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COURSE INTRODUCTION

**When you can measure what vou are speaking about and express it in numbers, you know
something about it: when you cannot express it in numbers, your knowledge is of a meagre
and unsatisfactory kind.”

—Lord Kelvin

Scientific truths are based on expérimcmal observations. Scienlific knowledge is not perfect
and complete without experimentation. So 1o be acquainted with science, its truth and
conclusions are to be verilied by actual experiments in a laboratory.

The objectives of this Physics Laboratory Course are to enable you to (a) gain expetience in
the scientific method and tearn the process of scientific enquiry which includes taking
unbiased observation; interpreting and analysing data and deriving conclusions, (b) acquire
basic skills and confidence in handling instruments and materials as well as the ability to
overcome difficulty when an experimental arrangement does not work, and (¢) develop
scientific attitudes and interests viz. curiesity. not accepting anything at face value,
queslioning, ascertaining and then accepling.

Physics Laboratory-1 envisages (wo types of experiments: (a) preset experiments and
(b} invesligatory or open-ended experiments. in preset experiments emphasis is on
measurement of physical quanlities on a set patiem while in open-ended experiments,
different students can try different approaches.

Study Guide .

This course is divided into two blocks. You are expected to go through all the write-ups
before coming for laboratory work. For successful completion of an experiment, you should
masler skills of making measurements with a given instrument, analyses data, leam to make
error analysis, and quote results with correct number of significant ligures. For this purpose
you are expected to master the units on “Measurement’ and *Error analysis’. In particular,
you should be very clear about the use of graph paper in a physics experiment. In these units
we have given some Self Assessment Questions (SAQs). By answering these questions
yourself, you wili grasp the ideas better. If you are stuck up with any SA(QQ, you may look
up the solution given at the end.

Before performing an experiment. you should familiarise yourself with the apparatus you are
likely to use in the laborutory. To give you a feel for Lhe same. we have madeé a video film
entitled “Introduction 10 Physics Laboratory-I". You are advised to watch it carefully. In case
you do not understand something in the lirst attempt, you should watch it till you are
convinced. You can also discuss it with your counsellor.

When you go to the laboratory 1o perform an experiment, you should have a clear idea as to
what you have to do and how you are to do it. You are advised (o read each write-up-
carefully. If you wish to godeeper into some aspects, you should refer to other books on
physics praciicals available in the library at your study centre. If feasible, some pari(s) of an
experiment may be tried out al your home. You are expected to record your observatjons and
draw your inferences. These may be verified afier performing that particular experiment in the
laboratory.

On an average. you will work for about six hours in the laboratory for each experiment.
About four hours will be available for completing the analysis and watching video. While
working in the laboratory if an experimental arrangement is not working, you should try
again. If you siill fail, consult your ¢ounsellor. We hope that everyone will complete the
work in this time. As far as possible. you should work independently since your laboratory
work will be continuously evaluated by your counsellor. You must complete your work
cveryday. Lest you lose grade!

We hope that you will enjoy working in the laboratory. We wish you success.
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1.1 INTRODUCTION

In our Foundation Course in Science and Technology, we have studied the nature of
scientific investigation. We know that scientists use devices to measure and thereby quantify
physical quantities. But even the best of devices yield inexact measurements. We express
these measurements as approximate numbers, We distinguish between numbers such as 3.2
cm and 3.20 cm. These are the results of measurements using different devices. While doing
computations with these numbers special care is required. You may have wondered why the
ratio of two measurements such as 32.1/12 is expressed as 2.7 not as 2.68 or 2.675. The
number of digits used in a measurement have some significance regarding the quality of
measuting instruments. In this unit we will learn about the meaning and usage of
approximate numbers. We will.also leam about the techniques of computations with these
numbers. These techniques are of basic importance in caiculating the results of experiments
that we will do later. The mastery of these techniques is, therefore, essential at this stage. In
the next unit we will study errors which arise due to defects in measoring instruments, '
flucluations in the quantity to be measured and several other reasons. We will ajso learn
how these errors are propagated and how the final results of an experiment are expressed.
Before moving on to the next unit you should watch a video on ‘Introduction to Physics
Laboratory-I".

“Objectives
After studying this unit you should be able 1o

e appreciate that all measurements are inexact and are expressed in numbers resulting from
" approximations or-approximate numbers

e distinguish between precision and accuracy

€Xpress a measurement in scientific notation

# add, subtract, multiply and divide approximate numbers.

12 ERRORS: EXPRESSING THE RESULTS OF —radl
MEASUREMENTS | B

We are familiar with at least two reasons why all measurements are inexact. Firstly, erroris ~ Fig. 1: ‘The length of all inic three
caused by the measuring instrument itself, such as the zero error. Secondly, ervor can be due ~ Unequal Emows A, B ard € is reported
to limitations of human judgement and perception, such as in aligning the end of a rod to be ”“m‘:f em. “L‘:’hzd:;p::’r"‘:ﬂ‘:r‘:‘“
measured with the zero of the centimetre scale. To better appreciate the inexact nature of this ml_ (Th egmle s "
measurement let us reflect on the process of measurement of tength. Let us obtain a highly magnified.)

‘perfect’ centimetre scale which has ¢lear and equal marking of millimetres, We desire to

measure the length of three arrows A, B and C (Fig. 1). Let us supposc that we are able to 5
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Some Experiments on
Osclilations and Waves

The possible error = 1/2 of the unit

of measurement.

Relative error is he ralio of possible

emor o the lolal measurement.

perfectly align the tails of the arrows with zero marking on the scale. Of course. this is
impossible to achieve in practice. bur let us assume i1 to gain an insight into the process of
measurement.

In order to measure the length-of these three wrows we look at the arrow heads. The head of
arrow A is closer 1o the 4.3 cm mark than to the 4.2 cm mark. We will report the length of
arrow A as 4.3 cm to the nearest millimetre. Let us now measure the length of arrow 2. The
head of arrow B is closer to 4.3 cm mark than 1o 4.4 cm mark. Therefore. we will also report
its length as 4.3 cm to the nearest fnillimetre or simply 4.3 cm. Similarly the length of
arrow C would be reported as 4.3 cm. Thus the tengths of all arrows whose 1ails are aligned
with zero marking, and whose heads lie in the range R, and R, would be reporled as 4.3 cou
We can conclude that a measurement which is reported as 4.3 cm (which is in the middle ol
R, R.) might possibly be in error by 0.05 cm {or one-hall of the unil of measure which is
0.lem) or less. Thus in Lhe measurement 4.3 cm the last digit 3 is in error. We will.
therefore, repori measurements in such a4 manner thai only the last digit will have error.

1.2.1 Possible Error and Precision

We have seen thal the maximum possible error, barring any mistake in measuring, in i
measurement is 1/2 of the unit of measurement, The possible error is thus due 10 infterent
imprecision in measuring devices. The mecasurements having tess possible error are more
precise. Since possible error is proportional 1o the unit of measure the instruments having
smaller unils of measure will give more precise measurement. A measurement reporled Lo
one hundredth of a centimetre, such as 5.32 cm is more precise than & measurement reported
to one tenth of a centimelre, such as 5.3 em.

SAQ 1

Consider the following pairs of measurement. Indicdte which measurement in each pair is
more precise.

a. 179 cmor [9.87 cm

b. 65s0r3.2l s

¢. 20.56™Cor32.22°C

1.2.2 Relative Error and Accuracy

So far we have considered measurement of nearly equal lengths with emphasis on precision.
Let us now consider measurement of much different lengths. Suppose, iwo measurements
yield 3.2 cm and 98.6 cm using the same metre stick. The possible error in both of 1hese
measurements is equal 1o 0.05 ¢cm but the measurement 98.6 cm is much bigger than
measurement 3.2 cm. Would you say that the 98.6 ¢cm is more accurale ? How would you

. compare the accuracy of measurement such as 7.4 s and 98 5? In order 10 compare such

measurements we define relative error as Lhe ratio of possible error to the total measurement.
In the Table below we have computed the relative error in some measurement. {The exact
method of expressing the relative error will be discussed in section 1.5.)

Measuremnenl Uniraf PPossshle Relative

measure [T crmof
32cm 0.1 om 005 cm 02
OR.6cm 0.l cm *005cm 0005
TS Ols 0054 007
9B s 1 055 005

Let us compare measurements 3.2 cm and 93.6 cm. Both have equal unit ol meusure :md
are therefore equally precise. Bul the measurement 98.6 cm has less relative error 1L.ONOS
compared to 0.02) and is therefore more accuraie,

Comparisan of measurements 7.4 s and 98 s is more revealing. The measurcment 7.4 5 is
more precise than the measurement 98 s {possible crrors 0.05 s and 0.5 5 respectively} but
less accurate (relative error 0.007 as compared ta 0.005).

- {riba o

e=

AR TR L U




You will therefore appreciate that a smaller measurement needs to be more precise for the
same accuracy. This is why when measuring the dimensions of a room, metre is used as urit
of measure while in measuring inter-city distances the unit kilometre is used for the same
aeeuracy.

SAQ 2 :
Consider the Following pairs of measurements. Indicaie which measurement in each pair is
more accunile,

a. 00 em or Kl em

h, OB Smorfdsm

Iniroduction 1o Laboratory I :

1.3 SCIENTIFIC NOTATION

in the system of measurernent thal we use (SI-syslem) a measurement is expressed in
decimal numerals, While measuring interatomic distances. we use very small numbers, On
the other hand, while measuring interstellar distances we use very large numbers. In
scienulic notalion these numbers are written as a number between one and ten muitiplicd by
an intcgral power of ten. For exampie. the dismeler of the sun is 1,390.000.000 metres and
the diameter of hydrogen atom is only 0.000000000106 metres. In sciensific nolation we
wrile Lthe diameter of the sun as 1,39 x [0%m and the diameler of the hydrogear atom as

1.06 x 1%,

5AQ 3
The miss of i water molecule is 0.000 000 000 000 000 000 00C 03g. Express this in
scicntific nolation. '

You have probably guessed that writing numbers in scientific notation will make
compultations casicr. This is because we can apply the laws of exponents readily.

14 SIGNIFICANT DIGITS

We have seen in section 1.2.1 that a measurement reporied as 5.32 cm is more precise than
5.3 cm. The number of digits in these measurements are three and two. respectively. This

suggests that the number of digits used in reporting a measurement have some significance.
All non-zero digits are significant. However, in measurements such as 0.05 m or 0.005 m,

none of the zeros is significant. The zeros to the [eft of the decimal are merely flags pointing’

to the decimal. The other zeros are placed to help locate the decimal point. Ler us
investigate this by culculating the possible error and relative error as in the Table below—

Measurement Unil of- Possible Relative error
measuremenl e
Sm dIm Bm I
D5m A s 03 m .1
005 m 00l m L0005 m . 1
00005 m L0000} m 000005 m .

We can see from this table that the unit of measure and the possible error in all the cases are
different. But the relative error is the same. Therefore, we can assert that these zeros are not
significant because they do not affect the relative error, We can thus corib[ude that a digit is
significant if and only if it affects the relative error.

Measurement

T L~ Y ) [ v — 1 b i v - i

L} s e e e

e = o

[ERRIE LN N YIRT Pt

btk RS RERCLN

A digit is significant If and only
if it affects the relative error.
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Eeigd: Experlacats on : SAQ 4

m and Waves ~Complete the following Table
§.No. Measurement Possible error Relative crror
] 1. 2m 05m :—qg—:‘ = .25

2. 2Wm
3 22000 m
4, 25m
5 250m
6. © 25000m
7. 102 m

- & 1002 m

(2) What can you conclude regarding the significance of ‘trailing’ zeros in the first three

measurements 7
(b) What can you conclude about z€ros in the [ifth and sixth measurements ?

{c) What can you conclude regarding the significance of zeros between non-zero digits in the
seventh and eighth measurements ?

SAQ 5
From the above discussion justify that a measurement possessing greater number of

significant digits has greater relative accuracy.

Sometimes we take a sequence of whole number measurements such as 32, 30, 28, 26. All
these measurements have two significant digits except the measurernent 30. In such special
cases zero can be taken as significant without any ambiguity.

SAQ 6
Comment on the following:

"“The distance to the sun from the roof of a house(height 20 m) is 150 million kilometres.
15 mlilllon kilometres plus 20 m.”

Therefore the distance to the sun from the ground is

L5 COMPUTATIONS WITH APPROXIMATE
NUMBERS

In section 1.2 we have seen that the reported measurements have error in the last digit. For

example, a measurement reported as 3.2, has error in the digit 2 which is indicated by
placing a bar (-) over this digit. In computing values of physical quantities from observed
experimental data we have to do computations. We will now establish some rules for
expressing the results of basic operations with approximate numbers.
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1.5.1 Multiplication and Division Introductlon to Laboratory 1 :

Let us consider multiplication first. We want to multiply 1.23 by 2.3. Ateach step of the
computational process we will put a bar (-) over a significant digit which arises from
computation with a digit containing error, as below :

We see that the product contains three digits which contain errors. Since we report the result

in a number having only one digit containing error, we should round off the product to 2.8.
Thus the product has two significant digits.

This is also equal to the number of significant digits contained in a faclor having the least

number of significant digits, namely 2.3. Therefore, we formulate the following rule:

RULE: The product (or quotient) of two measurements should be rounded off to contain as
many significant digits as the measurement having fewer number of significant digits.

SAQ 7
Divide 2.1 by 1.534. Round off the result accordmg to the above rule.

Let us consider the multiplication of the following numbers which have already been rounded
off to significant digits.

5.2865 x 3.8 x 19.62
= 20.0887 x 19.62
= 304, 14029

which must be rounded off to 3.9 X 10°. We could have obtained the same result by rounding
off these numbers first as shown below.

5.20x3.8x19.6

=201 x196
= 3939
which rounds off 10 3.9 x (2.

Here we have rounded off 20.102 (the product of 5.29 and 3.8) to 20.1 before multlplylng it
with 19.6. We can gencralise this as a labour saving rule.

Labour Saving Rule: Belore multiplying (or dividing), round off the numbers to one
more significant digitl than (the numbe: of significant digits) in the least precise factor.

5AQ 8
Divide 9.5362 hy 3.2

Measurement
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Some Experimenis on
Oscillations and Waves

10

1.5.2 Addition and Subtraction

Let us study the process of addition given below:
2.135
2.53

1.02

5685
The sum has twe error-containing digits. We. therefore, round off the sum to 5.69 so that it
contains only one digit containing error. Rounding off is necessary because the sum cannot

be more precise than individual measurements. We note that the sum 5.69 has the same unit
of measure as the least precise addend. Thus we formulate the following rnele.

"tule: While adding (or subtracting) approximate numbers, round off the sum (or difference)
to the same unit of measure as the least precise measurement.

SAQ 9
Subtract 2.11 from 2.1546.

SAQ 10

Hint: In such cases we can use the following labour saving rule.

Labour Saving Rule: Before adding (or subtracting} round off the numbers so that they
contain one more digit of precision than the number of precision digils in \he least precise.

Thus the addends become 2.155m, 2.1 1lm and 2.125m.

1.6 SUMMARY

. Exact measurement is impossible. The result of every measurement is expressed in
numbers resulting from approximation such that only the last digit contains error. In
scientific noiation a measurement is expressed as a decimal nurnber between one and ten
multiplied by powers of ten.

2. Possible error is one-half the unit of measurement. Precision is a function of possible
error only.

L}
3. Relalive error is the ratio of possible error to tolal measurement. Accuracy is related to
relative error.,
A digit ts significant if and only if it affects the relative error.

4. Rule for multiplication (or division)
The product {or quetient) of two measurements should be rounded off to contain as many
significant digits-as the measurement having the least number of significant digits.

5. Rule for addilion (or subtraction)

While adding (or sublracting) approximate numbers, round off the sum (or difference) 10
the same unit of measure as the least precise measuremnent.

1.7 ANSWERS

SAQ 1 '
{8 19.87 cm
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() 3.21s
(c) Equally precise

SAQ 2

The relative errors are:
05 5 _ 1
40 T 4000 800
05 5 1

8 300 160

‘Therefore, the measurement 40.0 cm is more accurate.

Introduction to Laboratory I :
Measurement

) 0.85m
SAQ 3
Ix102g
SAQ 4
_S.INo. Measurement Passible Relative
o anwr
1. 2m 05 m £ = 25
2
005
2, 20m 005 m S = 0
3, 2000 m 00005 m __oozoc!.oos = 00025
4 ?.?m 5m % = .02
§ 250m 5m - . 002
250
3 25000 S5m =S = 60002
- m - 29000
7 102 5 =S o049
m m 102 = .l
8 1002 sm = _ 000499
. = m . lwz = .

{a) They are significant.

(b) They are also significant. The zeros are significant only if they come from a
measurement. But if fifth and sixth measurements are expressed in centimetres as
2500 cm and 2500000 cm respectively, Lhe last two zeros should not be counted as
significant as (hese have come as a result of multiplication by the factor 100 and

not from measurement.
©) Signiﬁc_anl
SAQ 7

11
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UNIT 2

INTRODUCTION TO LABORATORY-I:
ERROR ANALYSIS

Structure

2.1 Introduction
Objectives .

2.2 Types of Emors
Systematic Ermors
Random Errors

2.3 Determining the Size of Error

2.4 Propagation of Error
Error Propagation in Addition and Subtraction
Error Propagation in Multiplication and Division
Enfor Propagation in Other Mathematical Operations
Error Propagation in Graphing

25 Useofn

2.6 Answers

21 INTRODUCTION

In the last unit we studied about errors in measurements due to imprecision of measuring
devices. The results of measurements wefe expressed as approximate numbers. We also learnt
about performing basic operations of addition, subtraction, multiplication and division of
approximate numbers and expressing results using correct number of significant digits. We
assumed that the measuring instruments as well as the observers were perfect. However, as
You are aware, there can be defects in measuring instruments and also humans are not perfect.
If the environment is not perfectly controlled its changes will affect the object to be
measured thereby introducing errors in measurements. In this unit we will familiarise
ourselves with these and other sources of errors. We will also learn how to estimate and

 possibly eliminate or account for such errors. In most of the physics expe.iiments our

objective is to determine relationship among physical quantities. Therefore, we will estimate
the errors in the measurement of various physical quantities and make efforts to determine
valid relationships as mentioned above. In the next couple of experimental write-ups we will
apply our knowledge of errors and its propagation to actual measurements and deduce
relationships. We will first concentrate on the measurements of fundamental quantities such
as mass, length and time, and then do experiments involving two or more of these
quantities.

Objectives

After smdying this unit you should be able to

distinguish between random errors and systematic errors

eliminate to some extent the systematic errors

compute errors in the measurement of various physical quantities

analyse data by calculation and by plotting graphs to determine functional relationship

interpret the slope of a graph and o determine the value of certain physical quantities
from the slope of a straightline graph.

22 TYPES OF ERRORS

Every measuring instrument has a limitation in that it cannot measure physical quantities
smaller than a certain value known as the least count of instrument. For example, a metre
scale can measure only up to lmm (smallest division of the scale). A vernier calipers can
generally measure up to .1mm whereas a spherometer and screw gauge can measure lengths

.up to 0.01mm. Similarly a thermometer usually has the least count of half a degree. In
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addition to these limitations which are inherent in a measuring device, there are other sources  Introduction to Laboratory £ :
of error. These arise due to changes in environment, faults in observational techniques, . Error Anilyshs
malfunctoning of measuring devices etc. The errors in any measurements can be classified

into two broad headings namely — Systematic Errors and Random Erors.

Let us now study the causes of such errors, and see how they are eliminated or minimised.

22,1 Systematic Errors

The systematic errors, also calied determinanl emrors, are due to causes which can be
identified. Thercfore, these errors, in principle, can be eliminated. Ermmors of this type result in
measured values which are consistently oo high or consistently too low. Let us discuss
these errors one by one.

(i) Zero Error

In the case of vemier callipers, for example, when the jaws are in contact, the zero of the
vernier may nol coincide with the zero of the main scale. The magnitude and sign of the
‘zero ermor’ can be determined for.the scate readings. We can easily eliminate this error from
the measurement by subtracting or adding the zero error.

- (ii} Back Lash Error

While measuring a physical quantity there may be an error due to wear and tear in the
instruments like screw gauge or spherometer due io defective filtings. Such an error is called
back lash error and can be minirnised in a particular set of measurements by rotating the
screw head in only one direction.

(iii) End Correction

Sometimes the zero marking of the metre scale may be worn out. Unless we are careful, this
will lead to incorrect measurements. We must therefore compensate for this by shifting our
reference point.

(iv) Errors due to Changes in the Instrument Parameters

Usually, in experiments involving electrical quantities, the value of the electrical quantities
change during the course of the experiment due 1o heating or other causes. For example, the
value of the resistance of a wire will increase because of current passing through it. This will
lead to errors which are generally difficult to calculate and compensate for. To some extent
this can be avoided by not allowing current (o flow through the circuit while observations
are not being taken.

(v} Deflective Calibration

Occasionally instruments may not be properly calibrated leading Lo errors in the results of
measurement. This type of error is not easily detected and compensated for. This is a
manufacturer’s defect and if possible the instrument should be calibrated against a standard
equipment.

(vi) Faulty Observation

This could be due 1o causes like parallax in reading a metre scale. These errors are eliminable
by using proper techniques.

2.2.2 Random Errors

You must have noticed that many times repeated measurements of the same quantity do not
yield the same value. The readings obtained show a scatter of values. Some of those values
are high while others are low. This fluctuation is due to random errors whose possible
sources are:

(iy Observational

These arise due to errors in judgement of an chserver when reading a scale to the smallest
division.

(ii) Environmental

These arise due to causes like unpredictable fluctuations in line voliage, variation in

temperature etc. They could also be due to mechanical vibrations and wear and tear of the

systems. There could aiso be a random spread of readings due to friction say, wear and tear of

mechanical parts of a system. 13
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Some Experiments on
Oxcillations and Waves

SAQ 1 -

"Which of the figures 1 (a) or (b) show random errors only.

T

True value @
T

True value ®

Fig.1: Set of measur¢menls. Each pqlnf indicates the result of a measurement

Unlike systematic errors, random errors can be quantified by statistical analysis. Let us now
learn to determine the size of such error.

2,3 DETERMINING THE SIZE OF ERROR

When we measure a quantity it is important to take several readings. It may be preferable
that readings are taken by independent observer. This has the advantage that bias of a single
observer is eliminated. The value obtained will indicate whether the data is scale limited or
random. An error analysis can be made 10 determine Lhé size of error from these readings. A
typical set of values of a measurement are given below in Fable 1. The quantity to be
measured as a “true” value is independent of our measuring process, But the imperfection of
our measuring process prevents us from obtaining that value every lime. Which one of the
values listed in Table 1 would be “true” value ? It is impossible to tellt that from the
measurements because of this spread. Under the circumstances the average A value can be
quoted. To get the average value we simply add up all the measurements and divide the sum
by the total number of measurements. As you can see from the Table 1 the average is 3.68.
Also notice that most of the data in Table 1 deviates from the average. Therefore, a measure
of spread of values would be the average deviation. To obtain average d we first take the
difference of each data from the average 1o get individual deviations 4. These devialions are
then added and their sum is divided by the number of observations to obtain 4 . As you can
see from Table 1 the average deviation in this case is (.009.

Tabie 1
S.No. Data Deviation {d)
1. .69 0.01
2. 167 0
3 3.68 00
4, 3.69 0.0l
5. .68 0.0
6 3.69 0.01
7. 366 0.0
8. 367 ' 0.01
A=368 d=0.009

As you are aware, repeated measurement of the same quantity yield results with berter
precision. A measure of this is the precision index § whose definition (without proof) is

d

Vn

wheze d is the average deviation and n is the number of cbservations. The precision index S
is a measure of uncertainty of average. Using the data of Table 1, the precision index is

S =

N g ———r o | |
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Thus the final result can be expressed as A + 8. In this case the result of random data

analysis gives 3.68 + 0.003. We can see that this error is much less than the possible error .,

which is £ 0.005. Thus in such cases we will consider the possible arror only.

SAQ 2 - :
- The measurement of the length of a table y:elds the followmg data.

= 135.0cm f, = 1365¢m I'= 1340cm I, = 1345¢m

Calculate (a) the average value and (b) precision index. How does the precision index
compare with possible error 7 How will you express the final result ?

' 24 PROPAGATION OF ERROR

We have so far learnt how to determine the error in the measurement of a quantity which ¢an
be measured directly. In actual practice, however, we determine values of a quantity from the
measurernents of two or more independent quantities. In such cases the error in the value of
the quantity to be determined will depend on the errors in other independent quantities. In
other words the error will *propagate’. The actual analysis of propagation of error is beyond
the scope of this course. We shall, therefore, quole some rules which can beé used in our
laboratory. .

24.1 Error Propagation in Addition and Subtraction
What will be the error, in quantity £ defined by Ecx+y+z ?
Let us take the differential of this quantity, we get d€ = dx + dy + dz

if the emror is small compared to the measurement we can replace the différential by ‘delta” to
gel .

OF =8x + &y + B2

which is simply the sum of errors in x, y and z. It. therefore, is the maximum error in E.
Statistical analysis shows ihat a belter approximation is

o6 = \/(8.:)2 + (8?2 + (6:2)2

We only consider the magnitude of errors in the above calculation. Therefore, the emor in the
quantity (x + y — z) will also be the same,

SOLVED EXAMPLES: Let the measured value of two lengihs be
L, +0L,
L,+ 8L,

1746 £ 0.010 m
1.507 1 0.010 m

The error in the quantity

L =L+L,willbe L= V(0.010 m)* + (0.010 m)Z = 0014 m
24.2 Error Pmpagation in Multiplication and Division

Ifaquantity E=AxB and the result of measurement of A & B is A + 84 and B + SB then
what will be the error EE in £ ? Here if we take differentials we get

dE—-Bd.A+AdB
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Dividing by E = AB and changing differentials by ‘deltas’ we get - ;
E_&A &8 B .
E-A'H . H

: : 3 58

SAQ 3: Take logarithm of E = AB and then differentiate to show that EE = SIA + g

which is generally known as the logarithmic error.

The statistical Mysis, however, gives the following better result of the fractional error in

-

RULE I: When independent measurements are multiplied or divided the fractional error in
the result is the square root of the sum of squares of fractional errors in individual quantities.

SOLVED EXAMPLE: In an experiment we calculate velocity from measurement of

distance and time, If the distance is § £ &5 =0.63 £ 0.02m . i
5
s - 0.03

and time is T2 8T =171 £0.10 . )
5T
T = 0.06

Then the velocity (V)

b

=2 _ 3
V—T = (1.368 ms™

'_I'he. fractional error in V is given by

AT e

&Y

=T T mTT T

0.368 ms~! x 0.07 = .0.02 ms!
Thus the final result becomes

V18V = 0.37 £0.02 ms™!

243 Error Propagatimi in Other Mathematical Operations

Errors in exponential quantity: Let us first consider a special case where a quantity
appears with an exponent. For example § = AZ = A x A. Here the two numbers muliiplied
together are identical and hence not independent. The rule mentioned above does not
apply. Detailed analysis shows that logarithmic error gives a good estimate. Taking the
logarithm of atove equation we get

logS§=21cg A
on differentiation and changing differentials to ‘deltas’ we get
&8 SA

_=2_

b A

Therefore, the fractional error in A2 would be twice the emor in A, the fractional error in A?

will be 3 times the fractional error in A, and the fractional error in ‘\!Iwill be 172 the
fractional error in A.




RULE: The fractional error in the quantity A" is given by » times the fractional error in A.

EXAMPLE: Suppose two measurements of mass are M, t8M,=0743 % 0.005 kg and
M, + &M, = 0.384 1 0.005 kg. Determine the value of M =2M, + 5M, along with 5M.

What will be the error in (M, + M,)? and (M, — M.,
Hint : The error in 2M, is 2 5M, and in 5M, is 5 5M,.

Thus error in 2M, + 5Mj is 5M = V (25M,)? + (SSM,2.

Error in (M, + M2 = 2 (5M,)2 + (3M,)? ; emor in (M,—M,)> =3V (5M,? + (5M,)°

Similarly in other mathematical operations and deducing results from graphs (about this you
will learn in the next subsection) the following rule is used.

RULE: The error in the resuit is found by determining how much change occurs in the’
result when the maximum error occurs in the data.

EXAMPLE: Let us compute the error in the sine of 30" £ 0.5", Using the logarithmic
tables we get

sin 30" = 0.5, sin 30.5° = 0.508
sin 29.5° = 0.492

The difference between sin 30° and sin 30.5° is 0.008, and the difference berween sin 30" and
sin 29.5" is also 0.008. Thus the error in sin 30° would be + 0.008.

SAQ 4
Determine the error in sine of 907, when the erfor in the angle is 0.5". Compare your resuit
with that of the example above.

............................................................................................................................

2.4.4 Error Propagation in Graphing

Very often we can better visualise the functional relationship between two physical
quantities by plotting a graph between them. This is another usefel way of handling
experimental data because the values of some quantities can be obtained from the slope.
While plotting a graph we will use the following guidelines:.

