronts originaling from points A}, Aj, A3, ... in it. We
represent these by ggcos w f, agcos (wt—-¢ ), ggcos (wL-26), ..., where ¢ is
the constant phase difference. The magnitude of electric field E, produced by this
slit at the point Py is given by (Eq. 9.6):

E, = A(—Si—ﬁnﬁ)cos[(mr - B (10.3)
where § = %

For every point like A| in slit 1, we have a corresponding point B, in slit2 at a
distance d. The phase difference between diffracied wavefronts reaching Pg from 4,

and B, is given by
2n

T(a+b)sm6 = %—dsme _I (10.2)

Therefore, the diffracted plane wavefronts starting from points By, B;, B, ... may
be represenled as ap cos {wf —d ), gy cos (wf -8 - ¢ ), aycos (w —8-249), ...
And the field E, produced by slit 2 at Py is given by

Eg=A(S—Eﬁ)cos[(wr—6)-|ij (10.3)

Since the sources A, A,, As, ... and By, B,, Ba,... arc coherent, the magnitude of
resullant field at P, due to the double-slit is obtained by the superposition of

magnitudes of individual fields:

-ASi—EE[cqs(_mt -PB)+cos(ot -8 ~5)]

Using the trigonometric identity cos A + cos B = 2 cos (A ;B ) cos (A ; B ), we

can rewrile the above expression as

(Tﬁ)cos(m!— B —v)cosy (10.4)

'
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where y = §= dsin 6.

x
N

The intensity is proportionat 1o the square of the amplitude. So

Iy = 4.42(%9]_ cos”y - ~(10.5)

For 8 = 0, both § and y vanish so that
: 2
IB -0 = 4A = 4[0

and the expression for inlensily-of double slit diffraction_pattern can be written as _

B 2 ' ’
Iy = 410(&;@J cos” y (10.6)

Since the maximum value of Ij is 4/, we see that the double slit provides four

times as much intensity in the central maximum as the singleslit, This is exactly
what you shouid have expected since the incident beams are in phase and
ampliludes superpose,

If you closely examiné Eq.(10.6) you will recognise that the term ( sinZB )/qu
represents the diffraction pattern produced by a single slit of width 4. The Cos' ¥
lerm represents the inlerference pattern produced by two diffracted beams (of equal
intensity) having phase difference 8. That is, the intensily of double slit di(lraction
pattern is product of the irradiances observed for the double-slit interference and

single slit diffraction. For a > b, the cos” ¥ [aclor will vary more rapidly than the

( sin” By B2 factor. Then we obtain Young's interference pattern for slits of
very small widths, In general, the product of sine and cosine factors may be
considered as a modulation of the interference paltern by a single slit diffraclion
envelope. We shall discuss it in detail a little later.

Before we investigate the posilions of maxima and minima, let us understand the
physical phenomenon that takes place. Diffracted light emerging [rom these two
slits constitutes two coherent beams. These interfere leading to the formation of
fringes on the screen. But the intensity of a fringe depends upon the intensities of
interfering beams and the phase difference between them when they reach the point
under observation. We know that the intensitics of diffracted beams are controlled

_ by 1he diffraction conditions and the direction of observation. Consequently, the

intensities of interference fringes is not the same at different points of ihe screen. In
parlicular, in thosc directions in which the intensities of dilfracted beams are large,
the constructive interference will lead to brighter fringes whereas in directions
where the two diffracied beams themselves have lower intensitics, even their

- constructive interference will lead Lo faint fringes.

You should note that we have described the phenomenon as interference between
two diffracted beams, How do we distinguish between the two words interference
and diffraction which we have used? When secondary wavelets originaling {rom
different paris of the same wavefront are made Lo superimpose, we call it
diffraction. Such a case ariscs when we consider all the wavelcts arising from lhe
various points situated in the aperture between the two jaws of a slit. Bul when two
separate beams coming {rom 1wo diflfercnt slils are superimposed, we call it
interfercnce. I should be clear thal in all cases where we apply the principle of
superposilion, the wavelets have Lo be coherent in nature 1o produce an observable
patlern.

Before you proceed, you may like to answer an SAQ.
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- determined by the cos™y factor. You know-thal this faclor defines maxima for

SAQ 1 Diffcactlon Gratings

I instead of a monochromatic source we use a source emitting two wavelengths, Spend
A and A, (<A, ), how wﬂl the double slit diffraction pattern get influenced? .2 min '

10.3.1 Positions of Minima and Maxima

To study the position of minima and maxima in the double slit pattern, we use the
equation

2
Iy = 4!0(%&) coszy

. . . . . 2 2.
We note that the intensity /o will be zero when either ( sin/f )” or cos” y is zero.

From Unit 9 you will recall that the factor ( sinfi/p )2 will be zero for

B - nbsind _ 7, 21, 31, _'..mn(mueﬁ)-
A | L

or

bsing = A, 21, 3, ... mh (107)

This equalion specifies the directions along which the available intensity of either
beam is zero by virtue of diffraction taking place al each slit. n

The second factor (coszy) will be zero when
ndsin =n 3m S5n ( 1 )
e fm+e S|

YT T 2722 2
or
, A 3h 5A 1
dsm9=?—2-v-§-w--(u+2))~. (10.8)

This gives the angles for the intensity to be zero by virtue of destructive interference
between two beams. You may recall that this is the same as the condition for the
minimum of the intcrference pattern between two point sources. Eqgs. (10.7) and
(10.8) specily the direction when the intensily is zero. ' cee £

We cannot oblain the exacl positions of the maxima by any simple relation. This is
because we have to find the maximum of a function which is product of two terms.
But we can'find their approximate positions if we assume that { sinf/f ) does not
vary appreciably over a given region. We are quite justified in making this
approximation if the slits are very narrow. Note that we observe the maxima near
the centre of the pattern. Under these conditions, the positions of maxima are solely

y = 0,x, 2m, ...

or

| d sinB =-0, A, 2}.., ey A - ‘_ | -(1_0;9)- T

‘We know that d sin 8 represents the path dillerence between the corresponding -
points-in the two slits. When this path difference is a whole number of wavelengths, : . B —
constructive interference occurs between the two beams, Then we get a maximum
which leads to the formation of a series of bright fringes. The central fringe
corresponds to d sin@ = 0. The nth [ringe (on either side) occurs when d smB n\.
" We therefore say lhal n represents the order of interference. :

g e
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10.3.2 Missing Orders

In the inlensity expression 195:4‘15'(%3) ‘q:'sz,q,wel;aveﬁ-f‘bfneand~,‘rs_"df“9

Thus we see that f and A are not independent. These are connected to each other

" through the relation

Y . 7 d sin® . d _ a+b (10.10)
B nbsin® b b

Cases of special interest arise when d is an integral multiple of b, say il is an integer
P so that d = pb. This will happen when the opaque portion a is an integral multiple
of the transparent part b. The possibilities are: 2 = b, @ = 2b, or a = 3b elc, so that
dfb=p=234, ... etcin these cases. Under these conditions, the directions of
diffraction minimum and interference maximum will necessarily coincide. To show
this, let us assumie that a direction of diffraction minimum is given by

bsing = mi

We will automatically have the interference maximum in this direction since

dsind = ( pb)sin® = p bsind

- pm A - nh

where n = pm. The possible values of p are 2,3,4, ... and those of m are 1,23, ...
Thus the ath order interference fringes for which n = pm will have zero intensity
since the intensity of both beams is 2éro by virlue of diffraction condition. Asa
result, their consiructive interference also leads to net zero intensity. These are
usually known as missing orders. For example, when P =2, wewill have 2,4,6,
8 ... orders missing for m values of 1,2,3,... eic. Similarly, when p = 3, we will
have 3,6,9 ... orders missing and so on.

The special case when d/b = 1, means that the opaque part a = 0 and the two slits
exactly join one another. Then we fird that all the interference orders are missing.
Actually this means thal we now have a single slit of double width and what we get
is a single slit diffraction pattern and (with no interfernce fringes).

These ideas are illustrated in the following example.
Example 1

Consider a double slit arrangement with b = 7.0 x 10~ 3(:11, d=3.5 % 10" %cm and

A = 6300 A. How many interference minima will occur between the diffraction
minima-or either side of the central maximum? If a screen is placed ata.distance of
Sm from the diffracling aperture, what:is the fringe width?

_Solution

The first diffraction minima on either side will-occur when b sin = = A_ That is, for

- 5in0 =-+-)/b = 9 x 10°3: The interference b minima will occur when Eq; (10.8) is

satisfted, i.e. when

-z dsindsing = [n + %) A

On substituting the given val‘ues, we find that

- (PR N 7 U I O DIPRe.
_ - _sin@ (n +‘2')'d (n_‘-i- .2.)1.8_--x-10 - -n-m0;1,2 ...




ie.

Gin® = 09x10°%27x107%,45x107%63x107> and8.1x 10"
Thus there'will be ten minima between the two first order diffraction minifma. If © is
small we may write 8, = 0.9 x 107 rad, 8, =27 x 10> rad, 8, 4.5 x 107" rad,
0,=63x10 *rad, B = 8.1 x 10" rad and the angle between successive minima is
1.8 % 1072 rad.

The angular separation between (wo intereference maxima is given by

) | -5
A6=£= 63x10 cm

-3
= 1.8 x 10 " rad.
d  35x10 %cm

Note that this is the same as the angle between successive minima. Thus the fringe
width f. ABd is

(500cm) x 18 x 107> = 09em

10.3.3 Graphical Representation

We will now plot cos? ¥y, { sin® p/ Bz ), and their product separately to study the
double slit pattern. Beforé doing that-we:must:decide on the Telative scale-of the
abscissas Y and  since the shape of the pattern’ will depend upon this-choice.:You
already know that v/ is equal d/b. Let us say that in a particular case y/Bm=drb=4.
We must then plot the proposed curves for § = 4B. In Fig. 10.4, the.curves (a) and b)

are plotted to the same scale of 0.Fig. 10.4(a) depicts the curve for cos” y which given a
st of equidistant maxima of equal intensity located at p =0, + 7, + 21, + 3% ...

A=d4 -7 £ S5 4 3 2 -1 o 1

1 a——p = = ———~ T — = =TT T

{a)

{c)'.

-1l
iy f

1

1-

“0f
© =7 Fig 10.4: Intensity curves:for double'sliL-We havetakeny=4ff- -

In Fig. 10.4(b) we have piotted ( sinf/p )? which gives a maximum at =0 and
. minims at § = %, = 2, ...In Fig, 10.4(c) we have plotted their product: What do

you observe? The intensity-of the fringes in-the:fesultant pattern.is not the same asit -

®
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was in Fig.10.4(a). It is modulated (reduced) by the factor %ﬁ- This means that

the central fringe or the zeroth fringe is the brightest, and the successive three
fringes are of decreasing intensity until we reach the point B = where the intensity

is zero. Thus the fourth fringe corresponding to cos’ Y=x4n fillsatf=znor-mx
and their product is zero. Therefore, the fourth frin ge on either side of the central
maxima has-zero intensity and its location at the angle satisfics simultaneously

B==xmand y = » 45
or

bsin® = + A and dsin® = = 4)

'This fourth fringe will therefore be missing. We will observe the 5th, 6th and 7th

fringes. We can argue in a similar manrner that for 8th fringe
B=zx2nand y = + 8n

which will therefore have zero intensity and thus be missing, .

You may now like to answer the following SAQ. .

SAQ2

Write down the general condition for missing orders in terms of the ratio d/b.

10.4 FRAUNHOFER PATTERN FROM N IDENTICAL
SLITS

You now know that interference of waves diffracted by individual slits determines
the inlensity distribution in the double slit pattern. Let us now consider the
diffraction pattern produced by N vertical slits. We use the same experimental
arrangement as shown in Fig. 10.1 for two slits. For simplicity we assume that (i)
cach slit is of width b and has the same length (i) all slits are parallel to each other
and (iii) the intervening opaque space between any two successive slits is the same,
equal lo a. Therefore the distance between any iwo equivalent points in two
consecutive slils is @ + b. Let us denote it by & which we call the grating element.
As before, we take the source of light to be in the form of a slit and adjust the length
of this source slit to be vertical and parallel to the length of ¥ slits. As arrangement
consisting of a large number of parallel, equidistant narrow rectangular slits of the
same width is called diffraction grating. As discussed in the double slit pattern, the
diffraction pattern will consist of vertical fringes parallel to the slit source. Lel us
now sludy the intensity distribution in this pattern.

10.4.1 Intensity Distribution

To derive an expression for the intensity distribution we wilt follow the procedure
and arguments similar 1o those used-for the double slit. Consider a point source of
light which sends out plane waves. That is, a plane wavefront is incident on the
arrangement shown in Fig. 10.5. {Speaking in terms of ray-optics, we may say that
light rays fall normally on the grating). You may recall that the intensity distribution
along any-section-perpendicular to the vertical fringes formed from z slit source will
be the same as obtained from a point source. Physically, light emerging from N slits
after diffraction at each slit resulls in N diffracted beams. Since these are coherent,

interference takes place between them resulting in the formation of fringes. Itis - __- .

" important to note that diffraction controls the intensity from each slit in a give direction,

TR R ] s 1 R N
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Fig. 10.5; Fraunhofer diffraction of a plane wave Incldent normally on a multipie
slit aperture
As before, we consider the diffracted rays proceeding towards Pg, where 6 is the

angle between the diffracied rays and the normal to the grating. Let E,, E;, Es,... Ey
denote the fields produced by the first, the second,the third ... and the Nth slit at the
point Py. Then we have

El - Asi—nﬁcos(wt - ﬁ) lncomglexnowlion,_
p exp(id) =cosb +isin® (i)
50 that
Ez-Agﬁcos(wt—ﬂ-ﬁj ' Re[up(iﬂ)]-ctosﬁ {ii)
ﬁ [t mears that
_ : mEm--g)-bl;e[e*’(“"'m]
SIHE. ' cos{w -B—
E3 =A ﬁ OOS((DI - B - 25) . . ..](e[c'.(‘”“ﬂ"”]

cos{w -f-(N-1}3)
-Ru[e“'”"ﬁ'(N‘”b)l

sin : -
Ey= A_BE‘”SIW -Bp-(N-1)9] coso?i:-u—"ﬁ—ﬁa))++..--
Re['~B)

Jt-6-8), 4
Flo-B--108)] i
The R1{S can be writlen as
RHS = (2 -Bh[1 o772
w2 4 TN gy

Where various symbols have the same meaning as in Sec. 10.3. Also, we have
assumed that the phase changes by equal amount & from one slit to the next.

'_J'

The field E at Py is obtained by summing these N terms:

sinf} sin
E=A B cos (of - ﬂ) +A—BECOS(0J!‘ -8-90) : This is a geometric series with
comme n factor ¢ ® and can Le
. - - summed up easilyl using
smﬁ -
+ A cos(wt - B — 28)+... ' 1-+
P ’ S__l-r :
‘sinB : : : - RESowB) L=
+ A% sl - B - (N -1)5] (10.11) oo™
p : : T SR

i N c-mm.)‘

You can wrile it as Pl I R e

- - fr - BN - 1P2)- - :
E - aS0B cos(wt - P)+cos{wt-PB-38)+.. N b2 |
- ﬁ _ ‘ SRR _sind/2 s

Hence LHS of (jii) is recovered -

+cos[wf - P - (N~ 1)5]} lég-ll(if(;_lg)l-pan.whichis

- ,55
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You have learnt to sum the series given here [Unit 2, Block 1 of the PHE-02 course
on Oscillations-and Waves Eq. (2.38)). We have reproduced it in the Margin. The
result is

2
E=A(s—‘gﬁ) ﬁlco&[wt—ﬁ—-%(l\f—l)ﬁ] (10.12)

where y = % = % d sin®B, sin y is referred to as the grating term.

The intensity of the resultant pattern is obtained by squaring the amplitude of the’
resultant field in this expression. Therefore,

- Az?ﬁ—:‘n—T'i (11.13)

Let us pause for a-while and ask: ' What have we achieved so far? We have obtained
an expression for the resultant intensity of diffraction pattem from N-slits. We
expect it to be true for any number of slits.

For a single slit, Eq. (11.13) reduces to

.2
2sin” B
IQHA 3

which is the same as Eq. (9.7).

Pl e e e e o e

S5AQ3
Show that for N = 2, Eq. (10.13) reduces to Eq. (10.6) for the double slit.

10.4.2 Positions of Principal Maxima

For obtaining the positions of maxima (as well as minima), let us re-examine

Eq. (11.13). We note that the intensity distribution is a product of two terms; the
first-terms ( sin’ B/ |32 ) represents the diffraction pattern produced by a single slit
whereas the second the term ( sin® N 7/sin° Y ) represents the interference pattern of

N slits. The interference term controls the width of interference fringes, while the
diffraction term governs their intensities.

As in case of the Bouble slit, wé cannot locate the exact posilions of ﬁ1ax1ma lheir
approxlmate positions can however be obtained by neglecling the varlauon of

sin® B/ B This is quite justified for very narrow slits. Therefore, for oblammg the
positions of maxima we-consider only the interference term.

The maximum value of —lm( N ) occurs for ¥ = 0, 7, 2m, ... o, At the first
sin’ Y

glance, you will nole that the quotient becomes indeterminate at these values. In_
such a situation, we compute the first derivative of the numerator as well as the
denominator scparately before inserting the value of argumenl Followmg this
procedure you will readlly oblam

_1_11__1_N‘L

?—bm—smv'\h\ Y= COST

so that -

A rmre s = i
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b sind .
A

We therefore conclude Lhal the positions of maxima are obtained when -
y = 0,®, 2m, ... i or Ny = ON:lt,ZNn, .Nnz (10.15)

where f =

Physically, at these maxima the fields produced by each of the slits are in phase and "
the resultant field is N times the field due to each of the slits. .

When N is large, the intensity, being proportional toN’ 518 very-lafge and we will:

obtain intense maxima, if only sin® B/ ﬁz is not too small, Such maxima are known -
as principal maxima.

We can rewrite the condition of principal maxima as
dsing, . = n\ (10.16)

- which is identical to Eq. (10.9). It implies that

1. The principal maxima in N-slit pattern correspond in position to those of the
doubie slit.

2. The relative intensities of different orders are modulated by the single slit
diffraction envelop. ‘

3. n cannot be greater than d/Asince | sinf | = 1. Can you imagine the implications
of this condition? If you ponderfor a while, you will realise that this condition
suggests existence of only a finite number of principal maxima, which are
designated as-the [irst, second, third;::...order of diffraction. Moreover, there
will b€ ‘as many first order.principal maxima as the number of wavelengths in
the incident wave. - «

4. ‘The relation between and y obtained for double slit in terms of slit width and
slit separation does not change. That is, Eq. (10.10) hold for N-slits as well.

10.4.3 Minima and Secondary Maxima

To be able to find'the minima in the diffraction pattern, we locate the minima of the -
interference term: We note that the numerator in'sin” N y/sin"y will become zexo -
more often than the denominator. The numerator becomes zero for N y-= 0, m, 21, ... pm,

-Of Y= {TT 'f[:hei’efore;usiny = sin %E will not become zero for-alliintegral values

of p. It will become zero only for special cases when p = 0, N, 2V, ... and y-assunes~
values which are integral multiple of %. But you will recall that for these special
values-of y, both sin ¥ y and siny-vanish.and the iterference term defines the. .-

positions of principal maxima already discussed. However, for all Gthervaluesof p, - ' ER

the numerator-vanishes but not the denominator. That s, intensity vanishes when p,
though an integer, is not an integral: multiple of & Hence,:the, conditiaiitfor’ Lo

minimunrisy = p WV exceptwihien pos i n’hengdhaotdm (Ehesdrvatuesives B s

corresponditod to .

NN
T=IN n - N -

(N-1)x] [(2Ne)n ]
), [nz)
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S (n'-';'I),:l: '(-'N'+I1'):m' -.('N+2):IL;:;‘_I _ | ) -
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. The expression for i'ntensity now takesthe form . - _ . Diffraction Gratligs -, -
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These values of ycorrespond 10 path difference

dsing_. =

A2A B (N-DA] [N+
N'N'N N ][ N ]

NA

You should note that the values 0, —-> 20 » == » which correspond to dsinB, . =nh

"N N
and represent principal maxima, are omitled.

Let us now summarise what you have learnt in this unit so far.

The condition for principal maxima:
Y=0,m2m, ..., 05
and therefore
Ny = 0,Nm, 2Nm, ... ,nNn

We may wrile

In terms of path difference
dsinB,,, = ni
' The conditions for minima:
- h_fy'=nN:t:_::t,nNn:|:2n,...,nNn:tqn

where 4 is nol an integral multiple of N. We can rewrite it as

RIL & I nit *= 23'5
= RW -
Y N N

In terms of path difference

dsinQ_; = nh x %ﬂll + %---nﬂ)\. +* % .

-whereg = O, N, 2N, ...

Y = %sinﬁmu = nw where 1 = 0, 1,2, ...

If you write all possible-values of Ny, you will find that we have (N -.1) positions

=y TR

of minima between any two successive principal maxima. Further, we know that
between any two consecutive minima, there has to be 2 maxima. Such maxima are
-said to be secondary maxima, Fhere will be (N - 2) positions of secondary maxima
between two.consecutive principal maxima-The secondary maxima are not * . - - -
- .Symmetrical, as in the two slit pattern. Moreover, the intensity of secondary maxima
is very small and are therefore of little practical importance. Typical diffraction
patterns and the corresponding intensity. distributions predicted by Eq. (10.13) for .
N = 4 are shown in Fig. 10.6. '

You may now like to answer the following SAQ.

| Nl R ASPRY =T ]
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Flg. 10.6: Fraunhofer diffraction pattern for four slits. For comparison, pntierns
for one and double slils are also shown. The Intensity dlstribution predicted by
Eq. (10.13) Is also shown. _ -

SAQS5

Show schematically the positions of principal maxima, secon-Jary maxima and Spend

secondary minima for a diffraction gratiing with 6 slils. > min
Hint: Wc expect 5 minima between two conseculive principal maxima. Also we
have 4 secondary maxima between the Lwo principal maxima.
Example 2
Caiculate the maximum number of prinéip:’al maxima that can be formed with a
grating 5000 lines per cm for light of wavelenglh 5000 A.
. 1 -4
Grating element d = ——————3— = 2x 10 ‘cm
5000 %10 "cm )
The condition for the formation of principal maxima is dsin, ., = nh. Since
| sin@ | < 1 we cannot have n greater than%- In this specific case : : - S —— 7
4 3
2x 10 ‘cm
alunapne S
5000 » 10 "cm

Therefore, it will be able to show 1st, 2nd, 3rd and 4th orders of principal maxim ..

1If, on the other hand, we have a grating with 15000 linesem™ ! . : e

- (1715000 ‘em) _ 6.6x10em
5 x _10_'5cm 5% 10" cm
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Younay now question as to
why is b 8 called angular half
widih. It is quite simple. You
know that the principal

" maximum extends from
minimum on one side to
minimum on the other side and
&8 is half of it. While solving
SAQ 4 you have seen that for 6
slits the principal maximum

_extends from

Nye5t to Ny=7n
or

dsinﬁm-% to 1:-

You must pote that the term half
width of a spectrum lin¢ (or a
diffraction curve) has a slightly
different meaning. The diagram
whown represents the Intensigy
vs B curve, The half widih gives

- the width of the curve at{"zﬁ- It

I8 equal to AB in the diagram.
The angular ha!f width, on the
other hand, is equai to CD.
Obviously you can convince
yourself thatAB is not equal to
CD. Only in the extreme case
when the curve is a triangle,
AB=CD.

Fenan

E-

N ..

T > Y il
[~}

E‘

which is less than 2. Such a grating will show only 1st order of spectrum with

A = 5000 A. You can verfing this result while observing grating spectrum in your
second level physics laboratory course.

10.4.4 Angular Half-Width of Principal Maxima
You now know that for N slits -

1. The principal maxima occur when y = a7 and thertefore NY = Nnm.
2.  Or wither side of the principal maxima, we have a minimum when
Ny =nNx + 3¢ or when y=nn %- In terms of path difference and angle of

diffraction, these conditions for principal maxima and the adjacent minimum
can be rewritten as :
dsinB__ = nh (10.16)

and

dsing;, = nh = 2 (10.17)
N

The angle between 8,,,, and 6,,, is called the anular half width of principal
maxima, let us denote it by & 6. We now proceed to calculate this angle. We can
calculate 80 ( = [ 8, ~ 8,,, | ) by computing 6, _ and 6_, from Egs. (10.16) and
(10.17). Alternatively, by choosing 8,,;, > 8,, .. » we substitute Oppin = 0o + 80 in
Eq. (10.17) to obtain

| A

" dsin(8,,, + 50) = nA + I

or 45, cas 88 + d 050, Sind O = rik + = -
For88 —+0,cos 50— 1 and sin 50 —5 0. Hence
dsin®,,,, +dcos8,, 80 = mh + =

Using Eq. (10.16), we find that it takes a compact form:

A
dcosemﬁﬂ-_N

50 that

58 A

" Ndcoso,, (1018)

Wwhich shows that the principal maximum becomes sharper as N increases. It is for
this reason that grating spectrum is so sharp. You will now teamn about it in detait.

10.5 DIFFRACTION GRATING

You have Jearnt about the diffraction pattern produced by a'system of parallel
equidistant slits. An arrangement of a large number of equidistant narrow vertical
slits is known as diffraction grating. The first gratings were made by Fraunhofer.
He stretched fine silver wire on a frame. His grating had nearly 200 wirestoa




i

" centimeter. Afterwards gratings were made by ruling fine lines with a diamond pen _

on a glass plate. The transparent part between the lines acted as a slit while the
ruling itself acted effectively as the opaque part. Rowland was among the first to
rule gratings on a metallic surface. He produced plane as well as concave gralings
with nearly 5000 lines per centimeter. These gratings are difficult to make and are

expensive but celluloid replicas can be made fairly cheaply and are commonly used

in the physics laboratory for spectral analysis. You can make a simple coarse

. grating for demonstration purposes on a plate by drawing equidistant and parallel
scratches on the photographic emulsion. Now-a-days it is possible to produce
gratings holographically. Holographic gratings have greater rulings per cm and are
definitely better than ruled gratings. You will get an opporiunity to iearn
holographic details in Block-4. .

10.5.1 Formation of Spectra

We have seen that for a monochromatic light of wavelength A, the principal
maxima are given by the grating equation
dsin®, = nk, n=0123,..

With the experimental arrangement described above we will get these principal
maxima as one line in each order. Now if another source of light emits a longer
wavelength A,, we will get a corresponding line in each order at a larger angle 6,

-dsin@, = nd, n=0123...

However if thc same source of light emits both the colours corresponding 10
“ wavelengths A;and A, we will get two lines simultaneously in each order. These

two lines will be seen as two spectrum lines separated from each other. This is
because except the central maximum (zeroth order), the angles of diffraction for A

and A, are different in various other orders. In the central maxima 8 = 0 for all

wavelengths and this is why different colours are not separated from each other.
What do you expect to observe when we have a white light source? The central
image will be white while all other orders will show colours.

We note that in the grating equation, if we know d, 0 and n, we can calculate the
wavelength of light. Since the grating element () is known for a grating and 8 can
be measured, this arrangement provides a simple and accurate method of measuring
A. This is discussed in the following section.

10.5.2 Observing Grating Spectra

In your second level physics laboratory course, you must have observe grating
specira using a simple spectrometer. This arrangement is depicled in Fig. 10.7. The
light from the given source is focussed (with the help of a lens) on the slit of the
collimator which sends out a parallel beam of light.

First order
- Second order i Zaro order
VoS First order
/ 0
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Light from a molecule gives a
band like appearance and is
oftern called band speclum,
while an incandescent lamp of
slmilar sources will give a
continuous spectrum, where
vatious colours merge into one

" another.
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The telescope arm is rotated and brought in line with the collimator. This ensures
that the parallel beam of light falling on the objective of telescope is focussed at the
crosswires, which is in the focal plane of the eye piece. The position of the source
of light should be adjusted to get the brightest image. We mount the diffraaction
grating on the turntable and adjust it so that the light is incident normally on the
grating. Now we rotate the telescope arm to the left or right to get the first order
spectrum in the field of view. If the source of light is a discharge tube containing
sodium, mercury or argon the spectrum will consist of a series of spectrum lines:
Each spectrum line is a diffracted image of the slit, formed by different wavelengths
present in the source. To get sharp line images, we adjust the grating so that the
diffracting slits are parallel 1o the collimator slit. This car be done by rotating the
graling in its own plane.

To measure the wavelength of each line, we set the vertical crosswires at the centre
" of each spectrum line and note the position of the telescope in each case. The

difference between the position of the telescope and the direct position gives the
angle of diffraction for each of the lines. To reduce error, the position of the
telescope is noted on both sides of the direct position and half of this angle gives the
angle of diffraction.

" You must have observed that

1. . ‘The spectrum exists on both sides of the direct beam

2. Apart from the first order, the second or even third order spectrum (depending '

upon the grating element) are also present.

3. Different spectrum lines are not equally bright or sharp. This depends upon the
energy levels and the transitions of the atom giving the spectrum. These
concepts are further illustrated in the following example.

Example 3

Rowland ruled 14438 lines per inch in his grating. (i) Calculate the angles of
diffraction for violet (A = 4000 A } and red ( A = 8000 A ) colours in the first
order of spectrum. What is the largest wavelen gth which can be seen with this
grating in the third order?

Solution
() The grating element d = 254 cm

14438 0.0001759 cm

- 1,759 x 10" ‘em

Suppose that the violet colour { A = 4000 A ) is diffracted through angle 6,. Recall
the condition for maximum:

dsin 0, = nA
For first order on substituting the given values, you will get-
-5
Sin B, = —2X 10_4 ~ 02274
1759 x 10" cm
Therefore 0, « 13°
Similarly, for red colour { A = 8000 A ), we have
: s .
sing, = —0x10 am ., ocie

1.759 x 10" %cm . .

I P
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This means that the entire visible spectrum in the first order extends from nearly
D= 13° to 8w 27° i.e. covers an angle of about 14°.

(ii) dsin® = 3,
According to the given condition, O = 90° sothat sin @ =1 and 4 ‘-3-7‘.-.-,.“

or

. ! —4 !
Moz = g - —————1'759; 10 . m - 5860 A

This calculation suggests that in the third order spectrum, the sodium doublet

consisting of 5890 A and 5896 A will not be visible. Do you recall this from your
observations on spectral analysis using a diffraction grating? If you have so far not
opted for the second level physics, it will be worthwhile to verify this result.

If you calculatesin 8, and sin 8, for 1st, 2nd and 3rd orders, you will find that for

ist order sin 8, = 0.2274 = 9, ~13° ” K
sin B, = 0.4548 = 0, ~27° => sprea

0.4548 = 0, ~27°

0.9096 = 0,~65°

2ndorder  sin®6,
sin 0,

] = 38° spread

06822 = 8, ~43°

1 for Ay —> 47° for 4000 A - 60000 A
= 5860 A and 6, =90° '

3rdorder  sin 0,
sin 8,

sin ©,> 1and cannot be observed.  => entire visible spectrum is
not available.

Schematically it is shown below:

3rd Order

. . o o -
I 2nd Order . .Ist Order

" Fig. 10.8: Schematics of angles for over-all spread of various orders of spectrum
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Diffraction Thus we find that in 1st order red just touches second order violet. (This is because -
' - we have selected A = 4000 A and A = 8000 A ). It means that there is essentially no
overlapping of first and second order spectra. The third order A, beginsat8= 43° -

If you calculate wavelength A, of 2nd order present there you will find that

3 x 4000 A

5 = 6000 A.

dsin43® = 3, = 2h, = A, =

Therefore A = 6000 Aof the 2nd order occurs at the same place as A = 4000 A of
third order. Therefore, from 6000 Ato 8000 A will have overlapping colours. This
difficulty is usually avoided by using suitable colour filters. i

We now summarise what you have learnt in this unit.

10.6 SUMMARY

¢ The double slit diffraction patiern consists of a number of equally spaced
[ringes similar to what is observed in interference experiments. These
fringes are the brightest in Lhe central part of the pattern.

* Indouble slit pattern [ringes reappear three or lour times before the
become too faint o observe. :

® The central maximum in double slit pattern is four times brighter than that
in single slit pattern.

® The intensity of double slit diffraction pattern al an angle 8 is given by
_ . 2
fo = 40, 3B cog?y
’ 2 nb sinf n
Hcrefo-A,ﬁ= X and Y_}.

distance between two similar points in these aperlures. It is equal to a + b,
where a is the width of the intervening opaque space between two slits.

d sinB, where b is slit width and d is

EE RN

® The intensity of doﬁblc slil dilfraction pattern is product of the irradiances
observed for the double slit interference and single slit diffraction.
Physically, it arises due to interference between two diffracted beams.

* For slits'of very smail widths, the double slit diffraction pattern reduces to
' Young'’s interference pattern.

e - ¢ The conditions of maxima and minima in double siit pattem are:
dsind = n A ( maxima )

' and

L L - Y

bsing = mA ( minima ) _
e : o * ° The intensity distribution in N-slit diffraction palle;n-is given by

I Az sin2 E sinzN Y
g™ -
ﬂ2‘ sin? y N




The term sin y is referred 1o as the grating term.

e As the number of slits increases, the maxima get narrower and for
sufficiently large values of N, they become to sharp lines. The angular half
width of principal maximum 8 @ is given by

>
NdcosB

max.

56 =

The principal maximum is sharp for large values of N.

10.7 TERMINAL QUESTIONS

If we use a white light source in the arrangement shown in Fig. 10.6, how will
if affect the fringes?

Can there be principal maxima of zero inlensity because of diffraclion at each
slit? If yes, discuss. .

10.8 SOLUTIONS'AND ANSWERS

SAQs

1.

A, will give its diffraction paltern within which we will get the interference
{fringes. The pattern for A, will be smaller if A, < A;. They will bolh be
supperimposed on one another coinciding at 8 = 0.

The general conditions for missing orders in terms of yand p are y = = mm or
dsin®O=xmMAand f = = pr or bsin@ = p A Therefore

d m

b p

both m and p are integers, Lhe missing orders occur when d/b is a ratio of two
integers. When d/b = 1, i.e. the two slits exaclly join, all the interference
orders are missing. Physically it means that we have a single slit of doublc
width and consequently no interference.

For g-= 2, second, [ourth, sixth, ... orders will be missing. What do you say

d
-_119
about b 37
For N=2,Eq. (10 13) takes the form

1=A2 ﬁmZx_
{3 smﬂ,-

2 sin’ B (2siny oosy)

- A
ﬁz sin Y

.2
= 4 A S'gz cos™ y

which is the required result for the double shit.

DIffraction Gratings -
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1. Asbefore, each wavelength will give its interference fringes. The central
fringe for all wavelengths will coincide and hence the central fringe will be
white. Fringes of ordern = 1, 2, 3,... located on either side of the central
fringe, at different 6 values given by d sin 8 = n A for different wavelengths
will be coloured.

2. There can be a principal maxima whose intensity is zero because of the
diffraction at each slit. There are called missing orders or absent spectra. We
know that the relationship between B and y in terms of slit width and slit
separalion for N slils is the same as for the double slit. Therefore, the
conditions for missing orders remain unaltered. And a particular maximum
wiil be absent if it is formed al the same angle as the minimutn of single slit

diffraction pattern. This occurs at an angle which salisfies Egs. (10.16)and -
- (10.17). :
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UNIT 11 DIFFRACTION AND RESOLUTION

.Structure
1i.1 Introduction
Objectives
11.2 Diffraction and Image Formation .

11.3 Resolving Power of Oplical Instruments -

Aslronomical Telescope
Microscope
Diffraction Grating

11.4 Improving Resolution

Michelson Stellar Interferometer
11.5 Summary
" 11.6 Terminal Questions
11.7 Solutions and Answers

11.1 INTRODUCTION

In the preceding two units of this block you have learnt that due to diffraction, the
image of an object is fringed even if an aberration-free converging lens is used.
That is, image of a point object is spread over a smal! area on the observation
screen. Does this mean that no optical device can form a perfect image? The answer
to this question is: The image of a point source is not geometrical point. And
diffraction does place a limit on the ability of optical devices 10 transmit perfect
information (quality image) about-any object. Such optical systems are said to be
diffraction limited.

Broadly speaking, diffraction limited systems can be classified into two categories:
(i) Hurnan eye, microscope and telescope which enable us to see two objects (near
or distant) distinct and (ii) Grating and prism which form a spectrum and enable us
to see two distincl wavelengths (colours). In principle, in both types of instruments
two close fringed (diffraction) images are formed on the screen. The question that
should logically come to your mind is: How to characterise the ability of an optical
instrument to distinguish two close but distinct diffraction images of two objects or
two wavelengths? This ability is measured in terms of resolving power. You may
now like to know: What critérion enables us to compute resolving power? The most
widely used criterion is due to Rayleigh. According to this, two diffraction images
are said to be just resolved when the first minimum of diffraction pattern of one
object falls at the same position where the central maximum of the diffraction
pattern of the other lics, When the patterns come closer than this, the objects are not
resolvable. When the patterns overlap less than this, the images are distinct and

.. hence objects are resolvable. It is also important to know whether the same criterion
applies to both types of optical devices? How can we improve resolution and see
deeper in space even during the day? We have addressed all these aspects in this
unit: . ’

Objectives
Alfter studying this unit, you should be able to
¢ explain how diffraction limits image forming ability of oplical devices

e use Rayleigh criterion to compute expressions for resolving power of a
telescope, a microscope and a diffraction grating

T
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* solve numerical problems based on resclution, and

® describe how Michelson stellar interferometer helps in improving
resolution. .

11.2 DIFFRACTION AND IMAGE FORMATION

You may recall from Unit 9 that when the size of pupil is greater than 2.4 mm, the
human eye does not form a perfect point image (due to aberrations). However, for
pupil sizes smaller than 2.4 mm, the human eye appears 1o be a diffraction-limited
system. To gain some quantitative measure of visible acuity, lel us estimate the size
of image formed on our retina. If we approximate the pupil in human eye by a
circular apertuore, we have to consider how il influences the image formed by
eye-lens on the retina (Fig. 11.1). From Unit $ you may recall that the diffraction
image of a point source'due to a circular aperture is a bright central disc surrounded

Flg. 11.1: Visible aculty and imnge formation on rellna

by a series of aliernate dark and bright rings of decreasing intensity. The angular
half-width of the central disc is given by 8 = 1.22 A /D where D is the diameler of
the aperture. And Lhe lateral width of this image will be £ 8, where f'is the focal.
length of eye-lens. This means that the size of an image formed on retina depends
on the wavelength of light and diameter of the aperture. If we lake the pupil

diameter to be 2 mm, then for middle of visible spectrum { A = 5500 A ) _

122\ 122 x (55 x 10"%em )

0=
D (2x10_lcm)

= 335 x 10" *rad = 1 minute of arc

Thus if the object is at a distance of 2 m, the size of image fo:m'ed in a normal
unaided human eye should be (2 x 3.35 x 10” *rad) x 2m =134 x 10 ’m.

Now refer to Fig. 11.2. It shows the image of a point source, luminous star say,
formed by an astronomical telescope whose objective acts as circular aperturgand
produces Airy paltern. The image essentially is a bright circular disc of angular
diameter 28 ( - —-——?’44 A
. .- D
the image, i.c. smaller is the Airy disc. On the other hand, if the aperture size is
small, the size of Airy disc increases. Thal is, no matter how free from aberrations .
an astronomical iclescope objective be, what is observed at best is not a point image
of a star. For similar reasons we find that the image of a poift object formed bya
micrascope is of finite size. We may therefore conclude that diffraction constrains
an opticul device In the formatlon of u sharp point-like image of a point source

), which depends on A and D. Larger the-aperture, truer is

_ due to the flnlte sizes of Its components. ‘ ) :
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Dilfraction and Resnlutlon

Fig. 11.2: Image of a luminous star formed by an astronomical telscope

An actoal manifestation of this restriction arises in imaging when we observe two
point sources or two spectrum lines. Since the objective of every oplical instrument
acts as a circular aperture and the point sources are mutually incoherent, the image
consists of two independent Airy patterns. When the Airy discs are small and
distinct, the two sources are said to be well resolved. The question now is how close
can we bring these two discs so that they are just resolved. You will learn the
answer 1o this question now., .

11.3 RESOLVING POWER OF OPTICAL INSTRUMENTS

There are several criteria for the resolution limit. But we will confine ourselves to
the conventional specification, the Rayleigh criterion, which however arbitrary,
has the virtue of being particularly simple. According to this, the two patterns are
resolved when the first minimum of diffraction pattern of one coincides with the
ceniral maximum of the diffraction pattern of the other. In Rayleigh’s own words;

This rule is convenient on account of its simplicity and it is sufficiently
accurate in view of the necessary uncertainty as to what exactly is meant
by resolution.

We will now consider the specific cases of an astronomical telescope, a microscope
and a diffraction grating.

13.3.1. Astronomical Telescope

Imagine that a telescope poinls lowards two close luminous stars, which sublend an
angle o on the objective. The plane waves from these stars reach the objeclive and
give rise lo Airy diffraction patierns (Fig.11.3). Since the stars are effectively at an
inlinite distance {rom us, the diffraction patterns (images) are formedin the back
focal plane of the lelescope objective, where it is examined with the aid of the eye
piece.The angle between mid points of central discs is equal to the angle subtended

Flg. 11.3: Foruation of Alry patterns In imaging of two stars by a telescope

by the stars at the objective. For these stars 10 be just resolved, Rayleigh's criterion ~ Fig. 11.4: Rayleigh crilerion
demands that maximum (centre) of the Airy disc due to one star should fall on the for Imaglng of two stars of

. . . C small angular separation
minimum (periphery) of the disc due to the other star, as shown in Fig. 11.4. (The L
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Dilfraction comresponding intensity curves are also shown.) Mathematically, we demand that
' for the two stars to be jusl resolved, the angle subtended by the two stars at the
objeclive should be equal to the angular half width of the Aiiry disc. Recall Eq.(9.13).1
suggests that the minimum resolvable augular separation or angular limit of
resolution for two close slars which can be resolved by a telescope is

- 122
Bmfu - __ZD_' (111)

Two stars subtending an angle o at the objective will be resolved for & > 8,ni, and
unresolved for & < 6, . The intensity plot for more than resolved, just resolved

(Rayleigh limit), and ufiresolved stars are shown in Fig. 11.5.

l ! 1

-
-

~ 1
. . h
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Fig. 11.5: Plot of Intensitles of two resolved, Just resolved and unresolved stars

The centre-to-centre linear separation of two just resolved stars, the limit of
resolution, is given by

S = 6, = %f (11.2)

where f is the focal length.

The resolving power for an oplical device is gencrally defined as the reciprocal of
resolving limit, i.e., as B;,-lﬂ or s . This means that resolution ability of diffraction-
limited systems depends on the size of 1he aperture and the wavelength. For a given
wavelength, the resolving power of a lelescope can be increased by using abjectives
of larger diameter. To give you some appreciation of numerical values, we now
give a solved example. You should go through it carefully.

Example 1

An astronomical observatory has a 40 inch telescope. Calculate the minimum angle
of resolution for this telescope. Take A = 6000 A. ‘

Solution
" Before the S.1. system of units - * From Eq. (11.1) we recall that
~. ‘was adopled, the objective sizes ‘
" were expressed in inches. . 0,;, = 1.22W/D

T ' On substituting the given data, you will find that

C_ 122 x (6 x 10 %cm)
.40 x 254cem .

=72 x 10" rad

- - = 0.15seconds of arc
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The diameter of the largest tele'scope is about 80 inch ( ~2m ) and the corresponding

angular separation of the objects it can resolve is 0.07 seconds of arc. This very low
limit is not achieved in ground based le]escopcs due to turbulence in lower
atmosphere.

For human eye, 6_. =335x 10 c‘rat:ll. Therefore, the actual lateral width of the image

s Ypmin

of a distant point [ormed on your retina is
s = femiu

If we take f= 3 cm, we [ind thal

s=(3ecm) x 335 x 1074

= 10.05 x 10" 'em

‘= 10 micron

This is roughly three times the mean spacing between photorcceptors (cones) at the
centre of the retina. Therelore, for a nonnal unaided human eye, the linear separation
between 1wo point objects at a distance of 3m sublending this angle will be equal to

(3.35 x 107* x 3m=1 x 10"°m) = Imm. This means thal the unaided eye will
resolve two point objccts Imm apart at a distance of about 3m.

You can easily veri{y this result atleast qualitatively. You should just draw two lines
one millimeter apart and view these from a distance. (Altenatively, you can see
marks on a millimetre scale or some news print). Move forward or backward till
these become blurred and just merge into one another. Experience tells us that 1
min is barely resolved at 2 m. The difference is due to optical defecls in the eye or
the structure of retina,

You may now like to answer an SAQ.

SAQ 1

An astronaut orbiting at an height of 400.km claims that he could see the individual
houses of his city as they passed beneath him. Do you believe him. If not, why?

You now know that a 40 inch telescope has a minimum angle of resolution equal to
7.2 x 10” 'rad. The minimum angle of resolution of the eye is about

3.35 x 10" *1ad. An important question that should come 10 our mind is: What
should be the magnifying power of the telescope to take full advantage of the large
diameter of the objective? The telescope must magnify about

3.35% 10" *rad
7.2x 107" rad
the image bigger but it would nol be accompanied by increase in details which are

not available in the primary image. (The resolution is determined by diffraction at
_the objective, i.e. the magnitude of 6_;..) To get some idea about these details, you

= 465 times. Nole Lhat any further magnilication will only make

should carefully go through 1ke following example.

~ Example 2

- Compare the performances of two telescopes with objectives of apertures 100 cm
and 200 cm. Take their focal lengths to be equal.
Solution |
We know that for a telescope, the minimum angle of resolution
' 122\

¢ Opin = T

Diffractlon and Resolutlon

Spend
5 min
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“You may now like to pause and ponder for a while. Then you should answer SAQ2.

122 ). +whiere A is in cm. Therefore, the radius of g

1.22 )
100 cm

2
2 1223\
Ay = wr =.Jt(f100 )

For the first telescope €, ;, = 100 om

central diffraction disc refl . =f and the area of Airy disc

2
100 cm

The area of the telescope objeclive which collects light is =t . This light

is [argely concentrated in the central maximum and gradually decreases as

2 .
-s-s_%n{—,t - If we assume that light is uniformly distributed over the disc, its -
brightness, i.c. light per unit area _

I oz 100 cm 2'—r|: f1.227\. 2
l 2 ' 100 cm

2
(100" 4

= (500 x 0
(50) (122732

100" x 100° g
4f2(1.22)%32

For the second telescope 6_. = —2%32‘:—::'1 - That is, the minimum angle of resolution

for the second telescope is half of that or the first telescope. In other words, the R.P '
of 200 cm telescope is Iwice as large. To compare their relative performances, let us
compare the brightness. As before, the area of central dilfraction disc

2
122 A
Az = "(fzoo.cin)

and brighiness

/ m(zgt)")(zozo"gma;
aff(122) % :

In words, the area of the central diffraction disc of second telescope is four times
rore. And'the of the imiage of the star will be proportional to fourth power of its
area.

Sowe may conclude that ' o

(i) The ability of a telescope 10 resolve two close stars depends on the diameter of
its objective.

(ii) The intensity of the image is sixtecn limes since the: objective collects four
times more light and concentrates it over an area which is only one Iourth. This --
means that a distant star, which is oo faint to be observed by a smaller
objective (of the first telescope), becomes visible by a larger iclescope. Thalt is,
a bigger telescope can see farther in the sky. Therefore, the deeper we want to
penctrate the space, the greater should be the aperture of the objective of
telescope. -

e —ry




SAQ2 /

We can see the stars at night but as sun.siSes they gradually fade away and are not
visible during the day. What measurc would you suggest 1o enable researchers to
make asironomical observations in the day time itself?

Example 3

2
Calculate the dip in the resuliant intensily of two sin f curves according to

p

Rayleigh’s criterion, i.e., when the maximum of one curve falls on the minimum of
the olher curve.

. Solution

We assume that the two curves have equal inlensity. These curves are symmetrical
and will cross at P = &t /2, as shown in Fig. 11.6.

At the point of inlerseclion, both curves have equal intensity:

2
sinE
2 4
I= /2 = :|:2 = 0.4053

At this point the resultant intensily will be equal 10 the sum of the two intensities
and therefore equal to 0.8106. This means that according to Rayleigh’s criterion, the
resultant intensily will show a dip of aboul 20%. And this dip is easily visible to even
unaided human eye. If these two curves are brought closer, the dip will gradually
decrease and it becomes difficult to resolve the images. Moreover, if these
intensities were unequal, the dip will not be 20%.

Diifruclion and Resaolutlon

Spend
5 min

In the above example we have taken the intensily of both the curves to be cqual. This
essentially means that in Rayleigh critcrion we take both the stars to be equaily
luminous. Another impertant point to note is that the curves are of finite angular (or
lateral) width. In the case of grating (or prism), lwo spectrum lines, though assumed
lo be of equal intensity, are very sharp. Now the question arises: Can we use the same
criterion even for a grating? From your second level physics Jaboratory you may
recall answer Lo this question; we do use the same criterion. Is the dip 20% or so
even in this case? To discover, answer Lo this question, you should answer the
following SAQ.

SAQ3

Whal is the dip in the resuliant intensity of two ( %Eﬂ) curves according Lo
iny

Rayleigh criterion?

A more realislic criterion [or resolving power has been proposed by Sparrow. We
know that at the Rayleigh limit there is a central dip or saddle poinl belween
adjacent peaks. As the dislance belween lwo point sources is less than the Rayleigh
limit, the central dip will grow shallower and may ultimately disappear (Fig. 11.7)
The angular separation corresponding to that conliguration is said 10 be Sparrow’s
limit:- Nole thal the resultant maximum has a broad flat top; there isno change in
slope. However, we will not discuss it any further.

Another useful image formmg deviceisa mlcroscope Lel us now [eam to calculate
its resolving power: : '

W
]
]
‘
ﬂnD‘!‘_ x b
2

Flg. 11.6: Resolutlon of two
single slit paiterns; Raylelph's
criterlon,

Spend
5 min

Fig. 11.7; Sparrow's
resolution criterion
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13.3.2 Mlcroscbpe

We know that an astronomical telescope is used to view far off objecis whose exact
distances are usually unknown. However, we were chiefly interested in their
smallest permissible angule« separation at the objective. In case of an optical
microscope, Lhe objecls br ng examined are very close 1o the objective and sublend

Fig. 11.8: The optical mlcroscope. (n) Alry pattern Images of iwo objecis 0.and
O’ separated through a distance s (b} Ray diagram for computation of path
difference O'B - 0'A ) .
a large angle. For this reason by resolving power of a microscope we mean the
smallest distance, rather than the minimum angolar separation, between two
point objects (O and O’ ) when their fringed images ( f and I ) are just
resolved. Each image consists of a central Airy disc (surrounded by a system of
rings which are very faint and not considered.) According to Rayleigh criterion, the
first maximum of / should be at the same position where the firsl minimum of 7’
lies. The angular separation between the two discs ‘on the limit of resclution
0 . » 1.22h
D

i

. When two irhages are just resolved, the wave from 0’ diffracted to /'

has zero intensity (first dark ring) and the path difference O'B - O'A =1.22 )
(Fig.11.8 (a)). We show an enlarged part in Fig. 11.8 (b) from which we see that
O'B is longer than OB by ssin i, and OA is shorter by the same amount. Here the
point O sublends an angle 2 i al the objective of the microscope. Thus the path
difference of the exireme rays from O’ to the objective is 2 s sin i. Upon equating
this to 1.22 A we find that the minimum separation between two points in an object
that can be resolved by a microscope is given by

2ssini w 1.22°
-ar

1.220 0.61A

L = = =

2sint sin £

In high power microsooj}cs, lhe space between the object aird objective is filled with
oil of refractive index . For an oil immersed objective, the above cxpression
becomes .

_ 0614

. (11.3
psin g ( )

s
You may ﬁow like to answer an SAQ.
SAQ4

In the above discussion we assumed that the two point objects were self-lumirious.
Suppose two objects are illuminated by. the same source. Will Eq. (11.3) still hold?-

Abbe investigated this problem of image formation in detail and found that the
resolving power depends on the mode of illumination of the object. In the above _
treatment both O and O’ were treated as self-luminous objects and thus the light .




“given out by these had no constant phase relationship. For all praclicai modes of
illumination, the resolving power may be taken simply as

R.P = M

u sin ¢

The term p sin i is termed as numerical aperture (N.A) of the microscope
objective. The maximum value of { is 90°. This gives the microscopic limit on

R.P approximately as % This shows that smaller the N.A, greater will be the R.P.

In praclice, good objectives have N. A « 1 so that the smallest distance that can be
resolved by a microscope is of the order of the wavelength of light used. Obviously,
with light of shorter wavelength, say ultraviolet rather than visible light, microscopy
allows for perception of finer details. (We may have to lakc the photographs and
then examine the images.)

In your school physics curriculum you have learnt that electrons exhibit diffraction
effects. The deBroglie wavelength of an electron is given by

MA) = 1_2_31 (11.4)
For electrons accelerated to 100 kV, the wavelength is
123 0039 x 1070 (11.5)

MA) = 705

This wavelength is 10° times smaller than that for visible light. The resolving power
of an electron microscope will therefore be very high. This makes it possible to
examine objecls that would otherwise be completely obscured by diffraction effects
in the visible spectrum. In this connection we may mention tremendous utility of
electron microscope in the study of minute objects like viruses, microbes and finer
details of crystal structures. It is betler than even ultraviolet microscope for high
resolution applicalions.

11.3.3 Diffraction Grating

You are.familiar with a sodium lamp. It gives out two close spectral lines, the
so-called D, and D, lines with wavelengths &, = 5890 A and A, = 5896 A. For
such lines, the resultant peak may become somewhat ambiguous. The problem we

now wish Lo consider is: Whal is the smallest difference A A, that a diffraction
grating can resolve? The resolving power of a grating is defined as

A
(Al)

min

R.P=

where ( AL ), ., is the least resolvable wavelength difference or limit of resolution

and A is the mean wavelength. It is sometimes also called chromatic resolving
power. '

We know that the grating forms a principal maximum corresponding to wavelength
"A at the diffraction angie 8. Similarly, the principal maxima at corresponding to

A+ AX will be a1 © + AB. At first thought you may argue that the two-colours will be
separated and always appear lo be resolved since the iwo angles are different. This
could be so if the principal maxima, i.e. the spectrum lines in the experimental
arrangement, were truly sharp like an ideal geomelric line. Bul we know that the
principal maximum has a finite angular width. Therefore, the question is: How
close can these be brought so that they are seen distinct? Obviously, sharper the
lines, the closer these can be brought and sull be seen as two.