1. A bricf title may be given at the top.

2. Label the axes with the names of the bhysical quantities being presented along with
units. It is customary to plot the independent variable (the quantity which is varied
during the experiment at one’s will) on the x-axis and the dependent variable, on the y-
axis (the dependent variable is Lthe one that varies as a result of change in the independent
variable). We would write the name of the variable represented on each axis along with
units in which they are measured.

3. We should choose the range of the scales on the axis so that the points are snitably
spread out on the graph paper and not cramped inte one comer. Check forthe minimum
and maximum values of the data that has to be plotted. We may then round off these
two numbers to skightly less than the minimum and a slightly more than the
maximum. Their difference may be divided by the number of divisions on the graph
paper. For example, if we are to plot 5.2 and 17.7 it would be convenient 10 allow the
scale 1o Tun from 5 to 20 rather than from 0 1o 8.

Each set of data points is indicated by a point within a circle on the graph paper and the error
is shown by using bars above and below this point as shown in Fig. 2. The graphed data
show that velocity V is the linear function of time T. We recall Lhat the general equation of
a straight line is y = mx + ¢ where m is the slope of line and c the vertical intercept in the
value of y when x = 0. From the graph we can thus write V = aT + V. By comparing the
above equation we can conclude that the slope of the graph gives Lhe acceleration and the
intercept gives the velocity V, at 7 = 0. From the graph V= 0.32 ms~.. To determine the
slope we consider two points on the straight line which are well separated. Then
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Fig. 7 : Graph between velodty and time

¥ _ 2.35-0.40{ms)

= - = 2
a —Slopc-T_ = 10.0 - 0.5 (g) = 0.20ms-

In the above example, we have plotied the variable ¥ which is a linear functionof Tin a
linear graph paper. In some experiments. we may get data where the relationship between the
megsured variables is not linear, Suppose a man gets salary of Rs, 200 on the st of every
month and he decides that each day he will spend half the money he has with him on that
day. Then the amount of money, which the man will have over a period of first seven days
of any month, will be given as in the Table 2,

Table 2

Day of say mooth Mopey keft with the man

Rs. P

5
g

312

228 88 RE
b

1.56

Let us plot these data on a linear graph paper. The graph will be of type shown in Fig. 3.
Look at the graph carefully. You will find that seven of the ten experimental points are
clustered together near the botom right-hand comer of the graph. The shape of the curve we
have drawn also involves & bit of guess work. Therefore, we have to find some method so
that these data can be plotted in a better way.
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Fig. 1: Grilp!hl_dllhrep‘ruentalion of Table 2 .
Try to recollect what you used to do in school when you used to come across data like this
which range over a few orders of magnitude or having big gaps between the points. We will
tell you, in such cases you used lo take the logarithm of the data and then plot those data in
a linear graph paper. When you did this, you must have found that the result was a straight
line. So, let us take the logarithm of the data of Table 2 and tabulate them as shown in
Table 3.

Tabie 3

Day of any month . log M

2301
2,000
1.69%
1.397
1.097
0.796

283 ELEY R

0.4%4

g

0.193
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Now plot log M against days as shown in Fig. 4. You obtain a graph in which points are
more clearly spaced evenly and hence you can more easily draw a straight line l.hrough the

points. _ . b TANES |
A A
HEHE SRR i1
H H E3ykaat 'AI ""—l

T
ay ]
HEETE
it tlessy
i
. fEE:—'.-'
FREMALTASNALE 3 LA} 3E |
e Tasyicadansl o eirdisas
52 T I EY SR
[ et B faa e e 1
: 4 75| ) e N P
i iR e -'
ot e b il '
siiiiats il M el i . R ke 2
HIHH B :'ll A F] WYY S e
1 X |I B DA AT S-F R B -t
£33 Flay 5 : IS R
LT A R e
L—L"[}'{'r ; ‘-TI'-_— ; :
i Ei";l . ; T '
S R N
i Y S N DO L S
t : :
i H
| J
u 2 L Pl e
e
.oh Lol :
CIY JR DAY Sy SO PR M
e it Sl
; :
; : (I Y
H I RS
L h‘_-l : :
7 iy | !
S [ ' ; i
T ...... ——li— b
: ! I
. i

i
[N UL U PR P
T
]
|
I

Pig. 4 : Graphical representation of Table 3

You might have realised that working oul the log values for each data is tedious and it also
introduces another step, which may introduce error between the data and the graph. Therefore
to plot such data we use a graph paper called semi-logarithmic or log-linear graph paper
where-the lines on one axis have been drawn in a logarithmic fashion. On a semi- -log paper
(see the graph paper of Fig. 5) the horizontal scale is an ordinary one. in which the large
divisions are divided into tenths and each division has the same size. The vertical scale is a
logarithmic scale (it autematically takes logarithms of data plotted), in which each power of
ten or decade (also called frequency) corresponds Lo the same length of scale. In each decade,
tne divisions becomes progressively compressed towards the upper end. Now in the semi-log
graph paper we plot the data of Table 1. We obtain a straight line as shown in Fig. 5. If you
compare Figs. 4 and 5 you will see that the points plotted on semi-log paper are distributed
in just the same way as Lhe logarithms of the corresponding datum would be distrjbuted on a
linear graph paper. A question may strike in your mind that how to calculate the siope of the
straight line of Fig. 5 7 Also what is the equation of the straight line ? Let log M be

represented by y and day by 1 then we have a straight line graph of y against . Let the
equation be represented as

y=b+kt 1)

1= T

) = ———
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Fig. 5: Representation of Table 3 graphically on a semi-log paper

Where b is the intercept of the line on the y-axis and & the slope of the line. We can find the
values of b and & from the graph as follows. When ¢ =0, M = 200 then logM = log 200 =
2=y

230=5+0 or b=230
y = 230+ k&
when r=7thday. M = 1.56 and log M =log 1.56 =0.193 = y
Putting these values in Eq(1) we get
0.193 =230 + 7%
“The slope & = — %1 —_03
and the equation of the straight line is
y=23-03 @

From the graph of Fig. 5 or in other words from the Eq. (2) can you find the equation of the
curve plotted in Fig. 3

Errer Amalysis
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Let the value of M at ¢ = 0 be denoted as M), then Eq. (2) becomes
" logM=log My + Kt
of log M -logM, = kt

or M = 200% 1003 ' ' )

This is the equation of curve plotted in Fig. 3. It tells us that the money is decreasing
logarithmically (also called exponentially) with each day.

In science you will come across many logarithmic or exponential relations of the form of
Eq. (3). In‘such cases it would be convenient to plot the data on semi-logarithmic graph
paper because the graph will be a straight line if the relationship is logarithmic. Also the
slope of the line (which may give you the value of any physical constant) can be reed simply
and directly from the graph.

" Sometimes we find that we wish to plot a graph where both variables range over several

powers of ten. For example, you know that according to Keplar’s law, the semi-major axis
of the orbit of a planet (R) is related to its period (time for one revolution around the sun) T
by the following power-law relation:

R} = &T? )]
where k is another constant.

If you consider the experimental data which show how the quantity 7 depends on quantity R
you will observe that R varies by two orders of magnitude and T varies by three orders of
magpitude. In other words the experimental data follows the Eq. (4). For 2 moment, suppose
you do not know the exact relationship between the variables T and R. Then you can
suppose that

"R = kT 2
where n is another constant.

Using the conventional methed to find the velue of n, you will take logarithm of Eq. (5) as
follows:

logR=logk + nlogT

Now you will plot log R vs. log T on a linear graph paper. The slope of straight line
obtained will give the value of exponent n. But again, as mentioned above, taking logarithm
of each experimental date is rather tedious so it would be convenient to plot both the
variables T and R on a logarithmic scale where he lines on both the axes are drawn in a
logarithmic fashion. A log-log graph is shown in Fig. 6. The points lie upon a straight line.
The slope of the straight line will give the exponent (i) of the power-law relatxon and hence
the exact relationship between R and T will be found out.

To determine the error in the value of the slope of the straight line drawn in any graph paper
(linear or semi-log or log-log) we draw two dashed lines representing the greatest and least
possible slopes which reasonably fit the data as shown in Fig. 2. Thus the error in the slope
is defined as

maximum slope — minimum slope

emror in slope =

2
Thus from the graph we get the error in the slope as
- -2
8a = 0.23 %19 oS - 002ms-2

# Thus the experimental value of acceleration from the graph is & + 8a = 0.20 + 0.02 ms2
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_ slope line) /2
8V, = (0.45-0.17)/2 ms! =0.14 ms !
Thus the velocity V, =0.32 +0.14 ms™"
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It appears that most of our students are under the impression that the value of & is equal to
22/7 exactly. Unfortunately many book writers also have contributed 1o perpetuate and
establish this false idea by setting many numerical problems with data so cooked up that
using % = 22/7, the factor 7 always happily cancels out and the simplification becomes very
easy. However, in the real world the values of actual physical quantities are not such as to
facilitate cancellation with 7. Also, we may as well acknowledge that the value of % cannot
be expressed exactly in terms of any whole number. The value of ft = 22/7 is one of the
many approximations that can be used. In fact, a better approximation is 355/113 =
3.1415928. Compare this with the calculator value 7 = 3.141592654 and 22/7 = 3.14286. It
may be noted that the value of 22/7 deviates from the more accurate value from the calculator
in the third decimal place; if we round it off to S-digit accuracy, r = 3.1415 {(from calculator),
whereas the approximations 355/113 = 3.1416 and 22/7 = 3.1429. For practical purposes at

undergraduate level, the most convenient and comparatively more accurate thing to do wiil be
10 remember

n=3.142;log x=04972;
n?=92870; log a2 =0 .9943

Wherever the value of % is 1o be used in our calculations, the above values may prove
fruitful.

26 ANSWERS

SAQ 1
1(a)
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SAQ 2
@ 135.0cm

® 0.375cm

Possible error, which is  0.05, is much less than the precision index. Final result is

135.0 £ 0.375 cm.

. SAQ 3

E=AB _
Taking logarithm on both sides
logE<logA+log B
Differentiating partially
& &4 6B

= — 4+ —

E- A7 B

SAQ 4
() sin 90" = 1.000, sin 90.5" = cos 0.5 = 1.000

. 5in 89.5° = 1.000

In this case error in sin 90" is zero.

s [ R T T TR T

<7 TR =T

TR TS

P e ey

L R e T e i

B i T L L NI




times and encircle the distribution of points on the paper. To what degres is the velocity
always the same 7 Mark the point which is most reproducible.

P;
Fig. 3.5 : Vectorial representation of a 2-D Collision

Now put ball B; on support §. Adjust its position so that the line joining the centres of

By and B, is a little inclined to the initial line of motion of B,. This ensures that the
collision is two dimensionat. (A head-on collision is essentially one dimensional.) For such
a collision, the distance between the edge C and the centre of the target ball may be kept at
about 2.5 radii. Mark the vertical projections Oy and O, of balls B, and B,. Now release B,

from the same positiun X. The balls B, and 8, collide and fal} on the paper at Pjand P;.You
must ensure that 8, has a smooth rajectory afier the collision and its motion is not
hampered due 10 the support holding B,. Now remove the carbon paper and draw vectors
0,P§ , OP}, and O,P, as shown iii Fig. 3.5. Then O,P) and O, P, are measures of

velocities of 8, and B, after the collision. whereas 0.P‘.’is a measure of velocity of B,
before collision. Since the masses of the balls are equal, the velocity vectors represent the
momenla of the balls,

To know the total momentum of colliding balls after the collision, we should add vectors

OIP: and OzP; . We know that translation of a vector parallel to itself does not alter it

So you may choose O as the reference point and gencrate the vector diagram for the
momenta following the procedure outlined below:

Shift OIP: parallel to itself so that OA” || O, P . Similarly, shift 02P5 so that

A’B’ It O;P5 as shown in Fig. 3.6. You should also ensure that the tail of A’B’ should fal!

on the head of OA’. Next draw OB® panallel to 01"2 The triangle law of vectors tells us

that OB’ denotes the vector sum of QA’ and A” B’. According to the principle of
conservation of momentum, OB’ and OB* should coincide. Comment on your findings on

the relationship between OB’ and OB® as regards its magnitude and the direction. Compute
the error, if any.

AI

Fig. 3.6 : Computation of resullani vector using the triangle faw

Repeat the above procedure by releasing B, from other positions. Take at least three
observations by varying the position X . Record your findings in Observations Table 3.2,

A Stady of Emergy asd
Momentnm Conservation
Priaciples

A projectile motion is characterised
by (i} a constant horizontal velocity
component, and (ii) a constant
downward acceleration, which is the
same as that of a freely falling body.
The horizontal distance travelled by a
projectile is proportional to the
horizontal velocity eomponent.

. When rwo badies moving along the

same Line but in opposite directions
collide, the collision is said to be
head-on. For a head-on collision the
distance betwean the edge of the
channel and centre of stationary ball
(B2) should be three radii.
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Soms Experimeats on ' . Observation Table 3.2 '+ Conservation of Linear Momentum

Osclllations and Waves
: , Mass of ball 8y = B

‘Massof tall By = evverrerenes

S.No. | Position on | Before ' After Collision Difference between | Comments
the channel | Collision . OB and OB'

Meamre ol | Meamme of | Mezsue | Measure of

of Ball § ofBall By | entumof | mamentum

(OB") (0A") ball By (o®")
(A'B)
(em) {em) - {cm) {cm)

Repeat the experiment using batls of unequal mass but of the same size. Which one should
you use as incident bal! ? The lighter ball should be the target. Make your own cbservation
table. Is momentum conserved 7 What do you conclude about the principle of conservation
of moementum 7 ’
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(6 < 10°). That s, the motion is simple harmonic. This may be ensured by using a
protractor. (If a protracter is not available, you cari make your own on a cardboard. It may be
fixed by using drawing pins on the edge of the table on which you are working sb that 0°
line coincides with the equilibrium position of the pendulum.)- Otherwise, the motion will
not be simple harmonic. Note the least count of the stop waich and record it in Observation
Table 1.1. Now set the bob in motion by displacing it slightly aside. To count the number
of oscillations you can choose your reference point in two ways, as shown in Fig. 1.2. We
prefer the second option (Fig. 1.2b) because in this case the reference point does not change.

A

(a) (b)
ona cornplete oscillation one compieta oscillation
C—=B-C A—-B—+A—-C—A

Fig. 1.2 : Two differenti wlifs of counting the number of oscliinilons

Begin your counting through the equilibrium position of the bob. It is impertant to
simultaneously start the stop watch. Usually, there is time lag between the starting/stopping
the watch and the oscillation count. This is called reaction time and is, on an average, 0.3s.
This can introduce some error in the value of time period (7). An important point to consider
here is to know the degree of accuracy that is necessary. Another point is to measure a time
interval in which the amplitude of swing does not diminish significantly. To see this you
can note time for 1, 10, 20, 30. 50, 70, 100 oscillations and record your readings in
Observation Table 1.1. Calcuilate the period of oscillation. To decide on the optimum
rumber, abserve the variation in the value of 7. When the difference between two
successive values of T is less than 0.1 per cent, it is acceptable, We expect the optimum
number of oscillations to be §0.

Obsérvation Table 1.I : Delermination of optimum number af oscillations

Least count of stop watch = ....caeecee. 5
S.No. No. of oscillation Time T
(=) (s)
U] (ii} (iii) (rezan)

h 1 1
2 10
i 0
4. 30
S, 50
[ 70
7. 100

To investigife the' Dépendénce
of the Period of a Peadalom
on Length,, Amplitude and
Mass

f two students are working together,
then one can count while the other
keeps time. The *commter’, should
begin countdown two, coe, “go”,
one, two ... and w0 on. Thia gives the
timekeeper A waming shout the *Go”
signal The end of coonting may be
indicatnd by saying ‘sop’.

The reaction time is the ime interval
between the input stimulus and ils
ESpONdE,

An exdinary swop watch has a least
count of 0.1 5. 50 whenever we have
10 measure lime of the order of one
second of SO, We 1% B Ine aCCurate
automatic switching device, such as
digital timer.
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You have now decided on the number of oscillations (N) to be counted. Measure the diameter
of the bob using vernier callipers. Record your readings in Observation Table 1.2 (a). Take
observations in different directions. Calculate the radius, The length of the string plus the
radius of the bob defines the length of the pendulum.

-Note the time for N complete oscillations. Repeat this observation at least three times.

Measure the length of the string from the point of suspension to the point of attachment to
the bob using a metre scale. Enter your data in Observation Table 1.2(b).

Change the length of the pendulum by about 25cm and repeat the experiment, keeping the

- amplitude of swing constant. That is, you should not change the position of the reference
mark at the maximurmn displacement. Record the length of the pendulum and the time for the -

same number of complete oscillations, What o you observe in respect of the lime period as
length changes ?
Repeat the procedure at least five times by varying the length of the string. What do yo

conclude 7 . .
Oba-g'l-ntlon Table 1.2

" Least count of the stop watch S s
Leam count of metre scale L S TTPRNURR .
" Lesst count of vemier callipers T cm

No. of complete cscillations (¥)
0. " Dlameter of bob

S. No. . Diameter Reding
(cm) . (em)
1,
2
i
Mean redius = ............ €.

b.. Effect of lengih on the period of the simple pendulum

S.No. Length of Timne for & Complete Time period
Pendutum Osciltarions (s) (8)
(m) :
0] (i} (i) {Mean)

r

2.

3. -

4,

LR
Conclusion: The period of the pendulum . as length increases,

To-investigate the exact relation between the time period and Lhe length of the pendulum,
you find out whether T increases or decreases as length increases. (An increase in time period
suggests thal T is directly proportional to the length and vice versa.) A variation in T
suggests its connection with the length of the pendutum. That'is, T = /. From your
observations you can't directly quantify this proportionality. To know the exact dependence
of Tonli, we wrile

T =ADl (1.1)
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where A is constant of proportionality and n is some constant. To investigate the Dependencs
of the Perlod of u Pendulum

On taking logarithm to the base ¢, we get ' on Length, Amplitude and
mT=nlni+InA (1.13) Muss
This is the equation of a straight line, The equation of 2

. smight lincisy=mx+¢
Now you may plot In T versus In /. The slope of the curve will give you the value of .
Theory predicts that nr should be 1/,. Compare the two values and discuss reasons for the
difference, if any.

Thus we can write
I . . )
T=AI. {2 . (1.2)
1 1
You can also arrive at this relation by plotting 7 "2_ vo [T vsi ‘(2, T2 vs! and so on till
you get a straight line.

Theoretically, the slope of the straight line obtained on plotting 72 vs [ should be 4n?/g.
Therefore, by computing the slope from your graph, you can easily calculale acceleration due
to gravity. Compare your value of g with the standard value at your place and compute the
percentage error in your result.

54Q 1
i) In your observations, you are required to record tlime with respect to the reii. cove mas
at the equilibrium position of the bob. Why is it necessary ?

ii) Why is it necessary to add the radius of the bob to the length of the string 10 know the
iength of the pendulum ?

iii) Can we use a metre scale or a micrometer screw to measure the radius of the bob?
Justily your answer.

iv) Read time periods from your graph for lengths of 100cm and 125¢m. Caleulate the ratio
of time periods.

v) Relate g to the v — intercept in InT vs [ graph.

.....................................................................................................................

1.2.2  Dependence of the Period on the Amplitude of Swing N

To study the effect of amplitude on the period of the pendulum, we have to keep the length
of the string and the mass of the bob constant. You may work with a length of about 1.5 m
and in the beginning take angular amplitude in the range 2-10°. This ensures SHM. Fix a 29

TEIE =SS

AT R

A T




Some Experiments on
Osclllations and Waves

30

Fig. 1.3: Dependence of the period on amplliude of swing

protractor, as shown in Fig. 1.3. Note time for N oscillations and record it in Observation, .
Table 1.3. Compute the period of oscillation and compare your observations. Are they
different ? Next take larger angular amplitudes of say, 30°, 40°, 50° and 60* and note the time
period in each case. Is it different from that in the small angle approximation ? If so,
quantify the difference by calculating the relative change. What do you infer about the
motion of the perdulum ?

Observation Table 1.3 : Variation of time period with angular amplitude

No. of complete oscillations counted each time {N) = .....

Length of the pendulum = .........
S.No. Anguler Amplirgde Time for ¥ Time peziod -
{degree) Oscillations (s) {s)
0} (i) (iii) (Mean)
1.
2.
3
4.
5.
6.
Conclusion: I.  For small anguler ampliwudes the period of the simple pendulum is -oeeveceeeceenenee s

2. For large angular amplitude, the motion of the pendufum is

L —— e




1.2.3  Effect of Mass of the Bob on the Period

To determine whether or not the period of pendulum depends upon the mass of the bob, we
take three bobs of different materials. These should be identical (in shape and size) so that
(1) the air-drag experienced by every bob is the same and (ji) the length of the pendulum is
same in all cases. Can you suggest any altenative armangement to study this effect ? I it
possible 1o work with a plastic table tennis ball 7 Yes, we can. Different amount of sand
may be poured in the ball to vary its mass. Comment on your observations. Note that we
have to ensure constant length of pendulum and the amplitude of swing.

Note the time for 30 complete oscillations. Repeat the procedure for at least two other
bobs of sane size but different materials. Record your readings in Observation Table 1.4.
Compute the perod. Is it influenced by the rhass of the bob ? If yes, how much ? To
quantify this change, calculate the difference between the values of time period for bobs of
minimum and maximum masses. Theorelicaily, we do not expect any change in the time
period as the mass of the bob Is varied. Discuss it with your counsellor ard point out the )
possible reasons,

Observativn Tuble 1.4; Variation of time pericd wilh mass of the bob
Length of the pendulum = ............... m

No. of complete oscillations (M) = .__...........

-
S.No, Mass ol bob Time for & - Period
® Osvillations () (s)
(i) (i) (it} {Mean)

1.

L
o
: 3
e | -
i PO - —_— . L - - . oo o o oA o PR S ——
Couclusivn: The periodd of pendulum within expenmental ereor NS 18 e v 5

1.2.4  Damping and Relaxation Time

Yuu must have observed that the amplilude of oscillutions of the pendulum bob does rot
Temain constant with lime. 11 sradually becomes smaller and smaller. This is because the
pendulum loses energy duc Lo dir resistance. Such a motion is said 1o be damped. In practice,
every oscillating system experiences dinping 10 a varying exieni. We can know the amount
of dainping once relaxation time is known. So in the second part of the investigations with a
simple pendulum you are required to calculate this quantity.

A systematic way of introducing damping in case of a simple pendulum is 10 put a fan on
and let the pendulum oscillate. We assume that frictional force F is small and take it 1o be
linearly proportional 1o velocity. That is, we write Fy= yv

If x(r) is the displacement a1 any time ¢, then the motion of a damped ovscillator is described
by the equation (Ref. Eq. (3.3) of Unit 3, Block-1, Waves and Oscillations course)
a2, dx

— + 250 s x =0 (1.3
dr di ’ ‘

where @, = ‘fgll is angular frequency of undamped oscillations and & = /2m is 2 measure
of damping experienced by a bob of mass m. It has dimensions of frequency. The inverse of

this quantity, &' =% = tis called the refavation time. So values of T will be less for a
heavily damped system.
When damping is smail, the solution of Eq. (1.3} is

x{t} = a,exp{(~ft)cos (yr + ) (1.4)

To invesiigate the Dependence
of the Period of a Pendulum
on Length, Amplitude and
Mass

31
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Some Experiments on

Oscllistions and Waves where @, = \ wi-b? is the angular frequency of damped oscillations and ¢ is initial
phase. a, exp (/1) is the amplitude of oscillation in the presence of damping. (a, is
amplitude of oscillation in the absence of damping.) You can find this solution in Unit 3 of
Block-1, PHE-02 course. Nole that Eq. (1.4) represents a periodic motion but it is not
simple harmonic. After n oscillations, the amplitude will be

a,= agexp (-nly ft)

where T is the period of damped oscillations. Taking logarithms, we get

Ina, = .na\,_(i}; (15)

T

This equation shows that if we measure 2, and we ploL a graph between Irja, versus a, the
curve will be a straight line. Its intercept on the y-axis gives In a,. The slope of the siraight
line gives T4 /t. This means that the relaxation time can réadily be calculated once T,is
known for a given length of the pendulum,

To measure a,, you should fix a scale on the table. Displace the bob to one side and release it.
Note the amplitude afier 10, 20, 30, ..... oscillations and record it in Observation Table 1.5.
(In case it is not convenient to do so in one go, you can do it in steps. But in each case the
initial amplitode of swing should be kept the same,)

Observation Table 1.5: Variation of amplitude with number of osclllations

o et o — e s

Lengthofthe pendulum = ..iivcecvcciveee,. M
Peried of the pendulum = e e 8
Mass of the bob, O g
5.No. n . a, {cm) Ina,
| 10
2, 20
l 0
4 40
3
1q,
Result: The relaxaliun time of Ihe given pendulum vibraling in a viscous medium (airy s o8,
SAQ 2

Name a physical system where linear dumping modecl holds.

1.3 INVESTIGATIONS WITH A BAR PENDULUM

- We know that a simple pendulum suffers from (he drawback that some air is always dragged
by the bob. Similarly, the string may not be perfectly inextensible leading 1o non-planar
oscillatiens. These sources of error sometime lead to a variation in the value of 7. Can you

" suggest a way to overcome these problems ? The remedy lies in the use of a compound

. pendulum. A compound pendulum is a rigid body capable of oscillating freely about a
32 horizontal gxis. In the physics laboratory, it is in the form of a bar of length nearly one

e




metre and width about 2 cm. A series of circular holes 5-6 mm in diameter are drilled
symmemca.lly about its centre of gravity (C.G), i.e. along the length of the bar. (You can
make a bar pendulum by taking a metre scale and drilling equidistant holes in it, as shown in
Fig. 1.4.) The centres of any two consecutive holes are at equal distances of about 2 cm.
These holes allow the bar to be suspended from a knife-edge. Usually, two movable knife-
edges are provided with the bar pendulum. These can be fitted successively in various holes,
one on each side of C.G and at equal distances from it (Fig. [.4). '

As the bar pendulum is made to oscillate about a horizontal axis, its motion is simple
harmonic and the time peried is given by '

) K+
T =2n -:,;— (1.6)

where-/ is the distance between the point of suspension and C.G and £, is the radius of
gyration of the body about an axis passing through C.G and parallel to the axis of rotation.
The radius of gyration is defined as the distance between the axis of rotation and the point at -
which the whole mass of the body could be considered to be placed without any change in its
moment of inertia about that axis.

Eq. (1.6) is the same as Eq. (1.34) of Unit 1, Block | of PHE-02 course. We define

2
kr
I+i

and call it the length of an equiva]ént simple pendulum. Combining this result with
Eq. (1.6), we get

T = ZI(JE- . (1.7

In this part of the experimént, you are required to investigate how the period of oscillation
varies with the distance between the point of suspension and C.G of the bar pendulum. The
apparatus with which you will work is listed below.

Apparatus: Bar pendulum, stop watch, metre scale.

1.3.1  Variation of the Period with Leagth

Fix one knife-edge in the hole nearest to one end of the pendulum. The other knife-edge is
fixed in the hole nearest to the other end so that the two knife-edges are equidistant from the
C.G of the bar. Now suspend the pendulum vertically by resting it on one of the knife-edges
on a horizontal rigid support. As before, put a reference mark 10 denote the mean position of
the pendulum. Displace the bar slightly aside and let it oscillate. You should ensure free
oscillations in the vertical plane. Now you are ready to perform the experiment.

Measure the distance between the point of suspension and the C.G of the bar {centre of the
hole). This gives us /. Now measure the time for N(=30) complele oscillations. Record your
readings in Observation Table 1.6. Invert the pendulum and note the time for the same
number of oscillations. Now insert the knife-edges in the adjacent holes so that they are
symmetrical about C.(7, as before. You will note that now the length of the pendulim has
changed. So you will find that the time for V oscillations is different from the preceding
value. Repeat abservations by inserting the knife-edges in different holes. At all times, the
knife edges should be symmetrical about C.G. What happens as you approach the cenire of
the bar ? You will observe that the ime for ¥ oscillations first decreases, takes a minimum
value and then increases. As you near the C.G of the bar, it becomes very large. Can you
measure the period by puning the knife edge at the central hole? It is not possible to do so

+ because the bar will not oscillate; it just gets stuck up on one side. -

Plot a graph between T and [. You will get two curves which are symmetrical about the C.G
of the bar (Fig. 1.5). Now you draw a line parallel to the x-axis. At how many points it cuts
these curves ? The number of points should be four, say at, J.K,M and N, as shown in

To Invesiigate the Dependence
of the Period of a Pendolum
on Leagth, Amplitude and
Mass

Fig. 1.4: A bar pendulum
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Observation Table 1.6 : Variallon of time period with distance of hole from C.G.

Least count of the stop waich = -5
No. of complete oscillations
oounted each time (V) =
No. of hele Distance of the point of Time for N
from une end suspention from C.G, I Oscillations T rt
(am} s () {em s

Regult : The plot of T versus !is ........

Fig. 1.5. At all these points, the period of the pendulum is the same. Measure distances JM
and KN. How do you interpret these ? Each of these distances represents the length of an
equivalent simple pendulum, L. Using Eg. (1.7), you can compute the acceleration due to

gravity.

rt

s ¢ o+ e = ——— o —

(1) Distance from CG. «~—— G — Distance from CC. (1)

Fig. 1.5: Plo1 of time period with distance of hole from C.G.