(11.6)

Diffractlon and Resolution

The dei3roglie wavelength of an
electron is given by
h

e V

Aom

where 4 is Planck's conslant, m.
is elect-onic mass and v is
electroi speed. When an
electron beam is accelerated
througl a polential difference V,
we can write

2V,
ym —
Me

On conibining these rejalions we
find thit

h 1
Subslitting the values
h = 66x10"3]s,
me o 9.11 x 107 kg
and ¢ = L6 x 107 mC,
you will find that

123
\i2

A m

AtA) -

5
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Fig. 11.9: Resolutlon of lwo
spectral [ines
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This question was also carefully examined by Rayleigh. In Fig. 11.9 (a) we show
plots of two widely separated principal maxima. In Fig. 11.9 (b) we have brought
these closer so that the principal maximum of A + A A is situated at the position
where the minimum of A falis. The dotted line defines resultant intensity, which
shows a dip. You will recall that according to Rayleigh criterion, this is the closest
Lhat we can bring these curves and sliil regard them as separate. If we bring them -
still closer as in Fig. 11.9 (c), the resultant intensily (shown by the dotted line)
significs a single enhanced principal maxima.

According to Rayleigh crilerion, the condition for resolution of two spectral lines by
a diffraction grating is obtaincd by noting that for the common diffraction angle 0,
the [ollowing two cquations should be satisficd simultaneously:

dsin@=n(A+AN)

for principai maxima of A + A A and

. . A
dsind = n ) + N
for first minimum adjacent to the principal maximum for wavelength A. On
simplifying these we get

A
e nN . (117
We note that in a given order #, the R.Pis proportional to the total number of slits.
Does this mean that R.P increases indefinitely with N? It is not so. Think why?
Docs it have some connection with the width of the grating? You will also nole (hat
the resolving power is independent of grating constant. it means that resolving
powers of two gratings having equal number of lines but different grating conslants
will be equal. |

To enable you to grasp these conéepls and appreciate the numerical values, we now

give some more solved examples.

. Example 4

For Dy and D, sodium lines, )\.DI = 5890 A and 7LD = 5896 A. Calculale the minimum
number of lines in a grating which will resolve the doublel in the first order.

Solution

Let us take the average wavelength as 5893 A. From Eq. (11.6) we find that the

resolving power is

..sﬂ
A '5393 x 1_(:; A _ s
AA 6 x 100%A

Therefore, we must have a grating with more than 983 lines to resolve sodium
doublet in first order. A grating of 1000 lines will serve the purpose.

Example 5

Supposc that lo observe sodium doublet we use a graung having d = 10™ *cmanda
lens of focal length 2 m. Let us calculate the linear separation of the two lines in the
1st and 2nd order,

Sol_ution
We know that
' dsing = ni .
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For the D, line

5890 x 10" Scm

- - 5890 x 107°
10 “om

sin@, =

or
B, = 5890 x 10’ rad
Similarly for the D, line

5896 x 10 %cm
10”2 em

sind, = = 5896 x 107°

or

8, = 5896-x 10" " rad

AB = (8, - 8,) = 6 x 107" rad

With a lens of focal length 200 cm, we [ind that linear separation between D, and
D, lines is

! = fAB
= (200cm) x (6 x 10 rad)
= 12 x 1072 cm = 0.12mm

This shows that 6 A arc scparated by 0.12 mm in 1st order. Alternatively we may
say that linear separation is nearly 50 A per millimeter in the first order. You can

readily check that in the second order this linear separation will be 25 A per
millimeter.

11.4 IMPROVING RESOLUTION

You now know that with the help of a tclescope, we can view a [aint star, resolve

" two close stars and measure the angle subtended by the double star at the objective
of the telescope. However, it is worth noting that based on Fraunhofer diffraction

. image of a star, we cannot measure its angular diameter. To overcome this
limitation, Fizeau suggested a slight modification in that we should use a two slit
adjustable aperture (with provision for lateral adjustment), in front of the objective
of the telescope. As a result, the plane wavefront falling on the double slit is
diffracted and collected by the objective. The Fraunhofer diffraclion pattern of the

- double slit is formed in the back focal plane of the objective. The measurements to
determine angular diameter are made from the observations on these interference
fringes. ’ ) o

Refer Lo Fig. 11.10. Two slit apertures Sy and S, are at a distance 4 apart. The
telescope is [irst pointed towards the double siars, which acl as two point sources O
and O'. The two poinl sources are separaled by an angle 6 in a direction at right
angles 1o the lengths of the slits. Such objects emit white light and because of
intensily considerations, the observations have lo be made with white light fringes.
It is therefore customary to assume an effective value of the wavelength emitted by
the source. This depends upon the distribution of intensity of the light and the
colour response of the eye. The inlerference patterns due to O and O' have the same
fringe spacing since this spacing depends upon separation between slit aperiures
and the foca] length of the objective. Moreover, these fringe patierns are shifted

Diffractlon and Resolution-

The intensity of the double slit
pallern is given by

2
I--mz%ﬁmszy

na sinf a - nd sind

whereﬁ-T ndy

in which a is the slit widih and d
is Lhe slit separation. The

‘posilions of the maxima are

given by
dsinBani

wheren=0,1,2,3,... When
@ is small,the successive

- maxima occur at

A2 3
dd"d ™

so thot the angular separation
beraeen successive maxima is

0=0,

givenbe 8y = % Furthes, il ais

small, the interference pallern

will be essentially a cosz ¥ curve
near lhe centre.
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with respect to each other by an angle 6. Thercfore,'as shown in the figure the

central maximum of the patlern due to-Q is at P and that due to @' isat P'. If © and -
O’ are two'incoherent sources, the combined pattern is formed by summing the
intensities of these two patterns al each point. Assuming that both O and O’ have
equal brightness, we can plot two cos’y curves on the same scale and shift them
suitably to obtain the resultant curve.
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Fig. 11.10: Princlple of measurement of angular dlameter of steltar objects by
Interferometry _
We can show graphically that if this shift is a small frag,tion of the angular separation
0, the resultant intensity distribution resembles a cos™Y curve. However, the
intensity does not fall to zero at the minimum. The net result is a fringe pattern
shown in Fig. 11.10(b). By successive adjusiments a stage can come when the
maximum of one pattem, say due 10 0O, coincides with the minimum of O'. Then we

0
have -2—1 = -2%- And the paths from the two sources differ by %- We can show

graphically that the resultant curve 2 shows a uniform intensity and the fringes have
disappeared. If we displace the two curves further, the fringes reappcar and become
sharp when the fringes are displaced by a whole fringe width, i.e. 8 = 0;. They
disappear again when 8 < 3791 or 5_21_ Thercfore, with two.point sources
subtending an angle 8 al the double slit, the condition for the disappearance of
fringes is
- _A o5
T 2727 2d
To measure angular separation of a double star, the double slit is mounted in front
of the objective of the telescope which poinls fowards the double star. (We should
remember that the line joining the stars should be perpendiculiar to the length of the
slits.) We expect interference pattern duc o the double slit. If on adjusting the
separation between the slits, the interference fringes can be made Lo disappear, we
can infer that the star is a double star. The first disappearance should take place

when the angular separation is % « Let us compare this with the expression for the

resolving power of a lelescope (8 = 1.22 2’- » where g is the diameter of the
objective). If the double slits are & apart and the first disappearance occurs for

d = a, the angle 8 between the double stars is 6 = % = % * This angle is effeclively
haif of the R.P of the lelescope. It explains the genesis of the statement: The R.P of
a telescope may be doubled by placing a double slit in front of it. You must
however note that with a double slit, we can only infer the presence of a2 double slar
(from the disappearance of the fringes); we neither get.the images of the slars nor
resolve them. Indeed, even before the disappearance of the fringes, a blurring of -
fringes starts. This angle is only a small fraction of 8,. You may hav'e_ realised that
this method enables us to measure the angular diameter of ihe disc of the star and
Michelson successfuily used it in 1920. , -
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Angular Diameter of a Star

For measuring the angular diameter of the disc of a star we should [irst know Lhe
condition lor the disappearance of fringes for a double slit placed in front of a
telescope. In conlrast lo two point sources, the disc of a star consists of a series of
points extending from one end O, Lo another end O,. In Fig. 11.10, we see that

. when O, and the central point O satisfy the condition for disappearance of fringes,
the point just next to Q| will have a similar point next (o @ and so on. Thus all the
points between O and O will have corresponding points lying between O and O,
satisfying the condition [or disappearance of fringes. Since the angle between O,

and O for the first disappearance of [ringes is }23 » Lhe angle between O and O,

(which is for the total disc) equals %- Thus the angular disc 8 of Lhe star, computed

from the first disappearance of [ringes, is given by 8 = %- For successive

disappearances 6 is given by 8 = % ; %‘ -« If the source is a circular disc, the

condition for the first disappearance is 8 = 1.22 % This method was successfully
used (o measure angular diameters of planetary satellites. Bul attempts lo apply it
for single stars failed because of their small angular diamelers. Even with Lhe
largest slit separation possible with the available telescapes, the fringes remained
distinct, no disappearance was achieved. To overcome this difficully, Michelson
devised stellar interferometer in 1890. We will discuss it now.

11.4.1 Michelson Stellar Interferometer

The principle of Michelson’s Sicllar Interferometer is illustrated in the Fig.11.11.
The slit aperteres §; and S, in front of the telescope are lixed. Light reaches them
after reflection from a symmetrical system of mirrors M, M,, M; and M, mounted
on arigid girder in front of the telescope. The inner mirrors M and M), are [ixed but

A= fAD-
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the outer mirrors M, and M, can be separated out symmetrically in a direclion
perpendicular to the lengths of the slit apertures. Therefore light from one cdge of
the star (shown as solid line) reaches the point P in the focal plane via the paths
OM, M3 S; P and OM, M, S, P. This will form interference fringes with the angular

separation equal to % The olher edge-of the star sends light along the dotied lines

and produces a similar system displaced slightly with the central fringe at P'. You
now know that when two extreme [ringe systems are displaced by a whole fringe
width, the resullant intensity pattern will show uniform intensity and the fringes will

disappear. The angular diameter of the star ¢ = 1.22 A'-a- where D is the separation of |

D
outer mirrors M, and M,. You can easily convince yourself by noting that the
optical paths M} M, S, and M, M, S, have been maintained equal so that the optical
path difference for light [rom the two edges of the slar is the same at S, and S, as at
M), and M,. If the path differcnce at M, and M, is one whole wavelength, the path
difference al S, and S, is also one wholg A and fringe shill is equal 1o one fringc

‘width. This leads lo disappearance of fringes. As shown in the diagram, the dotted

lines inclined at an angle o will have a path di[fcren.ce of A when a = % In this

arrangement the smallest angular diameler that can be measured is deteriined by
the separation of the outer mirrors M, and M, rather than the diameler of the
objective of the telescope. Therelore, the stellar interferometer magnifies the

effective resolving power of the telescope in the ratio % We may emphasize that

for 2 circular star disc, the fringes will disappear when o = 1.22 % This implies

that the outer mirrors have 1o be moved oul somewhat.

The interferometer was mounted on the large reflecting telescope (diameter 100
inch) of the Mount Wilson observatory, which was used because of its mechanical
streagth. The first star whose diameler was measured by this method was
Betelegeusc (o -orions) whose fringes disappeared when the separation between M,

and M, was equal to 121 inches. Assuming A = 5700 A, we find (hal

oo 1220 122 x 5700 x 10" %cm
D 121 x 254 cm

- 227 x 10" % rad

= 0.047 s.cconds of arc

The distance of Belelegeuse was measured by parallex method. Its linear diamcter
was then found lobe 4.1 x 10 km, which is about 300 times the diameter of the
sun: The maximum separation of the outer mirrors was 6.1m so that the smallest
measurable angular diamelter with A = 5500 A was about 0.02 seconds of arc. This
is insufficient for most of the stars. The smallest star for which measurements were
made was Arcturus, lis actual diameter is 27 times that of the sun.

At the surface of the earth, the sun disc has an angular diameter of about

32" = 0.018 rad. If we imagine the sun to be at a distance of the nearest star, ils
disc would subltend an angle only 0.007 seconds of arc. This will require a mirror
separation of 20 m for disappearance of [ringes. It is difficult 1o achieve this since
we require arigid mechanical connection between mirrors and eye piece.

Let us now summarisc what you have learnt in this unit. .
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11.5 SUMMARY

Diffraction constrains an optical device in the formation of a sharp
point-like image of a point source.

Rayleigh criterion for resolution of two images demands thal the first
minimum of diffraction pattem of one object and the central maximum of
the diffraction pattern of the other should [all at the same posilion.

The minimum resolvable angular separation or angular limit of resolution
of two close objecls by a telescope is given by

1.22M
emr’u = D

where A is the wavelength and D is diameler of the objective of the lelescope.

The resolving power of a telescope is inverse of angular limit of
resolution. The deeper we want 1o penelrale the space, Lhe greater shonld
be the aperture of the objective of telescope.

The resolving power of a microscope is delined as the smallest distance
between two poinl objects when their iringed images are just resolved:

_ 061A _ 061X
usini N.A

R.P

where i is the angle of incidence. sin { is known as numerical aperture and is
approximately equal to onc for good objective.

The resolving power ol a diffraclion grating is defined as

A
T (AX)

min

R.P = qN

where A A is the least resolvable wavelength diffcrence, » is order of spectrum
and N is the total number of slits.

11.6 TERMINAL QUESTIONS

1. A diffraction limiled laser beam ( A = 6300 A ) of diameter 5 mm is dirccted at
the earth from a space laboratory orbiting at an altitude of 500km. How large
an arca would the central beam iliuminate?

2. The resolving power of a prism is given by

A _ A

= [—

dh.  dh

where ¢ is Lhe length of the base of the prism, p is the refractive index of the
_material of prism [or wavelength A. A prism is made of dense Qint glass for which
refractive indices for A = 6560 A and 4860 A are 1.743 and 1.773 respeclively.
Calculate the length of the base of the prism.

Dilfraction and Resolutlun
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Diffractlon . 11.7 SOLUTIONS AND ANSWERS
SAQs |
1. The minimum angle of resoluiion of eyc

6o L22h  122x(5.5x 10" cm)

) -4
) 0.2 o = 336 x 10 rau

The lateral width fqr resolution

=r8=(4x10m)x (336 x 10 %ad) = 1.34m

Since it is must less thaln the widih of individual houses, it is not wise to
believe he aslro nant. .

2. Asweincrease the aperture of the Lelescope, the light collected by il from a
star gradually increases and gels concentraled in the image (the diffraction
disc). Ultimately a stage will come when the image of the star becomes
brighter than the background and is visible (This is because the intensity of the
image of a star is proportional to fourth power while the background sky light
increases as the square of the area of the aperture.) This means that you can see
stars during the day by using a telescope of sufficient a perture!

3. The maximum is at Nn 7 and minimum at (Nr + 1) n. The two curves arc
symmelrical and if they are of equal intensity, they will cross at

. 2
Ny=Nnn+ % Therefore, if you evaluate the function ( E%Y-) at Ny = Nnn

and Ny = Nnxt + %, lLe.y=nr andy=nn+ E-JL—, you will find that

(sinf\l'm.n)2 Y

sin nx
and
"
; ;LY -
sin | Nnrx + >
1 1
= = . n = 2
s hg + — sin (Z‘V_ L
2N
4N
=

Hence the required ratio is -43 = 0.4053
T

Therefore the resultant intensity will show a dip ol about 20% as in the zase of a
telescope.

4 The waves given oui by each self-luminous object bear no constan: phase
relationship so that the intensities can be added up. The objects viewed with
microscopes are illuminated by the same source and there will be some phase
relationship between the waves emanating from these. Strictly speuking the
intensities will not be additive. But Abbe found that Eq. (11.3) gives the
correct order for the limit of resolution. ;

TQs '
1. We know that angular spread of light beam is given by-

T P (OO




1220 1.22x (6300 x 10 cm)

0 D (0.5cm)

= 1.54 x 10" *rad

Since the diameler of light patch

x =2r0
the area of the earth illuminated by the beam focussed from the space laboralory at
an allitude of 500 km is B

A—MT-ﬂ:rZG2

2 (25 x 10‘°m3) x (154 x 10_4)2

7

10934 m> = 0.01 km®

1773 — 1.743 = 0.03

2. du

dh = 6560 — 4860 = 1700 A = 1700 x 10 *cm

Note that spectral spread is very wide whereas dA should be a small change.
Assuming that pu changes linearly between these two colours, we have

de 0 2 atfem - 1765 em
i 1700 x 10°° ¢m 17

The negative sign signifies inverse value of relationship between A and p. The
prism is made of dense flint glass and to just resolves D, and D, lines find that

R.P = 3893 A = 982
6 A
‘so that
LS 982 = 1765 ¢
dA ‘
and
t = Ll = ().556 an =~ (.6 cm

1765 cm
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BLOCK INTRODUCTION.

In the preceding blocks, you have learnt that light is an electromagnetic wave. It exhibits
polarisation, interference, diffraction, etc. As you have seen, these phenomena are well
“understood in terms of the wave theoty of light. This block, as the title indicates,
essentially deals with lasers - a source of coherent light - and their applications,
particularly in the areas of photography and optlcal communication. Lasers owe its
invention to the quantum theory according to which, light cnergy consists of minute
packets or quanta. The invention of lasers and related developments has once again
brought the field of optics at the forefront of basic research and technological
‘applications. Widespread use of light from laser is because of its high degree of
‘coherence, high directionality, unprecedented brightness, etc. Without fear of
¢xaggeration, we may say that the present period in optics may be called the Laser Age.
In this block, we intend to gwe you a flavour of the basic physical prmclples involved in
the design and operation of lasers and also about some ofits important applications.

'Laser is a coherent source of light. But what is coherence? You learnt about coherent
source of light in Block 2 in connection with Young's double-slit interference
experiment. It was emphasized there that for obtaining observable interference fringe
pattern, the light from the slits must be coberent. -In Unit 12, the first unit of this block,
you will learn about the concept of coherence of waves. If the phases of two waves have
a definite phase relationship, they are said to be coherent. This phase relationship
between waves, which can be in time or space, gives rise to temporal coherence and the
spatial coherencee. You will learn that temporal coherence of electromagnetic waves
menifests as monochromaticity and the visibility of the interference fringe pattern
indicates the extent of spatial coherence between the intefering waves.

In Unit 13, you will learn the working principle of lasers. In particular, we have
discussed concept of stimulated emission of radiation and the prerequisits for obtaining
laser light. Though the first laser used ruby (solid) as active medium, now lasers which
employ liquids and gases as the active medium are available. You will learn about
different type of lasers. Coherence (Monochromaticity), high directionality and
brightness are some of the properties of lasers which are responsible for their so many
and so varied applications. In this unit, you will also learn about some of these
applications.

Holography is a technique of three-dimensional photography. This technique was
invented by Dennis Gabor much before the invention of lasers. However, the full
potential of this technique could be realised only after this invention. In Unit 14, you
will learn details of this novel technique. Some of the applications of holography have
also been discussed.

The use of lasers has revolutionised communication technology. The monochromaticity
of laser light makes it an efficient carrier of information. Communicztion - transmission
of speech, data, ctc. - at optical frequency is much faster and reliable compared to radio
and microwave communication. However, oplical communication suffers from the
drawback that signals get attenuatcd by dust particles, rains, etc. Thus, for efficient
terrestrial optical communication, optical fibres are used, How is light transmitted
through optical fibres? What are the characleristics of such fibre? These and other
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related questions form the subject matter of Unit 15.

studying this block.

We wish you success.
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The units are riot of equal length. On an average, Unit 12 should take 4h, Unit 13 should
take 7h, Unit 14 should take 5h and Unit 15 should take 6k. We hope you will enjoy
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UNIT 12 COHERENCE

S‘tructure '

121 Introduction
Objectives

122 What is Coherence?

123 Temporal Coherence
Width of Spécll-al Lincs

12,4 Spalial Coherence

' Angular Diameter of Stars
Visibility of Fringes

125 Summary

126 Terminal Qucstions

1277 Solutions and Answers

12.1 INTRODUCTION

In Unit 5 of this coursc, you studied about Young’s dotible-slit interference experimeat.
We emphasized that for observing interfcrence fringe pattern, the light from two sources
must be coherent. By coherence, we mean that the light waves from two slits have a
constant phasc relationship. Can you recall how this condition of coherence is achieved? -
If you are unable to do so, you should refer back to relevant pages. Now the question
ariscs why coherence is a prerequisite for obscrving interference? You will learn about
cohercnce in detail now. '

In Sec. 12.2, we elaborate the concept of cohcrence as applied to waves in general,
Further, the most elementary definition of coherence says that the phases of the
coherent waves have a predictable rclationship at different points and at different times
in space. This space and time prediclability of the phase rélationship of waves gives rise
to two types of coherence, namely, spatial coherence and temporal coherence. The
concept of temporal coherence, which refers to the phase relationshi p at dilferent limes
at a point, has been discussed in Scc. 12.3. You will also learn about the carrelation
between the width of a spectral linc and temporal coherence. In Sce, 12.4, we have
discussed spatial cohercnce which relates to the coherence of two waves travelling side
by side. The relationship between the visibility of fringe paltern with spatial coherence is
also discussed in detail, _

Objectives i _
Alter going through this unit, you should be able to
® cxplain the concept of cohercnce '
distinguish temporal cohérence from spatial coherence
" relate temporal coherence with the width of spectral lines
relate spatial coherence with the visibility of fringe pattern, and

solve numerical problems based on cohcrence.

122 WHAT IS COHERENCE?

- Ifyou arc asked what is cohcrence, ¥ou may say that it is the condition nccessary to
producc observable interfcrence of light. And if you are asked what is interference, you
may say it is connccted with interaction of waves that are cohcrent. Well, nothing
definitc follows [rom such circular arguments! In fact, cohercnce is a property of light
whereas interfercnce is the effect of interaction of light wavcs. The crucial consideration
in interference phenomcnon is the relative phase of waves arriving at a given point from
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two or more sources. That is, in order (o observe interference fringes, there must exist a
definite phase relationship between the light waves from two sources. Hence, we may
say that the necessity of having coherent sources for observing interference fringes
. essentially implies that the waves from the two sources must have a constant and
predictable phase relationship. It is the absence of a definite phase relationship -
- between light waves [rom ordinary sources that we do not obtain any observable
interference fringe pattern. -

Now, you majr ask: Why there is no delinite phase relationship between light waves from
two ordinary light sources? Well, the basic mechanism of emission of light involves
atoms radiating electromagnelic waves in the form of photons. Each atom fadiatcs fora
small time (of the order ol 10 9s) . Meanwhile, other atoms begin to radiate. The
phases of these cmitted eleclromagnetic waves are, therelore, random; if there are two
such sources, there can be no definitc phase rclahonshp bchccn the light waves
emitted from them. '

In gencral, sources, and the waves they emit, are said to be coherent if they
(i) have equal frequencics, '
(ii) maintain a phase dilference that is constant in time.

If cither of these properties is lacking, (he sources are incoherent and the waves do not
produce any observable interference.

Let us pause for a while and ask ourselves: Why it is a prerequisit for observing
interference fringe pattern? To answer this question, let us consider the.origin of the
bright and dark fringes in the Young’s experiment (Fig. 12.1). Let E; and E, be the
electric fields-associated with the light waves emanating from slits §; and S,. These
-waves superpose and the combined electric field at any point on the screen is given by,

E=E +E, K (12.1)

You may recall that in the interference palfern, we observe the intensity of light, not the

electric field. Since the average intensity of light is prorportional to the time - averaged
value of the associated tlectric lield, we have

Ja < E > - , (12.2)
. Expanding
waves
f Bright
Pinhole
Dark
Incideni
light
—_— Bright
——
Dark
Slits.
Bright
Screen

Flg.[2-1: Young's interference experiment
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Thus, we have, from Eq. (12.1) and :(12.2), '

) I=~<Ef>+<E§>_+2<E,E2> !

=15+ L+ 2<EE,> : (12.3)

Eq. (12.3) shows that the resultant intensity on the screen is the sum of intensilies [y and -

I, (duc to individual slit sources) and an interlerence term2 < E,E, >.The
interference term is crucial because it determines whether the resultant intensity is an..
uniform illumination or a fringe pattern on the screen. The contribulion of the
‘interference term to the resultant intensity depends primarily on the phase relalionship
" between the light waves emanaling from the twao slits. .

Let us first consider the case when the light waves are in phase-at one instance and are -
out of phase at another instance. In such a situation, the producl E; £, will be positive at
one instance and negative at the other. As a result, Lhe time average of E, E, will be
Zero, i.e.

< E\E,> =0

Waves having this kind of phase relalionship (varying with time) are said to be
incoherent and the resultant intensity will be

I=1+1 _ - (124)

Thus, when light waves from two incoherent sources interfere, the resultant intensity will
be the sum of individual intensities and the screen will be unifarmly illuminated. To give
you a simple example, when the headlights of a car illuminate the same arca, their
combined intensity is simply the sum of two scparate intensities. The headlights are
incoherent sources and there is no contribution of the interference term.

Now, what will happen if the light waves from two slits have a definite phasc'rclalicmship
i.c. a phase relationship which is constant in time, Source of light emiting such waves are
coherent. When light sources are coherent, the resultant intensity is not simply the sum
of individual intensities. It is so because in that siluation, the intcrference term in
equation (12.3) is non-zero. Let us see what is the form of the interference term when
two coherent light waves supcrpose. There are two cases;

(a) When E; = E,, Lhat is, the two waves have same amplitude, frequency and phase.
Thus,

]
.

I=<E>=~:E§>=

-

:.md ZcElEZ>=2¢:.Ef>=21,

The resultant ititensily, ,
I=L+1L+2<EE>
=1, + I + 2,

= 4, (12.5)

Thus, the points on ihe screen where Lwo interfering waves arc in phase, the resultant ~ -

intensity is four times that due Lo an individual source. Thesc points will, therefore,

appear bright on the screen. - o

(b) E (== Ei, that is, the two waves have samc ampliiude and frequency but their -
phases differ by 180° which remains.constant in lime. In that case, the lwo waves

Coherence -
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fixed point in space. And in wave motion corresponding to light from ordinary sourccs, a

[
Al

are completely out of phase and the resultant wave amplitude and interisity will be -
zero. .

E=E +E =20
=2J=0

The points on the screen where the mtcrfcrmg light waves satisfy above condition wﬂl
have zero intensity and hence they will appear dark.

Thus, (he constant phase relationship belween supcrposing light waves i.e. coherence, is
a necessary condition for obtaining interference fringe pattern. When the phase
relationship is not constant, the points where superposing light waves arrive in phase at
one instant may receive light waves which are completely out of phase at another
instance. This results in uniform illumination of the screen and no mtcrference I‘rmgc
pattern can be observed.

In the above discussion, you have studicd about the necessity of having coherent sources
for observing interference fringe paltern. As mentioned carlicr, cohcrence, which is
essentially a correlation phénomenon betwecen two waves, can be with respect to time
and/or space. Thus, for expedicncy, we distinguish two-types of coherence: Temporal
Coherence and Spatial Coherence. Tecmporal coherence, or the longitudinal spatial
coberence (often called monochromaticity) applics to waves travelling along the same
path. It refers to the constancy and prediclability of phase relationship as a [unction of
time. Spatial coherence, or transverse spatial coherence refers to the phase relationship
between waves travelling side by side, al a certain distance [rom one another. The
further apart are the two waves, less likely they are to be in phase, and less coherent the -
light will be. You will study these two ypes of coherences in the following sections.

123 TEMPORAL COHERENCE

While studying interference and dilfraction of Light in the previous two blocks of this
course, we assumed that electromagnetic waves remained perfectly sinusoidal for all
time, This kind of electromagnetic waves are, however, practically impossible to abtain
from ordinary light sources. Why is it s0? It is because light cmilted from an ordinary
source consists of finite size wave Lrains. Each wave train is sinusoidal in itself and has a ]
characleristic frequency (or wavelength) and phase. However, the collection of wave
trains is not sinusoidal. Thus, light waves coming from an ordinary source can not have
one single frequency {monochromatic). Instead, it has a range of frequencies; that is, il
has a frequency bandwidth. For thesc rcasons, the so called monochromatic’ light, such
as from gas discharge tube, is more appropriately called quasi- monochromatic.. b

(R ToT1Y

This aspect of light (i.e. monochromaticity) refers to its temporal coherence, The
temporal coherence can be identified qualitatively as the interval of time during which
the phase of the wave motion changes in a predictable manner as it passes through a

predictable phase relationiship can be observed only within the average length of the
wave trams on time scalc

i L el L

To elaborate the concept of temporal coherence, let us consider a typical time varialion
of the amplitude of an elcctromagnetic wave as shown in Fig. 12.2. -

s P g T e

You may nothc from the ligure that the electric Geld at time ¢ andt + Afwill have a ;
definite phase relationship if Az < < 7_and will not have any phase relationship if At .
> > 17, Where, represents the average duration of the wave trains. The time 7_is
known as coherence time of the radiation and the wave is said to be coherent for time 7.
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g 12.2: Typheal variation of the amplitode of an electronsgnetic wave with thme. Three typlcal wave
trains have been shown. The coherence tinre ¢ bs the average doration of the wave frafns.

And the path length corresponding to 7, given as L.=c1,is clled the coherence -
length of the radiation, where ¢ is the velocity of light. “'

In crder to study the time- cohercncc of the radiation, Iet us re-consider M:chclson s
interferometer experiment. For completeness, we have reproduced the experimental
arrangement in Fig. 123. A nearly monochromatic light source is used in the
investigation. '

For the source (§) we may use a ncon lamp in front of which we place a filter (F) so
that radiation corresponding tod = 6328 A is allowed to fall on the beam-splitter G.
Glass plate G is the compeisating plate. You may recall from Unit 7, if the eye is in the

/N
AN
S

Y

W Observer

Fig.12.3: Light paths for Michelson Interterometer,

position as shown in the figure, circular fringes are observed due to interferénce of the

beams reflected from mirrors M; and M,. You may also recall that for obtaining these’

circular fringes, the mirrors should be at right angle to each other and the path

difference (GM, — GM,) should be small. If mirror M, is moved away from the beam

splitter G, the visibility and hence the contrast of the interference fringes will become

- poorer, and, eventually, the fringe pattern-will disappear. Why does it happcn" Docs -
disappearance of interference fringes has to do something with temporal ‘coherence of
light waves from neon Iamp" Yes, it is so, The disappearance of the fringes is due to the
following phenomenon. When mirror M, is moved through a distance &, an additional

- path 2d'is introduced for the beam which gets reflected by M,. As a resiilt, the beain
reflected from M, interferes with the onc reflected from M, which had originated
(2d/c) s, where ¢ is the velacity of light, earlier from the light source. Clearly, if this time
delay (2d/c) is greater than the coherence time (r,) of the radiation from the source, the
waves reaching the eye after reflection from mirors M, and M, will not have any definite -
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. 10,
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phase relauonshlp In uther words, the waves reflected from mirrors M, and M, are
incohereat. Thus, no interference fringes will be seen. On the other hand, if

(2d/¢) < < 1, adefinite phase relationship exists between the two reflected waves
and hence interference fringes with good contrast will be seen. It is so because in this
case, we are superposing two wave trains (after reflection from mirrors M, and M,)
which are derived from the same wave train (from the source) and hence they are
temporally coberent. '

For the neon light {1 = 6328 A ), the disappearance of fringes occurs when path

difference between the reflected waves from mirrors M; and M, is about a few cm. This

10
path difference, L. = ¢ 7 is known as coherence length, Hence for neon line, T 7. ~10"

s. For commercially available lasers, the coherence length exceeds a fcw kilometers.
Thus, if light beam from a laser be used in the above experiment, we can observe
interference fringes for 4 as long as a few kilometers (provided, of course, we have such
a big laboratory!).

In short, if the two paths, GM; and GM, in Fig. 12.3 are equal in length, the fringes “have -

maximum contrast, hence a maximum temporal coherence. If they are not of equal

length then the contrast is less. Hence temporal coherence is less. Temporal coberence .
is, therefore, inversely proportional to the magnitude of the path difference and directly -

propomOnaI to the length of the wave train, The wave trains are of finite length; each
containing only a limited number of waves. The length of a wavetrain is, therefore, the
product of the oumber of waves, N, contained in a wave train and of its wave length 4, so
L. = AN, Since visibility or the contrast of the interference fringes is directly
proportional to the length of the wave train, it can also be taken as proportional to the
product of N and A. Further, for a given source of light, you can have some idea about its
temporal coherence in terms of the path difference between two interfering waves of
Michelson interferometer. You should now work out the following SAQ.

SAQ1

1 light of 660-nm wavelength has a wavctrain 204 long, what is its {a) coherence tength
and (b) cohcrence time.

12.3.1 Width of Spectral Line

You might bave studied in school physics course about the origin of spectral lines. You
may recall that when an atom undergoes a transition from an cxcited state to the ground
state, it emits electromagnetic radiation. The energy (and hence frequency) of the
radiation is equal to the difference in energies of the excited and Lhe ground state. Each
substance has a unique set of energy state to which its atoms can be excited. Each
substance, therefore, has a characteristic set of energy valugs (and hence frcqucnc:cs)
for the emitted radiations. This set of frequency valucs constitutes the spectrum of the
substance.

Due to one of the fundamental prmc:ples of quantum mechanics, namely, the . ...

unoertamty prmcnplc, about which you would learn in the course on Modern Physics
{PHE-11), the lines in the spectrum are not sharp i.e. corrcspondmg to cach spectral
line, there isa continuous distribution of frequency in a narrow frequency interval. Th.ls
narrow [requency or wavelength interval is known as width of the spectral ling, For
example, for Cd red line, width of this interval is about 0.007 A.

You may now be interested in knowing what dctermmcs the mdth of lhe spcctral Ilnes‘?
Is width of spectral lines related to temporal cohcrcncc" Yes, tcmporal coherence of thc
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-~ source of light is inﬁmatell' related to the width of its"s'pEct'ra]' lines: To §ée how, fet us - freel DS Coherente’

. again consider the interference l'n.nges obtained by Mlcl:elson interferometer. You may"
recall from Unit 7 that Michelson’s Interferometer can be used for the measurement of
two closely spaced wavelengths. Let us consider a sodium Iamp source which emits

predominantly twa closely spaced wavelengths, A, = 5896 A and 4, =-5890 A. Now, S ,
Il'd" is the distance through which

you may recall from Unit 7 that near d =0, the fringe patterns correspondmg to both one of the mirrors has been

the wavelengths will overlapp. If the mirror is moved away from the plate G bya moved, the effective path

distance d, Fig, 12.3 the maxima eorrespondmg to the wavelength J. will rot, in general :;r:cd::g;crﬁl:;ﬁf}g:g?i:c

occur at the same angle as for A,. It is so bécause the spacing between the fnnges for J. 2d = md

and 4, will be different. Indeed, if the distance 4 is such that the bright fringe and the condition for dark fringe is .

20 = (m + V2)A

corresponding to A, coincides with the dark fringe corresponding to-/lz, we have
' where miis an integer.

. 2d =m A| - - (br-i.ght fl’iﬂge) - (12.4&) 2d= mjl = m= 2d./.l.1
and
| . om=(2d7,)—1/2
1 -
2d = (m + 5] ll-z (dark fringe) (124b) - %% _ %d;_ u%

‘and the fringe system will disappear. The condition for disappearence of fringe pattern
can, therefore, be expressed as (see margin remark) .

24 2

_xd_1
AT 2
| : : j'1""2 : -izr -' . ;
DO T2 -4 20T A T @

since 4, = A, -
Now, if we assume that the light beam consists of all \vavelengths- lying between A and
A + A, mstead of two discrete values 4, and A,, fringes will not be observed if

2 AN
24 = 3% | oL e,

HE

To arrive at equation {12.6) you should solve the following SAQ.

SAQ2

Starling from Eq. (12.5) which gives the path-difference (24), in terms of iwo distinct

wavelengths' A, and A,, for which fringes will disappear, derive Eq (12.6) which.is for all . .. Spend
wavelengths lyingd betweén 4 and A+ Ad, R - . o Smin

. Now, can you see the basic reason why fringe pattern disappears? Is it somehovv related
‘___to the nonmonochromatlcrty of the light beam? Yes, it is so. If fact, the moment we
consrder that the light beam consists of all wavelengths lying between i and 1+ M. we
are essentla]ly considering mter{erence pattern produced by non-monochromatic l:g,ht
beam. You may notice t'rom equation {12 6) that as the spread inthe wavelength (ad)
becomes small (more and more monochromatre), the path dilference (2d) for -
disappearance of fr:nges becomes large And as mentioned earlrer, larger the value of
path difference for whrch frmge pattern does not dJsappear more tempora]ly coherent
the light beam is. In other words, monochromaticity or the sinusoidal nature of light
beam is strongly related to its telmporal coherence. The temporal coherence of the beam
11.
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is, therefore., du'ectly associated with the width of Lhe spectral line. Since no fringe
pattern is observed if thc path difference, 24, exceeds the coherence length, Lc, we may
assume that the beam cons;sts of all the wavclcngt.hs lymg between A andvl + M “nth

| :-N'

"

M =

This gives the relation between coherence length and spread in wavc!ength of a light
beam. Further, since v = ¢/A, the sprcad in frequency A vis'

[
£aa

e

And, the coherence time is defined as, r, = L /c. Therefore, we have

Av ~L/7, (12.8)

Thus the frequency spread of a spectral line is of the order of the inverse of the
coherence time. :

In this section, we discussed about temporal (or longjtudinal spatial) coherence which |
relates the predictability or constancy of the phase relationship between two waves
arriving at the same point after traversing different optical paths. In other words, we
tatked about the constancy of phases of waves travelling along the same line. Light beam
was considered as a series of wave trains, As per requirement of temporal coherence, if
these wave trains are to produce observable interference fringe pattern, they must (a)
have the same frequency and (b) overlap at the point of observation (i.e. path difference
should be less than the coherence length). Now, what about the phase relationship
between two waves travelling side by side at a certain distance from each other? Well,
the constancy of the phase relationship of such waves relates to another type of |
coherence called spatial (or transverse spatial) coherence. This is the subject matter of
the aext section.

12.4 SPATIAL, COHERENCE

In unit 6, you studied about Young’s double-slit experiment for obtaining interference
fringe pattern. You may recall that one of the prerequisits for observing the interference
pattern was that the source of light should be a point source. Can you say why this
condition was imposed? What will happen if, instead of a point source, an extended
source of light is used? These are some of the issues which relate to the spatial
coherence about which we will study now. _

You are aware that in an extended conventional source of light, the Eadjations‘. emitted

from différent parts are independent of each:other, and in that sensg, such sources may °;

be thouglit of as incoherent. But-our interest is not- so much in the nature of the source
itself as in the quality of the illumination ficld it produces, for example, in 2 plane at
some distance from the source. Thus, in Young’s experiment we are interested in the

extent to which there is a constant phase relationship between §,, and S,, Fig. 12.4a, so: B

that interference effects can be observed. In other words, we are interested in cxanunmg
the effect of the ﬁmte size of the source, S on the mlcrfcrcncc patlcrn

@)
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Fig. 12.4: () Young's double slit experiment with a paint sonree, S, (b) Young’s double

siit experiment wilh un exiended source §° S,
In order to understand the effect of an extended source (and hence of spatial
coherence) on the interference fringes, let us consider Young’s double-slit experiment
with an extended source, Fig, 12,4b shows schematically the two slits S; and S, with an
extended light soiirce S S of width W at a distance r. Light from some point s in the -
source illuminates the slits, and interference fringes are produced on the screen: If the
source consisted of just this single point 5 (as in an idealised Young's experiment, Fig.
12.4a), the fringes of maximum visibility would have been observed. A real source (such
asS' S in Fig. 12.4b) i3, however, of finite size and the fringes produced by illumination
from other points of the source are displaced relative to those due to s. Light from the
extended source, therefore, praduces a-spread in fringes with a consequent reduction in
the visibility of the fringe pattern.

In order to have some quantitative idea about the spatial coherence, let us assume that
the two extreme points of the extended source (Fig. 12.4b), §* and S act as two
independent sources. Each source will produce its own interference pattern. Let us
assume that S§; = SS, and the point O is such that $;0 = 5,0. Clearly the point

source § will produce a maximum around Q. On the other hand, intensity at O due to §*

- will depend on the path length (S’ S, — S’ S,). You may recall from Unit 6, that if this -
path difference T T ' )

S'S, ~ 88, =A2 : (12.9)

- the minima-of interference pattern dueto 5 will fall on the maxima-of that duc t0 5. As
a result, there will not be any observable interference pattern. From Fig. 12.4b, we have

5'S, - §'S, =8,P=ad

But a=£.=.?_’

r

2 l

Thus, r=r1“+rz=é(w+§)

' Coheren&
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a=Ws|t!rd/22

Therefore, ) T
: o mvde (wadld_we
5'S, _;sl_ad_(w+2)r_r

(neglecting & term )

Thus, no fringes will occur if

wd _ 1

=2 O ¢ 21
We may, therel‘ore,' conclude that if we have an extended source whose linear dimension

For every point on an extended is “Ar/d, no interference fringe pattern will be observed. Equivalently, for a given source

source of extension r/d, there isa

point at a distance r/2d which of width W, interférence fringes will not be observable if the separation, 4, between slits

produces interference fringes Sy and S, is greater than A r/W.If 8 denotes the angle subtended by the source (5 S ) -
scparated by hall a [ringe width. at the point O’ (midpoint of slits S, S,), then & = W/r. So,

Thus, for sourcés of such an 1

extension, the visibility of the ) . - :

fringes would be poor. ) - . e g - - e : . (z11)

which gives the maximum lateral distance between slits S 1 and S, such that the light
beain from the extended source may bic assumed to have some degree of coherence (i.e.,
the light waves from an extended source, after passing through slits S; and S, are able to
produce interference fringes). The quantity /6 isknown as Lateral (or transverse) .
Coherence Width and is denoted by /,, You may note that the coherence width is linear
in dimension and is approximately perpendicular to the direction of wave propagation.
By contrast, the coherence length, introduced in relation to temporal coherence, is along
the direction of wave propagation. For this reason, temporal coherence is sometimes * -
called longitudinal coherence and spatial coherence is sometimes called lateral
coherence, - ' '

«  Further, closely rclated to coherence width is a parameter called coherence area given
as T ’ . . :

o, =5 (i/2) |
n(Ar28) _ (1212)

]

L

The waves at any two points within cohercice area are coherent. You may have noticed
that Eqs. (12.11) and (12.12) apply to the case in which the extended source is essentially
a uniform linear source. If the source is in the form of an uniform circular disc, the
lateral cohcrence width is given as _

= 12246 . . o (1213
Well, in order to recaptulate what you-have studied in-this section, how about solving an
5AQ! ' '
SAQ3 -
Spend Supposc we set up Young's experimenl with a small circular hole of diameter 0.1 mm in
2 min front of a sodium lamp {1 7 589.3am) source. If the distance (rom the source to the slits

is Im, how [ar apart will Lhe slits be when Lhe fringe pattern disappcars?

14
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124.1 Angular Diameter of Stars Coherence
Now, let us cons:dcr an apphcal:on of the concept of spatial coherenoc In the preceding
paragraphs, we have seen that the angle subtcndcd by the e.xtcnd@d source at the
midpoint of the stit separation is related to the lateral coherence width (t ). Alsofora
critical value of I, the interference fringes will d:sappear If, instead of an ordinary '
extended source ot' light, we consider a terrestrial extended source such as a star, you

may like to know: Is it be possiblc to know its angular diameter (i.e. the angle subtended
by the star on the slits) by observing the disappearcnce of fringes? Indeed, it is possible.
For measuring the angular diameter of a star, Young's double slit experiment set-up
needs modification. Modification in the experimental set-up is necessitated because, for
such an arrangement, if we take a typical value of the angular diameter of a star

as ~10~ ' radians, the distance d between the slits for which fringes disappear will be
1224 122x5x 10

- =1

v 10

d =

6m.

And for such a Jarge value of d, the fringe width will be too small.

To overcome this difficulty, Michelson used an ingeneous technique. He achieved an
effectively large value of d by using two movable mirrors M and M | as shown in Fig.
12.5. This modified interferometer is known as Michelson's Stellar Interferometer.

—_

M'
Flg. 12.5: Michelson's sieHar Interferometer,
Since you have studied in detail about the Michelson Steller interferometer in Unit 7,
we would just mention' here the results of one typical experiment. In a typical experiment

the first disappearance of fringes occured when the distance between mirrors
M and' M " was about 7.3m which gave the angular dlamctcr, 8 as (taking

A75% 10 'm)

6 = 1.224/d

12 x 5 x 10

= 84 x 10 ° rad

From the known distance of star and the value of its angular diameter, 8, we can

estimate its diameter.
) {
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The amount of radialion power
incident per unit area is called

' . AreAna.

16
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12.4.2 Visibility of Fringes

Till now, we have been discussing coherence and its lmportancc for observing
interference [rmge.s We have been tatking about the dlsappcarencc of fringes under
different cucumslances For example, in the Young's doubile slit experiment,
interference fringes are seen om a screen with highly spatially coherent light. The l'nngcs_
are rather distinct, their vns:bl.hty is high. As the two slits are moved further apart the
fringes are more closely spaced and will lose v1sub;hly The degree of visibility, lherc_forc
is the measure of spatial coherence.

Assume that two wave trains of light, each of finite Iength Af, overlap to their full extent.
Such complete overlap will result in distinct maxima and minima of highest degree of
visibility, Even if the wave trains overlap partially, as in Fig. 12.6, interference is possible.
However, the degree of visibility of the fringes witl diminish depending on the extend of
overlap. The question, therefore, is not how much the wave trains must overlap to
produce interference; rather, the question is how much visibility we need to sec a fringe
pattern?

The definition of visibility is esseatially a matler of comparison, Visibility, ¥, can be
defined as the ratio of the difference between the maximum areana E 20 and minimum
areana E ;. to the sum of the arcanas; i.c..

En:lx — ‘Emin

= 2= mi. 12.14
E.+E,"’ ( )

Al

1-
i

—

§

X

e
r ] aj_'
Flg.126: Parilal averlap of fwo wave fralns.

Let us assume that E__ can take any arbitrary value butE ;. = 0. Thien visibility, ¥ = -
1. On the other hand, if £, ,, = E;,, V' = 0, fringes cannot be seen. Thus, the visibility
may assume any value between 0 and 1. Generally, 2 visibility of 0.8 is considered high,
but a value 0.2 is barely visible.

Now, you may like to know whether visibility is related to coherence? Yes, it is. To see
how, let two points on a distant screen be illuminated by two light sources that produce
equal areanas E,,. Light waves from each consists of two parts-coherent (4) and

_incoherent (B). Areana due to the coherent part, 4 can be expressed as

EA =PE0

where, p isthe degree of coherence,

and, the areana due o incoherent part is,

E, = (1-p)E,




_Interference fringes are observed because of part 4. The coherent part forms fringes

. whose maxima have intensities. Areana of the maxima is four times as high as the
individual contribution. Thus, the maximum areana, (E 4) o0 IS 40E, and minimum is
zero. Moreover, on this interference fringe pattern, due to the coberent part 4, a
uniform distribution due to incoherent part B, is superimposed. The areana of this
distribution will be twice as high as the contribution Eg, because it comes from two
sources. Hence,

(EB)mu = ZEB = 2(1 _p)Eu = (Eﬂ)rnin_
As a result, the areana in the maxima is -

Iy
]

txy
I

4pE, +2(1 - p)E,

2(1 + p)E,
and the areana in the minima

Ep = (Eadan * (B oo

0 +2(L—p)E,

Therefore, Eq. (12.14) for visibility of the fringes can be written as,

_2(1+p)E, - 2(1 = p)E,
V= 2(1 + p)E, + 2(1 — p)E,

p, the degree of coherence.

Thus, the degree of visibility (or the contrast) of the [ringes producéd by two light waves
is equal to degree of coherence between them.

The highest visibility and hence highest degree of coherence will occur when the
minimum areana in the expression for V' is zero. In that case, both the visibility and the
degree of coherence are unity. Although concicvable in theory, but this is not possible in
practice. Compleie coherence is merely a theoretical result. However, with the .
development of laser, about which you would study in the next unit, it is now possibie to
have light beam of extremely high degree of coherence.

12.5 SUMMARY

® Coherence is a property of light. A predictable phase relation exists between -
light waves passing through a point at differenl times.

® Temporal coherence or the longitudinal spatial colierence refers to the
predictability of the phase of radiation as a function of time. In other words,
temporal coherence can be identified as the interval of time during which the

. phase of the wave changes in a predictable manner as it passes through a fixed

point in space. This time interval is known as coherence time, 7. And the path
length corresponding to 7, given as L, = ¢ 7, is called the coherence length of
the radiation.

s -Coherence
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@ Temporal coherence is related with the width. of the spectral lines. The spread-

in wavelength is given as,

ll?.
&A—E—

and the corresponding spread in the frequency of the spectral'linc is

Av ~ L/r,

@ Spatial coherence or transverse spatial coherence refers to the correlation
between the phases of two light waves travelling side by side. Use of poiat
source in Young’s double slit experiment is essentially to meet the requirement
of spatial coherence.

¢ Ifan extc_‘nded source of light of width W is used in Young’s interference

experiment, for observing interference fringe pattern following condition must -

be satisfied :
W= 1/8

where, dis the wavelength of the light, and € is the angle subtended by the ex-
tended source on the slits,

The quantity (A/6) is known as lateral (or transverse) coherence width, /..

@ For a circular extended source, the coherence width /, is given as
| = 1.224
v g

@ Visibility of an interference pattern is given as

Euux - Emin

V=ft—~+E,

where, E_ _ is maximum areana and E . isminimum areana.
] MmAY msn

In terms of the degree of coherence, p, the visibility is given as

_2(1+p)E, - 2(1 - p)E,
T I(T T p)E, + 2(1 - p)E,

where, £ is the areana produced on the screen by individual light
SOUrce.

12.6 TERMINAL QUESTIONS

1. The sodium line at A = 5890 A, produced in a low-pressure discharge, has spread

in wavelength, A 2 -= 0.0194 A. Calculate (a) the coberence length and (b) line
width in hertz. .

L L]
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2. If the visibility in an interference fringe pattern is 50 percent and the maxima
réceive 15 umits of light, how much light does the minima receive?

12.7 SOLUTIONS AND ANSWERS

SAQs
1. The wavelength of the light,A = 660 nm and N,the number of wavcs in the wave
train is 20.

(a) So, the coherence length
L =NJi

c

20 x 660 nm

= 13200 o0m = 132 x 10" °m

(b) Coherence time
1. = L /c; where ¢ = velocity of light = 3 X 10°ms |

13200 X 10 'm

3 %x 100ms

17

4400 x 107 s

= 44 x 107"
2. Eq.(125),24d = Fi7) {4, — 1) gives the path difference for the disappearance of
fringe pattern due to light of wavelengths A, and A,. When this expression is to be

used for the disappearance of the [ringe patiern due to the light beam consisting of
all wavelengths lying between A and A + A A, we must divide the interval (width)
into two cqual parts of A1/2. Thus, the fringe pattern will be produced by
wavelength values - ’

A, =4+ (AL72)
A, = 4

With thesc values, Eq. (12.5) reduces Lo

AZ AZ /1.2 .

U= ararn—2 o2y M

which is Eq. (12.6)

Now, for each wavelength lying between A and A + AA/2, there willbe a
corresponding wavelength lying between 2 + A1/2 and A + Al such that the
minima of one falls on the maxima of the other. Therefore, the fringe pattern will
disappear. :

3. Width (or Lhe diameter) of the source

W=01lmm=1x10 ‘m

-t -Coherence
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And distance between the source and slits
r=1m

Hence the angle subtended by the source on slits
8 =—=-—"—"— =10 ‘radian

Wavelength of the light )
A = 5893 x 10° 'm

The lateral coherence width for a circular extended source

-

120 122 x 5893 x 10" 'm
= =7 2=

10 ‘rad

= (0.72cm

Thus, if the separation between the slits is more than 0.72 tm, the fringe pattern will
disappear.

TQs

U]

L A =5800A = 5890 x 10~ “m

A = 00194 A = 00194 x 10~ “m

(a) From equation (12.7), we have

2

A = i—;wherc, L_ = coherence length
A (5890 x 10 °Y'm’
- Lc = m— = —r -
0.01194 x 10 "m_

= (.18m

(b) The spread in frequency A v (line width in hertz) and the coherence time 7, is
related as (equation (12.8))

where ¢ = velocily of light =3 x 10° m/s

3 x 10°m/s

> AY = T 8m

16 x 10’ Hz.
2. The visibility of an interference fringe pallern is given as

Emu = En;in

V=Em;+Em

™
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where

E ax is the maximum areana i.e. the amount of radiation power contained in
the maxima of the fringe pattern; and E;, is the minimum arcana,

From thclproblcm,'we have
V =50 percent =%; E_, =15 units; E";n =17
So, from above equation for visibility, we have
| 1 _ 15 —Enig

215 +E,,

= Ein = 5 units

Hence, 5 units of light will be received in the minima of the fringe pattern,

Colicrence
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UNIT 13 PHYSICS OF LASERS

Structure

13.1 Intreduction
Objectives

132 Light Emission and Absorption
Quantum Theory: A Brief Qutline
Stimulated Emission: Binstein's Prediction.
Einstein's Prediction Realised

13.3  Prerequisits for a Laser
Active Medium
Excitation {or Pumping)

Feedback Mechanism

13.4  Types of Lasers
Solid State Lasers
Liquid Lasers
Gas Lasers

13.5 Applications of Lasers

Communication

Basic Research

Medicine

Industry

Environmental Measurements

Pholography
13.6 Summary

13.7 Terminal Questions
13.8 Solutions and Answers

13.1 INTRODUCTION

In the previous unit, you learnt about coherence and coberent sources of light. It was
explained there why conventional thermal sources of light emit radiation which have
very low degree of coherence. However, phenomenon like interference which requires
coherent light sources, can indeed be observed with conventional light sources. The
quest for obtaining a light source with high degree of coherence led to the invention of
lasers. As you know, a useful indicator of the degree of coherence is the coherence
length. For ordinary light, the coherence length is of the order 10'2111, whercas the
coherence length for a laser light can be as long as 10°m! So, you may appreciate the
difference in the degree of coherence between an ordinary light and the laser light. In
the present unil, we will discuss about this source of highly coherent light beam-the
LASER.