1.3.2  The Radius of Gyration

How will you calculate the radius of gyration ? To answer this queslion, we rewrite Eq. (1.6)

as

-E

2
4nm?

2
I - &

(1.8)
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This équation suggests that if you plot 2 versus /T2, you will obtain a straight line, which
on extrapolation will meet the y-axis. The intercept on thé y-axis gives kf. How do you
interpret the slope of the curve ? It is g/4n2. Hence, you can calculate the value of g also
from this graph. Compare this value with that obtained using a simple pendulum. Which
one is more accurate ? ’

Result: i) - The radius of gyration of the bar pendulum about an axis passing through C.G
and parallel to the axis of romtion is ......... wers M

ii) The acceleration due 1o gravity is ............... ms —2

SAQ 3 : _
i}  Why is it necessary to keep the knife-edges symmetrically about C.G ?

To imvestigate the Dtpnde:ice

of the Period of a Pendulum

on Length, Amplitode and
Mans '
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"EXPERIMENT 2 .= N

OSCILLATIONS OF A SPRING-MASS

SYSTEM AND A TORSIONAL PENDULUM

Structure
2.1 Inmoduction .
) ! (I’.p. ,im .
2.2 Deétermination of Spring Constant Using a Spring-Mass System
Seatic Method . ’
~ Dynamicat Method

2.3 Determination of Torsional Rigidity of a Wire using a Torsional Pendulum

2.1 ' INTRODUCTION

_ " 'We know that spiral spﬁngs find various uses. I a transistor set and a pockel calculator,

springs hold dry cells in proper position. Springs are used as shock absorbers in automobiles
and railway wagons. You may have also used yourself a bull-worker or seen body-builders

using it. Do you know that it essentially consists of springs ? In ammeters, voltmeters and a
wristwatch, springs control oscillations of the system. In all these cases, the basic difference

* in the springs being used is in their spring constants. So to decide upon the type of a spring

for a particular purpose, we must know its spring constant. In a physics laboritory we can

determine the value of spring constant in two different ways:

i} by knowing extension in the spring for a given load (static methed), and

ii) by determining the period of harmonic oscillations of the spring-mass system
(dynamical method).

We come across many instruments in the physics laboratory which involve torsional
oscillations. The most familiar of these are the torsional pendulum (used to calculate
modulus of rigidity), inertia table (used to delermine moment of inertia) and the moving coil
galvanometer (used to measure charge and current). When wire in such a torsional system is
twisted, due to elasticity a restoring torque is set up within the wire (fibre). It tends to

" oppose twisting of the wire. The restoring couple per unit radian is known as torsional

rigidity or torsional constant. While choosing the suspension wire (fibre) for a specific
purpose we should have a prior knowledge of torsional rigidity. In this experiment you will
learn to measure torsienal rigidity by a simple experiment.

Objectives

After doing experiments with a spring-mass system and a torsional oscillator, you will be
able o

e acquire skills of measuring smalt thickness with precision using a micrometer screw

e measure extension of the spring for a given load and calculate the spring constant (k) for

the given spring (static method)
e measure the period of escillation of a spring-mass system for different loads and
calculate & (dynamical method)

compare the accuracies of static and dynamical methods
compute torsional rigidity (k) and modulus of rigidity of the given wire
predict the material of the wire.
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22 DETERMINATION OF SPRING CONSTANT -
USING A SPRING-MASS SYSTEM :

In the preceding experiment you investigated the question: What determines the value of 7
for a simple and a bar pendutum ? You may now ask : Can we make similar investigations

- for a spring-mass system ? It rakes sense and you can do 5o along lines outlined in
Experiment 1. But now we intend to calculate the spring constant of a spring in two
different ways : (i) by knowing extension for a given load, and (ii) by measuring the period
of harmonic oscillations of a spring-mass system. The apparatus required for this purpose is
listed below :

Apparatus

A spifal spring, slotted weights in multiples of 100g, stop watch, a laboratory stand
and a 50 cm scale,

Spring

AR A RN AR

Pointer

M AALIASRA BARIBE L

Weight

Fig. 21: A Spring-mase system

Suspendamgandamtrescalcmlhesmxds:debysnde as shown in Fig. 2,1_Fix a
sharp-uppedpdihtér'(needle)anhelowermdofmcqrmg.mlmyoudonotgetaneedle
youeannmkeapomterofcm‘dbomﬂbycumug:tmtheshapeofanmscclesfeqmla:eml
triangle. Then you have to attach nshaselomestmghteud of the spring so that its vertex
moves in contact with the scale. This helps in minimising pamllnxmoralsn)Suspmda
hanger {(which itself is a known weight equal 10 any otheér slonted weight) in the hook of the
spring. (Alternatively, you can tie a pan to the lower end of the spring and put weights.)
Normpally, it is ad\'lsablclopulanlmnal load onl:hehookasn will lakecareofmekmks

position really does not matter. Stretch the spnng by pulling the hanger downwards thmugh

a small distance and then let it go. The spring-mass system will execute vertical oscillations.

Ensure that tife pointer does not stick anywhere and the oscillations are free. Now your
apparatus is ready and you can start your experiment. But before you do this, do spend a few
minutes making qualitative observations as to how extension/period changes when the mass
is changed within elastic limits. This limit will be different for different springs. So you
better consult your counsellor before putting a load on the spring.

Oscliiations of a Spring-Mam

System and & Torsiomsl .

Peadulom

When & body is subjected w an

munnlfuu,ummmlm:nm )

shape and size. Asq.pl:dfumu
runovui.nladalnmm
mgmllwn.ﬁmThnm
is known as elagicity. The
magnitude of xpptied force up 1o

which & specimen retainy its elastic

mdefnmﬂnehﬂ!c!u_ml
Beyond the elastic limit the spplied
force produces plastic (permmcut)
recover jts original shape and size
cven if the spplied foree is
withdrawn,

S—g

T



¢ Some Experiments on

'

;  Osclihtions and Waves

2.2.1  Static Method

Load the spring by putting a weight. Due to elasticity, a restoring force is set up in the
spring. It tends to oppose the applied force and bring the system back to its original state. If
extension is small cornpared to the original length of the spring, the magnitude of restoring
force exerted by the stretched $pring on the mass is given by

Fe_kx .10

where x is extension in the spring and k is spring consiant,

From Eq. (2.1) it is clear that once you know extension as a function of load, k can easily be
calculated, It is with this purpose that we attach a pointer to the lower end of the spring.
This method of determining & is knnwn as siatic method.

Note the new equilibrium position of the pointer on the scale and regard it as initial
observation. Record your reading in Observation Table 2.1. Now increase the load in steps
by adding equal weights each time. For each load, record the position of the pointer. Before
taking a reading, you should wait for some time $o that the pointer comes to rest. Take at
least six observations. :

Observation Table 2.1: Measorement of extension of the spring: Static Method

Leastcountof metrescale = ..........em.
5.No. Load on the Reading of pointer on the metre scale
' Epring (cm)
®)
Lited Load Men

. ing I .
1.
2.
3.
4.
5.
6.

To ensure that you are working within the permissible elastic limit, you may record the
position of the pointer by unloading the spring in steps. Tabulate your observations. Do
these readings differ from those recorded while loading the spring ? If observations for a
given weight are nearly the same, both while loading and unloading, you can be sure that
you are certainly working within the elastic limit. Calculate the mean exiension for a given

load. ¥

B ®
L]

- I .
®!

I

L ® t
:

N ® :
| e ;

0‘ L L - 1 1 . > X

] . Load
Fig. 2.2 : Best fit curve through observed poinis .
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Now you should plot a graph between load and the corresponding exiension. Conventionally, ~Oscillations of 2 Spriag-Mass

we plot the independent variable along x-axis and the dependent variable along y-axis. Which System and Ptm

physical quantity witl you plot for this experiment along x-axis 7 Draw the best fit throngh
observed points as shown in Fig. 2.2. (For a good steel spring, we expect the graph to be
linear.) Does your straight line pass through the origin ? The inverse of the slope of the
straight line is a measure of the spring constant. To calculate the slope, you should use two
widely separated points on the straight ling. Use g = 9.8 ms~2 and express your result in SI

‘units.

Error Analysis

Find the change in slope of the straight line cansed by drawing lines of maximum and
minimum slopes. This gives maximum emor in the slope. Using g = 9.8 ms~2, calculate the
error in &£ in S! units.

Conclusion : The spring constamt of the given spring = + Nm~!

SAQ 1
i) Name the factor(s) on which k depends.

ii} From your graph, note extension for a load of 2N,

2.2.2 - Dynamical Method

In the preceding section you leamt a method of measuring extension of spring as a function
of load. This information was used to compute the spring constant. You may now ask: Is
there some other method also for determining &7 Yes, there is. We can use thé so-called
dynamical method. 11 is based on observing the period of harmonic oscillations of the
spring-mass system.

On seging a spring-mass system osciilaling, you may like to know: Is this motion different
from that of a simple pendulum ? Though these two systems are physically different, both
execute SHM, provided the extension is not large. Another gueslion that comes 1o our mind
immediately is: Does gravity affect the frequency of oscillations ? Gravity has no effect on
the frequency of oscillations. The period of oscillation is given by

T=2n\mik (2'2)

This relation shows that we can compute k by knowing the period of oscillations for a
given mass. In case you get 10 know the standard value of & (from your counsellor or a
boak) for the material of spring, you can judge whelher the dynamical method is more
accurate than the static method or not. So you will be required to measure the period of
simple. harmonic oscillations. You must ensure that oscillations of the system hanging
vertically are longitudinal. That is, there should not be any lateral oscillations. Otherwme,
the molion will not be simple harmonic,

Put 2 load on the hanger and. take the position of the pointer on the scale as the equilibrium
position. Now stretch the spring by pulling the hanger downward and then release it. For
small displacement, the system will execute SHM.

Note the least count of the stop watch and record it in Observation Table 2.2, Now set Lhe
spring-mass system into oscillations. Allow the first few oscillations to pass so that there is
no anharmonic component. Begin your counting through the equilibrium position and
simultaneously start the stop watch. Note the time for N, say 30 complete oscillations. To
minimise error in 7, it is desirable to take 50 or more oscillations. However you must
ensure that the amplitude of swing does not decay significantly. Draw your Observation
Table and enter your readings. Add more weights in the hanger and repeal the procedure at
least five times. Tabulate your observations. How does the time period change ?

As before, the procedure may be repeated by decreasing the load in steps. Calculate the mean
period for each load.

Plo1 T2 versus m. Which variable will you plot along x-axis and why ? Draw the best
possible straight line as shown in Fig. 2.3, Does it pass through the origin ? From the

39
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Some Experimeats on slope of the straight line, you can easily compute &. Check if this value agrees with that

Oucillations agd Warves obtained by the static method. The two values should be same or nearly equal.
‘ Observation Table 2.2: Messurement of Time Perlod: Dynamical Method
. Leagt count of stop watch T s
No. of compleie oscillations counted each time (M) ..........
S.No.

X

1.

2

3.

4,

5.

6.

Resuit: The mpring constant of 1 given gring = ............. t Nm~!

As before, you can compute eiror in k by drawing lines of maximum and minimum slopes.
What is the relative change in the value of & ? '

—r g-rmrks)

Fig. 2.3 : Expecied plod of T3 versus M

SAQ 2
i) Extrapolaie the graph beiween T2 and s backward till it meets the m-axis. Interprel the

intercept on m-axis.

ii} Use your graph to determine T for a load of 3N.




Ouclitations of a Spring-Mass

23 DETERMINATION OF TORSIONAL RIGIDITY Sreiem a3 Torsions
OF A WIRE USING A TORSIONAL PENDULUM Pendutum

As mentioned before, you are required to use a torsional pcﬁdulum shown in Fig. 2.4 to
measure torsional rigidity. All necessary apparatus required for this purpose is listed below:

_ Apparatus _ ' . o

r .
Torsienal pendulum (imertia table), stop watch; rigid circular cylinder, vernier callipers,
micrometer screw, spirit level, physical balance and a weight box.

- {1 a torsional pendulum one end of a long and thin metallic wire is clamped to 2 rigid
support. The other end of the wire is fixed 1o the centre of a projection coming out of the
central partion of the circular disc. Normally, this disc is made of aluminium or brass. You .
can obser've concentric circles on the upper face of the disc and a groove near the
circumderence. The concentric circles facilitate symmetrical loading. The concentric groove
helps in setting the disc horizontal by placing balancing weights. The iron table below the
disc is provided with three levelling screws.

‘- ) .

Fig. 24 : A torsional pendulom

Think of what happens when a cylindrical wire (red) is clamped at one end and the other end
Is twisled in a plane perpendicular to its length. Due to elasticity, an equal and opposite
torque is developed in the wire. The restoring torque per unit radian, k,, is given by

mard

21
when n is the modulus of rigidity and r is radius of the wire of length /. (In many text- -
books, the restoring torque per unit radian is denoted by the symbol C.) In the apparatus
given to you, if you rotate the disc in a horizontal plane (keeping the wire vertical) and then
release it, the system executes torsional oscillations in the horizonal plane. These torsional
oscillations are simple harmonic. The period of oscillations is given by

I £y
To =21 ‘\’f S (2.4)
! R

k = @3)

where [ is the moment of inertia about the axis of retation, -

If an auxiliary body of known moment of inertia / is placed on the disc such that its centre
coincides with the centre-of the disc, the period of oscillations changes. Do you know why 7 ‘ 4l
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It is because of the redistribution of mass about the axis of rotation. If we denote the period
of the system now by T, we can write

= 2n —°;’—’ 2.5)
]
Now square Eqs (2.4) and (2.5) and subtract former from the latter. This gwes an elegam
expression for torsional rigidity : '

f = ant 26
- —‘752 ] .
On combining this result with Eq. (2.3) we get an expression for the modulus of rigidity
8wl 5
T @-1HA @7

Eqs (2.6) and (2.7) show that we can readily calculate k,and nonce T, Ty, f, ! and r are
known. Let us now determine T and T To do so, you should first level the iron table by the
levelling screws. You should test this using a spirit level. Next you should adjust the
balancing weights in the groove of the disc so that the disc is horizontal. To ensure this,
you should again use a spirit level. You should also make sure that the suspension wire is
free from kinks. Now place a vertical peinter in front of the disc and just put a mark on the
disc when the latter is at rest. This denotes the equilibrium position and reference for
counting the number of oscillations. Next, rotate the disc slightly in a horizontal plane so
that the wire is twisted and then release it. The system begins to oscillate, How are these
oscillations different from those of the simple pendulum ? Let the first few, say 5,
oscillations to pass. Begin your counting through the equilibrium position and
simultaneously start the stop watch. Note the time for N (20 or 30) oscillations. Record
your readings in Observation Table 2.3. Repeat the observations at least five times.
Calculate the mean period. This gives Tj,.

Observation Table 2.3: Determination of Tg and T

Least count of stop watch = AT
No. of oscillations counted each time (V) = e
S.No. Time for N Time period
oxcillations s)
(E)]
Nocylinder With cylinder Eh T

Now place a right circular cylinder at the centre of the disc such that its axis coincides with
the axis of suspension of the wire. Do you know why is it necessary 1o place the cylinder
like this ?

Now record the time for the same N number of oscillations at least five times. Calculate the
period of oscillations. This gives us 7.

From Eq. (2.6) we note that to calculate &, we must know [ alco. From Unit 9, Block 2 of

- Elementary Mechanics Course PHE-01, you may recall that the moment of inertia of a right

circular cylinder of mass M and radius R about an axis passing through its centre is given
by
MR?
==
This shows that f can be calculated if we know M and R. The mass may be known by
weighing the cylinder in a physical balance.

T a3




- Measure its diameler using vernier callipers. Record your readings in Observation Table 2.4.
Take at least five readings. Calculate the mean value, -

Table 2.4: Radius of Cylinder

Least count of vemier callipers = ................ cm
S No. Diameter of the Cylinder (cm) Radius (cm}
L
2.
3
4.
5. L}
! 6.
| | o
Mean radius of cylinder =............. cm
Mass of right circular eylinder = ................. kg
Moment of incrtia of right circular cylinter = ................ kg m?
Resull: The wersional rigidity of the naterial of ihe given wire i5 ...... ... Nm.

Once &, is known, # may be computed if you measure the length of the wire and its radius.
To find #, use a micrometer screw. Take readings at several poir s along the length of the
wire and record these in Observation Table 2.5. By doing so you can account for any non-
uniformity in the diameter of the wire. For greater accuracy, measure the diameter of wire in
two mutually perpendicular directions. From measured value of # you should be able 10
predict the material of the wire by consulting some practical phvsics textbook.

Table 2.5 : Diameter of Wire

Least couni of micrometer screw = ......... cm.

S.No. _ Diamcier of the Wire Radius
. (cm) (o)
| AR cp Mean

1.

2.

3

4.

i 5.
Mean radius of the wire = .......... m,
Lengih of the wire = e M,

Compute log error following the procedure outlined in Unit 2 on error analysis. Do your
results differ from standard vaiues of & and # within these error limits only? If not, then you
. Should discuss the reasons of deviation with your counsellor.

Result : 3  The modulus of rigidity of the wire = ... +
i) The maicrial of the given wire is ...............

If time permits, you can invesligate the relation between k, and the radius of the wire by
choosing another wire of the same material. Similarly, you may study dependence of k, on
the material of wire. For this you should take another wire of different material but having
the same radius. . :

Oxscillations of a

Spring-Mass

System and a Torslonal

Pendulum
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Some Experiments on

Ozclilations and Waves

SAQ 3
i) Name at least two sources of error in this experiment.

ii) Why is it necessary to coincide the centre of the circular cylinder with the axis of the
suspension wire ?

......................................................................................................................
......................................................................................................................
.........................................................................................................
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EXPERIMENT 3

A STUDY OF ENERGY AND MOMENTUM
CONSERVATION PRINCIPLES

Structure

3.1 Inroduction
Objectives

3.2 Verification of the Principle of Conservation of Mechanical Energy
Descriplion of Apparawus
Procedure

3.3 Verification of the Principle of Conservauon of Linear Momentum
Description of Apparatus
Propedure -

31 INTRODUCTION

In the preceding experimenis you worked with systems executing simple harmonic motion
(SHM). An important characteristic of the system executing SHM is that in the absence of
dissipative forces, the energy of the systern remains consiant, i.e. it is conserved. Recall the
oscillations of the bob of a simple pendulum. When the bab is displaced from its
equilibrium position, it gains potential energy. At the exireme position, all its energy is
potential in form. On being released, its potential energy gradually changes to kinetic
energy. At the mean position, its energy is wholly kinetic. As the bob crosses the mean
position, ils kinetic energy begins to transform to potential form. But at any time the total

mechanical energy, which is the sum of the kinetic and potential energies, remains constant.:

This is kmown as the principle of conservation of mechanical energy. This principle is also
valid for other forms of energy such as chemical, thermal, electrical, and nuclear. This
analogy suggesls that we can state a general principle of conservation of energy.

This principle is perhaps the most fundamental and elegant principle of physics. It is
observed in all natural processes from radioactive decay to the motion of planets around the
sun. Do you know of any situation where this law is violated ? Probably there is not 2
single exception to it so far, though it has been challenged many limes.

The principle.of conservation of cnergy does no! provide satisfactory solutions to problems
where details of interactions between different bodies are not known. For such situations we
require a conservation principle involving a vecior quantity like linear momentum. This
principle finds wide applications ranging from nuclear reactions to rocket propulsion. There
are many other conservation principles in physics. But in this experiment you will leamn to
_verify-the principles of conservation of mechanicat energy and linear momentum using
simple arrangements.

In general, the conservation principles help us in discovering new phenomena as well as
clarifying the less understood ones. You may recall from your school science course how the
principles of conservation of momentum and energy led Pauli to predict the existence of a
neutrino. Many a time, these pnncnple.s forewarn us of the non-occurrence of some
phenomenon.
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Oscllintions and Waves

Objectives _
After performing this experiment you should be able to

acquire skill of removing parallax

use a plumb line )

translate a vector parallel {o itself

verify the principle of corservation of mechanical energy
verify the principle of conservation of linear momentum.

32 VERIFICATION OF THE PRINCIPLE OF

CONSERVATION OF MECHANICAL ENERGY

The principle of conservation of energy is stated as follows:

Energy can reither be created nor destroyed. It may be transformed from one form to
another; the total energy in a sysiem remaining constant. i

— ]

Its verification demands that we must be able to measure energy very precisely. Since it is
most convenient to measure mechanical energy. we will verify the principle of conservation
of energy with particular reference 1o conservation of mechanicul energy.

l{
/.l
/ e\\
/ \
/ \
/ \
/ \

/

/ ! N
/ \
/

/ \

/ \
/ \
d o
O

Fig. 3.1: Oscillutions of & simple pendulum

Consider the oscillations of a simple pendulum (Fig, 3.1). Referring to this ngure we nuie
that at A, the maximum of the swing, the energy of the bob will be wholly potenual
(kinetic energy zero). But at the mean posilioa O, the energy of the bob will be wholly
kinetic. Therefore, to verify that mechanical energy ts conserved, we must show Lhat at any
point between A and 8 , the sum of potential energy and kinetic energy of the bob remains
cons(ant. Since it is more convenient (o measure potential than kinelic energy, we intend to
measure the energy of the bob at A. The maximum value of potential energy (/) is given by

Unan = (1/2) mgl 82 (3.0

where m is the mass of the bob, / is length of pendutum, 8 is the maximum angular
displacemenl and g is acceleration due to gravity. :

If O is small, we can write

(5

where x is amplitude of oseillation.

Using this result in Eq. (3.1), we get

Ups = Ao 22 (3.2)
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This equation tells us that maximum potential energy of a bob is directly proportionaf to the
square of amplitude of oscillation and inversely proportional to the length of the pendulum.
So, to verify the principle of conservation of mechanical energy, we must show that at A or
atB

2

T = K . . (3.3

where X is constant.

Let us pause for 2 minute and ask: What is implied by Eq. (3.3) 7 It tells us that for a given
length of a simple pendulum (/ fixed), the amplitude of swing, on either side of the mean
position, should remain constant for the principle of conservation of mechanical energy to
hold. You can check this by releasing the bob and measuring x on either side of the mean
position. (Alternatively, you can measure the vertical heights by which the bob rises above
the equilibrium position.) However a more convincing way to verify Eq. (3.3) will be to
have / and x in such a way that they are different at the extremities of the same oscillation.
You will realise that in a simple pendulum it is not possible to vary both x and 4
simultaneously. So 10 achieve this we have designed a special pendulum, which we cal
two-in-one pendulum, It is a modified form of simple pendulum and is similar to that used
by Galileo to study the principle of conservation of energy. (His experiment is known as pin
and pendulum experiment.) We will describe the two-in-one pendulum in the paragraphs that
follow. But we first list all the apparatus with which you will work.

Apparatus
Two-in-one pendulum, a heavy bob with a pointer, inextensible wclghlless string.

3.21 Description of Apparatus

The two-in-one pendulum consists of a specially designed stand fixed on a flat base, which
carries a mirror strip fitted with a scale, as shown in Fig. 3.2. The mirror strip helps us in
avoiding parallax while taking readings of Lhe displacements of the bob. The bob is fied to a
string and suspended from clamp A, which is fixed so that AX is about 1.5m. Clamp 8 is
movable and can be made to slide vertically in a graduated groove. This clamp must be
smooth and have a sharp end, like a pin so that it slightly interrupts the swing when the bob
reaches its mean position. What will happen if the end is not sharp ? In such a situation,
appreciable energy loss may occur.

WALTIY
'"°’7mmrm/rrrr/rrrrrmwmw7’

Fig. 3.2: A iwe-in-one pendulum apparatus

3.-2.2 Procedure

Note the least count of vernier callipers and record it in Observation Table 3. 1(a). Now
measure the diameter of the bob in different directions. Take at least five readings. Calculate
the mean radius, r.

A Study of Energy and
Momentum Comservation
Principles
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Seme Experimeats on Ovservation Table 3.1
Orzclliations and Waves a. Diameter of bob
Least count of vemicr callipers = cm
Zeo emmor (if any) cm
S.No. Diameter (cm) Radius {cm)
1.
2‘ -
3
4,
5
Mean radius (F) = Loe e cm

Now, take a thread of length (f) about 1.5 m and firmly tie its one end to the bob carrying a
pointer. The distance between the point of suspension of the péndulum and centre of gravity
(C.G) of the bob defines the length of the pendulum (/) = /+ r. Record it in Observation
Table 3.1(b). Mow displace the pendulum to one side fixing x| (Fig. 3.3). \:e'hile doing this

. A
you must make sure that the angular amplitude is small. This means that TL is now fixed.

b. Verification of the Principle of Conservatian of Mechanical Energy

Leastcount of melre scale = ..cvvcceeeeeeeee. €M
S.No. f] ={+r £ "% f2=ll -a R .t!
— {an} _l'
b N
e temd e e (i} (it) (iii) {mean) {cm)

"‘_T :

a 3
v
\1 4
P
\\\ P Q

-~ e

m—— 5
X

Fig. 33 : Schematic Depiction of Now you release the bob. As the Clamp B obstructs the swing, you gel another pendulum

two-Ia-one pendolum of smaller length B, with B as the point of suspension. This is illustrated in Fig. 3.3,
Note the extreme point of swing on the right-hand side of the mean position. This gives us
X,. Record your reading in Observation Table 3.1(b). Repeat the procedure at least three

times. Do you get the same value every time ? Now calculate the average value. Compute
.\'% + {2 . where l, = I, - a; a being the distance between clamps A and B. Does Eq. (3.3) hold?
[f not, then yon should look for energy dissipative mechanisms.
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Next, you vary / by sliding thc clamp B in the groove, Take at least three values of £; for
one value of /;. You should make sure that /, be never less than 0.5m. For otherwise, the

assumption sin 8 = 8 may not hold.

Next, you should change /, by about 20 ¢m and repeat the above-said steps. Is energy
conserved ? Comment on your findings.

SAQ 1
i) At which position in the two-in-one pendulum can energy loss occur ?

if} Do your results show a departure from conservation of energy as !, is reduced ?
If 5o, calculale the maximum deviation,

33 VERIFICATION OF THE PRINCIPLE OF
CONSERVATICN OF LINEAR MOMENTUM

Let us consider as to what happens when a bullet is fired from a gun. The principle of
conservation of energy tells us that the kinetic energies of the bullet and the recoiling gun,
along with the heat and sound energies will be equal to the chemical energy of the detonated
explosive. However, it does net tell us how this total energy is distribuled amongst the
bullet, the gun and the surrounding environmen:. Moreover, since energy is a scalar quantity,
its conservalion does not even suggest that the pun will recoil. In fact, the law of
conservation of energy does not rule out the reverse process — recoiling of the bullet —
which we know never occurs. So it is obvious that in such situations we require a
conservation principle involving a vector quantity such as linear momentiim. This principle
may be stated as follows: :

When there is no external force acting on a system of particles, the total linear
momentum of the system is conserved.

We know thal momentum is a vector quantity, Its conservation demands that it should be
conserved both in magnitlude and direction. When a buliet is fired by a gun the momentum is
conserved in one dimension. Have you watched the video entitled “Conservation of Linear
Momentum™ where a linear air track is being used ? If not, then you should do so now. It
tells us about momentum conservation when colliding bodies (magnets) move along a
straight line. Can you give an example where two bodies go off in different directions afier
collision ? What happens when a striker in a carrom hits a coin ? In this case the momentum
is conserved in two dimensions. The bursting of a Diwali cracker is an example of
momentum conservation in three dimensions. In a three dimensional space this principle
should hold for all three components. But an experiment in two dimensions, rather than

A Study of Energy and
Momentum . Conservation
Principles
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Some Experlments on
Oscillations and Waves

Collisions between particles of
equal masses find most important
application in the design of
nuclear reactors. We find that
neulron energy is mast efficiently
reduced in collisions with
hydrogen nuclei. That Is why.
waler is used as moderator.

three, will be easy to perform and endugh 1o demonsirate the vector nature of the principle of
conservation of momentum. This demands that we should know the momenta of the
colliding bodies before and after the collision in two dimensions (2-D).

We know that momentum is a product of mass and velocity. Of these, mass of a body can be
accurately determined using a physical balance. But to measure velocilies of the colliding
bodies, we have specially designed a 2-D collision apparatus. We will describe this

apparatus in the paragraphs that follow.

Apparatus .
2-D Collision apparatus, steel balls, sheet of paper, carbon paper, drawing-board and -
board pins, plumb line, ruler, protractor and physical balance.

3.3.1 Description of Apparatus

The two dimensional collision apparatus consists of a curved channel ABC. which may be
held with the help of a stand or clamps (Fig. 3.4). The right end of the channel is horizontal.
When a stee! ball B, is released from some point in the channel, it shoots off with zero
vertical component of velocity. § is an adjustable support with a flat lip, where another
stez] ball B, may be placed. The support can be inoved horizontally so that the two balls can
be placed at any desired distance. More.-ver, we can adjust this suppurt so that the.centres of
B, and B, lie in one horizontal planc, called the collision plane.