The name laser-is an acronym for Light Amplification by Stimulated Emisslon of
Radiation. You must realise that the key words here are amplification and stimulated
cmission. The existence of stimulated emission of radiation, when radiation interacts

- with malter, was predicled by Einstein in 1916. His theoretical prediction was realised
by C.H. Townes and co-workers in 1954 when they developed microwave amplification
by stimulated emission of radiation (maser). The principle of maser was adapted for
light in visible range by A. Schawlow and C.H. Townes in 1958 but the first laser device
was developed by T.H. Maiman in 1960. Once the laser was invented, it has found
applications in such diverse fields as basic research, industry, medicine, space,
photography, communication, defence, ete.
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In Sec. 13.2, you will learn about the quantum mechanical description of the emission
and absorption of light. In particular, you will learn about spontaneous emission and
stimulated emission of radiation. In Sec. 13.3, the physical principles involved in the
operation of lasers vizexcitation (or pumping}, the need of an active mediuvm and the
feedback mechanism have been explained. Since the invention of Jaser by Maiman using
small ruby rod as active medium, Lasers have come a long way. Presently, lasers are buiit
using solid or liquid or gas as active media. Apart from these, now semi-conductor based
lasers are finding wide applications. These different types of lasers have been briefly
discussed in Sec. 13.4. The applications of lasers are so many and so varied that their
detailed account will take us too far. In Sec. 13.5, we have, however, briefly discussed
applications of lasers in industry, medicine, communication and basic research. In the
next unit, you will study about holography, which would not have been possible without
laser light. And in Unit 15, you will study about optical fibres-a medium of transporting

‘ hght—wh:ch is a very active arca of research and development for long distance optical
communication purposes.

Objectives

After going through this unit, you should be able to
@ cxplain the concept of stimulated emission of radiation and differentiate it
from spontaneous emission
describe the need and methods of pumping
list the characteristics of the active medium for lasers

describe different types of lasers, and

describe the important applications of lasers.

13.2 LIGHT EMISSION AND ABSORPTION

As you are aware, most of the man-made sources of light are the solids and gases heated
to high temperatures. For example, in case of incandesent buib, the tungsten filament is
heated, and in case of murcury tube light, the gas is heated. The energy of the heating
source is absorbed by the atoms or molecules of the solid or the gas, which, in turn, emit
light. The basic mechanism of the origin of light from within gas molecules, liquids and
solids is similar in many respect to that from an individual atom, And the process of
emission and absorption of light from atoms can be understood in terms of Bohr’s
atomic model. Though you might have studied Bohr’s model in your school physics
course, we briefly discuss it here for the sake of completeness.

13.2.1 Quantum Theory: A Brief Outline

You may recall from your school physics course that according to Bohr’s theory, the
energy-of an atom or a molecule can take on only definite (discrete) values. These are
known as the energy levels of the atom. The transition of an atom from one energy level
fo another energy level occurs in quantum jumg. This was one of the basic assumptions
of Bohr’s theory. On the basis of this presumption, Bohr postulated that light is not
emitted by an electron when it is revolving in one of its allowed orbits (and hence has a

fixed value of energy). Light cmission takes place when the atom makes a transition from
an excited state (of energy E;) to a state of lower energy E. The frcqueucy of the

' emilted radiation is given by

= E, — E, (13.1)
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where E; is the energy of the initial orbit, E; is the energy of the finat orbit, v the
frequency of the emitted light and 4 is the Planck’s constant. The quantizqq orbits of the
electron and the energy level diagram of the simplest atom-the hydibgpn atom-are

shownmfng. 13.1. Quantum o o
' -numbers _ . . _ Energy
: B=5 : - ES
n=4 — — . —E, .
n=3 2 : : "EB_
n=2 ' — ¥ ¥ ) E,
i Ground level

n=1 - —— E
- (b) |

Fig. 13.1: (a) Bohr circular orbits for the revolving eleciron of hydrogen atom, showing
transtlons, glving rise {0 the emitied light waves of different frequencles; (B) Energy level
- dlagram for the hydrogen atom. ’

The quantum mechanical explanation about the origin of light, as discussed above,
applies to all the known light sources. To focus our attention on the atomic processes
involved in the emission and absorption of light, let us consider only two energy levels of
an atom. Let the energy of the lower level be E; and that of the upper level be E,. An
atom lying in level E, will tend to make a transition to level E; so that it occupies a state
of lower energy. Such cmission process is known as spontaneons emission because it
occurs in the absence of any external stimulus. The process of spontaneous cmission is
shown in Fig, 13.2(a). The photon emitted in spontanecus emission will have the energy
(E,-E,), while its other characteristics such as momentum, polarisation, will be arbitrary.
The light emitted by ordinary sources results due to spontancous emission. Absorptien
of lfght is the converse process of emission. The atom in a lower energy state can absorb
a photon of energy hv (= E, - E,) and get excited to the upper lcvel E,. The
absorption process is depicted in Fig, 13.2(b).- -

Now, can you gucss what will happen if an'atom.is in the: higher energy level, E,, and a
photon of energy hv (= E, - E,) interacts with it? Well, in such a situation, the photon
may Lrigger the atom in the upper level to emit radiation. This emission process is known
as stimplated emission. When the atom is aiready in the higher energy level, the photon,
instead of being absorbed, may play the role of a trigger, and induce the transition from

E, 10 E;. As a resull, the alom Talls into lower encrgy Jevel and an additional photon of _

energy v = E, - E is emitted. In this process of stimulated emisslon, shown In Fig.
13.2(c), both the inducing and the induced photons have the same energy. The light
from laser is due tothe stimulated emission of radiation, - : : '

It is worth mentioning here that of the three processes mentioned above, only the first
two, that is, the spontancious cmission and the absorption of light were postulated on the
basis of Bohr’s theory. It was only when Einstein considered the whole idea of emission
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Flg. 13.2: (a) Sponiancous Emlsslon (b) Absorption and (c) Stlmulated Emisslon of light

and absorption of radiation in terms of thermodynamic equilibrium betwecn matter and
radiation that stimulated emission of radiation could be predicted. Whal were
Einstein’s theoretical arguments for the prediction? Let us learn these now.

13.2.2 Stimulated Emission of Radiation: Einstein’s Prediction

Stimulated emission, as mentioncd above, is the reverse of the process in which
electromagnclic radiation or photons are absorbed by the alomic syslems. When a
photon is absorbed by an atom, the energy of the photon is converted into the internal
energy of the atom. The atom is then raised to an excited (higher encrgy) state and it
may radiate this energy spontaneously, cmitting a photon and reverting to the ground
(or some lower energy) state. However, during the period Lbe atom is in the excited
state, it can be stimulated to emit a photon if it interacts with another photon. This
stimulating photon should have precisely the energy of the one that would otherwise be
cmitted spontaneously. Let us look at the theoretical arguments put forward by Einstein
for the existence of stimulated cmission.

Reler to Fig. 13.3 which shows a system of two energy levels £ and E, with population

No. of aloms

in the level Spontancous Stimulated
eve emission  cmission Absorption Energy
Nz E:
AHN], leNlu(v) Blleu(v)
N - E

1 1

Fig. 13.3: An atomlc system of two eneTEy tevels shnwl-ng different emisslon ond
‘absorpilon processes.

_ of atoms N, and N, respectively. Let E, < E,. You may recall from Unit 13 of PHE-06
that according to Maxwell-Boltzmann distribution, the ratio of populativon of atorns
in different levels for the system in thermal equilibrium is given as

N, (B —E )/ kT
N

~hv/ky T (13.2)

or, N, = Ne

L]
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where, kg is the Boltzmann constant and 7 is the absolute temperature.

Now what will be the ratio of the population of the energy levels if radiation of eﬁergy hv
is introduced into the system? Einstein proposed that if this system of energy levels and
the radiations is to remain in thermal equilibrium, the rate of downward transition (due-
to spontaneous and stimufated emission) must be equal to the rate of upward transition
(due to absorption). He, thercfore, arrived at the relation (sec box below),

& _ Bou() (13.3)
N, A, + Bu()

where, 4 (v) is the encrgy density of radiation at frequency v and By,, A5, By, are
Einstein’s co-efficients. A5, is associated with spontaneous emission, By, is associated

.with stimulated emission and B;, is associated with absorption.

Following Einstein, let us write down the rates of spontaneous and stimulated emission
and the rate of absorption of radiation. The rate of spontancous emission will be
independent of the energy density of the radiation field because for (his process to
occur, presence of photon is not required. This emission process will be proportional to

_the number of atoms, N,, in the higher energy state. So, we may write the rate of

spontaneous emission as

P, = N,A, (i)

where A,, is constant of proportionality.

Assume next that Lhe system of atoms is subject to some external radiation field. In that
case, as menlioned earlicr, one of Lhe two processes, namely, the stimulated cmission
and absorption, may occur. The probability of their occurrence depends on the energy
density of radiation at the particular [requency separating the two levels and the .
population of states from which transition takes place. Therefore, the rate of stimulated
emission will be proportional to the encrgy density of the radiation and the population
of higher encrgy state, N,. Thus, the rate of stimulated emission

Py = N,Byu(¥) (i)
where B,, is another constant of proportionality and u (v) is cnergy densily of radiation
at frequency v.

On the other hand, the rate ol absorption will depend on 4 (v) and the population of the
lower energy state, N;. Thus, the rate of absorption

P, = N B,u() (iii)

- where B, is the constant of proportionality. The constants Ay, B, and B, are known

as Einstein’s coeflicients.

With the system in thermal equilibrium, the net rate of downward transition must be
equal to the net rate of upward transition. Thus, we may write

NyAy + NpByu (@) = Ny Bpu (v) . {iv)-

Dividing both side by N}, we get

Mg +Dap u@) = B,u()

Nl £ . NI 21 12
or F’(Az. + u@)By) = Bpu ()

i _ B,u{y) s
50 that N, Ay +u)By




Form Eqgs. (13.2) and (13.3), we have

_Bu®) T
Ay, + u (@) By

or

A
u(V)=B—21 1

(13.4)
1z eh vk T - (By/By)

-

Now, you may recall from unit of PHE-06 that the energy density of black body radiation
is given by Planck’s radiation law:

1

. _ 8uhy 1 13
u(v) ==3 vk T — 1 (133)

Equation (13.5) must be same as Eq. (13.4). So we must have

B, = By (13.6)
and
3
Ay/8B, = _J_Brrchv (13.7)

These are Elnstein’s relations. On the basis of Einstein’s relations, we can conclude the
following:

(a) Eq. (13.6) indicates that the probabilities of absorption and stimulated emission
are the same. In other words, when an atomic system is in equilibrium, absorption
and emission take place side by side. Normally, N, < N;, and absorption
dominate stimulated emission. An incident photon is more likely to be absorbed
than to cause stimulated emission. But, if we could find a material that could be
induced to have a majority of atoms in the higher state than in the lower state, i.e.

" N,> N,, the stimulated emission may dominate absorption. This condition of the
atomic system (where N, > N,) is known as papulation inversion. And when the
stimulated emission dominates over absorption in Lhe atomic system, it is said to
lase.

(b) If we substitute By, = B,, in equation (13.4), we get the ratio of the number of
spontancous emission to stimulated emission

A - eh v/ky T _ 1 ) ) (13.8)
Byu®)
When the system is in thermal equilibrium at temperature 7, for iv < < kg7, Eq.
(13.8) suggests that stimulated emission will dominate spontaneous emission. On the
other hand, when /v > > kgT, spontancous cmission will dominate stimulated
_ emission. Mow which of these two processes will dominate for ordinary thermal sources
of light? To know that, you should do the following SAQ.

5AQ1 -
The absolute temperacee, T, for an ordinary souree of light Is typically of the order of
10 K. With the help of Eq. (13.8), show that in such sources, the process of spontaneaus
cmissicn will dominate over the stimulated vniissiaii.

-13.2.3 Einstein’s Prediction Realised
You now know that when mattcr and radiation are in thermal equilibrium, besides .
spontaneous emission and absorption of radiation by matter, there must be a third

process, called stimulated emission. This prediction did not attract much attention untill
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Ground
level

When an atom undergoes a
ron-radialive Lransition the encrgy
is not released in the form of
photons; rather, the energy is

. transferred via atomic collisions,

- -collision with the crystal lattice elc.

1954, when Townes and coworkers developed a microwave amplifier (MASER) using.
NH,. In 1958, Shawlow and Townes showed that the maser principle could be extended
into visible region. In 1960, the prediction was realised by Maiman who built the first
laser using Ruby as an active medium. Maiman found that a suitable active compenent
for a laser could be made from a single crystal of pink ruby: aluminium oxide (Al,Oy),
coloured pink by addition of about 0.5 percent chromium. For any laser aclion to take
place, a condition of population inversion must be met. By population inversion we
mean that the number of atoms in higher cnergj state is larger than the ground (or some
lower cnergy) state. The energy states of the chromium atom, as shown in Fig. 13.4, are

. ideal for obfaining population inversion. The chief characteristics of ¢ energy levels ofa

Chromium atom is that the levels Iabcllcd as E, and E, have a life time 10”'s. whereas
the statc marked M has a lile time 3 x 10°%. The cnergy state M with such a long life time
(as compared to other excited stales) is called a metastable state.
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Fig.13.4: Energy levels of chromium atom: (a) atoms In the ground staie (b) on absorblng pholons, atems
are cxclied 1o one of the two energy fevels E| ond Ez. (€} nloms give up some of fis energy to the cryslal
talllce and fall te a metastable Tevel, M, (d) When hilmulnted by pholons, the alems In metosiable level
emlt photon and fall to ground stole.

A chromium atom in its ground state can absorb a photon (A = 6600 A) and make a

transition Lo the level £;; it could also absorb a photon'of A ~4000 A and make a

transition to the level E;. In cllhcr case, it subscquently makes a non-radiative transition,
in lime 107 s, Lo the melastabe state M. Since Lhe state M has a very long life, the number
of atoms in this state keeps on increasing and we may achieve a population inversion
betwecen the stalc M and G (the ground state). Thus, we may have larger number of

atoms in the level M comparcd to those in the state G. Once populanon inversion is
achieved, light amplification can take place.

In the original set up of Maiman, the pink ruby was machined into a rod of lengthaearly
four centimeter and diameter half a centimeter. Its ends were polished optically flat and
parallel and were partially silvered, The rod was placed near an electronic flash tube
(filled with xenon gas) that provided intense light for pumping chromium atoms to
higher energy states. The set up of ruby laser is shown in Fig. 13.5. When the required
population inversion was achicved with the help of electronic flash tube, the first few
photons released (at random) by atoms dropping to the grouad state stimulated a
cascade of photons, all having the same frequency.
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Fig.13.5: The Ruby Laser

You now know how a ruby lascr, developed by Maiman, works. You will apprcciafcd

that production of laser light demands that certain conditions must be met

beforehand. (We deliberately avoided reference (o these in above paragraphs.) Firstly,

is it possible ta achicve laser light from any medium? If not, what arc the chahracleristics

of the medium which can produce lascr light afler proper excitation? (The media

capable of producing laser light are called active media.) Sccondly, how do we achieve :
population inversion? Further, for sustained lascr light, it is nccessary Lo feed some of ‘
the output encrgy back into the active medium. This is known as feedback and is

achicved by resonanl cavily. What is the nature of this resonant cavity for lascrs? These

arc some of the important aspects of laser operation and design about which you will

learn now.

13.3 PREREQUISITS FOR A LASER

A laser requires three prerequisites for operation. Firstly, there should be an active
‘medium which, when excited, supports population inversion and subsequently lases.
Secondly, we should ensure pumi)ing mechanism, that raiscs the system to an excited
state. And lastly, in most cases, Lhere is an optical cavity thal provides the [eedback
neccssary {or laser oscillation. These are shown schcmalicall;-( in Fig. 13.6.
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Fig.13.6: Boslc componenis of o laser oscillalor: Energy souree {1) supplles energy lo actlve .
medlum (2). Medlum s contained between two mirzors {3 and 4). Mirror 3 Is fully
rellective wille mlrmr 4 Is’pnrilnlly lmnspnr:nL Laser radiatlon (5) emrerges lhrough
pariially iransparent mirror.
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In a typical laser operation, energy is transferred to the active material, which is raised
to the excited state, and uitimately lases in various ways, The medium may be a solid,
liquid or gas and it may be one of the thousands of materials that have been found to
lase, The process of raising the medium to the excited state is called pumping, in
analogy to purping of water from lower to a higher level of potential energy. Some .
lasers are built as laser amplifier. They need no optical cavity. Most lasers, however, are
laser oscillators. For suslained laser oscillations, some kind of feedback mechanism is
nceded. The feedback mechanism is provided in the form of optical resonant cavity. In
both laser amplifiers and oscillators, the first few quanta of radiation will probably be
emitted spontancously and will trigger stimulated emission.

Let us now discuss the above mentioned three components of a laser.
133.1 The Active Medium

The heart of the laser is a certain medium— solid, liquid or gaseous — called an active
medium, Since Maiman’s discovery of ruby, many new laser materials have been
discovered. They include crystals other than ruby, glasscs, plastics, liquids, gases and
even plasma (the state of matter in which some of the atomic electrons are dissociated
from the atoms). What should be Lhe characteristics of an active medium? The ooly
general requirement for an active medium is that it provides an uppcr energy state into
which atoms can be pumped and a lower state to which they will return with the
spontaneous emission of photons. The medium must also allow a population inversion
between the two states. It may happcen thal the active species or centres, which provide
lasing levels, constitule a small fraction of the medivm. For example, in case of ruby,
which is Al05 with some of the Al aloms replaced by Cr atoms, only the latter (Cr) is
the active centre. Tﬁ)ical number of active species per cubic centimeter in solids and
liquids is 10" to 102 and that for gaseous media their number is about 10" to 10",
How the light beam gets amplified when it passes through an active medium? To get the
answer we examine the process of population inversion now.

Popaulation Inversion

Why is the condition of population inversion between Lhe lasing Jevel necessary for
operation of lasers, i.c. for amplification of light to occur? We can investigate this by
calculating the change in intensity of the light beam passing through an active medium.
Reler to Fig. 13.7. A collimaled beam of light having intensity 7, travels along the x-axis

through an active medium of thickness dx.

Iy (x} /—-r I, (x+dx)

[ . ) of
I dx |

¥
"

Fig. 13.7: Light beam of Intensily I, passing through an active medlum along the x-axls

If the cross-scctional arca of cach of the planes is S, volume of the layer will be Sdr. Let

N/ (v) dv represent the number of atoms per unit-volume which arc capablc of absorbing

radiation whose frequency lies between v and v+ dv. The number of upwardly
transniitted (E,—+ E,) atoms per unit (ime in the layer of volume Sdx would be (refer to
box on page 26) -
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Tn each transition, a photon of encrgy /v is absorbed. Thus, energy lost per unit time
from the incident radiation is -

hv [N, (v)dv Byu (v) ] Scx
Similarly, let N,(v) dv represent Lhe number of atoms per unit volume which are capable
of undergoing stimulated emission by [alling down to level E;. The frequency of these

photons lie betweenv and v + dv. Then the number of stimulated photons cmitted per
unijt time in Lhe layer is

N, (v) dv B, u (v) Sdx
In each transition, photon of energy it v'is cmitted and this reinforces the propagating
beam. Thus the encrgy gain by the incident radiation per unit lime is
hv [N, (v) dv By u (v) ) Sdx
You may have noticed that wec have neglected spontancous emission. It is so’because a

photon, emitted via spontancous process, is in a random direction. Aad, as such, it does
not contribute appreciably to the intensity of the beam.

As a result of above processes, will the intensity of the light beam increasc or decrease
with time? Since u (v ) dv Sdx represents the encrgy in the layer within frequency range v
andv + d@v, we can write the rate of change of Lhe encrgy with time as

-%(u (v)dvSdx) = hv[—N,(¥) Bu (v) + N, (v) By u (v) | dv Sdx |

or

w(v)
at

— (BN, ) — By N, () Ju() (139)

If 1, rcpresents intensity, £, dv significs the energy crossing a unit arca per unit fime

whose frequency lies between v and v + dv. Then

[{,(x + de)dv — [, (x)dv]S

denotes ihe rate at which the energy flows out of the layer. Since u (v) dv Sdx
represents radialion encrgy contained in the layer with frequency in the range v and
v + dv, we will have

(I (x + dc) — L(x)]avS = %[u(v)dedr]

or

am(v) _ f,,(x+dr)—f,,(x) B . 13.10
e = = o,/ (13.10)

From Eq. (13.9) and (13.10), we have

?EII_: = - )'W[B|-:N1(_v) - BZ,N;(:V)]"(V) _
But
I‘P = u(v)v

3t
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(13.11)

where v = velocity of light in the active medium (= ¢/n;n = refraction index of the

medium). Thus, we get

ol, hv B
T Ty (oML

where B (= By, = B;, ) denotes cither Einstein’s coefficient. Hence

yo_ _fw_ﬂ _ ' . (13:12)
Tor = (N, N)B

I£ the light beam is propagating in absorbmg rnedla, the loss o['mlensnty, d I, will be

proportional to /, and dr;
dl, = — a, ], dx

¥

where a,, is absorption coefficient. We can rewrite it as

al, (13.13)
E2
On integration we find that
L= (x=0)e % (13.14)
If we compare Eqs. (13.12) and (13.13), we get the expression for absorption
co-efficient:
a,,=""'—"(N - N,)B (13.15)

At thermal equilibrium, N, > N,, that is, the population of ground state is greater than
the population of the excited state and as can be seen from Eq. (13.15), «, is positive.

Positive z, implies, (from equation 13.14) that the intensity of the beam decreases as it

propagates through the material, The lost energy is used up in the excitalion of atoms to
higher energy states.

On the other hand, if we have a situation in which Ny >N, a, will be negative and

 intensity of the light beam would increase, that is, get amplified as it propagates through

the material. This process is light amplification. Sincc this occurs when there is a higher
population in excited state than in the ground (or lower energy) state, the material is
said to be in the state of population inversion. Thus, the condition of population
inversion is necessary for amplification of intensity of light bcam.

13.3.2 Excitation (or Pumpmg)

In the previous sub section, you have learnt about lhc necessity of population inversion
in the active medium for obtaining laser light. The process of obtaining population
inversion s known as pumping or excitation. The aim of the pumping is to see that upper
energy level is more inlensely populated than the lower energy Iével. Alternatively, we
can obtain the population inversion by depopulating lower energy level (other than
ground state) faster than the upper energy level. There are several ways of pumping a
laser and achieving the population inversion necessary for stimulated emission to occur.




Most commonly used are the following;

Optical Pumping
Electric Discharge

Inelastic Atomic Collision

s W N -

Direct Conversion

In Qptical Pumplng, a source of light is used to supply energy to the active medium.
Most often this energy comes in the form of short flashes of light, a method first used in
Maiman’s Ruby Laser and widely used even today in Solld-State Lasers. The laser
material is placed inside a helical xenon flash lamp of the type customary in
photography. The xenon fiash lamp for pumping is shown in Fig. 13.5.

Another method of pumping is by direct electron excitation as it occurs in an electric
discharge, This method is preferred for pumping Gas lasers of which the argon laser is a
good example. The electric field (typically several KV m") causes electrons, emitted by
the cathode, to be accelerated towards the anode. Some of the electrons will impinge on
the atoms of the active medium (electron impact), and raise them to the excited state.
As a result, the population inversion is achieved in the active medium.

In the inelastic atomic collision method of pumping, the electric discharge provides the
inilial excitation which raises one type of atoms to their excited state or states. These
atoms subsequently collide inelastically with another type of atoms. The energy
transferred inelastically raises the later type of atoms to the excited states and these are
the atoms which provide the population inversion. An example is Helium-Neon Laser,
to be discussed later, in which such a pumping process is cmployed.

A direct conversion of electrical cnergy into radiation occurs in light emitting diodes.
Such light emitting diodes (LED) are used for pumping by direct conversion in
semi-conductor lasers.

These are some of the processes used for pumping aloms of Lhe active medium to
achieve population inversion. Atoms (or molecules) used as active centres often exhibit
rather complex system of energy levels. However, for all Lhe varicty of these structures,
the actual pumping schemes may be rarrowed down to a few rather simple diagrams
correctly showing the pumping process. Typically, these pumping schemes involve three
to four levels. We think you would like to know about them.

Let us consider some of the pumping schemes. To do so, let us identify different cnergy
states necessary to explain the pumping scheme as: the ground state as 0; the lower
lasing state as 1; the upper lasing state as 2; and 1he pumping state as 3, We shall
indicate pumping transition by upward arrow, the lasing transition by downward arrow
and non- radiative fast decay by sltanted arrows. Now lct us consider a three-level

~ pumping scheme shown in Fig. 13.8a. Let us assume that by one of the pumping
methods, morc than half the number of atoms of a_cﬁvc species have beer pumped from
ground state to pumping state 3. The pumped atoms in state 3 decay non-radialivc.ldv to
upper lasing state 2. This decay is very fast, (life time is typically of the order to 10~ s).
The upper lasing state 2 is generally a metastable state i.e. the life time of this state

(~ 10” 's)yis much higher than the pumping state (or the excited state): Thercfore, we
have a situalion of population inversion between lasing states 2 and 1 and hence lasing
may take place. You may note that in this pumping scheme, the ground state (0) and the
lower lasing state (1) are the same slate. This feature of the pumping scheme proves too
demanding for the pumping process because in normal circumstances, the ground sfate
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Atoms ar molecules tend 1o
occupy [owest encrgy state.

Thercfore, the population of the -7

e

ground state {lowest energy state) -k

is high.
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According to the uncertainty
principle, about which you will
study in the PHE-11 course on
Modemn Physics, an cnergy stole
with longer life time will have
narrow [requency band.
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Flg.13.8: Three l;vel pumplng schemes, () the ground state (0) and lower lasing state (1)
are (he same, (b) pumplog state (3) and vpper lastng sitate (2) are the same. (c) Four
level pumplng scheme. :
is highly populated. And, as you can appreciate, an ideal lower lasing state (1) should be

" emply or very thinly populated. How to get rid of this problem?

This problem can be taken care of if the pumping scheme is as shown in Fig. 13.8b. As
you can sec, the atoms in the lower lasing state undcrgo non-radiative transition to the
ground state (0). Since this transition is very fast (~ 10 s) the lower Jasing level is empty
for all practical purposes. You may, however, note that the same energy state acts as
pumping state (3} and the upper lasing state (2). This state of affairs has its own
shortcoming. If the pumping state has to act as upper lasing state, it must have a longer
life time (metastable state) which implies that it must have very narrow frequency width.
On the other hand, for proper utilisation of pumping energy, this state must have a wide
frequency width so that more and more atoms get accomodated there. So, you see, itisa
kind of conflicting requircménls put on a single energy states.

The pumping scheme iree from the shortcomings mentioned above with reference to
three-level pumping scheme is what we cali four-level pumping scheme shown in Fig.
13.8c¢. In this case, the pumping state (3) and the upper state (2) are seperate; atoms in
the pumping state undergo non-radiative transition to Lhe upper lasing state. The four
level pumping schemc, however, has some limitations. Substantial cnergy is lost during
non-radiative transitions between pumping state (3) and the upper lasing state (2) and
between Lhe lower lasing state (1) and the ground state (0).

You may now ask: Which pumping scheme is better and preferred? Each pumping
scheme has its own advantages and disadvantages. The choice of the pumping scheme in
designing a laser depends upon the active media, the kind of use we want to put the laser
light to, etc. We will discuss these aspects in the following sections. You may now like
to answer an SAQ '

SAQ2

If laser action occurs by the transition from an excitcd state to the ground stale and it
produces light of 693nm wavelength, whal is the energy of the excited state. Take the
encrgy of the ground state to be zero.

1333 Feedback Mechanism: Optical Resonant Cavity

On Lhe basis of the discussion in the previous sections, you now know that when a state
of population inversion exists in an aclive medium, a light beam of particular frequency
passing through it would get amplified. It happens because in such a situation,
stimulated emission dominatcs spontancous cmission. This is the basic principle of
optical amplificr. But a lascr is much more than a simple optical amplifier. The laser,
which produces a highly cohcrent beam of light, does not include a coherent light beam
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to initiate, stimulated emission. Instead, it is the spontaneously emitted photon from Physlcs of Lasers
upper lasing state which stimulates the emission of new photons. Each spontaneous

photon can initiate many other stimulated transitions which, in turn, may cause light

amplification. Well, in this way, we do get amplification of light by stimulated emission.

But, how is coherence of this amplified light ascertained? In other words, how can we

ensure that the laser light has a very narrow band width (monochromaticity) and a high

degree of phase correlation? As such, the amplified light from laser is not coherent. It is

because the spontaneous photons are independent of each other and travel in different

directions. Therefore, the corresponding stimulated photons will also travel in different

directions. ' | . :

Can you suggest as to what should we do for obtaining a highly coherent laser beam?
For obtaining a coherent light beam, we necd to have a mechanism by which a condition
is created such that spontancous emission only in certain selected direction can develop
stumulated emission. This mechanism is known as feedback mechanism. The |
spontaneous photons emitted in other directions leave the active medium without
initiating much stimulated emission, ’

Now, you may ask; how do we actually achieve this favourable condition for
spontaneously emitted photons in some preferred direction to further stimulate
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Fig.13.9: Oplical resonator conslsiing of two mirrors M; and Mz M) Is totally reflecling
whereas M; §s semitransparent; the axis of ihe mirrors Is allgned with that of 1he aclive
material. ’

emission? Well, this is accomplished by means of an optical resonator-an essential
component of a laser. Let us understand how an optical resonator works.

Optical cavity resonator can have many configurations. The schematic arrangement of a
simple resonator is shown in Fig. 13.9. It consists of a pair of plane mirrors, M| and M,,
set on an optic axis which defines the direction of the laser beam. The active material is
placed in between these mirrors. The photons emitted spontaneously along the A4
direction or sufficiently close to it travel a relatively longer distance within Lhe active
material. It is so because photons travelling along 44 will be reflected back and forth
by the mirrors A, and M,. You may notice that the direction of travel of these photons is
" quite fixed. Now, as a result of spending more time in the active material, these
spontaneous photons will interact with more and more atoms in upper lasing level. Thus,
the stimiulated emission will add identical photons in the same direction, providing an

ever-increasing population of cohcrent photons that bounce back and forth between the You may recall thai the spatial -~~~

coherence is o measure of the

mirrors. On the other hand, spontaneous photons and the corresponding slimulated uniformity of the phase across the
_emission in other directions will traverse relatively shorter distances (and hence spend  optical wavefront. And the
lesser time) in the active medium. Hence they will soon die out. Thus the optical temporal coherence is 8 mEasury -

. . . . . . . f th h ich
resonant cavity provides the desired selectivily of propagation direction and thereby Eg;: monochromalicity of the

ensures the spatial coherence of the laser beam.

Now, what about monochromaticity of the laser light? Well, the laser light is highly

monochromatic due to very nature of its origin - the stimulated emission. It is so because

the spontaneously emitted photons whose frequency do not match with the frequency

difference between lasing levels will not give rise to stimulated emission. Thus, the band : R
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of wavelengths emitted during spontancous emission is narrowed down. The .
monochromaticity of the laser light can further be enhanced by the optical resonant
cavity. Suppose there are more than one upper lasing levels in a particular active
medium. In that case, the laser output will consisl radiations of more than one
frequency. Now, if the mirrors of the resonant cavity are such that their reflectivity is a
function of frequency, the radiations due to undesired lasing between levels will be
damped out, Therefore, resonant cavity is the most vital component of the laser to
obtain highly coherent light beam as output.

In this section, you learnt basic consliluents of a laser. Since the invention of ruby laser
by Maiman in 1960, the research and development in this field has produced a variety of
lasers. It is not possible to discuss all of them in detail here. However, we will discuss
some of them now.

134 TYPES OF LASERS

As such, lasers can be classified in a variety of ways. One of these is in terms of their
active media. As mentioned carlier, materials in all the three states of matter, namely,
solid, liquid and gas, have been used as active medium to produce laser beam. Further,
lasers have also been constructed using semi- conductors and plasma as active medium.
In the following, let us know about some of them with particular reference to the
physical properties of the active medium and the pumping methods employed.

13.4.1 Solid State Lasers

These lasers use an active material which is essentially an insulator dop;:d with ions of
impurity in the host structure. These lasers invariably use optical pumping to obtain the
condition of population inversion. The sources for optical pumping may be discharge
flashtubes, continuously operating lamps or even an auxiliary laser, The active centres in
these lasers are transition element ions doped in the dielectic crystal. The host material
for these active centres are generally oxide crystals. The most popular type of solid-state
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(a) .
Flg. 13.10: Pumplng arrangement for solld-state lasers.

lasers are Lhe ruby laser and Nd:YAG (neodymium: yttrium, aluminium, gamet) Iasar.
Ruby is A1,04 crystal (corundum) doped with triply ionized chromium atom (Cr ).
You have learnt the functioning of this laser in section 132,

In solid-state lasers, the aptical pumping is done by placing the active material (in the
form of rod) at one focus and the pumping source (in the shape of a right cylinder) at
another focus of an-elliptical reflector as shown in' Fig. 13.10a. The advanlage of such an
arrangémcnt is that any light leaving one focus of the ellipse will pass through the other
focus after reflection from the silvered surface of the pump cavity, All of the pump

radiation, therefore, is maximally [ocussed on the active material, as shown in Fig, 13.10b.
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The Nd: YAG Laser

This laser, unlike ruby laser, employs four level pumping scheme. The energy levels of
the neodymium (the active material) is shown in Fig. 13.11. In order to keep the |
discussion simple, we have not used the spectroscopic notations for different energy g
levels in Fig. 13.11. Rather, energy levels have been marked £, £y, and so on. The }r
optical pumping raises the Nd atoms in the ground state (E,) to a few excited states (Ex,
Eg). The energy levels marked £, and E; are the lasing levels. The pumped atoms in the
" excited states undergo non-radiative transition to the upper lasing level, £4. Out of lhe
group of lower lasing levels, the major portion of energy is emitted in the transition
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Fig, 13.11: Energy level dlagram of Nd (ncodymlum) lon in Nd: YAG.
E, = E,. The Nd: YAG laser is an example of four-level laser.

This solid-state Jaser has two advz.mtagcs: (a)ithasa low excitation threshold and (b)
has a high thermal conductivity. Due to high thermal conductivity, it can be used for
generating light pulses at a high repetition rate or for continuous operation.

13.42 Liquid Lasers

- In this class of lasers, as the name indicates, the active media are ecither the liquid
solutions of organic dyes or spectally prepared liquids doped with rare-carth ions viz
Nd** . However, majority of liquid lasers use a solution of an organic dye as active
medium and hence arc also cailed organic dye lasers. Solvents used for the purpose are
water, methanol, benzen, aceton ctc. The liquid lasers are optically pumped. The energy
states taking part in the lasing transition are the different vibrational energy states of
different clectronic energy states of the dye molecule. Since you may not be familiar with
the vibrational energy states of molccules, we do oot discuss the pumping scheme of this
class of lasers.

In contrast to solids, liquid do not crack or shatter and can be made in sizes almost
unlimited. Another advantage of liquid lasers is due to their (that of organic dyes) wide
. obsorption bands in the visible and near ultravoilet portion of the electromagnetic
spectrum, Therefore, liquid lasers are an ideal candidate for tunable laseri.c. the
frequency and hence energy of the output laser beam can be selected with ease.
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13.43 Gas Lasers

The attractive feature of gas lasers in which rarified gases are the active media, is that
they can be designed to produce output beams over a wide range of wavelengths. Except
for the cesium- vapour laser, gas lasers are pumped clectrically rather than optically.
Can you say why? It is because the condition for amplification by stimulated emission, at
one wavelength or another, are satisfied by an electrical discharge through almost any
gas. Another reason for employing electrical pumping for gas lasers is that, unlike solids
and liquids, the absorplion lines of aclive centres in gaseous media cxhibit substantially
narrow widths. Therefore, optical pumpipg would prove very inelficient for gas lasers
because the pump radialion obtained from optical sources do not have line spectrum of
very narrow lines. In other words, the encrgy of optical pump radiation has a
considerable spread in its value and since the gascous active media will absorb radiation
of almost single energy, most of the pump energy will go waste. Hence, optical pumping
is not used for gas lasers. Further, gas lasers have advantage over solid state and liquid
lasers in that they are free [rom local irregularitics. Most gascous systems have a high
degree of optical perfection simply because the densily of the gas is uniform.

We will now briefly describe a typical gas laser-the Helium-Ncon gas laser. This was the
first gas lascr operated successlully. o

The Helium-Neon Laser

In the helium-neon laser, a mixture of helium (He) and neon (Ne) gases is used as active
medium. Lasing levels are provided by the exited states of the Ne atoms, whereas the
He atoms play an important role in pumping Ne atoms to the excited states. The He-Ne
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Fig.13.12: The He-Ne Laser
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Jaser is shown schematically in Fig. 13.12. The pumping is done by a stationary glow -
discharge fired by a direct current. When the potential difference between the anode
and cathode is about 1000V, a glow discharge is initiated in the working capillary '
(containing He-Ne mixture) of a few millimeter diameter.

Now, let us look at the pumping scheme of the He-Ne lascr. Refer to Fig. 13.13 which
shows the energy level diagram of He-Ne laser. When free clectrons produced during
the gas discharge pass through the He-Ne mixture, they collide with the He and Ne
atoms and excite them by impact encrgy transfer. Such absonlivc' (ransitions due to
electron impacts are shown by dashed arrows in Fig. 13.13. These excited states of He
(i.e. E,' and E,’ ) are metastable. Thus, He-atoms excited to these states stay there for

a long time before losing energy by collision. The interesting feature of the He-Ne
energy diagram is that the cxcited states ol Ne, namely E5 and E; have approximately
same energy as that of E,’ and E,’ of He atom. Thercfore, when He-atoms in E / and E,’

collide with Ne-atoms in ground state, the He-atoms transfer their energy to Ne-atoms
and raise them to the states E; and Es. Such an exchange of encrgy is known as resonant
collision energy transfer. Duc to this encrgy transfer, He-atoms fall back to ground
state. As a result, the excited states E5 and Eg of Ne-aloms have a sizable population

. which is much more than that of states E; and £4. Thusa condilion of population
inversion is achieved between the upper lasing levels £5{or E ,) and lower lasing
levels E4(E,). Insuch a situation, any spontancously emitted photon can trigger laser
action between these levels. The Ne atoms then drop down [rom the lower lasing levels
E, and E,, to the level E, through spontaneous emission,

The wavelength of transition between levels Es = Ey, Es > E, Eq > E are 3.39 um,
0.63 #m and 1.55 ym respectively. As you can easily make out, radiations corresponding

to 339 #m and 1.55 #m fall in the infrared region of the clectromagnetic spectrum. The
radiation corresponding to 0.63 u#m, however, gives the red light - characteristic light of .

He-Ne laser. Proper sclection of dilferent frequencies may be made by choosing end
mirrors of the resonant cavity which has high reflectivily over only the desired
wavelength range.

Before we conclude our discussion about types of lasers, you must know that apart from
those mentioned above, Lhere are many other types of gas lasers. We may particularly
mention molecular lasers (carbon dioxide laser), chemical lasers, plasma lasers,
semiconductor lasers, ctc. We have not discussed these here since for an understanding
of their pumping schemes, you need to know molecular spectroscopy, semiconductor
physics etc. It is, however, worth mentioning here that the esscntial principles, in so far
as laser action is concerned, remain the same in all types of lascrs.

The importance of lasers in contemporary physics lies in their so many and so varied
applications. To give you a glimsc of these we now discuss some of the important
applications of lasers.

13.5 APPLICATIONS OF LASERS

Applications of any device essentially stem from its unique features. What are the
unique features of a laser? First and the formost, laser light is highly cohercat. This
characteristic has enabled us to usc lascrs for data transmission and processing,
precision measurements, photography (holography), etc. Secondly, laser light has
unprecedented brightness (energy per unit area). Brightness of laser light, a by -
product of its coherence, can be many orders of magnitude greater than the brightest of
the light produced by conventional sources. Further, laser beams arc highly directional.

Physics of Lasers
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Ina typ:ca] laser, this directionality is limited on]y by the diffraction of the'emerging
beam by the laser aperture itself. The brightness and directionality of laser beam are
exploited to produce targeited effects in materials. These applications include material
working (such as heat treatment, welding, cutting, hole burning etc.), isotope seperation,
medical diagnostics, etc. In the following, you will learn some of these appllcatmns of
lasers.

13.5.1 Communication

'
1]

You may be aware thal in a typical communication system, information is communicated -

(between the transmitter and the receiver) through electromagnetic waves, which are
known as carrier wave. These are modulated by the desired signal (the oscillations of
the information proper). Normally the signal frequency is appreciably lower than the
frequency of the carrier wave. Moreover, higher the carrier frequency, wider frequency
range it can modulate. In other.words, the capacily of a communication channel is |
proportional to the frequency of Lhe carrier wave. The [requency in the centre of the
visible spectrum is about 100,000 times greater than the [requency of 6 cm waves used in
microwave-radio relay systems. Consequently, the theoretical information capacily of a
typical light wave is about 100,000 times greater than that of a typical microwave.

Long distance communication systems rely on the principle of multiplexing-the
simultaneous transmission of many different messages (information) over the same
pathway. The ordinary human voice (conversation) requires a frequency band from 20Q
to 4000 Hz, a band 3800 Hz wide. A telephone call, therefore, can be transmitted on any
band that is 3800 Hz wide. It can be carried by a coaxial cable in the frequency band
between 1,000, 200 and 1,004,000 Hz, in the MHz range, or a He-Ne laser beam (638.8
nm, 4.738 % 10 Hz) in the [requency range between 473,800,000,000,200 and
473,800,000,004,000 Hz. You may note here thal the telephone message requires about
0.4 percent of the available co-axial carrier frequency. And, the same telephone message
requires less than one-billionth of 1 percent of Lhe available laser-beam frequency. Thus,
the information carrying capacity could be enhanced tremendously if laser beams are
employed as carriers. So, wait for some more time (ill laser trunk lines come into use in a
big way and you may be saved [rom listening “d#l the lines in this route are busy. Please
dial after some time”!!

Now you may ask: Light, as such, was available to us from time immemorial, then why is
it that we are using (or planning to usc!) it for communication purposes now? Is it
related to the discovery of a laser in any way? Yes, it is. As we mentioned carlicr, light
from conventional sources may not be pure (that is, it may be non-monochromatic) and
heace cannot be uscd for transmitling signals. Radio waves [rom an electromagnetic
oscillator are confined to fairly narrow region of clectromagnetic spectrum (i.e. it has a
well defined frequency). These radio waves are, therefore, free from "noise”
(considerable spread in frequency values) and hence can be used for carrying a signal.
In contrast, all conventional light sources arc essenlially ‘noisc’ generalors i.e. they
simultaneously emit clectromagnetic radiations of different frequencics and hence are
not suitable as carricr waves. With the invention of lascrs, however, the situation
changed. As you know, the light produced by lasers is highly monochromatic and
coherent which enable them to act as carrier waves in the communication systems.

Now, what is the medium through which laser beam travels while it carries information?
The signal carrying laser beams can bé transmitted through free (unguided) space, and
by light guides. Light guides in the form optical fibres have found wide use in optical
communication. You will learn about the details of fibre optics in Unit 15 of this\course.
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13.5.2 Basic Research

" The-discovery of a laser gave birth to an entirely new branch of optics known as

nonlinear optics. Even at ordinary laser intensilies, transparent materials {(which are
usually nonconductors), respond in an unusual manner. You may recall, for example,

" that the dielectric constant of material depends on its nature as well as on the frequency

of the light passing through it. But, it has been observed that when the ordinary light
beam is replaced by a laser beam, the dielectric constant also depends on the
instantancous magnitude of the eleciric field component of the laser beam. In other
words, the response of a material to high clectric fields is non-linear. It is just one of
the several non linear effects that a laser beam produces when it interacts with
malter. In fact, almosl all the laws of oplics are modified to some extent at high
intensitics produced by pulsed lasers, -

Another important application of lasers in basic research and development i in the field
of thermonuclear fusion. As you know, for effective fusion to take place, extremely high
temperature { ~ IOBK) must be maintained. In principle, such high temperaltures can
be achicved by powerlul laser beams.

Yet another remarkable application of lasers is in isotope se'paratlon. You may recall
that one of the basic requirements of harnessing nuclear cnergy from uranium is to have
2-3% of uranium isotope (2_35U) in (he [uel. In natural uranium, however, the
percenlage of > Uis only 0.7. (The major constiluent of natural uranium is mU.)

Therefore, to have fuel enriched in ~" U, we can use laser beams. Each of thesc
isotopes absorbs radiation of different frequency. So when a laser beam of particular
frequency is passcd through Lhe mixture of 2y and U , the atoms of U absorb the
radiation and get excited. The exciled atoms of the desired isotope are further excited
so that they get ionized. Once ionised, il can casily be separated by applying.a dc electric
field. This is one of the several methods of using laser beam for isotope sc;:-ocration.

13.5.3 Medicine

A properly focussed laser beam, is an excellent tool for surgery. The advantage of laser
surgery is that it is bloodless since the beam not only cuts, it also "welds" blood vessels. It
has a high sterility as no contact of tissues wilh surgical tools takes place. Also, the laser
surgery is painless and operations arc very fast. In [act there is not enough time for the
patient to respond Lo Lhe incision and sense pain. Lascr beams are being widely used for
performing eyc and stone surgery.

A word of caution. As such, any light can cause damage. Laser, in particular, can be
highly damaging because it has spatial coherence, i.e., il-can be focussed down to a

high power densities. The maximum permissible exposure (MPE) is 0.0005 mJ cm ”,
__For exposure time from 2 X 10 s to 10 s, the limit is MPE = 1.8%

3/ 2

m] cmj_ .

13.54 Industry

. Invention of lasers has madc it possible to develop sophisticated tools of material

working (such as drilling, welding, cic) processes used in industry. With appropriate
choice of lasers, a laser beam can be focussed into a light spot of diameter 10-100¢m!

"Can you imaging this dimension-it will be smaller than the dot you mark with your pen

on a piece of paper! Duc to this sharp [ocussing, a very high concentration of energy is
available within a small spot on the surface of the material. For example, when a 1kW -
output of a continuous wave (cw) laser is focussed a spot of 1004 m diameter, the
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resultant irradiance (intensity) will be 10 W ¢m . This makes laser an effective tool for
drillinig very fine hole through the materials.

Laser cutting, as compared to other culting processes, offers several advantages ¢.g.

- possibility of fine and precise cuts, minimal amount of mechanical distortion and

'‘thermal damage introduced in the material being cut, chemical purity of the cutting
process, etc. Laser cutting is extensively used in industry. For example, in high-tech
garment factories, CO, laser capable of 100W of continuous output is used for cutting
cloth. The laser cuts 1m cloth in a second! And, laser culting is also employed in the
fabrication of spacecralt to cut the sheets of litanium, steel and aluminiom. In cutting
and most of the industrial applications, carbon-dioxide (CO,} laser is uscd.

13.5.5 Environmental Measurelmenls

You may be aware of the conventional technique of determining the concentration of
various atmospheric pollutants such as gases (carbon monoxide, sulphur dioxide, oxides
of nitrogen, etc) and a varicty of material particles (dust, smoke, flyash etc). In this
method, the nature and concentration of pollutants is dclermined by chemical analysis.
The major deficiency of this method is thal it does not provide real-time data. The
technique developed with lasers for measuring the concentration of poltulants is
esscntially the ‘remole-sensing’ technique which does not require sample to be analysed
in laboratory. Since it provides information about the change in almospheric
composilion with time, it can serve well for monitoring the environmental pollution.

For determination of pollutants in the form of material particles, the technique is
based on the scattering of light. The technique is known as LIDAR ({ight detcction
and ranging) and its operations are similar to those of a radar. In bricf, a pulsed
laser is passed through the location under investigation and the back scattered light
in detected by a pholodetector. The time taken by the back scattered light to be
detected gives information about the concentration of pollutant matter.

For the delermination of gascous pollutants, the basic principle involved is the
absorption of light by the gascous aloms or molecules. As diflerent gas absorbs at
different wavelengths, passing laser beams of different wavelengths provides information
about the gaseous constitucnts of the cnvironment.

13.5.6 Photography: Holography

The conventional photographic process, as you know, consists of recording an
illuminated three-dimensional object or scene as a two-dimensional image on a
pholosensilive surface. The light reflected from the object is focussed on the photo

-sensitive surface by somc kind of image forming device, which can be a complex series of

lenses or simply a pin-hole in an opaque screen.

The coherent nature of the laser becam has brought about a qualitatively new method of
photography without lcns system. This new method, called holography, allows
three-dimensional {that is, complete), piclures of a given object or a scene to be taken.
Holography (also known as photography by wave-front reconstruction) docs not, as
such, record an image of the object being photographed; rather, it records the reflected
light waves themselves. The photographic record so obtained is called hologram. The
hologram bears no resemblence to the original object. It, however, contains - in a kind of
optical code - all the inlormation about the object that would be contained inan
ordinary photograph. In addition, the hologram also contains information about the
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object that cannot be recorded by any other photographic process. Holography is the - Physles of Lasers

subject matter of the next unit (i.e. Unit 14).

-13.6 SUMMARY

@ According to the Bohr’s theory, if an atom makes a transition from an excited
state (of energy E;) to a state of lower energy Ey, emission of electromagnetic
radiation (photons) take place. The energy of the emitted photon is

hv = E, — E,

@ When electromagnetic radiation interacts with matter, three type of processes
may occur ’

(i) Spontaneous Emission
{ii) Absorption
(iii) Stimulated Emission

@ Light emilted by ordinary sources is due 1o spontancous emission.

® The existence of stimulated emission of radiation was predicted by Einstein on
the basis of thermodynamic considerations. If the population of the cnergy
level E; be N and that of E; be N, (E; < E,), then, the ratio of the population

of the two states is given as
N, | Bpu(v)
N, A, + Bju(v)

where, u (v) is energy density of radiation at [requency v and By, By; and Ay;
are Einstein co-efficients.

Einstein coefficients are related to each other through the relations

=B

12

8 [ .
B, ¢

Einstein's relation clearly indicates that stimulated emission may dominate
spontaneous emission provided the condition of population inversion exists.
And in a atomic system where a condition of population inversion exists, one
may have amplification of light, that is, laser light.

Einstein’s prediction was first realised in the oplicz.al frequency range by
Maiman who developed a laser using a ruby rod.

®
@ There are three prerequisits for laser operation:
(i) Activc medium
(ii) Pumping
(iii)Optical resonant cavity

® The change in intensity of a light beam passing through an active medium is

- given by : : : S e
ol hvn
E"-: -—Iv—'E—(Nl —Nz)B
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Lasers and thelr Applicailons wheren is relractive index
B is Einstein’s coefficient.
This relation clearly indicates that for enhancement in the intensity of the light

beam as it traverses the active medium, N, > Ny, ie.a condltlon ‘of popula--. ~ :
tion inversion must cxist. :

. There are vancty of methads for putnping, such as, optical pumpmg, electronic
- discharge, inelastic atomic collisions etc, The choice of pumping proccss
mainly dcpcnds upon the nature of the active medium.

© @ There are lwo types of pumpiog schemes:three level and lour-level.

@ Optical rcsonant cavity helps in obtaining sustained laser light,

13.7 TERMINAL QUESTIONS

1.  Assume thal an atom has two energy levels seperated by an energy corresponding‘
to a frequency 4.7 X 1014}-{2, as in the He-Ne laser. Let us assume that all the
atoms are located in one or the other of these two states. Caleulate the fraction of
atoms in the upper state at room temperature T = 300K. :

2, A pulsed laser used for welding produces 100 W of power during 10 m. Calculate
the energy delivered to the weld.

13.8 SOLUTIONS AND ANSWERS

SAQs
1. The ratio of the number of spontancous to stimulated emission is given as |

An __ hv/keT

B,u@) -1

“The absolule temperature of an ordinary source of light has been given as

T = 10K

Let us take the wavelength of hght, A = 6000 A. Hence the corresponding

frequency, ’
€ 3 x 10°ms '
b S lrvassrcs 05 x 10" Hz
6000 x 10 .
Planck’s constant & = 66 X 10~ *Ts
o _Boltzmann constant k; = 1.38 X 107 Ik
Hence,
] A _ oxp | 86X 1077 (3. syx05x10°(s"y
- By u () 138 x 10”2 (JK~ ') x 10° (K)

| 3w T T
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Thus, for ordinary sources of light, tbe number of spontancous emission is much,
much greater than the number of stim ulated emission.

2. Let the energy of the excited state (upper lasing statc) be E, and that of the ground
state (fower lasing state) be E;. The laser light is duc to the atomic Lransitions from
E, to E,. Thus, the [requency of the laser light will be .

E, — E,
h

YV =

Now, as per the given problem,

E,=7E =0and1 = 6%3nm = 693 X 10 'm
Hence,

] ‘ :
_ 3x 10 (_T/b) — 31 % 10"s”
693 X 10 "(m)

-
|
e L

E,—E =hv

66 x 10 7 (J.s) x 3.1 x 10"¢s™ )

Ry
Il

2046 x 107

1277 eV

TQs

1. Let the two encrgy levels be E; and E, (such that E; < E,) and their population be
N, and N, respectively. According to the Boltzmann distribulion

N,  —(E,— E)/kT
F—E

1
We know that

(E, —E)=h

=662 x 1077 (J.s) x 47 x 10"(s™ ")

31114 x 10T
and

138 x 10 2 (I/K) x 300(K)

&
I..,]
0

414 x 1074
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N, o vk T

N,
_|ataraxo” ®
=¢ | quxw 2
= o~ (1) ‘
= 229
2. Power = Energy per unit time
_ Energy
) Time
Given, Power = 100W = 100(J/s)
Time = 10ms = 10 X 10 °(s)

Encrgy = Power X Time

1

il

100(J/s) x 10 x 107
= 1J. L

(s)

Encrgy delivered to Lhe weld is 1 joule,
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14.1 INTRODUCTION

In the previous Unit, we pointed out that one of the revolutionary applications of lasers
is in the development of a novel technique of pholography, known as holography. This
word is the combination of two Greek words - holos (complete) and graphos (writing).
That is, holography is the technique of obtaining complete picture (as truc as'the object
itself) of an objcct or a scene. In other words, it is a three- dimensional recording of an
object or a scene. Well, you may be wondering as to what essentially differentiates this
technique from the normal photography! In normal photography, a two-dimensional image
of a three-dimensional object is recorded on a photosensitive surface, The
pholosensitive surface records the intensity distribution of light falling on it after
reflection from thc object. As a consequence, we obtain a permanent record of the
intensity distribution that existed at the planc occupicd by the photographic plate when
it was exposcd. Since the photosensitive surface is sensitive only to the intensity
variation, the phasc distribution existing in Lhe plane of the photographic plate is
completely lost and is responsible for the absence of the three-dimensional character in
it. Holography is that tcchniguc of phatography where not only the amplitude (and
hence the intensity) but also the phase distribution can be recorded. As a result, pictures
obtained by holographic technique possess Lhree-dimensional form and are visually rich.