A

Fig 34 : A two dimenvional cullision apparaius

The floor level forms our abservarion plane. A sheetof paper i< laid on the floor with a
carbon paper — carbon side down over it. When the ball falls. 1t will leave a mark on the
paper. However, an important point here is 1o ¢nsure that the floor is smoaoth. In case the
floor is not smooth you should place the white sheet and the carbon paper on a drawing
board.

3.3.2 Procedure

Choose two identical balls B, and B,. Weigh them carefully in a physical balance. Set the
apparatus as shown in Fig. 3.4. Mark the point O, on the floor directly below the edge
(point C) using a plumb fine. Release B, from a particular position marked as X on the
channel ABC. The ball will fali on the paper, say at P}. Our knowledge of projectile motion
lells us that OIP': is a measure of velocity of ball B,. Repeat this observation ten or fifteen
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EXPERIMENT 1

TO INVESTIGATE THE DEPENDENCE OF
THE PERIOD OF A PENDULUM ON
LENGTH, AMPLITUDE AND MASS

Structure

1.1 Inroduction
Obects

1.2 investigations with a Simple Pendulum
Dependence of the Period on the Length
Dependence of the Period on the Amplitode of Swing
Eifect of Mass of the Bob on the Period
Damping and Relaxation Time

1.3 Investigations with a Bar Pendulum
Variation of the Period with Length
The Kadius of Gyration

1.1 INTRODUCTION

In your school you must have worked with a simple pendulum. A simple pendulum
essentially consists of a heavy metallic bob suspended from a rigid support by means of a
weightless and inextensible string. It can freely oscillate to and fro about the point of
suspension. The maximum displacement of the bob on either side of its equilibrium position
is called the amplitude of oscillation. The time taken by the pendulum to complete one
oscillation is called the period. As we examine the motion of a simple pendulum, some
questions that immediately come to our mind are :

1. How do the material, shape and size of the bob affect the period of the pendulum ?
2. How does the period change with amplitde of the swing ?

3. Does the length or thickness of the string change the period ?

4. How does the air dragged by the bob influence the period of the pendulum ?

We will investigate some of these questions here. You may thirk that this experiment is far
too simple to perform at your level. But our purpose of having a simple and familiar
arrangement is to help your understanding of simple harmonic' motion and also to give you
experience of planning an experiment, taking measurements and analysing results. That is,
we intend (o give you training in scientific method of leasning and develop your
investigative skills.

Such a system was first envisaged by Galileo on observing the vibrations of a chandelier at a
banquet. He calculated its period by his pulse rate. (You can make a simple pendulum by
Tying a piece of stone to a 70 to 100 cm long thread.) A modification of this armangement is
used-in wall clocks. You may also be knowing that now-a-days most precise time
measurements are done by atomic clocks, where caesium atoms act like a pendulurm,

You may now think that a simple pendutum is an ideal arrangement for time measurements.
But it is not so ; a simple pendulum has some inherent drawbacks. For example, the bob
drags air, the string is not strictly inextensible, motion about the point of suspension may
have rotational component, etc. Some of these can be eliminated by using a compound
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Some Experiments on
Oscillations and Waves

pendulum. A compound pendulum is a rigid body capable of oscillating freely about 2
horizontal axis passing through it. In your laboratory, you will find it in the form of a
metallic bar having a series of holes. These holes allow us to make the pendulum oscillate

freely when suspended from a knife-edge. The pendulum executes simple harmonic motion. -

Oscillatory motion is a universal phenomenon. Like simple and compound pendulums, a
spring-mass system also executes simple harmenic motion and may be used to determine the
spring constant. You will leam to do it in the next experiment.

Objectives
After doing this experiment. you shiould be able to

determine whether two parameters are related by a power law

establish the relation between the period and the length of a simple pendulum

discover the dependence of the period on the amplitude of swing and the mass of the bob
compute relaxation time

compare the values of acceleration due to gravity using a simple and a bar pendulum
compute the radius of gyration.

12 INVESTIGATIONS WITH A SIMPLE PENDULUM

y

Fig.1.1: A simple pendulum

26

In the first part of the investigations with a simple pendulum you are required lo investigate
the dependence of the period of the simple pendulum on its length, the amplitude of swing
and mass of the bob. Since we are interesied to know the way in which riree different
parameters affect the period, it makes sense lo vary only one parameter al a lime, keeping Ihe
other two constant. Then any change in period can be attributed to the change in the
parameter that has been altered. (If all three parameters were changed simultaneously, we
would have no way of knowing how much of the change in period is due lo one particular
parameter.) Therefore, we shall like you to make investigations in three steps. The apparatus
with which you will work is listed below.

Apparatus

Three identical bobs of differenl materials, protractor, strings of varying lengths, stop
watch, metre rod, clamp stand, cork pads, vernier callipers, J

Take 2 long piece of sring, nearly 2m long, and lie it to the pendulum bob. Fix the top of
the string between cork pads placed in the jaws of the clamp as shown in Fig. 1.1. Displace
the bob to one side and then release it. It begins to oscillale. You should ensure that the bob
neither spins nor experiences jerks. That is. the pendulum executes free oscillations. Now
your set-up is ready and you can begin your investigations.

But before proceeding, we would like you to spend a few minules rying 1o predict how
chenges in three parameters can change the period of osciltation. Record your predictions and
verify them after compleling your investigations.

Predictions for the dependence of time period on tength of pendulum. mass of bob and
amplitude of swing.

1.2.1 Dependence of the Pefiod on the Length

Make a reference mark. using a pointer at the equilibrium position of the bob as well as at
the maximum displacement of oscillation. You should keep the amplitude constant in each
observation and it should be such that at no time the small angle approximation is violated
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SAQ 2
i)y Do balls B, and Bz fall lhmugh the same height 7

iii) Can we use parallelogram law to compute the resuitam ofoll"I and 021"2 ? If yes,
how 7

Y R T R L E L L EE Ll L T

iv) A shell lies on the ground at rest when il explodes into two equal fragments. How will
the fragments move ?

L L T T T

v) Does the friction in the channel play any role in momentum conservation ? If 50, what ?

vi) List-chief sources of error in the second part of your experiment.
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For each collisicn involving balls of equal masses, calculate the square of the velocities
before and after the coliision. How do they compare ? Does this suggest that something else
is conserved ? Make the same calculation for balls of unequal masses. Is the square of
velocities conserved now ? Multiply the squares of velocities in the later case by the
respeclive masses and compare your values. What else do you think is conserved besides the
momenturn ? Is it kinetic energy ? Comment on Lhe nature of collisions,

Conclusion: The collisions arc clastic/inelastic,

A Study of. Emergy ana
Momentum Conservatlon
Principles
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EXPERIMENT 4
- A STUDY OF COUPLED OSCILLATIONS

Structure : -
4.1 Introduction
Objectives .

4,2 Mensurement of the Period of Normal Modes
4.3 Frequency of Energy Tiansfer

41 INTRODUCTION

In Experiments 1 and 2 you made measuremnents with isolated (single) oscillating systems
such as a pendulum (simple or compound), a spring-mass system and a torsional oscillator.
In nature we come across many examples of coupled oscillators. For example, atoms in a
solid are coupled by inter-atomic forces. In molecules, say the water molecule, two hydrogen
atoms are coupled to an oxygen atom while in 2 oxygen molecule, two oxygen atoms are
coupled to one another. Although we cannot quantify the coupling in atoms, yet it is
important to realise that coupling influences oscillations of individual atoms in a molecule
or a solid. In a centinuous medium, coupling leads to the phenomenon of wave molion. In
the next experiment, you will establish a relation between frequency and wavelength of a
wave.

When two (identical or different) atoms are coupled together, the coupled system executes
ascillations which are different from the oscillations of independent atoms. In radie and TV
transmission, we use coupled electrical circuits. It is therefore important to study oscillations
of a coupled system. In general, individual oscillators of a coupled systern may or may not
all be identical. But in this experiment you will work with two identical mechanical
oscillators in the form of metallic strips (Hacksaw blades), which may be coupled by a
rubber-band, a spring or a pair of bar magnets.

You musl have watched the video entitled “Coupled Oscillations™ prepared for PHE-02
Course: Oscillations and Waves. If vou have not watched it, do so now. You will observe
that the oscillations of the éoupled system are no longer simple karmonic. But there are two
maodes in which motion is simple harmonic and each has a definite frequency. These are
called normal modes. in (his experiment you wiil leam (o measure the period of normal
modes. Moreover you will observe that individual oscillators exchange energy repeatedly
back and forth. What is the rate of energy exchange ? You will discover answer Lo this
question also here. In fact, after doing this experiment you will realise thal you can
understand al! good physics involved in the study of a coupled system through 2 very simple

equipment.
Objectives
After performing this experiment, you should be able to
demonstrate the effect of coupling in the behaviour of individual oscillators
- measure the period of normal modes
plot a graph between angular frequency and position of rubber-band from the fixed end of

oscillators ;
e compute the frequency of energy transfer.
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42 MEASUREMENT OF THE PERIOD OF NORMAL
MODES

We know that an isolated systemubrates with n.snann.lfrequcncy Whathappcnswhcn
two such isolated systems are coupled together ? The presence of coupling affects itg
amplimde and frequency of osciilation. We expect that the motion may not remain simple
hammonic. Does this mean that for a coupled system we cannot define the period of
oscillation ? To answer this and other related questions we consider a system of two identical
coupled oscillators. The apparatus heeded for this purpose is listed below:

Apparatus:

" Two identical hacksaw blades (1/2” or 1 width and 12” length), two vices, rubher
bands/soft springs/a pair of strong bar magnets, and a stop waich,

U’ — WF !

Figd.]l : A coupled oscillator system

Set the apparatus as shown in Fig. 4.1. For the success of this experiment you should note
that both oscillators (in this case hacksaw blades) should be in the same plane and act as
identical oscillators. That is, the time periods for both these osciltators should be the same.
To ensure this, you should use a stop watch with good accuracy. Note the least count of the
stop watch and record it in Observation Table 4.1. Next displace one of them from its
respective mean position and then release it. It begins to oscillate. You should ensure that
the oscillations are free. To begin with, you should count time for 10 oscillations. Enter
your data in Observation Table 4.1. Calculate its time period by dividing the measured time
by N, the total number of oscillations counted.

Observation Table 4.1: Time Period of Isolated Oscillators

Least count of stop watch = ..........cee L]
S.No. Nlr.\. of Time for N Oscillations (s} Time Period (s}
Oscillations (&) Ist q:cill.alor IInd Osillator Ist Orscillator Ind Oscillator
1. . 10 -
2. 20
3. -
4. 40
5 50

Oscillations.
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Repeat the same procedure for the other hacksaw blade. Compare their time periods. Are they

.same ? We expect these 10 be same. If not, then load the blade with larger time pericd with

wax. Alternatively you can file the blade which has smaller ime period. You will require
considerable experimental skill of measuring time and practice to achieve exactly same
values of time periods. You should repeat this process till you get identical time periods. In

“case you fail to do so repeat the procedure till the difference between these periods is not

more than 0.1%. Next you should measure time for 20 oscillations and repeat the above-said
procedure. To get more precise results you can work with 30, 40, 50 or more oscillations.
Let us denote thé time period By T,

Now couple these two oscillators by putting a rubber-band or a spring near the fixed end. In
this way you obtain a mechanically coupled system. Alternatively you can use a pair of

strong bar magnets. Is there any difference between these rwo types of couplings ? We expect

that the system will display similar behaviour in both cases. You can, Lherefore, use 'either
of these arrangements for this experiment.

From Unit 5 of Block 1 of PHE-02 Coqrse, you will recall that the motion of a coupled
system is not simple harmonic. However il can be analysed in terms of normal modes. For
two coupled simple pendulums,two normal modes are shown in Fig. 4.2.

.Consider the transverse motion and first excite the fn-phase normal mode by equaily

displacing the two oscillalors (hacksaw blades) in the same direction (Fig.4.2a}. You should
ensure that the two oscillators always oscillate in phase. As such, this is somewhat ricky
and you will need some practice.'When you are finally convinced, measure time for 30
oscillations and calculate the period. Let us denote it by T. It is important that the

amplitude of oscillations be small.
1

— @ —
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Fig. 4.2 : (a} In-phase, and (b} oul of phase nermal modes

Now you make the system Lo vibrate in the ouf of phase normal mode without changing the
position of the coupling system (spring/magnes/rubber-band). This can be done in two ways.
as shown in Fig 4.2(b). You can choose to work with the case in which two oscillators are
drawn closer. Repeat the above procedure and determine the time peried for this case. Let it
be T.. Are Ty, Ty and T, the same ? We expect them to be different. What do you conclude
fromi this ? This only means that coupling is eftective.

Next, you move the coupling arrangement away from the fixed end by | cm. This will bring
aboul a change in the coupling. Another way of changing the coupling strength will be to
change the quality of rubber-band or take springs of different spring constants. Repeat the
above procedure and record your data in Observation Table 4.2.
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. Table 4.2 : Effect of Couvpling on the Period of Normal Modes
Leastcount of stop watch = ....uii8 .

No. of oscillations (M) L ST .

S.No. | Distance of ubber band ' Time for N Oscillations N T2
from the fixed end (cm) ® (s) (s)
Ist Normal [Ond Normal
Maode . Mode

1.
2.
3
q,
6.

_ Are time petiods influenced by changing the position of the rubber-band ?

Repeat the experiment for other positions of the rubber-band and enter your readmgs in
Observation Table 4.2,

Caiculate the corresponding angular frequencies using the relation @ = 2r/T. (The difference
in the frequencies of two normal modes is known as frequency splirting. We denote it by tpe
symbol Av and it is given by (0; — @,)/2%.) Do these frequencies vary as position of the
rubber-band is changed ? A variation in their values suggests that coupling has an influence
on the motion of the system . To clarify this further, you can plot angular frequency as a
function of the distance of the rubber-band from the fixed end. Is the relation linear ?
Discover the functional dependence between the two quantilies by following the procedure
outlined'in Experiment |. Discuss vour results with your counsellor.

Conclusion: The angular frequency varies.............  wilh the distance of the rubber-band from the fixed end.
SAQ 1 _
i}  Is there any damping in the system ? How will you account for it ?

SAQ 2
Choose two widely separated points on your angular frequency versus distance of rubber-band
graph and correlate frequency splitting to the coupling constant

43 FREQUENCY OF ENERGY TRANSFER

So far you have seen thal for a coupled sysiemn angular frequencies of normal moedes differ
due to the presence of coupling. Another manifestation of coupling is exchange of energy. In
this part of the experiment you will study how frequently energy transfers from-one
oscillator to another. Keep the rubber-band (or spring) nearest to the clamped point so that
the coupling is minimum. Then displace one of the oscillators without disturbing the other.
Observe the change thal occurs in the second oscillator. You will note that Lhe second
oscillator staris oscillating and gradually gains displacement. What happens to the first
oscillator ? It begins to lose amplitude and ultimately comes Lo a stop momentarity, But
soon you will observe that it begins to gain displacement. Do you know the reason for these
periodic changes ? This is brought about by the presence of coupling and implies that 1otal
energy flows back and forth betwesn the two oscillators.

A Study of Coupled
Oscillations
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To measure the periodicity of energy exchange, again displace the oscillator from its mean

- equilibrium position. Measure the time in which one cycle is completed. If it happens very

rapidly, then measure tinie for 5 or 10 cycles of energy transfer. Make your own

.Observation Table and record your readings in it. Calculate the time period. Repeat the
procedure for-several positions of the rubber-band along the hacksaw blades i.e., for different

values of coupling:

Do you get the same time period for every position ? We expect it to be different. The
inverse of time period gives the frequency of energy transfer.

Observation Table 4.3 : Frequency of Energy Transfer

Conchuslon: The frequency of energy transfer depends 60 _ovceeeccmniecsicinnness

SAQ)
Dose air damping affect the frequency of energy tmansfer. Justify your answer.
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EXPERIMENT 5

RELATION BETWEEN WAVELENGTH
AND FREQUENCY OF STATIONARY
WAVES

Structure
5.1 Introduction
Objectives

5.2 To Set up Stationary Waves in a Stretched Wire

5.3 Variation of Wavelength with Tension

5.4 Variation of Wavelength with Mass per Unit Length
5.5 Relation between Wavelength and Frequency

51 INTRODUCTION

You all must have enjoyed the pleasing music produced by stringed instruments like sitar,
violin, clarinet, ektara, etc. at a concert or on a radio or a television. Do you know how
stringed instruments produce music ? When the string of such an instrument is plucked,
bowed or struck, it begins to vibrate and produces sound. The quality of sound thus produced
depends upon the frequency of vibration of the streiched siring. Now the question arises:
What factors determine the frequency of vibration of the string ? How are these factors related
to frequency ? In this experiment you would discover answer [o these queslions.

You may have observed that in an orchestra a violinist ties up or loosens the pegs of his
instrument while tuning with other musicians. (As the pég is lied or loosened. & portion of
the string is either wound or unwound round the peg.) As a result, tension in the string
changes. This means that the frequency produced by the string of the violin depends on the
tension in it. Can you Lhink of other parameters which may influence the frequency of
vibration of the string ? What happens if you take strings of different thicknesses or strings
of different malerials but same thickness 7 Well, we expect that the frequency of vibration of
the string in each case will differ. This means that the mass per unit length of the string also
influences its frequency of vibration. That is why the strings of guitars and pianos are
wrapped with a metal winding, - '

You may have seen a harp or veena. In these instruments,.strings of unequal lengths are tied
between two fixed ends. You may have also seen that once a musician has tuned his '
instrument, he moves his fingers along its string to preduce music. In this way he varies the
vibrating length in order to produce different notes. This suggests that the frequency of
vibration of the string depends on its vibrating length as well. Since the length of the
vibrating segment of the string is related to the wavelength of the stationary wave set up in
it, we expect that there exists a definite relationship between the wavelength and frequency.

The aim of this experiment is to know how frequency of vibration of 2 stretched string
depends on iension, mass per unit length and its vibrating length. You would recall from
your investigations with a simple pendulum (Experiment 1) that when a physical quantity
depends on more than one parameter it makes sense 1o vary only one parameter at a ime. So
in this case any change in the frequency can be attributed to the change in that particular
parameter. It is possible to set up waves of known wavelength in a wire. But it is easier to
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A wave which transporis energy as il
propagates in space is said to be
progressive. In a stationary wave no
cnergy is transporied.

The sonometer wire is said 10 vibrle
in unison with the source of sound
when the natwral frequency of the
wire is equal 10 the frequency of the
source. '

The vibrations arc said to be foreed
vibrtions when a body vibrates with
the frequency of the applied periodic
force. In this comdition the energy fed
from outside equals the energy 10t
bry the body. -

make a wire vibrale with a known frequency. So we would discover the effect of lension and
mass per unit length of the wire on the wavelength, keeping the frequency constant.
Therefore, we would like you to do this experiment in three parts. In the first part you will
investigate as to how.wavelength changes with tension in the wire while the frequency of
vibration of the wire and its mass per unit length are kept fixed. In the second part you will

- investigate how the wavelength varies when wires of different thickness (but same material)

or different materials (but same thickness) are used. That is, you will learn how the

‘wavelength varies with mass per unit length of the wire when tension in the wire and

frequency are held constant. In the third part you will establish the relation between frequency
and wavelength. )

Objectives
After doing this experiment you should be able to

e set up stationary waves in a stretched string .

e investigate the dependence of wavelength of stationary waves on the tension in a string
and its mass per unit length .

e eslablish the relatipnship between wavelength and frequency

s discover the expression for velocity of wansverse stationary waves on a string.

52 TO SET UP STATIONARY WAVES IN A

STRETCHED WIRE

The measurement of tension (T} and mass per unit length () is a rather easy exercise. But
to make a precise determination of wavelength, we sel up stationary waves. Stationary waves
are formed by superposition of two identical progressive waves moving in opposite
directions. These waves do nol move with time in either direction. (For this reason, they are
also sometimes referred to as standing waves.) Stationary waves can be produced in air
columns as well as stretched strings. Here we intend to sei up stationary waves in a
sonometer wire.

A sonometer consists of a hollow wooden box with a peg at one end and a pulley on the
other. One end of a wire is fixed to the peg and the other end, passing over a smooth pulley,
carries a hanger. (In place of hanger you can also use a pan). By placing weights on the
hanger, the string can be stretched. The wire is made to pass over two bridges 8, and B; as
shown in Fig. 5.1. While performing experiments with a sonometer. the siring is made to
vibrate in unison with the source of sound, which may be a ning fork or an electromagnet.
To achieve Lhis, the vibrating lengih B, By of the wire is adjusted by sliding the bridges
between the peg and the pulley. This condition {of unison) is cnsured when a V-shaped paper
rider placed in the middle of the wire between the bridges falls down.

B,

T u/uu/u”! T

LU

Fig. 5.1 : A Sonometer

When a vibrating tuning fork is placed on the sounding board of the sonometer, the wire
executes forced vibrations and transverse waves are set up in it. In the region B, B, , these
‘waves are reflected at the fixed points B, and B,. As a result we oblain a set of incident and
reflected waves travelling in opposiie directions, which give rise (o ransverse stationary
waves. The wire between the bridges then vibrates in one or more well-defined segments as
shown in Fig. 5.2. You will observe that there are some points al which the wire remains
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motionless at all times. On the other hand, at some other points, the waves reinforce
strongly and the wire vibrates vigorously. The points comesponding to zero amplitude of
ribration are called nodes (N) whereas points with maximum amplitude are called
antinodes (4). In the fundamental mode, the wire within fixed ends vibrates in one loop.
The ﬁxed points act as nodes wn.h an aritinode in the middle.

Fig. 52 : Stationary waves set up in the wire fixed al both ends

The apparatus required for this experiment is listed below:

Apparatus

4 iron wires of different thicknesses (Alternatively 4 wires of different magnetic .
materials, sonometer, hanger, slotied weights, an eleciromagnel with 4 6 volt A.C.
transformer, six wning forks of known frequencies, rubber pad, metre scale, screw gauge
or a chemical balance with weight box. -

53 VARIATION OF WAVELENGTH WITH TENSION

You now know that in this part of the experiment you have to keep mass per unit length of
the wire and its frequency of vibration constant. The former of these can be accomplished by
working with a wire of known material. To achieve the latter you can use either a tuning
fork or an electromagnet. Of these two, an electromagnet is preferred because with its help
the wire can be made to execute sustained vibrations.

Fig. $3 : Experimental arrengement for setting up transverse statfonary waves ln a
sonometer wire

The experimental arrangement is shown in Fig_ 5.3. Connect the cleéﬁ-anmgnet wabVv
transformer and place the electromagnet near the middie of the wire. When an alternating
current (ac) is sent through the electromagnet, in each cycle the core is magnetised twice
with opposite polarities. As a result, the sonometer wire is atiracted by the electromagnet
twice in each cycle and it begins to vibrate. Since the frequency of ac is 50 Hz, the wire will
vibrate with a fixed frequency of 100 Hz.

Retation between Wavelength
and Froquency of Statlemery
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Saue. Experiments on - SAQ 1
Oscitlations and. Waves - Suppose that the electromagnet is connected to a source of direct current. Will the wire
vibrate ? If yes, what will be'its frequency of vibration ?

© Stretch the wire by putting weight of 0.5 kg in the hanger. (If a weight of M kg is used for
stretching the wire then the tension in Lhe wire will be 7=Mg newton where g is acceleration
due to gravity. You can use g = 10 ms-2.) Keep the bridges of the sonometer at a distance of
about 25 cm. As soon as the current is switched on, the électromagnet is energised and you
will observe that the wire begins to vibrate. This means that the appararus is in working
order and you can begin your investigations. When the sonometer wire vibrates in the
fundamental modeg, the distance between the two nodes is equal to half the wavelength of the
stationary wave in the wire. The vibrating length of the wire will therefore be a measure of
the wavelength of stationary waves set up in the wire. That is why we are interested in
determining that length of the wire which vibrates in the fundamental mode with a frequency

- of 100 Hz. First of all, make the wire vibrate in one single loop. Then to achieve unison,
you first place a rider on the wire. Fix one of the bridges, say B, and move the other bridge
85 towards it. What do you observe ? Does the amplitude of vibration of the wire decrease ?
If so, then move the bridge B, away from B,. Continue to move it away from B, till Lhe
amplitude becomes maximum. In this position, the rider will fall down. Measure the
distance between the bridges accurately and record it in Observation Table 3.1. Next, you
repeat the abave procedure by keeping the bridges closer, separated by 10 cm. Move bridge
B, away from the bridge B, and note the length of the wire between the bridges at which the
rider is again thrown off. Enter your reading in Observation Table 5.1.

Observation Table 5.1: Dependence of Wavelengith on Tension

Frequency of Vibration of the wire = 100 Hz

Least count of metre scale = oo cm,
S. | Weightplacedon | Tension | Length (1) of the wire between two bridges in Mean | Wave- | InF | InA
Ma. | (hehanger T=Mg unison with electromagnel i{cm) | lengih
(kgy Ny {cm) A=
{md
load incressing _ oo decreasing
bridge e | idges & | brdgsare | bridgesare
far apart | closer [ar apan closer
1.
r:
3
4,
5.

Now you change the tension in the wire by adding weights on the hanger in equal steps of,
say, 0.5 kg and measure the resonating lengths of the wire in each case. Enter your data in
. Observation Table 5.1. You should not load the wire beyond its elastic limit.

To check that you are working within the permissible range, you should repeat the above—
said procedure by unloading the wire in equal steps. Tabulate your observations in each case.
Do these lengths differ from those measured while loading the wire 7 We expect these 1o be
almost the same. If they differ significantly, you should discuss with your Counsellor.
Calculate the mean length for a given tension.

From the table you will observe that A changes with 7. The variation in A suggests that it
is related to tension. Mathemalically, we can write

AaT

Can you give an exact relation between these variables by looking at your observalions 7
62 ’ Probably you cannot. To discover the exact relationship between A and T, you can proceed
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along lines suggested in the experiment on simple pendulum. That is, you may plot A vs
T2,k vs T, A vs T 2and so on. One of these plots will be a straight line. For example, if
A vs T'2 plot is a straight line passing through the origin and the slope of the line i$ &,, the
.exact relation between A and T is given by A = &, 72, Aliematively you can arrive at this
relation as foliows : Let Aot T°

or A=k T (5.1)
where &, is constant of proportionality and a is anothqr constant.
Taking logarithms to the base ¢ on both sides, we get
InA=Ink+alInT | (5.2)
So if you plot In A along y-axis and In 7 along x-axis. the graph will be a straight line.
On comparing Eq. (5.2) wlil.h the equation of a straight line namely
ysmx+c

we find that the intercept on the y-axis gives In k, while the slope gives the value of a.
Calculate the slope by using two well separated points on the straighl line. We expect the
value of @ to be 1/2. What is your result ? Calculate the error in the slope by drawing lines
of maximum and minimum slope.

Then the relation between A and T is:
A=k VT (5.3)

SAQ 2 )
Plol a graph bctween A and T'7. For T = 64 N and T, = 324 N, calculate the ratio of
wavelengths from vour graph, '

54 VARIATION OF WAVELENGTH WITH MASS
PER UNIT LENGTH

To investigate the dependence of wavelength on mass per unit length of the wire, we take
four wires of different thicknesses but of the same material, If it is not possible to get wires
of different cross-sections, you can take wires of same cross-section but different materials.
For each wire, you first determine the mass per unit tength {p1). To do so you have to
measure their diameters. For this you should use a screw gauge. Note its least count and
observe whether there is any zero error. Measure the diameler at several places. In this way
you can account for the inhomogeneilies, if any, in the wire. Record your readings in
Observation Table 5.2(a).

Observation Table 5.2 (a) : Delerminalion of Mass per unit Length of the Wire

Leaslt count of the screw gauge = ................... cm
Sample Diamerer Mean Density Mass per unit
wire dicm) diameter | PKEM™} | length of wire
(m) Kikgm™)
] (i) (iin)

=T T -
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Ifyouknowthcdms:ty(p)ofthemama]ofﬂ:ewutfmmatextunphysmaldam,youcan

easily compute mass per unit length for any wire using the relation: p= —42 Alternatively
youcandﬂermmeuforuwnebywe:ghng aknown length of it.

In this pert of the experiment, you should keep tensxon constant, say 20N (i.e. M=2 kg) As
s00n as the cuarent is switched on, the electromagnet is activated and the wire begins to
vibrate with a frequency of 100 Hz. Keep the bridges at a distance of, say, 25 ¢m. As
mentioned earlier; you should adjust the distance between bridges so that the wire vibrates in
one single loop with maximum amplitude, As before, this should be tested by placing a
peper rider. Measure the distance between the bridges accurately and record it in Observation
Table 5.2(b). Repeat the process by putting the bridges closer, say, at a distance of 1} cm
and moving one of these bridges away from the other. Record the resonating length in
Observation Table 5.2 (b). Calculate the mean length.

Repeat this procedure for other wires, keeping the tension in the wire constant. Tabulate
your observations in Observation Table 5.2 (b}.