Holography was introduced by Dennis Gabor in 1948, He showed that one could indeed
record both the amplitude and the phase of a wave by using interferometric principles.
In Sec. 14.2, you will learn the basic concepts involved in the holographic tcchnique. You
will be able to appreciate the similarity between the hologram and the diffraction
grating. The process of holography i.c. how to oblain a hologram, how to obtain images
from the hologram etc. has been explained in Sec. 14.3. Due to high cost of lasers, (an
essential requirement for holography) this technique is not being used extensively. The

" technique, however, has tremendous potential and some of the imporlant applications
have been explained in Scc. 14.4.

:Objectives -
After going through this unit, you should be able to
e differentiatc berween normal photography and holography
® cxplain the basic principle of holography
@ describe how holograms are obtained, and
@

state some of the applicalions of holography.
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Reference wave is the light wave
falling directly on the
photosensitive plate,

Object wave is The light wave
reflected from the object and
received at the pholosensitive
surface at the time of recording
the hologram.

Producing the hologram

14.2 HOLOGRAPHY: THE BASIC PRINCIPLE

Holography is the process of recording the interference pattern produced by light

waves reflected by an object and reference waves. This interference pattern of the object

is unique and is called hologram (total recording). If you look at-a hologram, you will
realise that it does not even remotely resemble the object. However, when this recorded
pattern is illuminated by a suitably chosen reconstruction wave, out of the many
component waves emerging from Lthe hologram, one wave completely resembles the

object wave in both amplitude and phase. Thus, when you look at this wave, you perceive

the object still being in position even though the object may not be present there. Since
during reconstruction (that is, image production), the object wave itself is emerging
from the hologram, the image has all the effects of three-dimensionality. You can indeed
shift your viewing position and "look behind" the objects.

n
\

Mg
?‘i\'.‘!'i
[ ]

- d
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==

) Reconstructing the image

Flg. 14.1: The principle of holography: (a) Pelnt object forming conceniric diffraction
rings as In zone plate; reconsiruction of zone plate gives polnt Image (top right). For two
polnis and a more complex obfect, {hese lebures are shown In (b) and (<) respectively.

Let us understand the basic concept involved in holography with the help of a simple
cxample. Incident light, shown in Fig. 14.1 (a), is diffracted by a point object. It gives
rise 1o a series of bright and dark concentric rings. The pattern is recorded
photographically and made into a transparency. This pattern, called a Gabor zone plate,
is similar to a Fresncl zone plate. In the seccond step (top right) light is incident on the
ring pattern (i.e. the Gabor zone plate) and focussed by it into a point, as focussed by a

" Zone-plate.

Now, refer to Fig. 14.1{b) in which thc object consists of two points (pixcls). The
diffraction paltern then consisls of two scts of concentric rings. When the pattern is
illuminated, each of the two sets focus, and the image consists of two points, As the
object is an aggregate of many pixels, its diffraction pattern is shown in Fig. 14.1(c). The
intermediate recording is a continuum of superposed zone plates- an unrecognizable
multiplicity of lines and rings, Each pixe! in the object forms its own set of fringes.
Withtn each set, the light interfers but between sets, there is no fixed phase relationship
and hence no interference. In order to make the different signals compatible in phase,
another wave called reference is added. Refer to Fig. 14.2 where the effect of adding
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a sufficiently strong reference beam to the random - phase signal is shown, Asa result,

the phase of the resultant of reference and the signal becomes similar to that of the

reference alone. Thus contributions from dlﬂ'ercnt pixels produce an interference fringe
. pattern. .

- ST ‘/
. Scautered light

Reference beam
' {signals) .

<§7

Rcslullants

"Fig. ltz:-Mdjllon of a sirong <oherent reference beam (lap left) with random-phase
slgnats (top right) glves similar resoliant (bottem}.

The essence of holography is that the process of image formation is being intcrrup"ted
and splitted into two. In the first step, the object is transformed into a photographic
record, called the hologram and in the second step called reconstruction, the hologram
is transformed into image. No lens is needed in either step. You may now like to answer
an SAQ. '

SAQ1
Usiog the size of the amplitude vectors drawn in Fig. 14.2 calculate

(a) thc ratio olintcnsities, and (b) the contrast rcsulling from these intensities.

At this stage, you may say that in photography, what we essentially record is the light
reflected from the object and not its diffraction pattern. Well, it is easy to extend the
basic idea of holography, explained above in terms of Gabor’s zone- plate, to the actual
photography situations. Reflected light waves, like other waves, are deseribed by their
amplitude (or intensity) and their phase (or frequency). To caplure the wave pattern
completely (that is, to obtain the hologram) both the amplitude and the phase of the

" wave must be recorded at each point on the recording surface. As you are aware, '
recording of the amplitude portion of the wave is achieved in normal photography by
converting it to corresponding variation in the opacity of the photographic emulsion.
The photographic emulsion is, however, insensitive to pﬁasc relations. In holography
(also known as wave-front reconstruction), the phase relations are rendered visible to
the photographic plate through the technique of interferomctry. You may recall from
block-2 of this course that interferometry converts phase relations into corresponding
amplitude relations. :

‘When two plane waves derived from a common source impinge at different angles on a
screen, they produce-a set of uniform, paralle] interference fringes. The spacing of the

" fringes depends solely on the angle between the impinging waves (that is,-on the path .

différence between them). A photographic recording of such a fringe pattern results in

a grating-like structure. In case of holography, onc of these waves is the one reflected -

. from the-object (called the object wave) and hence peed not be aplane wave. The

wavefront of the reflected wave will be highly irregular because of the unevenness of the

object surface. When this irrcgular reflected wave pattern interferes with the reference

wave, the resulting interference pattern will not be uniform, Rather, it will have irregular.

interference pattern— the irregularity of the impinging wave fronts. At places where the -

Holography '

Spend
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signal bearing waves (the object wave) have maximum amplitude, the interference
fringes have the greatest contrast and vice-versa. Thus, variations in the amplitude of the
object wave menifest as the variation in contrast of the recorded fringe pattern. Can you
recall the implications of the spacing of the interference fringes? It is related to the path
difference (and bence the phase difference) between the two interfering wavés, And the
path difference, in turn, depends on the angle between them. Larger the angle bctwccn
the two interfering waves, more closely spaced will be the fringes and vice-versa.
Therefore, variations in the phase of the object wave menifest as the variations in the
spacing of the fringes on the photographic record (the hologram). Thus, in a hologram,
both the amplitude and the phase of the signal-bearing wave (the object wave) are
preserved as variations in the contrast and spacing of the recorded interference fringes
respectively. The hologram obtained in this manner has many properties similar to the
diffraction grating about which we will discuss in the next section. When this hologram is
illuminated by light of appropriate wavelength, a thrcc- dimensional image of the object
can be obtained.

14.3 HOLOGRAPHY: THE PROCESS

As mentioned earlier, the process of image formation by holography is a two step
process. In the first step, the waves reflected from the object are recorded in such a way
that complete information regarding the amplitude and phase variations is preserved.
This recording of wave-front is called the hologram. The second step involves the
reconstruction of an image of the object by illuminating the hologram by light wave
called reconstruction wave (which is identical to the reference wave). In the following,
we discuss these two steps and also mention some of the practical considerations about
the holographic technigue.

14.3.1 Production of a Hologram

Holograms can be produced in several ways depending upon the relative orieatation of
the reflected (or scattéred) and the reference waves. For example, Gabor's zone-plate,
which is nothing but a hologram, is the record of interference between the two waves
travelling more-or-less in the same direction. This is easily done with objects that have
enough open spaces between them, such as a wire mesh or opaque letters on a clear
background (Fig. 14.1¢c). Signal and reference, in other words, travel in the same
direction. Such a hologram is called Gabor hologram or in-line hologram. It was only
after the invention of [aser that this novel technique of photography became truly -
practical. With the help of lasers, V. Leith and Juris Upatnicks’ produced what is known
as off-axis hologram, In the off-axis hologram, the reference beam and the object beam
arrive at the recording plate from substantially different directions. This made possible

. holography of solid three dimensional objects. Now, the question arises: How

holograms are recorded? To understand this, refer to Fig. 14.3. A beam of coherent
laser light (in which all points on the wavefront are in phase) is split into two beams. One
beam illuminates the object to be recorded and the light reflected from this object falls
ona pholograph:c plalc The other beam, called the reference beam, is reflected from a
mirror to the same photographic plate. Due to superposition of wavefronts of these two
beams, an interfercnce pattern is récorded on the photographic plate. The record on the

photographic plate (hologram) is simply a pattern of interfering wavefronts and shows

no resemblence to the recorded object. The hologram, however, contains "all the
information” about the object.

Ordinarily, these interference fringes are very closely spaced and cannot be seen by
unaided eye. Hence the hologram appears to be uniformly gray. When seen by
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Flg. 14.3: Recording the kologram; microscope lenses broadens both beams withoul

affecting their coherence.
microscope, however, a hologram is found to consist myriad of tiny "cells” , cach cell
containing a series of fringes of various lengths and spacing. Further, a laser is needed
for holography, merely because its coherence length exceeds the path difference due to
unevenness of the object. . ‘

Now, having learnt how holograms are recorded, let us pause for a moment and think
about the fundamental difference-in terms of technique as well as characteristics-of a
hologram and a conventional photograph. This is the subject matter of TQ 1.

1432 Reconstruction of Image

As mentioned above, hologram of an object is the recording of the interference pattern,
on a photographic plate, produced by the object and the reference waves. The
hologram, when viewed with unaided eye, does not even remotely resemble the object
photographed. The process of obtaining image of the object is known as reconstruction.
In the reconstruction process, as shown in Fig, 14.4, the hologram is illuminated by the
light beam (which is similar to reference beam) alone and the reconstructed wavefronts
appear to diverge from the image of the object. Let us investigate the process
analytically.

Let us represent the wave reflected (or scattered) from the object when it reaches the
photographic plate as (Fig. 14.5)

Laser

e

Virtual image

. Photographic plate

Fig. 14.4: Reconstruction process of an Image In holography
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Y1 = Ag(x,y)cos[wt + ¢ (x,y)] (14.1)

and the reference wave as

= Ayeos[wt + @y (£,y)] (142

You may notice that the amplitude of the reference wave is not a function of x or y (the
photographic plate is in xy plane) indicating, therefore, that it is constant at.all points on
the photographic plate. On the other hand, the amplitude of the object wave, A4, is a
function of ¥ and y because it will vary from point to point on the photographic plate due
to reflection from the object. Similarly, the phase of the reference wave ¢, will be

constant if it (the reference wave) falls normally on the photographic plate and will be '
function of xp if the incidence is at some angle. The phase of the object wave ¢, will be,

however, a function of x and y. When these two waves arrive at the photograph.lc plate,
the total field distribution will be

Veua =¥ T+ ¥2 _
= Ai(x.y)cos [wt + ¢y (x,9) ] + Aycos [wt + ¢2(x.9) |
(143)

As you know, the photographic plate responds cnly to the intensity. Thus, to get the
intensity distribution or the photographic plate, we must take the time average of

(¥ o) ie.
I(x,y) = {(¥ o))

= ([Al(x,y)cos['wr + }pl (x,y)] + A;cos[wt + ¢2(x,y)]]z}

= A:(cosz(wr +¢)) + A;(cosz(wr + ¢,5))
+ 2A A, (cos{wt + ¢;).cos(ef + ¢5))

LA, A: h 1 :
=5 +5 + ZAIAZ-E(ms(Zwr + ¢ + ¢3) + cos (g — $1))
(~rcos{A + B) + cos(A4 — B) = 2cosdcosB)

A
*z

N
[ )

+ A Aycos (@ — 1) (14.9)

Eq. (14.4) indicates that the phase informalion of the object wave is also recorded in the
intensity pattern on the photographic plate. h .

Now, as mentioned earlier, during the reconstruction process, the interference pattern
on the photographic plate (called hologram) is illuminated by a reconstruction wave. Let
this reconstruction wave, W has the same phase as that of the reference wave, ¢5. So,

Va(x.y) = Agoos[at + gp ()] (145

What will be the nature of the transmitted wave when the reconstruction wave falls on
the hologram? Well, the hologram is exposed in such a manner that the amplitude
transmittance is linearly related to 7 {x, y), the incideat intensity at the time of recording.
So, we have, the transmitted wave

[ R Lo
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v, = [(AT + 47)

| A A, Ay
2. ¥3 2

cos{wt + @)

A A,
™

cos(wt + 2¢5 — ¢1)]' '(14.6)

SAQ2
" Starting from the relation . -

yaays (x,y)1(x,y) © Spend
' S min
derive Eq.(14.6) using Eqs. (14.4) and (14.5)

The transmitted wave represented by Eq. (14.6) consists of three terms. What do these-
term signify physically? The first term is the reconstruction wave () with its amplitude
modulated by the amplitude of the object wave (44). It is so because 4, is a function of x
and y whereas the reference wave amplitude 4, is a constant. As a result, this part of the
transmitted wave will travel, with slight attenuation, in the direction of the
reconstruction wave. The second term is identical to the object wave () except for the
constant term (4,.A43)/2. Here lies the beauty of holography. The hologram and the
reconsiruction wave have generated a wave which is in every way Identical to the wave
which originated from the real object itself while recording the hologram. This part of
the transmitted wave forms a virtual image of the object. The third term which is similar
to the object wave forms a real image of the object, As a result, a three-dimensional .
picture of the object can be obtained by placing a camera in the position of real image.
The reconstruction process alongwith various parts of the transmitted wave is shown in
Fig. 14.5. You may note that the object is not present whea image is reconstructed.
However, one of the evolving beam, resulting due to reconstruction process, is identical
to the beam reflected by the object at the time of recording the hologram.

Hologram v.

Hologram |
Tncident Light \ : /

=
\
| ¢+

W, .
OhjCCt . = = S
wave ’:,fd’,
f::/’
g2
¥, ~ S
Reference Virual image Real image

wave Ii(a) ®

Fig. 14.5: (a) Recording the hologram: Wave reflecied from an object inferferes wilh the
reference wave. {b) Recopsi.rm:!lon: The hologram diffracts the reconsiruction wave,
resnliing in transmiited wave which produces a real and a vlriual Image,

143.3 Practical Considerations

So far -we have discussed physical principles and the experimental arrangements of .
holography. Suppose you are in the actual process of producing holograms and its

subsequent reconstruction to obtain a three-dimentional image of the object. What are the -

important aspects of the process, and components used therein, about which you should (
- be careful? Well; thére are sevéral practical considerations in holography which are - - - -
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essentially related to the photographic film, the stability and the coherence condition,
Let us have a closer look on these practical considerations,

So far as the photographic film is concerned, hologram must be recorded on films of
high resolvance. Look again at Fig. 14.3. You may notice that the reference wave, (the
light reflected by the mirrar), and the signal (the light refiected by the object) subtend
certain angle at the photographic plate. If this angle is too large, more than a few
degrees, the fringes formed between the signal and reference are very closely spaced
and even the best emulsion cannot resolve them. To obtain high resolution, extremely
fine-grain film has to be used. But fine-grain films are very slow and hence require larger
exposure time (a few minutes). And, if during this exposure time object moves, the
recording of hologram will not be proper. What is the way out of this problem? The way
out of this situation is to use high power laser beam to compensate for the exposure
time.

Further, the whole system of recording the hologram should be highly stable i.c. it
should be completely free from vibration. Can you say why? It is because the density of

the fringes on the photographic film is extremely high, For example, if the angle between -

the signal and the reference wave is 30° (Refer Fig. 14.3) and the wavelength of the laser
light is 633nm, the fringe frequency (Refer to Block-2)

1/d; whered is fringe width

sind sin 30 :
T = — lines per meter
633 x 10 ) :

= 7 x 10° lines per meter.

Can you i.mag'iﬁe the smallness of this seperation! The fringe width will typically be a
thousandth of a millimeter. Therefore, if any component of the holographic set-up
roves durmg rccordmg, the whole fringe pattern will disappear. To meet this stability
requirement, the film exposure time should be kept minimum (by using very high powcr
laser) and Lhe holographic system should be isclated [rom outside vibrations.

The most important and obvious consideration in holography is to use coherent
illumination. The coherence length of the laser used for illuminating the object must be
greater than the path difference between the reference wave and the object wave. The
practical problem is that as power of laser increases (which we use for minimising the
exposure time), its coherence length is reduced. Simitarly, the coherence area (spatial
coherence) of ilumination from a laser must be greater than the. lransvcrse size of lhe
object to be photographed. :

. Having Icarnt about various aspccts of holography, you may now be interested to

know aboul its applications. This is the subject matter of the next scction.

14.4 APPLICATIONS OF HOLOGRAPHY

There are many aspecls of hollogralpliy. Its influence on interferometry, photography,
microscopy, astronomy, pattern recognition and even art has only begun to bear fruit.
We will now discuss these in bricf.

Holograaphic Interferometry

You will appreciate that, in most of the cases, one of the fi rst areas to benefit from thc
new technique was the area that gave rise to it. Similar was the case with holography

_ which introduced a new range of powerful methods to interferometry. Interferometry is

generally used for precise measurement and comparison of wavelengths, for measuring

N I




very small distances or thicknesses (of the order of wavelengths of light} etc. Testing for * - "Holography
stresses, strains and surface deformation is one of the most useful practical applications
of holographic interferometry. '

In the double-exposure techaique of holog:rapl:ﬁé interferometry for measuring
deformation in object due to strain, two exposures are made of the object, - one before
loading, and the other after (i.c. under strain). The original object and the object after
deformation are recorded bolographically on the same photographic plate. The
hologram thus obtained is a double exposure, with the second pattern of wave fronts
superposed on the first. When this hologram is reconstructed by illuminating it with the
reference wave, both images are viewed simuitaneously. Since they are slightly different
due to deformation, the two images interfere. Thus, any distortion of the object will
show in the form of fringes. Like other kinds of interferometry, the technique readily

- detects changes that produce optical-path‘ difference of the order of a fraction of the
wavelength of light. And unlike normal interferometry, however, it is possible to perform
experiment quite readily with almost any type of material.”

Holographic Microscope /

Microscopy has been the primary area of application of holography. In fact, Gabor’s
discovery of this tecnique was the outcome of his attempt to enhance the resolving
power of an electron microscope. In contrast 1o a conventional high power microscope,
a holographic microscope has an appreciable depth of field and it need not be focussed
at all. To see how a holographic microscope [unctions, refer to Fig. 14.6. The light beam
from laser is split into two. Onc beam is passing through the specimen and through the
microscope, and the other beam is led around it. The two beams interfere on the film,
producing hologram. The reconstructed image can be viewed in any desired cross-
_section. The observer merely looks at the cross-section, he or she wishes to see, moving
back and forth throughout the depth of the image without the object being present at all.

i: } Film
/
b
.

<

> Microscope

Object
Laser

Flg.14.6: Holographlc microscope.

Information Storage

Information can be stored and retrieved more efficiently in the form of holograms than
in the form of real images. Further, it is the characteristic of the hologram that it will
' 55
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* only reconstruct the holographic image if the reconstruction beam is incident on the

hologram at the correct angle. Due to this property, several holograms can be recorded

on the same holographic plate by using a sllghtly different angle between the object and

the reference beams for each hologram. Thus, on reconstruction, depending upon the
angle of incidence of reconstruction beam, a particular holographic image will be visible.
Perhaps this is how information is stored in the brain, If that is the case, it would help
explain why attempts to locate certain centres in the brain never met with much success
and why brain injury often does not lead to predictable circumscribed defects.

Pattern Recognition

Oge of the most exciting applications of holography is the pattern recognition, also
called the character recognition. Early pattern recognition systems, before Holography
came on the scene, were based on geometrical optics. Coﬁsider for example that we
want to read the letter 4 (Fig. 14.7), A set of charactcrsA B,C... are prmted on astrip
of film and this film is moved through the image plane. If the character to be read
matches the character on the film, the output from a photo detector is zero, triggering a
printer. But, in reality, this does not work. The character and the negative must be
aligned perfectly, both in position and size, which is an unrealistic requirement.

Modern pattern recognition systems are based on holography. In place of a mark
containing the real imagge of the letter 4 we may use the hologram of the letter 4.

Flg.14.7: Paltern recognlilon based on geomelric opllcs

As in holography, hologram of the letter A is the superposition of two sets of wavefronts,
the signal and the reference. The signal is diffracted by an original 4 and the reference is
a beam of collimated llght Subsequently, when the hologram of A is illuminated with
light from another A4, plane wavefronts arise that can be focussed into a bright spot (Fig.
14.8 top). The spot can easily be recognised by eye or photoelectrically. On the other
hand, if the wavefronts are coming {from 8 or from other characters, they do not
transform into perfectly plane wavefronts and do not produce a focussed spol. Instead,
a diffuse patch of light (centre) is produced. Hence, we can scan a given matrix of
characters and determine whether or not a particular character is present (bottom).




The holograms shown in Fig. 14.8 appear to be amplitude §térs. But because they are
generated by interference between signal and reference; they in-fact represent both
amphtudc and phase of light. They are called "complex”, matchcd" or "vander Lugt
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" Flg. 14.8:Patiern recognition by tllqlolgral-;hlc vander Lugt fllter. (The holegrams are seen
between Lhe lenses.) o

Form reading machine are a distant reality. Some’ lettérs and words are "inside" others,

For example F is inside E, P is inside R and B, T, L have the same horizontal and vertical

lines and ‘arc’ is inside‘search’; Clearly, more alike are the two characters, the less will
be the power of discrimination. Another problem will be to “teach’ the machine to
recognisc the "meaning” of a letter set in different typeface. The letter A can'be written
in an infinite number of variations possible when it comes to handwriting. However,

pattern-recognition using holographs is being extensively used in deve!opmg Engcprmts

library which stores the fingerprints of individuals with dubious character: /

~ 14.5 SUMMARY

@ Hologram is produced by splitting a beam of coherent light [rom laserdinto "~ -

@ Holography, discovered by Gabor, isa now:l lechmque of photography by

which a three-dimensional picture of an object or a scéne can be obtained. In

holography, the interference pattern produced by the light reflected from the

object and a reference beam is recorded. Such rccord.lng on the photographic
plate is called the hologram.

The three-dimensional picture of the ob]ect is obtamcd by 1llum1nat.mg the
hologram by a reconstruction light beam, which in most cases, is identical to
the reference beam. Holography is, therefore, also known as wavcfront
reconstruction photography.

two. One beam is directed, with the help of mirror(s), towards the object and
the other is made to fall directly on the photographic plate. The light reflected
from the object reaches the photographic plate and interfers with the

teference beam. The rccordcd interference pattern on the phOIOg:raph:c platc

is the hologram,

" Holography
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® Iy, (=4, (x,y)cos[ar + ¢ (x,5)] aad.y, (=4, cos[wt+¢y(x,y)]
respectively represents the object wave (wave reflected from the object being
" photographed) and the reference wave, the intensity distribution on the
photograpl.uc plate i is given as

A A
I(x,y) = 2 + T + A A cos( ¢y — 951)'

@ During reconstruction of image, when the hologram is iliuminaitcd by the
reconstruction wave, (y3 =4, 0s {of + ¢, (x,y)] the transmitted wave

through the hologram is

A+ Ay A A, A )
4=|:( 1 22)'1"’3+ 122 Jcos(wr+¢l)

A.1A2A3 R .

The second term on the right hand-side has the same form as the object wave
and it represents the three-dimensional virtual image of the object. The third
term is also similar to the objéct wave and represents the real image of the
object which can be recorded on a photographlc plate.

@ Inorderto obtain a hologram, the photographic plate on which the hologram
is to be obtained must be of high resolution. This is required because the
density of interference fringes in the hologram is extremely high. Also, the
whole arrangement of holography- recording the hologram as well as its
subsequent reconstruction-must be highly stable, i.e. it should be free from
even a slightest mechanical vibration. And of course, we must use coherent

- light for recording the hologram as well as reconstructing the image.

'@ Holography has varied applications, Holographic interferometry is 4 distinct
improvement over normal interfcrometjy because the former can be used for
any kind of material. Holographic microscopy has enourmous magnification’
and it also offers appreciable depth of field. Holography find extensive use in
information storage and pattern recogmtlon : -

14.6 TERMINAL QUESTIONS

1.

(a) How is the process of holography different from ordinary photography?.

(b) Dlscuss some of lhe salu:nt features ot' a hologram‘?

- Following Gabor assume Lhal amplltudcs of signals and refcrcnce are in ratm 1:10. .

Suppose that the two beams when they combine may be complctcly out of phase or
in phase. What is the maximum ratio of their intensities?

If the angle subtended at the hologram by Lthe sng:yal and lhc‘ reference béam is 15°,
what is the spacing of the fril;lgcs provided the wavelength is 492 nm? A R

14.7 SOLUTIONS AND ANSWERS _

SAQs
1.

{a) The least possible amphmdc (whcn signal and rcfcrcncc are out of phasc

) _pomtmg in opposite dlrecuon) is 436 — 1= 336

This is because, measuring the lengths of vectors Flg 14 2, we find that the ratio of
signal versus reference is 1: 4.36.

¥

[ Py




1L

Vs = ) 3 2

The lughest posmble aplitude (whien signal aiid rcferencc are in phasc) and -
pointing in same difeéction is436 + 1 = 536. “The ratio ot‘ lhe amplltudes
= 336!5.36 Thus. the rauo ot‘ mtcnsmes is- ;

(3.36/536) = 039
(b)TheconLrastlsgwcnas EETT ‘ g

LI & " _-Imu :+ Imln-

(536)—(336) oas T
(5.36)+(336) S

which is hlgh enough to make the; rcconslructlon v151blc

The transmitted wave is linearly proportional to the incident intensity I (x, y) at the

*time of récording the hologram and the reconstruction wave, ie.-”

ey (,9) 1 (x,3)

TR ,
AL A
- " , L (using egn 14.4)

A+ A

2 _'Pa. + ¥ [A1A2m5(¢1 - ¢1)]

A+ A , -
a (—IE—'Z—)#’3 + [A';'(I)S(wf + ¢2)] -[A]Azcos (¢2 L ¢.'l )]
T " (using equagtion 14.5)
LT A

5 VitA 4,4, [Ws(wi + ¢2)cos (¢ - ‘-"'1)]

2 2
o ';’3(’41 + Az)

5 + A,A,4,.1/2 [cos(wt + ¢y + P2 — ¢1)

+ cos{wt + ¢ — ¢ + ¢1)]

(usingcos (4 + B) + cos(A — B) = 2cosd cosB)

A+ A A A,A S A AA
A5 o D00 o (ot +y ) + D2 cos (at + 265 — 1)

~ which is equation (14.6)

TQs

(a) The technique of holography (photography by wave front reconstruction)
differs from that of ordinary photography in three aspects. Firstly, in ordinary
photography, the light reflected from the object is received on the photographic
plate with the help of lenses or other image forming device. Amplitude of the light
wave, reflected from cach point of the object, is recorded at corrcspondmg point
on the photographic plate. On the othcr hand, in hOIOgraphy, no lens or other

]

+*+' Hotography |
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image forming device is needed and henc,.as such, no image is formed on the -
hologram, What essentially is obtained is the interference pattern due to the light
reflected from the object and the reference beam. Secondly, for abtaining . '
hologram, coherent light is used whereas in case of normal photography, no such

source of light is needed. The requirement of coherent light is due to the fact that -

the hologram is an interference pattern. Thirdly, in holography, a set of mirrors is
used to render the reference and object beam on the photographic plate. '

(b) Hologram has several interesting properties. Some of them are given below:

(1) The image obtained from the hologram has three-dimensional character unlike
normal photographs which are two-dimensional. Due to the three-dimensional
character of the image obtained in holography, you can observe different
perspective of the object by changing the viewing position. Also, if a scene has been
recorded, you can focus at different depths.

(ii) We do not obtain negative in holography. Hologram its¢lf, however, san be

‘considered as negative in so far as obtaining the positive is concerned. Otherwise,

there is no similarity between the typical negative of the ordinary photographs and
the hologram. You may kave noticed that when the negative of an ordinary
photograph is'seen through, we do get a feel of the object or the scene
photographed. On the other band, when we look at a hologram we observe a
hodgepodge of speaks, blobs and whorls; it has no resemblance whatsoever with
the original object.

Let amplitudeé of the signal (or the object wave) be 4, and that of the reference
wave be 4,, then, as per the problem
A _1
A4, 10
When these two waves are out of phase, their resultant amplitude will be

(10 -1) = 9. On the other hand, when they are in phase, the resultant amplitude
will be (10 + 1) = 11. Thus, the ratio of their intensities,

I, t |
=n _(2)_2. =_0.67
I (11)

The spacing of the fringes is given as

_ A
4= o8

492 x 10”°
= ————m

sin 15

18pm
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151 INTRODUCTION

You might have seen advertisement dispalys (made of glass or plastic rods) and-
illuminated fountains. While looking at these, you might also have noticed that light:
seems to trave! along curved path, In the above mentioned cases, most of the incoming
light is contained within the boundaries of the medium (glass or plastic or water) due to
the phenomenon of total internal reflection. And since the medium itself has a curved
shape, the light travelling through it appears to travel along a curved path. Optical fibre,
which is made of transparent glass or plastic, also transmit light in a similar fashion.
These fibres are thread like structure and a bundle of it can be used to transmit light
around corners.and over long distances. Since, optical fibré can transmit light around-
corners, it is being used for obtaining images of inaccessible regions e.g. the interior
parts of human body. The real potential of the.optical fibres was, however, revealed only
after the discovery of lasers. R :

You may recall from Unit 13 of this course that the discovery of lasers- a source of
coherent and monochromatic light - raised the hope of realising communication at
optical frequencies. Since increase in frequency of the carrier wave enables it to carry
more information, communication at optical frequencies { ~ 10" Hz) has obvious
advantages over communication at radio wave (~ 10° Hz) and microwave { ~ 10° Hz)
frequencics. But, early attempts at communicalion at optical frequencies faced a major
problem. When optical radiation travles through the Earth’s atmosphere, it is attenvated
by dust particles, fog, rain etc. Thus, a need for an optical waveguide was felt and the
answer was the optical fibres. Optical fibres afe an integral part of optical
communication — transmission of speech, data; picture or other information — by light.
In this unit, you will study about the optical fibires, especially in the context of optical
com.t_ml_qication. ] ’ . . B

In Sec.15.2, you will learn the physical principles involved in transmission of light -

- through fbres. Types of fibres used in optical communication has also been explained.
General considerations about the optical communication through fibres has been '
discussed in Sec. 153. In the same section, you will also fearn about the requirements
which must be met by optical fibres so that efficient oplical communication may take
place. The area of optical fibre is relatively neiw and an exciting field-of activity. A
thorough understanding demands rather sophisticated mathematical background on the
part of the student. It has, therefore, been attempted here to keep the mathematical
aspects to a bare minimum and the underlying physical principles have been highlighted.

Fibre Opiles
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Coating

Cladding

Core .

Fig. 15.1: Opllul Fibre
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Objectives o , T ._ "‘ ; ¥ 1« PR TElE e et B . L
After going through this unit, you should be able to _ '.
® explain light transmission through fibre
@ distinguish between step-index and GRIN fibres

@ derive expression for pulse dispersion in fibres, and
@ solve simple probléms on optical fibres.

152 OPTICAL FIBRES ~

An optical fibre consists of a cylindrica) glass core surrounded by a transparent cladding
of lower refractive index. This assembly is further covered by. g plastic coating to protect
it against chemical attack, mechanical impact and other handling damages, Fig. 15,1
shows the geometry of a typical optical fibre. The core diamter is in the range 5 gm to

125 um with the cladding diameter usually in the range 100 um to 150 zm. The plastic -

coating diameter is around 250 gm,

In order to understand why the incoming light does not come out through the .
cylindrical surface of the fibre, you should recall the phenomenon of total internal
reflection. You are aware that when light travels from an. optically denser medipgmto a -, -
rarer inedium, it bends away from the normal as shown in Fig.iS.Z(a). If the refractive
indices of the two media are n; and 1, such that n; >-n,, and 0, and &, arc the angle of .
incidence and angle of refraction respectively, then, from Spell’slaw . .. -

" n, sind,

reflection and the critical angle; ;s given as, [rom Eq.(15:1) T

. - '-I'I'-I?- - ' .
= N . |
1. - . 1
. ! I
ﬂ: n: . I[ ,n‘n :
;o _ !
. - : - I -
n N I ’ .- , n, "o
1 . l/g ) ell .
0 L
. : . L
I ) L
(a) (b) () ,

.. Fig 15.2: Total Internal reflectlon . .

As the angle of incidence is increased, the refracted ray will further bend away form the

normal. Ultimately, when the angle of incidence reaches the critical value - known as .

critical angle, 0. - the refracted ray travels along the interface separating the two media;~ - -

as shown in Fig, 15.2 (b). And, when the angle of incidence is increased beyond 6, there
is no refracted ray and the incident ray undergoes total intcrnal reflection into the
optically denser medium, Fig.15.2(c). This phenomenon is known as total interpal .

:_;;élzigéj):ﬁc:siq_ll'(nz/m) ) o C N _:(15.‘};) )
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. Transmission of light, based on above pﬁnciﬁle; through an optical fibre of core”
refractive index s, and cladding refractive index n, withny > n, is shown in Fig.153(a).

Cladding
(a)

_ (b) _
Flg.15.3: () Light propagatlon through a flbre by total infernal reflection
{(b) Light propagallon lhmngh a bent flbre. -

When the ray of light is incident at angle 6(> 8 at the core - cladding interface, it-
undergoes total internal reflection. Due to cylindrical symmetry of the {ibre, the ray
undergoes total internal reflection at subsequent incidences at the core -cladding
interface and hence gets trapped inside the fibre. Due to this "guiding” property, optical
fibres are also called "Optical Waveguldes”. Fibres in the bent form can also guide the
light, as indicated in Fig.15.3(b), provided that, even at curved portion, the angle of
incidence is greater than @,. Do you know why cladding material is needed? The need
for a cladding material of lower refractive index is duc to two reasons. Firstly, toachieve
total internal reflection at the core -cladding interface. Sccondly, when light undergocs
total internal reflection, a part of it penetrates into the cladding material (region of
lower refractive index). This may lead to leakage of light, and it may also couple with
the light travelling in adjacent fibres. The use of sufficiently thick cladding material

. prevents this type of loss. ‘

You may note, from Eq. (15.2), that ll;c: critical aﬁglc for the incident raf dcpénds on the

- ._refractive-indices of the-core and-the cladding material.-In Fig.-15.3(a), @ is the angle at

which incident light falls on the core - cladding interface and this angle is different from
the angle, i, at which light is incident at the entrance apcrture of the fibre. Itisso -

‘because the entrance aperture is an air (refractive index g ™ 1) - glass (refractive index
n;) interface. This, according to Snell’'s law, (refertoFig.153(@) ~~~ SR

~  ngsini = nysing . S T N (153)-

" Fibre Opiles
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In optical communication, signal is
transmitied through the fibre in the
-form of pulses. .

Now, if this ray has to undergo total internal reflection at the core - cladding interface,
from Eq.(152) S

. sin 8 Z\nzlnl
from A OAB, |
sing = sin (90-6) =.cosh .
_ (1- sin0) 2
= [1- (m/np)' 1"
Hence, Eq. (15.3), taking 1y = 1, may be written as,

sini . =n sing

: V2
_ mn—-n,
=h 2
n,
2 2 172 .
(-4

. _ =12 V2
b =SI0 ° |A—n,

(15.4)

The angle of incidence, i, given by Eq.(15.4) is a measure of the light gathering
capacity of the fibre. You should convince yourself that if the incidence angle is greater
than i, the light will be refracted into the cladding material. All the light incident on
the fibre aperture along the core formed byi=0 toi = i_,, will undergo total internal

reflection in the fibre, The quantity (n, _ Ryyy2in Eq. (15.4) is called the numerical
aperture of the fibre.

15.2.1 Types of Fibres -

As mentioned above, in its simplest form, an optical fibre consists of a glass core and a
cladding (also of glass) of lower refractive index. This type of fibre in which there isa
sudden change in the refractive index at the core-cladding interface is called Step-index
fibre. The variation of the refractive index with the radius of such a fibre is shown in

nh

Core

A ' Cladding

3

LE)
Ik
L]

Relraciive index

Air

{'::-

- R
. "' Radiusof fibre ' ——m ‘
- - Flg15.4: Refrmclive index profile of n step-index fibre: - : -

[ ] S

Fig. 15.4.

Further, when light travels through the optical fibres, there.are different types of losses -

as well as a broadening of the pulse. These aspects of the optical fibres are of vital
importance for optical comunication and have been discussed in the next section. In
order to overcome some of the inhereat deficiencies of the step - index fibres, another
type of fibre in use is called GRadient - INdex Fibre (or GRIN - fibre). In the GRIN -
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Fig.15.5: (a) The refractlve index profile of a Gradlent - {ndex fibre; (b) Ray paths In stch a (fbre.’

fibre, the refractive index of the core material decreases continuously along the radius,
nearly in parabolic manner, from a maximum value at the center of the core to a
constant value at the core - cladding interface. The variation of the refractive index, with
radius, of a GRIN - fibre is shown in Fig.15.5(a).

Since the refractive index gradually decreases as onc moves away from the axis of the
fibre, a ray that enters the fibre is continuously bent towards the axis of the fibre as
shown in Fig.15.5(b). Can you cxplain why does Lhis happen? This smooth bending of
the ray towards (he axis is again a consequence of Sncll's law. As the ray moves away
from the centre, it encounters media of lower and lower relractive indices and hence
bends towards the axis of the fibre. Can you name a natural phenomenon which results
due to the atmospheric gradient of refractive index? You guessed rightly - the Mirage,
which is observed while looking across on expanse of hot desert is one such example.

SAQ1

What will happen if the refractive index ol' the cladding matcrial is h1ghcr than that of
the core?

Having learnt about the basig principles involved in trapsmission of light in optical .
fibres, let us study some of its important features as a component of optical
communication system. Bul before we do that, let us see what are the uses to which
optical fibres has been put to.

15.2.2 Applica!ions of Optical Fibres

The most elementary application of the, oplical (ibres is the transmission of light cither

. Inner Fibers
condact image
to observer

Outer Fibre
conduct light
to object

Flg.15.6: Flexible fibrescope

. Ab)

Spend

2 min

" Flbre Oplles
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* example of transmission of images using Opﬁcal fibres is the flexible fibrescope. As
shown in Fig. 15.6, some of the fibres conduct light into the cavity to be examined, while
. the others carry the image back to the observer. The image conducting fibres, upto .

140000 of them, are by necessity very thin, often no more than 10 Am in diameter, and
the entire fibre-bundle has diameter of the order of a few mm, Fibrescope are used
extensively in medicine and engineering. They make it possible to inspect a cavity in the

human body and 1o look inside the heart while it beats.

Of increasing interest is the use of fibre guides for communication. Compared to
electrical conditctors, Qpl;cal fibres are lighter in weight, less expensive, equally flexible,

not subject to electrical interferences and more secure to interceplions. Fibres can now -

be made which has losses as low as 0.2dBkm . This is a remarkable achieveinent
considering thlal only a decade ago the best fibres had losses in excess of 1000 dBkm™
and 20 dBkm was Lhought to be the limit.

~ 153._ OPTICAL COMMUNICATION THROUGH FIBRE

As mentioned earlier, optical communication refers to the (fansmission of specch, data, -
-picture or other information by light. You may recall from Unit 13 that the replacement

of radiowaves and microwaves by light waves is especially attractive because of the
enhanced information carrying capacity of the latter. Optical frequencies are some five
orders of magnitude higher than, say, microwave [requencics. Therelore, larger volume

of information can be transmitted through fibre cable comparcd to that through copper

coaxial cable (used for microwave commumcahon) of similar size. Further, in contrast
with metallic conduction techniques (e.g. through copper cables), communication by
light offers the possibility of complete electrical isolation, immunity {o electromagnetic
interference and freedom from signal leakage. In a typical optical communication
system, the information carrying signal originates in a transmitter, passes through an
optical fibre link or an oplical channel and enters a receiver which reconstruct the
original information, In order to minimize the distortion, the signal is encoded into
digital form before transmission. In this way, retrieval of the signal at some distance
down the line depends only on the recognition of either the presenee or the absence of a
pulse representing a binary (0 or 1) digit. Minor distortiorand noise may therefore be
tolerated as fong as pulses can be detected and regenerated, free from distortion.. -

You may be wondering that with abovc advantagcs, why light was not used for
communication purposes. It is not as if these advantages of using light as carrier of

information were not known. Rather, it was the unavailability of a suitable source ofhght-
‘which could be modulated. Light from lasers, bclng highly monochromatic, can

elfectively be modulated by the information carrying signals. The laser light, acting as
the carrier wave, respond, either directly or indirectly, to the electrical signal say, from
telephonc. These signals can, thercfore, modulate the carrier wave which then travel
through the coptical fibre (the optical waveguide). Al the receiving end of the fibre, a

photodetector receives and demodulate these optical signal into sound waves. For long . -

distance optical transmission line, yet another component, called repeater is used.in
optical communication system. Repeater cssent:ally amphfy and reshape the mgnal and
retransmit it along the fibre. -

Optical communication, as such, can be carried out thorugh open space, Then why do
we need [ibres o carry optical signals? The reason lies in substantial attenvation (or

"damping) of the signal while it travels in open space between the information source and -

information-use. For example, communicalion between one sattelite to another is
carried out through open space because: the intervening region is essentailly vacoum,
However, similar open space optical communication will not be feasible between a
satallite and the earth or between two places on the carth because carth’s atmosphere
strongly influences the light transmission. Hence, the need (or an optlcal waveguide
(fibres) for terestrial ogtical commumcatnon -

- Well, you.have learnt-in the prevmus section how light is transmitted through optical
fibres. But, is this property of fibres enough for transmitting information carrying signals -
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from oné point to another? No, the 0puca1 fibre must have some additional
characteristics if at all it has to serve-as an effective optical signal carrying medivm. The
‘optical fibre should be, as much as possible, free from pulse dispersion in order to carry
large volume of information. Pulse dispersion arises because different light rays take

different times to travel a fixed length in the fibre. Secondly, as we know, €ven the light .

.from lasers may have a spread in its wavelength. That is, even laser light is not
completely monochromatic, And since the refraclive index of fibre material is a
finction of wavelength, light of different wavelengths will travel with different velocities.
This inherent property of material is yet another cause of pulse dlspersmn and is known
as material dispersion. Further, the optical- radiation will be attenuated by the material

of the fibre due to scattering and othér phenomenon. In the follo\nng you will learn how

the.se problems can be tackled.

15.3 1 Pulse Dispersion in Fibres

You may recall from Sec. 15.2 that rays of light incident atthe core - claddmg interface
“dt an angle greater than the critical angle 6. undergoes total mtemaj reflection and
propagate through the fibre as shown in Flg. 15.7.

Flg.l.s.'l Rays of light passlng through a fibre

However, the ray, marked A in Fig. 15.7, which is incident oo the core-cladding interface ,
. at the largest angle will travel a longer optical path as compared to other rays incident at
smaller angles. As a result, different rays will take differcnt times in traversing a given
length of the fibre. This causes broadening of the information carrying pulses, as shown
in Fig. 15.8. What effect the pulse broadening has on the 51gnal transmission capacity of

Input

- Timg=————m—=

Eticrgyl-'-—n-

Flg.15.8: Pulse dispersion: (a) At the inpat, 1he information carrying pulses arc well resolved.  (b) At the
onfput, due to broadening, pulses overlap and are unresolvable. '

-

The transmission capacity of the -
fibre is delermined by the number of
pulses transmitted per unit time. For
correct information retdeval, the
pulses must remain

resolvable i.c. they should not
overlap cach other.
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the fibre? Well, pulse broadening sevefcly restricts the transmission capacity of the
fibre. It is so because the pulses which are well resolved (Fig. 15.8a) at the input may
overlap at the output (Fig. 15.8b) due to pulse broadening. To avoid this overlap, the -
time delay between twp consecutive pulses must be increased. Therefore, the number of
pulses that can be transmitted per unit time through the fibre wﬂ.l go down, that i is, the -
transmission capac:ty of the fibre will be reduced.

To have a quantitative idea about the pulse dispersion in case of propagauon through
step - index fibre, refer to Fig. 15.9. Let a ray of light be incident at an angle i with the
axis of thc fibre. The time taken by this ray to travel a distance PR

Cladding— n 0

FIg.li?: Ray of light passing through siep - Index fbre.

t P Q::LQ where r:!ril = velocity of light.in the core medium (refractive index n )
1 -
=0 PS + OR
T e cocup ( OR)
n (PR)
"~ ccose

What does this relation indicate? It indicates that the time taken by the ray of light in
travelling a distance through the fibre depends on the angle it makes with the axis of the
fibre. Thus, for a fixed length L of the fibre, minimum time will be taken by a ray which

. travel along the axis of the fibre (¢ =0) i.c.

fmin = M Lie

and the maximum time will be taken by the ray for which ¢ is equal to (m'2 — 6,

where 8, is the critical angle at the core - cladding interface. Thus, ¢ = cos’ (n-,fnl) and
the maximum time

N mL n:L
M e (n,/n) cn,

" Thus, if all the input rays travel along the fibre simultapeously, the spread in time in
_traversing a distance L will be.

=cn2(|""_z_)- N S N '_ (155)
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If the core and claddmg refractive indices for a step - index fibre is 1.47 and 1.46 i

respcc{wcly, what will be lhc broadening of a pulsc after a distance of 5 km? -

Due to the pulsc \ispersion represented by Eq. (15.5), the signal transmission capacity
- of optical fibres is severly restrained. Therefore, an efficient oplical fibre should have
lcast possible pulse dispersion so that it can carry larger number of pulses per unit time.

Now the question is: Do we have any mcthod to minimize the pulv.c broadening in
optical fibres? Yes, there: are methods by which we may minimize the pulse broadcnmg
One of them is to use gradlenl - index (GRIN) fibre. In the follomng, you will lu.arn how
GRIN- fibres help in reducing Lthe pulsc broadening.

-15.3.2 Pulse dispersion: GRIN Fibres o ' S ' .

You may recall form Sec. 15.2 that core of the GRIN-fibre oﬂ'crs graduatly decrcasmg
refractive index environment to light rays as it moves away [rom the axis of the fibre. Let
us see how this parabolic refractive index profile of the GRIN - fibre {Fig.15.5(a)) helps
in reducing the pulse dispersion. Refer to Fig.15.10 in which two rays 4 and B are
shown to enter the core axis at differnt angles. As the rays move (owards the core -
cladding interface, they encounter decreasing reflractive index cnvironment. As a result,

- both of them will bend awdy [rom the normal and hence towards Lhe axis of (he core.
The paths taken by rays are not straight lincs as in the casc of step.- index {ibre; rather; it
is sinusoidal. It is because in the core, refractive index is a conlinuously decreasing
function of the core radius. Now, ray A which makes the smaller angle with the axis
travels smaller distance through the core whercas ray B (ravels a longer dislance.
However, the lime taken by both of them, seperately, in traversing a fixed distance along
the fibre will be same. Can you say why? It is so because ray 4 which travels a shorther

Cladding

Core

/]

Cladding —

" FigdS.10: T riys Aaiid B travelling through a GRIN: fibre, =~ = -

distancc, does so in the region of higher refractive index. Hence th velocity of light

*“along the path taken by ray:4 will be smaller (velocity of light-=¢/n). On the other hand, - o

ray B which travels a relatively larger distance, does so in the region ol lower re [ractive
index and hence with higher velocity. The net result is that the rays making dilferent
angles with the core axis take equal time in propagating through the fibre. Due to this
reason, the pulse broadening is reduced in GRIN-fibre. : S
The volume of information which may be transmitted through GRIN - fibre is morc or
less [ree from pulse broadening duc Lo above reason. The information carrying capacity

ol such fibre is only limited by material dispersion about which you will lcarn in the '

. following. ' ‘
- &'
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15.3.3 Material Dispersion

Above we discussed about the pulse broadening in optical fibres arising because of the

“fact that light rays incident at different angles at the core-cladding interface take
different times to traverse a fixed length of fibre. We also discussed how to reduce this
dispersion by using GRIN-{ibre. Now, suppose that thie light beam travelling through -
the fibre is free from the pulse broadening due 10 above mentioned reason, Does it
mean that the beam is free from pulse broadening? No, there is yet another sourée of
pulse broadening known as material dispersion. Material dispersion arises due to (he
vartation of refractive index with wavelength, i.e. the velocity of light in the medium is
depcadent upon its wavclength. You arc aware that light even from a highly pure source
(like laser which give highly monachromatic light) will- have a spread  in its wavelength.
Therefore, dillerent waveleagths, with in the range, will travel with different velocities
and hence will arrive at the end of thc fibre at different times and cause broadening of
the pulse. You may note that the material broadening is an intrinsic physical property of
the Gbre material.. ’ ‘ -

", Although glass is transparent to eleclromagnctic radiation in the visible range, it does

absorb a part of it due to several processes. As a resuit, the input power of the light
beam will suffer a loss while traversing the length of the fibre. In the followi ng, we briefly

. discuss some of these processes causing power loss in fibres.

153.4 Power Loss

When eleciromagnetic radiation interacts with matter, it may lose encrgy via different
mechanisms. In case of optical fibre material, siliea, major loss in energy or power is
caused due to absorption of photons by impurity atoms. Therefore, to minimize (his logs,
the fibre matcrial should be of high purity. Secondly, the photons may also losc energy
by cxciting the aloms of oxygen and silicon (the building blocks of silica, Si0,). Thirdly,
silica being amorphous material, it offers randomely varying refractive index. Duc to
this, the propagating light beam may get scattered and its dircction of propagating may
change drastically. These loss causing mechanisms are taken care of by proper design
and synthésis technique of the fibrcs,

The power loss we are talking aboul is expressed in terms of bel or decibel which are

. comparable units. One bel means that power in one channel or at one time is 10 times

that in another channel, or at another time. 2 bel means 100x, 3 bel means 1000x and so
on. For practical use, the unit bel is too large. Hence the decibel, dB, is used. 1 bel =
10 dB. A decibel (dB) is cqual to 10log,5(p,/p,) where p; and p, are input and output
powere levels. Thus, if the power level of an opical signal reduces by hall, the power
loss in dectbels will b 10log,(1/2) =-3dB. In optical libre communication, the power
loss is cxpressed as dBkm™ . In tong distance optical communication through Gibrcs, the
permissible loss is 20dBkm ™. With modern.techniques of synthesis, optical fibres with
power loss as low as ~0.2dBkm ™' can be produced.

15.4 SUMMARY -

@ -An optical fibre consists-of a transparent glass core and-a cladding of lower - - -

refractive index. Since the refractive index of the cladding material is lower
than Lhat of the core, much of the light launched into one end will cmerge from
the other end duc to a large number of totalinternal reflections.

@ In the step-index fibre, Lhe refractive indéx changes suddenly at the o
core-cladding interfacc. ‘On'tkie other hand, in the gradient-index (GRIN-)
fibres, the refractive indcx decreases continuously from the core axis-as a
function of radius. :

® The maximum entrance core angle, also known as acceptance angle, is a
measure of the light gathering capacity of the fibre and is given as

.- 1 z 71172
51N ¢ = = In—n
My [1 2] '
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The term (n': - n:) is known as Lhe numerical aperture of the fibre.

@ In optical communication, information is transmitted in the form of pulses.
While travelling through the fibres, these pulses broaden because rays incident
at different angles at the core- cladding interface take different times in
traversing a fixed length of the fibre. Pulse broadening due to this reason in a
step-index fibre of Iength L is given as,

¢ Pulse broadcning can be greatly reduced il, instead of step-index fibre, we'use
a GRIN- fibre. Itis so because in GRIN-fibre, though different rays traverse
differcnt optical paths in the core, they all take same time in travelling through
a given length of the i'brc .

¢ Material d.lspersmn is yet another caus¢ ot' pulse broadening. Matenal
dispersion arises because the refractive index (and hence the velocity of light)
a medium is a function of wavelength of light. And, even highly :
monochromatic light has a spread in its wavelength.

15.5 TERMINAL QUESTIONS

1.

Suppose you have two Dpllcal fibres A and B. The rcl'ractm. indices of the core
(n,) and the cladding (n,) materials is :

(1) = 1.52, (1)a = 141, (a))p = 1.53, (n,)p = 1.39
Which of the two fibres will have higher light gathering capacity?

A step-index fibre 6,35 x 10”m in diameter hias a core of refractive index 1 J3anda
cladding of refractive index 1.39. Determine {a) the fumerical aperture for the
fibrey (b} the acccptancc angle (or maximum cntrance conc angle).

15.6 SOLUTIONS AND ANSWERS

SAQs

1.

if the refractive index of the cladding matcerial is higher than that of the core
matcrial of the fibre, the incoming light wil! not undergo total internal reflection. It
is s0 because when he light travels from a rarer lo denser medium, it bends
towards the surface normal. Thus, the Lght ray incident on the core-cladding
interface will, instead of coming inside the core, get refracted in lhc cladding

material (refer to Fig. 15.2).

The pulsc broadening is given as

ar = L
= —{n, - ]
) Cﬂz(ll 1)

- -As.per the problem, - -

L= 5x103m, Hy =147, n, = 146andc = 3x 10%ms 71

..o,

_ 147 % 5 x 107 (m)
3 % 10° (ms ) x 146

(147 — 1.46)

_ 135X 10 (rn)
438 x.10"(ms ")

— (©01)

= 0.17 s

* Flbre Optics_
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TQs . ,
- . 1.. Referto Fig. 153. The maxtmum angle of incidence, iy Of the light beam at

air-core interface is the measure of the light gathering capacity of the fibre. The-
_sine of this angle of incidence is given as - -

sini_. = l [‘"'z - u-z] vz
R
where, 1, #; and i, are the refractive indices of air, core and cladding respectively.
n, = refractive index of air = 1. .
For the fibre 4,
"'1 =152andn; = 1.4]‘ .
sini__. = [(1.52)° - (1.41)7]"
= o3
Grda = sin” [0.57] =35°
For the [ibre B,
n, =-1.53andn; = 1.39
sind_, = [(1.53) - (139)'"*
(e = Sin [0.64] = 40°.
Hence, the light gathering capacity of fibre B is greater than fibre A,

2.a) The numerical apcrmré of the fibre is given as,
N.A. [n - uzjm
= [(1.53)*- (13947 )
= .64

I

b} The acceptance angle or the maximum entrance angle, imm;, corresponds to 8, the
crilical angle lor total internal reflection at the core-cladding interface.

. 1
sini_,, = n [N.A

0l
=
~ R

b
-
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