Observation Table 52 (b) : Dependence of Wavelength on Mass per unit Length

Temsion inthe Wire = ..o N

S.No. | Masa per unit Length (f) of the wire beiween two Men | Wavelength Inp InA

w N

e

Does the wavelength vary with . ? Does A decrease or increase as [ increases ?7 A decrease in
the value of A suggests inverse dependence on L. To quantify this dependence we write
A=k
where k; is constant of proportionality and b is another constant.
Taking logarithmns to the base ¢ on both sides, we get
InA=lnk+ blnp

If you plot In A versus In J1, you will obtain a straight line. Is, the slope of the straight
line negative? Of course it should be. This signifies that as p increases, A decreases. The

slope of the straight line gives us exponent b. We expect b = —0.5. What is your value of
b? Calculate the maximum ervor by taking lines of maximum and minimum slopes. Thus

we can write
1
lu'\’— (5.4)
18 .

On combining the results of the two investigations done so far, you can write

length » bridges in unison with Lhe electro- length | A=2f
(kg m™) magnet iem) | (m)
(am)
0] (i)
*| when the bridges | when the bridges .
are fer apart are closer

T T e - L T A YT

wE ETIELTE TESTT

R e TLIE




or

) Relation beiween ‘Wavelength
A=k T (5.5) -and Frequency of Statiesary
V K

Waves
where k is a constant of proportionality.

SAQ 3 _
i) What will happen if the wire stretched on the sonometer is hollow ?

ti} Suppose you have adjusted the length of the string (of iron) in unison with a tuning
fork. Now you replace the string with a similar one of nickle. Will the same length of
the string be in unison with the fork 7

55 RELATION BETWEEN WAVELENGTH AND
FREQUENCY

To establish the relatior between wavelength and frequency for a given wire; the tension in
the wire is kept fixed. To vary the frequency, you would require a set of tuning forks of
different frequencies. (Electromagnet will not do because it makes the wire to vibrate with
only one single frequency.) Stretch the wire with a constant tension of 20N (M=2kp).

Put the bridges B, and B, at a distance of about 25¢m. As before, place a V-shaped paper rider
in the middle of the portion B,8,. Strike one of the prongs of a tuning fork with rubber pad.
The tuning fork should be struck gently on the rubber pad. This will ensure that vibration
will correspond to only the fundamental mode. Press the stem of the tuning fork on the
sounding board. You should not touch the tuning fork anywhere on its U part. (If you do so,
the vibrations will become damped). The vibrations of the tuning fork are transmited to the
wire, which in turn begins to vibrate and stationary waves are set up in it. Now slowly
move the bridge B; towards the bridge B, until the paper rider falls off. This means that the
wire and the tuning fork are in unison. Measure this length of the wire carefully and record it
in Observation Table 5.3.

Observaiion Takle 53 : Dependence of Wavelength on Frequency

Tension in the sining = ..o N
$.No. Frequency {f) of the tuning Length of 1he wire between Mean Wavelength
fark two bridges in unison with luning fork length A=
) - () I (m) m
when bridges are when bridges
far apart are closer

Now place the bridges B, and 85 at about |10¢m and repeat the above procedure by moving
one of the bridges away from the other. As before measure the length which resonates with

ihe wning fork. Enter your readings in Observation Table 5.3. Calculate the mean length. 65
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Some Experiments om.
Osc)llations and Waves

Keeping the tension fixed, repeat the procedure for other tuning forks. Measure the length
each time and record it in Observation Table 5.3.

How does frequency influence the wavelength ? We expect it to decrease. Mathematically, we

express it as
f=1ikx % (5.6)

Here ky is a constant of proponioniality and ¢ is some other constant. Plot f vs l'm,fvs

A-1; fvs A-2 and 30 on. We expect that the plot f vs A" will be a straight line. The slope of

this straight line gives you the value of k;. Compare this value of &3 with the ratio N Tiy for
this wire. Are the two values same 7 Theoretically they should be. It implies that frequency
and wavelength of stationary waves on a string are connected by the relation

1,’1’
= SAf* 7
=3V 5.7

The dimensions of the product f A are those of the velocity. This means that the velocity of
transverse stationary waves on stretched strings is controlled by its mass per unit length and
tension in the wire. .

SAQ 4
What will be the change in frequency if the length of the string between the bridges is
doubled ?
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BLOCK INTRODUCTION

In Block 1 we have presented write ups of some experiments on Oscillations and Waves.
You must have realised that this study involves a lot of good phym:s and we hope that you
must have enjoyed reading this block. In Block 2 we have given six experiments which deal
with mechanical and clectrical properties of materials, Since this course is intended to
develop basic skills like making carcful and unbiased observation, analysis and
interpretation of date, error analysis etc., in these experiments you will get an oppomnityto
acquire these skills.

Young Modoulus is one of the important mechanical properties of a substance. Ity
knowledge is required while building bridges or erecting columne. You will learn to'
determine its value in Experiment 6 using the method of bending of beams. Since the
depressiop in the beam can be measured by a microscope as well a3 an optical lever
arrangement, you will gain experience of working with the optical instruments. In
Experiments 7, 8 and 9 you will learn to use 8 wide variety of electrical instruments.
Resistors find wide use in our daily ife electrical appliances. In particular, low resistance -
appliances are used in power transmission. So it is important that you learn the method of
measuring a small resistance. This is the subject matter of Experiment 7. Thermo-couples,
based on thermo-electrical effect, are to be used as thermometers as well as reliable low
cost, long lasting power supply units in satellites. In Experiment 8 you will learn discover
how a thermo-couple is-used as a thermometer. LCR circuits are used in Radio and T.V.
circuits, apart from many other modern electronic circuits. The usefulness of a circuit is
determined by the quality factor. You will study the frequency response of LCR circuits in
Experiment 9 compute quality factor for ihe circuit. In Experiment 10 you will learn to
draw cheracteristic curves of a p-n junction diode and a zener diode.

These devices are widely used as a detector and rectifier. A more meful semi-conducting
device is a junction transistor, and is used as an amplifier and switching device, in
computers, satellites, rockets, video games and the toys. In'a sense, transistors are
responsible for technologicgl revolution, It is, therefore, important to know the working
principle of such a device. In Experiment 11 you will get an opportunity to draw
characteristic curves of a p—n-p or n—p-n transistor.

We hope that you will enjoy this course. We wish you success,
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EXPERIMENT 6

YOUNG’S MODULUS FOR A MATERIAL
BY BENDING OF BEAMS

Structure

6.1 Introduction
Objectives
6.2 Depression of s Beam Supported at the Ends and Loaded at the Centre
Cantllever
Bending Moment
Depression at Free End of & Cantliever
6.3 Measurement of Depression in a Beam using a Microscape
6.4 Measurement of Deprecsion in a Beam using & Telescope and an Optlca.l Lever
6.5 Comparison of Accuraciss of above Methods by Determining Young's Modulus

6.1 INTRODUCTION

As & child, while playing you may have pressed a rubber ball or a piece of spongeand
observed that the shape of the ball/spdnge undergoes a change. Now if you stop pressing it,
you will observe that the ball regains jts original shape. In fact, all bodies can, more or less,
be deformed by a suitably applied force and when the deforming force is removed, the bodies
tend to recover their original state. The simplest case of deformation can be observedina
wire which is fixed at its upper end with a weight suspended at its lower end. The weight at
its lower end brings about a change in its length. When the suspended weight is removed
from the wire, it tends Lo come back to its original length. This property of the wire is called
elastlcity. It is by virtue of this property that a body opposes any change being produced
in its.shape and/or size by an external force and tends to regain its original shape and/for size
afier the removal of the external force. The greater the force necessary to produce deformation
in the body. the more elastic it is.

Whenever a body is subjected to & deforming force, a force of reaction comes into play

within it, This internal force is termed as restoring force. It tends to resist the applied

force and restores the original shape and/or size of the body. In equilibrium state, the

restoring force is equal to the applied extemnal force. The restoring force per unit area set up

inside the body is called stress. The fractional cha.ngc in its length, volume or ahnpc

relative to original state of the body is termed as straln. For cxample, when a wire is

stretched by applying a force along its length, i.e. normal to its cross-sectional areq, the

change occurs in its tength. Then restoring force acvcloped per unit cross-sectional area of

the wire is known as longltudinal stress. The change in length per unit original length  The maximum stress a materiai can

of the wire is called longitudinal strain. The ratio of longitudinal stress to longitudinal ~ susiain without undergoing

strain, within the elastic limit, is called Young’s modulus. Its value depends on the permanenit deformiation is termed as
. . . - elastic 1imli.

vature of the material and not on the dimensions of the sample.

Knowledge of Young's modulus is of great importance in bridge design. Its value is ont of

the pieces of information which must be known 1o calculate accurately the deformation

(depression) that will oceur in a loaded structure and its parts. When a beam bends, one

surface is compressed and the other is stretched as in Fig. 6.1, so that Young’s modutus is A beam is @ bar of uniform cross-

involved. Similarly, Young's modulus enables us to calculate the stress which a given body,  saciion (circular or recuangular) of a

say the connecting rod or piston of a siearn engine or a girder, can bear. You must have homogeneous, Isolraplc(which

observed that the girders and beams used in bridges and steel frame buildings are have the seme properties at all points
- manufactured with their cross-sections in the form of the letier 1. Also that in a beam of and in ell direclions) clestic maicriel.

rectangular cross-section, the longer side is used as depth. In fact, ‘heam theory’ ~— one of 5
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ACIutllﬂerisnbéunﬂxed
horizontally stone end.

. the foundation stones of structura engineering — gives us all the above mentioned

information. In this experiment you will leam to determine Young’s modulus of a material
by the method of bending of beams.

Fig. &.1: A nullway engine {of early days) moving over the iron rallway bndgecauml.hebﬂmtodepmssomu
one of its surface in compressed while the other is stretched,

Objectives ’

After doing this experiment, you should be able to

o focus a microscope and a telescope on a given object
e remove parallax error

e “measure small depressions

e compare accuragies of the methods used for the measurement of the depression of the
beam using (i) microscope and (ii) telescope and optical lever an'a.ngemcnt

° compute Young's modulus of elasticity.

6.2- DEPRESSION OF A BEAM SUPPORTED AT
THE ENDS AND LOADED AT .THE CENTRE _

When a beam is supported near its two ends and loaded at the centre, it shows maximum

depression at the loaded point. Usually, the depression produced is very small. Suppose a _

beam is supported on two knife-edges at A and B-near its two ends, as shown in Fig. 6.2.
‘ W2 W2

W
Flg. 6.2: Depresslon of the beam supported at the two ends and losded aL v centre with a weight W.

Let it be loaded in the middle at C with a weight W. The reaction of each knife edge will
clearly be% in the upward direction. In this position, the beam may be considered as

equivalent to two inverted cantilevers, fixed at C. The bending in these Iwo cantilevers will
be produced by the load — acting upwards at A and B. Therefare, it is important for us to
know how the bending is produced in a cantilever dnd on what factors does the bending
depend. :

6.2.1 Cahtilever

Consider the cantilever shown in Flg 6.3. Let us put a weight wnt the free end. As soon
as the beamn is loaded, it bends. ru'[

Load{®)
Fig. 6.3: When a beam ABCD is fixed at the end AD it forms a cantilover. When loaded at the free end. it bends,
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Do you know why ? To answer it let us consider the section P, BCP, of the beam. Since the
load W, is applied at the free end of the beam, the foree of reaction, which is of the same
magnitude as W,, must act vertically upwards along P, P,. These two forces, being equai and
opposite, will form a couple. You will recall that the tendency of a couple acting on a body
is to rotate it. Do you expect the cantilever to rotate? It will not rotate because its one end is
fixed. Therefore, in this case the tendency of the couple is to bend the beam in the clockwise
direction. (This is indicated by the dashed arrow.) For this reason, this couple is called
i}ehding couple and the moment of this couple is called bending moment.

Now you may wonder that a couple acis on the beam, yet the beam is in equilibrium, It can
happen only if a balancing couple is also acting on the béam. To understand how this
balancing couple is formed, let us see what happens in the interior of the beam when its free
end is loaded. For this purpose you can imagine the beam to be made up of a large number
of small elements placed one above the other. Let-us call these small elements as
filaments, When the beam is Joaded the filaments in the upper half of the beam get
stretched and the filaments in the lower haif are compressed. However, there is a sugface (or.
filament) in the middle which neither extends nor contracts, This surface is known as
neutral surface. These fealures are illustrated in Fig. 6.4.

Load
Fig. 6,4: When the beam gets bent under the action of the couple du= 1o the load applied. the upper surface of
beam gets stretehed and the lower surface gets compressed. EF represents the neutral surface. The lengths of the
arrows indicaie, in rough proportion, the extent of extensions and contractions of the filaments in the upper and the
lower halves of the beam respactively.

As the filaments above the neutral surface are extended, restoring forces are developed in Ihc
filaments as shown in Fig. 6.5. These forces act towards the fixed end of the beam and tend
1o oppose extensions. .

Fig. 6.5: When the beam is‘be‘nl then in the upper half. the restoring forces opposing extensions in the filaments
act inwerds towards the fixed end. While, in 1he lower half, the restoring forces opposing contractions act outwands.
The moments of lhese 1wa set of forces about the neutrakaxis are directed in the anliclockwise (indicated by dotied
armows) direction and 1thus nppose the bending of he bearn.

On the other hand, because of filament contractions below the neutral surface, restoring
forces developed in the lower-half act towards the loaded end and oppose further contractions.
You will note that these two sets of forces act in opposite directions. Yet their moments
about the neutral surface are direefed ip_the same i.e. anticlockwise direction (indicated by
dashed agrows). This direction is opposite to that in which the beam has been bent due o the
bending couple acting on it. Hence the above-said set of forces tend to restore-the beam (o its
ariginal condition. This set of forces constitules a couple called the balancing couple or
restoring couple. The moment of the couple is referred 10 as the moment of the
resistance to bending. When the beam 3 in equilibrium, the moment «f the resistance to
bending is equal to the bending moment. You may now like to know the factors on which
the bending moment or the moment of the restoring couple depends.
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6.2.2 Bending Moment

Let us consider a small portion of the beam shown in Fig. 6.6(a). It is bent in the form of an
arc subtending an angle 6 at the centre of curvature O. Let R be the radius of curvature of the
pant ab of the neutral surface. Then the length of portion a’s’ of a filament which is at a
distance z from the neutral surface (fjlament), will be given by

ab’'= (R+2)0

M
D L o] F
T e
:l/ N
T T

Fh.“:(l)hﬂﬁlmnadcmdltlanoflhebelm.lmﬂl portlon of It Is consldered 1o bs bent bn the form of &
circular arc subtending an angle © at the centre 0.

{b) LMNT ls a cross-section of the beam which s pemndlcu]utc;ﬂn length and the plane of benidng of the beam.
When the bearh was not bent, the length of this filament was equal to the length of the

neutral fllament. Since the length of the neutral filament does not change even after the
bending of the beam, the original length of 25" = length of ab = RS,

& increpse in length of a'd'= a2’ - ab

= (R +2)0-RO=20 o _ (6.1)
Since the oﬁginﬁl length of a'b’ = RO we have
Longitudinal Strain = increase inlength _ 28 - _ z (62)

original length =E§ "R

Let us consider a cross-section LMNT of the beam which is perpendicular to its length and
the plene of bending as shown in fig. 6.6(b). In this cross-section LMNT, if we consider a
small area @, which is at a distance z from the neutral surface, then the strain produced in the
filament passing through this area will be ;7 .

As explained in the previous sub-section, whenever the length of a filament increases, a force
acts on the filament towards the fixed end of the beam. You can calculate this force by noting
that

Y = stress -
- longitudinal strain

or, stress = ¥ x longitudinal strain

where Y is the. Young's modulus for the material of the beam. This shows that stress at this

Areagm Y;T' _ {6.3)
And, therefore, force on area d =ay§ 64)

Moment of this force about the neutral surface

= Ya%z

= Ya% (6.5)

Since the moments 6f the forces acting on both upper and lower halves of the cross-section
.are in the same direction, the total moment of the forces acting on all the filaments in the
saction LMNT (or in the beam} is given by :

e —— | e ey
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z_Y;;z! YEz——I | : (6,'6)
where !,‘=; %, azt jsihe geometrical moment of inertia of the beam. Thus.tlaebendmg .
m-of-ﬂle-benn(ormommtofmemmgwuple) =E!

You will now like to kriow hew the moment of the restoring couple is related to the
depmmonmmefreemdofdnmnlever

6.2.3 Depression at the Free End. of a Cantilever

Consider a cantilever of length /. Let us choose x -axis along its length and y-axis vertically -
downwards, as shown in Fig. 6.7. When the free end of the cantilever is loaded with a load
W, the maximum depression occurs at the free end. Consider a section P of the- beam at 2
_dimnce x from the end A. Due {o the load, W,, the bending moment acting on this section

is given by =W, X PB =W, (/~x). Since the beam is in equilibrium, this must be cqual to '
% the moment of resistance 10 bending, that is,
W, () = 2% | , 6N
U, S
A= j Yy > x
! : -_-,..--- 6
i .
1 .y
1
|
y W,

Flg. &7: Cantilever loaded st the free end. AB nepresents the newtral axis of a cantifever of length /. When losded
= B, jthe neutral axis takes up the position AB” and the end B ix depressed by 8.

Since the neutral surface remains flat, the radius of curvature (R) of the neutral surface at any

1 . dy

-given point is given by lhc relation R - de

Substituting for & in Eq.(6.7}, we have

W, (i-x) = Yi, ‘g

dy W,
or 2= I, - (6.8)
Integrating Eq. (6.8) twice with respect to x we get the depression (8) at the free end as.: .

W,
L
% =3vi, 6.9)

p
Thuys the free end of the cantilever is depressed by 37,

SAQ 1
By looking at Eq. (6.9), name the factars on which depression of the free end of the
cantilever depends.

" Young's Modulas for :
_h!.nhrlally Bending
. Beamma -

'.l

Zar? |s the geomesricsl moment of
inertia of the section of the beam -
about the neatral neface. Therefoce,

- it bs'oqual o AL2, whero A s the

whole area of the surface LMNT of
the bexm and k Its raclius of gyration
about the neviral srface. Fora
rectangular cross-section, .
Ambxd mnn-"—"?
Mbhmhﬂaﬂd&wm

Refer 10 any clementary book on
differential caiculus for the complee
expression |

’

. Rykdd)
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Sime%«:cldnewmullhmdins

£ bl

b=

ntegrating Eq. {6.8) with rezpect to
X we get

LA '
" vy 70

\\r"l’ueC.hlcaumlof
integration.
When =0, %-o.l-lemc.-o.
- L U
e i, {fxc 2)
Again integrating, ‘we have

o d (12 g
Yig 276

At the free end of the beam, ©a {
=(length of the beam), y = &
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Let us look back at Fig. 6.2. If the lengih of the beam AB be Z, then the length of each
-contilever AC or-BC will be L/2. Since the reaction at each lmife_-edge i8 %. we can regard
that each cantilever (AC or BC) i_s_ loaded at the free end by & load % Then Eq. (6.9) can be

useq to _r.:omphte elevation of A or B above C by substituting W, = W/Zand /= Lj2 This

gives '
1(5)
elevation of A or B gbove C = 2 3-”2'
~ 4871,

The elevation of or B above C is the same as the depresiion of C below A and B.

. ?
Therefore, depression (5) at the centre of the beam is § —4;';,? +and
[}
yo WL
Y=y,

¢ the beam is of rectahgular cross-section of width b and depth d, we can wrils

wL® '
AT yy: (6.10)

. To determine young's modulus of the material of a beam using Eqg. (6.10) you have to

measure the depression at its centre when loaded with a known weight. This depression,
being very small, has to be measured very accurately. For this purpose the most suitable

. instrument igmvelliﬁg microscope. What will you do if you are given a telescope instead of

amicroscope? Can you still measure depression in the beam with the same accuracy? Of
course, by using the optical lever method you can measure depression. But to discover an
answer 10 the second question, you have to measure depression in the beam using

(i) a microscope and (ii) & telescope with an optical lever arrangement.

The apparatus required for this purpose are the following,

Apparatus : - Rectangular beam, two knife-edges, a hook (or a stirrup) for hanging
weights at the centre of the beam, & travelling microscope, a pin, an optical lever, a
iclescope, metre scale, a hanger, a set of half-kilogram weights, vernier callipers and a
KTew gauge.

6.3 MEASUREMENT OF DEPRESSION IN A BEAM
USING A MICROSCOPE

Place the given beam horizontally on the knife-edges, as shown in Fig. 6.8. See that equal
(but small) portions of the beam project beyond the knife-edges and the smaller side of its
cross-section is vertical. Suspend a hanger (either a hook or a stirrup with the hook) for
loading the beam, exactly at the centre, betwesn the two knife-cdges. Auach a small pin

* (vertically) at the centre of the beam with wax for reading the positicn of the beam. Focus

the microscope on the pin and coincide its horizontal cross-wire with the tip of the pin, If
you are not able to focus the microscope on the pin you should seek the help of the
counseilor. Before you start taking observations, you shou!d calculate the least count of the

- microscope. For this purpose find the velue of the smallest division of the main scale of the

T e e B




microscope. Next find the value of a division of the vernier scale, The difference between the
value of one smallest division of the main scale and value of one division of vernier scale
will give its least count. Suppose, 10 divisions of the vernier coincide with 9 smallest,
divisions of the main scale, each of which is'1 mm. Then, we can write

10 vemier divisions =9 mm

2

“ l ” " -

-

Fh.ﬂ:Eapeﬁmmuimmm! fwmmuﬁngﬂagdeptuﬂmof&uhumuﬁn;nnﬂmupe.

=~ least count =1main scale div. — 1 vemnier div.

9 L

—(l - m)rm'n-mmm

| _L
= 100

= 0.01 cm

SAQ 2

Suppose in a vernier there are 50 divisions equal to 49 mm on the main scale. Find out the
least count of this scale,

-

Now read the main scale and the vemier scale readings. This is the reading when no load is
placed in the hanger. Record it in Observation Table 6.1. Next, without disturbing anything
at all, place a weight of hatf-a-kilogram in the hanger. Is the tip .of the pin visible in the
Tield of view of the microscope? If so, does the tip of the pin coincide with the horizonta!
cross wire? We expect that it will not because the beam has been depressed. You will
obscrve that a gap appears between the tip of the pin and the horizontal cross wire. Slighty
move the microscope vertically downward so that the tip of the pin again coincides with the.

cross wire of the microscope. Again note the main scale and the vemier scale readings.
Record this in Observation Table 6.1,

Increase the load in equal steps of half-a-kilogram. Note the position of the pin by coinciding
it with the horizontal cross-wire in each case. Now remove the weights gently in the same
steps and note the microscope readings. This is to be repeated till there is no weight on the

hanger. The weight should be placed or removed from the hanger very
gently. :
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Observation Table 6.1 : Measurement of depression using a microscope

Properties of Materiahe Value of 1 ssnall division of the main seale of the microscope = .. cm
Value of | vemier scale division = _..cm -
Least count of the Microscope = e €M
51 Load (W) placed Microscope reading when the Depressian (8)
No. on the hanger lip Pﬁhe pin coin?ids with the “{cm}
. ® horizontal cross-wire -
with load with load Iien
increasing decreasing {cm)
(zm) 'wm)
L ]
2 S00
3. 1,000
4, 1,500
5. 2,000
6. 2500
7. 3.000
8. 3.500
SAQ 3

Why is it necessary to take reading with decreasing load as well?

This will give you two reatlings for each load — one when the load was increasing and the
other when the load was decreasing. Compute the mean of these two readings for a given.

load. Calculate the depression produced in the beam for each load by subtracting the initial
mean reading from the mean reading for that particular losd.

Plot a graph between the load {along x-axis) and depression (along the y-axis). Draw a
smooth best straight line passing as closely as possible through the points, as shown in
Fig. 6.9. Calculate the slope of the straight line by choosing two widely separated points.
The slope will give you the value of &/W.

12

¥

Deprosion {om)—w

x
Losj {g) —»

Flg. 6.9: Graph of load (W) vs. depression (5}
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Young's Modules for o

6.4 MEASUREMENT OF DEPRESSION IN A BEAM Mol by Beoding of
USING A TELESCOPE AND AN OPTICAL |
LEVER

To measure the depression of the beam using a telescope you will require an optical 1:ver and
& lamp and scale arrangement. (An optical lever consists of a plane mirror mounted on a
tripod stand.) First place the beam as in the previous part of this experiment. Remove the
vertical pin and replace it by an optical lever such that the two legs supperting the mirror
‘M" rest on the fixed horizontal base F behind the beamn and the third leg L rests on the beam
at its centre C, as shown in Fig. 6.10. What will happen if you place the two legs
suppbrting the mirror on the beam and the third leg on a base? If you do so the depression
will not commespond to the one at the centre. It is important te adjust the miryor so that it is

vertical and parallel 1o the length of the beam.

Fig. 6.10 : Experimental amrangement for measuring the depression of the beam using a telescope and oplical
lever.

When a load is placed on the hanger, depression is produced in the beam. As a result, thé leg
of the optical lever, touching the centre of the beam, goes down,.This tilts the mirror
forward. So, once you measure the angle through which the mirror tilts, you will be‘able to
find out the depression. This requires the use of a telescope and scale. Let us see how.

Fix a vertical scale in front of the mirror at a distance of about one metre on a rigid stand.
Place the telescope close to the scale and at the same height as the mirmr. Focus the eye
piece so that the horizontal cross wire of the telescope is distinctly visible. Now fdcus the
teiescope on the image of the scale in the mirror. For this focussing you may have to turn
the mirror slightly about its horizontal axis. If you are not able to focus the image of the
scale clearly, you should not waste time. You can consult your counsellor. Note the
position of the horizontal cross-wire on the image of the scale and record it in Observation

Table 6.2.

What does the position of the horizontal cross-wire signify? Let us observe Fig. 6.11. Here
M, is the position of the piane mirror. Division A of the scale.is seen in the telescope after
reflection from plane mirror. This meens that what you have recorded infact is division A of

the scale,

Tesbcope

Fig. 6.11: lllustrating the principle underlying the use of oplical lever. 2
. 13
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‘Some Experlnents on Now gently place a load of 500 gm on the hanger. This would depress the beam slightly. As

:m'mmm a result of this the mimor will tilt forward through an angle, say, 8. We know that when a
beam of Jight falls on a plane mirror, which is tumed through an angle 8 about a vertical
axis in its plane then, the reflected ray turns through angle 26. Hence now instead of division
A of the scale the division B (se¢ Fig. 6.11) is seen in the telescope after reflection from the

plane mirror. Record it in Observation Table 6.2.
" . Observation Table 6.2 : Measurement of depression using o telescope end an eptical lever
" Distance D of scale from mimor L J an

Dfm:o!'mefm-\mfoomfdn_opdcd A s M
leyer from the line joining the other two

Sl | Losd (W) placed Position of the horizontal d 5=£
No. onlhehmgu(a)l cmss-wueofd:el.e.kscope . {em) ) (.:2.-,?)
increasing decreasing {fem)

1 0
3 500
3 1.000
4 1,500
5 .2,000
6. 2,500
7 3,000
8. T 3500

lfmedism'ncz-betwmthetwodivisions:ﬂandB on the scale is represented as 4 and if D is
the distance between the rnirror and scale then

d -
20-—D

If the third lﬁg is at a distance of x from the hind legs P and O, then the depression, 5, of the
beam is given by
& =x0
xd

=D . (6.11)

From this refation we find that once x, d and D are known, 8 can be readily computed.
Measure the distance D between the mirror and the scale. To measure x, place the optical
lever on & sheet of paper and by pressing it lightly produce impressions of its feet on it.
From these impressions determine the perpendicular distance of the front foot of the optical
lever from the line joining the two hind fegs. It will give x. _Using Eq. (6.11) find out the
depression of the beam for load of 500 gm. Increase-the load on the hanger by equal steps of
half-a-kilogramme. Note down the position of the horizontal cross-wire of the telescope on
the image of the scale after each addition of load.

Next, decrease the load on the hanger by the same stages. Note down the position of the
cross-wire on the image of the scale in the mirror after the removal of each load. Record it in
Observation Table 6.2, For each load, find out the mean of the two readings — dne taken
while increasing the load and other while decreasing the load — of the cross-wire thus
obtained. Calculate d, for each load, by subtracting the initial mean reading from the mean
reading for that pasticular loed. Using Eq. (6.11) find out the depression of the beam for each
load'and record it in Observation Table 6.2. Plot a graph between load (W) along the x-axis
and depression (5) along y-axis. Calculate the slape of the straight line thus obtained.
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6.5 COMPARISON OF ACCURACIES OF ABOVE
METHODS BY DETERMINING YOUNG’S
MODULUS

To know Young's modulus your must measure the thickness and width of the beam and its

length between the knife edges. To measure the length of the beam between the knife edges,

you can usc a metre-scale. Using different parts of the scale, repeat the measurement several
umes and get the mean value. Record your rcadmg in Observation Table 6.3(a).

omuuhbuu(-):wm(momn'mmhmeénmmifmmu_nda.

5. No Scale reading for Sulerudmgfor Length Mean
the knife-edge A the knife-edge B {y=x)cm. length
x(cm) - ¥(em) _ L{em)
1.
,
3.
4.
SAQ 4

Instead of measuring total length of the beam you are measuring the length of the beam
between the two knife edges. Why?

Usc 8 screw gauge to measure the thickness of the beam at several places along its length.

Mzeke your own Observation Table 6.3 (b) and calculate the mean thickness. Stmilarly take 8
number of readings to measure the width of the beam with vemier callipers at several places.

Record the' readings in Observation Table 6.3 (c). Calculate the mean value.
Observation Table 6.3(b) : Messurement of thickneis (d)

Least count of the screw gauge L IS cm
Zeroerror (if any) L om
Zera correciion (if there is zéro error) [ T cm
(
Mean Value - e - an
Conrected value (if zero comection ismade) = .ooovnivoieeeee. €M

Young's Modolus fer »
Material by Banding of
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. Observatlon Table 6.3 (¢) : Measuremeént of width (B) .

Least coumt of the vemnier callipers L J— |
Zero exror (if amy) CJ— - | |
" Zero comrection (if there is zero emor) L yrees €M
Mean Value ' B rresseeeeneseneeees an
Corrected value (if zero correction is made) L — am

Knowing L, b, d and the slope of the straight line cbiained in the Section 6.3, you can

. easily calculate Young’s modulus of the material of the beam using the Eq. (6.10) as

follows :
J5! x 1
4hd? 7 slope

T dynes em-2

Result : Young's modulus of the material of the given beam using microscope
T \ || |3

Next, using the slope of the straight line obtained in the Section 6.4 in the relation

Lo fnde .
Y = o5 % slope find out the value of Young's modulus

Result : Young's modulus of the material of the given beam using telescope and optical
lever = ... Nm2,

The accuracy to which the depression is measured using a microscope is equal to the least
count (L.C.) of the microscope. '

.- Suppose, L.C. of microscope = 0.001 cm.

In the case of optical lever arrangement, the least count of vertical scale is, suppose, 0.1 cm.

This is multiplied by the factor x/D (see observation Table 6.2). If D = Im = 100 cm and
x_ 3 _

.r-3cm.thenD- 100 0.03.

Hence the least coum of measurement of depression by the optical-lever-arrangemient = 0.1 x

0.03 = 0.003 cm.’

L.C. (microscope) _ 0.001 _ 1
L.C.(optical-lever) ~ 0.003 ~ 3

Ratio :

"I‘his.'shows that measurement of depression and hence of ¥ is about three times more
accurate with microscope than with-an optical-lever arrangement. But an optical iever method

[t




can also give better results than microscope method. For this you have to think of ways to
improve upon the least count of the measurement of depression by optical-lever arrangement.
You may, for instance, use a half-millimetre scale instead of metre scale. The least count of
the measurement of depression with the optical-lever airangement depends on (i)x, the length
of tilting arm of the optical lever and on (ii) D, the distance between the mirror and the scale.
Try to adjust these factors so that the opncal -lever method is more accurate than the

microscope method.

Young's Mcdulus for ».
Materisl by lndh. of .
Beama
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Ohm's law stales that cumem
flowing through a conductor is
directly proporional ta the
potential differenice ecross it.
provided temperature and other

physical conditions like pressure,

shape and size romain the same.
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EXPERIMENT 7

MEASUREMENT OF LOW RESISTANCE
USING CAREY FOSTER’S BRIDGE

Structure

7.1 Introduction .
Ohjectives

7.2, Wheatstone's Pridge
Carey Foster's Bridge

7.3 Setting Apparatus

7.4 Procedure

Detesmination of Resistance per Unit Length
Determination of Unknown Resistance

7.1 INTRODUCTION

You must have handled electrical appliances like electric heater, electric iron, and geyser at
your home, Have you ever thought as to how electric current flows throught these
appliances? Which material is used in the heating element and why? We know that every
material offers some resistance to the flow of current, How does this resistance arise and
what factors determine it? Is it the same for all materials? You must have leamt answers to
these questions in your school physics course.

Suppose we wish to regulate the flow of current in an electric circuit. Al we need to know
is the resistance of the circuit. Similarty, to produce the desired heating effect we should
know the resistance of the heating element. Depending on our requirement we have to design
resistors of different values from several million ohms 1o a fraction of an ohm. One metre of
copper wire, normally used in electric connections in a physics laboratory, has a resistance of
about 0.02(). When a very delicate electrical instrument like ballistic galvanometer is used

in an electric circuit, a shunt in the form of wire of low resistance (~ 0.1 £ or less) is used.
In power transmission also, it is desirable 10 use cables having low resistance so that power
loss is less. On the other hand, when we wish to regulate current in a circuit, a variable or a
constant high resistance is used. In commercially produced resistors. resistance is provided by
a thin layer of carbon. These are commonly used in radio and T.V. circuits. This raises a
vety important question. How to measure resistance over the entire range from

105Q down to 10*Q2? To be able 10 answer this question, you should first know to measure
resistance.

The resistances of the order of a few ohms (1 — [00€2) can be measured by methods which
depend on the direct application of the ohm's law. You must have used this law in your
earlier classes to measure resistance. For a low resistance, these methods are not reliable. So
we have 10 look for altemmative methods. Usually we measure a low resistance using methods
based on the principle of Wheatstone's bridge. These include a post office box, a meter
bridge and a Carey Foster's bridge. In this experimen1 vou will learn to use a Carey Foster's
bridge. Now you may logically ask: Why do we prefer it ? You wili be able to answer this
and other related questions after doing this experiment. In fact our basic purpose of asking
vou lo perform this experiment is (i) Lo reinforce your knowledge of ihe concepts involved in
resistance measurements, (ii) 1o make you familiar with the instruments used in clectrical
circuits in a physics laboratery, and (iii) to develop in you the skills and confidence required
in making measurements with viectrical equipments,

Obijectives

After doing this experiment you should be able to
e make electrical connections on the basis ¥ careuit diagrams
e acquire the skills of making measurcriznis using null (nc defiection) methods

IOEE

1T

e et

Ll ol

T T P r—




e appreciate the role of contact resistances {or loose connections) in electrical circuits .
e measure a low unknown resistance.

7.2 WHEATSTONE’S BRIDGE

A Wheatstone’s bridge circuit diagram is shown in Fig. 7.1. Here P, Q, R and § are
resistances in the arms AR, BC, AD, and CD respectively, and G, connected berween 8 and
D, is a galvanometer. You will note that a galvanometer has no positive and negative
terminals marked on it. I[ shows deflection on both sides of the zero mark, which is in the
centre of the scale.

Fig. 7.1 : Circuil diagram of Wheatstone's bridge

When junciions B and D are at the same potential, no current will flow through the
galvanometer. This is evidenced by zero deflection in the gelvanometer. The bridge is then
said to be balanced. For e balanced bridge, the following condition holds good:

P R .
05 _ (7.1)
From this equation it is clear that an unknowi resistance can be found if we know the nihe:
three. However, for maxinium sensitivity it is important to ensure thart all four resistances
are preferably of the same order of magnitude. This means that if the unknown resistance is
low, the bridge will be most sensitive when other resistances are also low.

The principle of Wheatstone's bridge forms the basis of many experiments/instruments in a
physics laboratory. The more familiar of these instruments are the Post Office Box, the
slide-wire bridge (also called the metre bridge). the Carey Foster's bridge and the
potentiometer. In your physics laboratory, you will get an opportunity to work with the last
two.

" Let us now pause for a minute and ask: Why do we use Wheatstone's bridge to measure low
resistance? This is essentially because it is a null method. This means that when the
bridge is balanced, the detector, a gelvanometer in this case, registers no corrent. That is,
there is,no deflection in the galvanometer and (he pointer remains stationary at zero.

Check Your Progress i
(1) Write True or False against the following starements

a)  The key k, in Fig. 7.1 should always be lgefat inserted In the circult, G

b)  1f we know the values of resistances in any three arms of a Wheutstone’s bridge,
the fourth one can always be found irrespective of whether the bridge is balanced
or unbalanced. ....civvienineininn,

c)  For maximum accuracy, P, Q. R and § should preferably be of the same order of
magnitude. ...,

Messuremeeat of Low
Reslstance using Carey

Foster’s Bridge
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Some Experiments on
Mechanlcal and Electrical
Properties of Matsrlals

7.2.1 Carey Foster’s Bridge

The Carey Foster's bridge works on the principle of the Wheatstone's bridge. The Carey
Foster’s bridge alongwith its electrical connections, is shown in Fig. 7.2. Tt has four gaps in
the copper strip. Two known resistances P and Q (preferably equal and small) are inserted in
the inner gaps at x and y. A galvanometer is attached between the terminal B and the sliding
tapping key (cr the jockey) at D. One known ( preferably a standard) resistance R and an
unknown {low) resistance § are introduced in the outer gaps at m and n, respectively. A
bartery, a key and a theostat are inserted between the terminals A and C. A one metre long
uniform resistance wire EF is mounted alongside a metre rod, and is soldered to the two ends
of the copper strip.

‘-'n-ll- , 1
8- x. ,m.[“

-1

When tha contact between the

. two wires {or between a KTow and
" mwire) i not good, the ares of
. ¢Tosa saction at the contact

-20

becomnes vary small. This
introduces a signlficane retlstance
in the elrcult which we call the
contact rmistance. In the
slide wire and Carey Foster's
bridge, the contact reslxtences are
usually referted 1o a1 end-
reskstances or end-
errora.Usually, these are low, of
the order of a milli-chm. The
CONtACt resistances assume
importance anly in low resistance
measurements. It is for this
reason that (1) you should clean
the heads of all connecting wires
with sand paper and {jl} the
connecticns munt be tight.

L/ ANANAN

Fig. 7.2: Carsy Foster's Bridge

You may note that point D is varieble. It can be anywhere between E and F. It marks the
position at which there is no deflection in the galvanometer. It is located by moving the
tapping key over the wire,

Since the wire EF is uniform, we cen assume that it hes a constant resistance per unit
length. Let us assume this to be », Then resistance between E and D is equal to /, » where /,
is the length of the wire ED measured from E, Similarly, the resistance between D and F Is
equal to (1004) r.

The polnts A, B, C and D here correspond exactly to those of the Wheatstone's bridge shown
in Fig. 7.1, The Carey Foster's bridge is thus effectively a Wheatstone's bridge. Then we
may write the condition of balance as

P R + o+

Q- S+B+ (100-1,)r

(1.2)

where o and f are the end-corrections at the left and the right ends.

Next resistances R end § are interchanged, i.e. the resistance in gap m is put in gap 1, and
vice versa. Let us assume ths! the balance point is obtained at & distance /; from E. You will
note that the errors at the ends £ and F stay the same, irmespective of the resistances in the
gaps M and n. Then the condition of balance can be written as

P S+ o F i,

Q R+H+ (100-1)r

(1.3)

Equating Egs. (7.2) and (7.3}, we get

R+ o+ Lr _
S+ P+ (100-1)r

S + o % {1
R+B+ (100-ip)r

Adding one on both sides and simplifying the lerms, we oblain

R + S+o0+8+100r

N+ S+ o+ B+ t00r
S+8 - (100-ipr -

R+B+ (100-1)r

(7
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You w:ll note that in this equation the numerators are equal. So the denommators must also
be equal. Therefore, we can write

S+ B+ (100-4)r =R + B+ (100-1)r
giving

R-S=(~l)r (1.5)
L&t us pause for some time and ask : Howdmﬂﬂsmlaﬁmcrmbleustodewnnhwﬂw
value of a low resistance accurately? It shows that the difference between the known and the
unknown mnsmncelsequnlwdnmmanceoftbebndgewmbemeenﬂ\emwm
points, Once we know (I; - I), r 2rd R ,the unknown resistance can easily be determined.
Now you may like to know: Is there any limitation of this method 7 Yes, there is one. The

diﬁaembemmﬂwhommdmeunhmmmmmmbemmmem
rmstpnccofthebndgcwu'e ‘When this condition is not satisfied, the method fails.

~ Check Your Progress 2
(1) Write True or Faise against the following statements

(® To find the balance point (D) on the Carey Foster’s bridge, we slide the tapping
key along the bridge wire, tap it gently at different points, and look for the ’
position at which deflection in the galvanometer beCOmEs ZEIO. w.ovurarimrrenss

(o) The bridge wire may or may not be uniform. ...........

(©  If the soldering of the bridge wire with the copper strip is weak, the contact
resistance is large........c.co...

@ The Wheatstone’s bridge is more sensitive when the resistances in the four arms
are nearly equal.......ecoeeine.

(2) Write the reason for your answer for 1(b}

Before we describe the procedure to determine the value of low resistance, let us list the
epparatus with which you will work.

Apparatus

Carey Fpstcr;s bridge, two resistors; each of about 2Q(or rwo resistance boxes), thick
copper strips, standard low resistances (or a fractional resistance box), a battery, a one-way
key, a theostat, a sensitive gaivanometey, and an unknown low resistance

7.3 SETTING APPARATUS

1. Place Carey Foster's bridge apparatus on the table and keep it in such a way that the
' gaps in copper strip are away from you. .

2. Clean the ends of the connecting wires with sand paper.

Identify and mark the various terminals of the Carey Foster's bridge by compaﬁng them
with Fig. 7.2.

4. Connect the galvanometer between B and the sliding key at D.
Connect the given resistance coils (or the resistance boxes) in.gaps x and y.

6. Connect the standard resistance (or the fraction resistance box}, and the unknown low '
resistance in gaps m and .

7. Connect a battery, a one-way key and atheostat between A and C. For connecting the
rheostat, you should use one of its lower tcrming.ls and an upper one,

8. Check that connections (and keys in resistance boxes, if used) are tight.

9. Move the slider of the rheostat towards its lower terminal which is connected to the key
and the barttery.

‘Meazorement of Low
Rulstance mlog Carey
Foster's Brldn
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Seme Experiments on 10. If resistance boxes are used, take ut resistances of, say, 20 each from the boxes in the
Proparties of Materials inner gaps at x and y.
"11, If fractional resistance box is used, take out a resistance of, say, 0.182 from this box.

12, Insert the key in the battery circuit. Gently tap the jockey near the end E. The
galvanometer will show deflection on one side of the zero mark. Now move the sliding
key to the other end (F) and again tap it. The galvanometer should show deflection on
the other side of the zero mark. Only when you have ensured this, can you be sure that
your circuit connections are correct and you can begin to take observations. If you do
rot get deflection on both sides, you should check your connections again and repeat the
above procedure. If you succeed, fine. Otherwise, you should take help of your -
counsellor without spending any further time. (Only when you are fully oonvmced.
should you pmeead further.)

I

7. 4 PROCEDURE

Thls experiment Il 1o be done in two parts, In the first part, you have to find r, the reslsumcc
. of the bridge wire per unit length, In the second part, you determine the lengths /, and [,
These two measurements then give us the unknown low resistance.

7.4.1 Determination of Resistance per Unit Length

1. Connécta ﬁuﬂoml resistance box (or the standard resiatance coil) in the right outer gap
n and a thick copper strip In the left outer gap m. (If a fractional realstance box ia used,
yout take out a resistance of 0.102.) Let ua denote it as R Q.

2. Locate the balance point by moving the sllding key over the bridge wire and tapping it
gently at different points. The deflection wiil become zero at some point on the wire.
(At the balance point, the galvanometer needle should not move at all.)

3. Notethe position of the balance point {with the help of the meatre scale mounted along
the bridge wire) and record your observations in Observation Table 7.1, This gives us/’

4, Now, interchange the positions of the copper strip and the fractional resistance box (or
the standard resistance coil) and again obtain the balance pomt Record it again. This
gives us {3 Calculate resistance per unit length of the wire ising the relation

r-Rm t1h

5 Repc.al this procedure at least four times by taking out different values of the resistance
from thie fractional resistance box (or by using different slandard remsmnce coils).
Compute the mean value of r.

Observation Table 7.1: Del.ermlnallon of Resistance per unit.Length of the Wire

S. Fmctional - Balancing lengths Difference in = —}—;
No. Resistance when R is in gap balancing l.,,_—l,'_
RO em} - lengths - Qem!
‘1'4;
(cm)
] m -
L N
fom) {om)
- L 1
2,
3
4,
L3

22 - Mean value of rm ..o, c071

ey e s

ol

e




7.4.2 Determination of Unknown Resistance
1. First remove the copper strip and insert the unknown resistance in one of the outer gaps,

2, Repeat the entire sequence of steps given in Subsection 7.4.1. Make your own
Observation Table and record the data. Compute R uging Eg. (7.5).

You are bound to face difficulty in locating the balance point if the differénce in the
known and unknown resistances is-more than the resistance of the bridge wue In such a
situation, you should changc the known resistance in small ateps,

Observation Table 7.2

Mean value of R m ............. 0}

Do you get consistent values of R in each case? We expect 50, Estimate the instrumental
error.

Measurement of Low

Resistance using Carey

Result : The low resistance determined by using a Carey Foster's bridge = ..uuvucrnnceen. Q-

We now want you to think and answer the fbllowing questions :

SAQ 1

Can you determine r by plon;lng a graph with the measurements recorded in Table 7,17 If
yea, plot this graph, If not, say why 7-If you have plotted the graph, what is the shape of the
curve obtalned and how does your graphical value compare. with the one found abova? Does
Eq. (75)indicaae anything about the nature of this curve?

SAQ 2
Imagine that the values marked on standard sesistances are nol correct. What poss:blc errors
do you expect in your result ¢

Foster’s Bridge
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SAQ 3

Suppose that the total resistance of the bridge wire is 0.2 Q. You have two standard
resistance coils of 0.3.£2 and 0.4 €1, respectively. You'are asked to make an unknown
re.snstancc using these two co:ls and perform the experiment. How would you do that?
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EXPERIMENT 8

VARIATION OF THERMO-E.M.F. WITH
TEMPERATURE

Structure
8.1 [Introduction
Objectives

8.2 Potentiometer

8.3 Fabricatipn of Thermocouple

8.4 Measprement of Thermo-e.m.f. of a Thermocouple and its variation with Temperature
Procedure

8.1 INTRODUCTION

You all must be familiar with the principle of conservation of energy. Conservation of
energy implies that energy can neither be created nor destroyed. Only the form of the energy
changes from one 1o another. For examptle, in an electric cell the chemical energy is '
converted into electrical energy; and in an electric heater, the electrical energy is converted
into heat energy.Is it possible to convert heat energy back into electrical energy ? Yes.

In 1821, T. J. Seebeck found that if wires of two different metals, such as copper and iron,
are joined together to form a closed loop and if one junction is kept at 2 different temperature
from the other, an el=ctric current will flow in the closed loop, This ph2nomenon is called
thermo-electric effect or Seebeck effect. The two melals comprising the circuit are
referred 10 as a thermo-conple. The existence of a current implies that there is an e.m.f.
(electromotive force) acting in the circuit. This e.m.f. is known as thermo-electric.
e.m.f and the electric current produced in this way is called thermo-electric current.
The direction of the current and magnitude of the e.m.f depend upon the kind of materials
used and the difference of temperatare between the two junctions.

The conversion of heat into elecinicity by metal therme-couples is net a very efficient
process because the e.m.f. produced is very small. But its efficiency is improved by
employing better thermo couples, now available, based on alloys and semiconductors. On
account of their reliability, long life and low cost, thesé are suitable as small power supply
unils in space satellites, weather ships etc. Thermo-couples are extensively used as the
thermometers particularly for measuring varying temperature.

In this cxperiment you will lean to use a thermocouple as a thermometer. In other words
you will investigate how the thermo-e.m.f, varies with temperature.

Objectives

After doing the experiment, you will be able to:

e  appreciate that a small potertial difference of the order of micro volt can be measured
with the help of polentiometer with some modification

e fabricate thermo-couple
e make the necessary experimental set up for the measurement of thermo- e.m.f.

e plot the graph between thermo-e.m.f. and the temperature. 25
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8.2 POTENTIOMETER

You all know that for the accurate measurement of e.m.f. of a cell or potential difference
between any two points of a circuit the most suitable instrument is potentiometer. Yet for

‘'your convenience we will briefly discuss how the potentiometer works.

It is a device which is used to measure an unknown e.m.f. or potential difference by
comparing it with a variable known potential difference. In its simplest form it consists of a

- long piece of uniform wire of fairly high resistance (usually manganin or constantan wires

are used) stretched over a scale of equal divisions. The ends of the wire are connected to a
battery or an accumulator so as to maintain a perfectly steady e.m.f. between the ends of the
wire. The e.m.f. of the battery must elways be greater than the e.m.f. or potential difference
to be measured. If the battery in the potentiometer circuit is not of greater e.m.f., the
potential difference between the ends of the potentiometer wire will be less than the e.m.f. to

* be measured and consequently null point will not be detected. The potential difference per

unit length of the wire produced in this way is called potentisl gradient and can be
calculated by dividing the e.m.f of the battery by the total length of the wire.

To understand the principle of working of a potentiometer let us consider the flow of an
electric current along a conductor AB shown in Fig. 8.1a as a result of a potential difference
between A and B, the potential at A being higher. If at any two points C and D

between Lhe ends of the conductor, a branch conductor CPD is connected to the conductor
AB, then the current flowing along AC will divide at € into two portions. One along CD
and the other along the new path CPD. The greater the distance between C and D the greater
will be the potential difference tending to urge the current along the branch conductor. Now
let us suppose that a cell of constant e.m.f. is inserted in the branch CPD as shown in Fig.
8.1 b. Let P be the positive pole of the cell. Since the potential at P is higher than at N, the

A C - D B
' - +
—
(a)
A C D B
I
Y L
®

Fig 8.1: lilustrating 1he principle of working of 8 potentiometer

current will flow through the branch conductor due 1o potential difference between P.and N in
the direction PCD. If the potential difference between P and ¥ is smaller than that between C
and D, the cumrent in the branch conductor will flow in the direction CPD . When the
potential difference between P and & is greater than that between C and D the current will
flow in the opposile direction i.e. PCD. But if there is no flow of current through the branch
conductor CPD; then the tendency [or the current to flow in the direction CPD is neutralised
by the tendency for the current 1o flow in the direction PCD. This means that the potential
difference between C and D, which urges the current to flow in the direction CPD, is exacily
balanced by (or equal to ) the potential difference between P and N which urges the current in
the opposite direction. The absence of the current in the branch conductor can be shown by a
galvanometer inserted in the branch CPD.

‘Suppose you are asked 10 measure the e.m.f. of a given ceil £, with the help of a
potentiometer . For this purpose, connect a battery E of higher e.m.f. ¢ across the uniform
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mumneewntABoflengthLasshowan'g 8.2, Thenapotenualgndjent— will be

developed on the wire. Let the e f. ofﬂregwencellE.bce.dwnnmybehalamedwith
the potential difference across a certain length AC of the wire. For balancing it, the cell £, is
connected through a galvanometer G such that the positive terminals 'of both the cells meet
at a commeon point A and the negative terminal of the cell E, has a variable contact at the
point C on the wire AB. Two electric currents, one due to.the cell E, and the other due to the
potential difference between A and C; will flow in opposite directions through the
galvanometer, Under the condition when no current flows through the galvanometer i.e. at

nutl point, the e.m.f. of the cell £, mﬂbeequaltotbepotenunldsffermmsﬂnmon :

AC of length ! of the potentiometer wire.
~. e.m.f. of the cell £, = potential gradient x length of AC
Cone=f I=H L @D

where k is the potential gradient on the wire.
g
I II - . ’
e
Lo
5

Fig 8.2: Tllusmting the principie of desermination of e.m.f. of & cell by memms of o potentiometer

-

8.3 _FABRICATION OF A THERMOCOUPLE

When wires of two different materials are gither twisted together or welded at their ends 5o as
1o form a closed circuit, then, on heating one of the junctions, a current flows round the
circuit as shown in Fig. 8.3. The pair of materials combined in this way is called :
thermocouple. In physics laboratory, usually, you may be given a thermocouple but even if
you are asked to febficate & thermocouple, there is no need to worry. You can easily fabricate
a thermocouple. Which two different material you will choose ? In the laboratory you can
find plenty of connecting wires, which are actually copper wires.The wire in sonometeris
made of iron. Hence by using copper and iron wires you can easily fabricate a thermocouple
by following the method given below.

Pass one end of the iron wire down a thin glass tube & as shown in Fig. 8.4 and join it to a
copper wire AJ at J. This will ensure that the wires are in contact at the junction only. Now

Coppet Copper

Fig. B.A: Fabrication of copper iron (hermocouple

to ensure good contact at J, place the combination in a test tube containing a small amount
of mercury and dip the junction Jinto the mercury. Similacly, pass the other end of the iron

wire down another thin glass tube G and prepare another junction J of iron and copper. While

doing the experiment, keep one of the junctions in ice contained in a beaker and Lhe other
junction in a beaker containing water so that it may be heated 1o differcnt temperatures.

" with

' Variation ‘of Thermo-EM.F.
Tempersture

Fig. B3 : Thermo-couple
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8.4 MEASUREMENT OF THERMO-E.MM.F. OF A
THERMOCOUPLE AND ITS VARIATION WITH
TEMPERATURE

As the magnitude of thermo-e.m.{. is very small generzlly of the order of a few milli-volts,
it cannot be measured with the help of potentiometer in the usual way. However, with
certain modification, the ordinary potentiometer may be used for measuring thermo-e.m.f.
This modification is such that it enables production of a potential gradieni of the order of
microvolt on the potentiometer wire, The apparatus required for this experiment is as
follows. '

Apparatus : & potentiometer, a battery of steady e.m.f., a standard cadmium cell, a
rheostal, a resistance box, a high resistance of 15,000 ohms, copper (C) - Iron (Fe)
thermo couple, a sensitive galvanometer, two single-way plug keys, a two-way key,
thermometer, ice, beaker, tripod, gauge, bunsen bumer, multimeter and connecting wires,

SAQ 1
Can you usc a voltmeler to read the thermo-c.m.f. developed in your thermo-couple directly?

In order to measure thermo-e.m.f. make a circuit as shown in Fig. 8.5. Connect a high
resistance R (of the order of 1000 ohm) in series with the potentiometer wire A8 and then
connect this combination to a battery §, of steady e.m.f. with a rheostat Rk. The cumrgnt
enters the combination of R and polentiomeler wire at M and leaves at B, Let a current /
flow through them from the battery §, . Next, join the positive terminal of the standard
cadmium celt § to the higher potential terminal M of the resistance R. The low potential
terminal i.e. point D of the Cit -Fe thermocouple is connected to the jockey so that the hot
jurction of the thermo-couple is towards the jockey. The negative pole of the standard
cadmium cell and the higher potential terminal i.e. point C of the thermo-couple is _
connected to two similar terminals of the two way key K. The third terminal 'of the two way
key is connected to one terminal of the galvanometer G. The cother terminal of which is
joined to the lower potential N of the resistance R. Now if the standard cell circuit be closed
by means of the two-way key and after closing the one way key X, the rheostat RA so
adjusted that there is no deflection in the galvanometer, then the potential difference across
the resistance R will be balanced by e.m.f. E of the standard cadmium cell. We have

E=IR (8.2)

Fig . 8.5: Eaperimenial arrangement for the measurement of thermo.e.m f,

Now let the standard cell circuit be broken and the cold junction of the theromo-couple be
connected to the gatvanometer. Then if J is the position of the null point on the
potentiometer wire. the thermo-e.m.f. of the copper-iron lhermo couple is equal Lo the
potential difference between A and J. If e is the thermoelettric e.m.f. and # is the resistance of
the portion of the wire between A and J, then

e =lr
o, €= Ipl 8.5
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where p is the resistance per unit length of the potentiometer wire and / is its length between -

A and J. Using Eqgs. (8.2) and (8.3), -

e =88 8.4)
Knowing (i} the e.m.f. £ of the standerd cell, (ii) resistance per unit length of potentiometer
wire, (ii) high resistance from resistance box required to produce.the null point with the
standard cell and (iv) length of the potentiometer wire at the null point with the
thermocouple, we can determine the thermo-e.m.f. with the help of Eq. (8 4} If-the
temperature of the hot junction of the I.hcrmocouple is changed, the theromo-¢,m. f. is also
changed. By measuring thermo-e.m.f"s at various temperatures (7) of the hot junction, you

can draw a graph between ¢ and T. Thus you can observe the variation ofthermo-e m.f. wnh

temperature by following the procedure given below.

8.4.1 Procedure

(l). Measure the resistance and the length of the potentiometer wire using a muitimeter and a
metre scale respectively. Calculaté its resistance per unit length (p). Record it in
Observation Table 8.1.

(2) Make the electrical connection as shown in Fig. 8.6 and as described above . The
ends of the connecting wires should be clean and the connections
should be firmly made. Here the positive terminal of standard cadmium cell § is
connected to the higher potential terminal M of the resistance box R through a high -
resistance R, of about 15,000 ohms. This is done to protect the standard cell because
this will prevent large currents from being taken the cell. Connect a plug key X, across
R,.

Flg. 8.6 : Circuit diagram for studying the variation of thecmo-e.m.f, with temperamure

SAQ 2
Will the resistance R, affect the position of balance while measuring thermo-electric e.m.£2

(3 Toinvestigate how the thermo-e.m.f. viRies with temperature, you have to keep one
junction of the thermocouple at constant lerperature whereas the other junction should
be heated to different temperatures. Insert one junction of the thermo-couple into the
pieces of ice kept in a beaker. Its temperature is 0°C, (cold). Dip the other junction into
a large beaker containing water. When the beaker is lieated by a bumer, the junction of
the thermo-couple is heated to different teinperatures (hot). Insert 2 sensitive
thermometer into the water kept in the beaker. See that the bulb of the
thermomeler is very iiear the hot junction.

{4} K the cold junction of copper-iron thermocouple is at 0°C and the hot junction at 100°C,
tilen tiie thermo-e.m.f. developed will be ahout 1300 microvelt. To measure it, a
potential difference of 1000 microvol: has to produced between the points A and B of the
potentiometer wire. In other words a potential difference of 1 microvelt per centimeter of
the wire has to be produced. For this purpose, a suitable resistance is to be put in box R
so that the potential difference per em. of the wire is 1 pV. Adjust the Tesistance in the
box R to about a thousand ohms, preferably to 1018.3 ehms. Record it in Observation

Varistion of Thermme-E-M.F.
with Tempersiure
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Table 8.1. Shunt the gatvanometer. Close X, but keep X, open and then connect the
negative terminal of the standard cell to the galvanometer by closiig the key X, (towards
the standard cell side). Adjust the rheostat R% until there is practically no deflection in
the galvanometer. Then remove the shunt from the galvanometer, close X; and adjust
the rheostat Rk finally until there is no deflection in the galvanometer, This exactly
balances the potential difference across R by the e.m.f. of the standard cell. This means
that the potential difference across R is equal to the e.m.f. of the standard cell. You
know e.m.f. of the standard cell is 1.0183 volts, Therefore, the current flowing through

) _1.0183 volts _
Ris IlmA (Cum:nt = 1018.3 ohms — imA). This means that the current through the

potentiometer wire is also ImA (R and potentiometer wire being in series). If the
resistance of the polcnumnctcr wire is exactly one ohm then the potcnual difference
across the wire will be LmV since the current flowing in the wire is ImA. As there are
-1000 divisions on the measuring scale the potential gradient will be cxactly equal to one
microvolt ds desired. .

SAQ 3
A shunt is connected across the galvanometer. But while determining the exact position of
the null point it is removed from the galvanometer, Why ?

(%) Check whether the positive end of the thermocouple is joined to the end A of the
potentiometer wire. To do this, make R = 0, allow the jockey to touch the beginning of
the wire and note the galvanometer deflection, Now bring the jockey in contact with the
end of the wire. If the aeflection is opposite to the first, the positive end of the
thermocouple has been joined to the end A of the potentiometer wire. If the deflection is
not opposite, then reverse the connection of the thermo-couple i.e. the terthinal
connected to the jockey be now joined to the end A and vice versa. Then put resistance
in the box R as was done in step (4) and proceed for making observations.

SAQ 4
What is the direction of current in your copper iron thermo-couple?

{6) Now the hot juncticn is immersed in water at room temperature. Note this temperature

and recotd it in Observation Table 8.1. Since one junction of the thermocouple is at 0°C

and the other is at room temperature, a thermo-e.m.f. will develop. If you can find the
length ! of the potcntiometer wire across which the potential difference exactly balances
the thermo-e.m.f. then, using Eq. (8,4) you can easily calculate the themo-e.m.f. ar -
room temperature. For this purpose open X, and shunt the galvanometer agairi. Cloge
the two-way key K on the thenno-couple side so that the cold junction of the thermo-
couple is connected 1o the galvanometer, Obtain an approximate position of the null
point (i.e., the point where the galvanometer shows no deflection) on the wire by
sliding the jockey on the wire. Jockey should be preased momentarlly and It
should not be slided over the potentiometer wire. Now remove the shunt
from the galvanometer and determine the exact position of the null point of the
potentiometer wire. Note down the number of full wires and the length of the
potentiometer wire between the pojnt A and the jockey in the Observation Table 8.1.
Find the equivalent length of the poteitiometer wire. Then calculate the value of
thenmo-e.m.f. frtom Eq. (8.4). It will give the value of thermo-¢.m.f. at room
temperature.

'(7) Heat the water containing the hot junction of the thermo-couple to a high iemperature
- (i.e. close Lo the boiling point of water) by means of bumer. After heating, allow it to
cool. As it cools, measure the thermo-e.m.f. after an interval of tempermture of about
10°C until the temperature of the hot junction has fallen to about room temperuture. For
different temperatures of the hot junction, observe and record the position of the null
point in the Observation Table 8.1, Remember that reading of length should

[ L g I R




be taken first and then that of temperature. During experiment, the cold Variation of Thermo-E.M.F.
with Temperature

* . junction of the couple should always remain at 0°C. For this purpose it is necegsary that
mass of ice should be poked from time to time. For each observation calculate the value

of thermo-¢.m.f. and record it in Observation Table 8.1.

El

Observation Table 8.1: Variation of thermo-e.m.f. with temperature

@ EMF. of the standard cell, E = .o VOI
@) Resismnce per unit length of the potentiometer wire, P = .ouvue.: £2 em1,
(i)  High resistance R = wocecrrrn: £ )
sl. Tempennure of hot Length of the paweniiometer Thermo-e.m.f.
No Junction {T) wire balanced bry the thermo- -t in microvolt : ]
0 couple oE
few ?D
No. of Position of the |  Total
full wires null potnt (cm) | length
{em)
1. (room tcrnpera;mc)
2 1
]
3. -
4.

Draw a graph between the temperatures of the hot junction of the thermo-couple and the
thermo-e.m.f. developed. Plot temperature along Lhe x-axis and the thermo-e.m.f. along the
y-axis. The graph, in general, should be a parabola as shown in Fig. 8.7a. But within a short
range of temperature as in the present case (0°C-90°C or 100°C). the graph will be a straight

SIMEME TR,

line as shown in Fig. 8.7b. The straight line actually is the straight portion of the parabola.
This graph can be used to determine any unknown tempertature {within this range). E
;
g 4
‘ .
y :
A

Thermoe.mf

[ T

- " x ) : x .
Temperature of hof Junction Temperature of hot (°C) junction
{8) ()

Fig.8.7 : Variation of 1hermo-e.m.{, with lemperature (a) expected (b) experimentally observed

31




32

For Counsellor’s use onl
y

Evaluated by .. Enrolment No.......ccccevireaacae.

EXPERIMENT 9

FREQUENCY RESPONSE OF A.C.
SERIES CIRCUITS

Structore

9.! Introduction
Oblective:
9.2 To Study the Frequency Response of a Resistor, an Inducter and a Caoacnor
9.3 To Study the Frequency Response of RL and RC Series Circuits
9.4 To Study the Frequency Response of LCR-series Circuit
9.5 To Determine the Quality Factor (Q) of a.LCR-series Circuit

9.1 INTRODUCTION

The three important components of an alte.pating curren: c.rcmt ave aresistor, acoil and a
capacitor, These are denoted by

resistor @ by its opposition (R) to cuvrent -
coil : by its co-efficient of self inductance (L)
capacitor : by its charge storing capacity (C)

Al these componenls are an integra! part of the modem electronic devices like radio, TV etc. .

which we use in our home, Though these components find some use in direct current
circuits, their uses in A.C. circuits are enormous. They find application in almost any
electronic circuit and telecommunication system.

To acquaint you with these comp?mcnts. we would like you to investigate their frequency
msponse, which is of help during fabrication and designing of yarious electronic circuits.

If a coil and a resistor eppear in a scries in a circuit, it is called an RL-series circuit. If on.the
other hand, L and C appear in n serigs, it is catled a LC-series circuit. If, however, all the
three components appear in a series, it is called a LCR-series circuit.

You already know how these components affect the flow of curcent in an A.C. circuit. The
opposition offered to the flow of current by a resistor (R) is independent of the frequency of

the current. This opposition is, however, di:pandent or the frequency in an inductor (L) a.nd a
capacitor (C).

In an inductor, sii: oppesitioa to the flow of current is usually referred to as inductive
rerctance X, which is equal to .. Here @ is the angular frequency of the alternating
current. [t implies that if @ increases, the opposition increases. In a capacitor, this
oppasition is referred 1o as capacitive reactance X, is equal 1/C0. Yo increases, the opposition
decrenses, ’

We are sure that you also know that when R, L and C are connected across an 4.C., the
voitage across and the current through them have certain phase relationships. In R, the
voltage and currenl remain in phase with cach other (Ref. to Fig. 9.1). In L, the voltage
becomes ahead of the current by a phase angte of 1/2. In C, the voliage goes behind the
current by the same phase angle. i.e., n/2. If for example, we have an RC-series circuit, the
voltage Vy in R becomes ahead of the voltage V_across the capacitor by a phase angle of
7/2. The resultant voltage is then given by the vectorial addition of the two. Using

Pythagorous theortm, the resultant voltage V = \I E + V¢ z + Similarly, for a LR-series

circuit, V= \)VR! + V¢ . However, if instead we have a LCR series circuit, the voltage
Veand V| get out of phase by an angle of . Furthermore, both V| and V.. are also out of
phase from V| by /2. In such a case the resultant voltage V is gwen by

VaNVE +v - V)2
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Flg 9.1: RLC-Series circuit showing phase relationship in individual component

If the total voltage V in an A.C. series circuit is divided by the total current in the circuit,
we gel the opposition offered to the current in the circuit. This opposition is usually referred
to as impedence and is denoted by Z. For various series circuits, the fol lowing are the
impedences: -

LR circuit VR? + {Lw)?

RC circuit  : VR + 1/C22

LCR circuit : VR? + (Lo — 1/Cw)?

In this experiment you will observe yourself as to how the three compontents L, C and R
behave individually or in combination when the frequency of the applied current is varied
with the help of an oscillator. When the current frequencies are plotted against the valtages
actoss these components, the voltages are found to depend on the frequencies of the applied
currents, These curves are called the frequency response curves.

To obtain frequency response curves you will make combinations of different components
and apply currents of different frequencies to them. The resulting voltages will be measured
with the help of an A.C. voltmeter. You will plot the resulting data, viz., voltages against
frequenties and see the behaviour of the various curves. You will then make your own
conclusions.

In an LCR series circuit, at lower frequencies, the capacitive reactance is large and the
inductive reactance is small. Most of the voltage drop is then across the capacitor. At high
frequencies, the inductive reactance is large and the capacitive reactance is low. Most of the
voliage drop is then across the inductance. In between these two extremes, there is a -
frequency called the resonant frequency f£;, at which the capacitive and inductive reaciances are
exactly equal and neutralise each other. In this case, there is only the resistance R in the
circuit to oppose the flow of current. The current at resonant frequency is equal (o the applied
voltage divided by Lhe circuit resistance, and is thus very large if the resistance is low.

At resonance the current is maximum. Locate the points on your graph where the current is
-707 times that of the maximum current, These two points on either side of fr.may be called
the half power points. The frequency difference A fbetween these points is known as the

band width of the resonance curve. In terms of fr.and the band width Af, we can define a new

- Frequency Response of
"A.C. Serles Circuits

The vollage actoss R is in phase
with the circuit current, aince
current and voltage are in phase in
pure resistive circuits.

The voltage across L leads n2'
degrees since currem Jags the
voltage by x/2 degrees in purely
inductive circuits. .

The voltage scroms C Ings the
circuil current by 72 degrees
since the current kead by x/2
degrees i purely capacitive
cireuit
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term , known as the quality factor. This is equal to f, /Af. The Q is usually used in
designing electronic circuits and the communication engineering.

In the introductory part of your Iabdraiory marjual, we have demonstrated the use of semi-log
graph paper. In this experiment we expect you o use such a graph paper. Thls will help you
in appreciating its use.

Objectives

. After performing this experiment you will be able to: -

o showthe frequency response of a resistor, an inductor and a capacitor

e select the scale and plot experimcr;tall);the deta using semi-log and log-log graph paper.

o calculate the quality factor () from the resonance curve of a LCR- series circuit.

APPARATUS

- Oscillator (10-100KHz, 20V), tesistors (582, 108, 152 and 200 -2W), inductors {(SmH,
10mH, 15mH and 20mH), capacitors {100pf, 200pf, 500pf, 100mf - 20V), carbon
resistances (50012, k€2, 5kQ —14W and 12 W), digital multimeter or digital
microvoltmeter or a.c. voltmeter (0-1V, 0-5V, 0-10V and 0-20V etc.) and a.c. ammeter
(0-1mA, 0-10mA, D-50mA etc.) and connecting wires.

9.2 TO STUDY THE FREQUENCY RESPONSE OF A
RESISTOR, AN INDUCTOR AND A CAPACITOR

Procedure: You arrange the circuit connections shown in Fig. 9.2, Connect the main lead
of the oscillator to the A.C. mains. Connect the resistor R alongwith the external resistance
Rg and A.C. ammeter across the output terminals of the oscillator. The resistance R serves
the purpose of limiting the value of current in the circuit. Hence its value is of the order of a
few hundred ohms. Connect the A.C. voltmeter across the resistor R.

Oueillaror

Milliameter b)
(A.C)

(2)

Flg. 9.2: A.C. serics circuit containing only resistagee (8) Actual diagram (b} Circuit disgram.
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Switch on the oscillator at ieasi half an hour before performing the experiment so that it
gives you stable output. Keep the output of the oscillator at 10V with the help of output
varying knob marked as X, in Fig. 9.2. You can change the frequency of the oscillator with -
the help of two knobs K, and K. The knob X is known as range selector, and knob K as
frequency selector. Select the frequency of the oscillator, say at 100Hz, and measure the
potential drop Vy, across the resistor R. For the measurement of accurate voltage select the
proper range of the voltmeter. For difference readings change the frequency with the help of
knobs K, and K and measure the voltages across the resistor R. Record your data in
Observation Table 9.1. Repeat the above procedure for different values of the resistance.

Current across the Resistor

Observatlon Tablte 9.1 Frequency response of a resistor

S

5. No.

Frequency f(Hz)

Voliage armss the resisior
(... 1) in volis

Voltage across the resistor
{... £2) in volts

L

Now, plot a graph between Vg and f for each value of R on a semi-log graph paper. Semi-
log graph paper is being used to accommeodate a Jarge frequency range along the x-axis.

With the help of these graphs explain your results i.e., the frequency dependence of a resistor

in the space provided below.

A graph between Vp and f

Now replace the resistor R with a capacitor of 100pf and repeat the same procedure. Record
your data in Observation Table 9.2 for different values of capacitors.

Frequency Response of
A.C. Serles Circolts
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Some Experiments on Observation Table 9.2 F. fa itor
cal and requency response of s capaci
Properiles of Materials Current across the Capacitor = ............ mA i
S.No, Frequency f(Hz) | Voltage across the capacitor Voltage actoss the capacitor |
(... pf) G ph)
in volts © involks
5
"Now, you plot a graph of V. vs frequency fon a log-log graph paper. (if you face any
difficulty in the use of log-log graph paper, consult your counsellor present in the
laboratory.) '
i
i
!
E
E
t
B A graph between Veand :
With the help of your graphs outline your results in the space provided below: ,
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Now you replace your.capacitor with an inductor of 5SmH. Repeat the above procedures and
record your data in the Observation Table 2.3 for different values of the inductor.

Observation Table 93 Frequency response of an inductor

Current across the Indoctor = ......... ma

§.No. Frequency f(Hz) Voltage across the inductor Voltage across the inductor
’ (... mH} in volis (... mH)} in volis

Now, plot a graph betvveen V| and frequency fon a Iog-log graph paper.

A gearh beh-'rocn V) and frequeecy f

Discuss your resuits on the basis of zbove graphs in the following space,

Frequency Response of

A.C. Series Clreults
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SAQ 1
Calculate the inductive and capacitive reaciance of any inductor or capacitor, which you have
used in the above experiment for a frequency of 1 KHz.

.............................................................................................................................
.............................................................................................................................

SAQ 2
What is the value of X as the frequency approaches zero or infinity, What will happen
when such inductors are used in A.C. Circuit ?

SAQ 3 .
Can you use a D.C. volimeter instead of an A.C. voltmeter in your experiment ? If not,
why ?

.
9.3 TOSTUDY THE FREQUENCY RESPONSE OF
R. AND Rc SERIESTCIRCUITS

Oscillator

(0

R

aepm T e
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Now connect a resistor and an' inductor in a series between the source points where you had
carlier connected the three components individually. This is shown in Fig. 9.3. Repeat the .
same procedure again and record your data in the following Table 9.4,

(_'.)burvallon‘l‘lble 9.4 Frequency response of a RL-circuit

S.No. Froquency f (Hz) ’ Total Voltage V across RE-serles circuit

Now plot a graph between voltage V and frequency f.

A greph between voltags (V) and frequency ()
Record your conclusions in the space provided below.

Now, you reploce the mductor by a capacitor and record your data in the Observation Table
9.5.

Observation Table 9.5 Frequency résponse of 8 RC-Circuit

$.No. Frequency f(Hz) ’ Total Voliage ¥ across RC-series
circuit

Frequancy Respomss of
A.C. Baries Cilrcuiis
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Hota;mphbumnWVuﬁﬁeqwﬁcyfonuqmi—logguphmr.

A graph betwoen voltage (V) and froquoncy (/)
Record your results in the space given below :
SAQ 4
Calenlate the impedence of & RL-series circuit

SAQ 5
On the basis of your results, what do you think is the difference between RL series and RC
series circuits 7 :
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9.4. TO STUDY THE FREQUENCY RESPONSE OF A
LCR-SERIES CTRG&UIT
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Procedure : In the last part you had connected a resistor and a capacitor in series. Now, in
between the same end points, you add an inductor as well to make an LCR serics circuit as
shown in Fig. 9.4. Following the same procedure record your data iri the Observation Table
9.6.

Observation Table 9.6 Frequency response of a RLC series circuit
‘ Frequency f (Hz)

5.No. Voluge V across LCR-scries cireuit

Now, plot a graph between voltage V and frequency f.

Graph between voltage (V) and froquency (/)

Do you observe that this graph is quite different from the previous graphs ? Do you know
why ? Give your reasons in the lines below. If you are unable 10 answer the above, consult
the Jast part of the introduction for this experiment,

9.5 TODETERMINE THE QUALITY FACTOR QOFA
LCR-SERIES CIRCUIT

Procedure : Now, you repeal the above-experiment and measure the current in a LCR-
series circuit with the help of an A.C. ammeter for different values of the frequency. Record
your data in the Observation Table 9.7.

Frequency Response of
A.C. Serles Circulis

e
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Obeervation Table 9.7 Frequency reaponse of & LCR circuit

8.No. Prequency f(Hz) Currerk / in the LCR-series circuit

From above data, plot'a graph between Current / and frequency f,

A graph between current (7) and frequency (f)

Explain your result on the basis of the above your graph in the following lines.

The curve obtained above by you is known as the resonance curve. The frequency at which
the current is maximum is known as the resonant frequency f,- The points on the graph
where the current reduces to .707 times that of the maximum value are known as the half
power point. The frequency difference between these two points denoted by A[fis called the
band width. Now, with the half of f;. and Af, calculate the value of the quality factor (Q).

SAQ 6
Explain the difference between voltage vs frequency and current vs frequericy curves in & LCR
series circuit which you have plotted in the above experiment.
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EXPERIMENT 10
ZENER DIODE CHARACTERISTICS AND
ZENER AS A VOLTAGE REGULATOR

Enrolment No.......ocoveerernnens

Structure

10.1 Introduction
. Objectives
10.2  [ntroductory Information
Electronic Configuration of Germanium and Silicon
Crystal Latrice of Germanium end Silicon
N-Type Semi-conductor
P-Type Semi-conducior
Curment through Semi-conductor
P-N Junction
£-N Junciion in Forward-Bias
£-N Jurcrion in Reverse-Bias
Zener Diode
Tesing of a P-N Junciion .
10.3 Voltage-Current.Characteristics of a Zener Diode

10.4  Zener Diode as a Voltage Regulator

10.1 INTRODUCTION

On the basis of their resistivity values, the materials can be broadly clessified into — metal,
insulator and semi-conductor, The resistivity of a metal is of the order,of 10~ ohm-cm and
an insulator is of the order of 10°2 ohm-cmn. The resistivity of a semi-conductor lies in =~
berween a metal and an insulator. Germanium and silicon are the most commonly used semi-
conductors, At absolute zero, i.e., ~273"C, the semi-conductor would be near a perfect

" insulator, As the temperature increases, the conductivity of the semi-conductor increases.
This change in the condugtivity with an increase in the temperature varies for different semi-
conducting materials. For example, with an increase in the temperature by 10°C, the
coriductivity increases twice in germanium and thrice in silicon.

A semi-conductor has limited device - possibilities. For instance, it is used in photo-cell and
temperature-sensitive resistor etc. In order 10 increase the device applicability of the semi-
conductors, impurities are added to the semi-conductors to make themyp-type and.A-{ype. In
-p-type materials the impurity is of the acceptor type whereas in :n-type the impurity is donor
type. When P and n semi-conductors are fused and the thickness between them is 10~ cm, a
P-N junctjon is formed, In practice, a p-n junction may be formed from a pure semi-
conductor by doping part of it with acceptor impurities and the remainder with the donor.

A p-n junction performs essentially the same jobs that an electron tube (vacuum diode) does
in the electronic equipment. The p-n junction becomes very important in electronics because
of their many advantages over electron tubes. It is smaller in size and lighter in weight. This
makes the equipment small in size and lighter in weight. The equipments which were heavy,
bulky and permanently mounted now can become portable and miniaturised. Another
advantage of p-n_ junction is that it need not be heated as in the case of electron tubes. In

this way the power supply equipment and the circuit components can be made smaller and
cheaper. It has become all the important because many other solid-state devices contain
several such junction. If the mechanism of current flow in a simple -P-A junction is
understood. Then it becomes easier to understand the mechanism of the operatiun of the more
elaborate structures,
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Zener diode is a special kind of p-n.junction diode. The voliage-current characteristics of a
zener diode are the same as those of an p-n junction. But in zener diode, there is a small
change in the current when the voltage across the zener is increased. In this way a zener diode
differs from a_p-n ‘junction. This is a very important property of the zener diode, which
enables us to usé it as a voltage regulator in power supplies and voltage reference standards.

Here in the first part of the experiment, we will plot the voltage -current characteristics of a
zener diode in the forward-bias which are similar to the c¢liaracteristics of 3 p-n junction. In
the second part of the experiment, we will plot voltage-current characteristics in the revers
direction. In the third part of the experiment we will show how a zener diode is used as a
voltage regulator.

In the next unit we will perform experiments on transistor characteristics. A transis*or is
regarded as a combination of the two p-n junction diodes in different ways.

Objectives

After doing this experiment, you should be able to :

o dmw the voltage-current characteristic curves of a given zcner diode in forward and
reverse biases '

e determine whether zener diode is made up of silicon and / or germanium from ils
voltzge-ampere characteristic curves

o measure the effects of line and load change on the output of a 2ener diode

e construct a zener voltage regulator and experimentally determine the range over which
the zener maintains a constant oulput voltage.

APPARATUS

Zener dicde BZ-146, BZ-147, CZ-6, IN-753, IN-3020 or any other zener diode (1 W, 10V —
20 V). a vaniable regulated a.c./d.c. power supply (0-30 V), transformer (12-0-12 Volr),
capacitor (0—100 pf-25 Volt), ammeter (0-10 pA, 0-50 pA, 0-100 pA, 0-30 mA, 0-50
mA, 0-100 mA), voltmeter (0—10 V, 0-25 V, 050 V), resistances ((—1 K, 0-10 K€, 0-
25 K, 0-100 K 12W and 1 W), multimeter and connecting wires, soldering wire,
soldering paste and solder (20 W) etc.

10.2 INTRODUCTOQORY INFORMATION

You heve resd about semi-conductors in your school science courses. You have also read
about P-type and/# ~type semi-conductors. Lel us now recapitulale what we know aboul
semiconductors. If you have read about semiconductors and p-n -junction in your earlier
classes then skip Sections 10.3.1 to 10.3.8. Let us now recapitulate what we know about
semi'-conductors. '

A semi-conductor is 2 material whose electrical conductivity lies between that of a inetal and
an insulator, Germanium and silicon are the most commonly used semi-caonductors. A pure
semi-conductor is also known as intrinsic semi-conductor. They have crystalline structure.

The conductivity of a pure-s¢miconductor can be increased by adding minule quantities (1
part in }08) of certain impurities 10 the semi-conducting crystal. This process of adding
controlled quantities of certain impurities to the pure crystals of germaniuvm and silicon is
known as doping.

10.2.1 Electronic Configuration of Germanium and Silicon

A pure atom of germaniurm has 32 electrons. Out of 32 electrons, 28 are tightly bound 10 the
nucleus, whereas the remaining four revolve in the outermost orbirt. The electrons in the

cutermost orbit are called valance electrons. The electronic configuration is shown in Fig.
10.1a.
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Flg. 10.1. (a) Electronic configuration of germanium
Silicon has 14 electrons. The electronic configuration of silicon is shown in Fig. 10.1 (b)
o
Flg. 10.1.(b) Electronic configuration of silicon
10.22 Crystal Lattice of Silicon (or Germanium)
In a crystal lattice, each atom shares its outermost or valence electrons with those of the
neighbouring atom forming what are known as an electron-pairs or covalent bonds between
atoms as shown in Fig. 10.2.
3 [ 1 L3 [ |
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‘Mg, 10.2 Crysual anlce of silican (or germaniumy}

10.23 N-Type Seml-conductor _

When allicon (or germanium) in its pure form is doped with a pentavalent (five electrons in
the outermost orbit) atom like arsenic or antimony, four out of its five valence electrons
form covalent bonds with the valence electrons of four silicon atoms, but the fifth valence
electron of arsenic remains unattached and becomes a free electron. It is shown in Fig. 10.3.
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Thus, wheh a silicon (or germanium) crystal is doped with arsenic (or ahtimony) it develops
an excess of free electron and is called a:a-type semi<conductor. Such types of impurities are
known as domor impurities. '
1024 P-Type Semi-conductor

If allicon (or getmanium) is doped with a trivalent (three electrons in the outermost shell)
atom like indium or aluminium etc., the three valence electrons of impurity atom, form
covalent bonds with the valence electrons of three silicon atoms. There is a deficiency of one
electron or an electron vacancy exists in the crystal latiice of silicon. This deficiency or
absence of an electron is called a hole. It is shown in Fig. 10.4.

1 stom as Impurity

Fig. 104- P ype Semi-conducior

The seml-conductor so formed has o deficiéncy of electrons or an excess,of holes and s called
8 p-type semi-conductor. Such type of impurities are known g3 accepjor impurities because
1t can accept an electron from silicon atoms.

1028 Current through Semi-conductor

You have studied that a #-type semi-conductor has an excess of fres electrons, These free
electrons act as current farriers when an electric field or a voliage difference is applied ecross
an arsenic doped silicon crystal.

In the case of p-type semi-conductors, the holes indicate the absence of ¢lectrons. These holes
behave like positively charged particles when an electric field is applied across the crystal, .
Under the influence of the field, an electron from a neighbouring electren pair bond breaks
loose and falls into a hole towards the positive pole of the battery. This creates a new hole

" that can accept another electron which-has broken loese from its electron pair-bond. This

process continues and constitutes a movement of electrons towards the positive pole of the
battery and the movemeant of holes towards the negative terminal of the battery. As the holes
reach the negative terminal, elections from thil terminal enter the crystal and neutratise these
holes. At the same time, the loosely held electrons that filled the holes are pulled away from
the positive terminal thereby creating new holes. This movement of holes in one direction
and the movement of electrons in the opposite direction, constitute a current flow in the
same direction. Thus in a semi-conducior, the current conduction is the result of the
mavement of holes inside the crystal and the movement of electrgns through the éxtemnal
circuit and the battery. The current flow in pure, a-fype and p-type semi-conducters (silicon)
is shown in Fig. 10.5.

e  Electrons
e Hole {Dangling bond)
® A hole that has captuced an electron
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{a) A purk silicon with no emf applied

Semiconducting block

O 0 e O .
0'.'°.O'-°
00'.‘ O . .

(A) A pure silicon with
no emf applied

Semiconducting block

(C) N-type silicon with no emf

Semiconducting block

O © o
o o]
00 o0

(E)-P-type silicon with
no emf applied

Semiconducting block

11}
Battery
(B) Pure silicon with applied emf
Electrons enter the negative end
of the block from the battery and
move from hole to hole towards
the positive end of the block

ot

+*
— ]I}~
Bmory
(D) N-type silicon with emf applied

Electrons are attracted to the
positive end of the block.
Electrons in the block are supplied
by five valance impurity atoms

- .._,,oo . O.Q. +
0 oo
ZiE—

(F) P-type silicon with applied emf
All the electrons involved in
conduction must be supplied
from outside of the block, in this
case by the battery. The holes are
supplied by trivalent atoms

Fig. 105 Current through a Semi-conducior

10.2.6 P-N Junction

A p- Junction diode is formed by combining a p-ype semi-conductor with an;n-type semi-
conductor. The p-» junction so formed exhibits the interesting and useful property of
offering a low resistance to current flow in one direction. The:p-n junction has the same
rectifying characteristics as a vacuum diode. A p-» junction cannot be formed by simply
putting together a p-type-and an a-type semi-conductor. The construction of &, p-# junction
diode can be done as follows. Take a dotof indium and fuse'it on a germanlum waffer of n.--
type at a suitably high temperature, This produces 2 p-type germanium immediately below
the surface resulting in the formation of a p-# type junction between the P-region and the
body of the n-type germanium. It is shown in Fig. 10.6.a. The junction is formed because
of the concentration gradient. Then holes from the p-side diffuse into the n-side and
recombine with free electrons, Similarly, the electrons from the #-type diffuse to the p-side
and recombines with the holes. Such an exchange of mobile carrfiers occurs mainly in a
narmow region around the junction. This region is called the depletion layer or space-charge
layér, as it becomes depleted of the free charge carriers. It leaves behind the unneutralised

space charge due to positive ions on the n-side and negative ions on the p-side as shownin ~-

Fig. 10.6.b. Such a space charge cause's an electric field in the depletion region and a
potential difference called the junction barrier potential develops across the p-n junction,
making the p-side negative with respect 1o n -side. This barrier potential cannot be measured
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by a voltineter. The barrier potential opposes further migration of electron across the
junction so that a state of equilibrium is reached. In this state, the region near the junction is
relatively clear of holes and free electrons as a result of the initial migration. This is called a
depletion layer and is typically less than one micron wide.

P . N
0% | ¢%%e .
o ®
00 g0
P=-N Juncticn

Fig. 10.& A [p-gi-lundllon

P-Type  N-Type

— .

Anode Cathode

—_—
Director for current flow

Fig. 10.6,b: Deplection layer in a o Junction

10.27 P-N Juilctlon in Forward Bias

APN Junction is sald to be forwerd blased if an external bartery is connected across the
junction so that the polarity of the external batlery is opposite to the barrier potential. It is

- shown in Fig. 10.7. This lowers the barrier potential and allows an easy flow of current

through the diode explained as follows:

Flg. 10.7 A p-n- Junction in Forward Bias

Free electrons from the negative terminal of the battery repel the free electrons in the n-type
material. These free electrons move towards the .p-n junction. The holes in the p-type
material are also repelled by the positive terminal of the battery and move tawards the
junction. At the junction the free electrons and holes combine and are lost in the process,
However, the current carrlers lost in these combinations are replenished by new current
carriers, resulling from the separation of electron hole pairs. The free electrons produced in
the p-type material are attracted by the positive terminal of the battery and flow in the
external circuit as shown in Fig. 10.7. This is a continuous process and conslitutes a current
Row by electrons in the extemnal circuii but inside the junction. both holes and electrons
carry currents.

1628 P-N Junctlon in Reverse Bias

‘_ A p-n junction is said to be reverse biased when the extemnal voltage or battery i:onnected-_

across it aids the barrier potential as shown in Fig. 10.8. Since the barrier potential is
actually.raised by the reverse-bias, there is practically no flow of current through the diodes.
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Fig. 10.8 Reverse-Bias

The free electrons in the n-type material are attracted away from the p-n Qunctic;n and the
hole in the' p-type material are similarly atracted away from p-n junction by the negative
terminal of the battery and there are practically.rio holes or electron carriers left in the
neighbourhood of the p-n-junction, In this case the current flow stops completely,

_10.2.9 Zener Diode

Zener diode is & special type of a p-n junction diode which operates in the reverse-bias
condition. It is manufactured by careful adjustment of the concentration of acceptor and
donor impurity atoms near the junction. Unique reverse-bias current and voltage
characteristics provide completely different applications from those of the ¢rystal diode.
When the diode is forward-biased, it acts like a closed switch and forward current increases
with an increase in applied voltage. Forward current is (hen limited by the parameter in the
circuit. When the zener diode is reverse biased, and a small reverse current [, flows in the
circuit. [t is called the saturation current. It is relatively constant despite an increase in
_reverse bias, until the zener breakdown voltage V;, reached, After zener breakdown volsge V,
reverse current starts rising rapidly. A zener for this repson is used as a voltage regulator at a
predetermined value. This value depends on the choice of material conductivity. In zener
diode breakdown occurs at reverse bias from about three volt to several hundred volts. But
higher value zener diode are rare because they are very expensive.
SAQ 1
Explain why an ordinary diode cannot be used as a Zener diode ?

In zener diode which are operated below 6 Volt, the breakdown of the junction is due'to zener
effect. In this mechanism, the breakdown is initiated through a direct rupture of covalent
bonds owing to the existence of strong electric field. In the diodes which are operated
between several volts to a few hundred volts, the breakdown is due to both the zener effect
and the avalanche breakdown. ) .

SAQ 2
What do you mean by zener breakdown voltage ?

In avalanche breakdown, the minority charge carriers (heles in.a-type and electrons in p-
type) acquire sufficient energy from the applied reverse voltege 1o produce new carriers by
removing valence glacirois roni the covalent bonds. The new carriers in um produce
additional carriers and the piocess multiplies to give a large reverse current. The
diode is then said to be in the region of avalanc:c breakdown. However, in
general, all semi-conductor diodes. which are operated in the brezkdown region of their
reversz charactenistics — whether zener breakdown r avalanehe breakdnwn are known as
zener diodes. The circuit syrnboel of a zener diode 1s sirown in Fig. 102, The symboi ¢
similar to that of an ordinery diode with the c..anee Toaz thie o is replaced dy the leiter Z,

Zener Diode Characteristics
and Zener my a Yoltage
Regulator

&2

AT




-Some Experiments on
Muechanical and Electrical
Propertiss of Matlerials

50

FoF

o) _ (L Anode _
Fig. 10.9 Symbal of n zener diode

SAQ 3 ' :

How many breakdowns are there In & zener diode 7 What are they ? -

The breakdown voltage of a zener diode is limited by an exteral circuit 10 a suitable value
such that the power dissipation across the junction is within its power handling capacity.
Zener breakdown need not result in the destruclion of the diode. As long as current Urough
the diode is limired by the external circuit (o a level within its power-handling capabilities,
the diode funcrions normally. Moreover by reducing reverse bias below the zener voltage, the
diode can be brought out of its breakdown level and restored to the saturation current level.
This process of switching the diode between its zener and non zener current states can be
repeated again and again without dameging. If the limit of power-fiandling capacity exceeds,
then a large current may cause damage to the diode.

Zener diodes are used as voltage regulators and as voliage reference standards.

10.2.1¢ Testing of a P-N Junction

The property of a junction is that it represents a low resistance in forward bias and a high
resistance in reverse bias. This propeny can be used 10 test 8 junction with the help of a
multimeter. When & diode is iested with a multimeter then it should be kept in the range of
10k£2. When a muitimeter is used as a ohm-meter then it has a battery connected inside the
meter. When a diode is connected across the testing lead of the multimeter, then it is
conducting either in forward direction or reverse direction, depending upon the negative or the
positive terminal connerted o the cathode iead of the junction. Now reverse the conneclion
of the junciion. Check whether junction is conducting in reverse or forward direction. On
changing the direction (i.¢.. the temiinal of the dicde), if the conduction changes from reverse
to forward or forward to reverse, then you can say that the diode is in proper working
condition. It is shown in Fig. 10.10.

" . Low Rea High Res

MULTIMETER ' MULTIMETER
- +
Lo o
Cathode -
lcad

Fig. 10.10 Testing of & diode
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If the multimeter shows direct continuity or conduction of the junction, does not change by
changing the polarity of the terminals. Then the junction is said to be defective. So, with the
help of this, we can detect whether & p-rr’junction diode is in proper working condition or
not. The testing is shown in Fig. 10.11,

Zero Res

-

MULTIMETER

Zero Res

MULTIMETER

{s) Showing direct cm'uinuhy

o &

High Res

<

MULTIMETER

Low Rey

-

MULTIMETER

(b) Drods 1s ehony

High Res

K

MULTIMETER

3

{c) Diode is cpen

Flg. 10.11 Testing of @ p-n  Junction

This procedure can also be used to identify the leads of an unmarked junction diode or when
markings on the diode are not clegrly visible. For this the polarity of the multimeter is

marked on it or it can be checked with a d.c, volimeter or another mulitimeter. Then the lead
of the diode which shows low resistance when connected to the negative lead of the meter is
cathode lead, and the other one is anode lead. It is shown in Fig. 10.12.

High Res

<

S

MULTIMETER

A

Cathode

Diode

e
Anode

or

Low Res

0

MULTIMETER

&

Diode

Ll

Anode

Fig 10.12 ideniification of anode and cathode in J dicde

B
Cathode

it is found ihat in some multimeters the terminal marked negative (—} on the meter is
acwually connected to the positive terminal of the batlery inside. That is why you are
instructed to know the polarity of multimeter with the help of a voltmeter.

Zener Dicde Chmracterbstics
and Zener as. a Yolinge
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:«:m:c.u :n:d slmlu-'ic-l 10.3 VOLTAGE-CURRENT CHARACI'ERISI‘ICS OF A
pertles o alerials . )
ZENER DIODE
R
U: A
Muiti-range - S(JSOWIL
ammeler *
_JL , resistor ,
iE’ : D ( Multi-range
p— . N voltmeter
- Zener diode
'Revcrsing kcf 1
£ e\
15)

Flg. 10.13 Zzner diode in forward & revene direction

Procedure : Test whether the zener diode is defective or in proper working condition with
the above mentioned procedure in Section 10.3.10.

Solder two connecting leads on each terminal of the zener diode and again test it. Sometimes
the dicde bumns due to overhealing when soldering the connecting lead.

Now make the circuil connection as shown in Fig. 10.13. Connect the cathode of the zener
diode to negative terminal of the battery and anode to the positive terrhinal of the battery.
Now the circuit is ready for forward bias.

In this circuit, the power supply is of the range of 0-30 V. Here V is a volimeter of range
0-100 mV or 0-20 V and A is a millismmeter of range 0-50 mA or 0-100 mA depending on
the requirement. R is a decade resistance, whose value is calculated as follows :

Caleulation of the value of R.

The value of R depends on zener and the requirement of the circuit. Consider that a constant
10 V (£ 0.7) output V., is required for a load whose current /,_may vary from 5 10 30 mA.

Power is supplied to the circuil from a constant 30 V dc source. [t is required to design a
regulating circuit which will achieve this.

Let us consider that Fig. 10.13 will meet the specification of the problem. We can sclect a
zener diode whose ¥, = 10 V. Assume that such a diode is available which will pass a
regulating current /, such that the total circuit curent /; remains constant at 30 mA over the

range of the load current variation in our problem. Applying Kirchhoff"s vollage law, we can

write
ViasIrxR+V,
and
R = VA.-‘, - Vm:.f
Iy
Substituting the value of V., =30V, ¥, =10 Vand /. = 30 x 107 A, we get
g o JOV-i0V 20V

30107 AT 30x 07 A
= §66 Q

To determine the wattage of &, note that there is a 10-V drop across it. Therefore,
v:_o102v2 L
Watlape = 7T Geeq - 6

7

increusc tie voilage in step of 0.1 ¥ and measure the diode current. Remember not lo exceed
. mevinum Jlowed forward current in Lhe dicde.

Reoend e o Diservation Table 1001,
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Observation Table 10.1 Forward - direction (bias)

S No. Voltmeter . Forwad -
Reading in Volts Current Reading in millizmphere resistance in
when increasing | when decreasing " Man

1. 0.0 I
2, 0.1

A 0.2 ’
4.
g "

Now plot the data on a graph paper

Now change the direction of the current with the help of reversing key as shown in Fig.
10.13. After changing the direction of current, the zener diode is in reverse direction of
current, (i.c.. the zener diode is in reverse bias). Now change the voltmeter of range (0-2 V)

'to & voltmeter of range (0~30V) and milli-ammeter to micro-ammeter of rang (0-100 pA).

Zener Dlode Characteristics
and Zener ms a Voltage

Regulator
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Seme Experiments on Increase the voltage in steps of .5 V and measure the current. Record the data in observarion
'Mechanical and Electrical table 10.2.

Properties of Materhals

Observation Table 10.2 Reverse Bias

S.No Voltmeter -
' Reading in Vols Current Reading in micro-amperes L,
v)
when increastng | when decressing | Mean

! 0 ‘
2 2
3. 4
4.
5
6.

Now plot the data on a graph paper.

Discuss your results on the basis of the above graphs in the space given below :

SAQ 4
In"the circuit of Fig. (10.13), the following parameters are given

E=125V V,=586V, R =500, and Rg = 100
Calculate

(i)  What is the current through R ?

54 , (ii) What is the curtent through the Zener diode ?

T = ey e
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(i) What nower is dissipated in the diode and R ?

"SAQ 5

Zer..r Diode Characteristics
and Zener as a Voltage

Observe the forward-characteristic curve of the diode carefully. You will find that the current
starts flowing in the diode only when the applied voltage is more than 0.6 V in the case of
silicon diode and 0.25 volt in casc of germanium diode. Explain the reason ?

You may wonder how the above voltage can be used to find whether the diode is made of

germanium or of silicon,

10.4 ZENER DIODE AS A VOLTAGE REGULATOR

Procedure :

For voltage regulation, the zener diode is used in the reverse bias. The circuit arrangements
are shown in Fig. 10.14. R_is the load across which (he voltage is to be stabilised. The
voltmeter V| measure the supply voltage and the voltmeter V2 measure the voltage across

the load &, .

Yoltmeter

Yoltmeter

R |7

LI
J@T [T

Stepdown  Band Bridge  Capacitor
transformer  switch rectifier

Fig. 10.14 Zener diode as a voltage regulator

Zeqer Load Oﬁlput
resistor

Now set the input voltage such that it is in the neighbourhood of 10% of the breakdown
voltage. Close the switch § and measure the voltage across the Joad resistance R,.

Siowly increasc the input voltage in steps of 0.2 Volt and measure the voltage across the

load resistance. Record your data in Observation Tsble 10.3.a.
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Some Experiments om Observation Table 10.3.a Zener as Voltage Reguletor

- Mechanics! and Electrical
Propertles of Materisls S.No. - Input Volage (V) Load Voltage (V1) Remarks if amy

1. -

. 2

' 3
4,
5.
6.
T

Now plot a graph between input voltage and the voltage across the load resistance.

In the second part of this experiment,
corresponding voltage across the load resistance. Record your data |

10.3.b.

Observatlon Table 10.3.b Zener as Voltage Regulator

change the value of load resistance and measure thee i
n Observation Table No. :

AT

§.No.

Load Resistance

Output Voltage

Remarks if any *
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Now, plot a graph between load resistance and output voltage.

Explain your results on the basis of your data.
Results " :

If you have enough time, then remove the zener diode from the circuit and repeat cipcrimcnt
No. 10.5. :

Now compare the result of experiment No. 10.5 with and without zener diode on a separate
graph paper. Draw conclusions on the basis of the data of these two experiments.

Conclusion :

SAQ 6
When the load resistance is changed from 100 ohm to 1 kilo-ohm, the load voltageichanges
only slightly. Explain why this is important in a voliage regulation.

Zener -Diods Ch.n:nriiﬁu

and Zemer na

a Voltage :
Regulator i
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Bems Kxperiments o SAQ 7
Mochsalcal and Electrical When the line voltage was changed from 15 V to 25 V., the load voltage changed by a much
Propirtios of Matariaia smaller smount. Explain the importance. .
SAQ 8 . ' o
Explain the operation of the regulator circuit of Fig. 10.14,
E
E
:E
t
8



For Counsellor’s use only

Grade.. ... viicierrranenernerenins Name .............. e rtrreseantrnreans

Evaluated by ................. Enrolment No.......

EXPERIMENT 11
A STUDY OF TRANSISTOR

CHARACTERISTICS

Sfructure
1.1 Introduction
Objectives

.A Junction Transistor Revisited

Transistor Characteristics in CE Configuration
Inpur Charactesistics

Output Characienistics

Transfer Charpcteristics *

11.1 INTRODUCTION

In the preceding experiment, you plotted the characteristics of a p-n diode. A diode permits
current to pass through it in only one direction, That is why its applications are limited
mostly to rectification and detection. A more useful semiconductor device is a junction”
transistor. It can be looked upon as two diodes connected back to back. Transistors find so
many and so varied uses in our daily life—ranging from gas lighter and toys to amplifiers,

- radio-sets and TV-video games. In fact, their use is consistently increasing, In the form of
switching device, these are used to regulate vehicular traffic on our roads, They form the key
elements in computers, space vehicles, satellites, communication and power systems. Ina -
sense, transistors have brought about a technological revolution. It is therefore important to
know how a transistor works,

The practical use of a semiconductor device in electronic circuits depends on the current and
voliage (/-V) relationship. Such a relationship depicted graphically constitutes what we call
*-V characteristics. These characteristics give vital information to a circuit designer as well
a5 a technician. Therefore, the first thing of interest is: How does a transistor respond to
voltage applied to it ? Is the response linear 7 Tn your school you may have learnt that for &
resistor, the characteristic curve (-V plor) is a straight line passing through the origin. This
is manifestation of ohm's law. Do you get a similar curve for p-n junction or zener diode 7
In this experiment, you will plot characteristic curves for a transistor in the commeon-emitter
mode and compute current gain, input resistance and output admictance,

Objectives
After performing this experiment, you will be able to

"e  study the variation of the base current with potential difference between the base and the
emitter (input characteristics)
¢  study'the variation of collector current with potential difference between the collector and
the emitter (output characteristics)
® cxamine the relationship between the coliector current and the base current in the’
common-cmitter configuration (transfer characteristics) .
¢ Compute current gain. input resistance and output adminance.

11.2 A JUNCTION TRANSISTOR REVISITED

The junction transistor is a three terminal device. These terminals are connected to layers
which are in the p-n-p or in (he n-p-n configuration (Fig. 11.1). The first letter designates

the emitter (E), the middle letter designates the base (B) and the last letter designates collector
(C). You will note that (i) the base is sandwitched between the emitter and the collector,

(ii} the emitter and the collector are of the same type ((p or n} of material, and (iii) the base
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Properties of Materials

Whed the mil of thoamow Is . -
connected to the positive terminal of
is xaid to be forward biased.

'Semiconductor diodes i genemt and
tmansisiors in particular are designmed
two letters followed by & sexinl
pumber, The first letter gives an
indication of the material: A is osed
for devices using rmxterial with a band
.gapof0.5cVio | OcV suchns
gerinanium. B is used for devices
using materinl with s band gap of
1.0eV o 13 eV such as ailicon.
application : A is for detection
diades, B For variahle cxpacitance
diades, C for transisiors for sndic
frequency applicstions, 1) for power
transistors, E for unnel diodes, F for
xpplications, Y for rectifying diodes,
mnd Z to denote voltage refetee of
conxigteof digits. For example, ~
ACI125 represents germanium -
BC107 represents silicon tramistor
for AF application. How will you
interpret AD149, BY127 and BZ1487
The firet of these is & germumivm

- power trandistor, the second a silicon
rectifier dicde and the Last one is &

and the emitter {or collecior)-are of different materials. Does this mean that we can

interchange the collector and the emitter at will'? We cannot do 50 because the collector and

ﬂncnnuud:ffermtheulevelsofdopmgnpmﬂmngwmuy ('Ihedopmglcvelmtbc

_crmnerlsmmethanﬂmtmlhccollecmr)

’ (=
Bed - P -or a r . -
! .
: ;
[ L

£qg 11.0 $ N--0 ADA P-B-P Taliusswns

You may now ask: How is a transistor symbolised in a circuit 2 The circuit symbols for
p-n-p and n-p-n transistors are shown in Fig. 11.2. The element with the arrow is the emitter
and jts symmetrical counterpart is the collector.

In the p-n-p transistor, the emitter arrow points to the base whereas in the n-p-n transistor
the arrow points away from the base. The arrow mark signifies the direction of the
conventional current whea the emitter junction is forward biased.

Q €

Fig. 112 :(s) Circuit symbol for a p-n-p transistor {b)&w'usynﬁifcl_"lnn-p-n teaosisior

Nowyoumnyliketohmw:Howtoconnectatransistorinacircuil?Aﬁunsistormbc
connected in a circuit in one of the three ways:

i} when emitter is common to both input and output circnits — CE configuration
iij when base is common to both input and output circuits — CB configuration
jii) when collector is common to both input and output circuits — CC configuration.

In each of these configurations, the transistor characteristics are unique. The CE
configuration is used most widely because it provides voltage, current and power gain. In the
CB configuration, the transistor can be used as a constant cumrent source while the — CC
configuration is frequently used in impedance matching. Does this mean that the CE
configuration is superior ?

For each configuration, we can plot three different characteristics. These arc : ()
characteristic between input quantities called the input characteristics, (b) characteristic
between oiutput quantities called the output characteristle and (c) characteristic between.
an input quantity and an output quantity calied the transfer characteristic. Table 11.1
gives various quantities related to each of these characteristics in all the three configurations
and the transistor consiants of interest.

Tabte 11.1: Related quantities in the charactrristics of a transistor

Configumtion [nput characeerisic  Chnpant Transfer Imponant transistor
characienistic chamcteristic constant
CE ‘v’mmlnw‘iﬂl VG. mﬂfcwiﬂ'lfa Inlﬂifc Current
’ Vg &3 porameter s parameter amplification factor, fi
CB Vigp et with Vg end I with fgad i Current
Vip @8 perameter I &S parameter _ amplilication factor, o
CC Ve and fy with Ve and g with Iy fgend Iz
Co Ve & parmneter 3 parameter
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As mentioned earlier, here we wish you to work in the CE confi gurauon The apparatus
required for this purpose is listed bclow

Apparatus

Two low range variable dc power supply (0-15V), 2 multimnge microammeter, two
multirange milliammeters, two multirange voltmeters, a multimeter, a BC107 npn
transistor (or any other given transistor) with a socket, two 2.5 KQ/2W potenuomem's, and

“teads (or a transistor characteristics kit with these provisions.)

11.3 TRANSISTOR CHARACTERISTICS IN

CE CONFIGURATION

First of all you should identify the base, emitter and collector. Then you should check that
your transistor is in working order. To do so you can measure the resistance between the
emitter and base, and the collector and base using & multimeter following the steps given in
Appendix-A. Having tested your transistor, you should use the following procedure to be
able to plot transistor characteristics of interest. )

11.3.1 Input Characteristics

)

2)
3)
4)

A Study of Translstor
Characterisiics

r =~y g s 4 i

[Ba = = m

Fig. 11.3: Circuit diagram for investigating CE characteristics’

Make the connections as shown in Fig. 11,3, Vjp and V- are the base and collector
supply batteries (0-15V). R, and R, are 2.5 k(/2W potentiometers, V, and V, are
multirange voltmeters, 4, and A, are multirange micro and milliammeter, respectively
and R is & variable resistance. ’

In case a (Moraj) transistor kit is given to you, you should ensure that the basic circuit
given in Fig. 11.3 is in operation. If you are given an n-p-n transistor, you should
reverse the polarities of batteries and various meters. By means of potentiometers R, and
R, you can adjust the base current and the collector current, respectively. )

Keep collector to emitter voltage (Vi) at zero volt.
Choose the range 0-1 V for base to emitter voltage (Vyg).

Adjust the base current 10 a low value say 20 pA. Vary it in steps of 20 pA upta
200pA. We expect that Ve will also change. In each case, measure the base to emitter

voliage, Record your readings in Observation Table 11.1. In case the base to emitier

voltage does not change, check the circuit again. If you cannot locate the fault, seek help™

from your counsellor. You may be having a faulty component or transistor kit.

LIS ETRL PR L

oY AT — o

61




Semev Experiments on
Mechanical and Electrical
Propertles of Materlals

62

Observation Table L1.L: Input chamcteristics -
Least count of microammeter w ...... pA

Least count of voltmeter & ... v

S. No.. @A) Base to amitter voltage Vga (V)
V00V | V20V
| » ‘ ]
2 4
3 &
4
200

5) Now,youcanset V= 2V and repeat steps 3 and 4. How does Vge change now? .
Very frequently you will observe that while changing ranges on current-meters, readings may

- not coincide. This discrepancy arises because of the difference in meter resistance when

ranges are changed. Therefore, while changing ranges, it may be necessary to-readjust the
controls in the affected circuit1o offset changes in meter-resistance. Another factor that you
should consider is the coupling between the collegtor and the base circuits. It may be
necessary to readjust the base current control when voltage is varied to hold 7, at a fixed
value.

Plot 1 along x-axis and V; along y-axis for each value of Vg Draw best fit curves. These
are referred to as input characteristics. Select a suitable point in the linear portion of the
curve and compute the slope at that point. This will give you the input resistance defined as

k, = %-,:E. where AVy; and Al denote small changes in base to emitter voltage and base
current, respectively.

Result: The input resisiance h,_ for the given transistor is ............... £

5AQ 1

Plot 1, along y-axis and Vi along x-axis. What is the nature of the graph ?

11.3.2 Output Characteristics
1. Fix the basc current /g at 20pA by adjusting 8, and R.

2. Vary the collector to emitter voltage Vi by varying R, from 0 to 10 V in steps of
0.5 V.

3. Note the collector current Jc'in each case and record it in Observation Table 11.2,
4. Repeat steps 2 and 3 for g = 40pA, 60pA, 80uA and 100U A.

S." Plot Vi versus I for different values of [y Which quantity will. you plot along




x-axis? Draw smooth curves foreach /. These are referred to as output characteristics.

Compute output admittance (h,,) using the relation k=

Least count of voltneter w .........

AL
AVeg

Observation Table 11.2: Ourput characieristics

v
_ Least count of milliammeter = ... PA
S.No. Ve (V) Collectgr current /. (mA)
Iy=200A  [Ipm4OuA | pm6OuA | Ip=B0nA | Jp= 100MA
1
2

Result: The output admittance for the given transistor is = ........

11.3.3 Transfer Characteristics
1. SetV ga50V

2. -Setthe base t*urent /,; at 20|.1A by adjusting R, and R. Measure the collector current

Ic. Enter your rcadmg in Observation Table 11 3

3. Change the base current 10 40 pA. Do you observe any change in Vg TIf yes, then you .

should adjust R, 1o restore V- at 5.0V. Again note the collector current.

4.. Repeat your obscnrauons for Iy = 60iA, BOILA and 100pA, keepmg Vg constant at

5.0V. Record your readings in Obser\rauon Table 11.3,

E

Next fix V¢ at 6.0V and repeat steps 2-4.
If you have time, you may repeat the above procedure by keeping Veg at 4.0V,

7. Now plot I along x-axis and /. along y-axis for all values of V.

Observation Table 11.3: Transfer characteristics

Least count of micrometer =

Least count of voltmeter =

s A)

$.No. Collector current /- (mA)
Vg =50V Vep =60V
1. 20
2, 40
3. 60
200

A Stody of Transistor

Characteristics
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Sems Experiments on * Draw a smooth best fit curve through the observed points. This curve is referred to es

m‘:‘ o:.":!:';’.']ll“' ms:’r charactmstw curve, Compute current amplification factor B using the relation
B= Ns
Result : The current amp]i_ﬁcs-ltion factor for the given transistor is = ...
SAQ 2

What other equipment would you require to demonstrate the use of a transistor as amplifier ?

SAQ 3 .
Draw a circuit diagram to show amplifier/switching action of a transistor.
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APPENDEX-A
Al "Meuurement of resistance by a multimeter

lnsmdjcblackmdmdcmdsmmesockclsmrked COmmon md(ﬂVA')mpecnvely
Place the selector in the position for measurement of resistance. Tlusmnonm.lly available
in three scales ( x 10), { x 100) and ( x 1000). Now keep the test ends of the cord apapt; In

. this position, the resistance placed across it is infinite. The pointer must indicate oo in the
.topmost scale (i.c. the ochm-scale). If it does not indicate so, bring the pointer to the «-mark
by tuming the infinity adjustment knob. (If your maitimeter does not have the infinity '

adjustor, the infinity-error, when present, cannot be comrected.) Now make the zero-
adjustment, which is very vital, For this, make the test ends of the cord to touch. The
pointer should indicate zero for the selector in each scale. If it does not do so, bring the
pointer to zero-mark by turning the zero-adjustmient knob. The multimeter is now ready for
the measurement of resistance,

Now place the selector in the position (x 1). Connect the test ends of the cords across the
terminals of the resistance to be measured. Note the reading of the position of the pointer
comresponding to the ohm-scale. If the pointer stdps at 50, the resistance is SO If the
pointer overshoots the scale, place the selector at (x 10} and repeat the above procedure, If
even now the pointer overshoots the scale, you should place the selector at (x 100) or

{x 1000) marks. In these cases you will have to multiply the observed reading by-10 or 100
or 1000, depending on the position of the selector,

Identlfying emiiter, base and collector

Turn-the transistor upside down. The three terminals are accommodated roughly withina
semni-circle (Fig, A.1). The emitter (E) and the collector (C) are diametrically opposite. The
collector is near the notch (N). The third junction is obvioualy the base.

The emitter-base and collector-base are two separate p-n junctions. So you can determine

their types by measuring the resistance between the ends of these diodes using a multimeter,
For this, the multimeter has to be kept in the resistance measurement mode, In this mode, a
battery placed inside the multimeter is operative. The *‘common’ terminal is the positive end
of the battery, whereas the ({2 VA) termina! is its negative end. Now let us indicate the two -
ends of the diode by *1" and '2’. Measure the resistance between these ends by connecting 1
with the biack cord and 2 with the red cord. Repeat the measurement by interchanging 1 and
2 The measured resistance will not be same. The arrangement for which the resistance is -
smaller will be the case of connecting the diode in forward bias. Corresponding to that, the
end connected to the black cord will be the p-side, - :

A Study of Transistor
Characterisiles

Fig. A.l
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